AMERICAN RAILROAD JOURNAL

NEW YORK [ETC.]
V. 6, 1837

REMOTE STORAGE

1839.
 2xarnancax my

畳AILABADJOURNAL

AND)

ADVOCATE OF INTERNAL IMPROVEMENTS.

VOL. VI.----1838.7

D. K. MINOR AND GEORGE C. SCHAEFFER, EDITORS AND PROPRIETORS.

New= York:

G. MITCHELL, PRINTER, 265 BOWERY.
-rvicie

INDEX.

Patent Offic, - - - Rifle, - - -	Report on the London and Gore Railroad - - - . 449 Report on the Auburn and Syra-	Railruad Accicente, - - 533,561 - - 337 $-\quad$ pikes, - - -
Patents - - 1, 26, 270, 340, 487	cuse Railroad . - . 465	Rails, - . . . - 371
Paris and St. Germain Railroad, 563,573	Report on the Tonawanda Railroad, 484	\longrightarrow, Dyer's Patent, - ¢ 99
Paterson, - - - 90	Report on the l'andalia Railroad, - 459	Raft, Red Ruver, - - $57!$
Pennsylvania, - - 54	Ruport on the Niagrua and De-	Railroads in New Englani, - 65:
Pile Driving Machine, - - 393	truit Railtoal, - - 53	Railroad Steamer, -. 633
Poppy Seed Oil, - - 342	Report on the Ohin R,itrous, ${ }^{\text {a }}$ - 553	
Porcelain Sevres, : - - 6	Report on the London and Bir-	
Poudretle, - - 442, 358, 492	ming!lam Jauloual,	Selma and Tennessec Railroad, 545
Practical Mechanics, - - 435,535 Portsmouth and Roanoke Rail.	Report of the Union Canal Co. - 562	Shrinkage and Expansion of ron, 425
Portsmouth and Roanoke Rail. -way, • • • . . 75	Report on the Liverpoul and Man- chester Railroal, - . - 561	Silk - 105 Solvent, not hitherto used in the
$\begin{array}{ccc}\text { Preservation of Dead Bodies, } & -485 \\ \mathbf{R} & \end{array}$	Report on the Buffalo and Erie Ralrual, $569,599$	$\begin{aligned} & \text { Solvent, not hitherto used in the } \\ & \text { arts, } \\ & \text { Statistical Societies, . . } \\ & \hline \end{aligned}$
Report on the Watertown and Cape Vincent Railroad,	Ruport of the South Carolina Canal and Railroad Co. 5S8, 593,643	$\begin{aligned} & \text { Stcam Boats, - 11, 5 , } 2 \text { 2, 27., 55I, } \\ & \text { :567, 5̣S3, 611. } \end{aligned}$
Report on the Luburn and Rochester Railroad,	Report on the Philadelphia, Wi:mington, and Baltimore Ruil-	Sleam Carriages, - \quad - 118,133 - Engines and Bol rs, $2, ~ 289,324$,
Report on the Welland Canal, - 17	road, - . - - 595	, $394,411,66,567,53$.
Report of the Canal Commissioners of Pennsylvania,	Report of the Santy and Beaver Canal Co. . . . - 596	$\begin{array}{ll}\text { - Navigation, } & 291,: 43,623 \\ \text { Survegor's Compass, } & -\quad-225\end{array}$
Report on the Eastern Counties Railway, - . - . 20	Report on the Lancaster and Har- risburg Railroad, - . - 6L2	
Report of the Commissioners of the Canal Fund, - . . 35	Report of the Jeffersonville and Nex Albany Camal Co. - - 603	Telegraph, - $\quad . \quad . \quad . \quad 550,586$ Tennessec,
Report o the Roanoke, Danville, and Junction Raulroad, - 37,51	Report o the Oswego and Utica Railroad Co. - - - 60 个	Tropical Plants, $\quad-\quad 424<86$ Transactions of Maryla dAcademy, 589
Report on the New-York and Albany Railroad, - - 55	Report on the Valley Railroad 617, 625 Report of the Raleigh and Gasion	$\begin{aligned} & \text { Enginecrs, Institution of Civil } \quad 149,1: 5,194,214,228 \text {, } \end{aligned}$
Report on the New-Jersey Railroad and Transportation Co.	Ralroal Co. - . . . 619, 633 Report of the Monroe Railroad	$244,258,282,291,309,322,354,372$, 392, 402, 40S, 435, 453, 471, 499, 521.
Report on the Ship Canal from Richmond to Warneck,	and Banking Co. . - . 628 Report of the Committee of the	Tunnels, - 23, 325, 3.5, 386: 457,588 Turnouts, - . . . 5,585
Report on the Westchester Railroad, - - - . . 83	A isembly on the Pet tions to aid the Canajoharic and Cats-	
Report of the Schuylkill Navigation Co.		Ure's Philosophy of Manufactures, 40,60 Utica and Schenectady Rail-
Report on the Eastern Shore Rail-	, Report of the Connmittee of the Assembly on the Petitions to aid	road, - . . . 435,591
Report of Erskine Stansbury, road, 115	the Erie Railroad, - 651,657	
Report of the Water Commis- sioners, - - . . . 163	$\mathrm{R}, 1$ road Items. 34. 49, 65, 8284.97 , $130,146.166,194,210, .213,241$,	Virginia, - . . - 369
Report on the Greenwich and Roanoke Railway, - - - 307	$273,289,291,305,209,321,: 3$	Western ard Atlantic Raihoad, 669
Report on the Utica and Schenec- tady Railroad, - . . 409	370, 390, 409, 434, 470, 529, 599, 601, 614, 639, 655.	Zinc Roofing, - - - 103

 AMERICAN RALLROAD JOURNAL, AND ADVOCATE OF INTERNAL INPEOVEMENTS.

PUBLISHED WEEKLY, at NO. 132 NASSAU SPREET, NEW-YORK, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVANCE:
D. K MINOR, and

Editors and
GEURGE ©: SCHAEFFER, \} PRom: Tors.]
SATURI.IY, J.INUARY 7, 1837.

CONTENTS:

Advertisements \qquad
Patents
Springs, Weights, etc., used as Locomotive Power
Bcrew Set ter. .
Repurt of a Survey of the Watertown and Cape Vincent Railroad.
Auburn and Rochester Railroad.
.............

Oswegu and Utica Raflroad, etc....................
Miscellaneous
Agriculture, etc
Advertisements
\qquad

AMEIRICAN REILROAD JOURNAL.
NEW-YORK, JANU'ARY 7, 1836.

NEW ARRANGEMENT.

ropes for inclined planes of rallmoads.
WE the subscribers having formed a co-partnership under the style and firm of Fulger \& Culeman, for the manufacturiag and selling of Rupes fur inclined planes of railruads, and for uther use s, offer tweupply ropes fur inclined planes, of any lengih required without splice, at short notice, the manufacturing of cordage, heretofore carried on by ©. S. Durfee \& Co., will be done by the vew firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be promplly allended w, and ropes will be shipped to any port in the United Statos.

Int month, 7 ih, 1836. IIudson, Columbia County State of New-York.

ROBT. C. FULGER, (iEORGE CJLEMAN:
1-tif.

A YOUNG GEN'I'LEMAN, a Graduate of the United States Military Academy, is desirous of obtaining employment ab Civil Fingineer. The sftuation of Assistant Engiber on some worl: (Railroad or Canal) would be priferred. The mosi unerceptionable references as to character and abili$t y$ will be given.

Addiess J, M. N., at the office of the Railroad Journal, post peid.

Patenta.-From a card attached to the last number of the Journal of the Franklin Institute, we perceive that Dr. Thomas P. Jones has turned his attention exclusively to the preparation of patents.

There is probably no one in this country, or elsewhere, who kas such an extensive acquaintance with this subject, both in our own country and in Earope. Dr. J., by his situation as superintendant of the Patent Office, has hed opportunities, for years, of informing himself of the details of patents -ard we have ever censidered his criticisms, in the monthly record of Patents, contained in the Journal of the Frabklin Institute, as invaluable.

The recen: destruction of the Patent Office has increased the neressity of ascertaining the originality of an invention, before taking out letlers patent, while the difficulty of making such isvestigation has become greater than ever.

A proper preparation of the specifications is necessary to the value of the patent, and sometimes a judicious consultation with good authority on such matters, may save thousands to the inventor.

If we sec any more loosely prepared papers, we shall lay the fault at the inventor's own door-no one should err in this matter, when they have the necessary information extended to them on reasonable terms.

SPRINGS, WEIGHTS, ETC. USED AS L.OCO MOTIVE POWER.
We have received various conmunications on thie supject, none of which need a reply, as they are all written by persons laving little or no knowledge of the laws of matter ; though possessed of conside-
rable ingenuity in contriving and constructing. Should such persorstake these laws of matter as they exist, aud not as they imagine then, their inventive talent night be tutned to some accomnt.

Elementary works intended for the purpose of setting forth the laws of plyyics in the plainest language and without reference to techaicalities, are naw to be procued in alnost every viilage in the Un:on, and at an expense benring a excceedingy small proportion to the sum wasted in useless experiment. Fxperience is a dear achool. Quite recenily we were shown by a greatleman of this city, a:s apparatus for perpetual motion, which cost inore than thirty dollars, the necessary failure convinced him that he had been engaged in attempting to cxecute iurnossibilities.

Much has recently been said of an expeiment in New-Jersey, in which a combination of springs was intended to furnish locomotive power We have never even noticed it, well knowing that failure was certain. The marhiuery in an attempt to put it into montion, has been partially ilestroyed as we undersed. This is to be regreted, as new attempts inay be made, until a final test shall prove the error of the invention.

It must be distinctly understood, that no spring, weights, or fly-w heels can add power to a machine-that a man in winding up exerts as much power as the machine does during the continuance of its operation, and in some instances, where the machinery is complex a large portion of this power is lost.

Where a long contiued and i:niform motion is desiled without much power, clock
machinery will do well enough-the moment power to any extent is desired we must resort to steam. This is as yet the only agent successfully applied to locomotion ; experiments upon the use of magnetic electricity have been made upon a small scale, but the machinery is as yet too little understood in certain points of view to be able to furnish any useful hints.

We would earnestly recommend all persons who have any inclination to mechanical pursuits, to peruse before attempting to construct machinery, the work on Mechanics belongingto Lardner's Cabinct Cyclope-dia-or some other popular treatise on this subjeet.

Screw Setter.-This instrument was invented and patented by Mr. George Page, of Keene, New-Hampsliure, and is found by all who have used it exceedingly convenient.

The idea of the "screw setter" was suggested by observing the delay arisiug from the use of the ordinary implements for inserting screws, especially where it was nccessary to counter sink the head. To do which, in hard wood, three different too's are generally used, whereas with the "Pagc's patenit screve setter" it is all done with one tool, and in the same time that one of the three of the ordinary kind can be used.

The "screw setter" has a point like a gimblet, to correspond with the thread, a second part like a screvo augur for the body and a reamer to counter sink for the head of the screw.

This little implement is of various sizes, and fitted into a brace, or bit stalk, like the common bit, and is used with the same facility. One of its greatest recommendations in our estimation, is that the screw will always fit the place it is designed to fill witioout being strained by a want of truth in the use of the different tools used in setting it.

Wherever they have been exlibited they have been hightly approved, and although never advertised, the demand is greater than they can supply. They are manufactured by Page \& Edwards, at Keene, NowHampshire, and are sold at $\$ 3$ per dozen, and of many sizes.
beport of a subvey of the watertown and cape vincent rallroad, by wi. dewey, esq., cIVIL engineer. to

Jerre Carrier,
Roswell T. Lee,
Edmund Kirby,
Isaac II. Bronson,

Commissioners of the Watertown and Cape

Vincent Railroad.

Gentlemen: A careful investigation has been made of the country between Watertown on the Black River, and Cape Vincent
oa the St. Lawrence, in reference to the selection of a route for the proposed Railroad, and it affords me much pleasure to state the gratifying result of my examinations.
I present a map of the courtry designating a ground plan of the route; also a set of profiles, showing, upon a large sccale, the quantity of work requisite to reduce the sur. face to a practicable grade for our purposes. These papers, in connection with the notes attached, will render evident the adequacy of the estimates, upon which a calculation of the cost of constructing the Road is founded. The surveys have been conducted with as nuch regard to a complete understanding of the subject, as the proposed nature of the examination would admit; and I have no hesitation in saying, that, although in the location of the Road, some variations may be made, yet, no line, judiciously established, can affect the estimate so as to increase its amount. I can pronounce emphatically, that the section of country reconnoitred in reférence to this project, offers great and unusual advantages ; and I confidently believe, you can invite attention to your road as one of much importance, and well entitled to the favorable consideration of the community.
A cursory examination of the country from Watertown to Cape Vincent, convinced me that the most feasible route could be found, by following down the Black River, until the hills, setting in from the North, were passed; and thence, to proceed, by the way of Limerick, to Chaumont-leaving the Bay at Chaumont, it was evident that, to avoid the steep hills crossed by the Turnpike, we should be compelled to follow a line north and north-east of the road until they slould be rounded, when an easterly course could be taken to the Cape.
This general topographical view, having shown the course to be pursued in the proseeution of our design, I directed Mr. Robert F. Livingston to carry a regular line of survey from Watertown to Chaumont, while Mr. L. N. Bowlsby, with his party, examined the country from Chaumont to Cape Vincent. I shall proceed to give a condensed statement of their operations.
The line was started from Watertown, at a point on the flat, northwest of the Court House, and near the stone mill of H. H. Coffeen. Our Bench, at this place, was ascertained to be 153,073 feet above the plan of refercnce, or the level of Lake Ontario. My estimates are founded upon an assump. tion that the road will terminate at this point, and perhaps it is as near an approach to the heart of the Village, as would, under a consideration of all circumstances, be deemed advisable.
Following the flat, in a north-westerly course, the Black River is crossed in the vi. cinity of the County Poor-House, by a bridge 266 feet in length. Curving to the left, we advanced, in a westerly direction, towards Brownville. The route fullowed the bank of the River, and frequently came in very near contact with the lower rood from Watertown.
Since, while locating the Ine of the Watertown and Ronie Railroad, I had found that the entire routo could be passed, without resorting to a grade exceeding 33 feet per mile, I deemed it a matter of sound pelicy, to use, $\|$ on the line of this road, no heavier ascent.

This has been accomplished; and although on some sections, particularly from Watertown to Chaumont, it has semewhat increased the expense, yet I consider its attainment well worthy of some sacrifice.
No greater rise per mile being used, when these roads are in operation, and a connection formed, engines ahd their trains, prepared to pass with facility from Rome to Watertown, will experience no increased difficulty, in following your route to the St. Lawrence. At Brownville our grade is 75,710 feet above the Lake, or 78,853 feet below the point of departure. Passing through the Village, we were still compelled to follow the course of the river, by hills setting quite out to its banks. An arm of the Black river, called the Basin, was crossed, and immediately after a deep ravine. Here I have estimated for 1188 feet of trestling, and 198 feet of bridging. This difficulty surmounted, more fa. vorable ground was reached, and crossing Perch river, we passed through Limerick, and pursued a straight course, parallel to the stage road, until we reached the Village of Chaumont. With the exception of bridges at Stoney Creek, Griffin's Creek, and SawMill Stream, the character of this last course is very good, and the grades quite moderate. By the profiles, it will appear that I have generally preferred obtaining a graded surtace by raising embankments, rather than by making deep excavations through the ridges. The adoption of this course was induced, from the circumstance, that in most instances, the ridges cannot be cut deeper than 3 or 4 feet before metalliferous limestone, of a very compact nature, is encountered, while the embankments, whose average heights seldom exceeds 4 or 5 feet, can generally be formed by throwing up material from the sides of the road, or by availing ourselves of such knolls of loose earth as are occasionally encountered. Further investigation has shown that after leaving the Basin and Ravine, below Brownville, a route could be selected, on a course bearing more to the north than the one followed, and passing to the right of Limerick, and of the Chaumont road, which would avoid some of the unfavorable features exhibited upon the profiles; but since the course from Limerick is perfectly straight, it becomes a subject for careful consideration, to decide upon the expediency of obtaining a more level line by curving.From Watertown to Brownville, the soil to be removed is of a light sandy claracter; thence to Limerick we meet with both sand and clay, and for the residue of the distance to Chaumont, the sub-soil is of a clayey nature.

I have estimated for nearly 1000 feet of trestling, and about the same amount of bridging, in approaching, erossing, and leav. ing the Bay at Chaumont. Limestone of a superior quality, and in convenient shapes for piers and abutments, can be readily obtained on the shores of the Bay, and within 3 or 400 feet of the bridge. It is from the shores of this thy, that these splendid blocks of limestone are procured, that are used, by the United Staks goverument, in the con. struction of the piers at Oswego Harbor.
The road surface of this bridge will be elevated 25 feet above the water. Considerable investigation w?s made, for the purpose of relieving its length and height, but a diminution of not more than fiom 150 to 200
feet could be effected in its line of extension, and its height cannot be materially reduoed, without depressing the grades below our established maximum.
Two regular lines of survey were carried from Chaumunt to the St. Lawrence. The first route proceeded on a straight course to about 60 chains above Three Mile Bay.The crossing of Three Mile Creek is effected without any difficulty, but a short distance beyond the valley, there occurs a ravine of great length and depth, which is passed by a high trestling, and, after cutting through a clay ridge, the level of a great swale is reached. By approaching and leaving this ravine, at points different from those adopted, the amount of work can be greatly reduced ; and I may here remark, that in several instances, the features of our profiles mighlt be alleviated, by the selection of more advisable lines, but since the period assigned for field duty did not allow these changes to be effected on the gronnd, I have preferred basing my estima es upon the line, as actually surveyed, to obviate any doubts as to their suuficiency to cover the cost when more carefally located.
Having attained the surface of the swale, we followed it upon an almost level grade, for a distance of nearly two miles. Passing through the clearing called the "French Settlement," Mud or Kent's Creek was crossed near Lee's Mills, the level of another swale reached, and the line entercd Cape Vincent upon a gentle grade, and with irifiling excavation and embankment.
The sudden elevations and depressions that are such formidable objections to the travel upon the Turnpike Road, are entirely escaped by keeping to the right of the road, since, in that direction, the hills suddenly fall off into low swales, over whose surface an almost level line can be maintained. On the entire distance from Clanmont to the Cape, it is seldom that the vertical extent of our excavations or embankments exceed 4 feet, with the exception of the deep ravine above Three Mile Bay. Over the surface of the swales, the embankments are calculated to be formed from the deep ditches requisite here to secure a perfect drainage for the road.
The second line from Chaumont pursued a more northerly course than that followed by the first route, and for some distance proceeded parallel to the old State road, and crossed the road from Three Mile Bay at the "Soper Settlement." Here the upper extremity of the great swale, crossed by the previous line, was passed, and after rounding to the north the hills near the French Ciurch, we proceeded to the Cape on a courfe not varying essentially from the first followd. The features of the second line did not differ much from that previously examined-the heavy trestling, near Three Mile Ray, is avoided, and a saving effected of a fev thousand dollars, as appears by the tables of estimate.The distance is increased 11.59 chains.
The adrantages of pursuing a more inland course is possessed by this line, and consequently that of proving more generally convenient to the country. This consideration should have some weight in the determination of the line to be adopted.
While the survey was progressing from Brownville to Limerick, e line was carried with reference to a Brancl road, to the new $\|$
and thriving Village of Dexter, eligibly situ-! ated near the head of Black River Bay, and rapidly rising into importance. The exam. ination showed the lengtin of line to be 70 chains, and proved the feasibility of constructing a branch.
Superstructure.-Nearly the entire distance from Chaumont to Cape Vincent, the route is located through a heavily tinbered country, abounding with valuable material for the formation of the superstructure of the road.
The White Pine of this region has long maintained a superior rank in market, and offers an excellent and cheap article for our Bridge and Trestle work.
White Cedar, for cross-ties, abounds, particularly on Chaumont River, and a good quality of oak can also be obtained for that purpose. Back Ash, for the upper rails, very straight, aud easily prepared, is found in immense swales. Swamps of Tamarack are also met, from which the entire road may be furnished with this timber, the superiority of which, for the longitudinal sub-sills, is generally admitted. When protected from contact with the atmosphere, no limit for its duration can be indicated, and wherever it can be obtained for railroad purposes, it is adopted.
I shall not undertake at present, to specify a mode of superstructure for this road, but shall assume the same cost per mile as that estimated for the Watertown and Rome railroad, which includes an iron rail $2 \ddagger$ by fith of an inch. Suitable timber is quite as abundant upon this line, and a construction can be formed at the same cost, fully as efficient and durable. White Hemlock constitutes the principal material in the superstructure of that road, and although little of that timber is met upon this route, yet a selection can be made from the variety of other valuable timbers I have enumerated.
I subjoin tables showing the quantity of work to be performed, and the expense, to grade and construct a single track from Watertown to Cape Vincent :-
Estimate.-The first section extends from a point near the Court House at Watertown, to the west side of Chaumont Bay. Distance 13 miles 35 chains.
116,147 cubic yards of Em.

bankment,

$\$ 13,93764$
59,218 cubic yards of Exca-
vation,
Bridging and Tresting,
s,882 70
Clearing,
18,652 00
25000 24000 26000 24000 4,246 23
$\$ 46,708 \quad 57$
The first line of the second section, extends from the west side of Chaumont Bay to Cape Vincent. Distance, 11 miles 52 chains.
55,010 cubic yards of Embankment,
56,219 cubic yards of Excavation,
Bridging and Trestling,
Clearing,

Grubbing,	930 CO
Culrits,	50000
Road crossings,	$150^{\circ} 00$
Contingencies, 10 per cent.,	2,12154
	$\$ 23,33702$

The second line of the second section, extends from the west side of Chaumont Bay to Cape Vincent. Distance, 11 miles 64.59 chains.

55,612 cubic yards of Em-
bankment,
$\$ 6,67344$
49,597 cubic yards of Exca-
vation,
5,951 40
Bridging and Trestling, 1,848 00
Clearing,
84600
Grubbing, $\quad 1,05000$
Culverts,
45000
Road crossings, 20000
Contingencies, 10 per'cent.
1,701 88
$\$ 18,720 \quad 72$
By the first line the entire distance from Watertown to Cape Vincent, will be 25 miles 8 chains.
The whole cost for grading, $\$ 70,04559$
By the second line the entire distance will be 25 miles 19.59 chains.
The whole cost for grading, $\$ 65,42929$
Average per mile for grading,
$\$ 2,59176$
Superstructure of the Water-
town and Rome Railroad,
per mile,
3,190 20

Total, per mile,
25 miles 19.59 chains,
$\$ 55,78196$
$\$ 5,781$
96 per mile,

In accordance with your wishes, these estimates comprehend only the grading and superstructure for a single track, with the requisite bridging and trestling, from the point at which the survey was started, at Walertown, to the place of its termination, at Cape Vincent. As respects the Locomotives, cars, station-house at Watertown, \&c., it is probable, that, after the completion of the line to Rome, the irtimate connection of the two roads, will cause such an arrangement as will save the expenditure, on the part of this company, of funds to procure these necessary appendages; since it would be both convenient and economical, that the same train should pass over the entire distance of the united roads from Rome to Cape Vincent.

Remarks.-In an engineering aspect, the advantages presented by your road are:-Its cost will be much below the average per-mileage expenditure for similar works-its grades at no point exceeding a rise of 1 in 160, or 33 feet per mile, are such as can be surmounted by locomotives, with heavy loads, with much ease, and great rapidity-its departure from a straight line will not require, in the most confined locality, a less radius than 2000 feet, while in most cases, they can be projected from radii of 5 or 6000 feet-the country through which it passes abounds with valuable material, by means of which repairs can be readily and cheaply effected; and the mode
of construction is that generally adopted, , meadow land unequalled in productiveness. universally approved, and comprises an iron rail of much strength, and timber of great durability.

Since this road is mainly designed to constitute a continuation of the Watertown and Rome railroad to the river St. Lawrence, and thus afford a ready meins or access, at all seasons, to the Canadas, in a consideration of the inducements it presents for the investment of capital, the principal light in which it should be examined is in reference to its forming a link in a great line of internal communication extending from the city of New-York to the far West.

Leaving the emporium of our State by the New-York and Erie Railroad, we procced to Deposite, on the Delaware River, and thence to the city of Utica, by a route that must soon be improved. By means of the road to Watertown and Cape Vincent, the St. Lawrence is reached, and the enterprise of our Canadian neighbors will soon provide a direct communication from Kingston to Lake Huzon. 'I'his line will be shorter, by many hundred mites, than any of the present means of communication with the great West, and will unquestionably form a chanuel much followed by the great current of travel constantly pouring into that immense region. Full sevea months of the year the navigation of the Lakes is either dangerous or entirely interrupted, and during that period, this route must inevitably command a great portion of the western travel.

Indeed, if a line be drawn upon the map from the city of New-York to Kingston, it will appear that at no point, the New-York and Erie Railroad, a road from Deposite to Utica, and thence to. Watertown and Cape Vincent, will depart 25 miles from the straight line-thus demonstrating that there is every reasonable prospect of the almost immediate construction of a line of communication, by the nearest possible route, from New-York to the great Lakes.During the progress of the survey, one of my parties passed over to Grand Island, and carricd across it a line of levels, demonstrating the practicability of excavatius a channel, at a trifling expense, and thus avoid the necessity of unloading, or of making the circuit of the island, in passing from Cape Vincent to Kingston.

That this section of the State should hâve remained so tong unnoticed, is truly surprising. Although possessing a soil unsurpassed in fertility, it has been until within two or three years, entirely neglected, and alinost unvisited, except to carry away its Pine and Oak timber. Of late its splendell agricultural advantages have been somewhat brought to view, its true wealth has been demonstrated, and thousands of acres, but a few years ago considered almost valueless to their owner, have lately been sold, at prices that have indicated tbat the people are awakening to the true value of their possessions.

As a wheat and grazing country, it is destined to hold a superior rank; and its rich swales, hitherto entirely overlooked, must constitute, when properly cleared

On every side is now beheld the cabin of the setler, and the smoke rolls up from many a clearing. Lands are increasing rapidly in value, and the construction of the Railroad will enable this portion of our State to assume a station equal, in every respect, to those whose natural location has caused their resources to be earlier developed.
Before closing, I avail myself of this cpportunity to acknowledge the aid and information afforded, in the course of the survey, by the residents upon the line; and also to tender my thanks to Messrs. R. F. Livingston and L. N. Bowlsby, Assistant Engineers, and Wm. C. Moore, Assistant Draftsman, for the spirit and intelligence with which they have aided me in this, as well as other investigations made in the conrse of the past seascn.

I remain, gentlemen,

Yours, very respectfully,
Wiliam Dewey,
Civil Engineer.
Watertown, November 18th, 1836.
auburn and rochester rallroad.
The following very satisfacto:y report from actual surveys by competent engineers, of the line between Auburn and Rochester, renders it in our view, certam that the railroad between Auburn and Rochester will be made, and that the stock will be very productive. We congratulate the public upon the exceedingly favorable result of this investi gation, and calculate with confidence that tie time is near, when our villages will reap the advantages which result from a rapid and safe transportation of passengers, produce and merchandize.

It is hoped tile commissioners and committees in the several towns, will adopt immediate measures to take up the balance of the stock.

REPORT.

The undersigned, in submitting to the Commissioners of the Auburn and Roches. ter hailroad, the following report and accom. panying estimate, does not clain to have based them on the only good route for a railroad that can be found between Auburn and Rochester. Tue best possible line may be yet undiscovered. The short time and limited means placed at his disposal, did not allow the examination of every pass through a country where many good lines may be had.

The surveys show a very good and direct route across the country, touching at the points designated in tue charter.
The levels, distances and estimate of cost, are herewith submitted. They have been made out from lines laid down on the ground and not from conjecturc. The amount of excavation and embankment is the amount which is due to the data, furnished by the minute books; so that the line on which the estimate is based is perfectiy known. And although alterations may be made to lessen the cost and distance, none need to increase it.

When more minute examinations are made, it is confidently believed the cost will be lessened and the lime made better.

In arranging the grades of the line, it has been found that in only two instances has it been necessary to have an elevation of more than 30 feet per mile, rising eastwardly, and only one of 40 feet rising westward.
The two and a half miles grade entering Auburn, is at the rate of 40 feet per mile. As this will be near a depot where engines will generally be waiting in working order, one can be sent to help any heavy train that may need assistance, and that without making it necessary to keep up an extra locomotive.
The other grade of 40 feet, is at Cayuga Lake, but it is very confidently believed that this can be reduced to 30 feet by lengthening the line, and this alteration is strongly recommended.

Late experiments show how small is the effective power that alocomotive has to spare on high grades beyond moving herself, and the vast advantage in point of usefulness that a grade of 30 feet per mile has over 60 , 50 or even 40 feet. There are two routes from Auburn to a short distance above Seneca Falls; both are practicable, and from the selection of the northern route, to estimate upon, it is not to be inferred that the other is abandoned.
Future examinations must decide on the merits of rival routes.
The northern route passes the Owasco outlet near the south-east angle of the prison wall, and follows the general course of the stream downwards for two miles, and then passes to the valley of the Crane Creek.
There are two points of deep cutting in this distance. From Crane Brook to the Cayuga Lake, the country is traversed by ridges, running parallel north and south. We cross fifteen of these. They vary in heighth and width, but the expense of crossing them is less than would be imagined from the first g'ance. The grades can be so arranged as to rise and fall, and to make cutting and embankment in proper proportions, and leave the grade in useful effect equal to, if not better than 30 feet per mile, except in the cases inentioned above.

In the last mile before reaching the lake, the line bends to the north and passes $\frac{3}{4}$ of a mile, to the outlet near the junction of the Seneca and Cayuga canals. The outlet must be crossed by a bridge considerably elevated above the waters and the marsh bridge, acruss for a mile and a half. From the marsh the rise is to the west, and for the first mile at the rate of 40 feet per mile, and some deep cutting must be encountered, after which the ground becomes highly favorable all the way to Geneva, which is reached by a grade in no case exceeding 20 feet in a in "e.

The southern route, in passing out of Auburn, will go south of the turnpike for $4 \frac{1}{2}$ miles, when it bends to the north and intersects the northern line at 6 miles from the starting pont. It follows this line for 1 mile and then tirns to cross the lake at a point half a mie below the Cayuga bridge, where the lake s a little more than a mile wide ($1 \frac{1}{8}$ mile.) The bridge here will necessarily be somewiat elevated, but bridging in such still and shallow water is not expensive and the only exposure to be feared is the wind ; the upper bridge will break the force of the ice. The rise on the opposite
side of the lake can be overcome by some || deep cutting for the first mile; after this, there is no difficulty to Geneva, except crossing the Sencea River at a very favorable point. Between Auburn and the lake, in several places the ridges are very narrow and high, and cxperienced miners will drive tunnels through these ridges in a short time, and prop them substantially, in a manner that will last ten years, and this wi'l leave the earth above the tunnel where it will be in the best possible position to be put in cars and carried on the railroad to make embankments where bridges have been erected for temporary use.
From Geneva to Canandaigua, and through to the valley of the outlet of the Canandaigua Lake the county is of a highly favorable character. From the reconnoissances made, it is confidently believed that a railroad can be constructed for the sum estimated by Judge Bates. The summit beyond Canandaigua, is easy to be reached from the valley of the outlet. From the summit near Canandaigua to the summit near Victor, the ground falls at a rate that makes it necessary to lay the lines at a grade descending west at thirty feet per mile, nearly the whole distance. The ground is generally favorable, and indeed highly so, excapt two miles, near Victor. It is easy either to descend the Mud Creek, or the Beaver Creck, to arrive at Victor valley; the Mud Creek will be probably found the best, all things considered. The ground after leaving Mud Creek towards Fish Creek, is broken and rolling, but easy to excavate.
From Victor summit there are two main routes to Rochester ; the comparative merits of which cannot now be decided on, for want of sufficient data. One through Men. don and down Allen's Creek has been suffi. ciently examined to show that a favorable line may be laid there. Owing to circum. stances before alluded to, no more was done than to test the practicability of one route from Mendon to Rochester.

There are three routes between these points that should be carefully examined before a decision is made as to the line to be adoped.
The estimate is based on the route from Victor summit through Pittsford to Rochester ; it is very level for the first four miles to the valley of the Irondequoit, from thence for two miles, the county is very uneaven and the valley too low for the grade, causing embankment : the remaining distance to Pittsford by Carter's Basin, is fair and level for six and a quarter miles.

The route crosses the canal a short distance west of Pittsford, and keeps westerly to cross the low valley of Alien's Creek as near the canal as a due regard to direction will admit, to avoid embankment ; then bearing northerly to Brighton, it passes into the city bounds of Rochester, north of Mainstreet. and ends at a distance of six and a half miles from Pittsford, in front of Alexander's Taver:.

The matter of damages is one in which grievous wrong is often indicted on railroad companies. It is fortanate that the mnany different routes offe: facilities for avoiding those persons who would be benefitted by the improvement and still demanc damages. A lesson is due to such, and
some may be taught it, if in choosing between two nearly equal routes, that one is fixed on where the proprietors are most ready to give up their claims for damages. Respectfully submitted to the Commissioners of the Auburn and Rochester Railroad, by their obedient servant,
W. R. Hopkivs, Civil Engineer.
Geneva, 9th December, 1836.

ESTIMATE OF SUPERSTRUCTURE.

DOUBLE TRACK.

2,640 tics a 40 cts.
$35,164 \mathrm{ft}$. bearing plank, $a \$ 15$, \$1,056

527 $63,360 \mathrm{ft}$. Rails, a \$20, 1,267 Laying down, 1,000

Trimming off,

 1,000${ }^{*} 36$ tons iron, 2 incates by $\frac{1}{2} a \$ 65$
2,350
Total,
\$7,190
single track.
1,320 ties, a 40 cents,
528
17.582 ft . bearing plank, $a \$ 15$,
$26: 3$
$31,681 \mathrm{ft}$. Rails, a \$20,
633
Trimming road and laying down, -
1,000 Iron, \&c. \&c.

1,170
Allow for turn outs 10 per ct.,
Total,
\$4,293
SUMMARY OF ESTIMATES. DOUBLE TRACK.
Auburn to Geneva, $\$ 286,048$
Geneva to Canandaigua, - . 178,701
Canandaigua to Rochester, - - 337,489
Cost of fencing,
Station Houses,
Locomotives,
45,545

Trains,
Engineering,
50,000

Damages, 15,000
40,000

Total,
\$1,012,783
single track.
Auburn to Geneva,
Geneva to Canandaigua,

- \$222,433

Canandaigua to Rochester
134,000
Cost of fencing,
253,480
Station Houses,
45,545
30,000
Locomotives,
50,000
Trains,
15,000
Engineering,
40,000
Damages,
30,000

> Total,
$\$ 8: 2,458$

* Constracts are understood to have been made in England at six months; delivered in New-York, for
$\$ 60$. $\$ 60$.

From the Journal of the Frarklin Institute.

on the management of turn outs on railroads. by a. c. Jones, Engineer. Gentlemen,-At the present rapid rate of travelling on railroads, it is a desideratum (in point of safety,) to know that the switches of the turn outs are in the line of the road, so that the train is not neressitated to be much checked, in passing over thein. The best method for insuring the right position of the switches, is that used on some short roade, by having a man statio:1ed at them; but on long lines of road,

Where there are many turn outs, this is not practised, owing to the expense attending it. As a substitute, a ball is placed on the end of the lever used to shift the switchos, to show their position. This, I believe, is the best plan in use; that it is defective is proved by the mumerons accidents occurring on railroads by monning off at the turn outs, it not being foreseen that the switches are wrong. Where the turn out is in, or at the end of a curve, it is difficult to tell by the ball how the turn out stands, until you are so near as to make it impossible to stop in time, if it is not right.

The following arrangement will have a tendency to promote safety in this particular, and the additional expense will be but trifling. Instead of the ball, I propose having a board placed on the post, its face at right angles to the road, with hinges fastened to one edge, and from its face extends a short lever, which is connecied to the lever that moves the turn out, so that when the switches are changed, the dial, or board, takes either the horizontal or vertical position. This will be shown more fu!ly by an inspection of the cuts.

On a curve or grade, this method would have the same advantages as on a straight part of the road, and it is evident, the face or edge being presented to the engineer, that he will be thereby cuabled to judge how the turn out stands, at a greater distance from it, than by the method in practice, and will consequently admit of his stopping the train in time to prevent accidents.
A. The post. B. The lever. C. Connecting rod. D. Diai.

Respectfully, yours.
A. C. Jones.

Philadelphia, Sept. 1836.

This appears to be a good suggestion. A board, or disk, with a black circle in the centre, surrounded by a broad white border, would be more conspicuous, and its position, in the way proposed, more easily perceived than the ball now in use. In turn outs that are much used, it may be expedient to keep a lamp burning during the night, to show the position of the disk. It seems desirable, however, that every precaution should be taken to prevent the necessity of stopping a locomotive train in order to adjust the switches of a turn out. 'T'. G.

Oswego and Utica Railload.-The fall of snow last week, we understand, has caused the engineers engaged in the survey of this road, to retire from active duties in the field; but not before they had com
pleted an entire line to Utica on several routes. Mr. Alton has examined the "direct route" by Little River, and we learn that it presents no obstacles, and that no grade will exceed 20 feet to the mile.-[Oswego Palladium.]

Termination of the Wabasil and Erie Canal.-The Ohio Board of Public Works have issued an order for terminating this canal at Manhattan, a town situated at the mouth of Maumee river.

Miscellaneous.
The following letter, addressed to Professor Silliman, and taken from the last number of the American Journal of Science and Arts, is worthy of attention.

Statistical information from the various sections of our extensive territory, will not cnly add to our own knowledge, but be beneficial to the rest of the world.

It would be curions indeed, to observe the effects of the introduction of manufactures of various kinds, and also of the extension of internal improvement.

No other feasible mode of collecting such data can be suggestel, and we hope for the sake of the artist, the student, and the manufacturer, that this letter may receive the proper attention.

On the establishment of Statistical Sociemes in the United States. To Phor. Sillimin.-The Statistical Socicty in Paris have selected me as their representative in the United States, for the purpose of transmitting to them any documents which I might be enabled to procure, and for generally aiding their very useful endeavors in Paris, I resnectfully desire to propose for consideration the es. tablishment of a "General Statistical Society" in the United States, and to give general publicity to this I have selected your widely circulated Journal as the organ of communication.

The Statistical Society of France was established by Monsieur Cæsar Moreau in 1829 ; by the high talent of this gentleman, his extensive and varied information, joined with his activity and industry, this society has now the united assistance of almost every government in Europe. The immediate object of the Society rests upon the fact, that the knowledge of mankind increases in proportion to its tendency to observe, and that Statistical Tables, connected with general and particular information, tend greatly to facilitate this developement.

To gather and condense facts which tend to show the increase or decrease of Population, the prosperity of Arts and Manufactures, the state of public instruction, to develope the true state of Agriculture, and generally to make known the exact internal state of a great nation, its imports and exports, the state of its national funds, and those of Chartered companies, must ever claim the attention of every enlightened community. In aiding the
deliberations of Government, I deem it of the highest importance, and I am enabled to state that the European Governments have already experienced great advantages from the labors of Statistical Societies, and from that of France in particular. They have tended to facilitate the views of the Statesman, by offering to him in a condensed form, the internal sources of wealth, not only of his own, but of surrounding nations ; their labors render the public happiness more secure, inasmuch as the dark paths of the future may becomejenlightened by the experience of the past; they offer a solid basis for political and social economy, and they relieve and assist the Ministry, of a Government by condensing and bringing to a focus, not only the minutix, but deduced facts relative to the internal or external power of any nation, either remote or in their immediate vicinity.

In the United State of America, however, the existence of such Societies must be of incalculable benefit. The embryo gigantic powers of this Republic are now beginning to develope themselves, and it is of primary importance that the grand stream of prosperity be directed into that course which will not only secure the present prosperity, but also the future greatness of the United States, whilst it must add to the welfare and happiness of her population

The present popular system of rapid and cheap communication, has already been anticipated by the enterprising genius of the United States, and she forms a very prominent example of the inmense advanrages which a nation derives from the projection of such plans as shall tend to give full scope to the energies of the people, whilst at the same time it opens the paths to the developement of her internal resources, commercial, mineral or agricultural.
To mark out and prudently to direct the course of such facilities of communication, requires the aid of statistic information. The fecundity of the soil, the amount of population, the manufactured products and their separate values, earh require particular consideration ; and this can be obtained only by personal research. The condensation of such rcsearchez forms one of the leading features of a Statistical Society. To accumulate and condense the information given by modern authors, and more particularly that offered ty persons who have occasion to visit foreign countries for scientific research, forms the object of the "Universal Statistical Society of France." To contrast the present degree of prosperity with the past, and to inquire into the causes of the increase or diminution, is its particular care; to trace the gradual development of the causes which have influenced the progress, increase, and present actual state of the wealth and power of civilized nations, forms the grand utility to society produced by their united labors; and finally, to contract into one general focus the energies of each nation, and comparing the state of their society both moral and political, their commerce, internal, and their state of Literature and the Fine Arts, with that of another Empire, demands for it the title of "Universal,"
and eminently merits the zealous support of every enlightened individual, whose nobility of mind prompts him to offer his mite to the general stock of knowledge.

Should this communication through your Journal be the means of having formed in your principal cities, establishments of a statistical nature, be assured that each Society will receive every aid and assistance from the " Universal Statistical Society of France," which will ever be anxlous to advance their researches, and to act with them reciprocally.

I have the honor to remain,
Your very obedient serv't, Charles Sanderson. Member of the U. S. S. of France, the Imp. Agri. Soc. of Vienna, \&.c. \&c. New-York, Dec. 10, 1836.

We commend the circular of M. Brongniart, to the especial notice of all interested in the plastic art.

The name of M . Brongniart, will be a guarantee for the proper use of any information that may be transmitted to him.

From Silliman's Joornal.

m. ajexandre brongniart's new work on the history of the art of pot. tery and of vitrification.

Museum to illustrate this subject.

In a letter to the editor, dated March Sth, 1836, M. Brongniart remarks: "I am much occupicd with a work upon the history of the plastic art, or the art of pottery ; and the requests which I take the liberty to annex, have for their object the enriching of a grand and instructive collection which I have formed at Sevres, of every thing relative to the art of pottery, and consequently to the perfection of the work which I have undertaken, and of which I have published the plan in an extract from the article Pottery, in the Dictionary of Technology published at Paris. It forms the half of a volume, in which I have endeavored to present the principles of the art in a manner at once practical, philosophical and elementary. I am this year about taking a journey to England and to Germany, for the purpose of collecting information and specimens for this work and for the collection at Sevres.
As this undertaking of M. Brongniart is important and interesting to science, to history, and to the highly useful and beautiful art of pottery, we publish a translation of the expose entire, and strongly recomrnend it to the attention of all those who, in this country, have it in their pow. er to promote the object in view. It is quite superfluous to add, that M. Brongniart's character furnishes every security for the able and faithful performance of the duty which he has undertaken.-Ed.

Sevres, March 8th, 1836.

royal manufactory of porcelain, and for painting on glass. U. States of america.
Instructions as to the manner of co-operating towards the completion of the collection relative to the arts, connected with the manufacture of porcelain and with
vitrification, founded at the Royal Manu factory at Sevres near Paris.

1. What kinds of pottery are used by the different classes of inhabitants of the country ; the agriculurists, the mechanics, citizens and merchants, poor and rich ?
Is the pottery of native or foreign manufacture?
If foreign, from what country does it come, and in what way ?
If of native manufacture, where is it made?
II. As to the native pottery, (and under this name we include all varieties, from the most common to porcelain,) it is desired to collect and procure specimens of every sort. Common pottery, both with and without glazing. Delftware common and Delfiware fine. Pottery of brown free stone ; crucibles. Varieties of porcelain. Bricks, both common and those manufactured by particular processes.
Plate species.-Plates, oval dishes.
Hollow ware.-Cups, salad dishes, tea and coffee cups.
Round pots, hollow moulded.-Oval and square pieces, saucers, boxes, \&c.
The largest piece of each sort that is made.
The name given in the country to each piece.
The price of each piece upon the spot.
Whether there is exportation, and to what place.

III. Fabrication.

1. Primary materials-for the mass or paste. Clays. Marls or plastic earths which may be substituted for them. Sands. Rocks or stones. Limestone.
For the glaze or enamel.-If stony mate-rials-feldspar-stones.
If metalic matters-Metals, their oxides, and metalic glass.
Exact localities from which these materials are drawn.
2. Modelling.--Moulds of plaster, of terra cotta or other materials of whatever kind.
The lathe and other instruments for fabrication.
Sketches, with exact dimensions of these instruments, if it is supposed that they differ from those used in Europe.
3. Baking.-Form of the ovens sketched, with the dimensions.
*Combustibles used, indicating them in the clearest manner possible.
IV. Information peculiar to the country.
4. To designate the principal manufactures of pottery, glass and porcelain in your vicinity.
5. Whether there is in North America, ancient pottery ; that is to say, pottery fabricated in remote ages, and which has not been made for a long time. This pot. tery is found in general in alluvial soil, in the ruins of towns, and perhaps, as in some parts of Itaiy: and of South America. and of the oriental countries of the ancien world, in the graves or tumuli. In Europe, these things have often been admitted into museums as monuments of antiquity

[^0]wut almost never as in relation to the art of pottery and its history: It is in this latter point of view that I regard them, and that I have collected a great number of the ancient :ieces of pottery in the museum at Sevres.
To endeavor to collect some pieces of this antigue pottery, and to indicate exactly the place and the circumstances in which they have been fourd, and to endeavor to decide whether it had anciently any celebrity, always howe ver mistrusting the deception of the sellers.
3. Wheiher there is knowledge from traditions, inscriptions, \&c, that the natives (aborigines) of North Arnerica have ever fabricated or known glass.
General instructions in relation to the purchase, packing and forwarding of the objects collected.
The expenses which may be incurred in procuring the specimens and the information, will be reimbursed by the administration of the Royal Manufactory of Porcelain, upon the statement sent to the person who shall be designated to receive the amount.

It is expected that these expenses will not rise to a great amount: it is requested, in any event, that they may not exceed, in any one year, the sum granted, i. e. 200 francs for $1836,(\$ 40) ; 200$ for 1837 ; at least without a previous understanding with the administrator of the Royal Manufactory at Seures.

It will be necessary to pack the pieces with great care, and to consign them to a merchant in one of the ports of France, to be forwarded by way of slow transportation to the administrator of the Royal Manufacture of Porcelain ; forwarding also the expenses of transportation.
It will be necessary that the correspondent at the seaport should write a letter of advice to the administrator of the Royal Manufactory at Sevres near Paris, before the forwarding-that the latter may obtain from the director general of the customs, that the box may arrive under seal, sous plomb, and that it may not be opened at Paris: this is very important, to the end that there may be no derangement of labels, nor any breakage. It is equally inportant that the tickets. which may indicate the places where the pieces were made, or those from which they come, should not be separated and mixed during the unpacking. It is desired therefore that they may be tastened either with glue, or wih good wafers, or with twine.
Lasily, it is very desirable that there shoull be atlached to the case a separate box, either of lead or of tin, or that there should be sent separately, notes, previousIy made, of the objects collected and for warded; taking care that a correspondence be established between the objects and the notes, by means of numbers, which shall follow each other, or by numbering the series.

Alexindre Brongitiatt.

From the Arimals of Education. instruction in austria.

A recent work on the statistics of Austria, gives the following account of the
state of instruction in this empire. There are 15,967 elementary schools, under the name of trivial (primary, high, secondary, Normal and practical schools, and 8,964 schools of repetition. The whole number of pupils is $1,993,522$. They are taught by 21,801 teachers and assistants, and 10,252 catechists or religious instructors. They are under the superintendence and inspection of 14,011 clergymen, who are at the same time local school directors.And the whole is superintended by 845 district inspectors of schools.
In the institutions for the deaf and dumb and blind in Vienna, Prague, Milan, Gratz, Lemberg, Lintz, and Brixen, there are 300 pupils. The polytechuic school in Vienna, is under the direction of 35 teachers, and contains 747 students, of whom 265 attend the real or general practical school, 87 the commercial division, and 395 that which relates to the arts. The school of forests contains 66 pupils, under the care of a director, and 4 teachers and assistants.
gratuitous schools of drawing for mechanics.
Two gratuitous schools of drawing have been established by an individual in Paris -M. Charles-for the instruction of mechanics. One was formed before the revolution, and involved its founder in suspicion as well as difficulty. For more than six years, however, he has devoted all his evenings to this species of instruction, without any compensation. His object was, to enable mechanics to pursue their employments with more rationality and success; to exercisc the eye and the hand, and to elevate their taste, and thus to raise them above the temptation to low vice and degrading amusements. The municipal council of Paris has, at length, assumed the expenses of these schools, and has directed the organization of similar establishments throughout the city. At a public exhibition, more than six hundred pupils were present, and medals were presented, in the name of the king, to the most meritorious.
[libid.]
haverford school.
The Friends of Pennsylvania have a flourishing school at Haverford, in Delaware county, whose object is, in their own language, "to combine sound and liberal instruction in literature and science, with a religious care over the morals and manners; thus affording to the youth of our society an opportunity of acquiring an education equal in all respects to that which can be obtained at colleges, withont exposure to thnse associations which are apt to lead them away from the simplicity of our religious profession."

The buildings of this institution-for chambers, school-room, families of the teachers, library, infirmary, \&c.-are ample and commodious; at least, comparatively; though we do not consider sleeping rooms, nine feet by five feet six inches, large enough, even when they are as well ventilated and neatly furnished as those of the Haverford school.
"The course of instruction extends to four years, and embraces the Latin and Greek languages, ancient and English lit-
erature, inental and moral philosophy, mathematics and natural philosophy.There is elso a preparatory department.The students are under the direction of a superintendent, four teachers, a teacher of the introductory schoul, and an assistant superintendent.
"With this school is connected a valunble tract of nearly 200 acres, which is in the process of arrangeinent and caltivation, as a farm and garden. The library has commenced with about a thousand volumnes; a philosophical apparatus is provided, and a collection of specimens in natural history and mineralory is begun, in connection with a generel moseum oi curiosities."-[Ibid.]

Glass Beads.-Few persons, probably, are aware of the amount of trade carried on in this apparently insignificant article. We are told, that from Venice, which contains t ie principal manufactory, whole ship loads are annually sent to different quarters. The principal customers for them are the various savage tribes in our own continent: in NowHolland, the Pacific Islands, \&e. This branch of the glass bumulaciure stll. remains to the Venitians, atearly tie sole relic of their once boasted superionity in every departmant of the ait. No other nation can rival her either in recgard to varicty and beauty of color, or cheapness of production.

The glass-houses are erected on the island of Murane, about half a league from the city. Tue alkalis employed are soda ard potash the the sand is fornd in abundance on t.ie neighboring coast. The coloring matters are obtaned from th:e mineral kingdom, and so varied, that the beads present more than two hundred different shades. While the motal is in fusion, the workman dips into it an iroa tube, five fect long, and withdravs a certain nortion of the adiesive mass. A !ole, corresponding to that of the tube, is taen made through it. 'Two workmen have suc'! a tube thus prepared, join them togethe: by the ends, and then separate as rapibly as possible, stretching the paste between them. A tube is thus formed, varying in length and fineness, according to the distance which can be attained belore the glass cools. In some instances the tube reaches one hundred feet in length, and becomes like the finest hair. They are divided in pieces of two feet in length and then submitted to the bead maker, who with a sort of hatchet, cuts them into fragments of a length equal to their diameter. These fall into a box of powdered charcoal and clay, which gets into the beads, and prevents their filling up when subjected a second time to the action of the fire. Thus cut and mixed with a certain quantity of this dust, they are plit into an iron cylinder, sealed hermetrically, and by means of a handle are turned over the fire until the vessel acquires red heat. The beads are then sufficiently softened to lose their asperities and become smooth by friction, and when taken out, it remains only to wash and sort them which last operation is effected by a series of seives of different degrees of fineness. They are then given to women, who thread them in rows of six or seven inches long, and such is the rapidity
with which this is practised, that the work cain be procured at the rate of a little more than one cent for 120 rows. This quantity sells at from four to ten cents.

LaUREL hill cemetery.

We have lately visited, with no common feeling of admiratic: the new and beautiful rural burying ground which a fow liberal minded citizens have provided at Laurel Hill, on the river Schuylkill, just below the Fulls, and about three and a half miles from the heart of the city. In situation and capabilitics it is every thing that could be desired, realizing the wish of the poet to the very letter:-
"Mine be the breezy hill that skir's the dawn,
"Mine be the breezy hill that skiris the
Winre a green grassy turi is all 1 crave
With here and there a viel t bectrown,
Fast by a brook of fonntain's murmuring wave, And many anevening sun shine swectly uniny grave,"
Here the last resting place of friends and relatives may be visited withont any of those disagriceable associations counected with our city grave yards. Here the visiter will not be slocked witn the mouldering coffin or sunken yawning grave; here the dead will repose amid the beautios of nature, and their memorics be assoctated, with the most soothing and most simpic emblems of moitalityemblens that are it once tire most eloquent adrocates of religion, and morulity, and the most determined foes to unnatural fear and superstition. Here will be found the tokens of a true and-licightened feeling of respect towards that which is again to spring into life-which at once attests man's superiority to the rest of creatio.., and inculcates the sal. utary conviction that the spirit lives eternally.
Following oat an enlarged view of what will be permanently useful, the proprietors have erected a handsome entrance, ol graceful Roman Doric architecture, enclosing Porters' Lodges, \&c. ; a handsome Gothic Chapel, and a Superinteudant's Cottage: a large receiving tomb is ready for tho.se who may liave occasion to empluy it while they are erecting their owa. The very large dwelling house is to be converted into one spacious room large enough for any proces. sion to take shelter in ; this and the Cliapel will be warmed in wintex. In addition, there are spacious coach houses, so that as far as we could julge nothing has been neglected, and the public, while they will be amply ac. commodated, will have cause to remember those by whom this mucin needed improvement has been effected.

The Cemetery is one hundred feet above the Schulykill, which washes it on the West, and is bounded on the East by the ridge road turupike; the latter affords ready access iṇ all seasons. Enst of the ridge road the company have a small farm which has been converted into a flower garden and nursery ; its superintendant, Mr. Johu Sherwood, formerly garduer to Mr. Platt, will supply shrubbery for lot holders, and at their request keep their lots ia perpetual bloom with roses, \&c.
The company will no doubt receive a charter from the present Legislature, and give deeds in fee simple ferever to purchasers, subject to wholesome rules satisfactory to all; the price, considering the heavy outlay, is esteemed very reasonable. A very large number of citizens have purchased, and

New-York and Baltimore, by municipal regulations have enacted that no burials shall take .place within the city; it behoves all of us to anticipate such a law here, and by the removal of our deceased friends to this spot, or by preparation for our families, make arrangements for their quiet repose hereafter together. We observed that families, brothers, sisters and cousins, \&c., are selecting their lots in the vicinity of each other, that those who were united in their lives may not be separated. Husbands are removing their deceased partners, wives their husbands, children their parents, and parents their chil. dren, from the closely crowded grave yards of the city, and with pious care depositing them where they can join them when their earthly pilgrimage is over. Already is the ground studded over with a hillock or a grave stone here and there, and we learn from the Superintendant that very many removals are inmediately contemplated.

Alexander Wilson, the distinguished ornithologist expressed a natural wish that he might be buried "where the birds would sing over him ;" will not our cit:zens all unite in heart and purse to carry his wish into execution? We understand such a proposition is entertained, and that a prospectus has been issued to transfer the bodies of Wilson, Godfrey, the undoubted inventor of the Quadrant, Rittenhouse, and Say, to Laurel Hill, and erect over them a mausoleum with suitable inscriptions. Every oue we should suppose would contribute to this laudable object.[Philadelphia Com. Herald.]

Balloons.-The practicability of aerial navigation has been much discussed in the recent English Journals.

We have given our readers descriptions of the construction and ascent of Mr. Green's large balloon. We now lay before them several auticles on the subject, from the London Mechanics' Magazine. Some information and much amusement may be derived from the perusal of them. We commend to special notice the idea of using carbonic acid gas for ballast, and of reviving the Montgolfier balloon !!

From the London Mechanics' Magazine.
impracticability of aerial navigationmontgolfier's preferable to gas balLoons.
Sir,-The subject of acrostation has beenmore fully and better discussed in your periodical than in any other; but although your intelligent correspondents have, during the last twelve years, supplied you with numerous observations and ideas on the subject, nothing essentially new or important has been elicited. This comes from the sterile nature of the thing itself. No one, as the homely saying is, can "make a silk purse out of a sow's ear." It is quite astonishing to obscrve how so many men of good sense can talk of propelling and directing a balloon through the air, on principles derived from "the way of a ship on the sea !" A vessel either on or in a mass of water can be propelled even against a current of that water, because the density of the medium allows of a power being applied of a velocity within

ADVOCATE OF INTERNAL IMPROVENENTS.

the reach of our physical organs to produce. But for a power to be applied (in an analogous way) in the car of a balloon, against the air, in which the whole machine is immersed, it must have six hundred times the velocity of the stroke which will produce the same effect upon the water. Some persons say, "we will take up a steam-engine," \&c. But the more weight you take up, the greater must be the dimensions of your balloon!After all-for it is loss of time to argue such a matter-it is evident that no power can draw a balloon against the slightest zephyr, but one which would place the car and the balloon on a horizontal line together, like a horse drawing a cart. With regard to the clongated and fish-like shapes that have been so otten proposed, the fallacy is still more afflicting. When there is no power of propulsion through the fluid. how can the position of the elongated body be decided?Even a barge going down a river along with the stream has not the least power of steerage by the rudder, because it does not go through the water, but with it : without external power applied, either of traction, oars, or wind, it goes along sideways, or any way, just as it may happen. Another fallacy in the ideas connected with an elongated fish-like balloon is also of a serious nature, setting aside the physical impossibility of propelling it. How is it to be kept in a horizontal position? A balloon of such a shape (like Egg's the PallMall gun-smith, or of Col. Lenox's "Aerial Ship,") being filled with gas and set up without any load, would certainly be liable to rise in any way but the one desired. If to prevent its bursting by the expansion of the gas, it were only three quarters or two-thirds fill, it is ten to one but that it would rise up endways. If a net, car, \&c., were io be attached to it, with a load of passengers, it would double up into the shape of a crescent; that is, if the gas did not rush to one end (which is most likely,) and so defeat all the fish-like calculations of the constructors!A stout back bone to the fish-balloon might prevent the doubling up I speak of, but it would not save the chance of going up endways, much to the inconvenience of the travellers in the car beneath. But it is absolute waste of time to dwell on such nonsense. It is a pretty thing to see a balloon ascend when you are near it at the time, and will answer the purposes of the proprietors of pub. lic gardens, \&c. The near view of any large mass in motion, such as a ship launched, a huge tree falling, \&c., convey a novel and peculiar feeling to our senses.

In 1810, Madam Blanchard, the widow of Blanchard who, with an Englishman, crossed in a balloon from Dover :o Calais, arrived at Naples with her balloon. An ascent was ordered by the King (Marat) to take place from the Campo \boldsymbol{M} arte, on an occasion when there was to be a grand review of troops. In consequence of my known chemical propensities, the King ordered the talented Gio. vanni Dall' Armi and myself to make all preparations, and superintend the inflation and ascent of the balloon. It was settled that I was to have ascended with Madam Blanchard; but owing to the exhibition having been countermanded on account of the weather, after operations had began, and then reordered, the bailoon wasnot sufficiently buoyant at the hour appointed to carry
\mid two persons, so I, to my great chagrin, was left behind. Madam Blanchard had in her possession a Montgolfier baloon, which she sold me for 40%. With that balloon I purpo sed making a series of experiments upon that principle alone, of which, in my opinion, balloons can ever be made to take advantage, which is, various currents of air crossing each other at differant elevations in our atmosphere.
A balloon filled with hydrogen gas, provided with sand-bags for ballast, \&c., can only rise by throwing out bullast, and descend by aliowing an escape of gas. It is evident that these operations cannot be repeated beyond a certaiu limit, because you have no means of replenishing the ascending power. A Montgolfier balloon is inflated and rendered buoyant by means of flame, just like the paper, "fire balloons" of our tea-garden entertainments. A Montgolfier balloon, made of cotton "broad cloth," forty feet diametor, will carry up four persons. A circular grate or firc-place, of three feet in dianeter, is susponded concertrically in the inferior opening of the balloon; which opening is about seven feet in diameter. Around this opening is a wicker gallery (instead of a car, as in the gas balloons.) The persons in this gallery, being provided with a store of little faggots of dry wood and a long-handled fork, keep up the fire by supplying it with fuel. When it is desirable to descend, the fire is allowed to wane; an increased fire occasions a rapid rise. Thus it is absolutely at the discretion of the aeronauts to rise or fall, as long as their fuel endures. The fire-grate is provided with a hinged cover, so that it may be extinguished at once, or the bottom of the grate may be let out, so as to vacate all the fuel. With such a balloon, even when the fuel is all expended, a fresh supply may be had almost any where; a d thus the search after various currents of air may be far more success. ful than with one of hydrogen gas. I look upon the Mongolfier balloon as less liable to accident than the other, which is liable to burst, or to be ignited by an clectrical dis* charge from the clouds, or to fall too rapidly through any over-opening of the valve.The flame from the fire-piace of a Montgolfier balloon asceads venticaily ino the interior without the slightest vaciliation. The flame of a candle in the car of a gas balloon could not nove were it blowing a gale of wind, because the ballooa goes with the wind. But still less can the flume in the interior of a Montgolfier ballooa waver. To protect the cotton tissue of the ballooin from sparks, it is quite sufficient and effective to saturate it with a solution of alum. The circumstances through which I lost my Montgolfier balloon, before it. came into my possession, are not worth detailing. It was ssized at the Turin custom-house as English cotton goods. I, however, made a smaller oae myself. by experimenting with which I have arrived at the above conclusions; but shortly havin! other things to attend to, there ended my ballooning project. But if any one would now be at the expense of coastrncting such balloon, I should be very bappy to furnish him with my modicum of knowledge and as sistance on the oreasion, and be the first th make a lemonstrution of that which I coin. ceive to be the best method of ascending and
passing through the air by means of a balbon.

Marshal Jourdan was commander-in - chief of the Freseh army in Flanders when a balloon was madeavailable to the taking of all the plans of the enemy's lines. I have conversed with him at length on the subject, and he allowed that a Montgolfier mighlt be construc. ted, filled, elevated, and applied to all such purposes, when it would be impracticable to precure hydrogen gas, or a balloon sufficiently impervious to retain it. The Montgolfier requires no varnisil. Gas escapes through all those hitherto applied.

Almost the only useful purpose to which I could think of applying an hydrogen gas balloon would be the establishiment of a communication between a - stranded ship and a lec-shore. About three years ago I addressed you a letter on that subject, but I cannot say in what number it appeared. I gave you a detailed description of the apparatus required. The Portable-gasCompany compress thirty volumes of gas into one, into vessels of thin sheet-iron with ovoidal ends. Such a vessel charged with one hundred cubic feet of the best gas, might easily be fitted into the bottom of a large cask. The empty balloon being placed over it, and communi. cating by a tube and stop-cock. In the same cask might be arranged a long cord of the lightest and best materials. The whole ap. paratus, properly made and packed, would always be ready on deck like a mere watercask. The balloon once up, by adding more rope to the thin one belonging to it, must come at last into contact with the edge of a clitt, or with the surface of any lee-shore.The balloon might also be made to take up a smatl grappling, composed of three or four shark-hooks tied back to back. I fear, however, that there would be considerable risk of the balloon's being torn by the yards, \&c., of the ship before it could be got clear of it.In the case of a low coast witiout cliffs or high rocks, an empty water-cask, protected by sacking, de., would take a line on shore as well as a balloon. Apropos of watercasks and provision-cask's, have suggested many years ago, that if, as these become empty, they were to be bunged u_{p}, and stowed su as not to bo washed away, their buoyancy would prevent the vessel froin sinking even when she sas full of water. All the trouble is in well braiging up tie casks when they become empty.

Yours, Sc.
F. Maceront.

September 10, 1836.

From the London Mechanic's Magazine.
tractafility of balloons-comparative safety of montgolfier and gas-balloons, etc.
Sir,-Your corresponilen:, "Umbra Mnntgolfieri," takes, on the whole, a air view of the ballooning subject of my last communication; but some of his remarks and facts require emendation.
I do not state that no degree of inntion whaterer can be imparted to n ballown through the "vigoio"s manœuvering" of properly constructed flappers by the persons in the car. But it must he in a perfect calm, such as "Ulubra" himzelf sajs
that Messrs. Roberts were favored with in June, 1784, when they travelled 2000 yards in 35 minutes by means of their oars. This may be; but I should like to have seen the operation! I have a shrewd suspicion that the air was not perfeetly quiescent ; and that what little motion it had was in favor of the rowers. "Umbra Montgolfieri" did not see, either this operation or that of M. 'Testu ; I wish he had! The flying gods and devils of our pantomimes are seen to "apply themselves most vigorously to manœuvring their wings;" but I doubt its being through their aid that they fly from one side of the stage to the other !

With regard to the comparative danger of the fire and the gas balloon, "Umbra" is not quite correct in eases which he quotes. Pilatre de Rozier lost his life by ascending with a double, or rather with two balloons-one of hydrogen gas, the other a la Montgolfer. In this strange conceit, I forget which of the two he placed uppermost, but the fact was, that the gas caught fire and exploded so as to destroy the whole concern. I have no encyclopedias to refer to, but I remember, thitty years ago, reading the account of this catastrophe, as given in the Philosophical Transactions by $\mathbf{M r}$: Cavallo, the electrician and chernist, who was an cye-witness of it. When Blanchard and an Englishman passed in a gas-balloon from Dover to Calais, they were dragged through the water more than half of the distance; although, to increase the buoyancy of the balloon, they divested themselves even of their clothes.

Madarne Blanchard was killed at Paris (in 1816, I think) through the gas taking fire. It is true, the car was illuminated, and I think she had some fireworks to throw down! Mademoiselle Garnerin, whom I also knew very well, shared a similar fate, though I do not remember the particulars. Her father, Garnerin, a professed aeronaut, came to England some years ago, about a pasteboard gun (!) of his invention.

The most distinguished of all the early neronauls was the rich and scientific experimenter, Count Zambencari, of Bologna, who wits a near relation of my father. The Count constructed several balloons, both a la . Ifonic.; ffer and gas. At that time it was a mot is expense to fill a balloon with gas, which was obtained by the decomposition of water by means of iron and sulphuric acid. I have above noticed the circunstance of Blanchard and his companion having been dragged through the water, on their way from Dover to Calais. I now mention the name of Zambeccari, in order to draw the attention of your intelligent readers to a circumstance which it would be well to investigate, before our aeronauts again venture in a gas-balloon to cross the sea. 'This distinguished experimentalist made sereral ascents in a Montgoifer balluon, with which he exhibitell the faculty of continually rising and falling in a most satisfuctory manner. With his gias batloon, however he was twice in immanent dangrer of perishing. A south-
west wind carried him from Bologna over the Adriatic sea. No sooner had the balloon got fairly over the water about six miles from shore, and although it was at the height of 5000 feet, it suddenly began to descend. In vain did the aeronaut hasten to throw out his ballast, for notwithstanding the ejection of every particle, together with some provisions, bottles, extra clothing, and even barometer, thermometer, \&c., the car soon touched the water, and Zambeccari, half drowned, was taken up by his boats. Struck by this apparent anomaly in aerostatics, and with a view of discovering some circumstance that might account for the fact which he had witnessed, Zambeccari, nothing daunted, made another ascent, with a south-west wind which speedily put him on his way to the shores of Dalmatia. He had some fast going feluccas to attend him, which, with all canvass set and nimble oars, followed him with almost the swiftness of the seagulls flight. The balloon was kept as full of gas as safety from expansion would possibly allow. But all would not availevery grain of ballast had been thrown out, besides all other objects, as on the former occasion: the balloon descended on to the waters, as though overcome by an invincible attraction, and the intrepid philosopher, many miles a head of his friends in the feluccas, was dragged along with little hopes of being overtaken. I forget whether he was overtaken by one of his own boats, or rescued by some other vessel. He remained, however, solong a time in the water, or rather "between wind and water," that his hands and, feet were " frostbitten," and his health impaired for a long time after. I do not pretend to furnish any clue to the explanation of the above phenomena, which we here see repeated on three very marked oceasions. Perhaps it is no phenomenon at all, but was merely the result of accidental causes, which eseaped the notice both of Blanchard and Zambeccari. I do not see how any affinity and relationship between the hydrogen gas in the balloon, and that component of the water, could ever cause the effect described. We are not prepared to reason upon a thing before we are well assured that it, in fact, exists.
"Umbra Montgolfieri" proposes to construct the lower portion of a fire balloon of asbestos or wollen stuff. This is not necessary. The solution of alum in wa ter renders paper, cotton, or linen, quite incombustible. The balloon (or any balloon) may be made so as of itself to answer the purpose of a parachute, by fixing a broad hoop of beechwood around its meridian. I am aware of the non-conducting qualities of silk and of hydrogen gas; but should an electric spark happen to pass through the mixture of gas and atinospheric air, which occurs on every opening of the valve, I should not like to be in the ear at the time.
Should any such Aeronautic Club, as is proposed by "Umbra," ever come into existence, I shall be glad to furnish all the assistance in my power; bat 11 really do not think that any kind of bclloons is worth the attention of men, who wish to devote
their time and labor to objects of utility and benefit to mankind.

I have the honor to be, Sir,
Your obedient servant,
F. Maeeroni.

From the London Mechanics' Magazine.
improyed double balloon, with hydrogen and carbonic acid gasses.*
Sir,-I take the liberty of sending you the following description of a machine which has occurred to me. Should you deem it worthy of insertion, it may at least suggest an improvement in ballooning.

> I am, Sir,
> Your most obedient servant, Robert Munro.

August 24, 1836.

In the accompanying figure A is a balloon of the common form and material filled with coal gas. B. is another of smaller dimensions filled with carbonic acid gas, until its weight is nearly sufficient to prevent the rising of the machine; C. a car suspended from the upper balloon in the usual way; D, a slender steelrod, or a rod of twined bamboo canes passing perpendicular through these and fastened to the silk at \mathbf{A} and $\mathbf{B} ; \mathbf{E}$, a sail fixed to \mathbf{D}; close to the ends of the rod there is a valve at each extremity opening inwards, and acted upon by a cord running alongside the rod and affixed within the car.
This machine does not require much explanation here; it need only be said, that while the contents of the upper balloon are near the lightest of aeriform fiuids, those of the lower are the heaviest; consequently they will each exert a power acting differently. When the machine is afloat in the atmosphere, by permitting a certain quantity of gas to escape through the upper valve, this will diminish the ascending motion, which then yields to the heavier, and by acting simularly upon the lower valve in proportionate quantity of the carbonic acid gas will fall down and the effect will be reversed; and by a nice adjustment of both the powers, may be made to balance, and the machine will become stationary at any elevation.
Now, as the rod is continually kept in a perpendicular position by the opposing powers, and as the whole was connected together and kept uniform by it, it is obvious that when the machine is stationary it would move horizontally before any force opposed to it, consequently a sail might be applied, though the surface of the machine itself might be sufficient to cause it to move before the wind.
The above arrangement would be very suitable for taking plans end bird's-eye views. It is in the power of the voyager in the ordinary balloon to cause it to rest at any elevation, but this only by a very inconvenient process, and one that is not al. ways practicable; jut this advantage is possessed by the present to such extent, that the mere adjustment of an index may

[^1]cause the effect; but all independent of the safety of it, which would bear the most severe breeze as its becoming disarranged or lossed, would be impossible.

I mention, though well known, that car bonic acid gas is most easily procured, and at an expense far below that of coal gas or hydrogen.

From the London Mechanics' Magazine* BALLOONING.

Sir,_It gives me great pleasure to perceive that an attempt is about to be made to turn air-balloons to some useful account; and that the conduct of the undertaking is likely to be intrusted to the active mind and enterprising spirit of Golonel Maceroni. Perhaps the whole amount of utility to be Pernaps from air-balloons is very limited; but they are not on that account to be disregarded. We must not despise small things; the happiness of mankind, such as it is, is made up of a number of small enjoyments. It is a pity, I had almost said it is a disgrace to an intelligent nation, that this interesting art should be allowed to remain in its present worse than useless state. At all events, the mere attempt to advance it is honorable ; whilst the failure can be nó disgrace.
The difficulty consists simply in this; The resistance is greater than any power that has been hitherto applied to overcome it. To meet this difficulty, we must increase the power and decrease the resistance.
With respect to the power, I would refer Colonel Maceroni, and your readers gencrally, to a paper on that subject in No. 637 of the Mechanics' Magaxine. To decrease the resistance, the present globular form of the balloon must be rejected altogether; nothing can be done whilst this shape is retained. It appears to me that an oblate cone offers the largest capacity with the smallest resistanee, or rather a cylinder with conical ends. The cylinder might be kept in a compressed form by connecting the opposite sides by means of cords in the interior of the balloon, so as to allow of its be ing distended by the gas in a lateral direction only. Colonel Maceroni objects, that the cone might rise endwise, br any way but the desired onc. This may be easily guarded against by having the interior divided into several compartments, so as to prevent the gas from shifting.
I am convinced that the difficulties and obstacles which at present appear to stand in the way of this undertaking, may be over come by ingenuity and perseverance-and that in calm weather a balloon might be con. ducted with s? fety and certainty in any direction that the æronaut might desire to steer.

I am, Sir,
 Your obed't serv't,

T. S. Mackintosh.

Sept. 26, 1836.

From the London Mechanics' Magazine.
 constant currents of wind at high altitudes.

$\mathrm{S}_{\mathrm{IR},-\mathrm{I}}$ think that if, as has been lately stated, there are at different altitudes opposite currents of air always blowing in the
same direction, aerostation may, notwithstanding all that has been said about it, prove a pleasant but sure method of travelling to the continent and back again. Now, as is well known, directly any portion of the atmosphere gets heated, it becomes rarefied, and as such it is lighter than it was before, and consequently it rises, and the cooler air rushes into the space that it before occupied, and thus forms a wind. As the sun may be considered always over the equator, the air directly under it, or that in the middle of the torrid zone must become considerably warmed, and consequentiy rise, and there must be a corresponding rush of cooler air below from the north and south to supply its place. That there is such, is known in the form of the trade winds, and the reason of their not being due north and south is owing to the whirling of the earth; but the heated air becoming cooled as it ascends, must in the upper regions form an opposite blast to the trade winds; and it has been clearly seen that there is such, by large masses of clouds being obsesved rapidly moving at a great height in a contrary direction to the wind, at the surface of the earth. A balloon taken to almost any part, within thirty degrees of the equator, would quickly ascertain at what height the change took place, and ballooning might prove of utility out there, if it never does in this country. Although the winds near the earth in the temperate zones are not, from various local circumstances, very steady, there is great probability that there may be differrnt currents at some height, and it could be easily ascertaned by a few aerial trips made by an experienced person on purpose for that intent.
With respect to guiding balloons by sails, supposing that by placing them obliquely you were enabled to obtain a little side way. it would, I think, be too trifling, compared with the length you would have gone in the same time with the wind, to be of any practical advantage, and to compensate for the greater size and expense of the balloon. It is as unreasonable, in the words of Dr. Arnott, to suppose that an insect, driven along ar the rate of eight or ten miles an hour by a river torrent, should have power to stop or sail against the stream, as a man in a balloon by means of wings or sails, could resist or change a motion in the air generally exceeding fifty miles an hour.

I remain Sir,
your obe't serv't.
Vincent Brown.

Mtmay Cloth.-In the mummy pits and sepulchres of Egypt, there are such immense quantities of the ancient cloths, in which mummies were enveloped, that the article has become an object of speeulation in Europe, for the use of paper manufacturers. These clothes are linen, and sometimes possess great beauty and delicaey of texture. It is observed that the warp has twice or thrice, and often four times as many threads in an inch of eloth, as the wool las. Modern weavers consider the circumstance as a proof that the Ancient Egyptian wea vers threw their shuttles with the hand.

A very good article appears on the French side of the Courier de la Louisiane yesterday, relative to steam slups across the Atlantic; and though we disagree with the writer in the inferences which lie draws, we may be permitted to avail ourselves of the facts which he has industriously accumulated, in our owi manuer.
There are now regular lines of steampacket ships from Falmouth in England to Corumna in Spain, to Lisbon in Portugal, to Cadiz and theace to Gibraltar, Malta, Corfu and Alexandria in the Mediteranean. There are steampackets faom London to Dublin, to Edinburgh, to Dover, to Havre, Antwerp, Hamburgh, Bordeaux and various other places. From Liverpool, there are steamboats to Dublin, Bristol, Bordeaux and other places. From Southampton also in England, there are lines to Havre and other ports of France. And from Hull, Dover and Brighton, there are similar lines across the English channel.
From Havre there are regular steamboats to the places above mentioned and to Hamburg and various ports on the continent. Also from Hamburg, Rotterdam, Ostend, Dunkirk, Boulogne, Bordeaux and Dieppe, there are similar lines. Even in Russia, there are steamboats from St. Petersburg to Riga, Stockholm, Lubwick and Hamburg.
In short there are steamboats or ships plying between the principal ports of the German, English and Irish chanuels, the Baltic and Mediterranean seas, and the bay of Biscay. There are also steamboats in the Red sea, the Persian gulf and Indian occan.
In this country there are steamboats on the occan from New-York to Baston and to Charleston; and from Boston to Portland.

But it is remarked that the voyages in every instance may be considered constwise, or that at least no boat is longer from land than four or five days; and therefore concluded that coastwise voyages alone can be performed by stcamboats or ships. It is known the ancient navigators never performed other than short voyages till the inveration 0 ? the compass; it may be inferred that stean is now in its infancy as sails had then been; and that invention will again second an ocean voyage. It is admitted that a stcumboat sailed in $18: 25$ from F'almoutin in England to the Cape of Good hope, there took in fued and sailed to the mouth of the Guargcs in the East Indies, making the whole royage in 105 days; and we yesterday remarked in the Standard, that a stemuboat that had sailed from London arrived at Oahu in the Pacific ocean, after a passage of $\mathbf{1 0 5}$ days. But it is supposed that beccause an attempt was not made afterwards to establish regular lines of steamboats between London and Calcutta via the Cape, therefore the first attenipt was sucecsslessalthough it should rather have been inferred that though the practicability of the project was fairly proved, the ordinary trade and travel between those ports could not defray the necessary expenscis of such a long voyage.

A vessel of war carrving 120 guns is usually 190 feet long. The steamboat North America on the Hudson river is se: feet long. The steamships intended for the line between Liverpool and New- Iork, are 194 feet long,

30 wide, and 18 deep. There will be two engines of 400 horse power.

Another objection to the use of steamships on the ocean, is the space necessarily occupied by the machinery and fuel, to the displacement of cargo. This is but in appearance; for the size of the steamships is increased beyond the ordinary tonage of merchant yessels, so as to give greater space; and the objection relative to the quantity of fuel necessary for long voyages would certainly be obviated in the establishment of lines from New-Orleans to any port in Europe or South America, as there are several intermediate places where fuel could be supplied for 10 or 12 days, were such a quautity required.

The expense of constructing and equipping steamships is another objection; but as the profits attending the superior facilities and intercourse of such ships would amply cover all outlays, the objection is not more valid against steamships compared with common packets, than with common packets compar. ed with translent vessels.

From the Farmers' Register.

coal deposites near farmville. farmvilie, oct. 22, 1836.
At a time when the whole country is so much interested on the subject of railways, it may not be improper, to trouble you once more, in relation to the coal deposites in this neighborhood. I feel the more excusable for this, inasmuch as, in my previous communications, I have expresed so much doubt with regard to the existence of coal in large quantities. I am happy now to state, that my doubts are nearly removed, and that I think 1 have good reason to believe, that we have in this vicinity, a coal-field of incalculable value. Should this opinion prove correct, much importance will be added to the construction of railroads through this place; more especially, if the rumor be true, that there is considerable failure in some of the Ches. terfield coal mines, as to the quantity of coal yielded.

I went or an excursion, a few days ago, with a party of gentlemen, with a view of inquiring ion itht exaniming the intitions of coal in the neigeborlsoorl. On the Bizarre luis, belongion to the estate of the laie Vichard Ranilolph, we found a place in which there were several veins of dead cand an the surlace, with large strata of shate w ervening : and in an arljacent ravine, where there had been a little digging, we found the veins of coal much increased, and those of shale greatly diminshed. Among the dead coal here, there were many lumps of good coal. The whole company supposed that at this spot, there was afferted the promise of a most waluable depsite of coal, if the veins contimue to approximate as rapilly below as on the sides of the ravine. This spot is on the river cliff, and very near the river.

We also found on the lands of Mr. lames Anilerson two other strati, both of which, we thought, afforided undoubted prospects of great value. One of these in a ditch. and longi:uliuly widu the duch about ten or twedre fiel. The ditch was eut fron. east to weat, and narly all the strata in
the neighborhood have their course from north-east to south-west. I mention these circunstances, because we failed in meeting the labor and implements which we expected-and, with a poor grubbing hoe and our own poorer personal labor, we were unable to ascertain the size and dip of the vein. This inebility, however, would augur favorably, as I have always been able very speedily to ascertain these matters with small veins. With regard to the size ot this vein, there was some diversity of opinion. All concurred in the opinion, that it would be well worth working. My opinion is, that it must be, at least, six feet through, for I have never seen in the whole field any vein of coal not-running north-east and south-west, and whose dip was not either to the north-west or south-east. The quality of the coal was also better than I have ever seen so near the surface. This place is about four miles from Farmville and a little more than one from the Appomattox.

We have recently learned that there are promising out-runnings of coal in other places, which we will, as soon as practicable, visit, and report to you, if we think them worthy of notice.

> W. S. Morton.

Agriculture, \&e.

From the Farmers' Register.

economical method of keeping horses.

by henry sully, m. d.
Having reccived innumerable letters from gentlemen who keep horses, requesting a description of my plan of feeding, I shall save much trouble both to others as well as myself, by laying my system before the public. Having pursued the plan, above 17 years, I am enabled to appreciate its full value, and, being perfectly satisfied of its superior excellence, I hope to continue the same as long as I keep horses.

Most people who know me will allow, that horses in my employ enjoy no sinecure places, and few people can boast of their cattle being in better working condition or more capable of laborious undertakings than mine.
The loft above my stable contains the machinery for cutting chaff and grinding corn. From this loft each horse has a tunnel of communication with the manger below, and a tub annexed to each tunnel in the loft for mixing the ingredients composing the provender.

There should be no rack in the stable, because this may tempt the groom to fill it with hay, and thus by overloading the horses' stomach, endanger his wind, to say little of its expense and waste, for it is a well known lact, that if a horse has his rack constantly replenished with hay, he consumes and spoils upwards of 30 lbs. per day.

The nanger with which the tunnel communica'es should have cross-bars, of firm oak, placed at the distance of ten or twelve inches from earh other, to prevent the horse from wasting his provender in scarch of the grain it contains, and this space between
the cross-bars, allows the hotse plenty of room to take his food.

The chaff cutter I make use of, is manufactured by Mr. Wilmott, a very ingenious mechanic, who resides about five miles from 'Taunton, on the road to Wiveliscombe. He also provides corn bruisers, of the best construction, and any person keeping three or four horses, will save the prime cost of his machinery the first year of his trial, and the horses themselves, thus fed, to use the language of horse keepers, will always be above their work.

When the provender is thoroughly mixed in the tub, previously weighing out eack ingredient, the mixture should be given in small quantities at a time, many times a day ; and at night, enough is thrown into the tunnel to last till morning. This process will be found of very little trouble to the groom, who will only have to go into the loft six or eight times a day. As the component parts of the provender are weighed separately for each horse, we are certain he has his just proportion; and I have hereunto annexed my scale of feeding in four classes, for it sometimes happens that some of the ingredients cannot be procured, and at other times that it may be better to substitute others; but, whatever grain is given, it should always be bruised or coarsely ground, and carefully weighed out; for by weight alone, is it possible to judge of the quantity of farinaceous sobstances the horse consumes; it being well known that a peck of oats varies from seven to twelve pounds ; consequently if the provender wetc mixed by measure there would be frequently an uncertainty as to quantity.Wheat varies from 16 to 12 ; Barley, from 13 to 16 ; Peas, from 17 to 15 ; Beans, from 17 to 15 per peck. And as wheat beans, peas, barley, and oats, are equally good, and of very trifling difference in price when their specific gravity is taken into consideration, I am equally indifferent which grain I use, but I should always prefer boiled or steamed potatces for hard working horses, to be a component ingredient, whenever they can be procured.

As I call al ground or bruised grain of whatever description, farina, it will be so distinguished in the following

Farina, consistingy of bruised or ground peas, wheat,.
barley, or oats, 5 lbs .5 lbs .10 lbs .5 lbs. Bran, fine or
coarse pollard, - - $\quad 7$ lbs. Boiledorsteamed potatoes, mashed in al tub with a wooden bruiser,
Fresh grain,
Hay cut into
chaff,
7 lbs .8 lbs .10 lbs .8 lbs.
Straw, \&c. in
chaff,
7 lbs .10 lbs .10 lbs .8 lbs.

By the above scale it will be seen, that each horse has his 30 lbs . of provender in 24 hours, which, I maintain, is full as much as he can eat. The two ounces of salt will be fuund to be an excellent stimulus to the horse's stomach, and should, on no account, be omitted. When a horse returns from labor, perhaps the groom will see the propriety of feeding him from his tub more largely, in order that he may be the sooner satisfied, and lie down to rest.

Whenever oat straw can be procured, it is generally preferred; and some like to have it cut into chaff without thrashing out the oats; but this is a bad plan, for in preparing a quantity of this chaff, unequal proportions of oats will be found in each lot, so that one horse will have too large a portion; whilst others have less than they ought, although the portions are accurately weighed.

The only certain method, then, is, to let the grain, of whatever description, be weighed, separately from its straw, and the keeper of cattle will soon satisfy himself that his cattle are in want of nothing in the feeding line. Many people object to potatoes, and think them unfit for working horses ; but, from many years' experience, I am enabled to recommend them as a constituent part of the 30 lbs ., and atn convinced, that it is as wholesome and nutritious a food as can be procured for laboring horses, which are called upon sudden emergencies to perforin great tasks, as has been abundantly proved by Mr. Curwen, M. P., who kept above one hundred horses on potatoes and straw, and always found that their labors were conducted better on this than any other food. See Curwen's Agricultural Hints, published 1809.
Wiveliscombe, Somerset, Sept. 12, 1836.
memorandum of an excursion to the tea hills, which produce the description of tea fnown in commerce under the designition of aneoy (nganhe) tea by g. J. Gordon, esq.
"Having beca disappointed in my expectations of being enabled to visit the Bohea hills, I was particularly anxious to have an opportunity of personally inspecting the tea plantations in the black tea district, of the next greatest celebrity, in order to satisfy myself regarding several points relative to the cultivation, on which the information afforded by different individuals was imperfect or discordant.
"Mr. Gutzlaff accordingly took considerable pains to ascertain for me, from the persons who visited the ship, the most eligible place for landing with the view of visiting the Ankoy hills; and Hwuytow bay was at length fixed upon as the most safe and convenient, both from its being out of the way of observation of any high Chinese functionaries who might be desirous of thwarting our project, and irom is being equally near the tea hills as any other part of the coast at which we could land."
"The wind being unfavorable, we made rather slow progress by rowing, but taking for our guidance the mazts of some of the junks witich we observed lying behind a point of lat d, we pulled to get under it, in order to avoid the strength of the ebb tide, which was now setting against us. In attempting to round the point, however, we grounded, and soon found that it was impossible to get into the river on that side, on account of sand banks which were merely co. vered at high water, and that it was necessatry to make a considerable circuit seaward to be able to enter. This we accomplished, but not till 1 A. M. At this time a light breeze fortunately springing up, we got oul very well for some time, but were again obliged to ailchor at $\frac{1}{4}$ past 2 , from want of water. As the tide rose, we gradually advanced to wards the town of Hwuytow, tlil we came to one of those bridges of which there are several along the coast, that extend over wide sand flats that are formed at the mouths of the rivers. These bridges are constructed of stone piers with slabs of stone daid fom pier to pier, some extending over a space of 25 feet and upwards, and others being from 15 to 20 feet span. As the length of the ibridges cannot be less than three quarters of a mile, the whole is very striking as a work of great labor, if not exhibiting either much skill or beauty. We were informed by some boat people that we should not find water to carry us beyond the bridge, but observing some tall masts on the other side, we resolved on making the experimcut, and pushing on as far as we could. It was almost dark when we passed under the bridge, and we had not proceeded far when we were again aground. This, however, we attributed to our unacquaintance with the channel, and as the tide floated us off, we continued advancing, notwithstanding, the warning of a friendly yoice from the bridge, that entreated us to return to the town, promising us comfortable quarters, and a guide, \&c. Being rather distrustful of the motives of this advice, howexer, we proceeded for some time longer but at length found it impossibie to procecd farther, the ebb having at the same time commenced. We therefore spread an awning and prepared to make ourselves as comiurtible as possible for the nigint. 'Ihe day hall been the warmest we had experienced for : montin paist, but the night was very cold, and our boat, is thay be imagined, far from coms. modious for so many people. At dayligit. we found that there was not six inches of water in any part of the channel, and from the boat we stepped at once upoin dry sand. The survey from the bauk showed plainly that it was impossible to proceed any further by water. We accordingly prepared to march on foot, taking with us three lascars, who mignt relieve each other in carrying our cloak-bag of blankets and great coats, as well as some cold meat. We ordered tic people to prepare a meal as fast as possible, intending to make a long stretch at first startmg, and Mr. Nicholson was directed to remain in charge of the boat witis ilve lascars, to move her down under the bridge on the return of the flood, and there to await our return for four or five days. Crowds of people now began to gather around the boat, moved by mere curiosity. Mr. Gutzlafí induced some of them to get ducks and fuwls,
for the use of the boat's crew, and strange to say, prevailed on one nan to become our guide, and on two others to undertake to carry our baggage, as soon as we should be a litile farther off from the town, and out of the way of observation."
"Skirting the town of Hwuytow, we proceeded in a N. N. E. direction, at a mode rate pace, for an hour and a half, when we stopped at a temple, and refresherl ourselves with tea. Nothing could be more kind or inore civil than the mamers of the people towards us hitherto, and if we could have procured conveyances here so as to have escaped walking, in the heat of the day, loaded as we were with heavy woollen clothes, we should have had nothiug further to desire: as it was, my feet already began to feel uncomfortable from swelling, and after another hours march, I was obliged to propose a halt, till the cool of the evenmg. Fortunately we fomd, however, that chairs were procurable at the place, and we accordingly engaged tiem at half a dollar each. They were formed in the slightest manner, and carried on bamboo pries, having a cross bar at the extremities, which rested on the back of the bearer's neck, apparently a most insecure as well as inconvenicut position; but as the poles were at thesame time grasped by the nands. the danger of a false step was lessened. We had not advanced above a mile and a half before the bearers declared they must eat, and to enable them to do so, they intst get more money. With this impudent demund we thought it best to comply, giving then an additional real each. After an lour's further progress, we were set down at a town near the foot of the pass which we nad to cross. There the bearers clamorous. ly insisted on an additional payment before they would carry us any further. 'This we resisted, and by Mr. Gutzlaff's eloquence gained the whole of the villagers, who crowded around us, to join in exclaiming against the attempted extortion. Sceing this, the rogues, subnitted, and agailı took us up.Mr. G., inentionel that while we were passing through :nother village, the people of which begged the bearers to sct us down, that they hught have a look at us, they demanded 100 cash as the condition of compliance. The con!try through which we passed swarmed with inhabitants, and exhibited the highest deegree of cultivation, though it was only $!\mathrm{m}$ a fow siots thet we saw any soil which woult be deemod in Bengal tolerably good; rice, the sweet poato, and sugar cane, were the principal articles of culture. We had now to ascend a barren and rugged mountain, which scemerd destined by nature to set the hand of inan at defiasee ; yet even here, there was not a spot where a vegetabse would take root, that was not occupied by at least a dwarf pine planted for the purpose of yiolding fire wood, and a kind ef turpentine; and wherever a nook presented an opportu. nity of gaining a few square yards of level ground by terracing, no labor scems to have beer spared to redeen such spots for the pury os: of cultivation. In ascending the pass, we soon came to places where it was dificult for our bearers to find a footing, and where they had consequently to pick oat their steps as they advanced. To assist themselves, they gave the chair a swinging motion, with which they kert time in raising
their fect. This was far from agrceable, and the first impression was that it was done merely to annov, but we very soon saw that the object was different. The highest point of the pass I should conjecture to be about 1200 feet above the plain, and the descent on the north side to be nearly equal to the ascent from the south, say 1000 fect. At half past four we arrived at a rather romantic valley, which was to be our halting place for the day."

Nov. 12th. Got into our chairs at a quarter past six, A. M., and proceeded along a narrow rugged dell towards Koeboe. Soveral nice looking hamlets were seen on the way. The people were engaged in reaping the rice, which seemed heavy, and well filled in the ear. In several places, I observed that they had taken the pains to tie clumps of rice together for mutual support. Sugar cane is bound in the same way, and for additional security, the outside canes are mutually supported by diagonal leaves, which serve at the same time to form them into a kind of fence. The leaves are not tied up round the stalks as in Bengal; the cane is slender, white, hard, and by no means juicy or rich; yet, abating the black fungous powder, which is very prevaient, the surtace is healthy, and close growing in a remarkable degree. We arrived at Kocboe at cight o'clock, and finding we could get water conveyance for part of the way on which we were proceeding, we engaged a boat for that purpose. After a hearty breakfast, we embarked at 10 A. M. amidst crowds of people who covered the banks of the river at the ghat. On inquiry, we found that the river on whieh we were proceeding in a W. N. W. course, was the same which passed Nganke heen, and flowed to Tseucuchow foo. The boat was large, but light, and being flat bottomed, drew very little water. The stream was so shallow, that it was only by tracing the deepest part of the channcl from side to side of its bed, that we were able to advance at all. This was done by poling; in several places the stream was decpened by throwing up littlo banks ef sand so as to confine its course within a channel merely wide enough for the boats to pass through. I estimated the width from bank to bank at 200 yards, and should judge from the height at which sugar is cultivated above the level of the present surface, that the greatest depth in the rainy season does not exceed 10 feet. Being entirely fed by mountain torrents, its rise must be often very sudden, but I did not observe any traces of devastation in its course. Its name, Nganke, or 'peaceful stream,' is probably derived from this circumstance: the valley on each side seemed well cultivated, the banks being priscipally occupied by sugar canc. At every village the people poured out as usual to sec us, vying with each other in marks of civility and kindness. The day, however, becoming very hot, we took shelter from the sun under the roof of the boat, to the disappointment of many who waded inte the water to gratify themselves with a sight of the strangers. Coming at last to a high bank close to a populous town, they actually offered the boatman 400 casli if he would bring us to ; and on his refusal, the boys began peling the boat with clods and stones. On this, Mr. Gutzlaff went on deck to remonstrate, and Mr. Ryder to inti-
midate with his gun. Betwixt both the effect was instantancous, and the seniors of the crowd apologized for the rude manner in which the boys had attempted to enforce the gratification of their curiosity. We had been in vain looking out all yesterday and today for a glimpse of tea plantations on some of the rugged and black looking hills close in view, though at almost every place where we halted, we were assured that such were to be found hard by."
"Arrived at Toa-be, we were hospitably received by the family of our guide, and soon surrounded by wondering visitors.
"Mr. Gutzlaff" spcedily sclected one or two of the most intelligent of them, and obtained from them ready answers to a variety of questions regarding the cultivation of the toa plant. They informed him that the seed now used for propagating the plant was all produced on the spot, though the original stock of this part of the country was brought from Woo-e-shan; that it ripened in the 10 th or 11th month, and was immediately put into the ground where it was intended to grow, several being put together into one ho e, as the greater part was always abortive ; that the sprouts appeared in the 3d month after the seeds were put into the ground ; that the hole into which the seeds are thrown is from three to four inches deep, and as the plants grow, the earth is gathered up a little around the root; that leaves are taken from the plants when they are three years old, and that there are from most plants four pluckings in the year. No manure is used, nor is goodness of soil considered of consequence; neither are the plants irrigated.Each slirub may yield about a tael of dry tea annually (about the 12th of a pound.) A move of ground may contain 300 or 400 plants. The land tax is 300 cash, (720 to a dollar,) per mow. The cultivation and gathering of the leaves being performed by funilies without the assistance of hired laborers, no rate of wages can be specified; but as the curing of the leaf is an art that requires some skill, persons are employed for that particular purpose, who are paid at the rate of one dollar per pecul of fresh leaves, equal to five dollars per pecul of dry tea. The fire-place used is only temporary, and all the utensils, as well as fuel, are furnished by the curer of the tea. They stated that the leaves are heated and rolled seven or eight times. The green leaf yields one fifth of its weight of dry tea. The best tea fetches on the spot $\$ 23$ per pecul, ($133 \frac{1}{3} \mathrm{lbs}$.) and the principal part of the produce is consuned within the province, or exported in baskets to Formosa. That the prevailing winds are northwesterly. The casterly winds are the only winds injurious to the plants. Hoar frost is common during the winter months, and snow falls occasionally, but does not lie long, nor to a greater depth than three or four inches. The plant is never injured by excessive cold, and thrives from 10 to 20 years. It is sometimes destroyed by a worm that eats up the pith, and converts both stem and branches into tubes, and by a gray lichen which principally attacks very old plants. The period of growth is limited to six or seven years, when the plant has attained its greatest size. The spots where the tea is planted are scattered over great part of the country, but there are no
hills appropriated entirely to its culture. No ground, in fact, is formed into a tea plantation, that is fit for any other species of cultid vation, except perhaps that of the dwarf pine already alluded to, or the Camellia oleifera. Mr. Gutzlaff understood them to say that the plant blossoms twice a year, in the eighth moon or September, and again in winter, but that the latter flowering is abortive. In this I apprehend there was some misunderstanding as full sized seeds, though not ripe, were proffered to me in considerable quantities early in September, and none were found on the plants which we saw. I suspect that the people meant to say that the soeds take eight months to ripen, which accords with other accounts. We wished much to have spent the following day the (13th) in prosecuting our inquiries and observations at Toa-be and its neighborhood, but this was rendered imprac ticab'e by the state of our finances. We had plenty of gold, but no one could be found who would purchase it with silver at any price. We therefore resolved on making the most of our time by an carly excursion in the morning, previous to setting out on our return.
"We accordingly got up at day break, and procceded to visit the spot where the plants were cultivated. We were much struck with the varicty of the appearance of the plants : some of the shrubs scarcely rose to the height of a cubit above the ground, and those were so very bushy that the hand could not be thrust between the branches. They were, also very thickly covered with leaves, but these were very small, scarcely above 3 of an inch long. In the same bed were other plants, with stems four feet high, far less branchy, aud with leaves $1 \frac{1}{2}$ to 2 inches in length. The produce of great and small was said to be equal. The distance from centre to centre of the plants was about $4 \frac{1}{2}$ fect, and the plants seemed to average about two feet in diameter. Though the ground was not terraced, it was formed into beds that were partly levelled. These were perfectly well dressed, as in garden cultivation, and each little plantation was surrounded by a low stone fence, and a trench. There was no shade, but the places selected for the cultivation were gencrally in the hollows of hills, where there was a good deal of shelter on two sides, and the slope comparatively easy. I should reckon the sight of the highest plantations we visited to be about 700 feet above the plain, but those we saw at half that height, and even less, appeared more thriving, pro: bably from having somewhat better soil, though the best is little more than mere sand. I have taken specimens from three or four gardens. Contrary to what we had been told the preceding night, I found that each garden had its little nursery, where the plants were growing to the height of four or five inches, as closely set as they could stand; from which I conceive that the plant requires absolutely a free soil, not veet, and not clayey, but of a texture that will retain moisture; and the best site is one not so low as that at which water is apt to spring from the sides of a hill, nor so high as to be exposed to the violence of stormy weather. There is no use in attempting to cultivate the plant on an casterly exposure, though it is sufficiently hardy to bear aimost any degree of dry cold."- [Chinese Repository.]

From the London Gandener's Magazine.
DN the employment of cats in tile preservation of fruit fron birds.
" Robert Brook, Esq., of Melton Lodge, near Woodbridge, in Suffolk, has four or five cats, each with a collar, and light chain and swivel, about a yard long, with the large iron ring at the end. As soon as the gooseberries, currants, and raspberries begin to ripen, a small stake is driven into the ground, or bed, near the trees to be protected, leaving about a yard and a half of the stake above ground; the ring is slipped over the head of the stake, and the cat, thus tethered in sight of the trees, no birds will approach them. Cherry trees and wall-fruit trees are protected in the same manner as they successively ripen. Each cat, by way of a shed, has one of the largest sized flower-pots laid on its side, within reach of its chain, with a little hay or straw in bad weather, and her food and water placed near her.
" In confirmation of Mr. Kendall's statement, it may be added, that a wall of vines between 200 and 300 yards long, in the nursery of Mr. Kirke, at Brompton, the fruit of which in all previous seasons had been very much injured by birds, was last year completely protected in consequence of a cat having voluntarily posted himsel sentry upon it."

METEOROLOGICAL RECORD
For the month of July, 1836, kept at Avoylle Ferry, Red River, La., (Lat. $31^{\circ} 10^{\prime} \mathrm{N} . \mathrm{L}^{2} \mathrm{Long} .91^{\circ} 59^{\prime}$ w.) by P. G. Voorнies.

JULY.			
	Wind.	Weather.	REMARLS.
1728678	calm	clear	Red Riv
$\begin{aligned} & 27288180 \\ & 3726 \\ & \hline \end{aligned}$..		
	\cdots	cloudy	
4748678		clear	
5707271	sw	cloudy	heary rain and chunder at
6748779	calm		noon cloudy at noon
7.758878	m	c	cloudy and th
87568.78			noon
9,76189186	calm	cloudy	heavy thunder at noon
10,7692186	caim,	clear	at noon cloudy
11759086			
12748986			
13763085	E		
14.7518881	calm		River rising
15718483.8	s light		evening calm
16718684	calm		all day
17748684	..	\ldots	cloudy morning clear day,
728780			thudder southwardly
	-•	clear	thunder showers in the ev'ng from N. e. high
19728079	-•	cloudy	all day, night clear
20738278	.		thunder in the evening
	.	clear	
238693988	.	.	Red River falling
$24.8290888{ }^{25}$	s light		light flying cloud
25.828684	calin	clear	ight nying cloudsd
${ }^{27}{ }^{26} 84{ }^{81} 8888{ }^{81}$..	clundy	all day
	.	clear	evening cloudy
	-•	..	thunder showers in evening 3 to 5 . m.
	.	cloudy	evening light showers
	.		foggy morning, afternoon
$3174.83 / 79$			a heavy thunder shower
111.1		all day	rain in the morning, cloudy all day

Red River fell this month 3 feet I inch-below high water mark 6 feet 4 inches.

Po:ash fron Beet Root.-Those persons in our country who have embarked in the business of making Sugar from Beet Root, will in all probability be remunerated for their enterprize in inore ways then that
derived from the merc profit of the sale of $\|$ the Sugar. It appears that a new discovery has been made in France-a process which extracts potash in such large quantites from the residuum of bect root after making the sugar, as to threaten a rivalry with the produce of the American forests. M. Dubrunfaut is the discoverer. The molas ses, after serving for the making of sugar, is distilled to obtain alcohol. The remainder then, instead of being thrown away, is manufactured into potash. The quantity of potash furnished by M. Dubrunfaut's process is equal to one-sixth of the quantity of sugar extracted from the beetroot. Thus, says the Journal des Debats, taking the amount of indigenous sugar manufactured each year at 40,000,000 kilogrammes, there may besides, be extracted from the beetroot which has served for that production, seven millions kilogrammes of saline matter ,comparable to the best potash of commerce, and this too, without the loss of the aldohol, and the other produce, the fabrication of which may be continued simultaneously.According to present prices, the 7,000,000 of kilogrammes represent a value of from $8,000,000$ to $9,000,000$ francs. - [Baltimore American.]

Simp Canal around thr Falls of St. Mary.-The feasibility of this project has been shown in an article which we copied, a few days since, from the Albany Advertiser ; and we have lately conversed with gentlemen, possessing accurate knowledge on the subject, who fully confirm the statements made in the Advertiser. The importance of this work to Buffalo, in a commercial point of view, can scarcely be estimated too lighly. A free communication with the ocean lake, would open a new and almost boundless field for enterprise. The country bordering on Lake Superior has never been thorougilly explored, but from the imperfect examination that has been made, it is known to pos sess great mineral wealth. Copper, in particular, abounds in inexhaustible quantitics. But in addition to the rich returns that might be expected from this branch of trade alone, immense profits might be realized fiom the traffic in furs. This is now monopolized by the Hudson Bay and Northwest Fur Companies, and a studied mystery has been thrown around all their operations. As the demand for fur increases and the supply diminishes, prices are enhanced, and still greater efforts are made by these Companics, to prevent any intrusion upon what they regard as their privileges. They could not, how. ever, long maintain their monopoly, if our vessels could float on the waters of the upper lake. Trading posts could be established along its shores, and the rich freight collected at these stations, could be brought to our wharves, and thrown into market, in little more than a weck. The white fisheries would also afford a profitable investment for capital. We carnestly hope some measures will be taken, this winter, to effect a free communication between the lower lakes and lake Superior; and shall ere iong place be. fore our readers some statistical information, showing the value of the trade that wonid thereby be secured.- [Buffalo Daily Com.

METEOROLOGICAL RECORD.
For the month of August, 1836, kept at Avoylle Ferrv, Red liver, La., (Lat. $31^{\circ} 10^{\prime} \mathrm{N}$. Long. $91^{\circ} 59^{\prime}$ w..) by P. G. Vooruies.

Red River fell this month 7 feet 6 mehes-below high water mark 13 feet 10 inches.

MACHINE WORKS OF ROGERS,

 KETCHUM and GROSVENOR, Paterson, NewJersey. The undersigned receive orders for the following articles, manutactured by them, of the moss superior description in every particular. Their works being extensive, and thenumber of liands employed being large, they are onabled to execute both large and small orders with promptness and despatch-LAALROAD WORK.
Locomotive Steam-Engines and Tenders; Driving and uther Locomotive Whecls, Axles, Springs and Flange Tires; Car Wheels of east iron, from a vnricty of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of best American refined tron: Springs: Boxes and Bolts for Cars.
CO'TUN WOOL A ${ }^{\text {W D FLAX MACIIINERY, }}$
Of all descriptions and of the most improved Hat. terns, Style and Workmanship.
Mill Geering and Nillwright work generally; IIydraulic and vtner Presses; Press Screws; Callenders; Lathes and Tools of all hinds, Iron and Brass Castings of all descriptiong.

RUGERS, KETCHUM \& GROSVENOR.
Patlerson, New-Jersey, or 60 Wall street, N. Y.

51tf
 ALBANY EAGLE AIR FURNACE AND

MACHINE: SHOP
WHLLiAM V. MA:NY mannfactures to order, iron castings for Gearing Mills and Factories of every description
ALSO-Steam Engines and Railroad Castings of every description.
The collection of Patterns for Marhinery, is not equalled inthe United States.

TO 1'LUUGHMEN.

THE Subscriber has upwards of three hundred acres of meadow land, in the sod, near the city of New York, that he wishes to have ploughkb , as early in the course of the next year as practicable. He wishes to contract for the whule, or any part. It must be ploughed four inches deep, the furrow must be turned completely over, so that the whyle will lie flat-to plough a great part of this land advantazeously and speedily, a double team of light cattle is preferable to one pair of heavy oxen. Provender for men and cattle can be procured on the premises. Apply by letter, directed to Anthony Dey, 63 Cedar-streeh, coraer Nassau-street, NewTork, by mail or otherwise, stating terms etc. rrlt- 12 nn- 48
A. DEY.

Patent raillroad, SHIP AND BOAT SPIKES.
The Troy Iron and Nail Factory keeps conatanty for sale a very extensive assurtment of W rough Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years successful operation, and now aimost universal use in the United Siaten, (as well as England, where the subscriber obtained a patent,) are found superior to any ever offered in market.

Railroad Companies may be supplied with Spikes having countersink heads suitable to the hules in iron rails, to any amount and on short notice. Almost all the Railroads now in progress in the United States are fastened with Spikes made at the abuve manaed fac-tory-for which purpose they are found invaluable, as their adhesion is inore than double any commes, spikes made by the hammer.
*it All orders directed to the Agent, Troy, N. Y., will be punctually atended to.

HENRY BURDEN, Agent
Troy, N. Y., July, 1831.
** Spikes are knpt for sale, at factory prices, by I. \& J. Tuwnsend, Albany, and the prineipal Iron Merchants in Albany and Troy ; J.1. Brower, 222 Water street, New-York; A. M. Jenes, Philadelphia; r . Janviers, Baltimore; Degrand \& Sinith, Boston.
P. S.-Railruad Companies would do well to forward their orders us eurly as practieable, as the subscriber is desirous of extending the mannfacturing so as to keep pace with the daily increasing demand for his Spikes.
(1J23am)
II. BURDEN.

RAILWAY IRON, LOCOMOTIVES, \&c
THE subscribers offer the following articles for sale.
Railuay Iron, flat bars, with countersunk holes and mitred joints,

with Spikes and Splicing Plates adapted thereto. To
be sold fee of duty to State goveruments or incorbe sold free of duty

Orders for Pennsylvania Builer Iron executed.
Rail Road Car and Locomotive Engine Tires, wrought and turned or unturned, ruady to be fitted on the whecls, viz: $30,33,36,42,44,51$, and 60 isches aiameter.
E. V. Patent Chain Cable Bults for Ruilway Car axles, in lengths of 12 ef et 6 inches, to I3 feet \%t, 21 $3,3\}, 3 t, 34$, and $3 \frac{3}{}$ inehes diameter.
Chains for Inclined lyanes, short and stay links, manufactured from the E. V. Cable Bolts, and proved manufacturcd from greatest strain.
India Rubber Rope for Inclined Plunes, made from New Zealand flax.
Also Patent Hemp Cordage for Inclined Planea, and Cannl 'lowing Lines.
Patent Fels for placing between the iron chair and stone bluck of Edge Ra: Lways.
Every deseription of Kailway Iron, as well as Locomotive Engines, imported at ilie shortest notice, by the agenry of ine of our partners, who resides in Fingland for shis purpose.
Mr. Solismon W. Rulverts, a lighly respectable American Engineer, resides in England for the purpose of inspetting all Laromutives, Alachinery, Railway Iron \&e. ordered through us

28-tf
Pliladelphia, No. 4, South Front st

STEPHENSON,

Builder of a superior* style of Passenger. Cars for Railroads.
No. 264 Elizabeth street, near Bleecker street, New- Vork.
RALLROAD COMPANIES would do well to exa mine these Cars; a specimen of which may he seen now in cperntion
$1 N$ ENGINE:SR, regularly bred to the Profession in England, as well as to that of a Topographical Surveyor and Draughtsmarr, is desirous of obtaining employment in the United States. He has lately, for several years, been a salaried oflicer of one of the Principal Land Companies in the British Provinees, from the agents of which he cun provace unexceptionable refenences.
On the subject of Kailways ha would feel partienlarly at home, having had much experience in their aurvey and formation while in Eingland, and he conGdenty hopes that he would give satisfaction in all the other branches of the Profession.
Apply to the Office of this paper, 132 Nassan-st, or to Dr. Bartlett, at the ofice of the Alhion, Ceder-
strect.

A SPLENDID OPPOR'TUNITY TO

MAKE A FOR'TUNE.

THE Suhscriber having ohtained Letters Patent, from the Guvernment of France, granting hinu the exelusive privilege of manufacturing Horse Shoes, by his newly invented machines, now offers the same for sale onterins which canuot fail to make an independent fortune to any enterprising gentemen wishing to mbark in the same.
The machines are in constant operation at the Troy Iron and Niil Factury, and all that is necessary to satisfy the most inereduluns, that it is the must valuable Patent, ever oblained, cither in this or any other conntry, is to witness the "seration which is open for inspection to all during workıng hours. All letters audressed to the subscriber (post paid) will re. Troy Itention.
T'roy Iron Works,
HENRY BURDEN.
N. B. Horse Shoes of all sizes will be kept cons startly for sale by the pincipal Iron and Hard-ware Merchants, in the I'nited States, at a small adrance above the price of Horse Shoe Iron in Bar. All persons selling the same, are authorised to warrant every bioe, 3 ade from the best refined irun, and any failing to render the most pebfect bat:8facotin, buth as regards workmanship and quality of refunded. received back. and the price of the same
H. BURDEN. 47-If

FRAME BRIDGES.

T'ue subscriber would respectully inform the public, and particularly Railroad and Bridge Curpurataitons that he will build Frame Bridges, or vend the right to others to build, on Col. Long's Patent, through out the United States, with few exceptions. The following sub- Agents liave been engaged by the runder signed who will also attend to this business, viz.

Horace Childs,
Alexander MeArthur, John Mahan,
Thomas H. Cushing, Ira Blake.
Anos Whitemore, Fsq.,
Samuel IIerrick,
Sinmeon Herrick,
Capt. Isaac Damon,
Lyman Kingsly,
Elijah Halbert,

Joseph Hebard,

Col. Sherman Peck,
Henniker, N. 11. Munt Murris, N. Y. Dover, Wover, N. II. Hanefield, N. II.

Andrew E., Turnbull, springfield, Vermont. do do Northampton, Mase. Waterloo, $\mathbf{N} . \mathbf{Y}^{\text {do }}$ Dunkirk, N. Y. Dunkirk, N. Y.
Hudson, Ohio. Sabried Dodge, Esa, Lower Sandushy, Ohio Boozed Doage, 1asq. (Civil Engineer,) Ohio do Stephen Variels, John Rodgers,
John Rodgers,
John TIlilson,
Capt. Jolin Bottom,
Nehemiah Osborn, Civil Engineer,) Ohio. Marietta, Ohio. Louisville, Kentucky. St. Francisville, Lons'a Tonawanda, Penu Rochester, N. Y.
Bridges on the abore plan are to be scen at the ful lnwing localities, viz. On the main road leading from Baltumore to Washington, two milea from the furmer place. Across the Metawaukeag river on the Military ruad, innlaine. On the national road in Illinuis at sundry points. On the Baltimore and Susquehan na Rrailroad ut three points. On the Hudson and
Patterson Railroad, in two places. On the Boston and Worcester lhailroad, at several points. On the Busun and Providence Railroad, at sandry points. Across the Contocook river al Ilancock, N. H. Across the Connecticut river at Haverlitl, N. H. Aeross the Contoocook river, at Henniker, N. II. Across the Suuhegan river, at Milford, N. H. Across the Kennebee river, at Waterville, in the state of Maine. Across the Genesse river, at Mount Morris, NewYork, and several uther bridges are now in progress The undersigned has removed to Rochester, IIunroe county, New-York, where he will promptly attend to orders in this line of business to any practica bl eextest in the United States, Maryland excented.

MOSES LOVG.
of Col.S. II Long
Rnchester, May 22d, 1826.
19 y -lf.
an elegant steam engine AND BOILERS, FOR SAILL.
THE, Steam Engine and Builers, belunging to the STEAMBOAT HELEN, and now in the Novely yard, N. Y. Curisisting of one Horzontal high pres sure Engine, (hut miy be made to coradense will, lit ile ndditional expense) 36 inehes diameter, 10 feel siruke, with latest inproved Piston Valves, and Meta lic packing throughout.
Also, four T'ubular Builers, constructed on th. English Laermotive plan, containing a fire surface of over 600 feet in each, or 250) fret in all-will bu suld cheap. All conimunications addressed (post pand to the subscriber, will mee: with due attention.
'Troy Iron Works, Nov. 15, $1836 . \quad$ 47-1f

HARVEY'S PATENT RAILROAD' SPIKES.
THE Subscribers are manufacturing and are now prepared to make contracts, fur the supply of the abuve artiele. Samples may be seen and obtained at Messrs. BOORMAN, JUHNSUN, AYRES \& Co. No. 110 Greenwich Street, New-York, or at the Makers in Poughkeepsie, who sefer to the aubjoined eertificates in relation to the article.

HARVEY \& KNIGHT.
Poughkelpsie, October $25 t h, 1836$.
The undersigned having attentively examined Iarvey's Patent Flanched and Grooved Spizes is of the opinion, thai they are decidedly preferable for Railroads to any other Spikes with which he is acquainted; and ahall unliesitatingly recommend their quainted; and ahal uniusitalingly recommend whose
adoption by the different Railroad Companies whose adoption by the different
works he hns in eharge.

BENJ. WRIGHT,
Chief Engineer N. Y. \& E. R.'R.
New-York, April 4th, 1836.
Harvey's Flanched and Grooved Spikes are evidently superior for Railronds to thuse in common nse, and I shall recommend their adoption on the roade under my charge if their inereased cost over the latter' is not greater than some twenty per cent.

JNO. M. FESSENDON, Engineer.
Boston, April 20 ith , 1836. No. 1-6t.

ARCHIMEDES WORKS.

(100 North Moor atreet, N. Y.)
NEw-Yоак, February 12th, 1836.
THE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furniwh all kinds of Machinery for Railroads, Locomotive Engines of any size. Car Wheels; such as are now in succeasful operation on the Camden and Amboy Kailroad, nune of which have fuiled-Castings of all kinds; Whoels, Axles, and Buxes, furnished at shortest notice.
H. R. DUNHAN \& CO.

An Engineer is desirous of obtaining a situation on some work, either Railroad or Cana! ; he would have no objections to go un to any part of the United States.
Salisfactory references given as to character and capacity. Address W. II. W. at this office-post
paid. paid.

TO CON'TRACTORS

STONE CUTTERS and MASONS, JAMES RIVER and KANAWHA CANAL-Contractors for mechanical work are hereby inf srmed that a large amount of Masonry, consisting of Locks, Culveris, and Aqueducts, is yet t, be let on the line Culverts, and Aqueducts, is yet ho be
of the James and Kanawha Canal.
Persuns desirous of obtaining such work, and pres pared to cxhibit proper testimoniuls of their ability to exceute it, will apply at the office of the subscriber in the city of Richmond
Stone Cutters and Masuns wishing employment in the South daring the winter munths, may count with certainty on receiving liberal wages, by engaging with the contracturs on the work

CIIAS. ELLL:T, Jr., Chief Eng. J. R. \& K. Co.
Riclimond, Nov. 29,1836 .
51-6t

AMES' CELEBRATED SHOVELS, SPADES, \& c.

300 dozens Ames' auperior back-strap Shovels
$\begin{array}{llll}130 & \text { do do do plain do } \\ 150 & \text { do do do eaststeel Shovel }\end{array}$
150 do do do eaststeel Shovels \& Spades 100 do do plated Spades
50 do do socket Shovels and Spades.
Tugether with Pick Axes, Churn Drilis, and Crow Bars (steel pointed, mannfactured from Solisbury rea fined iron-for sale by the manufacturing agents,

WTHERELL, AMES \& CO.
BACKUS; AMES \& CO.
No. 8 State atreet, Albany
N. B - Alsi, furmished to order, Shapes of every dosrrintion. made from Salshury refined Iron v4-If

NOTICE TO CONTRACTORS.

Proposals will be receired at the office of the Iladson and Berkshire Railroad Company, in The ci y of Hudson, until the 15th of January, 1837, for One ahllion feet, bulard measure, of Southem pine, of the following dimensi:ns:- 6 inches equare,
ind in lengith of $21,24,27$, and 30 feet long-also, for ind in lengits of 21, 24, 27 , and 30 feet long-also, for
14,400 Chestnut or Cedar ties, 8 feet long, and 6 inches -quare-and alsn, 4,000 sills, of Hemloek, Chesinut, ir White Pine, 4 by 10 inches, and in leng?hs of 15 , 18 , ard 21 feet lung. The whole to be delivered by the lst day of July, 1837. George Rich.
Hudson, Dec. 22, 1836.
Engineer.

AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERRAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT NO. $13 z$ NASSAU STLEET, NEW-YOIRK, AT FIVE DULLARS PER ANNUM, PAYABLE IN AJWANE:

D. K MINOR, and

\qquad Editors Axd
\} Prorietors.]
SITURDAY, JANUART $14,183 \%$.
VOLUAE VT-XU. 2

CONTENTS :

Advertisement. \qquad
Editorial Notces:. 1 i
Welland Canal Report 1 ?
Communication from the Canal Commissioners,
accumpanied with a Report, etc.............. . It
First Report of the Lirectors of the Eastern Counties Railway
Manumotive Carriages. 22
Improved Builer for Generating Steam. $2:$
Tunnel under the Miagara......................... . 23
Miscellaneous 23
Advertisements
. 31

AMERICAN RAILROAD JOURNAL.
NEW-YORK, JANUARY 14, 1836,
List of subsichibers to the Railioad
Journal, that have paid since the 25 th December, 1836.
L. Abbott, Woburn, Mass., Feb. 25, 1837.
C. R. Alton, Utica, N. Y., Jan. I, 1838.
E. M. Adams, Smithville, N. Y., Jan. 1, 1837.

Benj. Aycrigg, Lebanon, Pa., Jan: 1, 1838.
W. R. Bradford, Lexingron, Ky., Jan. 1 , 183\%.
Betts \& Puzey, Wilmington, Del., Jan. 1, 1837.
J. C. Chesbrough, Worcester, Mass,, Jan. 1, 1838.
R. H. Chinn, N. Orleans, La., Jan. 1, 1837.

John Ellis, Sándy Hill, N. Y., May 1, 1838.
J. C. Trautwine, Phila., Pa., Jan. 1, 1838.
C. Graham, Pikesville, Md., Jan. 1, 1833.
W. F. Johnson, Owego, N.Y., Jan. 1, 1335.

Rufus King, Albany, N. Y., Dec. 24, 1337.
Jas. Laurie, Norwich, Conn., Jan. 1, 1338.
Lex. \& Ohio R. R. Co., Lexington, Ky., Jan. 1, 1837.
E. Morris, Hancock, Md., Jan. 1, 1836
J. D. Murray, New Hope; Pa., Jan. 1, 1837.
L. B. Munn, jr. Ithica, N. Y., Jan. 1, 1887.
N. C. Osborn, Gejrgetown, D. C̈., Jan. 1, 1838.
S. B. Russell, Boston, Mass., Jan. 1, 1833.
W. H. Switt, Worcester, Mass., Jan. 1, 1838.
C. Binnickson, Knuxville Tcan., Jan. 1, 1838.
R. B. Sherbourne, Boston, Mass., Jan. 1, 1833.
V. P. Shattuck, City, N. Y., Jan. 1, 1837. Richard Soule, jr. Buston, Mass., Jan. 1, 1833.

Isaac Trimble, Baltimore, Md., Jan. 1, 1838. A. Varick, City, N. Y., Jan. 1, 1833.

Wilmington \& Susq. R. R. Co., Wilmington, Del., Jan.' 1, 1837.

MORRIS CATAL.

We understand that a lease of this Canal has been effected by the Company, for ten years; at 6 per cent. per.annum on the cost of the work.
The arrangement is considered as highly advantageous to the Company.

Louis McLane, Esq. has been unanimously elected President of the Baltimore and Ohio Railroad Company.

This gentleman, we doubt not, will prove a highly efficient officer, and his election is gratifying to all well wishers of the Company, and of Internal Improvement:

welland canal report:

To the Hon. the Commons House of Assembly:
The Select Committee to whom was referred the petition of the President, Directors, and Company of the Welland Canal,
wih other documents relating thereto-beg leave te report :
That ofter actual personal inspection of the whole line of the Canal, lrom Port Dalhuusie to Port Colborme, and from the junction of the Grad River at Dunnville; they are more strongly impressed with the :mpor ance of this work; and are convinced of the necessity of taling immediate measures for guarding as much as possible against any interference of the use of the canal through the ensuing season-and for putting it in a state of perfect and permanent repair as speedily as the naiure of the work will permit.

After much disenssion and consideras tion, your committee are of opinion that a due regard to economy, as well as the urgent necessity of affording facility and certainty to the increasing trade upon this great channel of communication, calls for the adoption without delay, of some decisive and final measure for conducting this great work to a conclusion worthy of the Province, and such as shall ensure the accom. plishment of those important results, which your committe are confident cannot fail to be obtained under prudent and energetic management.
It is only necessary to pass along the line of the Welland Canal to arrive at the conviction, that the private stockholders, who at an early period invested their capital in the work, underraied the difficultues of so stupendous an undertaking. Considering the obstacles to be surmounted, it has astonished your committee, to see how much has actually been accomplished-but there is much yet to be done-and it is in every point of view important to the Province that a sound and liberal policy should be pursued in respect to the completion, management, and care of the work.
Your committee have for many reasons determined upon recommending to ycur honorabie House, to provide for making the Welland Canal strictly a public work, and wholly and exclusively public property-
and believing that the propriety of this course is very generally acknowledged. your Conmmittee forbear to enlarge upon it.

They have applied themselves to the consideration of such a proposition to be madr to the stockholders, as would combine the principle of ultimate indernnification " them, witb a due ragard to the interest anc convenience of the public; and with thi: view they recommend that if the stockholders will, by a certain day to be named, agree to transler their stock to the Government, the Receiver General shall be authorized to issue to them Debentures for the amount of their stock, redecmable in twenty years, with interest half yearly, to commence in 1840, after the following rates, viz :-Three per cent. for the first year; four for the second; five for the next ; and thereafter six per cent. until the debentures shall be redeemed. And that as soon as the receipts upon the Canal shall amount to $£ 25,000$, in any one year, three per cent. per annum upon the amount invested shall be paid to the present proprietors of stock or their representatives; and when the annual receipts shall amount to $£ 50,000$, six per cent. per annum upon lherr former stock shall be paid, until he legal rate of interest upon the capital in. vested by them, from the time that it shall have been actually paid in, shall be fully paid.

But your committee contemplated as part of this arrangensent, the entire acquisition to the government of all the property for . merly owned by the Company along the line of the Canal, with the hy draulic advan. tnges, which they have reason to believe, can be accomplished 'upon the terms of paying to the purchasers the amount actually expended by them in improvements.
Your committee are of opinion, that such an arrangement would be decidedly advantageous ; and so soorn as it shall be ascertained whether their proposition is approved of by your nonorable house, they will apply themselves to the details of the necessary means for currying it into effect.

All which is respectfinlly subnitted.
Jonas Jones, Chairman.
Juhn S. Cartwrighi,
W. Chishol:n,

George Rykert,
Charles Bockus,
W. B. Robinsun,
H. Norton,
'I. McKay,
Chates Richardson,
Committee Room, 29th No: 1836.

COMMUNICATION FROM THE CASAL NOM MISSIONERS, ACCOMPANIED wITHARF PORT OF B. AYCRIGG, PRINCIEAL ENGi NEER APPOINTED TO EXPLORE THI country betwerin the west brancs IMPROVEMENTS AND THE TOWN O franglin, cn thr. allegheny rivel.

Canal Commissionrs Room,)
Derember 15, 1836. $\}$

His Excellency, Joseph Ritner,

Governoa of Pennsylanania $S_{I r},-$ By direction of the board, I trans mit to you the report of B. Aycrigg, prin-
cipal engineer aprointed to explore the country between the West Branch improvemeits and the town of Franklin, on the Alleghany river.

Very respectfully,

Moses Sullivan, President.

Harrisburg, Dec. 13, 1826.
To Moses Sullivan, Esq.
President of the Board of Canal Commissioners of Pennsylvania.
Sir,-We arrived at this place on the morning of the 11th inst., having examined the dividing rilge and completed a connected line from the mouth of Red Bank on the Allegheny to the mouth of the Sinneinahoning, on the West Branch, a distance of one hundred and twenty-eightand one-fourth iniles, and taken the requisite notes for a detailed estimate accompanied by a topographical map of the country included in the examination.
No examination was made on the Allegheny since it had been already three times levelled, and the expense of different plans of improvement reported. The length of the time during which we could work being limited, that pa:t was preferred, of which teast was known, and therefore having reached the Allegheny we returned to the summit and proceeded eastward, in order if possible to connect our line with the hear of the improvements on the West Braneh. Tiis, however, we found inpructicable, since the river freezing, precluded the possibility of sur being accompanied by our tents and cainp equipage in a country without roads, where our only means of transportation was by water.

The levels and survey having been taken with the same precision as in the preliminary examinations, for a work whose construction was authorized by law, it will require several weeks to prepare an estimate, and in the mean time the tol owing general view of the subject is respectfully submitted to the board.
Having olitained all the information that was available from the • ficial reports of iormer examinations, and from individuals who were acyuainted with the eountry to be expl red; the greatest reliance wapaced upon the account given to me perscwally, by William Wilson, Esq. having called on. hin for this purpose, at his residen e in Williamsport.

From his exanination, he had formed the opinion, that if a water communica ion -ould be at all effected, it must be by conrecting the wa ers of Bennett's brauch wi the Sinnemahoning with those of Sands Lick, nad from his description of the grouno. ongether with his notes of the levels, the onclusion was formed, that although othe outes might lie practicable, froin resource: hat had been overlooked from the circumitance of their not being obvious, or nth bserved in a country, the greater part of rhich is a wilderness, this at least pr ssesser he greatest facili ies as far as ascert lined Iowever, to leave nothing unctition, : :rest iine was commenced ten iniles sout] if the Franklin turnpike, at a depre si ini he dividing ridge, between the waters o he Mahnning and Woodside's run, men
the "Clover patch," and thence northwardly along the ridge between the heads of the Mahoning ind Sandy Lick on the west. and Curry's run, Anderson's creek and Mennett's branch of the Sinnemahoning, tributarics of the West Branch on the east.

From this examination, it was ascertained that the summi reported by Mr. Wilson, between Bennett's branch and Sandy Lick, is the lowest in this range of country, being cnehundred and twenty-sevenfeetlower than the lowest of those between Sandy Lick and Anderson's creek, three hundred and eight lower than any between Anderson's creek and the Mahoning, three hundred and sixty-seven below the Mahoning and Curry's run, and four hundred and fifty-five beluw the Clover Patch.
The height of all the depressions between the Clover Patch and Boon's mountain, having been thus settled, and Mr. Wilson having previously found that the summit of Elk and West creeks, between the Driftwood and Clarion, and the lowest north of Booa's mounlain, was one hundred and eighty feet above the one proposed; the examination was next made to ascertain the amount of water that could be commanded on the summit level at the height proposed by Mr. Wilson, or two hundred feet below the crest of the depression, and from this it was fou d that the drainage on the eastern side of the ridge would be collected from twenty square miles, and on the western side a fiaction over eighty square miles. The different s reams mentioned by Mr. Wilson, were not guaged separately since their minimum flow is a matter of no imporiance, according to the prosent proposed plan of improvement ; but Sandy Lick below the forks of Fall's creek, and containing the water of all these runs together, was guaged during the dry weather and found to yield the insigniticant amount of three hundred and seventy-five cubic fect per minute.

This has hitherto been considered an insurmountable difficulty; but when the proper view is taken, proves to be one of the most favorable ciicumstances connected "ith the subject, and requiles elucidation for those who are not familiar with the wes ero section of the State, or perhaps have never reflected upon its bearing on the sulject under consideration.

The geological structure of the country west of the Allegheny mountain. and consequertly on the priposed summil, differs inaterially from that on the eastern side. The rocks lit in korizontal strata, and are ,rincipally gray wacke-slate, and clay-slate, ucompranied by biuminous coal and clay, he thee latter almost impervious to water; and tence we find on the summit of narrow ridges, and in dry weather, muddy roads ind swampy ground The surface of the :ountry, also presents peculiar features. Ithbugh the:e is at present, scarcely a riece of high level grocind to be found, still he whole of this cout.try must have been riginally a roling table land with innumeuble rills, uhich in the course of ages have vori out deep ravines, leaving the =ummits of the ridges almost slarp, and the whole. ogether forning what might almost be compared to the roofs of a large irregular
city with their water tight surfaces, discharg ing the water immediately into the gutter: below, and these into the druins, by means of which it is soon carried off, so that in a shot time after a rain, hardly a vestage o it remains.

This peculiarity of the western streams, rising rapidly and as suddenly falling, may be aptly illustrated by an example.

As before observed, the flow of Sandy Lick below the mouth of Falls creek, was but 375 cubic feet per minute. On the 10 th of September, when at a short distance below this place, but without any intervening stream of importance, we had a thunder storm in the afternoon and night, and found the water on the next day flowing at the rate of 21,437 cubic feet per minute ; and again in two days reduced to 2,371 cubic feet per minute.

Could the water find its way into the earth as it does in the eastern section of the State, of on Boon's mountain, or if retained by land comparatively level, the streams would neither rise nor fall so rapidly, and being fed by springs from these natural reservoirs, would present a more imposing appearance in a dry season ; but at the same time the total amount discharged by the streams, would be less in proportion to the water retained over an extended surface, and consequently exposed to evaporation in a much greater degree, than in a oomparatively dry country. If there was no basin that could by artificial means be converted into a reservoir capable of containing the water, we should lose the benefit of nearly all the floods; but in this respect, the valley of Sandy Lick creek is remiarkably favorable; since even in this elevated region, a mound of $\frac{2}{8}$ of a mile and extreme height of 40 feet, will give us a reservoir of three square miles, with a useful depth of twenty feet. This reservoir will at the depth of twenty feet, contain 1,672,704,000 cubic feet of water. A lock proposed to be fifteen by ninety feet, aind lift near the summit tive feet, will contain 6,750 cubir: feet. Suppose it practi-! cable to pass a boat every three minutes, and that every three bcats will on an average require two locks full of water at each end of the summit, (though in a crowded trade such as we are now considering, it would approach nearly to one look full foo two boats.) This would require one lock full every two and a fourth minutes, or 156.600 locks full in two hundred and forty days to pass 115.200 boats, requiring for locknge $1,036,300$ cubic feet per annum. Allow fourteen miles to be constantly sipplied: from the summit at the rate of fifty cubic feet per mile per minute for wastge. and the loss would be $241,920,000$ cibic feet per annum, which added to the lockage water, makes $1,278,720,000$ cubic feet peI annum, and leaves a surplus of $493,394,-$ 000 cubic feet, or nearly one fourth of the whole, after allowing the boats to pass th: locks more rapidly, and the lockage anc waituge water to be greater than will be he Cuse, unless the canal should be suppliec with double locke.
Thir calculation is made from the reser veironce full. But supposing the' trade' to
continue eight months, and the rain to fall and be drawn off regularly, the amourit ised might be three times the full of th. reservoir, and co:1sequently its extent woul. be amply sufficient.
The rain and snow that have fallen i^{-} Lebanon during the last scven years, hav, averaged 40.46 inches, the least being 34.49, and greatest 44.75. But nine inches on an area of eighty miles is sufficient to fill the proposed reservoir, and consequently, if we obtain twenty-six per cent. of the smallest ameunt that has fallen at Lebanon during the last seven years, (and the opin ion appears to be general, and perhaps well founded, that there is more rain on the suminit han in a lower and more level country, we shall, with the most active Irade, have a surplus of one-fourth of the whole amount. But from sevcral years intimate knowledge of the large reservoir on the Union Canal, and the country that supplies it with w.ter, and a comparison of the same with the district under consideration, I should anticipate the probabie amount collected at two-thirds or perhaps threefourth of all that falls.

However should this not be considered sufficient, we can command the water from twenty additional square miles on the eastern side of ridge, and being sensible of the prevailing opinion, that a water conımunication was impracticable, it was thought best to reduce to a certainty the whole of the available resources of the summit, and a level carried over the dividing ridge to Little Toby, from this it was found that by elevating the water one hundred and twenty fect, the whole of Little Toby could be thrown into the sumnit. The natural flow of this stream, would of itself be sufficient to support an active tuade, and by reservoirs the supply increased to any desirable extent. But this I consider altogether unnecessary, and the examination was merely made to remove all doubts from the miads of those who have to decide the question.
The summit level, including the tunnel and reservoir, being unusual in its arrangement, it may not be improper at the present time to give a description of the plan proposed to suit the exigencies of the case.

It is proposed to construct a canal on a level with the tunnel, (which will not vary materially from $1 \frac{1}{4}$ miles in length,) having all tie usual arrangement for teeding from the natural flow of the streams, in the sa:ne manner as if there was to be no reservor occupying the same ground, wi h the exceptiun of having a high tow-path on the hill side, and the outer bank protected from washing by a stone covering. This being completed, a dam is thrown across the lower end of the valley, raising the water over the whole of this work, so that in high water nothing would be seen $\epsilon x c e p t$ a large antiicial lake with a towpath skirtir.g its margin and locks at each end. The water would se retained in this position by four locks, at each end. The water would be retoined in his position by four locks placed near the iunnel and four of similar construction at he dam, all having their bottoms on the ame level, and consequently those nearesi the reserveir might be used for locks of 20
eet lift, and the others successively 15,10 nd 5 feet lift. According to this arrangerent the boats passing through the tunnel -ill lock up into the rescrvoir through the : locks, each raising it 5 feet in the same nanner, as if they were ordimary lift locks vith no extra depth of water, and consejuently the expensein each instance is equal to that of a 5 feet lock, (the proposed lift of the locks between the summit and the next supply of witer.) As the summit is drawn down, the lift of the first lick is reduced, until nt 5 feet from a full height the gates of the first lock are thrown open, in the same manner as those of a guard lock, after the food has subsided, and the boats pass through without obstruction. The next 5 feet throws another pair of locis open, and so ou successively for ihe third and tourth pair, when the reservoir will be shut out from all connexion with the canal, which will now receive the water from the natural flow of the runs and from lateral reservoirs should such be found necessary. In case of flood, the surplus water wonld pass under the canal and deposite its sediment into the body of the reservoir, and as the waters rise the locks would successively come into use, until the reservoir was full, and the surplus water pass off over a waste weir in the dam.
The distance from the dnm, at the west. ern end of the reservoir to the Allegheny; (pursuing the proposed line and cutting off by decp cuts and short lunnels 9.10 miles, from the united lengths of Sandy Lick and Red Bank,) will be sixty-five and one half miles, and descent five bundred and eighty. two fect. The oistance from the saune point, to the West Branch, at the mouthof the Sinne. mahoning, will be sixty-two and three-fourth miles, and lockage seven hundred and three feet, effected un the West by eig!ty-tiree locks, and on the east by one hundred.
To the question, whether there may not be some other route as good or better, than the one proposed? I answer that I think not.
For the first three months, I was constant. ly in advance of the party, that no point might be omitted wiuch presented the loast probability of being important; and of all such, an accurate examination was made with the instruments, a detail of these would however, be of no interest except to persoris in the vicinity. Accompanied by a woods. man as guide, and a security in case of ac. cidem in the wilderness, I have traversed the whole country on foot, headed tice streams, examined the valleys, and believe that I have a thorough knowledge of all that is important to the present question, from the Ciover Patch, on the soutn, as far north as the summit between the Driftwood, and the Clarion, and consider the proposed route, the one distinctly pointed out by nature, as the main cuansel of communication b:tween the east and west. South of twis there .s nothing worthy of notice, by way of comparison. Tae summits are higher, and supply of water deficient; while on the north, the summit of Elk and West creeks, which alone is worthy of notice, is one hundred and eighty feet higher, the supply of water, at least doubtful, and the experse of construc. tion far greater, as the Clarion is sutject to
much higher freshets than Sandy Lick, and Red Bauk, and consequently requies the construction of very heavy embankments iu the bed of the river; since, according to notes taken from point to point, during a reconnoisance, made for the purpose of aseertaining its characier, I found about two thirds of the distance from the town of Ridgeway, to the mouth of the Clarion, or sisty-six out of one hundred miles, to be steep bluff, while Sandy Lick shows the reverse of this, or twothirds of flats. For slack water it is less favorable, as it is larger and as before observed, subject to liigher fireshets, and the rapid descent of either stream, would make a continuous slack water very expensive, from the great number of dants required. The dista:ce by the two routes, is so nearly the same that by the course of the streams the Red Bank route would be about four miles longer, but by the line, five miles shorter than the natural course of the Clarion when taken between the mouth of the Siunemahoning, and the coanexion of the two routes, at the mouth of the Clarion; twentytwo miles of the middle, or Sandy and Red Band routes being on the Allegheny, and therefore, so much toward the improvement of that river. But when considered with reference to the distance to Pittsbarg, the mouth of Red Bank, is twenty-iwo miles nearer, than the mouth of the Clarion, and an addnonal thirty-six miles below the Red Bank, along the Allegheny, would complete the connexion to Pittsbury iud therefore open the way not only from Pittsburg and Franklin, to the east, but likewise betweeu these two places. From ail these circunstances, I was left in no doubt as to tho proper position for the line, and therefore madc a minute examination of the one already discribed.
Having commenced the examination with a full determination of not taking the responsibility of recommending the construction of a canal, unless I could command on the summit, double the amount of water that a close calculation would show to be necessary, and this beyond a doubt, but in such case to report the fiacts and leave others to draw their own conclusions, without my expressing an opinion, it gives me great satisfaction to state, that my most sanguine anticipations have been more than realized, and that the problem which possessed double interest from the importance and supposed impracticability of the work, has been fully solved in my own mind, and that an improvement which before the examination, I considered a bare possibility, is now almost reduced to a certainty, and I confidently look forward to the period when large boats will leave the wharf at Philadelphia, and deposit their cargoes at Pittsburg, or Lake Frie. It may not be in one, two or ten years, but that cvery avenue to the west will be crowded, and the remarkable facilities here presented, will be one day improved, is a subject upon which i have no doubts. Although the existing prejudice against reservoirs, for the supply of water, many for a while retard the work; this will gradually - wear off, the canal be constructed, support an active trade, make the West Branch canal a good investment, and be used as an example to convince others, that improvements which at first sight ap. pear impracticable, may nevertheless be effected; and the country at large receive the
benefit of a thorough water communication irom the east to the west.
All of whicia is respectfully submitted,
B. Aycrigg.

Principal Engineer, appointed to explore the country between the head of the West Branela improvements, and the town of Franklin, on the Allegheny.

From the London Meelanics' Magazine.
first report of the directors of the EASTERN COUNTIES RAILWAY.
(Read on the First General Meeting held at the London Tavern, 26 th september, 1336.$)$
The Act for incorporation of this company received the Royal assent on the 4 th of July last, and by one of its provisions, the first general meeting of the share holders is appointed to be held within six months after the passing of the act; but the directurs, feeling persuaded that the sooner they could make officially known to the proprietary and the public the actual state and prospects of the undertaking, the sooner it would attain that high place which it is entitled 10 holl in public estination, have called this tneetirg within less than three months from the date of the act ; on the earliest day, in fact, which the time unavoidably occupied in organizing the establishment of the company, and in auditing the expenses incurred in its formation, could possibly allow.
Nearly three jears have now elapsed since the dzsign of the Eastern Counties Railsay was first given to the public, and several preliminary surve zs made; but it is not more than ten months since it can be said to have taken any considerable hold on the public mind. The month of October last was far advanced hefore a Provisional Committe of sufficient weight was formed for the prosecution of the undertaking, and there then renained but six weeks within which to make all the necessnry preparations previous to going to Parliainent in the ensuing session. Within this brief space, the whole line of a hundred and twenty six miles, the longes that is yet in progress in any part of the kingdon, had to be surveyed, and the maps and sections, required by the forms of Parliament, prepared: the whole of the owners and occupiers too, for π breadth of half a nile, had to be canvassed for their assents, that extreme breadth being taken in order to allow ample scope for such alterations as circumstances might afterwards render expedient. Even when the requiste plans, sections, and books of reference, had by extreordinary exertions on the part of the engingers and their assistants,- x ertions which the directors honestly be licve to be without a parallel in the history of such undertakings-been deposited in due time, there yet remained much to be done in order to obtain for the undertaking an arlequate share of priblic confidence. Early in November, the chairman and two other members of the Provisional Committee hall made a progress through Essex, Suffolk, and Norfolk, for the purpose of personally representing to the leading gentlemen of these counties the claims which the undertaking had to their countenance and-support: and also of calling public
ineetings of the inhabitants to investigate and decide on its merits and the demonsirations of local approbation which this depulation were the means of eliciting, were so numerous and decisive, as to leave the committee in no doubt that they had the hearty concurrence of the counties in their endeavors to carry out the plan to a successful conclusion. But though the good will the counties had certainly been conciliated, the confidence of the monied interesis of the country, from whom alone could be expected the bulk of the large capital required fur its execution. (the largest subscribed during the past year for any railway project,) had still to be gained. The various steps taken to this end, the directors need not stop to detail; it may suffice to state that, by the choice of active and judicious agents, and without having recourse to any adventitious uids to stimulate. :he spirit of adventure-by simply making known, far and wide, the sterling merits of the undertaking-the greater part of the capital was subscribed before the second reading of the bill. In point of numbers, the shateholders residing in, or connected with, the counties themselves, bore a frir proportion to those having no local interest in the line ; but the amount of capital subscribed for by them was little morethan one.twelfih of the whole. Without the powerful assistance, therefore, derived from oher and distant parts-from Manchester, Bristol, Baih, Edinburg, Glasgow, Dublin, and, above all, from Liverpool, the opulent and intelligent citizens of which, ever foremost in the encouragement of great enterprizes, a: once subscribed for upwards of 12,000 shares of the company's stock; it. may with perfect truth be said, that the undertaking must have fallen (for the present at least) to the ground.
Notwithstanding the success whirh had so far crowned their exertions, the directors were still but in the midst of their difficulties. A parliamentary opposition had yet to be encountered-an opposition, as it happened, of a more than usually obstinate character. there were two rival lines in the field, both of a more recent suggestion than the Eastcrn Counties Railway, neither of them well suited to the wants of these counties, but both, nevertheless, very respectably sup. ported. There was also a formidable array of dinsenting owners and occupiers, headed by geitlemen of great parliamentary influence, and to all appearance irreconcileably opposed to the undertaking.
It was under these circumstances, with no ordinary anxiety, that the directors proceeded before Parliament, and by no ordina. ry exertions that they were enabled to maintain their ground there, against the serious opposition with which they were met. The spcoid reading of the bill in the House of Conmons was not carried without a division; and in the committee, to which it was referred, were several of the most active mem. bers of that minority who voted for throw. ing it out. So strong, however, was the caso proved in evidence for the bill, and in so foncilatory a spirit were the opposing parties met and arranged without of doors, that in a short time all opposition was at an end, and the committee unanimously agreed to a report to the House in favor of the
measure, which conc'udes in the following highly recommendatory terms :-

- Your committee think it right to add that, according to the evidence adduced, the Eastern Counties Railway, between the termini, would traverse the most populous and most cultivated parts of the counties through which it is intended to be carried, and that great benefit would be given to the trade and agriculture by its adoption."

After the bill had passed the Commons, several new and powerful opponents sprung up; but the directors, by meeting the parties with the same promptness, and in the same fair spirit, which had carried them successfully through their previous negotiations, effected amicable arrangements with them also, and the bill was finally passed by the House of Lords, as one, which was now on all hands allowed to have for its object, the accomplishment of a measure of great publie utility.

The directors, in giving this brief history of the undertaking, would have been disposed to dwell less on the difficulties they have had to encounter and have overcome, could they by a more reserved course have equally well justified to their constituency the price at which success has been purchased.
The shareholders will see, in the expedition with which the Parliamentary plans, sections, and books of reference were exe-cuted-in the more than usual breadth of country which was surveyed-in the great number of persons that it was requisite to employ for that purpose, at a time when hands for empioyment of this description were scarce, and their terms of renumeration proportionally high_in the numerous agencies which had to be put in motion in order to raise so large an amount of capi-tal-i.i the many opponents who had to be negotiated and arranged with-and in the very short period within which nearly the whole of these things were transacted; the shareholders will see in all this, reasons sufficient for anticipating a much larger amount of expenditure than would, under less extraordinary circumstances, have certainly sufficed.
As it is, however, the directors believe that, compared with other railway contests, this will not be found to have been more costly than usual; and instead of having occasion to bespeak your patience for an exhausted exchequer, they are happy to an. nounce that, large as their expenditure has been, that they have still in hand a large and unencumbered balance.
From the balance-sheet annexed it will be seen that the the total receipts of the Company up to the present date amount to $61,845 \mathrm{l}$. 2 s .9 d . The claims brought against the company have, by careful revis. ion of these claims, and allowances conce. ded for prompt payment, been reduced by 2,383l. ; making the net amount of the expenditure, $36,561 \mathrm{l}$. 19s. 2d.; deducting which from the monies received ($61,845 l$. 2s. 9 d .) the balance remaining in hand is 25,845l. 2s. 9 d .
When the directors look to the magnitude of the object, which the sum thus expended has been the means of achieving, they think they may fairly congratulate the shareholders upon the general result.' In a single
session, with no more delay than the forms of Parliament rendered unavoidable, this zompany has obtained its act of incorporation ;-that for which other proprietaries aave had to struggle through several sessions, and to pay twice and thrice as much; an act of incorporation, too, which secures to them the perpetual proprietorship of one of the best lines of ruilway in the whole kingdom, with all the great profits lgitimately derivable therefrom.
The Eastern Coauties is not only the longest integral line of railway which has yet obtained the sanction of Parliament, but traverses a larger extent of cultivated and-nighly productive country than any oher; those distriets from which the im mense population of the metropolis derives its chicf supplies of agricultural and narine produce.

From the peninsular charactar, too, of this portion of England, washed as it is on three sides by the German Ocean and the Thames, it is obvious, that a main-trunk line, which follows, as this does, the ancient and longestablisised course of traffic, and touches at nearly all the places of greatest business, must draw and keep to itself the great bulk of the carrying trate of the district. Oiher railways may be interfered with, but this never can. As a great main line, it must afwavs stand alone-dividing with no other railway, though receiving the tributary contributions of many.

Another novel and important feature of the Eastern Counties line is, that, notwithstanding its great length, there will not, from beginning to end, be a single tunnel.
If at one or two points it goes wider of considerable towns than could be wished, this has arisen from no indifference to the wants of those places, but, from the necessity of consulting the gencral interests of the whole line, and of the majority of those who are to use it, in preference to all minor conside. rations.

The Eastern Counties Railway will have comptetcly fullilled the purpose for which it was designed, if it serve as the great trunk line of this part of the kingdom, from which branches may radiate into as many of the outlaying districts on both sides, as possess traffic enough to pay for this superior means of communication.

Already not less than six railways, branchng from the Eastern Counties line, have been projected with apparently fair prospects of success ; all of which, when executed, inust contribute more or less to swell the pro. fits of this Company, without involving the necessity of any addition whatever to its capital.
The Directors desire particularly to call attention to the Thämes Haven Raihvay, for which an Act of Parliament was obtained in the last session of Parliament, and which is to branch off from the Eastern Counties at Romford. The capabilities of this line are undeniably great. Were it to do no more, than introduce into the heart of Essex a more abundant supply of coal, it would confer an incalculable advantage on that county, and pay the adventurers well ; but should it also become, as its projectors confidently anticipate, the great channel for the conveyance of an article of such universal consumpiton as coal to the metropolis, it would b:
lifficult to assign a limit to its value in a innancial point of view. The point chosen lor its seaward termination offers also such lacilities as a stcam-packet station, that there seems strong reason to hope for a large accession of passenger-traffic to both railways from this source.

Next in local order, follow the Maldon Witham and Braintree, the Harvich, the Ips. wick and Bury, the Beceles Bungay and Harleston, and the Norwich aud Leicester, branches, which embrace among them nearly all the principal towas of the three counties, which were necessarily left at a distance in the setting out of the main trunk line, but will be now brought by these branches into immediate and productive connexion with it.
To these branches there is yet another to be added, which, though not projected with a view to the wants of any part of the districts immediately intersected by the Eastern Counties Railway, will in all probability prove one of its most valuable tributaries. The Directors allude to the recently project. ed line of railway from London to Rochester and Chatham, through Esscx ; the communication be ween the opposite sides of the Thames being effected by a short steam. ferry at Tilbury and Gravesend. By taking advantage of the Eastern Counties and Thames Haren lines for about seventeen miles of the entire distance, this railway will be executed for one-fifth of the cost of any line that can be executed along the Kentish side of the river. Although this line takes what may at first sight seem a circuitous course, it will, in fact, be little longer than a straight line between tho two termini, and exceed by one mile only the distance by the present high road. The number of passen. gers to and from those parts of Kent, to which this railway will present the shortest possible communication with the metropolis, exceeds at presnnt one millon; and assuming that one-fourth only of this immense passenger-traffic will fall to the share of' this railway, this will add 25,0001 . per annuun to the revenue of the Eastern Counties Rail. way, fiom a source never thought of, or taken into account in the original calcuula. tions of its promoters.

According to the extimates, which were produced in evidence before the Committee of the House of Commons. and reported by that Committee to be verified to their satis. faction, the traffic of the Eastern Counties. Railway will yield a return of 22 per cent. on the capital required for its formation.Tie Directors have since tested this result in a variety of ways; but so far from see. ing any reason to doubt its accuracy, they incline to think that the real facts of tue case would have fully justified even a higher estimate.
No credit whatever was taken in the Eastern Counties Railway estimates for any of the passenger-traffic from trans:narine sources as that traffic was, at best, of a contingent character. But, unless the Directors are greatly mistaken, the traffic from these sources alone will suffice to pay the entire expense of working the line, leaving all tho revenue derivable from the home traffic ta count as so much clear gain.
The counties of Essex, Suffalk, and Nor. folk, stand in such a geographical position as regards the northern continent of Europa,
and the eastern coast of Scotland, as to offer the nearest route by railway from all these parts to the British metropolis. Steam ves. sels from any coatinental port north of the Texel, or from any port on the east of Scot. land, by putting into Yarmouth which they can now do with the greatest facility at al times of the tide, and landing their passengers there, will enable them to reach London by the Eastern Countics Railway, from 15 to 24 hours sooner than they can how do by water, and, on occasions of contrary weather even two days sooner. To the steam. packets again, from the more southern ports of Rotterdan, Antwerp, Ostend, and Dunkirk, the port of Harwich will present an cqually accessible harbor, from which the passengers may, with a proportionate saving of time, procced to Londoa by the Harwict branch of the Eastern Countics line. Yarmotth and Harwich were, it is well known, formerly the principal packet-stations on the Eastern coast of England, but lost that traffic through the introduction of steam-navigation. It was then found, that by despatching the Hamburgh and other nort.. of Europe mails by steam-vessels direct from the Thames, even though these vessels should not leave the river for eight or nine hours after the mails were made up, the land journey to the outports was saved, and the mails conveyed to their destination in less time, and with more.certainty than could be done by steam. vessels from any other point of the coast. But as soon as a railway communication is established with Harwich and Yarmouth. all this advantage will be lost to the T.ames. The damage whicle steam has done to these ports as packet-stations the same migity power will yet be the means of amply repair. ing. By sending off the mails by the rail. way to Harwich and Yarmouth as soon a. made up, which is, not later than twelve o'clock at nigat, they will reach these ports by the same hour of the morning at which they now leave the 'riames; one half the voyage will be saved; and an entire day, and often much more, gained in the course of transit. And thus, in the same way that the modern steam-vesscls supplanted the old sail-ing-packets, may we surely reckon on seeing the steam-carriages of the Eastern Counties Railway restoring to its former course the passenger-traffic and commercial correspondence, between the British metropolis and the whole of the north of Europe.

The Directors beg, in conclusion, to assure the share'holders that the same spirit of determination which has enabled them to overcome the numerous difficulties which stood in the way of their obtaining the Act for the Incorporation of the Company, will continue in full vigor till every obstacle to the execu. tion of the trust reposed in them has been overcome. Immediately on the Act being obtained, they directed all the necessary measures to be taken for enabling the engi. neer to commence operations with the least possible delay at both ends of the line, in order that the two portions of it likely to be the most productive,-namely, the London and Romford, and the Norwich and Yar-mouth,-might be the soonest completed and opened; and negotiations for the purchase of the houses and lands required, are already in an advanced state. The expenditure oL. these parts of the line will be heavier than

On any other; but in consequence of the $\|$ considerable balance of the deposits left in land, it has not been found necessary to nake in the first instance a larger call than 11. per share ; and as the Directors have no ?oubt that this call will be responded to with sordial unanimity, the works will 1.3 in full rogress before any further call is made on the shareholders.
Since the Act was passed, two vacancies have occurred in the list of gentlemen thereiv, zominated, to constitute for a limited time the first Board of Directors; one by the lamented death of Mr. Crawford, and the other, by the resignation of Mr. Tite, who has since, with much advantage to the interests of the Company, been appointed its surveyor. The Liverpool shareholder:, who now hold one-third of the entire stock of the Company, having at a late pullic ineeting expressed a strong desire that they should be represented in the Board by two or more of their number, the Directors. considering this tesire to be no more than just and reasona. ble, have, in virtue of the powers given them by the Act. elected two of the largest shareolders in Liverpool, -namely, Lawrence Heyworth, Esq., and Richard Hall, Eisq.,to suczeed Mr. Crawford and Mr. Tite. In thus obeying the voice of the large and reipectable portion of their constituency who ure resident in Liverpool, the Directors are happy to state that they have at the same time added to their body, two gentlemen whose assiduous habits of business and intimate acquaintance with railway matters, are like to render their accossion to the direction of the greatest advantage to the interests of tae Company.

It may be proper to add, that by the Act of Parliament a certain fee is authorised to be taken on each certificate of registry and each transfer of shares; but that the Directors, considering that the levying of such a fee would impose an unnecessary tax on the shareholders-in the first stages, particularly, of the undertaking-have ordered that it shall not be enforced.
Signed, on behalf of the Directors,
Henry Bosanquet, Chairman, R. J. Harvey, Deputy Chairman. 18 Austin Friars, Sept. 26, 1836.

From the London Mechanics' Magazine.

manumotife-carriages.

We have often wondered that in these inventive days, no one has perfected an apparatus similar in design to the one inquircd for in the following communicationCannot our ingenuity supply this trantsatlantic want?
Sir,-By the extract in your last number from a Dublin paper, we lcarn that a whitesmith of Euniscorthy is emyloyed, as -everal other persons at this time are, in constructing a manumotive-carriage. In the present instance the vehicle " is propelled by an iron handle, which the guide noves to and fro with the right hand."
One would think it was almost impossisle to hit upon any scheme for this purpose possessing much novelty, so many and se various are the plans that have been tried. When relocipedes were so much the rage
n London a few years since, much ingenuity was exercised to produce manumo-tive-carriages in which the softer sex might ride; but without success, and since that time this has been the favorite hobby of many individuals. It is unfortunately a fact, that too many persons are apt to imagine, that the success of their machine depends upon the quantity and complexity of the mechanism employed, and this mistake generally proves fatal to their success.

When discussing this matter in a previous number $(635$,$) I stated that the simplest,$ and therefore of necessity the best way of constructing manumotive-carriages, was to "fix a spur-wheel on the axle of the pro-pelling-wheels, and drive them by a pinion duly proportioned to the inverse quantities of time and power. The man's labor ap. plied tothe pinion by means of a winci-hand!e, would produce all the effect to be derived from such a source, and more than could possibiy be obtained by any more complicated train of mechanisin."
By applying the • manual power to two cranks placed on the axle of the pinion, but opposite to each other, working the one with the right hand and the other with the left, the greatest possible effect would be produced. The griding could easily be managed with the feet. By a machine so formed, favored with all the advantages of the best workmanship, a person might propel bimself at a tolerable good speed; but for any great distance, I apprebend it might be walked over in about the same time with less bodily exertion, and therefore witb greater ease.
There are cases, however, where persons have not the free use of their legs, while thier arms retain all their wonted vigor; to such parties a machine of this kind would be of infinite service. It is desirable, therefore, to put those persons in the right road who are wishing to construct such a machine.
In the case of Mr. Nicholson, he appears to be adopting the plan, familiar to the inhabitants of this metropolis, from its having been frequently seen in our streets; a cariage was constructed, and propelled. at the rate of five or six miles an hour by six men, who each pulled a lever" to and fro" with a motion very sımilar to rowing, which acting upon cranks placed on the axle of the driving-wheels, turned them round and thereby urged the carriage forward. The conversion of rectilinear into circular motion, in this case, is nttended with a great waste of power, and the plan I have pointed out would in practice be found more. convenient as wellas much more efficient.

There are cases, as I have already stated, in which manumotive vehicles would prove eminently useful; in general, however, to persons in full possession of all their natural powers, the marrowbone stage will be the best conveyance.

Yours respectfully,

Wm. Baddelef.

London, Oct. 4, 1836.
The Military road from St. Peters, near ihe Falls of St. Anthony on the Upper. Mississippi, and along the Western From-
tiers of Missouri and Arkansas to Rer' River, is about to be conmenced, unde the direc ion of some distinguished officer. of the Engineer Corps.

Fiom the Journal of the Franklin Institute. specification of a patent for an im proved boiler for generating steas granted to john ames, springfield hampden county, massachusetts, marce $12 \mathrm{th}, 1836$.
To all whom it may concern, be it kown that I, Jobn Ames, of Saringfield, in the county of Hampden, and State of Massachusetts, have invented an improved boiles for the gencrating of steam, to be used it, the drying of paper, and for other purposes and do hereby declare that the following is a full and exact description thercof.
As this boiler is not intended to be used for steam of great elasticity, but is designod mainly, to produce it in large quantity, I in. tend, usually, to make it of cast-iroa, although wrought iron or other metal, may be used if preferred. It may be made of vario as sizes, and in different shapes, but for the sake of description, I will give the dimensions of oae which I have tried, and found to answer well. It consists of a box_four fect square, and two feet deep, the two sides being open, but furnished with flanches tor the purpose of bolting on the two plates waich are to form the two sides of the stove. Tubes, forming flues, in the manner of the boilers now in general use for locomotive engines, are to pass through these side plates. In the one alluded to, the plates are cast with six rows of holes, nine in each, and about two inches in diameter. 'Che upper row of tubes must be sufficiently below the waterline to ensure their being constantly covered; and above the water there must, of course, be sufficient space to form a steam chamber, or reservoir.
When this boiler is set, the draught from the fire place below it passes through two rows of the tubes, is returned through the next two, and finally through the upper rows. The manner of forming the flue by divisions, extending from the brick work te the sides of the boiler, between the respective pairs of rows will be readily understood by reference to the drawing which accompanies this specification.

Fig. 1.

Fig. 1. is a side view of the builer A A B B., and CC, being the open end of th tubes through which the heated air from the furnace is to pass, as will be shown morc
listinctly in fig. 2. D, is one of the ledze or partitions which project out from t roiler, occupying the space between it a. he masonry in which the boiler is set, at zausing the draught to enter the tubes A A a order to its returning through tho narked B B.

Fig. 2. is a vertical section of the boiler and funace, cutting the boiler from front to back. A A, B B, and C C, are the double ranges of tubes, as in fig. 1 , represented by dotted lines D and E , are partitions which direct the draught through the tubes in the following manner. Let F . represent the furnace, and C , a part of the flue into which the tubes A A, open, the draught being arrested by the partition D, will pass through A A, into the flue H , and being arrested by the partition E , will return through the tubes BB , then pass those marked CC , into the flue I, leading into a smoke pipe, or chim. ney ; J, may represent the water line, K , the steam chamber, and L, the steam pipe.

Although I kave mentioned a certain number of tubes, and have said that in the boiler which I have tried, the heated air is made to pass through the water three sevcral times, it is manifest that the same operation may be repeated as frequently as it shall be found advantageous so to do. The number of tubes also, may be varied, and they may be placed in single rows, or other. wise, without altering the principle of action.

I have not mentioned the safety valves cock, or other gerieral appendages to stean: boilers, as in these I do not profess to have nade any improvement; nor have I de ;cribed any particular manner of securing he tubes, this being well known to en gineers.

A boiler thus made, is recommended by ts simplicity and economy, where it is de irable to generate a large quantity of stearr inder a moderate pressure, as for the pur oses of heating and drying in various manu icturing processes. What I claim as my nvention in it, is the general combination. and arrangement of the parts by which the
'raught from the fire is made to pass reatedly through the water, as herein set t', whether made in the exact form repsented, or any other waich is substantial. the same in its construction and operaon.

Johin Ames.
Fromithe London Mechanics' Magaxino. tunnel cinder the miagara.
S12,-I perceive in some former Number of your Magazine, you have related an acount of a proposed tunnel under the Ohio iver at Cinciunati; your correspondent does ot state that the bea of the river t : ere, is a imestone rock, and the huge building of immense thickness, and nive or eleven stories high in the water, stands on the rock. und all the stone to build it was procured from the bed of the river at low water. However, I am not going to relate any thing of the difif. culties of that aflair ; my busin ss is to sug. gest to your readers, al d all ot. ers whom it may concern, that the gre test, beet. and most magn ficent tunnel in the woild wo ald be in Canadr, urder the river Niagara, at the rapids of Fort Erie, oprosite Builalo in tho United States; I say the best, and the easiest madc, for the Niagara river there is nar. rowest, and its bottom is a $f_{i} t$, hard rock, which is a natural shield of it elf, and below: it a softer rock, which is easily cut. Captain B. Hall, in his "Travels" in America, has particularly described the struta a litte lower down at the falls.

Now, if Brother Jonathan would agree to meet us half way, tie thing, though of so great magnitude, would be easier performed tivan any thing of the kind in any other part of the world. Tac only attention required would be to plug up with elay any fiscures in the rock which might occur, and cement them over. No great depth is required ; the water seems as shallow there as it the falls on the same rock. All Lake Erie is on a complete bed of rock, and so level that an anchor slides along hundreds of yards at a time without holding. The whole is particularly suitable for such a purpose; and whenever done (if (ver done,) your publication will have the honor of first pointing out to the public its true nature.

Your constant well.wisher,
A Travellef.
Wilden, Scpt. 30, 1836.

Miscellaneous.

From lhe London Mechanics' Magnzino.

another discoterer of a mode of pro-
pelling and directing balloons.
An Italian gentleman, Signor Leonardo Indervolti, of Spilinnerge, in the Friuli, nforms us that he has invented an ærial loomotive balloon, capable of propulsion and direct:on at pleasure, with safety and recision, cither with or against the wind. He has constructed, he says, a working nodel of this machine, with which he has ictually traversed the air in his own counry. He offers, if a certain sum of money le guaranteed to him in the event of his ancceerling (of which he entertains no loubts,) to fly over to England in his bal-loon!-Or that he will at his own expense
construct a balloon kere, which shall be able to keep. up a regular traffic between any two points at a reasonable distance from each other, wilh even greater rapidity than any steamboat or coach! 'The Signor does not ask a farthing until he has performed the foregoing conditions; but as his mechanism is so simple, that as soon as constructed it would be copied, and he might therely lose the fruits of his ingenui$t y$, he requires that a certain sum should be guarateed him before doing so, either by a company or individuals, to whom he woulu assign his invention secured by patent. Signor Andervolti has left his aldress at our office.

The Signor speaks very fair ; and as he usks nothing until he fulfils the conditions above stated, there could be no risk incurred were a number of individuals to subscribe for a hundred pounds or so each to secure so grand au invention. Of the thing itself we do not profess to give an opinion,-we know no more ol it than what is stated above.
pennsyltania collfge gf minet.
We perceive that on Tucsday, Mr. Trego, one of our city delegration, gave notice in the House of Representarives, that he should next day ask leave to bring in a bill entitled "An Act for the Establishment of a College of Mines in the State of Pennsylvania."
It is understood that this bill will provide for the erection of an institution in which, in connexion w. h other useful and practical sciences, will be taught:

1. Gcolory, Mineralory and Chemistry, as applicable to agriculiture, architecture, the construction of canals and roads, the digging and boring for water, \&c.
2. Mineralogical Chemistry, exemplifying theore ically and practically the most approved and economicill methods of ana!yzing ores, earths, soils, mineral waters, \&c.
3. The theory and practice of Mining, with refarence to the geographical and geulogical position of the mineral beds and veins, and the discorery and discrimination of minerals in rocks and solls; also, the practice of engineering, as applied to mining.
4. Metallurgy, theoretical and practical. or the art of reducing and smelting ores, and of separating them from foreign matter as well as from one another ;also, the mode of making the best combinations and alloys of metals used in the arts.

It is also intended to establish in the said college, a collection of specimens of all the inportant rock, formations and of all the minerals found in the State, properly and scientifically arranged, with their names and localities; and also a description of their chemical character, composition and their use in the arts. Also a similar collection of all useful or curious foreign minerals, with their names, uves, \&c., together with such information relative to them as will be calculated to lead to their discovery in the State of Pennsyl¥ania.

Instead of an endownent to this collegel per.
from the Stale treasury, it is proposed to appropriate, in aid of its funds, the State tax on the dividends of coal and mining companies, and companies for the manufacture of iron, incorporated within this commonsealth which, with the aid of subscriptions and donations from liberal and public spirited citizens, will, it is believed, be amply sufficient for the support of the college.

It is gratifying to us thus to notice the labors of Mr. 'Trego. Last year he introduced, and, aided by his colleagues, carried through the House, a bill directing a geological and mineralogical survey of the State. The proposed "College of Mines" scems to he most consonant with the capabolities of our State, and if righty conducted, cannot fail to bring out its ibunense mineral treasures, and make them contribute 10 general as well as individual pros-perity.-[U. S. Gazette.]

The rotary prirting machine of Mr. Row. land Hill has already excited much attention. We bave had the specification of the patent with the accompaning drawings for some time in our possession, but the length of the former and the intricacy of the latter, have prevented us from publis'ing them. The following article giving a description of the machine is from the Repertory of Patent Inventions, and will be found to convey a very correct notion of the machine without reference to details.
THE ROTARE PRINTING MACIIINE BY MR. ROWLAND HILL.
The steam-printing press was introduced at the close of the year 1814, before which time all printing was done by hand-presses, and the rate at which large sheets as newspapers were printed, scarcely cver exceeded 300 single impressions* in an hour.

The insufficiency of the hand-press to meet the growing demands of the public for newspapers was probably felt at a much eariier time, as in the year $1790, \mathrm{Mr}$. William Nicholson, editor of the journal bearing his name, obtained a patent for machines for printing upon various plans, and it is certain. ly the case that he then indicated very many of the modes of operatioa which, since his tume, have been successfully developed by other machinists. Mr. Nicholson appears never to have carried out any of his plans to a successful termination. Whether he was unable to work out ti.e numerous mechanical details, or wanted funds to meet the heavy and unavoidable expense of such undertakings, or could not indice those enga ged in the trade to give his plans a fair trial, we have no mcans of ascertaining ; certain it is, that whether succeeding machinists have or have not been indebted to him for their leading views, they have had still to encounter by tar the most difficult part of their task, and in overcoming the various physical and mechanical difficulties which lay in their way their powers of invention and their patience and industry must have been exercised in no ordinary degrec.

* Impressions on one side only of the sheet of pa-

When, however, the machine-presses were brought into action a great increase of speed was at once obtained.
During the twenty-one years which have elapsed since their introduction, various and important improvements have been effected in their construction, and by the rapid and powerful machines now used in printing the daily nowspapers, the surprising number of 4000 single impressions is sometimes given off in an hour.
The inventor of the machine, which is the subject of this paper, believes that he has effected improvements by which the rate ef printing just named, great as it is, may be still further increased, and that in no trifling degree.

In order to explain the means by which this advantage is proposed to be obtained, it is necessary to notice slowly the construction of the machines now commonly in use.

The type necessary to the printing of one side of the shect, consisting (for a newspaper,) of about 100,000 separate pieces, are collected, and being arranged in proper col. umns, the mass is placed in an iron frame cailed a chase, which binds it firmly together, and the form (as the chase filled with type is technically called) is then transferred to the machine, where it is secured upon a strong iron plate, which plate being mounted upon truck wheels, forms a carriage; and there is a small railroad for it to run upon.

When the machine is in action this carriage, with the form upon it, of which tho face* of the type constitutes the upper surface, is constantly moved backward and forwarl borizontal y, and as it passes along, it comes in contact, first, with the inking ap. paratus, which consists principally of a number of cylindrical rollers covered with ink and lying horizontally, and which are set in motion by the friction of the surface of the type acting upon their lower sides as it runs under them.
Next the form, being now inked, passes under a large revolving iron cylinder about the form and size of an ordinary double drum ; this lies horizontally, and its curved surface is covered by a closely wove blanket bound tightly upon it.

The paper as it is supplied to the machine, is made partly to encircle this cylinder, be. ing held against it by tapes which move with the cylinder.

The surface of the type moving horizontally and the surface of the blanket-covered cylinder revolving with the paper upon it, have exactly the s me speed, and as the type passes under the cylinder, that side of the cylinder which bears the paper is brought undermost and presses the paper upon the type whereby it is printed. The cylinder then rises a little, the type returns under it without contact and passes back to the inking rollers for another supply of ink, preparatory to the printing of another sheet ; while the printed sheet, it the machine be constructed to hold one form only, now passes out from between the cylinder and the tapes, and is received by an attendant.
Simple and ingenious as this arrangement undoubtediy is, the experienced machinist will at once perceive that it has points in

* That part which gives the imprestion
which improvement is at least highly desirable.

That which is most objectionable is the reciprocating motion of the form and its carriage, which together are of considerable weight, varying perhaps from five cwt. to a ton, and it is obviously difficult, if not impossible, to keep such a heavy mass in very rapid motion when the direction of that motion has to be reversed every instant.
Also much time is occupied by the backward motion of the form by which the type obtains a supply of ink, and regains tie position proper for the printing of a succeeding sheet.

And the rate of reciprocating motion really obtained, though not great, requires much power to produce it.
These defects appear to be unavoidable while the type forms a flat surface, as it is not practicable to make a flat surface move continuously.

Mr. Hill proposes to obviate these defects by affixing the type around a cylinder so that the surface of the type itself shall form a kind of outer cylinder, the whole resembling slightly un organ barrel with its projecting pins; and he has certainly overcome the principal difficulty as it appears, viz., the discovery of a mode of readily and securely attaching the pieces of type to the cylinder, and this without making it difficult to detach them for the purposes of correction, revisal, \&c. Of the manner in which this is accomplished we shall speak presently.
The type so affixed upon a cylinder, together with the proper spaces for margin, occupy its whole circumference; the cylinder thus clothed is placed in contact with a blanket-covered cylinder of the same dimensions, and the two are connected by toothed wheels, and the paper is passed between them with moderate compression, just as a piece of metal is passed between the rolls of a flatting mill. An inking apparatus is attached by which a constant supply of ink is communicated to the type as it revolves.

As the type cylinder has affixed to it precisely the quantity of type requisite for printing a sheet on one side; and as there is no vacant space upon the cylinder except for the margins, it follows that at cach revolution of the cylinder exactly one sheet will be printed ; and that the instant the printing of one sheet is completed, that of another will be commenced; no loss of time therefore can occur if the supply of paper and of ink be kept up.

Again the motion being rotatory, not reciprocating, there is no difficulty in making it rapid ; and the machine has been repeatedly worked with great rapidity in the presence of numbers of persons, without injuring or disturbing any of its parts, and without deterio. rating the quality of the printing.

In the machine which has been exhibited, there are two type* cylinders and two blanket cylinders placed thus O_{O} : the paper
in passing from left to right between the first rollers is printed upon its upper side, and in passing between the last rollers it has its lower side printed.

[^2]This arrangeinent, of course, requires two
istinct inking apparatus, one for cach tvpe roller.
To supply the machine with paper in single sheets at the rate of two per sceond, at which rate the machine has hitherto been worked, would be difficult if not impracticable ; the plan therefore has been to make use of a bong scroll of paper as it is produced by the ordinary paper machines, the end of which being introduced between the rollers the machine then supplies itself by unwinding the scroll from a reel.
It is intended to cut the scroll up into single sheets by additional machinery, as it passes from the printing rollers.

The greatest difficulty which Mr. Hill has had to surmount in the construction of his machine, is, as we have already stated, that of fastening the small picces of type upon the surface of a cylinder, and with firmness to ten columns upon one side of a newspaper*; each tray being filled with type has a proof taken from it by a small press, and, after correction, the type being made fast lyy tight. ening the horizontal screws with which the galley is provided, the galley itself is screwed upon the cylinder. When the ten galleys are so attached to the cylinder, they cover it completely, excepting the spaces 'eft for mar. gin, but any one galley can be casily removed and replaced without disturbing any other.
The galleys filled with type being firmly screwed to the cylinder, thenceforward form part of it, and are not removed until the printing is completed and the type is to be taken out for distribution, unless it should become necessary to stop the press for further revisal or the insertion of new matter.

The very rapid supply of ink which the machine demands, by reason of its great speed, appears to be fully maintained, and that with very good color, by the inking apparatus attacied.
Mr. Hill employs the trough (for containing the ink,) with its ductor-blade and iron roller, having proper screws for increasing or diminishing the space between the blade and the roller, through which space a thin film of ink adhering to the surface of the roller passes from the trough as the rolle revolves.

This ductor is in every respect of the usual construction; its roller turns very slowly ; next to it Mr. Hill places another iroa rolle lying parallel with it and just touching it, but having a rapid motion equal to that of the surface of the type, and this roller by gently but swiftly rubbing against the ductorroller, takes off its ink in a much thimer and more extended film. It ordinarily noves about eighteen times as fast as the ductorroller, therefore it ordinarily extends the film of ink brought out by the slow-moving ductor roller over eighteen times the amount of surface it first occupied.

Means are provided by whicin the relative sueed of the ductor can he readily increased or diminished, and thus a very nice adjust. ment, of the quantity of ink supplied to the type can be effected.

We have spoken incidentally of the great speed of Mr. Hill's machine; being worked

[^3]by two men it throws off shects of the size of the evening newspapers, at the rate of 7000 retain their places even when they are turn. ed upside downwards by the revolution of the cylinder, at which time their gravity combines with their centrifugal force in tending to displace them, and to effect this without throwing new difficulties in the way of correction, revisal, 太.c. We shall endeavor to explain how this is acconplished.

Each piece of type is slightly wedge-like in its form, so that when several arel laid side by side, they form a segment or arch whose lower curve corresponds to the surface of the cylinder upon which the type is to be fixed,* and each picce, instead of the ordinary narrow notelies in its side, made for the compo. sitors convenience, has a very broad notch; when the type is placed together to form a line these broad notches in the several pieces range together, and form an arched chase capable of receiving a thin brass plate of corresponding form and dimensions, which, when applied, is wholly embedded in the chase. When a line of type with its plate, or scale-board, so embedded within its substance, is compressed between the lines, and its plate thereby completely inclosed and kept in its place, it is manifest that no single piece of type can be displaced: if any move the whole line must move. Means have been adopted. which we have not space to de. scribe, by which these plates are made to take their places in the course of the composition, with the utmost readiness and certainty. I
The lines of type are placed in a kind of tray or galley, of the length and breadth of a newspaper column; the bottom of which tray is a portion of a cylinder, the curvature being in its breadth, not in its lenyth, somewhat as though a stave were taken from a truly cylindrical cask, and used as the bottom of a tray, the curved side being uppermost. The lines of type are secured in the tray principally by horizontal screw pressure act. ing against the ends of the column of type ; but as a precaution against a tendency to bulge, which sometimes occurs in a column of the great length required in a newspaper, a few of the embedded plates have small projecting tenons at their ends, which lock into certain chases in the sides of the tray just lescribed.
The upper type-cylinder of the machine exhibited has ten such trays answering to the to 8000 periected copies per hour. What rate can be safely given to it by the apphecition of steam power it is difficult to determine. At the speed above named, a scroll of paper of the width of a newspaper, and from tirree miles and a half to four miles long, might be printed on botll sides in one hour.

Before the introduction of printing-machines in 1814, the printers of large newspapers, confined in their operations by the slowness of the hand press, had no resource, uider the pressure of urgent demand, but to set up a portion of their matter in duplicate, at an expense of some thousands per amum. It seems not improbable that the expected abatement or removal of the stamp duty may soon. cause the demand for inewspancrs to

[^4]overtask even the great power of the present machines.

Should such a pressure arise, and shoul Mr. Hill's machine prove as successful it extended practical operation, as the nume rous experimental trials it has had give reason to expect, its introduction will probubly bring relief in the same way as it was brought up by the introduction of the machines first used.

From the London Mechanics' Magazine.
mone discovered of propelling balloons in any direction.
Sir,_It is really a matter of no small surprize, that, after all the investigations and experiments made in wrostation, since Albert first asserted, and Montgolfier afterwards demonstrated, the practicability of floating in the upper regions of the atmosphere, that balloons should remain to this day the same unwieldy and ungovernable toys as at first constructed.
After the first principle, or rather the first power of balloons-that of ascension, had been satisfactority established, bot.a by calculation and experiment, the next thing that became desirable was the power of propel. ling and guiding them at will.

Various attempts have at different times been made to accomplish this eminently des'rable object ; but being for the most part made without judgment, they were unattended with successful results. Sufficient has been done, however, to prove beyond all question, that propellers will act upon a batloon, with an effect proportionate to their size, and to the manner in which they are placed and worked. It is also equally evident, that so soon as wronauts can, by any means, cause their balloon to move with a velocity differing from that of the current of air in which they are floating, a rulder will become efficient, and the balioon will answer to the helm.

People frequently confuse themselves in their application of the simple principles of navigation in a denser medium to crial narigation.
So long as a boat, barge, \&cc. moves with the same velocity as the strcam, a rudder is wholly useless; but, if the boat or barge is made to move with a different velocity-i. e. either faster or slover than the stream-the rudder becomes an efficient agent in directing the movements of the vessel. With balloois, pr cisely the same law obtions; the momelt they can be propelled, they will become capubie of being guided.

In a recent Number of your Magazine, Mr. Mackintos'3 very justly observed, with respect to the difficulty of propulsion, that "the dififculty consists simply in this:-The resistance is greater than any power that has been hitherto applied to overcome it." He further adds. "to meet this difficulty we nust increase the power, and decrease the re: sistance."

Mr. Mackintosh's reasoning upon this subject is perfectly correct ; and I have now to state, that following out precisely the same principle, I have succeeded in contriv. ing a balloon of entircly new description, possessing all the requisities for efficient rerial navigation, and capable of being pro. pelled and guided at the pleasure of the æro-
lauts. The few scientifie friends to whom i have submitted my plans, have expressed remselves perfectly convinced of their feaibility, and feel satisfied that the time has bow arrived when balloons will cease to be seientific toys, and assume a new and use. iul claracter.

It would not be consistent with my own ersonal interest, at this time, to develope the nature of my invention, but your realers will hereafter have an opportunity of becoming acquainted with it. I should wisil :o person to suppoze for one moment that balloons will ever be guitled in the tseth of opposing currents; bui I am now prepared to assert, and all wio have examined my seleme will support my position-that in balloons upon my construction, the power is so much increased and the resistance so muc.s diminished, as to enable them to be propelled and guided t.mough the air wit's as much facility as boats at present are upon the surface of our river Tıames.

By the same means, an upward or down. ward direction can be given to a balloon, without in any way varying the quantity of gras or of ballast-and tue machine brought under a degree of control hardly before anticipated.

I remain, Sir, yours respectfully,
Wm. Baddeley.
Oct. 11, 1836.

From the Reperiory of Patent Inventions. specification of tile patent granted to francis erfowin, of the old kent ROAD, in tile county or surrey, tan. NER, FOR CERTAIN NEW AND IMPROVED processes of tanning.-SEALED JanUARY 11, 1836.
To all to whom these presents shall come, \&ic. \& c. Now linow ye, that in compliance with the said proviso, I, the said Francis Brewin, do hereby declare that the nature of my said inventon, consists in the making or preparing a new liquor or liquers for taming or manufacturing raw hides and skins into leather, and for retanning leather manufuctured in the ordinary way from certain exotic sub. stances, which have not heretofore been in use for manufacturing leather in this country, or from a combination of these substinces with other materials already in common use, by means of which new liquor or liquors, leather can be manufactured of a superior quality in less time than usual, and at much less expense, and by which also leather manufactured in the ordinary way may be improved in quality. Ard I declare that the manner in which the said invention is to be performed, is fully shown and set forth in the following description thereuf, (that is to say):

I employ in the making and preparing of the sail new tanning and retanning liquor or liquors, certain substances known in English commerce by the names ol gum-kino, divi-diri, and terra-japonica, all of which [find contain much larger proportions of tannen than the best English mak birk, and yield lıquors, possessed re:pectivaly of the following properties:-a. solution of gum-kino imparts to leather a brownish red color, but improves it con-
siderably in point of cioscness and firmness of tixture; a solution of divi-divi gives a very light color to leather; a solution of 'erra-japonica, of the sort generally importid in suall square pieces, gives a dull light color, and one of terra-japonica of the sort generally imported in large cakes, a brownish red similar to that obtaned from gumkino. A solution of divi-divi I prepare in the same way as the orlinary bark liquors are made in vats or lecks by tanners.But gum-kino and terra-japonica require to be treated in the manner following. I the gum-kino is in large pieces, or if the lerri-juponica is of the sort which is sold in large cakes, I first break these large pieces and cakes wi h a hamıer into small pieces; I then steep the whole for about three days in cold water, or cold weak tan liquor ; after which I put the whole into what I call a rubbing tub of the construction shown in the drawing in the margia hereof, for the purpose of being still further reduced; or I use hot water, or hot weak tan liquor, in which case I put the whole of the materials at once into the rubbing tub; and leave them to steep for about an hour only, which last process is that which I prefer. This tub is about five feet deep and four feet wide in every part, and has a loose cover just so much smaller to it in circumference that when not kept up by the materials in the tub, it will readily fall to the projection or stopper, fixed at about four inches from the bottom, and in this cover, on the under part thereof, about one hundred spikes of copper, wood, or any other material that will not sain the liquor, of about three inches long, are firmly inserted. A square wooden shaff, about five inches thick, with a wheel or handle at top to turn it by, is passed through an orifice of corresponding size and description in the centre of the cover, and drops into a recess in the bottom of the tub, large enough to allow the shaft to turn treely within it. The materials having stood sufficiently long for steeping, the shaft of the tub is worked round by manual or other power, which carries around with it the loose cover with the spikes underneaih, till, by the stirring and rubbing action of the spikes, the pieces of the gum-kino or terra-japonica in the tub, are either successively dissolved or reduced to such small dimensions as to pass easily between the cover and the sides of the tub; and in order that the said cover may press continually downwards on the materials in the tub, and descend as the materials become dissolved or reduced to the dimensions aforesaid, a heavy weight or weights is or are placed and kept on the top thereof during the whole of the operation: and in* preparing the said solutions for use I employ more or less water or weak tan liquor, according to the sort of leather which is, intended to be manufactured; (that is to iay,) for sole leather I use about fifty to ono hundred pounds of the gum-kino, or of the livi-divi, or of the terra-japonica, with about 'ne hundred gallons of water or weak tan liquor; and for manufacturing dressing leather, I use with every fifty to one hunIred pounds of the divi-divi and light terrajaponica about three hundred gallons of water or weak tan liquor, rarely using tho
gun-kino or dark terra.japonica at all in the manufacture of dressing leather, or any sort of leather in respect to which color is an object ; or instead of at once dissolving the said materials in the said proportional qualities of water or tan liquor, I dissolve them al first in any smaller quantities of water or weak tan liquor, and af erwards reduce the solutions to the required streng th by the addition of water or weak tanning liquor ; and when I have, by the processes aforesaid, obtained the requisite solutions of gum-kino, divi-divi, light terra-japonica, and dark terra-japonica, I generally mix for sole leather the different solutions to. gether in a common tan vat in the follow. ing proportions; (that is to say,) one quarter of the solution of gum-kino, one quarter of the solution of divi-divi, one-eighth of the solution of the dark. torra-japonica, and three-eighths of the solution of the light colored terra-japonica; I then put into the liquor so prepared and compounded, about one fourth more raw hides or skins than would in general be put by tanners, into an equal quantity of bark liquor, and with every hide I put on an average about one pound of oak bark in the same way as tanners now use bark in the vats with hides and skins. For manufacturing dressing leather, I mix the solutions of divi-divi and light terra-japonica, prepared as before mentioned, and put the bides or skins into them with the same proportions of bark and liquor as are hereinkefore directed to be used in the case of sole leather. When the leather is required to be of a very close and firm texture, and the color is a matter comparatively unimportant, I make use of a larger proportion of the liquor of gumkino than is before directed and when the dark terra-japonica is low in price, and when the color to be given to the articles is immaterial, I also make use of a larger quantity of that material than of any of the ethers ${ }^{\prime}$; and when it is desired to have the leather of a color lighter than that which results from the combinations of all the four liquors in the proportions before recommended, I diminish the proportional quantities of the dark coloring substances according to the particular shade of color required to be given to the article. And whereas some one or more of the said articles may occasionally be so scarce in the market, or so high in price that it may not be practicable or economical to employ it or them in the quantities before recoramended with the other substances, I declare that the use of any one or more of the said substances may be dispensed with either wholly or partially, but subject to the following modifications in the effects produced; (that is to say,) if gum-kino be used alone the leather produced will be too hard and close for general purposes ; if dividivi be used alone, it will produce leather lighter in color than usual; if terrajaponica be used alone, an article will be produc: d possessed neither of that firmness nor that color which is generally desirable in leather, while, by the addition of dividivi to gum-kino or terra-japonica, a better article is produced than can be obtained from either gum-kino or terra-japonica se. parately. And whereas also the prices of
all the four articles aforesaid may, at times, rise so high that, notwithstanding their superior tanning properties, they cannot with aconony be entirely substituted for oak bark, or any of the other barks or tanuing naterials now in comwion use, I declare that the sane may be advantageously used in combination with the said common malerials in the proportions following: (tha: is to say,) any given quantity of gum-kino, dividivi, and terrajaponica, mixed in the proportions before recoumended, may be combined with any quantity of oak bark or any given quantity composed of sixtwelfih parts of light terra-j iponica, four twelfih parts of divi-divi, and two-twelfih parts of gum-kino may be combined with an equal quantity of mimosa bark or kermac root ; or any given quantity composed of gum-kino, divi-divi, and terra-japonica, in equal proportions, may be combined with two-eighth parts of valonia, and twoeighth parts of oak bark; or, lastly, eight parts of gum-kino, divi-divi, and terra-japonica may be courbined with two-eighth parts of oak bark, and one-eighth part of shumach. When gum kıno, or divi-divi, or terra-japonica, or any of them, are intended to be used along with oak or other bark, they may either be ground very small in a cominon bark mill, afier being well iried, if not sufficiently dry for grinding in their original state, and then mixed up with the bark, or the bark and dividivi may be steeped by thenselves in the taps, and the liquor drawn off and made hot, and then put in such quantity into the rubbing tub us is necessary to dissolve the gum-kino or terra-japonica, as before described, which latter method is that which I prefer; or water or weak tan liquor alone, either hot or cold, may be used to dissolve the new materials before mixing them with the common liquors; the liquors made from these various articles I prefer using of about the same tanning strength as those made from the new materials alone; and though the proportions in which I have hereinbefore directed the gum-kino, divi-divi, and terra-japonica to be mixed with each other, or with oak bark and others of the materials already in common use, are those which I have found to answer best under ordinary circumstances, I đeclare that the said proportions may be varied at the discretion of the practical tanner according as the taste of customers in respect to the color of leather may vary, or according to any particular quality desired to be given to the manufactured article, or according to the comparative cost at different tines of the different materials. And I declare that for retanning or improving leather made in the ordinary way, I put it into a fresh liquor, the same as is fierembefore directed to be used for sole leather, and after it has remained therein for one day, I handle it, I hen allow it to remain in the liquor for from eight to fourteen days, after which I take it out and dry it, and, if necessary, restrike it; and I declare that what I claim as my invention is the making and preparing of a tanning liquor or liquors for anning or for manufucturing raw hides ind skins into leather, and for retanning leather manufactured in the ordinary way
with gum-kino, divi-divi, and terra-japonica, either employed separately or combined whh each other, or with other substances Iready in common use, in the different proportions, and in the manner hereinbefore specified, or in any other proportions and manner which a change of circumstances may render more suitable; and such my invention being, to the best of my knowledge and belief, never heretofore used in this country, I do hereby declare this to be my specification of the same, and that I do verily believe this my said specification doth comply in all respects fully and without reserve and disguise with the proviso in the said hereinbefore in part recited letters patent oontained; whereof I hereby clain to maintain exclusive right and privilege to my said invention.-In witness whereof, \&c.
Enrolled July 11, 1836.

Frum the London Mechanics Magazine.

 on aerostation.Sir,--Having in my letter of the 1st ult. (see p. 307,) endeavored to show the improbability of aerial machines tending to any useful purpose, while they retain their present form, I shall now add a few reuarks, suggesting the form in which balloons ought, in my opinion. to be made.
In art we generally imitate the works of nature ; now, all animated bodies intended for locomotion in the air or water have a head and a tail ; man has imitated this in the ship, which has a stem and stern; but in the bylloor he has neglected his model, as at present made they have neither, and to this mal-confirmation alone must be attributed the repeated failures that have taken place in ali attempts at guiding them. Upon this, I found the following observations :-
Balloons have two motions, a vertical and a horizontal ; the former caused by the levity of the gas conlained, and the latter by the prevailing current of air in which it ranges ; and this latter is the movement that requires to be regulated, as the other can be varied by retaining or discharging of the gas or the ballast. Now, when it is considered how realily a vessel answerz to her helin, and that water is to air, as 832 to 1, I cannot conceive that it would be found so difficult a task to guide an oblong machine in such a yielding element as aunospheric air. I am aware that many scientific persons think differen!ly ; I would call the attention of such to an account in the daily papers, not many months ago, of one of his Majesty's ships, afier losing her rudder and a temporary one in a hard gale of wind of several days' dura. rion, having been steered up the Channel to Spithear by only attending to the trim. ming of her saiis; there are also other known moles of steering by the assistance of the wind alone. In short I am doubtfil whether machines to float in the air ;hould differ, except in the materials for heir construction, from those used to float on the water.*
It is common with with aeronauts now oo ascend to a most unnecessary height for iny experimental purpose; if ascensiuns were confined to a moderate height,
sufficient for all the ordinary? purposes of voyaging, descents inight gencrally be more safely and rapidly effected in cases of danger. With respect also to the proposed enlargement of balloons, I would ask, are not two or three persons sufficient for philosophical or experimental trials? First let the aeronauts show the capability of guiding them, and capaciousness may then follow. When amouncements like those of the proprietor of the "Eagle" and her seventeen passergers are made, I augur unfavorably of their performances adding much to our stock of knowledge. Proofs of the points necessary to be first ascertained might be made for a tithe of the money that inust be expended in making a balloon of the magnitude of that now about to ascend from Vauxhall; for the fate of which all thinking persons must feel some apprehensions, notwithstanding its being under the guidance of the most experienced aeronaut of the day.

I remain, Sir, yours, \&c.

Omit.
London, Seple 4, 1830 .
In comparing aerial with marine navigation, the fact is generally loss sight of, (as in the present instance by "Omri, that in the laterer case the vessel another, whilst in the former it fluats in, and is propelled by, one and the same medium.

From the Athenæum.

medallic engraving.
The idea of employing machinery for the purpose of engraving upon metals is not of very recent origin: as was the case with steam navigation, the principle was recognized many years before it was put into successful practice. In the year 1830, Mons. A. Collas, an able mechanician at Paris, having been commissioned by an engraver at Ghent to make a ruling machine for him, constructed one for himself, upon a somewhat different principle, with which he made several attempts to execute engravings upon copper, in the style of a pattern which had been published in the Manuel des Tourneurs upwards of twenty-four years before. It was not till six months' labor and thought had been bestowed upon it that M. Collas brought his invention to a certain degree of perfection : he produced his first engravings in the spring of 1831. Of the attempts at a similur mstrument, made in the United States, we are informed, and believe, that he had seen or neard nothing ; but in the year 1833 he chanced to meet at Paris with an old mathematician fiom Geneva, whose father hud, some sixty years before, been employed in executing engravings by machinery upon the cases of golu and silver wathes; so that the remotest traces of this ast may be dated about the year 1775 to 1780 .

It has been ascertained, beyond all doubt. that this invention is not of domestic growth in England. It was in the year 1817 that a die-sinker of the name of Christian Gobrecht, then living at Puiladelphia, produced by a machine an engraving upon copper of a medallic head of the Emperor Alexander of Russia, several impressions of winich were distributed in that city. Mr. Asa Spencer (now of the firm Draper, Underwood, zad

Co.) took one of Gobrecht's machines with him to London in the year 1819, which was its first introduction into London. This machine was principally designed forstraight and waved lines; it was employed in London, and its uses exhibited and explained by Mr. Spencer to several artists. It attracted the particular notice of the late Mr. 'Turrell, an engineer, and he obtained permission to make a drawing of the machine, for the purpose of having one constructed for his own use. Ten years afterwards, in the year 1829, Mr. Joseph Saxton, an American, born at Huntingdon, in Penusylvania, who had known Gobercht, and seen the engraving from the Russian medal, contrived a machine somewhat similar in principle to the one brought to England by Mr. Spencer; in this he first introduced a diagonal tracer, for the purpose of correcting some of the defects which existed in the medallic engravings executed by Gobrecht's and Spencer's machines; these had all of them an unpleasant twist upwards. and an evident distortion of the features of the head. In the follow. ing year, an idea being started of applying this new method to the engraving of designs for bank notes, Mr. Spencer again bestowed considerable pains upon the improvement of his invention, without any success. Mr. Turrell, who was acquaioted both with Spencer and with Saxton, communicated his drawing and his ideas upon the subject to Mr. Buwtry, who then leld the situation of engraver to the Bank of England, and it was this gentleman who originally applied to Mr. Lacy to construct a machine of this description for hinı. Mr. Lacy was then, as Mr. Spencer had been, connected with the establishment of Messrs. Perking, Bacon, and Petch, bank note engravers in Flect street, and was the person employed, in the year 1832, to cxecute the engraving from a medal representing the bust of our present King, which appetred in the frontispiece of the "Keepsake". for 1833. The contracting parties did not come to a satisfactory agrecment,and the negotiation was broken off. It was probably that at time that Mr. Bawtry entered into communication with Mr. Joan Bate, of the Poultry, optician and maker of mathematical instruments to the Board of Admiralty. Mr. Saxion had been introduced to Mr. Bate shorly after his arrival in England, and had, se believe, given to the latter his first notion of such a machine by exhibiting to him an engraving upon glass, exceuted by it. During the succeeding interval, Mr. Saxton had continued to attempt the improvement of his diagonal tracer: which, though some distortions were manifestly obviated by it, was still utterly unable to give the effect of light and shade when employed to engrave meduls of very bold, or, rather, steep relief, and inevitably left blank spots in the engravings. Here the matter rested for awhile.
In the carlier part of the year 1832, the Messrs. Bate having beon informed that Mr. Saxto: had effected several improvements in his machinc, had an interview with him, or the purpose of exchanging their ideas upon the subject. But a natural feeling of ealousy prevented either party from exhibiting to the other his machine; the Messrs. Bate statod, indeed. that they had succeeded in remoring the distortions which existed
in their earlier productions; Mr. Saxton, on the other hand, referred to his own invention, and declared himself capable of executing by his machine as much ${ }^{2}$ as they could do by theirs; finally agreeing to satisfy them of the truth of his assertions, by putting into their hands an engraving, in which all distortions should be avoided. This engraving was a head of Franklin, with a bust of Minerva copied from a gem or cameo. Upon examining it the Messrs. Bate, however, seemed to think that some distortions, though slight ones, still remained. It was then proposed that both parties should execute an engraving from a gem representing the head of Ariadne, an impression of which, in wax, Mr. Bate, junior, undertook to send to Mr. Saxton. But here the matter ended -the wax impression was never ser.t, and two months afterwards Mr. Saxton was informed that Mr. Bate had taken out a patent for an improved machine, particularly specifying the introduction of the diagonal tracer, which happened to be the same as his own. Mr. Saxton, disgusted with the turn which matters had taken, turned his attention to other mechanical inventions, and subsequently sold his machine to Mr. W. Trevylian, in whose hands it now remains. From that period nothing was done in the way of engraving from medals, and no step taken, either by Mr. Bate himself, or his friends, to bring his invention before the public; the invention, as it were, remained dormant in Eng. land.

It was towards the close of the year 1832 that M. Collas sold his patent to a few gentlemen, who, with the aid, and under the direction of some of the first French painters. sculptors, and engravers, united themselves in a company, under the firm of Lachevar. diere and Co . It is to the enterprising spirit of these gentlemen that we are indebted for the "Tresor Numismatique et de Glyptique" (sec Athenceum, No. 388, p. 261), which :as now reached the extent of 600 plates of medals, bas reliefs, \&c., representing upwards of 5000 subjects. This work has been widely circulated in France and throughout the continent : most of its plates, for beauty of effect and artist-like execution, leave the eye nothing to desire. It is needless to remind our readers, that the French company, just mentioned, has for some months been actively bestirring itself, for the purpose of applying the invention of M. Collas to the illustration of our medallic history; and that a petition for the assistance and patro nage of government to such a national work was laid before a Committec of the House of Commons during the recent session. These efforts have been met by a determined opposition ou the part of certain of our native artists, who have attempted to quench the scheme, by bringing forward Mr. Bate's almost forgotten invention, in proof that the ground was pre occupied, and by denouncing the French engravings as false, distorted, and mathematically inaccurate. In answer to the first plea, it is enough to state the fact, that nothing was done by Mr. Bate in the way of making his invention popular-no plan thought of, of applying it to a grand national undertaking-till the French company, with a superb work to point to as a specimen of what their machine had effected, laid their proposals and petition for Par-
liament. The second argument, a charge of mechanical inaccuracy brought against the French engravings, will be disposed of with equal ease, though not quite so briefly.
It will be admitted, without hesitation, that the best representation of any subject, as a work of art, is the one which shall convey the most faitiful and pleasing impression of its general effect ; that, as the said representation is to be judged of by a pair of eyes, and not by a pair of compasses, there are cases wherin the latter may prove a mathematical incorrectness, which the former will not acknowledge, and which, therefore, in no respect, impairs the merit of the copy. In examining a medal, if it be laid flat upon a table, all the effects of light and shade wili disappear, and its bold outlines only strike the eve; whereas, if it be taken.up in the hand, the relief becomes apparent, and the design is set off with the powerful aid of chiaro-scuro. The professed medallist may possibly prefer the first mode, as the best means of obtaining the exact proportions of the work before him; the general amateur and artist will assuredly givo preference to the medal as seen in relief, being the more characteristic and pleasing aspect. It is to the faithful rendering of the latter effect, that the attention of the French engravers has principally been directed, at the necessary expense, in some cases, of geometrical exactness. A complaint, therefore, has been raised against their works, as unfaitlifulthey have been proved guilty of incorrectness, by the compasses, and the harsh word "distortion" has been liberally applied to them. But we are persuaded, that the weight of the objection is merely in the harshness of the word: the result of a careful examination of many specimens laid before us, has convinced us that there is no dedefect in the works executed by the French machine ; there may, indeed, be occasional deficiency, inasmuch as, while the machine cannot give any thing but what is on the medal, it may not, in every instance, give all that is there. Granting, then, that the general effect of the medal, when held in the hand (that is, when seen in chiaro-scuro, be faithfully and artistically rendered by the French machine, it is fruitless to reason about an imperfection, of which the compasses, and not the eye, are sensible. It should further be insisted upon, that this "incorrectness" with which the works of the French machine have been charged, is not necessa. ry to it, but has been merely sanctioned for the sake of effect by the presiding artists, on the principle just laid down. Besides other engravings of geometrical exactness already produced, a plate is in preparation containing the Soane medal, the head of Henry the Fourth, the Ariadne, and other subjects, by which the proprietors are prepared to prove that the style of execution which they have adopted has been a matter of choice, and not enforced upon him by any defect in the machine.
The universal approbation given to the engravings of the "Tresor" by the artists and amateurs of the continent, who do not undervalue scrupulosity of outline and precision of drawing, may be quoted in support of the line of argument we have adopted : we may also, in confirmation, select a few passages from the evidence given before the

Committee of the House of Commons upon the subject. Sir Francis Chantrey, whe: isked whether the mathematical inaccuracy objected to " produced an idea of distortion or any disagreeable effect to the eye," answered, that "it never produced any disagreeable effect to his eye, nor was he aware of it till it was pointed out to him;" and therefore, he considered it of no very essentral importance, and expressed his unqualified satisfaction in the engravings produced by the French machine. Mr. Hawkins, of the British Museum, when asked a similar question, gave a similar answer; hesaid that " a deviation, which is not visible to the eye, is not to be considered as a distortion;" and pronounced M. Collas's method as " giving the best idea of the medal of any method he had seen." Mr. Pistrucci, of the Mint, when examined before the Committee as to the merits of the French and English machines, gave it as his opinion, "that both are very clever, but each of them is deficient in that which makes the chiof merit of the other: the French machine is beautiful and admirable for effect, and gives a correct Idea of the work; but in a perspective view, or what I may call more appropriately foreshortening, it does not give the objects precisely as we see them, when we look at the centre of a real medal, but in chiaro-scuro, and with much effect. The English one gives it straight as far as I can judge: but I cannot say that it is mathematically correct with the original, not having had the original medal before me to compare it with; and it is possible that there may be a difference in the height, though not in the breadth of the objects rendered; but the engraving is flat and hard, with little or no effect."

We think that the above will suffice to convince our readers that the objections raised against the engravings produced by M. Collas's machine, are frivolous and futile. It is needless for us to repeat once again our opinions with respect to the feasibility and interest of the national work proposed; and if those who have any doubts on the subject, will examine the magnificent engravings of the portrait of Louis Phillppe, and the one from the bas-relicf of the Canterbury Pilgrimage, we think they will be, like ourselves, filly satisfied that such a work could not be in better hands than those of M. Collas and his enterprising coadjutors. We have now only to describe the specimens:-

No. 1. Innocence prostrating herself before Justice, and entreating her protection ; Violence is represented by a warrior holding a naked sword.-Sauvage.

2. Part of the Phygalian Frieze.

3. Cupid and Psyche ; from a cameo by Louis Pikler, after a bas-relief by Thorwald. sen.
4. Vulcan forging the shafts of Cupid; from a cameo by Pikler, after a picture by Raffael Mengs.
5. Antigone and Ismena before the Temple of the Furies, urging ©Edipus to return to Thebes; from a cameo in onyx by Louis Pikler.
6. The Heads of Augustus and Livia; rom an ancient cameo in sardonyx.
7. Hercules stifling the Nemæan Lion;
from a sculpture in bronze of the 15 th century.*

Abstract

* With every respect for our esteemed contemporary, we must say, that if the capabilines of M. Collas's nachine are to be judged of from the specimens here referred to, its superiurity is extremely questionable. The utmost that in our humble opinion, can be fairly said of them as worke of art is, that they are striking and curlow-considering how they have been pro-duced-not that they are in themselves remarkable either for truth of delinealion or excellence of finish. We have seen much bether specimens of the art, both English and America‥-ED. M. M.

From the London Mechanics' Magazine.
So much has been said of Mr. Crosse and his experiments in electricity, that any information of his modus operandi will be eagerly received. The following peep into his labratory will be found highly interesting. The grandeur of the scale upun which he operates cannot fail to strike us with wonder.

Mr. CROSSE'S GALVANIC AND ELECTRICAL apparatus.
In the Brighton Herald of Sept. 24, appeared, "An account of Sir Richard Phillips's visit to Andrew Crosse, Esq., of Broomfield, in the Quantock Hills, Somersetsbire, in September, 1836." Passing over a great deal of Sir Richard's preliminary twadlle (who, it will be seen, claims to have anticipated Mr. Crosse), we now lay before our readers his description of the extensive and splendid galvanic and electrical apparatus fitted up by Mr. Crósse, which is exceedingly interesting :-
"On reaching the handsome mansion of Mr. Crosse, I was received with much politeness, and found that I was the first visitor from Bristol. After breakfast, Mr. Crosse conducted me into a large and lofty apartment, built for a music-room, with a capital organ in the gallery; but I could look at nothing but the seven or eight tables which filled the area of the room, covered with extensive Voltoic batteries of all forms, sizes, and extents. They resembled battalions of soldiers in exact rank and file, and seemed innumerable.
"'They were in many forms. Some in porcelain troughs of the usual construction; some like the cotronnes des tasses; others cylindrical ; some in pairs of glass vessels, with double metallic cylinders; besides them, others of glass jars, with stripes of copper and zinc. Altogether, there were 500 Voltaic pairsat work in this great room; and in other rooms about 500 more. There were besides another 500 ready for new experiments. It seemed like a great magazine for Voltaic purposes.
"There are also two large workshops, with furnaces, tools, and implements of all descriptions, as much as would load two or three wagons.
"In the great room there is also a very large electrical machine, with a 20 inch cylinder, and a smaller one; and in several cases all the apparatus in perfect condition, as described in the best books on electricity. The prime-conductor stood on glass legs, 2 feet high'; and there was a medical discharger on a glass leg of 5 feet. Nothing could be in finer order; and no private
electrician in the world could, perbaps. show a greater variety both for experiment. and amusement.
"Beneath the mahogany cover of a table on which stood the prime conductor, \&c. was enclosed a magnificent batlery of $5($ jars, combining 73 square feet of coating Its construction, by Cuthbertson, was in ali respects most perfect. To charge it required 250 vigorous turns of the wheel ; and its discharge made a report as loud as a blunderbuss. It fuses and disperses wires of various metals; and the walls of the apartment are covered with framed impressions of the radiations from the explosion, taken at sundry periods. Mr. Crosse struck one while I was present; and be has promised me one as an clectrical curiosity, and a memento of my visit.
"But Mr. Crosse's greatest electrical curiosity was his apparatus for measuring, collecting, and operating with atmospheric electricity. He collects it by wires the sixteenth of an inch, extended from elevated poles, or from trees to trees, in his grounds and park. The wires are insulated by means of glass tubes, well coitrived for the purpose. At present he has about one-fourth of a mile of wire spread abroad; and in general about one-third of a mile. A French gentleman had reported to the Section at Bristol, that the wires extended 20 miles, filling the entire neighborhood with thunder and ligntning, to the great terror of the peasantry, who in consequence left Mr. Crosse in the free enjoyment of his game and rabbits. This exaggeration Mr. Crosse laughed at most heartily, though he acknowledged that he knew that no small terror prevailed in regard to him and his experiments.
"The wires are connected with an apparatus in a window of his organ-gallery, which may be detached at pleasure, when too violent, by simply turning an insulated lever; but in moderate strength it may be conducted to a ball suspended over the great battery, which connected is charged rapidly, and is then discharged by means of an universal discharger. He told me that sometimes the current was so great as to charge and discharge the great battery 20 times in a minute, with reports as loud as cannon; which, being continuous, were so terrible to strangers that they always fled, while every one expected the destruction of himself and premises. He was, huwever, he said, used to it, and knew how to manage and control it; but when it got into a passion, he coolly, turned his insulating lever, and conducted the lightning into the ground. It was a damp day, and we regretted that our courage could not be put to the test.
"Every thing about this part of Mr. Crosse's apparatus is perfect, and much of it his own contrivance, for he is clever in all mechanical arrangements, and has been unwearied in his application, almost night and day, for thirty years past. I learned, too, that in the purchase and fitting up of his apparatus he has expended nearly 30001 . although in most cases he is his own manipulator, carpenter, smith, coppersmith, \&c.
"About 12, Professor Sedgwick arrived,
and in the afternoon one or two others, beifles seven or eight gentlemen of the neigh whond, who had been invited to meet 11: it dinner, for Mr. Crosse unites to the ranl if esquire that of a county magistrite. is he duties of which he is respected alikt or his humanity to the poor and for his libfal opinions in politics. Mr. Crosse himself was educated at Oxford; and his second son holds the living of Broumfield. Ho is master of all his father's experiments; and, in spite of the complaints of an Ox ford education, I found him to be a very expert mathenatician, well read, and variously accomplished. We next morning renewed vur survey, previous to fresh arrivals, and I took notes of every thing connected with his aqueous Voltaic batteries, in the following order, errors excepted :-
" 1. A battery of $\mathbf{1 0 0}$ pairs of $\mathbf{2 5}$ square inches, charged, like all the rest, with water, operating on cups containing loz. of carbonate of barytes and powdered sulphate of alumine; intended to form sulphate of barytes at the positive pole, and crystals of alumine at the negative.
"2. A battery of 11 cylindrical pairs, 12 inches by 4 . This, by operating six months on fluat of silver, had produced large hexahedral crystals at the negative pole, and crystals of silica and chalcedony at the positive.
"3. A battery of 100 pairs, of 4 square inches, operating on slate 832, and platina 3, to produce hexagonal crystals at the positive pole.
" 4. A battery of 100 pairs, 5 inches square, operating on nitrate of silver and copper, to produce malachite at the positive pole; a. the negative pole crystals already appear with decided angles and fa cets.
" 5 . A battery of $\mathbf{1 6}$ pairs, of 2 inches, in small glass jars, acting on a weak solution of nitrate of silver, and already producing a compact negatation of native silver.
"6. A battery (esteemed his best) of 813 pairs, 5 inches, insulated on glass plates on deal bars, coated, with cement, and so slightly oxydated by water as to require cleaning but once or twice a year by pumping on them. 1 felt the effect of 458 'airs in careless order and imperfectly liquidated, and they gave only some tinglings of the fingers; but this power in a few weeks produces decided effects.
"7. A bat'ery of 12 pairs, 25 inches zinc and 36 copper, charged two mon'hs before with water, aad acting on a solution of nitrate of silver, poured on green-bottle glass coarsely powdered. It had already produced a negatation of silver at the positive pole.
" 8 . A battery of 159 galley-pots, with semi-circular plates of $1 \frac{1}{4}$ inch radius, placed on glass plates, and acting five months through a small piece of Bridgewater porous brick, on a solution of silex and potash. I saw at the poles small crystals of quartz.
"9. A battery of 30 pairs, similar to No. 8, acting since 27th July on a mixture, is a mortor of sulphate of lead, of white oxide of antimony, and sulphate of copper, and
green sulphate of iron (205 grains), and hree times the whole of green-bottle glass 615 grains). The result tas been, in five veeks, a precipitation on the negative wire if pure copper in two days, and crystallised ron pyrites in four days. It had been exrected to produce sulphurets oí lead, coper, and antimony, by depriving the sulphates o: their oxygen. Un August 10th and 28 th, 25 grains and 40 grains of sulphate of iron were added.
"10. A battery of 5 jars, with plates of different metals, as 2 copper and platina, 1 lead and lead, 1 silver and iron, and 1 copper and lead. Experimental.
"11, 12, and 13. About 200 pairs, in 3 batteries, working in a dark room, of which I took no note.
" While I was an inmate with Mr. Crosse, we had various conversations about the power which he employed. I had in some degree anticipated his debut, by hazarding. i. the last edition of my 'Million of Facts, (1835), an assertion that, inasmuch as metals are found only in a mixed or confused state of d.fferent rocks, among which a galvanic action on air or water would necessarily arise, and in long time generate the compound or matrices of metals; but I did not regard this public anticipation as any interference with his original merits, and I was deeply penetrated by the view of his labors and the expense and zeal with which he had prosecuted his experiments. Yet he had a round conductor for a mini. mum of power, instead of a combination of flat or parallel ones for a maximum. And he could not help talking about the fluid and some other fancies of the elder electricians, who invented their doctrines before it was suspected that air was a compound, and that such active powers as oxygen, nitrogen, hydicgen, and their definite numerical co-mixtures, conferred mechanical character on the most refined operations of nature.
" He instructed me in the fact, that his batteries porformed four times the duty in those hours in the morning, from seven to eleven, when the great laboratory of nature. is envolving the most oxygen-than in the same period in the evening, when we may innagine the contrary effect takes place. He considered the air as so non-clectric in damp. weather, that no plate of air lying between the coating of a cloud and the earth could then be disturbed; and he stated to me, as a general fact, that the earth is always po sitively electrified.
"On my part, I enlarged to him and his son on the universality of matter and motion in producing all material phenomena, independently of the whimsical powers invented in ages when we would have been burnt for a magician; and in this way I endeavored to return the various information which he had unrservedly imparted to ne. I impressed on him, that all this creative energy of atoms was merely a display of developements by the great motions of the earth as they affect the excitablo parts of different solid bodies; the results of which are necessa ily regular, and their ultimate laws of re-action and combination also regular, 30 as to produce that univer-
sal harmony which surprises beings, who in eternal time live and observe within onl: a unit of time. Hence that terrestrial galvanism, arising from the uperations of the internal frictions and varied pressures called heat; hence those factiunous production of metallic matrices and crystalline galvani: effects, where d.fferent substances are proxinatcly opposed ; hence magnetism itself, tangentally displayed as a resultant of terrestrial currents of electricity; hence the fluctuations of the phenomena from obliquity of the axis of rotation, which in regard to the axis of the orbit generates twn variable directions of massive pressure; hence, in fine, the wisdom displayed by Mr. Crosse in resorting to the modus operandi of Nature in his attemp:s to imitate her most curious productions.
" Observing that continual fresh arrivals rendered it ineligible for me to prolong my visit, I proceeded to Taunton, a distance of six or seven miles, the nearest place at which a stranger can meet with public accommodation."

WATER-TANKS

At the late meeting of the Cornwall Polytechnic Society, a description was given of nine tanks, which had proved eminently useful during the late three dry summers on the Sussex property of Davies Gilbert, Esq., the President of the Society. As these tanks are cheaply and easily constructed, and not liable to decay like wooden vessels, and as rain enough falls on every house in England for the use of its inhabitants, no family would be deficient in good soft water who made a tank to retain it; and such tanks being payed over, take up no room.
The tanks at East Bourn vary in size : one of less than seven feet deep and wide has served two laborers' families for three years; whilst most of the springs in the neighborhood were dry.
A tank 12 feet by 7 had supplied with water a large family and six horses. This was surrounded by only $4 \frac{1}{2}$ inch brick-work resting solid against the sides, iu consequence of being smaller at the bottom than higher up; and the dome is constructed on the Egyptian plan, by projecting horrizontally each row of materials one-third of their length beyond those below, and filling up the back with carth as it proceeded, to balance the weight of this projecting masonry.

At the East Bpurn Workhouse for four. teen parishes, a tank has been made, 23 feet deep by 11 wide, of the roughest materials, being only fint stones, and though they require more mortar than if they had been regularly shaped, only 90 bushels of lime were allowed, including two coats of plaster, and the workmanship is execated like field walls at 10 s . per 100 square feet ; the only essential being, that no clay be used (which worms bore through,) and that the lime or Parker's cement be good.
A current of air is said to promote the purity of water in tanks, and this is easil? efficted by the earthenware or other pipi which conveys the rain from the roof, being six or eight inches in diameter, and an open ing tef for the surplus water to run away ;
and where the prevailing winds do not blow 3 not and leaves on the liouse, the water re nains good, even for drinking, without elear ing out tue rubbish more than once a year but in some cases filtering by ascension ma be found useful, and be effected by the wis ter being delivered by the pipe at the botton of a cask or other vessel from which it can not escape till it $\mathrm{h} s$ risen through the hole: in a board covered with pebbles, sand, or powdered charcoal.

Upwards of twenty laborers' gardens have been watered by the rain which formerly injured the public road, and was therefore turned into a sink well, which sink well was enlarged and surrounded by 9 -inch masonry, and the water is drawn up by a cast-iron curb. This water was used in planting potatoes, and occasioned good crops in 1835, when setts not watered failed. And, should the profitable mode of stall-feeding now practised at Armagh be happily extended to England, and fatting oxen be kept inpairs not tied up under shelter, it will be found that preserving in tanks the water which falls on the barns and stalls will anply supply them, whilst it prevents the rain waslung away the strength of the manure when straw is spread in the open yard.
Ponds have been made with equal success, dug $4 \frac{1}{2}$ feet only below the surfuce, what is excavated being added to the sides, and corcred one foot thick like a road with pebbles and good lime mortar. Such ponds are be. come general on the dry soil of the South Downs for the use of the large flocks of sheep: and had such ponds been made in Romney Marsh, \&c., during the late dry years, the sheep would not have died in such numbers as materially raised the price of meat in London.- [Bath and Caeltenham Gazette.]

Extraction of Sugar from Indian Corn; by M. Palla3.-The results obtained by M. Pallas are as follows:

The stalk of the corn contains little or no sugar previous to flowering.
At the time of flowering, a small quantity of sugar miy be detected.

When the grain is still soft, about 20 or 25 days after flowering, the plant contains abont 1 in 100 of crystallizable sugar.

When the grain is completely ripe, the sla:k furnishes twi parts in 100 of sugar, and 4 in 100 of rich and good-tasting molasses.

The residae remaining after the extraction of the sugar, may be given for food to cattle, or will serve for the manutacture of wrapping paper which will bring 11 francs for 50 kilogrammes. - [L'Institut, No. 157, 1836.]

Tea in $\mathrm{Java}_{\mathrm{A}}$.-We learn from the Ben. gal Herald, of July 10th, that the tea-plant is now cultivated quite extensively in Java, and with great success. On the 17th o. May, there were more than 20,000 pounds eady for shipment; and in the course of a ew years, the crop is expected to increast to a million pounds per annum.

METEOROLOGICAL RECORD
For the month of Snptember, 1836, kept at A voylle ferry, Red River, la., (Lat. $31^{\circ} 10^{\prime}$ N. Long. $91^{\circ} 59^{\prime}$ w, by P. G. Voorlifes.

SEPTEMSER.			
	Wind.	Weather	REMARE8.
1658682	calm	clear	
2683481			
$370,86 \mid 81$			e:en'g clondy, night thundes and rain
477480,76	sw	cloudy	thunder, in the morning leavy storm
$5\|74\| 76 \mid 79$	calm		rain in the morning and clear at noon
6728280		clear	freggy murning
717018176			rain in the murning
	.	cloudy	heave rain from the south at noun rain at noon from the south
1971.30 76	w		ave
$\left.11\right\|^{7} 185674$	calm	-•	thunder in the morning and rain at noon
$12\|74\| 72 \mid 71$	sw		heavy thunder and lightning, and rain at nown
13727982	calm	cloudy	all dey
14788276	SE		heavy rain in the morning and cluar at noon
$15 \left\lvert\, \begin{array}{c\|c\|c} 72 \\ 7 & 75 \\ \hline \end{array}\right.$	calm		in the murning, rain, and clear al noon
i6 73, 84,741		clear	
1773 32, 76	-•	cluudy	at nown heavy rain from
18747×30			8. E, and rainall night heavy rain in the morning
			and clear at noon
	.		Red River rising \& showers in the morning, cleas al noon
$20\|76\| 34$	-		clundy in the morning and rain all day
217518476		clear	
2274,333			
$2372 \cdot 474$			
2475 d1 75	Sw	cloudy	clear at noan, Red River falling
2517313474	calm		
$267482=0$			ear at noon
-77\% 35.30	.	clear	. .. rain all night
$\therefore 730276$		rluedy	ar at nuon
$096602 ; 76$.	clear	
30627563	v		

Hed Kiver fell this mom.h 5 feet $6 t$ inches-below high water marh 19 feet $4 \frac{1}{2}$ inches.

A YuUNG GENTLEMAN, a Graduare of the Utited S:ates Military Academy, is desirous of oblaining empluyment as Civil, tingineer. The situation of Assistant Eingincer on sume work (Kailioad or Canal) wenld be jireferred. The muer unexc-ptionable references as to chatacter and ability will be given.
Addiess J. M. N., at the office of the Railruad Jourual, post pad.

1-4t
MACHINE WOIRKS OE ROGERS, KETCHDM and GROSVENOL, Paterson, NewJersey. The undersigned rective orders fur ithe fulluwing articles, manulactured by them, of the must supersur deseripliont in every parcicular. Their works b ing extensive, and the number of hands employed briag large, they are enahled to execute buth large and suall urders sith promptniss and despatch-

RAILAOAD WOKK
Loromotive Steam-Engines and Tenders; Driving and intier Lucumnive Wheels, Axles, Springe and Flange Tires; Car whrels of east iron, from a vart riety of patterns, and chills; Car Whecls of cast iron. wih wiought 'lires; Axles of best American refined iru"; Spring*; Boxes and Bolts for Cars-
CU'ITUN WOOL A D FLAX MACHINERY,
Of all descriptions and of the must improved Patterns, Stylo and Workmanship.
Mill Geering and Nillwright work generally; Hy. draulic and uther Presses; Press serewe ; Callendraulic and uther Presses; Press screws; Calien-
Jers; Lathes and Touls of ail kinds, Iron aud Brass Castings of all descrptions.

KOGERS, KERCHUM \& GROSVENOR.
Patterson, Neu-Jersey, of 60 Wall street, N. Y.
5 lff

[^5]PATENT RAILROAD, SHIP AND BOAT SPIKES.
z The Troy Iron and Nail Factory keeps constantly for sale a very extensive assurtment of W rought Spikes and Naihs, from 3 to 10 inclies, manufactured by tho subseriber's I'atent Machinery, which after five years successful operation, and now aimost universal use in the United States, (as well as England, versal use in the United states, (a.s went as England, Where the subscrioer obtained a pate
Railroad Cimpanies may be supplied with Spikes having countersink heads suitable to the holes in iron rails to any amount and on short notice. Almust all the Railroads now in progress in the United States are fastened with Spikes made at the abuve named fac-tory-for which purpose they are found invaluable, as their adhesion is more than double any commut spikes mado by the hammer.
${ }^{*}{ }^{*}$ An orders directed to the Agent, Troy, N. Y., will be punctually attended to.

HENRY BURDEN, Agent. Troy, N. Y., July, 1831.
Troy, N. Y., July, 1831 .
** Spikes are kept for sale, at factory pricrs, hy I. \& J. Townsend, Albany, and the priucipal Iron Myerchants in Albany and Troy ; J.I. Brower, 2\%2 Water atreet, New-York; A. M. Jones, Philadelphia; T. Janviers, Baltimore; Degrand \& Smith, Buston.
P. S.-Railruad Companies would do well to forward their orders as eurly as practicable, as the subacriber is desiruus of extending the manufacturing so his Spikes. (IJP3am) H. BURDEN.
RAILWAYIKON, LOCOMOTIVES, \&
THE subscribers offer the following articks for sale.
Railway lron, flat bars, with countersunk holes and mitred joints,
 $280 \quad$ "

with Spikes and' Splicing Plates adapted thereto. To be sold fiee of duty to State governments or incorporated companies.
Orders fur Pennsylvania Boiler Iron executed.
Rail Road Car and Locomotivo Engine Tires, wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 inches oiameter.
E. V. Patent Chain Cahle Bults fur Ruilway Car axles, in lengths of 12 fiet 6 inches, to 13 feet 41,23 3, 3t, 3t, 3i, and $3 \frac{3}{2}$ inches diameter.
Chains for Inclined Planes, short and stay links, manufactured from the E. V. Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Planes, made frum New Zealand flax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and stone bluck of Edge Ra:lways.
Every description of Railwny Iron, as well as Locomotive Engines, imported at the shortest notice, by the agency of one of our partners, whu resides in Fingland for this purpose.
Mr. Sollumun W. Roherts, a highly respectable American Engineer, resides in Eugland for the purpose of inspecting all Locominives, Machinery, Kailway Iron \&c. ordered through us
A. \& G. INALSTON.

28-if
Philadelphia, No. 4, South Front at

S'IEPILENON,

Builder of a superior style of Passenger Cars for Railroads.
No. 264 Flizabet h street, near Bleecker street, New-York.
RAILROAD COMPANIES would do well to exa mine theae Cars; a specimen of which may he seen on that part of the New. York and Harlaem Railroad now in operation:

NEW ARRANGEMEN'.

iropes for inclined planes or railmoads.
-WE the subscribers having formed a co-partnership under the style and firm of Folger Ropes for inclined planes of railroads, and for other uncs, offer to supply ropes for inclined planes, of ans length required without splice, at short notic, th manufactiring of cordage, heretofure carried on by S. S. Durfee \& Co., will be dune by the new firm, the
same superintendant and machinery are empluyed by same superintendant and machinery are empluyed by
the new firm that were employed by S. S. Durfee $\&$. Co. All orders will be promplly attendel t, and ropes will be shipped to any purt in the United slates. 1st month, 7th, 1836. Hudson, Columbia County State of ${ }_{1}$ New-York.

33-tf.
ROBT. C. FOLGER.
(JEORGE COLEMAN,

A SPLENDID OPPORTUNITY TO

MAKE A FORTUNE.

THE Subscriber having ohtained Lettera Patent, from the Guvernment of Frauce, granting hinu the exclusive privilege of manufacturing Horse Shoes, by his newly invented machines, now offers the same for sale on terms which canuot fail to make an inclependent fortune to any enterprising gentlemen wishing to mhark in the same.
The machines are in constant operation at the Troy Iron and Nail Factory, and all that is neressary to satisfy the most incredulous, that it is the must valuable Patent, ever oblained, eilher in thisurany other cuuntry, is to witness the a deration which is open for inspection to all during working hours. All letters audressed to the subscriber (post paid) will re. eeive due attention.
Troy Iron Works,
IIENRY BURDEN.
N. B. Horse Shocs of all sizes will be kept cone stantly for sale by the pincipal Iron and Hard-ware Merchants, in the linited States, at a small adrance above the price of llorse Shoe Iron in Bar. All perSuns selling the same, are authorisen to warrant EVERY SHUE, :Hade from the sest REFINED IRUN, and any failing to render the must perfect satisfac. uTin, both as regards workmanship and quality of
Iron, will be received back, and the price of the same refinded.
H. BURDEN. 47-If

frame bridges.

T'ue, subscriber would respectfully inform the public, and particularly Railroad and Bridge Curporata.iuns that he will build Frame Bridges, or vend the right to others to build, on Col. Long's Patent, thruughout the United States, uith few exceptions. The following sub-Agents have been engaged by the 'undersigued who will also attend to this buxiness, viz.
$\begin{array}{ll}\text { Horace Childs, } \\ \text { Alexander McArthur, } & \text { Menniher, N. Hunt Murris, N. }\end{array}$ Alexander MeArthur,
John Mahnn,
Thomas II. Cushing, Ira Blake.
Amos Whitemore, Fsq.,
Samuel Herrick,
Capt. Isaac Lamion
Lyman Kingsly,
Elijah Halbert,
Joseph Heivard,
Cul. Sherman Peck,
Andrew E. Turnbull,
William J. Turnhull,

Dover, N. H.
Whkefield,
N.
Hancork, N. H: Springfield, Vermont. Northamyton, Mass. Waterloo, $\mathbf{N} . \mathbf{Y}^{\text {do }}$ Dunkirk, N. Y. Hudsun, Ohio. Sabried Dodge, Esq., (Civil En do do do Buoz M. Atherton, Esq. (Civil Engineer,) Ohio.
New-Philadeiphia, Ohio Stephen Daniels, John Rodgers,
Jrhn Tulison,
Capt. John Bottom, Marietta, Ohio Capt. Johin Bottom, St. Francisville, Lous'a Nehemiah Osborn, Rochester, N. Y.
Bridges on the above plan are to be seen at the followiog localities, viz. On the main road leading from Baltimore to Washingtoln, two miles from the furmer place. Acrosi he Mctawamkeag river on the Mililary road, in Maine. On the national road in lmioois, na Rrailroad at three points. On the Hudsun and Patterson lailroad, in two places. On the Boston and Worcester Kailroad, at several points. On the Boston and Providence lailroad, ut sundry points. Across the Conlocook river at Hancock, N H. Across the Connecticut river at Haverl.ill, N. H1. Across the
Contoocooh river, at Henniker, N. II. Across the Contoocook river, at Henniker, N. II. Across the
Suohegan river, at Milford, N. H. Across the Kennebec river, at Watervile, in the stat of Maine. Across the Genesse river, at Mount Morris, NewYork, and several other bridges are now in progress The undersigned has remuvod to Rochester, Monroe county, New-York, where ho will promptly at tend to orders in this line of business io any practica bl eextent in the United States, Maryland excented.

MOSES LONG.
Rochester, May 22d, 1836.
$19 \mathrm{y}-1 \mathrm{f}$.
an Elegant steam engine AND BOILERS, FOR SALE.
THE Steam Engine and Builers, belonging to the STEAMBOAT HELEN, and now in the Noveliy yard, N. Y. Cinsisting of one Horizontal high pres sure Eingine, (but may be mate to colndense with lit struke, with lateat insproved I'ision Valves, and Mela-
stren struke, with latest inppro
lic packing throughout.
Also, fuur 'lubular Builers, constructed on th English Locomotive plan, containing a fire surfare of over 600 leet in each, or 2500 fret in all-will bi suld cheap. All communications addressed (post pard tu the subscriber, will mee: with due attention.

HARVEY'S PATENT RAILROAD

 SPIKES.TIIE Subscribers are manufacturing and are now prepared to make contracts for the sumply of the abrive article. Samples may be seen and obtained at Messrs. BOORMAN, JUHNSON, AYRES \& Co. Nu. 119 Groenwich Street, New-York, or at the Makrrs in Poughkeepsie, who refer to the subjoined certificates in relation to the artele.

HARVEY \& KNIGHT.
Poughikepsie, October 25 th, 1836.
The undersigned having attentively examined Harvey's Patent Flancued and Grooved Spiees is of the opinion, thai they are decidedly preferable for Kailroads to any other Spikes with which he in acquainted; and shall unliesitatingly recommend their aduption by the different Railroad Companies whote works he has in charge.

BENJ. WRIGHT,
New-York, April 4th, 1836.
Harvey's Flanched and Grooved Spikes are evidently superior for Railruads to thuse in common ues, nnd I shall recommend llicir adoption on the roads under my charge if their increased cout over the latter is not greater than some twenty per cent.

JNO. M. FESSENDON, Engineer.
Boston, April $20 i h$, is36.
No. 1-6t.
ARCHIMEDES WORKS: (100 North Moor street, N. Y.)

New-York, February 12th, 1836.
THE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furnish all kinds of Machinery fus Railroads, Locomotive Engines of any size, Car Wheels, such as are now in suiccessful operation on the Camden and Amboy Railroad, nune of which have failed-Castings of all kind, Wheels, A xles, and Buxes, furnished at shortest notice.
H. R. DUNHAM \& CO.

ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.
WILLIAM - V. MANY manufactures to order iron cabtings for Gearing Mills and Factoriea of every description
ALSG-Steam Engines and Railroad Castings on every description.
The collection of Patterns for Marhincry, is not equalled inthe United Sintes. $\quad 9-1 y$.

T'U CONTRACTORS

STONE CUTTERS and MASONS. JAMES RIVER and KANAWHA CANAL.-Contactors for mechanical work are hereby onf rmed that a large amount of Musonry, consisting of Jorka, Culverie, and Aqueducts, is yet to be let on the line of the James and Kınawha Cansl.

- Persons desirulus of obtaining such work, and prepared to exhibit proper testimonials of their ability to exerute it, will apply at the office of the subscriber in the city of Richmo
Stone Cutters and Masons wishing employment in the south during the winter munths, tway count with with the contrantors on the work

CHAS. ELIET, Jr., Chief Eng. J. R. \& K. Co.
Rielimond, Nov. 29, 1836.
5i-6i
AMES' CELEBBRA'TED SHOVELS,

SPADES, \&c.

300 duzens Ames' superior back-strap Shovels
150 do do do plain do do
150 do do do caststeel Shovels \& $\$ \mathrm{~S}$

| 150 | do do do do caststeel Shovels \& Spade: |
| :--- | :--- | :--- | :--- |
| 150 | do do |

100 do do plated Spades
50 do do socket Shovels and Spades.
Together with Pick Axes, Churn Drilis, and Crow Bara sateel pointed, mannfactured from Salisbury re: fized iron-for sale by the manufaciuring agents,
WITHERELL, AMES \& CO.

WITHERELL, AMES No. 2 Liberty street; New-York BACKUS, AMES \& CO.

No. 8 State street; Albany
N. B -Also furnished to order, Sliapes of every do. seription, made from Salshury refined Iron v4-19

NOTICE 'TO CONTRACTORS.

Proposals will be received at the office of tho Hudson and Berkshire Railroad Company, in the city of Hudson, until the 15th of January, 1837, or One Million feet, buard measure, of Southern pine, of the following dimensiuns : -6 inches square,
and in lengths of $2 \mathrm{~J}, 24,27$, and 30 feet fong-also, for 14,v00 Chestnut or Cedar ties, 8 feet long, and 6 inches -quare-and also, 4,000 sills, of Hemlock, Chestnat, or White Pine, 4 by 10 inches, and in lengths of 15 , 8 , ard 21 feet lung. The whole to be telivered by he lst day of July, 1837.
IIudson, Dec. 22, 1 E36.
Giomge Rich.

AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT NO. 132 NASSAU STREET, NEW-YORK, AT FIVE DULLARS PER ANNUM, PAYABLE IN ADVANCE

CONTENTS :

Elitorial Notces.
33
Rallroad items 3
A nnail Report of the Commissioners of the Canal Fund.
Report of the Survey of the Roanoke; Danville, and Junction Railroad.
Ure's Philoeophy
Agriculture, atc.
Advertisements

AMERICAN RAILROAD JOURNAL.

-NEW-YORK, JANUARY 21, 1836 ;

List of subscribers to the Railroad
Journal. that have paid since the 25 th December, 1836.
P. Harry,

City, N. Y., Jan. 1, 1838.
B. Murray,
G. A. Furst, $\quad " 1838$.
J. Elliman, " " 1838.
J. G. King, " " 1838.

Del. \& Hud. R. R. Co. " " 1838.
Messrs. Goothue \& Co. " " 1838.
" Gliem Meidgeas \& Co. " 1838.
" Bruzier \& Co. " " 1838.
Nevins \& Townsend, " " 1838.
Chas. Butler, " " 1838.
J. Ewen, jr. " . " 1838.
J. Delafield, " \quad " 1838.

Capt. McNeill, " " 1838.
N. Berthoud, " " 1838.

Harlem R. R. Co. "" " 1838.
H. L. Inthony, " $\quad 1838$.
J. Colt,
"
E. T. Throop, "

Rogers, Ketchum \& Co."
C. H. Russell,

Hector Craig,
H. Koehler, eng'r., Leipsic, Saxony, 1838.

Herman Langbien,
Lepzig Dresduer Eisenbahn Co. Leipsic,
Saxony, - Jan. 1, 1838 .
C. A: Olmsted, Lyons, N. Y., " 1838. W. Parker, Worcester, Mass., " 1838. W. H. W., Phenixville, Pa., " 1833.

A Treatise on the Principal Matioematical Instruments, employed in Surveing, Levelling, and AstronoMY, explaining their construction, adjustments, and use, with tables, by T. W. Simms, Assistant at the Royal Observatory, Greenwich. Revised with additions by J. H. Alexander, Civil Engincer-F. Lucas, Jr., Ealtimore. An American edition of an English work, written by a gentleman well versed in the scientific and practical knowledge of Instruments.

The principles of the construction of the instruments are clearly explained, aided by very good cuts-and the details of their adjustment, are very well described.
The latter subjects are followed out at length as regards both Surveying and Astronomical Instruments.
The value of the work is also increased, by the Tables at the end-they are of great use to Engineers, Surveyors, and Astrono* mers.
The portability of the work is a great recommendation, and the information added in the American Edition, being suited to the practice of the profession in this country, it will be found one of the most useful and convenient works that an Engineer can use.

While on this subject, we naust remark, that the principles of construction and ad
justment of many of the most commonly used Surveying Instruments, are far from baing well understood. Mistakes of the most glaring nature have come under our own observation, and in persons otherwise thoroughly unders:anding their instruments.
Instrument; are also very liable to get out of order while in use, and that too in places where an instrument maker would be a rara aris. To all persons in such a predicament, a slight knowle ge of the principles of coustruction of their instruments will be invaluable.

We know of no work more useful in all such emergencies, thar this treatise of Mr. Simms.

Extract from a file of the "Journal des Debats" kept at the reading ronms of the "Young Men's Association" in the city of Albany. Nov. 5, 1836. From Correspon. dent.
" Monsieur Chair a Frenchman by birth, and long a resident of the Island of France, has made a discovery of great interest to Steam Navigation. The boilers of En. gines, as is generally known, are after a short use covered internally with a hard crust, principally composed of calcareous sub. stance, which prevent the transmission of heat from the furnace, to the water contain. ed in the boilers ; increases the already heavy expense of fuel, and -often causes the formation of fissures and cracks which re. quire costly repairs. M. Chaix has disco. vered a means as simple as it is ingenious to prevent the formations of these incrusta. tions. His process has been tested by order of the Navy Commissioners at Toulon on board the Government Steamboat Phare.

It has been proved by a conımittee appointed for the purpose that not only are incrus. tations prevented by the process, but also that old formations are detached by it. The discovery is patented. We trust however, that our Government may be induced to repeat the trial, and if as successful as when first ${ }^{\circ}$ tested, purchase the discoverers right for the nation and the interest of Steam Na. vigation generally."

Scientific and Literary Journal.This work is a continuation of the Scientific Tracts, so well known for neanness of execution and value of matter. The new and enlarged form of the work will retain the same character.

We are indebted to several gentlemen for Reports. These will appear in due course.

Al : o , to the Hun. Gideon Lee, for public Documents.

W The Brouklyn and Janaaica Railroad Company have made a dividend of $\$ 2$ per share.
baltmore and susqeehanna rallroad.
In Wednesday's paper, we spoke of a m -morial from the President and Directors of this important work, praying aid from the State, and mentioned that their application was made in reference to the construction of the Wrightsville road, which is a continuation of the Susquehauna road. We have since been furnished with the following particulars which we lay before our readers.

It will be recollected that two years ago, a similar application was made, and, in view of tue importance of this work, the appropriation was unmediately granted. This sum would have been amply sufficient, had it not been for the unexampled rise in the price of materials, provisions and labor. Notwithstanding this difficulty the company have presevered with a zeal worthy of all commendation.

After a careful examination of the various routes, the present line was adopted and this line strikes the Gunpowder about half a mile above Tyson's mill, continues along the right bank of tuis streanı as far as the "Forks;' then follows the Noath branch as far as its junction with the Bee Tree Run, leaves this last stream at its source, and follows the Codorus to York.

As soon as the different divisions were lo. cated, they were put under contract ; the 1st division is completed; the 2nd is two-thirds finished; the 3 rd division is in active progres and, from preseit appearances, will not be far benind tue others.
We see by the advertisement that the rails will be laid next spring. These rails are of a silperior quality. Their great solidity will make them last much longer then the ordinary rail. The grades on this road are mostly of a gentle character. In no case will they offer a serious obsaacte to the loco.
motive. Tho curves are generaly slight, being with but a few exceptions, over one throusand feet radius. On the third Divivion taere is a tunnei, about five miles this side Jf York; this is but 250 feet in length, and is expected to be finished before the 4th of July.
The Wrightsville road unites with the Susquehannah road at York. This road is about $11 \frac{1}{2}$ miles long passes through a beautiful and fertile valley, and terminates at Wrightsville, a town opposite to and connected with Columbia by a bridge $1 \frac{1}{4}$ miles long. Our readers are aware that Colum. bia is immediately on the line of the Pein sylvania Improvements, between Pittsburgh and Philadelphia, being connected with Philadelphia by a Railroad, and with Pittsburg by Canal and Railroad. The distance between York and Baltimore is $56 \frac{1}{2}$ miles, from York to Columbia 13 miles, making the distance between Baltimore and Colum. bia $69 \frac{1}{2}$ miles, about 13 miles less than the distarce between Philadelphia and Colum bia, and consequently making Baltimore so much nearer Pittsburg than Philadelphia. Two-thirds of the Wrightsville road is in a straigit line, the curves ia the remainder have probably an average radius of from four to five thousand feet-the road being in a valley has very gentle grades. Five-sixths of this road is completed.
A road is about being constructed between York and Gettysburg. Twis work and others about to be undertaken by Pennsylvania, will render the completion of the road from Baltimore to Columbia highly advantageou: to the interests of Baltimore. There are the strongest reasons to expect that this demand will meet with success. We know that the road is nearly completed, that on its completion depends much of the future prosperity o B.altimore ; and when we take into consideration the giant effort of Pennsylvan:a and New-York to wrest from us the western trade, we cannot doubt that our Le. giclature will appreciate the necessity of aflording such ad as may enable us to realize the advantages expected from this great work.-[Chrouic'e.]
wilmington and susquehanna rallroad company.
At an annual meeting of the Stockholders of the said Conpany, cunvened at their office in Wilmington, on Monday the 9th day of January, 1837.
John Andrews, Esq., of Philadeiphia, was called to the Chair, and Harry Connelly was appointed Secreta'y.
'The annual report of the Dirctors of the progress of the work, with the report of the Chief Engineer, was read, and

On motion of Mahhew Newkirk, Esy. Resolved, That the said report be and is hereby accepted, and ordered to be published.

On motion, ti.e Stockhelders then proceeded to the election of Directors, to serve the ensuing year.

The election was conducted by Johr Connell, Esq., of Philadelphia, and 'T'homas C. Alrichs, Judges appoint.d by the Board of Directors trum among the Stockholders. Messrs. Allan Thomson aud Jonathan Bonney appointed tellers.

The votes being counted, the following persons were declared to be duly elected Directors of the Company for the ensung year, viz :

The meeting then adjourned.
J. Andrewe, Chairman.

Attest, Harry Connelly, Sec'y.

The Directors assembled on the same day, and James Canby, Esq., was unanimously re-elected President of the Board.
W. P. Brobson, Secretary.

A meeting of the citizens of Rochester was held on the 30th ult., at which resolutions were passed in favor of raising a loan to carry on the proposed enlargement of the Erie canal, and of petitioning the Legisla. ture to pass a law for that purpose. In pursuance of a suggestion of the citizens of Buffalo, a convention of delegates, from all the counties particularly interested in the matter, is invited to assemble at Rochester on the 18 th inst.

The railroad from Mobile to Cedar Point, at the south-west entrance of Mobile Bay, is 1 'kely to progress with rapidity.-contracts being made and part materials ready.

Some work of this kind is essential for the commerce of Mobile, as the bay is gradually becoming shallower; and will shortly be little better than a pond, in consequence of the numerous and extensive bars formed by the alluvion deposits. Large ships have had consequently to a anchor in the Gulf, near where its junction with the bay forms a large bar: and the trouble and expense of lighterage have consequently been very great. But as the projected railroad may have proper baggage cars for the conveyance of cargoes, a port with wharves may be formed at Cedar Point, for the trade of Mobile, but Mobile itself can never be a maritime town of note. -[N. O. Standard.]

Chicago and Galena Rallroad. James Seynour, Esq.,Chief Engir.eer on this Road, has arrived in town, and is ready to commence operations as soon as the necessary action is had by the Board of Directors. Mr. Seymour has been long engaged on some of the principal public works at the East, and is ever way competent to superintend the work now about to be placed under his charge. We congratulate our citizens on the present prospect of the immediate con.mencement and completion of this Road. [Chicago Am.]
innual heport of the commissioners of Paid to proprietors of Al.
The report of the Commissioners of the Canal Fund was made to the Assembly on the 4th inst.

This report states that the surplus moneys in the hands of the Commissioners, 3uth September, 1835, at
Received by the Commissioners for the year ending 30th September, 1836,

Total to be accounted for by the Commissioners,
This sum is accounted for as follows, viz:
Paid for interest on Canal Debt,
Paid for Canal Stock,
To superintendents of repairs,
To Canal Commissioners,
To weigh masters,
Miscellaneous expenses,

Balance in the hands of the Commissioners, 30th Scptember, 1836,
Of this balance there is in. vested in 5 per cent. State stock,
Five per cent. loan to city of Albany,
Loaned to sundry banks at 5 per cent.,
Do. at $4 \frac{1}{2}$ percent.,
Do. at $3 \frac{1}{2}$ per cent.,
Loan to Chenango Canal at 5 per cent.,
receipts and expenditures for the fear.
The actual amount of revenue of the
Erie and Champlain Canal Fund, received
from all sources, from the 30th September, 1835, to the 30th September, 1836, is as follows, viz :
Amount received for tolls, after deducting expen. ses of collection,
Vendue duty,
Salt duty,
Interest on other invest. ments,
Sales of lands,
Rents of surplus waters
Miscellaneous reccipts,
The amount actually expended during the year, is as follows, viz:
For interest on Canal Debt, Repairs of the Canals by superintendents,
Expenditures by Canal
Commissioners,
Selaries of weigh-masters,
Printing for Canals,
Tolls refunded,
Conte of suits,
Pellapoet of Collectors' aco couinis,
\$3,406,809 72

1,941,930 66
$\$ 5,348,74038$
\$208,391 82 635,735 60

300,391 32
66,259 82
4,211 20
17,397 69
\$4,066,353 93

183,933 59
150,00000
1,897,636 22
1,600,325 69 101,504 16

132,954 27
\$4,066,353 93
\$1,513,271 85
187,194 20
64,763 46
13,645, 20 2,218 05 2,511 00 1,688 06
bany Basin, for their pro. portion of tolls of 1835, To John Tracy, Licutenant Governor, for attendance as Commissioner of the Canal Fund,
To Samuel Young, for attendance as Canal Com. missioner,
To appraisers of damages,
To Holmes Hutchinson, for canal maps, per chapter 58 , laws of 1836,
To George W. Newell, second deputy comptroller, Canal Department, for salary,
Miscellaneous payments,

Leaving the neti revenuc of the Erie and Champlain Canal Fund, after paying all charges upon it, at
$\$ 1,341,934 \quad 96$
The Commissioners esitmate the income of the fund for the current year at $\$ 1,595,691 \quad 67$ And the expenditures at
Estimated surplus for the current year,

Payment of canal debt.
The outsanding stock on the 30 th of September, 1835, amounts to tie sum of Redeemed during the fiscal year ending 30th Sept. 1836,

Leaving unredeemed, 30th September, 1836,
\$3,582,502 73
A sum sufficient for the redemption of this stock, was collected previous to the 1st of July last; but as the receipts for tolls ans salt duty for the month of June, by an ar rangement with the collecting banks wer not payable until the 16 th of July, the amount of t.iese receipts could not be invest. ed for the payment of the canal debt, unti the latter period.

On the 18th of July, the whole amoun necessary for the extinguishment of the ca. nal debt had been collected and invested : and on the 30 th of that month a meeting of the Commissioners of the Canal Fund wa: held, at which the following statements, made out from the Canal Fund Books, were presented to the Board. viz:

1. A statement of the amount outstand. ing on the 18th July, 1836, of the severa kinds of stock, issued for the construction o. tae Erie and Caamplain Canals, the amount of interest annually payable on said stock and the time when the principal is reimbursable, viz:
\$208,391 82
300,391 32
66,250 82
4,211 20
3,394 90
5,728 02
13454

5 per cts. re.

imbursable

1837,
5 per cts. "
\$700,643 55
3 per cts. "
779,263 06
1,753,252, 22
529,052 62
83,762,256 49

3,885 75

25320

20685
50700

2,545 00

1,500 00
7,768 51
$\$ 605,54865$
2. A statement of the investments of the Erie and Champlain Canal Fund moneys, as the same were on the 18 th of July, 1836, and of which the following is a summary, viz :
in St.,
Bonds, at 5
per cent.,
333,933 59 16,696 67
\$3,931,132 17 \$187,117 08
It is shown by these statements, that the annual interest required to be paid on the jutstanding stock, exceuts, by $\$ 14,078$ 88, the amount of interest receivable annually on the funds invested. After the 1st of July. i837, interest will cease on $\$ 1,350,000$ of the debt: and altnough the surplus fund will be diminished by the withdrawal of this amount from the capital invested, yet after the 1st of July, the interest receivable on the investuent will more than equal the interest payable on the stock of 1845 , if the rate of iuterest on the sum invested continues at 5 , er cent.
The amount of capital invested, it will be seen, exceeds the amout of the principal of the canal debt by the sum of $\$ 168,87568$. Tnere is therefore a sufficient provision nade for any deficiency that may arise from r. diuinution of the rate of interest on the noncys invested; and in addition to this, the public creditor has a certain resource igainst any casulty that may impair the caital invested, in the ample revenues from the tolls of the canals, which are still pledged by the constitution for the final payment of ill moncys borrowed for the construction of the Erie and Champlain canals.
Tue amendment to the constitution, w'i.ich was ratified in 1835 , provides, that whenever a sufficient amount shall have been collected and invested, to reimburse the money borowed for the construction of the Erie and Champlait Canals, the auction an salt duties shall be restored to the general fund. Since the 18 th of July, therefore, the monies received into the Treasury on account of the auction and salt duties, have not been paid over to the Commissioners of the Canal Fund, but have remained in the Treasury ior the use of the General Fund. The Ca. nal Fund will hereafter be deprived of these two items of revenue, which will diminish the annual resources of the fund about $\$ 350$,000. The auction and salt duties were ransferred from the General Fund to the Canal Fund by the act of 1817, which pro. vided for the commencement of our system of internal improvement; and during a poi
riod of nearly twenty years, these sources of the revenue have yielded to that fund the sum of $\$ 5,647,497 \mathrm{ll}$, being $\$ 392,62641$ more than the whole sum paid lor interest from 1817 to the 30th of September, 1836, on all the money borrowed for the construction of the Erie and Champlain canals.

The expenditures which have been authorised for doubling the locks and enlarging the Erie canal, and the loans which are authorised to be made to the General Fund, will prevent any future accumulation of the surplus Canal Fund moneys beyond the sum invested for the payment of the canal debt.

The Erie and Champlain canals were finished in 1825; and in 182f, arrangements were made for obtaining interest from the banks on the surplus deposites of the Canal Fund. The rapid accumulation of the deposites in the banks, and the probability that the amount might be increased to six or eignt millions of dollars before any portion of the canal debt become payable, occasioned much solicitue ; and the Commissioners finally determined to apply the funds in the banks to the purchase of the stock, by paying a premium for it.

This mcasure was adopted in January, 1833, when the surplus money in the hands of the Commissioners amounted to more than three millions of dollars, and the outstanding debt to $\$ 7,000,13586$; of which debt, the sum of $\$ 3,489,000$ was payable on the 1st of July, 1837.

The Commissioners were so strongly impressed with the importance of applying the surplus funds to the payment of the canal debt, as stated in the annual report of 1834 , that they determined to redeem the stock whenever it could be obtained on such terms as would render the purchase equal to an investment at an interest of $3 \frac{1}{2}$ or 4 per cent. One of the reasons assigned for this measure in the same report was, that the State, in making a small apparent sterifice to effect this object, " gets rid of the hazard incident to the management of three or four millions of dollars; and by gradually possessing itself the stock of 1837 , the serious pressure upon atl the monied operations of the State will be avoided, which might result from allowing the Canal Fund moneys to accumulate in the State banks-to be diffused by them through every department of business -and then to be drawn for on the first of July, 1837, to the amount of three and a half millions of dollars for the redemption of the stock then payable.

If this course had not been adopted, the accumulations of the surplus deposited in the banks would have amounted, at the close of the year for which this report is made, to seven millions and a half of dollars, besides the investments in stocks. And if the sum of three millions six hundred and seventy-three thousand dollars, which has been drawn from the banks and applied to the payment of the canal debt, had remained in those institutions, an expansion of the credit system, beyond that which is now experienced, based upon the deposite of this money, would have been the natural consequence; and with the present indications in England relative to unvestments of capital in the United States, there is every reason to cuppose that a large portion of the origi-
nal stock of 1837, two-thirls of which is held in England, would have been returned for redemption on the first of July next, the payment of which, by drafts upon the banks, must have produced considerable embarrassment in every branch of business winich is dependent upon them for money facilities.
The amount of stock redeemed during the last four years, is as follows, viz:

	Stock.	Premium.	Total paid.
1833,	81,478.376 57	\$87,033 45	\%1,566,310 03
1834,	578,00661	5082348	633,830 06
1835,	:706.943 49	70,217 09	782,160 55
1836,	645,476 46	40,259 14	685,735 60
	418,802 13	54,233 14	83,673,036

Of the stock redeemed as given above, the sum of $\$ 2,136,524 \quad 37$ was reimbursable in 1837, and the sum of $\$ 1,281,27876$ was reimbursable in 1845: It was shown by the annual report of 1833 , page 40 , that the total amount of stock then outstanding, and reimbursable on the 1st of July, 1837, was
Deduct amount of stock re-
deegmed since,
2,136,524 57
And it reduces the sum pay-
able in 1837, to
\$1,352,475 63
It is probable that one-third of this stock will be returned for redemption, between the close of the fiscal year and the first of July, 1837. And if the whole of the residue should be presented for redemption on the first of July, the arrangements which have been made to draw the amount required ratably from a capital of nearly four millions of dollars, distributed among fiftysix banks, will enable the Commissioners to cancel the debt of 1837 , without inconvenience to the business operations of the state, or the banks which have the surplus Canal Funds in deposite.
Management of the Canal Fund Moneys.
In the annual reports for 1833 and 1835, the measures adopted by the Commissioners with a view to the profitable investment of the surplus Canal Fund Moncys, are fully detailed. To those reports the legislature is respectfuly referred for a history of the management of these moneys from 1826, when the surplus began to accumulate until 1835.

The amount received annually for interest on the moneys deposited in the bank for eleven years, is as follows, viz:
Received for interest

on deposites in	1826	$\$ 4,515$	40	
do	do	1827	4,987	96
do	do	1828	7,281	20
do	do	1829	7,576	30
do	do	1830	24,000	17
do	do	1831	3,710	31
do	do	1832	84,619	15
do	do	1833	122,236	74
do	do	1834	117,092	00
do	do	1835	148,289	62
do	do	1836	162,176	32
			$\boxed{\$ 718,476}$	17

In addition to the interest paid by the banks, as given above, there has been received for interest on investments in stocks, the sum of $\$ 124,69985$:-Thus showing that the Canal Fund has been increased by the interest on the deposite and loan of sur-
plus, to the amount of $\$ 843,17603$. It is estimated that the receipts from interest on the surplus moneys for the ensuing year will amount to the sum of $\$ 187,000$.

To enable such of the Banks in the city of New. York as held Canal Fund deposites, to avail themselves of the provisions of a law passed at the last session of the legisla. ture, which authorised them to use loans for twelve months as capital, the Commissioners offered to all the banks an extension of their loans to the 1st of July, 1827, on condition that the rate of interest should be raised to 5 per cent. The banks generally acceded to this proposition, and several new loans were made to the banks in the city of New. York on the same terms.
On the 19th of September, the Comptroller issued a circular to the cashiers of the several banks which have the Canal Fund noneys in deposite, showing the amount of the outstanding canal stock, the time of its redemption, the condition of the moneys provided for its reimbursement, and the drafts which might be made upon the $4 \frac{1}{2}$ per cent. deposites during the current year, and offering to draw ratably upon all the banks, providing those holding loans and deposites at $4 \frac{1}{2}$ per cent., would thereafter pay interest at the rate of 5 per cent. A copy of the circular is appended to this report, and marked W. Most of the banks have acceded to the terms proposed in the circular, and have executed agreements to pay interest at the rate of 5 per cent., commencing on the lst of October, 1836. The whole amount of the surplus on loan at 5 per cent. on that day, it is ascertained will be $\$ 3,220,000$. Add to this sum invested in 5 per cent. State stock, and a 5 per cent. loan to the city of Albany, amounting together to $\$ 333,93359$, and it will show a total investment at 5 per cent., of
$\$ 3,554,369.81$
The total sum invested at 5

> per cent., as shown by
the last annual report,
was
1,099,833 59
Increase of investments at
5 per cent., for the year, $\$ 2,451,73622$
The final redemption of the Erie and Champlain Canal debt being now provided for, the occasion is embraced to present a condensed view of the operation of the system of finance which was adopted in the act of 1817, "respecting navigab'e communica. tions between the great western and northern lakes of the Atlantic Ocean;" and by means of which system, the necessary sums have been provided, not only for all the current disbursements connected with the ca. nals, but also to reimburse the whole of the debt contracted for the construction of the Erie and Champlain Canals, nine years sooner than the period fixed for the payment of the second or last instalment of the canal debt. A table had been prepared and is annexed, marked U, which shows the amount of money received by the Commissioners of the Canal Fund, and the source of the revenue, for a period of 20 yeass, and also shows the payments for the same period, and the objects to which the moneys were applied. The table referred to presents the
following results, following results, viz :

Received by the Commissioners from 1817 to 1836.
Avails of loans exclusive of premiums,
Premium on loans,
Tolis,
Vendue duty,
Salt duty,
Steamboat tax,
Sales of lands,
Interest on investment of surplus,
Rent of surplus water,
Other receipts,
\$7,672,782 24 223,308 76 12,489,220 33
3,592,039 05
2,055,458 06
73,509 99
99,932 20
846,532 04
16,532 68 28,307 90
\$27,097,683 25
Paid by the Commissioners.
To Canal Commissioners, $\quad \$ 9,977,94430$ For interest,

5,254,878 70
Western inland and lock - navigation company,

Notes of Myron Holley,
155,718 52
Miscellaneous payments,
Superintendants of canal repairs,
Extinguishment of cana!
debt,
17,155 91
185,922 70
3,019,146 79
4,423,571 40
\$23,041,329 32
Balance in the hands of the
Commissioners, 30th
September, 1836,
\$4,066,353 93
The act of 1817, which created the Board of Commissioners of the Canal Fund, and authorised money to be borrowed for the construction of the Erie and Champlain canals, expressly set apart and pledged for the payment of interest and reimbursement of the principal of the money bormwed, the auction and salt duties, a tax on steamboat passengers, and all the tolls to be derived from the canals. The sanction of the Constitution of 1821 was added to this pledge, and in it the Legislature was prohibited from selling any of the works from which the Canal Fund revenues were derived, or reducing those revenues below a fixed standard, or diverting any portion thereof from the original object for which they had been set apart.

With a system of finance thus wisely ar. ranged and strongly guarded, nothing could prevent the prosperous result which its founders anticipated, if the plan was followed out by a judicious system for the collec. tion, safe keeping, and faithful application of the ample revenue which had been provided. In this particular, the interest of the Canal Fund has been protected with unexampled success; and the intentions of its establishment, thus far, have been fully carried out. Since the present system for the collection of tolls was put in operation, in 1826, there has been collected and paid into the treasury, by the numerous agents on 435 miles of ca nal, (including the tolls of 1836, not embraced in the preceding statement,) about thirteen millions and a half of dollars, without the loss to the fund, by the defalcation or misconduct of the collecting agents, of a single dollar. During the same period there has been applied to the payment of, the sum of $\$ 1,423,57140$, and the sum of \$3,931,132 17 has been collected and set apart for the final extinguishment of all the outstanding debt

Oswego Canal.

Paid for repairs and interest on debt
Receipt for tolls and lands,
Deficiency drawn from the treasury,

Cayuga and Seneca Canal.
Paid for repairs and inter. est,
Received for tolls,
38,201 78
18,539 08
Deficiency paid from the treasury,

819,662 70

Chemung Canal,

Paid for repairs and interest on debt,

25,423 19
Received for tolls,
4,315 49
Beficiency paid from the treasury,
\$21,107 70 Crooked Lake Canal.
Paid for repairs and interest on debt.

11,332 93
Received for tolls,
Deficiency paid from the treasury,

1,528 65

Chenango Canal.
Balance in hands of Com. missioner, 30th September, 1835,
Received from loans during the year ending 30th Sept. 1836,

Paid in' constructing canal,
For interest on debt,
Advertising for loans,
\$177,872 21

A
On the 16 th of August the Commission. ers advertisied for a loan of $\$ 470,000$, being the residue of the amount which they were authorised to borrow for the completion of the Chenango canal. The 31st of August was the day designated for opening the proposals for this loan, but not a single offer was received, and the Commissioners were net able to negociate a loan for the whole or any part of the sum required, at par, on a 5 per cent. stock, reimbursable after the year 1845.
The condition of the money market in England, and the indications there of a disposition to discountenance investments in American stocks, had the effect to deter bidders from taking the loan: and this is readily explained by the fact that four-fifths of the loans for the Erie and Cnampiain Canal Fund are held in England.

Of the loans subsequently made, it is believed that four-fifths of the whole amount is aeld in England. If this state of things in regard to the money market continues, it may become necessary, in order to obtan money, to issue a 6 per cent stock. And it is respectfully submitted to the consideration of the legislature, whether discretionary authority shall be given to the Commissioners of the Canal Fund, to issue a stock bearingan
interest of 6 per cent. if they are unable to borrow at 5 per cent.

After the failure of the loan of $\$ 470,000$, is belore stated, the Commissioners had no ilternative but to make a loan to the Cheaango canal from the surplus funds in their rands belonging to the Erie and Champlain Canal Fund. The contracts for the Chenango canal had all been made, and were rapidly approaching completion, and payment for these contracts could not be delayed without great injustice to the contractors, and the imputation of bad faith on the part of the State. The Commissioners therefore concluded to make a temporary loan to this canal at 5 per cent. interest, to be reimbursed as soon as money can be obtained on the stock authorised to be issued for the Che. nango canal.

General Summary of the Direcl Revenue from all the Canals, and the expenses of

 their maintenance.The revenues derived immediately from the canals during the fiscal year, and the expenses of their mantenance are as follows, viz:

Revenue from Tolls.	
Erie and Champlain canals,	81,551,057 18
Oswego canal,	29.68493
Cayuga and Seneca canal,	19,997 34
Citemung canal,	5,078 37
Crooked Lake canal,	1,953 90
	\$1,607,771 72

Expenditure for Repairs and the collection of Tolls.
Erie and Champlain canals, $\$ 425,53939$ Oswego canal, 49,894 99 Cayuga and Seneca canal, 28,060 04 Chemung canal, $\quad 16,66104$ Crooked Lake canal, $\quad 5,74497$

8519,90042
Surplus of the revenue of the canals from tolls, over and above the cost of their maintenance,

81,087,871 30
The surplus above given exceeds the ag. gregate of the balance of the surplus, as shown by those statements, in precisely the amount paid for interest on the canal debts, which is not included in the foregoing.

REPORT OF THE BURVEY OF THE ROANOKE dantille and junction railroad. by walter gwynn, engineer.
To the Subscribers of the Roanoke, Danville and Junction Railroad.

Gentlemen :-Circumstances well known to you and entirely beyond my control, delayed the commencement of the survey to a season much later than that in which field operations are usually begun. The spring, and the beginning of the suin. mer were unavoidably permitted to pass away : and it was not until the 6th of July that the surveys were commenced. Siaoo then two, and for a part of the time, three parties have been employed in the field, and in making the necessary oalculations, and I now have the honot to lay before yau the result of their labors.

For my guide and instructions in the discharge of the important duties which it was your pleasure to confide to me, I was referred by the Danville commissicners to the charter and to the procesdings of the Danville Convention. Ke-ping them constantly in view, mindful of the responsibility resting on me-an I I may be permi ted to say, with no dispasition to avoid it, I have endeavored stricily to conform to the pledges of the ons, and to the more furmal declaration of the oller. In both, it is made the duty of the Engineer to survey is route for a Railroad frons "points intersecting the Petersburg and Roanoke, the Portsmoath, and Roanoke and the Greensvile and Roanoke Railroads, or to such other points on ejther side of the Roanoke river as may best secure to the proposed route all the alvantages of said roads, through Danville to some point within or near Evansham in the county of Wythe and State of Virginia.
In compliance with the requisition to connect the proposed improvement with the several railroads therein named, the fullowing lines were raced.

The first:-commences at a point on the Weid on and Haliax Railroad, two miles south of Weidon-through this road a connexion can be formed wht tise Portsınouth, and :hrough this 1 ist with the Petersburg and Roanoke railroads-it was then traced along on the ridge between the waters of the Ruanoke and Quanky (a tributary of the Ri, anoke) and 'lar rivers, to the Raleigh and Gaston a ailroad near Mrs. Litle's. This road u :ites with, in fact it is a continuation of the Greensville and Roanoke Railreard.

The longth of this line is 21 miles, 1544 feet, and its cest as follows.

> Excavation,
> Embankment,
> Store Drains,
> Sup-rstructure 21 miles,
> $1,544 \mathrm{ft}$. at $\$ 5000 \mathrm{pr}$ nile,

$\$ 221,120$

106,462
Total, \$327,462
The second line:-commencing at the termination of the Portsmonth and Roanoke railroad at Weldon, proceeds up the valley of the Roaroke to Gaston, where it unites with the Raleigh and Gaston railroad, and through that with the Greensville and Roanoke railroad. It un tes also with the Pe tersburg and Roanoke through the Purtsmouth and Roanoke railroad in the same marner as the first line.

Its lenzth is 11 miles 4700 feet, and the cost as follows :
$\left.\begin{array}{l}\text { Excavation, } \\ \text { Embankmen', }\end{array}\right\} \$ 152,91505$
\$152,015 05
Superstructure, 11 miles,
4,700 feet, at 5000 pr mile,
59,450 75
Total, \$212,365 80
The third line-commences at the Portsmouth and Roanoke railroad, a quarter of a mile from the point wh re it crosses the Petersburg and Roanuke railroad, thence running about ha fa mile it unites with thi: last road, thence it pursues, in gene al term: the trace of the ridge dividing the waters oi
the Roanoke, Jack swamp, and Fontain's Cheek, until a junction is formed with the Greensville and Roanoke railroad, thu uniting with all three of the railroads named in the proceedings of the Danville Convention, and in the charter.
The length of this line is 14 miles, 1,440 feet, and is probable cost, for

Excavation,
$\$ 73,107 \quad 77$
Culverts and Drains, \}
Superstructure, 14 miles,
1,440 feet at $\$ 5000$ prinile,
71,363 63
Total, \$144,471 40
The maps herewith presented elucidate the subject more fully, and together with the cost of the different lines, will enable the Company to whom I consider the question properly belongs, to decide which, of the plans submitted is preferable. I would here state in connexion with this subject, that should the Ridge route to Danville, prove more eligible, the route of your railroad would be identical with the Raleigh und Gaston railroad for a distance of 31 miles, 4,120 feet, should the first line be adopted, 42 miles, 4.120 feet, should the second line be preferred ; and should a preference be given to the third line, the route of the Greensville railroad would be pursued 4 miles, 75 feet, to the Roanoke river, and thence the Raleigh and Gaston railroad to Chalk Level, a distance of 42 miles, 4,123 fect.all which will be rendered more plain by reference to the map.

From the railroads on the Roanoke connected as above, to $\mathrm{D}_{\text {innille, two routes }}$ present themselves. One on the ridge dividing the waters of the Roanke fom those of the Tar, the Neuse, and the Cafe Fear rivers-the other along the valley of the Roanoke river, bctin of which should be surveyed preparatory in the location. The (:יst, grades, and curvatures cannot be compared with the accuracy, the importance of the sulject demands, without an accurate instrumental survey.

Ir. deciding upon the route for the preliminary survey, I was influenced mainly by the importance of presenting at as early a day as possible, some data, from which the practicability of the work might be inferred. Apprehensive of the health of the party in the valley of the river, I determined upon surveying the ridge route first. The justness of my apprehensions may be inferred from the fate of the Engineers employed in the valley of the Potomac river, which we may presume is nut more unhealthy than that of the Roanokn.
The president of the Baltimore and Ohio ailroad company, in his report to the stockolders, says: "In the month of August last he brigade employed on the Potomac, above Harper's Ferry, was broken up by the illless of nearly every one of its members. wing to the unhealthiness of the region it vaich they were at work. Protracted indisosition ensued, and it is only recently that ue brigade has been organized. The counry on the Potomac will not be sufficiently ealthy for the brigade to resume its labor. sere before the 1st of November.
The same results were to bo apprehended
in the valley of the Roanoke, which would have occasioned a delay in presenting the estimates that might have operated injuriously on your interests. I have been thus particular, in order that it may not be infer. red from the fact of the ridge route being first traced, that I have on this account given it a preference in my own mind.

Without further touching the points of comparison, I would however remark, that they must greatly preponderate in favor of tae ridge route, to justify its undulatory profile and greater 'ength, it being 172 miles, 2025 feet long, and the river route, by Mr. Brigg's survey, only 132 miles. Leaving therefore, the relative merits of the two routes to be set forth at a futnre day, by the locating engineer, suffice it to say, that the practicability of the rallroad, may be asserted of either.

We will now confine our remarks more particularly to the ridge route, upon which our estimates are based. This route as I have before observed, will be identical with the Raleigh and Gaston railroad, to Chalk Level, the notes of winich, from the point of intersection at Mrs. Littlo's, were politely tendered by Messrs. Garnet and Herron, and accepted by Mr. Pendleton the assistant engineer, at the time in charge of the party.
From Chalk Level, the route pursues the ridge, dividing the waters of the Roanake fom those of the Tar, the Neuse, and the Cape Fear rivers, to the head of Country Line Creek-thence it was traced on the ridge between Muon's and Hogan's Croeks (both tributaries to the Roanoke) passing near Lennox Castle to Mr. W. H. Nunna. ly's where it crosses Hogan's Creek, and thence it is continued on the ridge between Dan river and Hogan's Creek to Danville.

With the exception of a grade of 60 feet to the mile near Roxboro', and at the cross. ing of Hogan's Creek, where grades as steep as 65 feet per mile are encountered (but which may be lessened by crossing higher up, lengthening the road, however, a mile or two, the route may be considered as very favorable. Its most striking feature is its exemption frum bridges; Hogan's Creek being the only strean which it crosses, Excepting the above, the grades, on this portion of the road may be readily overcome by lo. comotives drawing a train of 50 tons, at the rate of 15 miles per hour.
Careful examinations were made with the view of leaving the ridge in the neighborhood of Roxboro', and falling into the valley of the Dan, near Milton, and thus avoid the great detour around the head of Country Line Creek, but no discovery of a route was made, considered at all practicable.
The cost of the railroad to Danville, by whatever plan of junction with the roads on the Lower Roanoke, may be adopted, may be safely stated as follows.

Excavation,

Embankment,
Bridges and Culverts, $\}$
Superstructure, 172 miles,
2,025 feet at $\$ 5000 \mathrm{pr}$. mile,
\$1351,754

861,917

\$2,213,671

No deduction is made in the above, for the portion of the Raleigh and Gaston rail? road, which may be used in common.

The cost of the road is based on the follow. ing plan of

CONSTRUCTION.
Width of Road.bed.-The graded surface of the road in excavations to be 18 feet, and the slopes 45°. The graduated surface of the embankments to present a uniform width, of 13 feet, with side slopes of $33 \frac{1}{3}$ or $1 \frac{1}{2}$ base to 1 perpendicular.
The Superstructure, to consist of sills of stone, white oak, locust, chestnut or pine, whichever may be most convenient, 10 by 10 inches, and 8 feet long. If practicable, the timbers, before they are used, should be well seasoned and charred.
They should be laid on foundations five inches below the graded surface of the road, well consolidated by ramming; and when there is danger of frost, on broken stone bedded below its reach, four feet apart from centre to centre. The rails should be of the best heart pine, white oak, or chestnut, 6 by 6 inches, and 16, 24 or 25 feet long, planned on the upper surface, bevilled off, both on the inner and cuter edge, leaving a smooth flat bearing for the iron rail. The object of the bevil is to cast off the water more readily from the surface of the rail, and also to throw the bearing more on the centre.

The rails to be guaged to a uniform size, and covered with a good coat of boiled tar at their bearings on the sills, to which they should be secured by a tre-nail, and by wooden knees bedded in tar, and neatly fitted to the rails on each side. When stone sills are used, iron should be substituted for the knees.

The iron plate to be $2 \frac{1}{2}$ inches wide, by $\frac{3}{3}$ of an inch thick, fastened to the rail by spikes 5 inches long, and $\frac{3}{8}$ of an inch in diameter, driven through countersunk poles, 18 inches apart. The ends of the plates will be prevented from sinking into the rail by placing under them pieces of iron 6 inches long. $2 \frac{1}{2}$ inches wide, and $\frac{1}{4}$ of an inch thick. Tae width of the track should be 4 feet $8 \frac{1}{2}$ inches in the clear.

It is thought that by this mode of con. struction, the timbers will last much longer than in the ordinary plan of notching and keying the rail into the sill, in which case it can never be fitted so as entirely to exclude moisture, which occasions decay at the bearing both of the rail and sill,long before there is any indication of it elsewhere. By the plan here proposed, the rail rests on the top of the sill, is 5 inches above the graded surface of the road, and can be fitted to it through the intervention of tar, so as to be entircly impervious to moisture ; and from its high and dry situation above the ground, should any by possibility find its way between it and the sill, it receives the sun most favorably to its speedy evaporation.
And by the favorable exposure of the knees (on the top of the sill) they become heated entirely through by the sun, and thus evaporate any moistare which may get under them, and keep the timbers dry, and preserve them from decay.
the route between danville and evan. sham.
About midway between these places, the range of the Alleghany mountains stretc. across the route of the railroad. The coun try embracing the approach of the railroac to the mountains from the east, is peruliarly
characterised by well defined ridges between the Sandy and Banister rivers, the Blackwater and Pig rivers, the Sandy and Smith rivers, and the Smith and Dan rivers, by their favorable direction, by ihe beautiful aspect of the valleys of the streams, present. ing, with but few exceptions, wide and cultivated flits, and by the renarkable depression in the mountain as the common sources of the tributaries to these water-sources, and the tributaries to the streams which flow into New River. On the west of the mouutain, hills, mountains and valleys, disposed, as it were, by accident, and alternating with each other in rapid succession, give varicty and beauty to the prospect. Tne course of the streams although devious, approach in gen. eral the direction of the line of the railroad. The valleys are generally narrow, and occasionally bounded by abrupt hills and precipices. An elegible route, however, can be obtained along them, both as respects grades and curvatures.

Passing New River, we immediately enter the great limestone valley of Virginia, a rolling country occasionally studled with aills and presenting many embarrassments in the location of the road.

For the beauty of its aspect, richness and fecuadity of its soil and salubrity of its climate, this region is not surpassed by any portion of the State. Limestone the prevailing rock of this section, is found every where abundant and convenient.
The timber growth consists principally of oak, hickory and walnut. In the mountain, the growth, in addition to the above, com. prises the chestnut, locust, maple, pine and cucumber trees. Sand-stone and rocks of a flinty and slaty structure, occur throughout the whole region from Danville to New River. Timber and rock adapted to the construction of the road, may be had almost every where conveniently.
The geographical features of the country indicate three routes for the proposed railroad.
The first passes along the ridge betwee , Sandy and Banister River:, crosses Pig River just below the mouth of Snow Creek, thence on the ridge between Blackwater and Pig Rivers, and after passing Grassy Hill near Franklin Court House, it descends to Riackwater-thence up Blackwater and Daniel's Run to the summit of the mountain thence, in general terms, down Little River to New River, and a'ong New River, Draper's valley and Reed Creek to Evansham.
The second, ascends along the valleys of the Dan and Smith's rivers and Rock CastlCreek, and crosses the Alleghany at Mawbrey's Cap; thence it descends Laurel Fork and Big Reed Island Creek, to New Riverand thence up New River and Reed Creek, to Evansham.
The third, passes along the Dan River up to the mouth of Archy's Creek to a plateau called Cnalk Level, which it crosses and then descends Clark's Creek to the Arrarat, lown the Arrarat to Loving Creek, and thence ascending along Loving Creek and Jassing near Mount Airy, it falls into the ralley of Paul Creek, which it ascends to its ource, at a depression in the mountain callsd the Buffalo trace, thence it descends along Little and Big Reed Island Creeks to New

River, and thence to Evansham as in the preceeding route.

In deciding the question at this time of choice between these routes in a profession. al point of view, it is only necessary under the peculiarity of the formation of the coun. try, to submit them to the following very ob. vious principle :

W bich route affords the mo it uninterrupted and greatest aggregate descent (the grades of course being limited) in the direction of the heaviest traffic.

The application of this principle will give a result greatly in favor of the second route which takes its course through Mawbrey's Gap. On this there will be found no descent westward, except the descent from the mountain which appertains to each route. while on both of the other routes an uadulatory profile is encountered, with cousidera. ble descents towards the mountain, and con. sequently ascents in the direction of the heaviest traffic.

The second route possesses the advan. tage also of being shorter than either of the others.
In deciding on the route upon which to base my estimate of cost and practicability, [was influenced by the following coasidera tions.

That previously to the location of the road and as preliminary thereto, it would ba necessary to survey each route and make an accurate comparison of their relative advantages: nothing short of this, woald satisfy the public mind and eaable the sixckholder3 to decide upon the line of the road. And with the view of cutting off the angle formed between the Dan and Smith's river at their confluence, I would direct the attention or the locating Engincer, to the beautiful ridge between Sandy and Sinith's rivers. In teed it rarely happens that in a country like this under consideration, the Eagineer is so fortunate as to find his observation confined to so few routes. In selecting tie liae of railway between Washington and $\mathrm{B}_{\text {Iltimose }}$ only 40 miles in length, it was found neces. sary to survey in the minutest manner no less than twelve distinct routes besides tra. cing the water courses and makiag innume. rable offsets to the right and left of the vari. ous lines; and for the Boston and Providence railroad the experimental surveys embrace eleven routes.
Having determined then in my own mind, that to enable those interested to decide upon the merits of these routes, an actual survey of them would be indispensable, the selection of one for the preliminary survey would seem therefore to be rendered a question of but little moment.
In relation to the second ruute, although I have expressed my opinion in favor of its greater eligibility, I did not think it prudent in the incipiency of the undertaking to select it for the basis of my calculations; because it had been reported upon by the late eminent Engineer of the State, as rather unfavorable for a turnpike. Although it is well known to many of you that the survey upon which bis estimate was based was made in the most cursory manner, by one of his assistants, and that the ground was not examined by Captain Crozet-yet the report of so distinguished
an Engineer, however erroneous from the incorrectness of the data furnished by his assistants, and for which he could nit in the mul iplici y of his duties be held responible, might have been seized upon and handled by those in favor of other routes, and by those unfriendly to the scheme, to its serious injury. I would here take occasion to say that the estimates of Capt. Crozet as far as they have been tested, have proved to be as correct as those of any Engineer in the Country; and I would place the most implicit confidence in any estimate of his. based upon operations conducted by him in person, or of sufficient importance to command his particular attention.
For the reasons stated, my decision was narrowed down to a choice betweon the first and thind routes. These equally circuitous, and presenting, with the exception of the Euffalo trace, which is the nost favorable pass-about the same objections in the profiles. I could not hesitate in selecting for the prelininary survey, the route which would penetrate farthest into the State of Virginia.
The first route therefore, is the one from which I infer the cost of the rallonal from Danville to Evansham. By the survey, its total length is 137 miles, 2,365 fcet, which I shall divisle intu Eastern, Mountain, and Western Divisions.
(Contitued in our nexs.)

The following extract from Ure's Philosophy of Manufactures, (a work but little known in this country,) will be found to contain much useful knowledge for the practical and theoretical mechanician.

From Ure's Plitosophy of Manufactures,
GENERAL VIEW OF MANUFACTURING INDUSTRY.
Manufacture is a word, which, in the vicissitude of language, has come to signify the reveree of its intrinsic nueaning, for it now denotes every extensive product of art, which is made by machinery, with little or no aid of the human hand; so that the most perfect manufacture is that which dispenses entirely with manual labor. The, philosophy of manufactures is therefore an exposition of the general principles, on which productive industry should be conducted by self-acting machines. The end of a manufacture is to modify the texture, form, or composition of natural objects by mechanical or chemical forces, acting either separately, combined, or in succession.Hence the autumatic arts subservient to general cominerce may be distinguished into Mecbanical and Chemical, according as they modify the external form or the internal constitution of their subject matter. An indeffinite variety of objects may be subjected to each system of action, but they may be all conveniently classified into animal, vegetable, and mineral.

A mechanical manufacture being commonly occupied with one substance, which it conducts through metamorphoses in regular succession, may be made nearly putomatic; whereas a chemical manufac-
ture depends on the play of delicate affinities between two or more substances, which it has to subject to heat and mixture under circuinstances somewhat uncertain, and must therefore remain, to a corresponding extent, a manual o eration. The best example of pure chemistry on self-acting principles which I have seen, was in a manufacture of sulphuric acid, where the sulphur being kindled and properly set in train with the nitre, atmospheric air, and water, carried on the process through a labyrinth of compartments, and supplied the requisite heat of concentration, till it brought forth a finished commercial product. Tho finest model of an automatic manufacture of mixed chemistry is the five-colored calico machine, which continuously, and spontaneous.y, so to speak, prints beautiful webs of cloth with admirable precision and speed. It is in a cotton mill, however, that the perfection of automat.c industry is to be seen; it is there that the elemental powers have been made to animate millions of complex organs, infusing into forms of wood, iron, and brass an intelligent agency. And as the philosophy of the fine arts, poetry, painting, and music may be best studied in their :ndividual master-pieces, so may the philosophy of manufactures in this its noblest creation.

There are four distinct classes of textile fibres, cotton, wool, flax, and silk, which constitute the subjects of four, or, mole correctly speaking, five distinct classes o factories ; first, the cotton factorics; second, the woollen; third, the worsted; fourth, the flax, hempen, or linen; and fifth, the silk. These five fartories have each peculiarities proceeding from the peculiarities of its raw mate: ial and of its fabrics; but they all possess certain fimily fo atures, for they all empl y torsion to convert the loose slender fibres of vegetable or animal origin into firm coherent threads, and, with the exception of silk, they all employ extension also to attenuate and equalize these threads, technically styled yarn. Even ne kind of silk which nccurs in entangled tufts, called floss, is spun like cotton, by the simultaneous action of stretching and twisting.

The above-named five orders of factories are, throughout this kingdom, set in motion by slears-engines or water-wheels; they all give employment to multitudes of children or adolescents; and they have therefore been subjected to certain legislative provisions, defined in the Factories LeguIG:ion Act, passed by Parliament on the 29th Angust, 1833.
It is probable that 614,200 work-people are constantly engaged within the factories of the United Kingdom : of which number 561,900 belong to England and Wales; 46,825 to Scotland ; and 5,475 to Ireland.* Fully five-tenths of them are under twentyone years of age, and three-tenths of these young persons are females. It must be remembered, however, that besides these

[^6]614,200 inmates of factories, a vast population derives a livelihoed fiom the manulactures of cotton, wool, flax, and silk, such as the hand-weavers, the calico-printers ant dyers, the frame-work knitters, the lace-makers, lace-runners, muslin-sewers, \&c. \&c.

It appears from the Parliamentary Returns of 1831, that in Great Britain, out of a total population of $\mathbf{1 6 , 5 3 9 , 3 1 8}$ persons, there are of
Agricultural Laborers and Laboring Occupiers,
$1,055,982$, and of

Manufacturing Labor-

ers,

404,317
Whence there are 1000 agricultural to 383 strictly manufacturing laborers.
Persons employed in retail trade, or in handicraft, as masters or workmen,

1,159,867

Total adult persons em-

 ployed in arts and trades,1,564,184 being about fifty per cent. more than those ens gaged in agriculture.
The capitalists, bank-
ers, professional and
other educated men amout to

214,390
Laborers non-agricultural to

618,712
If we include in the agricultural department, the occupiers employing laborers, (few of whom, however, work,) we shall have to add

187,075
1,055,057
The total sum of Agriculturists is
$1,243,057$, being
only 80 per cent. of the adult males employed in manufactures, arts, and trades.
When we take into account the vastly greater proportion of young persons constantly occupied with factory lator, than of those accupied with agricultural labor, we shall then be led to conclude that at least double the amount of personal industry is engaged in the arts, manufactures, and trade, to what is engaged in agriculrure. Considerably upwards of one-tenth of the population of this island is actually employed in manufactures ; and probably litile more than one-fifteenth in agriculture, This conclusion ought to lead our legislative landlords to treat the manufacturing interests with greater respect than they have usually been accustomed to do. If we consider, moreover, how much greater a mass of productive industry a male adult is equivalent to, in power-driven manufacturez, than in agriculture, the balance in favor of the former will be greatly enhanced.

France, which has for upwards of a century and a balf tricd every scheme of public premium to become a great manufacturing country, has a much less propor.
tion than one employed in trade for two
employed in agriculture. M: Chsrles Dupin, indeed, has been led by his researches into the comparative industry of France and of the United Kingdom, to conclude that the agricultural produce of our country amounted in value to 240 millions sterling, and that of his otivn to 180 millions sterling, being the ratio of three to two ; and that our manufacturing power is inferior to that of France in the proportion of sixty-three to seventy-two; or as seven is eight. There can be no doubt that his agricultural estimate underrates France, as much as his manufacturing estimate underrates Great Britian.

This Island is pre-eminent among civilized nations for the prodigious development of its factory wealth, and has been therefore long viewed with a jealous admiration by foreign powers. This very pre-eminence, however, has been contemplated in a very different light by many influential members of our own community, and has been even denounced by them as the certain origin of innumerable evils to the people, and of revolutionary convulsions to the state. If the affairs of the kingdom be wisely administered, I believe such allegations and fears will prove to be ground. less, and to proceed more from the envy of one ancient and powerful order of the commonwealth, towards another suddenly grown into political importance than from the nature of things.

In the recent discussions concerning our factories, no circumstance is so deserving of remark, as the gross ignorance evine ed by our leading legislators and economists, gentlemen well informed in other respects, relative to the nature of those stupendous manufactures which have so long provided the rulers of the kingdom with the resources of war, and a great body of the people with comfortable subsistence ; which have, in fact, made this island the arbiter of many nations, and the benefactor of the globe itself.* Till this ignor ance be dispelled, no sound legislation need be expected on manufacturing subjects. To effect this purpose is a principal, but not the sole aim of the present volume, for it is intended also to convey specific information to the classes directly concerned in the manufactures, as well as general knowlenge to the community at large, and particularly to young persons about to make the choice of a profession.
The blessings which physico-mechanical science has bestowed on society, and the means it has still in store for ameliorating the lot of mankind, have been too late dwelt up. on; while, on the other hand, it has been accused of lending itself to the rich capitalists as an instrument for harassing the poor, and of exacting from the operative an accelerated rate of work. It has been said, for example, that the steam-engine now drives the powerlooms with such velocity as to urge on their attendant weavers at the same rapid pace; but that the hand-weaver, not being subject-

[^7]ed, to this restless agent, can throw his shuttle and move his treddles at his convenience. There is, however, this difference in the two cases, that in the factory, every member of the loom is so adjusted, that the driving force leaves the attendant nearly nothing at all to do, certainly no muscular fatigue to sustain, while it procures for him good, unfailing wages, besides a healthy workshop gratis : whereas the non-factory weaver, having everything to execute by muscular exertion, finds the labor irksome, makes in consequence innumerable short pauses, separately of little account, but great when added together ; earns therefore proportionably low wages, while he loses his health, by poor diet and the dampness of his hovel. Dr. Carbutt of Manchester says, "With regard to Sir Robert Peel's assertion a few evenings ago, that the hand-loom weavers are mostly small farmers, nothing can be a greater mistake; they live, or rather they just keep life together , in the most miserable manner, in the cellars and garrets of the town, working sixteen or eighteen hours for the merest pittance."*

The constant aim and effect of scientific improvement in manufactures are phiianthropic, as they tend to relieve the workmen either from niceties of adjustment which exhaust his mind and fatigue his eyes, or from painful repetition of effort which distort or wear out his frame. At every step of each manufacturing process described in this volume, the humanity of science will be manifest. New illustrations of this truth appear almost every day, of which a remarkable one has jnst come to my knowledge. In the woollen-cloth trade there is a process between carding and spinning the wool, called slubbing which converts the spongy rolls, turned off from the cards, into a continuous length of fine porous cord. Now, though carding and spinning lie within the domain of automatic science, yet slubbing is a handicraft operation, depending on the skill of the slubber, and participating therefore in all his irregularities. If he be a steady, temperate man, he will conduct his business regularly, without needing to harass his juvenile assistants, who join together the series of card rolls, and thus feed his machine; but if he be addicted to liquor, and passionate, he has it in his power to exercise a fearful despotism over the young pieceners, in violation of the proprictors benevolent regulations. 'This class of operatives, who, though inmates of factories, are not, properly speaking, factory workers, being independent of the moving power, have been the principal source of the obloquy so unsparingly cast on the cotton and other factories, in which no such capricious practice or cruelties exist. The wool slubber, when behind hand with his work, after a visit to the beer-shop, resumes his task with violence, and drives his machine at a speed beyond the power of the pieceners to accompany; and if he finds them deficient in the least point, he does not hesitate to lift up the long wood. en rod from his slubbing.frame, called a billyroller, and beat them unmercifully. I rcjoice to find that science now promises to rescue this branch of the business from handicrafi caprice, and to place it, like the rest, under the safeguard of automatic mechanism. The

Letter of 3rd of May, 1833, to Dr. Hawkins in his Medical Report, Factory Commission, p. 23:.
details of this recent invention will be given in describing the woollen manufacture.

The processes that may be employed, to give to portions of inert matter, precise movements resembling those of organized beings, are innumerable as they consist of an indefinite number and variety of cords, pulleys, toothed-wheels, nails, screws, levers, inclined. plares as well as agencies of air, water, fire, light, \&c., combined in endless modes to produce a desired effect. Ingenuity has been long exercised on such combinations, chiefly for public amusement or mystification, without any object of utility. In ancient times the statue of Memnon was celebrated for emitting harmonious sounds at sun-rise, and acted probably by concealed organ-pipes. The flying pigeon of Archytas was more manifestly an automatic mechanism, as it performed all the motions of an animal ; and likewise the Android of Albert the Great, which opened a door when any one knocked, and muttered certain scunds, as if speaking to the visiter. - The brass heads, or conversible busts of Abbe Mical, were probably a simple acoustic experiment on the transmission of sounds through tubes, like the Invisible Girl. More recently the fute-player of Vaucanson has puzzled the world. It presented the appearance of a human figure of the ordinary size, seated on a piece of rock, supported on a pedestal four feet and a half high. By the movements of its lips, fingers, and tongue, it modified the tones of a flute, and executed twelve different airs on the instrument. Vaucanson constructed also a drummer, which played on a flute with a three holed mauth piece, no less than twenty airs. Standing upright on a pedestal, dressed like a dancing shepherd, holding its flageolet in one hand, and a rod in the other, it beat the drum at one time in single taps, and at another in a long roll, as accompaniments to the flageolet tune. This automaton seemed ta be truly the animated leader of the pleasures of a ball, skilful in augmenting or diminishing the breathing sounds of its instrument, with equal precision and taste.

The duck of the same celebrated mechan. ician, not only imitated the different movements of this animal, drinking, gabbling, swallowing, \&c., but alsa represented faithfully the structure of the internal viscera for the digestion of the food. The play of every. part necessary to discharge these functions was imitated to the life ; for the duck drank, dabbled in the water, stretched out its neck to take grain when offered to it in the hand, drew back its head again to swallow it, doubled the quickness of the masticating movements in passing the grain into the stomach, like the living duck, which always swallows its food very hastily. The grain was then ground in the gizzard, as preparatory to digestion; and finally subjected to excrementitious actions. Its wings, neck, head, and whole frame, were imitated botte by bone, and arranged in their natural form and order. When once wound up, the duck went through all its vital evolutious without needing to be touched. These machines were purchased by Professor Bayreuss, of Helmstadt.

The chess-player of M. Maclzel, now under exhibition at Paris, and formerly shown in this country, has been often described. It initates very remarkably a living being, en-
dowed with all the resouces of intelligence, for executing the combinations of profound study.

Raisin's automaton harpsichord was found to contain an infant performer.

Self-acting inventions like the preceding, however admirable as exercises of mechanioal science, do nothing towards the supply of the physical necessities of society. Man stands in daily want of food, fuel, clothing. and shelter ; and is bound to devote the powers of body and mind, of nature and art, in the first place to provide for himself and his dependents a sufficiency of these necessaries, without which there can be no comfort, nor leisure for the cultivation of the taste and in. tellect. To the production of food and domestic accommodation, not many automatic inventions have been applied, or seem to be extensively applicable ; though, for modify. ing them to the purposes of luxury, many cu. rious contrivances have been made. Machines, more or less automatic, are embodied in the coal-mines of Great Britain ; but such combinations have been mainly directed, in this as well as other countries, to the materials of clothing. These chiefly consist of flexible fibres of vegetable or animal origin, twisted into smooth, tenacious threads, which are then woven into cloth by being decussated in a loom. Of the animal kingdom, silk, wool, and hair, are the principal textile products. The vegetable tribes furnish cotton, flax, hemp, besides several other fibrous sub. stances of inferior importance.

Wool, flax, hemp, and silk, have been very generally worked up among the nations of Europe, beth in ancient and modern times; but cotton attire was, till sixty years ago, confined very much to Hindostan, and some other districts of Asia. No textile filaments however are, by their facility of production as well as their structure, so well adapted as those of cotton to furnish articles of clothing, combining comfort with beauty and convenience in an eminent degree. Hence we can understand how cotton fabrics, in their endless variety of textures and styles, plain, figured, and colored, have within the short period of one human life, grown into an enormous manufacture, have become an object of the first desire to mankind all over the globe, and of zealous industry to the most civilized states. This business has received its great automatic developement in England, though it was cultivated to a considerable extent on handicraft principles in France a century ago and warmly encouraged by the government of that country, both as to the growth of the material and its conversion into cloth. The failure of the French however to establish a factory system prior to the English is a very remarkable fact, and proves clearly that mechanicnl invention, for which the former nation have long been justly celebrated, is not of itself sufficient to found a successful manufacture.

We have adverted to the mechanisms of Vaucanson. This inventive artisan directed lis attention also to productive ma chines. He constructed one for winding silk as long ago as 1749 ; one for doubling and twisting it in 1751 ; a tapestry loom in 1758 ; another for winding silk in 1770 ; a machine for laminating stuffs in 1757, and a plas of mounting silk mills in $\mathbf{1 7 7 6}$. There can be no doubt as to the value of these in.
ventions, as they were described with merited eulogiums in the above named years by the Academy of Paris. In 1776 he publish. od an account of the Indian mode of weaving ane muslins in the wet state, showing thai is uttention had been turned likewise to the cottón trade.

The term Factory, in technology, designates the combined operation of many or ders of work-people, adult and young, in tending with assiduous skill a system of producrive inachines continuously impelled by a central power. This definition includes such organizations as cotton-mills, flax-mills, silk-mills, woolen-mills, and cer tain engineering works; but it excludes those in which the mechanisms do not form a connected series, nor are dependent on one prime mover. Of the latter class, examples occur in iron-works, dye-works, soap-works, brass-foundries, \&c. Some allthors, indeed have comprehended under the title factory, all extensive establishments wherein a number of people co-operate towards a common purpose of art; and would therefore rark breweries, distilleries as well as the workshops of carpenters, turners, coopers, \&c. under the factory systern. But I conceive thut this title, in its strictest sense, involvs the idea of a vast automaton, composed of various mechanical and intellectual organs, acting in uninterrupted concert for the production of a common object, all of them being subordinated to a self regulated moving force. If the marshalling of human beings in systematic order for the execution of any technical enterprise were allowed to constitute a factory, this term might embrace every department of civil and military engineering ; a latitude of application quite inadmissable.
In its precise acceptation, the factory system is of recent origin, and may clairn England for its birth-place. The mills for throwing silk, or making organzine, which were mounted centuries ago in several of the Italian states, and furtively transferred to this country by Sir Thornas Lombe in 1718, contained indeed certain elements of a factory, and probably suggested some hints of those grander and more complex combinations of self-acting machines, which were first embodied half a century later in our cotton manufacture by Richard Arkwright, assisted by gentlemen of Derby, well acquainted with its celebrated silk establishment. But the spinning of an entangled flock of fibres into a smooth thread, which constitutes the main operation with cotton, is in silk superfluous being already performed by the unering instinct of a worm, which leaves to human art the simple task of doubling and twisting its regular filaments. 'The apparatus requisite for this purpose is more elementary, and calls for a few of those gradations of machinery which are needed in the carding, drawing, roving, and spinning processes of a cotton-mill.

When the first water-frames for spinning cotton were erected at Cromford, in the ro mantic valley of the Derwent, about sixty years ago, mankind were little aware of the mighty revolution which the new system of labor was destined by Providence
to achieve, not only in the structure of British society, but in the fortunes of the world at large. Arkwright alone had the sagacity to discern, and the boldness to prelict in glowiug language, how vastly proluctive human industry would become, when no longer proportioned in its results o miscular effort, which is by its nature fitful and capricious, but when made to consist in the tusk of guiding the work of meshanical fingers and arms, regularly impelled with great velocity by some indefatigable physical power. What his judgment so clearly led him to perceive, his energy of will enabled hirn to realize with such rapidity and success, as would have done honor to the most influential individuals, but were truly wonderful in that obscure and indigent artisan. The main dif ficulty did not, to my apprehension, lie so much in the invention of a proper self.acting mechanism for drawing out and twisting cotton into a continuous thread, as in the distribution of the diffcrent members of the upparatus into one co-operatire body, in impelling each organ with its appropriate delicacy and speed, and above all, in truining human beings to renounce their desultory habits of work, and to identify themselves with the unvarying regularity of the complex automaton. To devise and ailminister a successful code of factory discipline, suited to the necessities of factory diligence, was the Herculean enterprise, the noble achievment of Arkwright. Even at the present day, when th e system is perfectly organized, and its labor lightened to the utmost, it is found nearly impossible to convert persons past the age of paberty, whether drawn from rural or from handicraft occupations, into useful factory hands. After struggling for a while to conquer their listless or restive habits, they either renounce the employment spontaneously, or are dismissed by the overlookers on account of inattention.
If the factory Briareus could have been created by mechanical genius alone, it should have come in o being thisty years sooner ; for upwards of ninety years have now elapsed since John Wyatt of Birminghain, not only invented the series of fluted rollers, (the spinning fingers usually ascribed to Arkwright,) but obtained a patent for the invention, and erected "a spinning engine without hands" in his native town. The details of this remarkable circumstance, recently snatched from oblivion; will be given in our treatise on the cotton manufactures. W yatt was a man of good education, in a respectable walk of life, much esteemed by his superiors, and therefore favorably placed, in a mechanical point of view, for maturing his admirable scheme. But he was of a gentle and passive spirit, little qualified to cope with the hardships of a new manufacturing enterprize. It required in fact, a man of Napoleon nerve and ambition, to subdue the refractory lempers of workpeople accustomed to irregular paroxysms of dilligence, and to urge on his multifarious and intricate constructions in the face of prejudice, passion, and envy. Such was Ark wright, who, suffering nothing to stay
or turn aside his progress, arrived gloriously at the goal, and has forever affixer his name to a great era in the annals o mankind, an era which has laid open un bounded prospects of wealth and com fort to the industrious, however much the may have been occasionally clouded by ig norance and folly.

Prior to this period, manufactures were everywhere feeble and fluctuating in thei: development ; shooting forth luxuriantly fo: a seasorn, and again withering almost to the roots, like annual plants Their perennia growth now began in England, and attractod capital in copious streams to irrisa'e the rich dom:ins of industry. When this new career commenced, about the year 1770, the anaual consumption of cotton in British manufactures was under four millions of pounds weight, and that of the whole of Christendom was probably not more than ten millions. Last ycar the consumption in Great Britain and Ireland was about two hundred and seventy millions of pounds, and that of Europe and the United States together four hundred and eighty millions. This prodigious increase is, without doubt. alnost entirely due to the factory system founded and upreared by the in: repid native of Preston. If then th's system be not merely an inevitable step in the social progression of the, world, but the one which gives a commanding station and influence to the people who most resolutely take it, it does not become any man, far less a denizen of this favored land, to vilify the author of a becefaction, which, wisely administered, may become the best temporal gift of Providence to the poor, a blessing destined to mitigate, and in some measure to repeal, the primeval curse prononnced on the labor of man, "in the sweat of thy face shalt thou eat bread." Arkwright well deserves to live in honored remembrance among those ancient master-spirits, who persuaded their roaming companions to exchange the precarious toils of the chase, for the settled comforts of agriculture.

In my recent tour, continued during several months, through the manufacturing districts, I have seen tens of thousands of old, young, and middle-aged of both sexes, many of them too feeble to get their daily bread by any of the former modes of industry, earning abundant food, raiment, and domestic accommodation, without perspiring at a single pore, screened meanwhile from the summer's sun and the winter's frost, in apartments more airy and salubrious than those of the metropolis, in which our legislative and fashionable aristocracies assemble. In those spacious halls the benignant power of steam summons around him his myriads of willing menials, and assigns to each the regulated task, substituting for painful muscular effort on their part, the energies of his own gigantic arm, and demanding in return only attention and dexterity to correct such little aberrations as casually occur in his workmanship. The gentle docility of this moving force qualifies it for impelling the tiny uobbins of the lace machine with a precision and speed inimi table by the most dexterous hands, directec
auspices, and in obedience to Arkwright's olity, magnificent edifices, surpassing fa' a number, value, usefuiness, and ingenuity if construction, the boasted monuments 0 Isiatic, Egyptian, and Roman despotism. lave, within the short period of fifty years, isen up in this kingdom, to show to what -xten', capital, industry, and science may ugment the resources of a stale, while they meliorate the condition of its citizens. Juch is the factory system, replete with prodigies in mechanics and political econony, which promises, in its future growth. to become the great minister of civilization to the terraqueous globe, enabling this country, as its heart, to diffuse along with its commerce, the life-blood of science and religion to myriads of people still lying "in the region aud shadow of death."

When Adams Smith wrote his immortal elements of economics, antomatic machinery being hardly known, he was properly led to regard the divisi n of labor as the grand principle of manufactuzing improvement; and he showed, in the example of pin-making, how each tandicraftsman, being thereby enabled to perfect himself by practice in one point, became a quicker and cheaper workman. In each branch of manufacture he saw that some parts were, on that principle, of easy execution, like he cutting of pin wires into uniform lengths, and some were comparatively difficult, like the formation and fixation of their heads; and therefore he concluded that to each a workman of appropriate value and cost was naturally assigned. This appropriation forms the very essence of the division of labor, and has been constantly made since the origin of society. The ploughman, with powerful hand and skilful eye, has been always hired at high wages to form the furrow, and the ploughboy at low wages, to lead the team. But what was in Dr. Smith's time a topic of useful illustration, cannot now be used without risk of misleading the public mind as to the right principle of manufacturing industry. In tact, the division, or rather adptation of labor to the different talents of men, is little thought of in factory employinent. On the contrary, wherever a process requires peculiar dexterity and steadiness of hand, it is withdrawn às soon as possible from the cunning workinan, who is prone to irregularities of many kinds, and it is placed in charge of a peculiar mechanism, so self-regulated, that a child may superintend it. Thus; - o take an example from the spinning of sotton-the first operation in delicacy and importance, is that of laying the fibres ruly parallel in the spongy slivers, and the next is that of drawing these out into slenler spongy cords, called rovings, with the least possible twist; both being perfectly 'niform throughout their total length. To xecute either of thesc processes tolerably by a hand-wheel, would require a degret of skill not to be met with in one artizan out of a hundred. But fine yarn could not be made in factory-spinning except by aking these steps, nor was it ever made b? nachinery till Arkwright's sagacity coit arived them. Moderately good yarn ma! be spun indeed on the hand-wheel with
out any drawings at all, and with even in'ifferent rovings, because the thread, under he twofold action of twisting and extenron, has a tendency to equalize itself.
The principle of the factory system then is, to substitute mectanical science for 1and skill, and the partition of a process nto its essential constituents, for the divion or graduation of labor among artizans. On the handicraft plan, labor more or less skilled, was usually the most expensive element of production-materiam superabat opus; but on the automatic plan, -killed labor gets progressively superseded, and will, eventually, be replaced by mere overlookers of machines.
By the infirmity of human nature it happens, that the more skilful the workman, the more self-willed and intractible he is apt to become, and, of course, the less fit a component of a mechanical system, in which, by occasional irregularities, he may do great damage to the whole. The grand object therefore of the modern manufacturer is, through the union of capital and science, to reduce the task of his workpeople to the exercise of vigilance and dexterity,-faculties, when concentred to one process, speedily brought to perfection in the young. In the infancy of mecanical engineering, a machine-factory displayed the division of labor in manifold grada-tions-the file, the drill, the lathe, having each its different workmen in the order of skill: but the dexterous hands of the filer and Iriller are now superseded hy the planing, the key-groove cutting, and the drilling machines; and those of the iron and brass turners, by the self-acting slide-lathe. Mr. Anthony Strutt, who conducts the mechanical department of the great cotton factories of Belper and Milford, has so thoroughly departed from the old routine of the schools, that he will employ no man who has leagned his craft by regular apprenticeship; but in contempt, as it were, of the division of labor principle, be sets a ploughboy to turn a shaft of perhaps several tons weight, and never has reason to repent his preference, because he infuses into the turning apparatus a precision of action, equal, if not superior, to the skill of the most experienced journeyman.

An eminent mechanician in Manchester told me, that he does not choose to make any steam-engines at present, because with his existing means, he would need to resort to the old principle of the division of labor, so fruitful of jealousies and strikes aniong workmen; but he intends to prosecute that branch of business whenever he has prepared suitable arrangernents on the equalization of labor, or automatic plan. On the graduation system, a man must ierve an apprenticeship of many years beore his hand and eye become skilled nough for certain mechanical fcats; but on the system of decomposing a process no its constituems, and embodying each wart in an automatic machine, a person of sommon care and capacity may be entrustwith any of the said elementary parts Ifer a short probation, and may be transerred from one to another, on any ewerrency, at the discretion of the master. Fuch translations are utterly at variance
with the old practice of the division of labor, which fixed one man to shaping the head of a $p \mathrm{in}$, and another to sharpening its point, with most irksome and spiritwasting uniformity, for a whole life.

It was indeed a subject of regret to observe how frequently the workman's eminence, in any craft, had to be purchased by the sacrifice of his health and comfort. To one unvaried operation, which required unremitting dexterity and dilligence, his hand and eye were constantly on the strain, or if they were suffered to swerve from their task for a time, considerable loss ensued, either to the employer, or the operative, according as the work was done by the day or by the piece. But on the equalizatiors plan of self-acting machines, the operative needs to call his faculties only into agreeable excrcise; he is seldom harassed with anxiety or fatigue, and may find many leisure moments for either amusement or meditation, without detriment to his master's interest or his own As his business consists in tending the work of a well regulated mechanism, he can learn it in a short period; and when he transfers his services from one machine to another, he varies his task, and enlarges his views, by thinking on those general combinations which result from his and his companions' labors. Thus, that cramping of the faculties, that narrowing of the mind, that stunting of the frame, which were ascribed, and not unjustly, by moral writers, to the division of labor, cannot, in common circumstances, occur under the equable distribution of industry. How superior in vigor and intelligence are the factory mechanics in Lancashire, where the latter system of labor prevails, to the handicraft artizans of London, who, to a great extent, continue slaves to the former! The one set is familliar with almost every physico-mechanical combination, while the other seldom knows anything beyond the pin-head sphere of his daily task.

It is, in fact, the constant aim and tendency of every improvement in machinery to supersede human labor altogether, or to diuninish its cost, by substituting the industry of women and chillren for that of men; or that of ordinary laborers, for trained artizans. In most of the water-twist, or throstle cotton mills, the spinning is entirely ssanaged by females of sixtcen years and upwards. - The effect of substituting the self-acting mule for the common mule, is to discharge the greater part of the men spinners, and to retain adolescents and children. The proprietor of a factory near Stockport states, in evidence to the commissioners, that by such substitution, he would save 50l. a week in wages, in consequence of dispensing with nearly forty male soinners, at about 25s. of wages each. This tendency to enploy inerely children with watchful cyes and nimble firgers, instead of journeymen of long experience, shows how the schulastic dogma of the division of labor into degrees of skill has been exploded by our enlightoned manufacturers.
They are, in truth, much better acquaintel with the general economy of the arts, and better qualified to analyse them into their real principles, than the recluse acade-
mician can possibly be, who from a few obsolete data, traces out imaginary results, or conjures up difficulties seldom encountered in practice. He may fancy, for example, that in a great establishment, wher several hundred people are employed in producing fine goods, much time and expense must be incurred in verifying the quality and quantity of the work done by each individual. But this verification forms an integral step in the train of operations and therefore constitutes no appreciable part of the cost of the manufactured article Thus, for example, the reeling of yarn into hanks measures its length; the weighing of a few miscellaneous hanks determines the grist of the whole; and the taker-in of work rapidly ascertains its soundness. For examining the quality of the very fine yarns used in lace-making, he is aided by machines which register rapidly the uniformity of its cohesive strength, and the exact volume which one hundred yards of it occupy. The lace-maker again, on his part, verifies the grist of all the thread he purchases, in the necessary act of filling the circular grooves of his tiny bobbins, preparatory to their entering into his machine.

The university man, pre-occupied with theoretical formula, of little practical bearing, is too apt to undervalue the science of the factory, though, with candor and patience, he would find it replete with useful applications of the most beautiful dynamical and statical problems. In physics, too, be would there see many theorems bearing golden fruit, which had been long barren in college ground. The phenomena of heat, in particular, are investigated in their mul tifarious relations to matter, solid, liquid, and aeriform. The measure of temperature on every scale is familiar to the manufacturer, as well as the distribution of caloric, and its habitudes with diflerent bodies The production of vopors; the relation of their elastic force to their temperature; the modes of using them as instruments o power, and sources of heat; their most effective condensation; their hygrometric agency; may all be better studied in a week's residence in Lancashire, than in a session of any universily in Europe. And as to exact mechanical science, no school can compete with a modern cotton-mill.

When a certain elevation of temperature is made to give pliancy to the fibres of cotton or wool, the philosophical spinner sees the influence of caloric in imparting ductility and elasticity to bodies. The thermometer to indicate the temperature, and the hygrometer the humidity of the air, give him an insight into the constitution of nature unknown to the bulk of mankind. Of the different dilatations of different solids by increments of temperature, he has daily experience in the elongation of the immense systems of steam-pipes which heat his mill apartments, often extending three hundred feet in a straight line. On this scale, tht amount of the expansion, and contraction, needs no micrometer to measure it, for it i . visible to the eye, and may be determinec by a carpenter's rule.
When fire-proof factories of iron and
brick were first built, the columns which supported the successive floors, being hol. low, were intended to admit steam, and to ie the channels of communicating heat to the apartments. It was soon found, however, that the lengthening and shortening of a columnar range eighty or ninety feet high, by alternations of temperature, equal to $170^{\circ} \mathrm{F}$., were so considerable, as to impair the stability of the most solid edifice, since metal changes its dimensions by heat with irresistible force. This project of frugality being therefore abandoned, horizontal, steam-pipes were suspended near the ceiling, by swinging rods of iron, which terminated at one end in a curved copper tube, for allowing the water of condensation to escape, and possessed of such pliancy as to give free play to the expansion and contraction. Ingenious expedients have been proposed for causing the lengthening of the main pipes to regulate the admission of steam into them, and to excludeit as soon as the temperature of the range had reached the proper pitch. An invention of this kind was made the subject of a patent many years ago, but it never came into general use, on account of certain. irregularities in its performance. It was found very difficult so to adjust the lever mechanism of the valve, as to prevent its intercepting the flow of the steam whenever a certain portion of the long pipe was heated, long before the steam had reached the remoter end. Hence its uniform distribution was rendered precarions. Mill engineers have therefore satisfied therrselves with insulating the steam-pipe ramifications from the building, leaving the circulation of the steam to be tempered by an ordinary stop-cock. The instrument, for which I have obtained a patent, under the name of the heat-governor, or thermostat, would furnish the factory proprietors with a selfacting means of regulating the temperature of their apartments, and of promoting their ventilation.
(To be Continued.)

Agricalture, \&c.

From the New-York Daily Express. a chapter on pork.

Cincinnati, Dec. 31, 1836.
Some of the items I gave you in my letter of the 9 th inst., on the subject of Pork. and particularly on the slaughtering, I had collected sometime since. Having visited the packing and slaughtering houses within the last day or two, I found additions and improvements had been made this year, I was not before aware of. I will therefure give you anather letter on Pork, and go somewhat into particulars. Less is doing. this winter in Pork, than was anticipated Juring the past summer. It was known that hogs were plenty throughout the country, and it was believed that the prices would sonsequently be low,-mor lower than last year,-but the uncommonly high prices paidast winter, induced the drovers to scour the ountry and purchase all the hogs they could find, and on driving them to the city, they demanded what our packers thought an
exorbitant price-say for hogs weighing 200 to 250 pounds, $\$ 7,00$ per hundred.,-the consequence was, that the packers generally delined purchasing, and the drovers would not sell for less, so that but few hogs were packed for the first three weeks of the season. In fact, up to this tinie, only about $\mathbf{5 0 , 0 0 0}$ hogs have been slaughtered, whercas two years ago, at the same time, more than 120,000 were slaughtered and packed. Some of our Pork Merchants are not pack ing at all, others are doing a little: and none to an extent of former years. Hogs, how. ever, remain firm at the prices demanded by the drovers, and sales were made yesterday at $\$ 725$ der hundred pounds, for hogs weighing 250 pounds. The pork season generally lasts about eight or ten weekslast year it closed in less than eight weeks in fact, but few hogs were slaughtered after the first of January. Eighty thousand was the namber packed last winter. (In the publication of my letter of the 9 th, by a typographical error, the number is set down at 60,000 .) It is supposed that there will not be more packed in the city this winter than last, and about a half of the number of winter before last. Hogs are driven to this market from the interior of Ohio, Indiana and Kentucky. I will now give you the modus operandi of slaughtering, which is performed with such expedition at the slaughterting houses of John W. Coleman, Esq., who has made a large fortune at this business. I find, on visiting these houses, which are situated on the north-east extremity of the corporation line, and bordering on a small stream called Deer Creek, or, as it would mure properly be called at this season of the year, Bloody Run, that the number of slaughter houses now amount to nine, the largest of which is 160 feet long by 60 wide. The others average 100 feet long by 60 wide. Mr Coleman has also another slaughter house ac Covington, on the Kentucky shore, which makes in all, ten houses. At each of these houses, he has now em. ployed, 36 to 40 men,-making altogether, about three hundred and eighty men, to whom he pays $\$ 1,25$ to $\$ 2,00$ per day each. Near these houses are pens of various sizes, and covering altogether about forty acres of ground-into these pens are driven the different droves of hogs by their respective owners, as they come into the city, preparatory to the operation of slaughtering. These pens hold from 100 to 1000 each. In these slaughtering houses there are large kettles at each.end, filled with water, which is kept constantly boiling, and the operation of killing, scalding, dressing. \&c., goes on simultaneously at both ends of the several houses -the hogs are hung up in the centre to be dressed, before removing them to another part of the building to cool. Attached to each end of these houses is a small pen, that will hold about 50 to 60 hogs-into these pens the hogs are driven until they are so compact, that the executioner walks in on their backs' bearing in his hands a large sledge hammer, with with he "deals death and destruction" all around him. When they are all knocked down they are removed within the building where the knife is passed into the throat. After bleeding they are thrown into the kettle of water (one at a time) and thence, after sufficient scalding,
removed to a bench, when the bristles are scraped off by iron scrapers, made expressly for the purpose, and thence hung up. when the "gutter," as he is called, passe: his knife from one end of the hog to the other ird removes the offul, and completes the Jressing; and so scientific bave these sur geons become, that any one of them cal complete the inside dressing, removing al within, washing out, \&c., of three hogs with in the mimule-and, as I stated in my lettes of the 9 th_each set of men, at each keitle and bench, at either of these houses, will knock down, bleed, scald, remove the bristles, and complete the inside dressing of fifty hogs vithin the hour-which would be one hundred hogs at each house, or one thousand at all the $\mathbf{1 0}$ houses, in a single hour. I learn they now work about eight hours per day, and were it necessary-to such perfection has Mr. Coleman brought this science of "hog-killing"-that he could at this time, at his ten houses, slaughter, and have completely dressed and hung up to cool, elght thousand hogs in one day. I will venture to say, there is no place in the world, out of Cincinnati, where this can be done, and here it can be done. In past years, before Mr. Coleman had arrived at such perfection in the art, he has slaughtered, dressed. and hung up, in four houses, and some of them not in double operation, as now-twen-ty-seven hundred in a day-say 8 or 9 hours' work. The same ratio for ten houses, would make 6,750. Mr. Coleman has no competition in this line of busiress, and I am now informed, that the gut lard, soap grease and bristles (which is the only com. pensation for slaughtering) is worth about 50 cents for each hog-which would amount to fifty thousand dollars for shughtering a hundred thousand hogs. No inean business: this-and all accomplished within 8 or 10 weeks.

When the hogs become cool, they are conveyed on large wagons made expressly for the purpose, to the packing-houses, which are the largest and most splendid warehouses in the city-there they are cut up and packed, the lard rendered and put in kegs, and the hams cured for smoking.

In the winter and spring of 1835 , we exported about sixty thousand barrels of pork and one hundred thousand kegs of lard Last winter and spring we exported about half that quantity, and the winter and spring of 1837, we may possibly export more than last year, although it is somewhat doubtful. The quality of the hogs this year is better than they were last, and consequently more clear pork will be packed than then. There is so far a good demand for all the new pork and lard; sales have been made, and are now making, at the following prices:-clear pork $\$ 22$; mess $\$ 20$; prime $\$ 18$; lard 12 cents. Two weeks since, sales were made at prices ten per cent. lower than these. These prices are higher than this time last year, and it is thought they will be maintain ed.
In the article of Hams, our pork merchants (those who turn their attention to it) furnish better hams than can be found in any other part of the country. I will venture the assertion, that the sugar-hams cured by William M. Walker, and Miller \& Lee, cannot be surpassed in flavor and grodness
of quality, generally, in the United States, I am aware that the Virginia hams are good. t am also aware, thet the hams cured in or bout Boston are good-very good-and here is a reason for it. The hogs are fed wholly on corn, the meat is solid, and the ogs are generally fat; but still they cannot natch the family hams put up by Mr. Walk. r, and Miller \& Lee, of this city-they snow how to cure them_and that is the rreat secret, and a secret known but to few. Uthers of our pork merchants cure most excellent hams, and perhaps equal to any. I have not had an opportunity of knowing. One thing is certain, not only the hams but the pork and lard, exported from Cincinnati, stands ligh in the Southern and Eastern markets.

Having strung out this letter already to too great a length, I will close this chapter on pork. I may refer to the subject again in some future communication.

From the Encyclopedia of Agriculture.

characteristics of flemish husbandry.
To make a farm resemble a garden as nearly as possible, was their principal idea of husbandry. Such an excellent principle, at first setting out, led them, of course to undertake the culture of small estates only, which they kept free from weeds, continually turning the ground and manuring it plentifully and judiciously. Having thus brought the soil to a just degree of cleanliness, health and sweetness, they ventured chiefly upon the culture of the more delicate grasses, as the surest means of acquiring wealth in husbandry, upon a small scale, without the expense of keeping many draught horses or servants. Afier a few years experience, they soun found that ten acres of the best vegetables for feeding cattle, properly cultivated, would maintain a larger stock of grazing animals, than forty acres of common farm grass: and the vegetables they chiefly cultivated for this purpose were lucerne, sainfoin, trefoils of nost denominations, sweet fenu-greek, (Trigonelle, buck and cow wheat, (Melampyrum pratense,) field turnips and spurry, (Spergula) by them called marian-grass.

The political secret of Flemish husbandry was, the letting farmis on improvement. Add to this, they discovered eight or ten new sorts of manures. They were the first among the moderns who ploughed in living crops, for the sake of fertilizing the earth, and confined their sheep at night in large sheds built on tpurpose, whose floor was covered with sand, or earth \&ic., which the shepherd carted away every morning to the compost dung hill. Such was the chief mystery of the Flemish husbandry.

Urine cisterns are formed in the fields, to receive purchased liquid manule; but for that made in the farm yard, generally in the yard, or under the stables. In the latter case, the urine is conducted from each stall to a common grating, through which it descends into the vault; from thence it is taken up by a pump. In the best regulated farmeries there is a partition in the cistern, with a valve to admit the contents of the first space into the
second, to be preserved there free, from the more recent acquisition, age adding con siderably to its efficacy. This species 0 mauure is relied on beyond any other, upor allythe light soils throughout Flanders, ant even upon the strong lands, (originally so rich as to preclude the necessity of manure) is now coming into great esteem, being considered applicable to most crops and to al the varieties of soils.

Fallows, according to Sir John Sinclair, are in a great measure abolished, even on strong land; by means of which, produce is increased, and the expense of cultivation on the crops raised in the course of a rotation, necessarily diminished; and by the great profit they derive from their flax and rape, or coleseed, they can afford to sell all their crops of grain at a lower rate. Notwithstandding this assertion of Sir John, it will be found that a fallow enters into the rotation on all of the clayey soilsFlanders.

Flax is cultivated with the utmost care The field intended for this crop, after two or three ploughings and harrowings, is again ploughed, commencing in the centre and ploughed rouud and round to the circumference, so as to leave it without any furrow. The heavy roller is drawn across the ploughing by three horses; the liquid manure is then spread equally over the entire surface, and when well harowed in, by eight or nine strokes with the harrow, the seed is sown, which is also harrowed in by s light harrow with wooden pins, of less than three inches; and the surface to conclade the operation, is again carefully rolled.

Nothing can excced the smoothness and cultivated appearance of fielils thus accurately prepared.

The manure universally used for the flax crop demands particularnotice. It is termed liquid manure, and consists of the urine of cattle in which rape cake has been desolved, and in which the vidanges conveyed from the privies of the adjoining towns and villages, have also been blended. This manure is gradually collected in subterraneous vaults of brick work, at the verge of the farm next to the inain road. Those receptacles are generally forty feet long by fourteen wide, and seven or eight feet deep; and in some cases are contrived with the crown of the arch so much below the surface of the ground, as to admit the plough to work over it. An aperture is left in the side, through which the mianure is received from the cart by means of a shoot or trough, and at one end an open ing is left to bring it up again, by means of a temporary pump which delivers it either into carts or tonneaus.

The liquid is carried to the field in sheets or barrels, according to the distance. Where the cart plies, the manure is carried in a great sheet called a voile, closed at the corners by running strings, and secured to the four uprights of the carts; two men standing one on each side of the cart, scatter it with hollow shovels upon the rolled ground; or where the tonneaous are made use of, each is carried by two men with poles, and set down at equal intervals acrose the field, in the line of the rolling.

There are two sets of vessels, which ea.
able the men who deposite the loaded ones, to bring back the others empty. One man to ach vessel, with a scoop or rather a kind of bowl with a long handle, spreads the maure so as to cover a certain space; and hus by preserving the intervals correctly, hey can precisely guage the quantity for a fiven extent of surface. Fur the flax crop, hey are profuse, and of this liquid mixture, in this part of the country, they usually allow it the rate of 2480 gallons, beer measure, to the English acre.

With culinary vegetables the Flemish markets are abundantly supplied. Most of these are grown by the small farmers, and are of excellent quality. To every cottage in Flanders a garden of some description is attached; and according to the means, the leisure, and the skill of the possossor, is rendered more or less productive.
The general principles of management with all are, frequent digging, careful weedding, ample manuring, and immediate succession. The rotation depends on circumstances. The cheif vegetables in common use are parsnip, carrot, turnip, scorzonera, savoy, jettechou, cabbage, (Brussels sprouts) onions leeks, pease, beans, and all kinds of salading, with another vegetable called feve haricol, a large species of French bean, which has a place in the field or garden of almost every farmer; and being sliced down, pod and seed, is made a chief ingredient in all farm-house cookery.

The treaiment of asparagus here, and generally in Flanders, differs considerably from our method: in forming their beds, they are not by any means particular as to very deep trenching, or a profusion of manure ; nor, as they grow up, do they cover the beds with litter for the winter, nor fork and dress them in the spring; in the fur. rows they form a rich and mellow compost of earth and dung, with which before winter sets in, they dress up their beds to the height of nearly eighteen inches from the level of their crowns, and without any further operation, (except supplying the furrows again for the ensuing year,) as soon as the buds appear, they cut them 9 inches under the surface; by which means, having just reached the light, the whole of the stock is blanched and tender.

Every substance that conslitutes, or is convertuble to manure is sought after with avidity, which accounts for the extreme clcanliness of the Flemish towns and pave. ments, hourly resorted to with brooms and barrows, as a source of profit. Even the chips which accumulate in the formation 0 ! shoes worn by the peasantry, are made to constitute a part of the compost dung heap; and trees are frequently cultivated in barres lands, merely to remain till their deciduou: leaves shall in the course of time, have formed an artificial surface for the purpose of cultivation. The manures in generai use are-

The farm-yard dung, which is a mixture of every matter that the farm yard produc es, formed into a compost, which consists ot Jung and litter from the stables, chaff, sweep pings, straw, sludge, and rubbish, all collect ed into a hollow part of the yard, so prepar. ed as to prevent the juices from being wast ed; and the value of this, by the cart loan
of 1500 lbs. of Ghent, is estimated at five franks.

The dung of sheep, pigeons or poultry, by the cart load, five franks and a balf.

Sioeepings of the streets and roads, same quantity, three francs.

Ashes of peat and roood mixed, same quantity, eight franes.

Privy manure, and urine, same quantity, seven francs.

Lime, same quantity, twenty-four francs.
Rape cake,, per hundred cakes, fifteen francs.

Gypsum, sea mud, and the sediments of canals, have been all tried experimentally, and with fair results ; but the two formerhave been merely tried; the latter is used suc. cessfully in the vicinity of Burges.

Bone manure was altogether unknown in Flanders, but at the suggestion of .Radcliff, is now under experiment in that country.

From the Southern Agriculiurist. STRAWBERKIES.

Charleston Neck.
Mr. Editor,-In a former number of your useful journal, I read an interesting article on the cultivation of the Strawberry. Too much attention cannot be paid to this delightful fruit; and, concerning the income which an acre or two will yield, if planted in straw. berries, I can, along with yourself, bear the most decided testimony.

For the last five or six years, I have been raising this fruit, upon my farm ; and never fail to sell it, at from 25 cents to 50 cen 8 per saucer. If the beds are properly attended, bushels of the berries might be raised, and as readily sold at the above prices.

I shall not enter into an enumeration of the various species of these berries. In a former number of your journal, among the selected articles, will be found, very full in. formation upon the subject. It will be there found, that they are as various in their kinds as any other fruit. Much praise is due to our horticulturists, for their zealous endeavours to introduce the various species of the strawberry into our State. The great success they have met with in this respect, has been more than once evinced by the bril. liant and luscious display of this fruit by our Horticultural Society, within the last several years. At its last exhibition, among the other beautiful and delicate varieties ex. hibited, was one from the garden of Jonathan Lucas, Esq. The fruit measured several in. ches round, and had every indication of being as exquisite in flavor as it was agreeable. in size.

For my own use, 1 have cuitivated the common strawberry of our climate. By care and attention in its cultivation, I am ully persueded, that it may be rendered more roductive than any other, and full large nough to gratify the keenest appetite.However, like all other fruit, the larger the ,trawberry is made to grow, the coarser does t become to the taste.
I have unconsciously entered into this ong preface, Mr. Editor, when my object vas, to offer sonie practical hints to your eaders, upon the cultivation of this delicious ruit.
In the article from your pen, to which I ave already alluded, you recommend the
burning of the strawberry beds, early in March. or during the latter part of February. I prefer doing this at an earier perior, and you shall have my method.
During the month of December, I lay pine trash, or other combustible matter, over niy strawberry beds; and selecting a dry day for the purpose, I set fire to the entire mass.As the trash burns, it will ignite along with the dry plants, the old decayed leaves of the strawberries, and consume all the old useless suckers.
Immediately after doing this, if your strawberries have grown up the previous year broad-cast, or, as I should otherwise express it if their suckers have been suffered to take root all over the bed, you should hoe the bed just burnt, in trenches about ten or twelve inches apart, transversely on the bed. After this, well-rotted manure should be scattered in the trenches, and the whole bed should then be covered over with straw or chaff. Tanner's bark will do, if you cannot readily procure the straw or chaff.

The manure, applied as above, will warm the plants, and give them early maturity in the spring.

As soon as the plants shool forth, the alleys between them should be well stirred, and kept free from all kinds of weeds.
A friend of mine, from the country, tells me, that he has applied cotton seed, with the greatest success, as a manure for strawberries. He applied it in the same way as I recommend the compost to be applied.

I must, however, state here, that no treatment will make strawberries produce well, without transplanting every three or four years. Bearing this in mind, it will be well if we have any plants which are as old as above stated, to transplant during this month. I confess it would have been much better to have done so during the previous month, but having neglected to do so then, it is not too tate now.

The plants should be carefully selected, and set out upon a well-manured bed, about ten or twelve inches apart each way. As soon as the plants take, they should be treated as I have already directed.

I remain, Mr. Editor, your obt. servt.
P. J.

From the Farmer and Gardener.
We find the following communication marked for our eye in the Germantown Tcle. graph, and as the writer seems to question the fact which we published some weeks since, of 1510 bushels of Ruta Baga having been raised on an acre of ground, we will remark, that although we do not vouch for all that appears in our columns, we endeavor ${ }^{30}$ far to exercise the right of censorship as te preclude that which we believe is calcu-
lated to lead our agricultural brethren lated to lead our agricultural brethren into
error.
That the named quantity of Ruta Baga, viz: 1510 bushels has, and can again be raised from an acre we have no doubt. It is known to every one acquainted with the culture of this excellent root, that in Eng. land, is well as in this country, products equally as large have been repeatedly raised. On a small scale, it appears from the state.
ment of the Germantown Farmer, that he ment of the Germantoven Farmer, that he
raised of the common turnip, planted in
drills raised of the common turnip, planted in
drills two feet apart, by 6 inches, at the rate
cf 500 bushels to the acre. These turnips would have grown equally as well if the rows had been but 12 inches apart, and consequently would have yielded just twice the quantity. And on good ground, well manured with thoroughly rotted dung, rich mou'd, or a compost of cow-dung and ashes, the plants might with advantage have been brought to stand 8 inches apart, that is, the rows eight inches apart, and the plants the same distance, which we think wo:ld have given the quantity stated, provided the turnips had been planted in due time, hand hoed, and well protected from weeds. What the precise quantity would be, we, however, leave the "Germantown Farmer" to calculate. And should he discover that the yield would be more than the stated quantity, we take it for granted, he would admit that, as the Ruta Baga grows larger, it necessarily must yield more than the common turnip, and especially as from its irregular form, it measures more. Those who advocate the drill husbandry for turnips generally recom. mend that the rows should be one foot apart and the plants the same distance from each other ;-now this would give us 43,560 tur. nips on an acre ; and tor the information of our Germantown Farmer, we would remark, that we measured and counted a bushel of the turnips raised by us the present season on Friday last, which, owing to being sowed late, and on ground not at all manured, were but of medium size. The bushel contained 45 turnips, which if they had stood a foot apart would give to the acre 968 bushels. Our crop did not yield at this rate ; for owing to drought when the seed was sown, there were as many, if not more bald than covered places in our patcll, and from this cause our yield was not above 250 bushels to the acre : and allhough but half that of the Germantoon Farmer, and the third of the yield of the grower of the Ruta Baga, we rejoice in our heart others had been more successful than ourself; felt no disposition to "question the correctness" of the statements of those who had been more fortunate than we had, and, of course, gave ourself no trouble in speculating, whether a cypher had been added or hot, for although we have grown too old to believe all we read, or to give in to every fashionable dogma, or crude notion, that these eventful days are hourly brining forth, we have too much respect for the social duties of man, as well as for the the courtesies of life, to question the averments of our neighbors upon slight grounds believing as we do, that the questioning of the veracity of another is one of the most impertinent as well as unpardonable offence, which one man can commit against his fellow creature. Truth as we have said upon another occasion, we hold as the basis of every other virue, and, therefore, hold its opposite in utter abhorrence, and while we shall entertain sufficient respect for ourself to cultivate virtue and despise vice, we shall certainly expect courtesy at the hands of others.

Near Germantown, 8th Dec., 1836. To the Editor of tha Telegraph :-
I have been pleased with the articles on arming and agriculture that you extract and select from various sources ; but while we have the good manners to listen to their wonderful
stories, let us not forget that we have a right to have a say in the matter too; and I am surprised that our fellow townsmen have not sounded their own trumpets on this subject: let me set them an example, and slow that we can raise turnips as well as the Baltimoreans.
On the 17th of August last I dug over two rods of ground on which I had raised early peas aad onions, (manuring the part where the peas had stood, but not heavily; the onion land had been manured previous to planting the onions,) and sowed or dibbled the fat blue topped turnip seed in two rows two feet apart and six inches apart in the row. I flat hoed them twice, I believe, afterwards; thinned them out to single plants in due time, and kept them clear of weeds. They grew finely and completely covered the land thick with their tops. I took them in on the 2d of November last, and had more than six bushels of turnips on these two rods of ground. This is at the rate of 500 bushels to the acre for a ten week's crop. but not 1510 bushels certainly. I am inclined to question the correctness of this Baltimorean story ; for mine stood as thick as they could well stand on the ground and were quite as large or larger than any Ruta Baga that I have seen in this country. There is a mistake in it to a certainty; for it does not give four square yards. of land to each bushel of turnips; and to have them fine they should be grown in rows three feet apart, and a foot apart in the row. This would give twelve turnips in the four square yards, and these must more than fill a bushel, to have 1510 bustels on an acre of land. It looks a little incredible ; perhaps a cypher has been tagged to the story ; a nothing in itself; but something wonderful when used in union with 151. Soliciting proof and evidence of this astonishing turnip crop.

I am, Sir,
Yours respectfully.
a Germantown Farmer.

Advertisements.

A YOUNG GENTLEMAN, a Graduate of the United States Military Academy, is desirous of obtaing empluyment as Civil Finginerr. The situntion of Asistant Engineer on some work (Railroad or Canal) would be preferred. The mosi nnesceppionable references as to character and ability uill be given.
ther
Address J. M. N., at the office of the Railruad Journal, post paid.

1-4t
MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Paterson, NewJersey. The undersigned receive orders fur ihe following articles, manufactured by them, of the most superiur description in every particular. Their workz being extensive, and the number of lands employed being large, they are onabled to execute both Largo being large, they are nathed to cereccie both
raileroad work.
Locomotive Steam-Engines and Tenders; Driving and uther Lucomutive Wheels, Axles, Springs and ing and uther Lucomutive Wheels, Axles, Springs and
Flange Tires ; Car Wheels of east iron, from a veHiauge Tires; Car Whels of east iron, from a vs-
riety of pauterns, and Chills; Car Wheels of cast iron, with wrought Thires; Axles of best American refined iron ; Springs ; Boxes and Botts for Cars.
COTTON WOOL A.ID FLAX MACHINERY.
Of all deseriptions and of the most improved Patterns, Style and Workmanship.
Mill Geering and Millwright work generally; Hydraulic and other Presses; Press Screws; Callenders; Lathes and Tools of all kinds, Iron and Bras Castings of all descriptions.

ROGERS, KETCHUM \& GROSVENOR.
Pattermon, Ne w Jersey, or 60 Wall street, N. Y.

PATENT RAILROAD, SHIP AND BOAT SPIKES.

N-The Troy Iron and Nail Factory keeps conatantly for snle a very extensive assortment of W rought Spikes and Naids, from 3 to 10 iuches, manufactured by the subscriber's Patent Machinery, which after five years successful uperation, and now ainost universal use in the United States, (as well as England, where the subscriber obtained a patent,) are found superior to any ever offered in market.
Railroad Companies may be supplied with Spikes having countersink heads suitable to the hules in irun rails, to any amount and an short nutice. Almost all the Railroads now in progress in the United States are fastenell with Spikes made at the abuve named fac-tory-for which purpose they are found invaluable, their adhesion is more than double any commots spikes made by the hammer.
*** All orders directed wio the Agent, Troy, N. Y., to ponctually atcended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spikes are kept for sale, at factory prices, by I. chants in Albany and Troy j J.I. Brower, $2: 2 \mathbf{W}^{\text {Water }}$ chants in Absany and Mroy ;J.I. Brower, 2et Water Street, New-York; A. M. Junes, Philadelphia;
P. S.-Railrued Companies would do well to fo ward their orders as early as practicable, as the subscriber is desirnus of extending the manufacturing so as to keep pare with the daily increasing demand for his Spikes. (1J23ain)
H. BURDEN.

RAILWAYIRON, LOCOMOT II Ec
THE subseribers offer the following articles for sale.
Railway Iron, flat bars, with countersunk holes and raitred joints,
 280

with Spikes and Splicing Plates adapted thereto. To be sold free of duty to State governments or incorporated companies.
Orders for Pennsylvania Boiler Iron executed.
Rail Road Car and Locomotive Engine Tires, wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 iaches diameter.
E. V. Patent Chain Cable Bolts for Railway Car axles, in lengths of 12 feet 6 inclies, to 13 feet 34,21 $3,3 t, 3 \downarrow, 31$, and $3 \ddagger$ inches diameter.
Chaina for Inclimed Planes, short and stay links, mannfactured from the E. V. Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclineả Planes, made frum New Zealand flax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt fur placing between the iron chair and stone bluck of Edge Ra: iways.
Every description of Railway Iron, as well as Locomotive Engines, imported at the shortest notice, by the agency of one of our partners, who resides in Fingland for this purpose.
Mr. Solomon W. Roberts, a highly respectable American Enginecr, resides in England fur the purpose of inspecting all Locomotives, Machinery, Railway Iron ofc. ordered through us
23-tf Philadelphia, No.4, South Front
STEPHENSON,
Bailder of a superior style of Passenger Cars for Railroads.
No. 264 Elizabeth street, near Bleecker atreet, New-York.
RAILROAD COMPANIES would do well to exa mine these Cars; a specimen of which may be scen on that part of the New-York and Harlacm Railroad now in operation

J25ıt
NEW ARRANGEMENT.
iropes for inclined planes of railroads.
WE the subscribers having formed a co-partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railruads, and for other nes s, offer to supply ropes for iaclined planes, of any length required without splice, at shurt notice, the manufacturing of cordnge, heretofure carried on by S, S. Durfee \& Co., will be done by the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be promptly attended to, and sopes will be shipped to any port in the United Slates. 1st month, 7th, 1836. Hudson, Columbia County State of New-York.

33-4f.
ROBT. C. FOLGER. GEORGE COLEMAN,

A SPLENDID OPPORTUNITY TO MAKE A FORTUNE.
THE Subscriher having obtained Letters Patent, from the Government of Fraile, granting him the exclusive privilege of manufacturing Horse Shoes, hy his newly invented machinef, now offers the same for sale on terms which canuot fail to make an independent fortune to any enterprising genalemen wishing to embark in the same.
The machines are in constant operation at the Troy Iron and Nuil Factory, and all that ls neressary to satisfy the most incredulous, that it is the must valuable Patent, ever obsained either in this.rany other cunptry, is to witness the is weration which is open for inspection to all during working hours. All letters audressed to the subscriber (post paid) will re. eeive due attention.
Troy Iron W orks,
HENRY BURDEN.
N. B. Horse Shoes of all sizes will be kept cons stantly for sale by the pincipal lron and Hard-ware Merchants, in the United States, at a small advance above the price of Horse Shoe Iron in Bar. All persons selling the same, are authorisen to waranit every bhoe, hade from the best refined iron, and any failing to render the most perfect satispacotin, both as regards workmanship and quality of Iron, will be received back, and the price of the sam refunded.
H. BUKDEN. 4i-lf

FRAME BRIDGES.

The subscriber would respectfully inform the public, and particularly Railroad and Bridge Corporataions that he will build Frame Bridges, or vend the right to others to build, on Coll. Long's Patent, throughout the United States, withfew exceptions. The following sub- A gents lisve been engaged by the 'undersigned who will also attend to this business, viz.
Horace Childs,
Alexander McArthur,
John Mahan.
Thomas H. Cushing, Ira Blake.
Amos Whitemore, Fsq.,
Samnel Herrick,
Simeon Herrick,
Capt. Isaac Damon,
Lyman Kingsly,
Elijah Halbert,
Joseph Hebard,
Col. Sherman Peck,
And:ew E. Turnbull,
William J. Turnbull,
Sabried Dodge, Esq.;
Booz M. Atherton, Esq.
Stephen Daniels,
Stephen Rodgers,
John Tullison,
Capl. Johu Bottom,
Henriher, N. H.
Mount Morris, N. Y.
du
Wover, N. H.
Hancock, N. H Springfield, Vermont. Northampton, Mass. Waterloo, $\mathbf{N} . \mathbf{Y}^{\text {do }}{ }^{\text {do }}$ Waterloo, $\mathbf{N} . \mathbf{Y}$.
Dunkirk,
N. IIudsun, Ohio. Lower Sandusky, Obio. Civil Engineer, $\stackrel{\text { do }}{\text { a }}$ Ohin. ${ }^{\text {do }}$ New-Philadelphia,Ohio. Marietta, Ohio
Louisville, Kentucky. St. Francisville, Lons'a. Tonawanda, Penn Rochester, N. Y.
Bridges on the above planare to be seen at the following localities, viz. On the main road leading from Ballimore to Washington, two miles from the former place. Across the Metawamkeag river on the Military road, in Maine. On the national road in lllinois, at sundry points. On the Balthmore and Susquebanna. Rrailroad ut three points. On the Hudson and Patterson Railroad, in two places. On the Boston and Wurcester lailroad, at several points. On the Bostun and Providence Railroad, at sundry points. Across the Contocook river at Hancock, N H. Across the Connecticut river at Haverlill, N. H. Across the Contoocooh river, at Henniker, N. II. Across the Souhegan river, at Milford, N. H. Across the Kennebec river, at Waterville, in the state of Maine.Across the Genesse river, at Mount Morris, NewYork, and several other bridges are now in progress York, and sereral other bridges are now in progress
The undersigned has removed to Rochester, Munroe county, New-York, where he will promptly attend to orders in this line of business to ony practicabl eextent in the United States, Maryland excented.

MOSES LONG.
Rochester, May 22d, 1836 .
19y-tf.
AN ELEGANT STEAM ENGINE AND BOILERS, FOR SALE.
THE Steam Engine and Boilers, belonging to the STEAMBOAT HELEN, and now in the Novelty yard, N Y. Consisting of one Horizontal high pressure Engine, (but may be made to condense with little additional expense) 36 incbes diameter, 10 feet stroke, with latest innproved Piston Valves, and Metalic packing throughout.
Also, four Tubalar Boilers, constructed on the of over 600 feet in pach, or 2500 feet in all-will be suld cheap. All communications addressed (post paid) to the subscriber, will meet with due attention.

HENRY BUY「ZN.

[^8]
HARVEY'S PATENT RAILROAD

 SPIKES.TIIE Subscribers are manufacturing and are now prepared to make contracts for the aupply of the ab"ve article. Samples may be seen and obtained at Messrs. Bonorman, Johns-YN, A Yes Co. kers in Puaghkeepsie, who refer to the sobjoined certificates in relation to the artucle.

HARVEY \& KNIGHT.
Pougheeepsie, October 25th, 1836.
The undersigned having attentively examined Harvey's Patent Flanched and Grooved Spieges is of the opinion, thai they are decidedly preferable for Railioads to any other Spikes with which he is acs quainted ; and shall unhesitatingly reconmend their adoption by the different Railroad Companies whose works be has in chargc.

BENJ. WRIGHT,

Chief Engineer N. Y. \& E. R.R.

New-York, April 4th, 1836.
Harvey's Flanched and Grooved Spikes are evir dently superior for Railroads to thuse in common ase, and I shall recommend their adoption on the roads under my charge if their increased cost over the latter ia not greater than some twenty per cent.

$$
\begin{aligned}
& \text { JNO. M. FESSENDON, Engineer. } \\
& \text { April 2Gth, i836. }
\end{aligned}
$$

Boston, April 2Gth, 1836.

ARCHIMEDES WORKS.

(100 North Monr street, N. Y.)
NEW-York, February 12th, 1836.
THE underaigned tegs leave to inform the proprietors of Railroads that they are prepared to furninh ill hinds of Machinery for Railroads, Locomotive Engines ful operation on the Camden and Amboy Railroad, none of which have failed-Castings of all kinds, Whrels, Axles, and Buxes, furnished ai shurtest notice.
H. R. DUNHAM \& CO.

ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.
WILLIAM V. MANY manufactures to order. iron castings for Gearing Mills and Factories of every deacription
ALSO-Steam Engines and Railroad Castings on every description.
'Ihe collection of Patterns for Mactrinery, is not equalled in the United States. 9 -iy

TO CONTRACTORS
STONE CUTTERS and MASONS. JAMES RIVER and KANAWHA CANAL.-Contuactors for mechanical work are hereby inf rmed that a large amount of Musonry, consisting of Iockn. Culverts, and Aqueducts, is yet to be let on the line Culveris, and Aqueducts, is yet to be
of the Jamea and Kanawha Canal.
Persons desirous of obtaining such work, and prepared to exhibit proper testimunials of their ability to execute it, will apply at the office of the subscriber in the city of Richmond.
Stona Cutters and Masuna wishing employment in the South during the winter monthe, may count with cortainty on receiving llberal wagen, by engaging with the contractors on the work
CHAS. ELLET, Jr., Chief Eng. J. R. \& K. Co.
Richmond, Nov. 29, 1836.
J. R. \& $\underset{51}{\text { K. }}$ Co.

AMES' CELEBRATED SHOVELS,
SPADES, \&c.
300 dozens Ames' superior back-strap Shovels $\begin{array}{lll}150 \text { do do do plain do } \\ 150 & \text { do do do caststeel Sho }\end{array}$
$\begin{array}{lll}150 & \text { do do do Gold-mining Shovels }\end{array}$
100 do do Gold-mining Shovels
100 do do plated Spades
Together with Pick Axes Churn Spades.
rogether with Pick Axes, Charn Drills, and Crow Bars (steel pointed,) mannfactured from Salisbury refiaed iron-for sale by the manufacturing agents,
WITHLRELL, AMES \& CO.

WITHERELL, AMES \& CO.
No. 2 Liberty street, New. York.

NOTICE TO CONTRACTORS.

Proposals will be received at the office of the Hudson and Berkshire Railroad Company, in
the cily of Hudson, unil the 15 th of January, 8837 , the cily of Hudson, until the 15th of January, 2837,
for One Million feet, board measure, of Southern pine, of the following dimensiuns:- 6 inches aqpare,
and in lengtha of $2 \mathrm{~J}, 24,27$, and 30 feet and in lengehs of 21, 24,27 , and 30 feet long-aliso, for
$14, v 00$ Chestnut or Cedar ties, 8 feet long, 6 inches 14, 000 Chestnut or Cedar ties, 8 feet long, erd 6 inches
aquare-and also, 4,000 sills, of Hemloek, Chestnnt, or White Pine, 4 by 10 inches, and in fengthe of 15 , 18 , atd 21 feet long. The whole to be delivered by the lst day of July, 1837.
Hudson, Dec. 22, 1836.

No. 2 Liberty street, US, AMES \& CO.
 No. 8 State street, Albany
 dN. B - Also furnished to order, Shapes of every description, made from Salahury refined Iron v4-If
 BACKUS, AMES \& CO.

[^9] 4

524

AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF NTERNAL HMPROVEMENTS.

PUBLISHED WEEKLY, AT NO. 132 NASSAU STREE
D.K MINOR, and

IFW-YORK, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVAN(:F:

ATURDIY, JANOARY :2\&, 1837.

:VOLUME $\mathrm{V}_{4}-\mathrm{NU}:$

RRAME BRIDMES.

THE /adersigned, General Agentof Col. S. II. LONG, to build Bridges, or vend the right to others to build, on his Patent Plan, would respectfully inf.rm Railroad and Bridge Corporasibus, that he is prepared in make contracts to build, and furnish all materials it superstructures of the kind, in any part of the United Stales, (Maryland excepled.)
Bridges on the above planare to be seen at the fulit cing localities, viz. On the main road leading from if ilimore to Washington, two miles from the furmer place. Across the Metawamkeag river on the Military road, in Maine. On the national road in Illinois, at sundry points. Onthe Baltimore and Susquehanna Rrailroad at three points. On the Hudsun and Patterson Railroad, in two places. On the Boston and Worcester Railroad, at several points. On the Boston and Providence Railroad, at sundry points. Acruss the Contoocook river at Henniker, N IF. Across the Souhegan river, at Milford, N. H. Across the Connecticut river, at HaverLill, N. H. Across the Contoocosk river, at Hancock, N. H. Acruss the Androscosgin river, at Turner Centre, Maine. Across the Kennebec river; at Waterville, Maine. Across the Genesse river, at Squakiehill, Mount Murris, New-York. Across the White River, at Hartford Vt. Across the Conneclicat River, at Lebnnon, N. H. Across the mouth of the Broken Straw Creek, Penn. Across the mouth of the Cataraugus Creek, N. Y. A Railroad Bridge diagonally across the Erie Canal, in the Cisj of Rochester, N. Y. A Railroad Bridge at Upper Still Water, Oruno, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the firmest woodren bridge ever built in America.
Notwithstanding his present engagements to build between Iwenty and thirty Railroad Bridges, and sevaral common bridges, several of which are now in progress of construction, the subscriber will promptly attend to business of the kind to much greater extent and on liberal terms.

MOSES LONG.
Rochester, Jan. 13th, 1837.
4-y
CENTRAL RAILROAD AND bANEING COMPANY.
The following gentlemen were on Monday elected Directors of this institurion for the unsuing year:
Messrs. W. W. Gordon, Robert Habersham, J. P. Henry, J. Washburn, R. Hutch.
|inson, N. J. Bayard, (eo. B. Cumming; \mathbf{F} A. 'Tupper, Isuac Cohen.

Aud, at a meeting of the Board yesterday, W. W. Gordon. Esy., was unanimously re. elected President.
On announcing the above election, tre cannot refrain from indulging in a passing notice ol the Railruad, now in a state of for-wardness,-a Road, which, when completed, will deserve the narne it in anticipation bears -I he Central Reilroad of Gcorgia. A few shout wecks since, there was not a handful of sand cast up from the soil, where it has lain" time rhereof the memory of man runneth not to the contrary." Nouc iweltic miles and a half of the Koad are opened, more than six of which are graded. We learn that ten miles will be ready for the rails by the first of February. The Company is only awaiting the reports of the Engincers, at present engaged in the examination of difierent rouies, to determine the course of the road, and there is cerery prospect of liav. ing thirty miles ready for use by the first of Junc. Upwards of one thousand laborers and mechanics are employed. Three hun. dred tons of iron have been shipped from Liverpool, and seven hundred mose will be shipped in the course of the present month.
Our readers will renember that the Company declared a dividend in last month, on their capital reserved for banking purposes, of five per cent. for six months, or ten per ce..t per annum. We profess not to be gifted with the light of prophecy, but with the spirit which has distinguished the direc. tion, and their able Engineer, we look for. ward to the day as not for distant, when the: productions of Western Georgia will whirl through Yamacraw to the Bluff, where Og. lethorpe and Tomochichi, more than a cen. tury since, exchanged the pipes of amity.

Go ahead! Mr. Randall, and let your axemen, and your spademen announce to Western Georgia; that the citizen of Old Savannah have awakened from their pust lethargy, and desire to be connected with them, one and all, in a fraternal embrace. We are, ourself, impatient for side (by
steam) through our, pincy forests. We expect to be gratified in June, if not in in Feb. ruary. We fear no disappointment.-[Sav. Geor.]

We call the attention of those editors in New.York, who are in favor of removing the duty on Foreign Coal, to the following projected Railroad.
pottsville and. new-york railioad.
The period is rapidly approaching when a railroad from this region to the city of New-York will be undertaken-a work destined to be of incalculable importance to the interests of this region,-to the district of country through which it shall pass, and to the consumers of coal generally-especially to those of all our Atlantic cities. We know of no public improvement fraught with more highly beneficial consequences to the population of the interior of this State, than the proposed railroad to New-York. And we trust that no short-sighted, selfish, nar-row-minded or illiberal spirit of opposition will manifest itself to this great enterprisewhich must sooner or later be accomplished, in spite of every opposition, from whatever quaiter it may proceed. Had such a railroad been in operation during the last season, we should not lave heard any outcry about the scarcity of coal at present, and the poor man would have been furnished with this in. dispensable article of living, at reasonable prices. Nor would the subject of removing the duty on Foreign Coal lave been agitated or prayed for by any class of our fellow citizens. The business of transportation would bave continued up to the present moment, and prosecuted throughout the whole scason with enery. There would then have been litile or no pause or suspension in the business of mining-all hands would have been actively and incessantly employed, and monopoly and speculation in our large cities set at detiance by the consumer.

We learn from Sar:uel B. Fisher, Esq., a skilful Engineer, who has lately been engag. ed in making a reconnoissance of the route as far as Delaware river, that the same is not only practicable without inclined planes, but alss that the grade required wi'l not exceed eighteen feet in the mile throughout the whole distance, with the exception of a single mile-in which it must be increased to 40 feet-a very trifling elevation. Our New-Je:sey neighbors are ready and willing to give us all the assistance that may be required to connect the proposed railroad with the Somerville railroad, or any other that may be preferred, so that little or no difficulty need be apprehended in New.Jersey. This great work is therefore only awaiting the legislative sanction to carry it at once into execution. The stock will be taken with avidity beyond all question. And those who are principally instrumental in its accomplishment, will be hailed at no distant day as great public benefactors.-[Miners Journal.]

a trip on the railroad.

The portion of the Wilmington and Susquehannah Railroad between this city and Elkton is now completed. Yesterday, at the invitation of the President, and Directors, the stockholders and a considerable number
of other citizens of Wilmington, took a trip in the cars to Elkton, and back again. The locomotive Susquehannah, built for the company at Lowell, and better known here, by the cognomen of The Yankice, was placed on the road, and attached to iour superb cars, from the work shop of Betts, Pusey and Harlan of this city. The Susquehannah, is the most powerful and decidedly the best locomptive, the company have yet obtained. The cars are excellent specimens of workmanship, built after the latest models, with a passage, and free communication through the entire train, and seats in each calculated for twenty-eight persons, with room for half as many more, to stand up and walk from one apartment to another. About half-past ten o'clock yesterday morning, the train was drawn up at the foot of Market street, and our citizens to the number of a hundred and thirty, or forty took their seats. This was the first trip of the cars over the road, and there was some little anxiety, and ap prehersion, entertained, by many of the company at the result of the experiment, and the chances of some accident or catastrophy, where as yet, the locomotive, cars, engineer and road, had not become very well acquainted with each other. In this respect, all were most agreeablydisappointed. As it regards speed, 'pleasure and enjoyment of almost every kind, the experiment was most decidedly, successful. We left Market street, at thirty-five minutes past ten o'clock, and proceeded very rapidly four or five miles on the road, when some of the gudgeons to the cars become a little heated, from not having been worn smooth and adjusted, and it was found necessary to haul up, cool off, and apply d little more oil. We then applied the stearn, and resumed our course, puffing and blowing along, to somewhere not far beyond, what is called McGrann's deep cut, when an incident occurred that frigitened some, and amused others, much more than injuring any one. A strudy oak, that had not been sufficiently looked to, by the workmen and engineers, and which scemed rather to dispute a passage for The Yankee and his train, extended a branch some distance into the road which swept the sides and tops of the cars, breaking some tiwenty or thirty panes of glass, and scattering the pieces with violence enough, to draw blood from half a dozen noses, that were too prominent to escape a collision. After adjusting the difficulties from this accident, and 'bestowing proper attention to the wounded, by laughing them into a pleasant countenance again, we continued our course to Newark, and arrived opposite the village, at twenty minutes to twelve, where we were met, and greeted by a number of the most substantial and influential citizens intersted in the road.
As it happed here, The Yanhiee was under full headway, and went whizzing by, as though, he was not willing the Newarkers should get more than a glimpse of him, this trip.

We must confess, we had a strong inclination if possible to obtain a delegation from Newark, to join us, as far as Elkton, and back again, but we had no influence in matters of steam, and locomotives, besides, before we were fully aware of the presence of the Newarkers, we were out of sight, and the error, could not be.retrieved. . Not far
beyond the Maryland line, we passed through a deep cut, where had been discovered some valuable minerals of a ferruginous character, among which was a stone called jasper, said to be among the hardest known to geologists.
We arrived at Elkton, a distance of over seventeen miles by the route of the road at 12 o'clock, precisely, being an hour and twenty-five minutes including all the stoppages, from the time we left Wilmington. At Elkton, we were greeted by a large number of citizens, where we tarried till halfpast one, and left amidst the cheerings of hundreds of people, who literally lined both sides of the road. We reached the foot of Market streit, Wilmington at half-past two, after stopping two or three times, making the time on our return, one hour.
Every one was delighted with the excursion. The route of the road, passes through the most beautiful section of this county. It was not-a little amusing to see the flocks of sheep, cattle and sometimes horses as The Yankee came smoking along with his train, at such unwonted rapidity, take to their heels, and escape as if the de'el was to pay. : Our country friends generally, who reside on the route, improved the opportunity of witnessirg from their porches, the first trip of the cars over the road.
The annual election of Directors of the Railroad Company, took place yesterday afternoon, and among the first acts of the new board, will be to decide, whether they will now establish a line between Philadelphia and Baltimore, by means of stages on the part of the route not yet completed. Should they do so, it will be carried into effect in a few days. It is the expectation of many of our citizens, that such, will be their deter-mination.-[Wilmington Gaz.]

A public meeting was held at Quebec on the 27th ultimo, to promote the Quebec and Belfast Railroad. The projectors of this line seem to be nothing daunted by the certainty of the road from St. Andrews (N. B.) to Quebec being undertaken, though the one must very materially affect the inierests of the other. At the meeting it was resolved that subscription books for stock should be forthwith opened at Quebec, and other places.

Some such arrangement with the United States government, as is referred to in the aunexed Resolution, would be of incalculable advantage to the Province.-[Montreal Morning Courier.]
4. Resolved, That an application be made to his Excellency, the Governor-inChief, requesting that he may be pleased to bring under the consideration of the King's Government, the great and lasting advantages which would result to the commerce of the Canadas, if an arrangement of a permanent character were entered into with the Government of the United States, so that goods, wares and merchandize might be transported by the subjects of each government through the territory of the other, under such convenient restrictions as may afford mutual security, and at the same time not materially embarrass the operations and business of the Railroad;
and praying his Excellency to recommend
to his Majesty's Ministers the expediency of entering into such an arrangement.

We adverted three or four days ago to the importance of the Susquehanna Canal to the interests of Baltimore, and we hinted at the obligation which consequently rested upon our citizens of making extraordinary efforts to complete the work at the earliest possible period. Besides placing Baltimore in a most commanding position for the enjoyment of the immense trade which seeks a market through the Ohio and Pennsylvania State Canals, and cnabling her to enter into advantageous competition for supplying the West with merchandize, the Canal to tide will throw open the vast Coal regions of the Susquehanna, and thus create a new trade of incalculable value to the commerce of the Chesapeake Bay, and of this its principal city. The importance of this single item is thus earnestly divelt upon in the following editorial article, pul)lished in the Harrisburg Intelligencer of the 5th instant :- [American.]
coal-susquehanna canal.
A writer in the United States Gazeite, says, that when the Canal, that is now making, from Columbia to tide, is finished, which will be in two years, the Anthractice Coal of the Wyoming valley will be carried in immense quantities to market. He states that "Companies have already been formed, composed principally of citizens of New-York, to carry coal down the canal to Port Deposit, and from thence by sloops to the Eastern cities." We have no doubt of this. The completion of the canal to tide, will be a new era in the coal trade. It is now confined to the Lehigh and Schuylkill, whose coal fields, great and important as they are; are small in comparison to those on the Susquehanna, stretching from Lykens valley on the South, more than one hundred miles, to the head of Wyoming valley on the North. We predict that in less than ten years, that such an amount of coal vi'l pass down the Susquehanna, that more sloops will be loaded at its mouth, than are novo employed in the coasting trade of the whole Union.
Fortunes will be made by the owners of coal hills: At this time coal lands can be purchased reasonably. In Lykens valley, only eighty miles from tide; and one hundred nearer market than the Wyoming, are fortunes to be made. Here is an immense coal mountain, and a railroad connecting it with the river. The coal is superior to any other, for its casy ignition and purity. The owners, especially those on the North side of the mountain; have not yet found out their great value; and yet only on a few acres in the twenty thousand; are there any mines opened. We understand that a Boston company have purchased a portion of the valuable mines of Messrs. Elder \& Haldeman. There are still other chances here which we presume will not be long neglected.

Business of the Port of Buffalo.-By the courtesy of Capt. Caryl, Collector of
favored with the following-Account of property passing at Buffalo, on the Erie Canal, to other States, in the year 1836:Merchandize. Furniture. Pennsylvania, $1,909,260$ lbs. $165,956 \mathrm{lbs}$. Ohio, Michigan, 27,621,432 " 3,310,936 " Indiana, 21,814,542
$\left.\begin{array}{r}4,819,554 " \\ 144,808 \\ 1,257,548 \\ 20,655\end{array}\right]$

Total, 63,011,335
 9,871,777

This shows an increasc of merchandize, over last year, of $26,090,275 \mathrm{lbs}$., or about 70 per cent., also an increase of furniture over the same year, of $523,388 \mathrm{lbs}$.
The amount of merchandize left at Buffalo , coming from the east, is $23,425,762 \mathrm{lbs}$., being about $1,100,000 \mathrm{lbs}$., more than last year ; the amount of furniture left at Buffalo, coming from the east, $1,596,321 \mathrm{lbs}$. , being about 76,000 Jbs., more than last year.
Amount of property left at Buffalo, during the year 1836 , coming from the east.

Sundries,
Domestic Spirits, galls.
Boards and Scantling, fect.
Timber,
Staves,
Flour,
Corn,
Barley,
Other Grains,
Peas and Beans,
Potatocs,
Pork,
Beef,
Salt,
Cider,
Oil,
Dried Fruit,
Wood,
Clover \& Grass cords:
Flax Seed,
Wool,

Cheese,

 Butter and Lard, Hops,Hemp,
A pples,
Mahogany,
Fur,
Peltry,
Gypsum,
Stone,
Brick,
Bacon,
Merchandize,
Furniture,
Clay,
Mineral Coal,
Tallow,
Pig Iron,
Iron Ware

Timber, Staves, Flour,
Wheat,
Rye,
Corn,

Barley, Other Grai:, | Blocks, |
| :--- |
| Beer and Cider, | Beer an

Bricks,
Pork, bbls.

Bcef,	do.
Salt,	do.

Ashes, do

Oil,
Dried Fruit, Wood, Clover-\& Gras cords. Flax seed, Wool, Hides and Skins, Cheese, Butter and Lard, Hops, Becs wax, Tobacco, Leather,
Fur,
Peltry,
Decr Skins,
Stone,
Feathers,
Bacon,
Merchandize,
Furniture,
Clay,
Mincral Coal, Lcad, Pig Iron, Iron Ware,

510,348
10,345,012
139,178
304.090

1,500
204,355
4,876
28,641
52,580
39
783,930
7,383
805
1,549
7,789
36
27,380
14,027
104,303
220,842
252,367
86,076
110,347
1,272,624
19,388
27,037
3,794,905

8,201

206,604
68,190
394,937
ᄃ,114,699
29,386
1,010,866
495,082
851,816
$3,844,000$
67,582
67,582
$\mathbf{2 1 , 4 8 9}$
769,135
661,749
The amount of tolls in 1835., $\$ 106,21358$
$1836, \$ 158,07499$
Being an increase over last
year equal to
\} $\$ 51,86141$
-a trifle less than fifty per cent.
It will be perceived that the greatest increase in the business of the canal, is in merchandize forwarded to other States. This increase is greater in proportion to the capital than that of last year, and in all probability wiil continue to increase in geometrical instead of arithmetical progression.Hence we perccive the great necessity of a speedy enlargement of the whole canal, to keep pace with this immense increase of bu-siness.-[Daily Star.]
report of the survey of the roanoke danville and junction railroad.by walter gwinn, engineer.
To the Subscribers of the Roanoke, Danille and Junction Railroad.

(Concluded.)

eastern difision.
This embraces a distance of $\mathbf{6 7}$ miles, 1,515 feet, and extends from Danville to the mouth of Daniel's Run.

From the crossing of the Dan river, at the Falls of Dan, an ascent, at the rate of 39 feet per mile, is effected at but little expense, through the valley of Bear Creek, to the ridge near Mr. Dix's, dividing the waters of Sandy from those of Banister river -thence the route pursues this ridge along,

A mount of property shipped, or first cleared at Buffalo, during the year 1836, going to the east.
Sundries, libs.
Domestic Spirits, galls.
Boards \& Scantling, feet.
Shingles,

321,524
35,300
3,443,875
and close to the Fratiklin Court House road, to Mr. Smith's store. Soon after leaving Mr. Snith's store, we pas^ imperceptibly on to the ridge common to the sources of tributaries to the Pig, Sandy, and Banister rivers, and commerce descending to Pig tiver, which is crossed just below the junction of Snow Creek, and the route then immediately ascends to the Louisland road, and continues in the direction of the road, on the ridge between Pig and Blackwater rivers, until it reaches Grassy Hill; thence winding around the southern slope of the hill, it ascends to nttain the desired point on the Carolina road, about five miles from Rocky Mount.

From the Carolina road, the route continues on the crest of the ridge, about two miles; when it descends at the rate of 58 and so feet per mile, passing neear the Double Spring, to the valley of Blackwater river, and thence through Mr. Callaway's meadows to the mouth of Daniel's Run. It will be perceived from the foregoing, that with the exception of the grade at the crossing of Pig river, the ascent to Grassy Hill and the descent to the Blackwater, this portion of the ronte presents a profile within the range of locomotive power.
mountain division.
This comprises the mountain rnss and includes a distance of 8 miles- 206 feet. Here as well as at the other Gaps in the mountain, which I have named, staticnary power cannot be avoided.

It is not considered neccssary, to distribute the ascent among the planes, suffice to say, that the summit will be attainod by three inclined planes, with a total ascent of 1,313 feet. When it is considered that these planes descend in the direction of the heaviest traffic, the objections to them are in a great measure removed; -for by timing the arrivnl at the foot and at the head of the planes, it will rarely occur that any power in addition to the gravity of the descending train, will be required to raise the ascending train. With the proper guards and precautions, the transportation on inclined planes can be as uninterruptedly and very nenrly as safely conducted as on a level road.

Having attained the summit of the mountain, the road continues level for nbout one mile and 223 rods and then descends along McDaniel's and Pipe-Stem Runs, 166 feet in a distance of 1,197 feet, to the valley of Little River, the termination of this Division.

The expense of the graduation and superstructure of this division will only be enhanced by the necessity of grading for a double track on the summit, for a portion of the way on the descent, and on the line between the planes. The excavations consist principally of earth, the rock which it will be necessary to blast, will be required in the construction of the road.

WESTERN DIVI8ION.

This includes the remaining distance of 62 miles 1,144 feet, to the assumed termination of the road at Evansham. The loca. tion of thic division will be laborious and
difficult. Little river is very circuitous, and the question constantly recurs what undula. tions in the plane of the railroad, and wha' mount of excavation and embankment ; admissible and equivalent to the lengthener road, and the curvatures arround the bend: of the river. Except in extreme and vcr:? palpable cases, calculations founded on data derived from actual surveys, will be neces. sary, to enable the Engineer to decide thesc questions. The route under consideration has been traced with the view to test the practicability of shortening the line, by cutting off the abrupt bends of the water courses, which, on reference to the map, seem to mark out the course of the railroad.
Therefore, immediately after crossing Little River, at the termination of the Mountain Division, the route ascends, and by a deep cut passes through the high ground between the River and Booth's Branch, just above their confluence-thence up Booth's Branch nearly to its source-thence across to Beaver Dam Creck, and ascending along its valley to a favorable place, it crosses the ridge between Beaver Dam and Cole's Creek-and thence up Cole's Creck to its source in Laurel Ridge-and crossing through this ridge the bottoms of Brush Creek are entered, along which the route descends to the Walnut meadows. Thence winding around several stecp and abrupt hills which bound the right bank of the Creck, the route ascends to a favorable de. pression in the Pilot Mountain. After crossing the Pilot Mountain, it descends along its face to a favorable point of departurewhence it stretches across a succession of hills and hollows requiring much cutting and filling. At Hall's mill, Little River is crossed a second time-thence winding around the hill on which the mill houses are situated. the route falls into a valley, which it pursues to its source, and by a single cut it enters the valley of Cecil's Creek, along which it descends to New River. Here our attention was directed to the country between. New River and Reed Creek, nud the result of our inquirics led to the continuation of the route up New River to a favorable site for a bridge, of which we availed ourselves to cross to the right bank of the River, and thence along it to Honacre's Mill.
At this point, the road leaves the River and ascends a valley which crosses the main stage road near Mr. Galbreath's, and leads to a favorable pass into Draper's valley.Thence along this valley and through ra. vines draining into Reed Creek, which intersects the route twice, it reaches Evansham. This portion of the route, although rough, admits of a much more favorable location than a casual view of the country would indicate.
I have been thus particular in describing the ground in order that those interested may be able to judge of the correctness of my estimate, by comparing it with the diffi. culties to be overcome.
The cost of the work is based upon the amount of excavation and embankment, cui off by the grades as I have modified anc adapted them to the ground.
In estimating the cost of a work, oui ground, so diversified, and presenting sc many intervening obstacles, an actual loca tion, only, would furnish data for a detailec
estimate. The facts clicited by the recon. noisance and survey enable me to arrive at he maximum cost of the work, which will be found in the following estimate:
Excavation, Embankment,
\$1,778,145
Drains and Bridges,
Superstructure, 137 miles, $2,865 \mathrm{ft}$., at $\$ 5000$ per mile,

687,711
Total,
\$2,465,856
summary
Of the Cost of the Roanoke, Danville, and Junction Railroad.
From the Petersburg and Roanoke, the Portsmouth and Roanoke, and the Greensville and Roanoke Railruads to Danville, 172 miles, 2,025 feet,
\$2,213,671
From Danville to Evansham, 137 miles, 2,865 feet,
\$2,465,856
Total cost of excavation, em. bankment, bridging, and superstructure,
\$4,679,527
Cost of Inclined Planes, Superintendence, Locomotive En. gines, Cars and Coaches, Shops, Ware-houses, land, water stations, and contingencies,

8575,000

Total cost of Railroad,

\$5,254,527
I have estimated for a double track to altemate with the single track on some portions of the road, which, with telegraphs properly distributed, will afford all the accommodation of a continuous double railway. track, and admit of the extension of the business of the road with as little inconvenience and delay. By a line of telegraphs, the expenses of which will be much less than the interest on the first cost of a double track on the portion of the road where a single one is co:templated, the position of the train may be ascertained, its departure from any of the Depots may be readily communicated, and with almost the quickness of thought, news may be conveyed from one end of the line to the other.

Indeed, I am inclined to believe, that by means of the Telegraph, the double track may be dispensed with entirely, except at the watering stations.

The prevalent custom of making the transportation of produce subordinate to the conveyance of passengers has given rise to the fallacious opinion that produce cannot be transported so profitably as passengers, and that therefore, railroads must be confined to populous districts. To remedy this I would aave two classes of engines, one for speed, at the rate of thirty or forty miles per hour,or the conveyance of passengers, the other of greater weight and power for the transportation of produce, under low velocities from four to six miles per hour. These may travel at night with safety, and thus render a double track less necessary, and yreatly reduce the cost of transportation.

The only desideratum involved is the con. truction of an Engine with a capacity for senerating steam, travelling under the low velocities before mentioned and to admit of
an increase of the load in proportion to the reduction of speed.
It is believed that by a very simple modification of the locomotives in common use the object would be attained, and that the great diminution in the wear and tear of engines and cars moving at the rate of four or five miles per hour, would at the ordnary rate charged on the Portsmouth and Roanoke Railroad, yield as much profit on the transportation of produce, as would be derived from carrying passengers at the rate of twenty or thirty miles per hour. And upon this plan, grades of 40,50 , and 60 feet are less objectionable. A load due to such grades may be attached to the heavy engines : and they will be easily overcome by the passenger engines with any train they would be likely to have.

OF THE POLICY AND PROFITS OF THE IMPROVE. ment.
Under this head I can add but little to the able and comprehensive report of the committee of the Danville Cqnvention, to which I beg leave to refer, and will here take the liberty of transcribing an extract :
"Ân inspection of the map of Virginia as connected with her Southern, and South. Western boundary, offers at a glance to the eye of the examiner, an immediate and di. rect communication by the channel of the Roanoke, between the great South-Western valley, and our Atlantic border.
A rich and expanded area of the surface of Virginia, embracing not less than ten thousand square miles, with a population of one hundred and eighty thousand souls, a wide extent of the territories of Tennessee and Kentucky, and the richest portions of our sister State of North Carolina, embracing of her population one hundred and sixty thousand souls, seems at once connected by the ties of a common interest in this common channel of commerce, which want of energy, or want of resources in our people has hitherto left unimproved.
Is the contemplated work practicable? We assure our fellow-ctizens that it is not only practicable, but in our opinion presenting fewer obstacles to its accomplishment than any known work of the same extent, on the continent of America.

Whichever roufe may be ultimately sc. lected between the Eastern and Western limits of the contemplated improvement, the distance cannot far exceed a line of 300 miles.
Allowing for every contingency, it may be safely asserted, that the round sum of $5,000,-$ 000 dollars would cover the whole expendi. ture on the contemplated work.
Is that a sum within our resources? Is its magnitude. such as to deter us from the prosecution of an enterprise, pregnant as we believe it is with blessings inestimable to so large a portion of our people? Upon this part of the subject, no observation of ours can be necessary.
In times like these, of unexampled pros. perity, when so large a portion of capital in every part of our wide-spread confederacy, is courting a profitable investment, it can only be necessary to show that ample returns must reward the investment to ensure the application of the estimated sum to any contemplated work.

By a reference to "the synopsis of the James River and Kanawha Improvements, \&c.," we find the amount of tonnage on the South-Westera route, embracing part only of that region which must incvitably seek our improvement as the cheapest and most expeditious, estimated at 100,000 tons. Of this by far the largest portion is now carried to Baltimore, at an enormous expenditure of time and money. The time ordinarily occupied by a wagon, in travelling from Wythe Court House to Baltimore, may be estimated at fifty days, while on the contemplated railroad, the rich productions of the valley may reach Norfolk, Petersburg or Richmond, in two days, or the Baltimore market in threc. Taking then, as the basis of our calculation, the Report of the State Engineer, confirmed by the Report of the Abingdon Convention, as set forth in the synopsis above referred to, we may estimate the immediate trade meeting this improvement at Evansham, as yielding a tonnage of

100,000 tons.
To this, add the trade of the counties east of Wythe in Virginia and North Carolina, bordering on the proposed road, which on the fairest principles of calculation known to the Committee, may be estimated at The aggregate amount of tonnage now annuallyseeking its destination by wagons, and other means of transportation, is

150,000 tons.
From this calculation are excluded the vast mineral resources on the int rmediate line of the road. The salt, lime, gypsum, iron and lead; the three last sufficient to supply every possible demand, in fact, inex. hiustible ; yet according to the report of the Abingdon Convention, which valuable docu. ment we beg leave to recommend to the attention of the public, " the transmission of mineral productions of South.Western Virginia and East Tennessee, would form the largest source of profit to the stockholders of the railroad company." Add to all these the continued stream of travel which now runs through the South.Western valley, and which, as certain as cheapness, comfort and expedition invite the steps of the traveller, would mainly be diverted to the projected route, and the revenue of the road would swell to an amount which this Committec would feel reluctant to indicate. Here we reach the great thoroughfare to the South and South-West. Since January last, not less than thirteen thousand slaves alone, have passed the Western terminus of this improve. ment. But excluding from our estimate of profits all these sources of revenue,-exclu. ding also, every prospective addition to these resources which may be derived from the awakened energies of a people now slum. bering over their invaluable interests: and confining our calculations to the tonnage known to exist, and now inviting this im. provement, we shall see that on a capital of $\$ 5,000,000$, the return would almost exceed credibility. Suppose the 150,000 tons ac. tually seeking its destination, to travel on an average only through half the extent of our contemplated road, and suppose the average freights on exports and imports to be redu.
ced to six cents per ton per mile, the aggregate amount of tonnage on the road, would yield a revenue of one million three hundred add fifty thousand dolla.s annually.

Without pretending to accuracy in all our estimates and calculations, although they seem to us, based on undeniable facts ; and on the public reports of accredited public agents, we may safely assume that no error can place the revenue on this investment below twenty-five per cent. It may be objected that we have not taken into coasideration the cost of superintendance and repairs.To meet this objection, we suggest, that the conveyance of passengers and the transpor. tation of the mails must amply cover, if not largely exceed all such inccidental expenses. But should our expectations from these sources prove fallacious, can a doubt be entertained that the transportation of the minerals above referred to, which as certainly as the work shall have been constructed, must in large quantities be transported on this route, will more than compensate for any deficiency in the other resources of the im. provenient.

To the Capitalist it holds out the strongest inducement t_{1} investments, the certainty of large dividends. To the larmer it will be a clear saving of $\$ 20$ on every hogshead of tobacco carried to market; it will afford hin the means of enriching his lands, and, in many instances, will enhance their value ten fold. The great activity and impulse which it will impart to trade will enable the merchant to extend and enlarge his business, and the State will share the benefils of the general prosperity in the increased contributions to her Treasury-and in the wealth and social happiness of her citizens. And she will not tail tolend a helping hand to break down the barriers which scperated this fair portion of her territory from the benefits derived by every other portion of the State from the canals and roads which she has profusely spread.

So far our observations have been confin. ed to the country east of Evansham, where the products of the soil, the mineral resour. ces, the import trade and the travel fully jus. tify the improvement and strongly recom. mend it to the patronage of the State of Virginia, as well as to the people and State of North Carolina. But the extension of the road to the Tennessee line forms a compo. nent part of the scheme; and if we are permitted to look to the West, to a connexion with the Charleston and Cincinnati railroad, and with the, New-Orleans and Nashvile railroad, we do not think we can be charged with extravagance when we say that this road must be among the most successful rail. roads in the country. It has been happily styled the Junction railroad. Its union with the two last named roads affords a participa. tion in the benefit of the reciprocity of trade with the whole West and South.west portions of the country. At its Eastern terminus it unites with the Petersburg railroads through which the markets of Petersburg, Richmond, Fredericksburg, Alexandria, Washington, and Baltimore may be reached-with the Portsmouth railroad which leads to the oceau and the Port of Norfolk and Portsmouth one of the best seaports in the union, which by a little enterprise would command the com. merce of the world ; or whence, if it must
be so-transportation can be readily and cheaply effected to the Northern markets.

And your railroad forms a junction with the Ralcigh and Gaston railroad, and with the railroad now in progress of construction to Wilmington, N. C., thus giving the planter a choice of markets in this. State also, which at no distant day when the railways which she has projected from her seaports to the interior shall be in operation, will hold out inducements for an interchange of many of the commodities of the West. Another and very far from being an unimportant consid. eration just at this time, when the public mind is distracted with rival schemes, is the fact of your railroad harmonising with all the existing and chartered improvements in the State. I have shown that it communicates with every market place in the State, and thus adds greatly to the profits of the railroads from the Roanoke to Fredericks. burg, and from the Roanoke to Norfolk and Portsmouth. It is an auxiliary to the James and Kenawha River improvement. To prove this it is ouly necessary to advert to the recip city of your charter and that of the railroad from Lynchburg. The two companics by muthal compact have agreed to accept the hand of followsiup in the valley and go on to the Tennessee line tozether.

It will be conceded that it does not conflict with the Appomattox Improvemonts; and from the refusan of the Legislature to grant a charter for a railroad from Farmville to Cartersville in the grounds of the adequacy of that improvement to the wants of that portion of the State, we must infer that for the same reasons it will not sustain the scheme for a railway running parallel to it and intersecting the Roanoko at Danville and the Janes River at Lynchburg. Tacre is then no improvement or any likely to be made between the James and Roanoke Rivers which would come in conflict with your railroad.North of the James River the Louisa railroad accommodates the countics Soutlo of the valley district-through which the State in imitation of the example of Pennsylvania in stepping the Baltimore and York railroad at her boundary line, until she had completed the Susquehannah canal. the Colunbia railroad, and established her line of railways and canals to Pittsburg, will certainly not permit the Baltimore railroad to extend farther than Staunton-at least until she has made further progress in her own improve. ments.

We will now return to the immediate line of your contemplated railway- Here, we find a conflict with the Roanoke Nasigation Company.

Their improvements are totally inadequate to the present trade of the Roanoke country. It would be but just however to remunerate them for any depreciation in the value of their work by the proximity of your railroad Thus compensating this Company, I man. tain that your railroad will not conflict with any existing or chartered improvement in either of the States of Virginia or North Carolina.

All of which is respectfully submitted, by Gentlemen,

Your most ob't, servant, Waltrr Givynn, Civil Engincer.
Wilmington, N. C., Dec. 1st. 1836.

From the Troy Budget.

dreadful calamity-several lives lost.
Early last summer, many of our readers are aware, a large mass of clay burst from the hill on the east section of the first ward in this city, followed by a gushing stream of water, and doing no other injury than covering a large portion of ground, at the base, with the bowels of the hill. Last evening, about soven o'clock. a similar occurrence took place on the same spot, but, we regret to say, greater in extent, and exceedingly fatal in its consequences. An avalunche of clay came tumbling from on eminence of nearly 500 feet, moving down the base of the hill to level land, and thence continued, from the impulse it received, to the distance of about 800 feet, covering up acres of ground, accompnaied with a cataract of water and saud which kept up a terrible roar.Thic mass moved along with great rapidity, carrying with it two stables and three dwelling loouses, and crushing them and their contents ia thousands of pieces. The stables, and horses were moved to a distance of over 200 feet, into a hollow on the corner of Washington and Fourth-strects.

In its way, the avalanche also encountered a brick kila, burying it partially over and crumbling it together, from which a few minutes after, the flames rushed forth and lit up the city as with a great conflagration. This signal was the first intimation that was; had of the catastrophe, to those not in the immediate vicinity.
The three dwelling houses destroyed were of light structure, and one occupied by Mr. Join Grace, another by Mrs. Leavensworth, and the third by Mrs. Warner, the last of which was fortunately vacant at the time of the calamity. In Grace's house were himself and wife and little boy. The two former were extricated from the ruins dead. and the boy was taken, out alive, very litile hurt, bare footed and bare headed, the buildings having been shattered in a thousand pieces which is one of the most singular escapes that ever came to our knowledge. There were four of Mrs. Leavenworth's family in her house. herself and three children.

Two of the children were in bed at the time and probably aslecp, and were afterwards taken from the midst of the wreck dead ; crushed almost to a jelly, and were undoubtedly thrown instantly from a natural sleep into a slce: of death. Mrs. Leavens. worth was taken out shockingly bruised, and was barely alive when we last heard from her. Fortunately three of the family were at church' at the time and escaped awful deaths.

The stables were owned by Mr. Binghani, in which were 22 horses, and all carried along with the mass together, with nine or ten dirt carts. Six horses were taken from the ruins alive_the other sixteen were killed. The dead bodies of the horses can this morning be seen mingled among the ruins. Mr. Bingham's loss must be considerable.

We learn that the body of a person was found, name unknown, who was probably employed in the b:ick kiln or stables-which makes in all five dead bodies taken from the ruins last night. There are probably others buried in the ruins, and it is likely some persons at the time were in the stables or brick kiln.
great curiosity, and wondreful effects OF THE EXPANSION OF WATER BY FR EEZ. ING.
The attention of many of our curious and scientific citizens was yesterday very pleasingly arrested, by an occurrence at the iron foundry of Messrs. Harkness, Voorhees \& Co., in this city, exhibiting a specimen of the extraordinary power of the expansion of water by freczing.

An immensely large iron anvl, weighing between three and four tons, and imeasuring nearly three fect in diameter, had been left lying by the door of the firnace, exposed to the atmosphere. The anvil was perfectly solid, with the exception of a very small crack or crevice in the centre of one of the sides, about five inches long, and about four inches in depth, which from the rain had be. come filled with water. Tie quantity of water which the crevice contained could not have exceeded half a gill. In the courscof the night of the 20th December, this water be came frozen, and, extraordinary as it may appear, its expansion completely severed in two parts the immense mass of solid iron, and so great was its expansive power, that when the separation took place, a large log of wood which lay on the top of the anvil, was thrown to a distance of several feet.
Had the crevice been filled with powder, and the powder ignited, the effect would not have been a thousandth part as great.

We doubt not this interesting fact will be noticed with interest by the scientific curious throughout the United States.-[Cinciti Whig.]

The tremendous expansive power of freezing water has been proved, by a number of experiments, no less remarkable than the incident above described. We remember roading an account of one made at Woolwich, in England, several years ago, which gave an amazing proof of the power in ques. tion. An iron thirty-two pounder was prepared with an iron plug or tompion, twelve inclics long, made to screw into the mouth of the piece with a very close and deep-cut worm, (or spiual groove); the cannon was filled with water, the plug scrwed in, and moreover fastened with strong chains and ropes to the axles ; and thus charged, it was exposed to the cold of a severe winter nirgt. In the morning the chains and ropes were found broken, the worm destroyed, and the plug driven bodily out, while a cylinder of ice occupied half the space it had previously filled.

In Norway it is a constant practice with the mill-stone quarries to avail themselves of this irresistible expansive force. They quar. ry out large cylinders of stone, long enough to make six or eight mill-stones of the usual thickness; then drill a number of holes, about six inches deep, in the circumference of the cylinder, so as to girdle it by rings of noles, at the proper distances. Into these holes are driven wooden plugs, perfectly saturated with water, and the frost soon splits the cylinder into as many blocks as there are circles.-[N. Y. Com.]

Large Corn. Mr. Joln Way, Sen., of Londongrove, informs us that he raised during the last season, an ear of corn, which produced 1684 grains-and four other ears each of which NEASURED $14 \frac{1}{2}$ inches.

REPORT, OF JOSEPH D. ALLEN,

TO THE

COMMISSIONERS OF THE NEW-YORK AND ALBANY

RAILROADCOMPANY.

Gentlemen.-The result of the survey and examination which at your request I have thus far made relating to a route for the proposed New.York and Albany Railroad. I respectfully submit in the following report.
A topographical map of the country explored together with a profile of the route described and taken as the basis upon which I have made an estimate of the probable cost, are also herewith presented.
That portion of the route over which I have extended my sur. veys, is embraced between Harlem River and a point $1 \frac{1}{4}$ miles above the village of Milltown, situated on the Croton River in the county of Putnam, a distance from Harlem of 52.6 miles on the line traversed via. White Plains and New-Castle.
The topographical features of the county of Westchester and Putnam also, not only upon the region embraced in the surveys but in their general character, are quite undulating and irregular. The soil is generally good, and casy to be excavated, consisting chiefly of a sandy loam united with a gravel formation, and as an agricultural district, it presents a highly interesting appearance. The principal streams intersecting its central portion, are the Croton, the Bronx and Saw-Mill Rivers which have their course in a southerly direction. The valleys are therefore favorably ordered for the location of such means of communication with the city of New-York as the public nccessities of the country may require.

The route which so far as the surveys now enable me to judge to be the most feasible for the purposes of the road, commences at the point of the ridge on the north bank of Harlem River, opposite the termination (on the Island of New-York) of the fourth Avenue; and pursuing a northerly direction soon crosses the Westehester Turnpike, and enters the valley of Mill-Creek about $\frac{3}{4}$ ths of a mile north of Harlem Bridge.
The valley of Mill-Creek which is highly eligible for the object, is pursued to its source, from which at a few rods distance the line enters the valley of the Bronx. After crossing to the cast bank of the latter stream its valley is pursued for 15 miles, which extends the route to the mouth of Davis Brook, a small tributary of the Bronx, joining it $2 \frac{3}{4}$ miles north of the village of White Plains.
From this point several routes present themselves by which to pass on to the Croton valley, and their relative bearings will be more clearly indicated, by the features shown upon the accompanying map. The waters of the Bronx are discharged into the Sound at Westchester, while those of the Croton, originating much further north, find their way into the Hudson, near the village of Sing-Sing.
The surface of that region ranging between the head waters of the Bronx and the Croton at Milltown over which several of the eastern tributaries of the latter stream have their course, and convey the drainage of the adjacent country towards it, assumes an irregular character. Many of the dividing ridges with their intermediate valleys into which the surface is broken, here lie in a direction more opposite to our course.
Levels have been extended over the country bearing castwardly from Robbins' Mills, situated on the outlet of the Rye Ponds, in the valley of the Bronx, passing through Bedford village, thence northward to the Croton, and upon this route several of those transverse ridges were encountered.
The chief of these and the most elevated are the Comung, the Long Pond and the Peach Pond ridges. The first is the most formidable, and to pass it would require the route to be extended nearly around its southern extremity, which lies a short distance beyond the east line of this State.
From the examinations which I have been able to make I am induced to believe that in passing from the valley of the Bronx to that of the Croton, the elevations or changes of level will be greater upon any route bearing eastwardly of the head-waters of the Bronx after leaving White Plains, than upon a course passing around westerly, with the view of sooner entering the Corton valley.
On entering the valley of the Bronx from the head of Mill. Creek the line crosses to the east side of the stream, a short dis-
tance below Williams' Bridge, upon an embankment averaging 7 feet in height for a distance oi about 1300 feet, and pursues a fair course along the foot of the upland which is somewhat undu. lating, though upon a grade of easy ascent in general, until it reaches Tuckaho Factory where it re-crosses to the west side of the river.

From thence the line has a favorable location near the foot of the ridge which forms the western bound of the valley as far as Popham's Mill. Upon the next succeeding mile the bounding ridges upon either side lie very near the river.

The western bank is pursued as the most feasible, and will allow of a sufficient width by excavating the principal part in the slope of the hill, the remainder being obtained from the channel of the stream, by raising a protection wall upon the exterior of the road bed to guard it from the abrasions of the current. Though the ridges have here left a narrow pass, the requisite width can be obtained, and the work made safe from the floods of the River, at a moderate expensc. The route from thence is continued over ground generally feasible, along the margin of the stream, passing Horton's and Purdy's Mills, and again crossing the Bronx to the east side at George Bogerts, opposite to about $\frac{3}{4}$ ths of a mile west of the village of White Plains.

Some slight changes in the channel of the stream at a few points on this last portion, will be required upon the east side in order to preserve a fair direction in the linco and also sometimes avoid projecting points of upland which occisionally contract the valley.

The River at Bogerts is crossed upon a viaduct of 25 feet span, and the valley upon an embankment $13 \frac{1}{2}$ feet high for a distance of 1000 fect. From thence the line runs chicfly upon the table land moderately elevated to the mouth of Davis' Brook which comes to unite with the Bronx through a feasible pass-way in the western boundary of its valley from a north-western direction.

After having first pursued a line from this point along the Bronx to Robbins' Mills and thence more easterly through Bedford and North Salem villages, and on to the Croton valley, near Soddom Corners, I returned and continued the route up Davis' Brook to its source, where we met a small river called Fly Brook, which flows into Saw-Mill River, uniting therewith on our course near Unionville Church.
The summit grade between the Bronx and Saw-Mill River is 39 feet above the former, and is 250 feet above the tide.
Fromb Unionville, (in Mount Pleasant) the line passes up Saw. Mill River to the summit ground which separate its waters from those flowing into the Kisko in an opposite direction.

The grade line upon this summit is 305 feet above the tide. In descending from thence to the Kisko it follows the border of the valley of the dead Swamp in which originates a small stream called Chopequa Brook. Crossing Kisko river about $\frac{3}{4}$ ths of a mile below Kirby's Mills in the town of New-Castle, the line continues in a favorable direction up the valley of Branch Brook, another small stream which unites with the Kisko opposite the mouth of the Chopequa. The features from the Bronx to this point are quite regular though the ground along both of the Brooks last mentioned is in part of a marshy character, yet will allow of a very direct line and of a grade which will depart but slightly from a level.

At the head of Branch Brook, we reach the summit from whence the drainage of the adjacent country passes northward and falls into Cross River, a considerable Mill stream which origin. ates in the vicinity of the village of Bedford and North Salem about 4 miles east of our course and unites with the Croton at Whitlockville.
From that summit where the grade line is 278 feet above the tide we descend by the valley of Muddy Brook to Cross River, and pass the stream upon a viaduct of 40 feet span, with the grade elevated 30 feet above the river.
The ground for two miles from the head of Muddy Brook pro. sents a tolerably even surface, but has an inclination of $31 \frac{1}{2}$ feet per mile. The surface from thence onward past Cross River, to the farm of John Wilson, embracing a distance of 3 miles, is quite undulating, and as will be apparent by a refference to the accompanying profile, portions of the embankment and excavations will be more heavy than will ordinarily occur on the line.

Leaving this vicinity, the route passes over the table lands near the foot of the elevated ridge, which here becomes the main eastern boundary of the Croton valley, and enter upon its bottom grounds near the Post Office and residence of Stephen Frost, about
half a mile above Golden's Bridge, in the town of Salem. The elevation of our grade here is 207 feet above tide.
The route from thence pursues the valley of the Croton River, the remainder of the distance traversed, passing Owensville, Doansville, Soddom Corners, and thence up to the point before mentioned, $1 \frac{3}{4}$ miles atove Crawford's Mills at the village of Milltown.

The dam at Crawford's mills is 405 fect above the tide ; the grade line 4 feet above it, making the total elevation at that place 409 feet above the tide.

The Valley of the Croton between Golden's Bridge and Milltown, in general, has a width which is ample for the obect, and will admit of an eligible location upon grades moderately inclined, for most of the distance. Those points it which the greatest irregularity of features occur are at Owensville, Doansville, Soddom Corners, and a portion of the distance from thence to Crawford's mills, At Owensville the upland banks approach near the Stream, and its ascent in the space of one mile, will raise the grade to 35 feet per mile, at Doansville, the valley upon a short distance is irregular in its course, and has an ascent above its average rate, at Soddam its winding direction, together with the boldness of its northern bank, renders it difficult to avoid some irregularity in the course of the line. It will doubtless be most judicious to pursue the valley, as the line is shown on the map, rather than cross the river near the village, and :counter the expense of cutting down the rocky ridge on the one side, and raising a heavy bank on the other, to obtain a more direct location. Though the course of the line is here more invegular than at any other point on the route, a radius of 1000 feet will be the shortest required, and occur at only two points, while the grade will have an easy inclin. ation. Passing onward up the valley, its features are considerably undulatirg as far as Milltown, and the ascent upon a short distance rises to 35 feet per mile. On reaching that place, however, the route enters upon an extensive district, which is far more regalar in its topographical features and from the personal examination which I hove made, and from facts derived from former surveys, the route from thence northward for thirty miles continues to present a much more eligible character for the parpose, and it cannot be questioned that the work may be executed at a cost comparatively much Eelow that upon the portion embraced in the present survey.

The line crosses the Croton at several of its most abrupt curvings below Milltown, and at other places a change of the channel is contemplated. The river upon this portion is not so large as to require Bridges of great expense, nor is its flow of water aug. mented during the flood season, to an extent demanding extra protection against injuries sometimes anticipated from causes of that nature.

It is proper to observe that the line as traversed and described, may, doubtless, be improved at various points, when upon a more full examination a deffinite location is made, and I trust the cost will, at several points, be thereby reduced below that now estimated. The curves are made very easy in general, upon a good length of radius, varying from 2000 to 12,000 feet. At two points only, are they necessarily reduced to a shorter length.

As before stated, I have extended lines of survey over a very considerable distance, (more than twice the length) beyond that of the line described, and presented as the basis upon which my estimate of cost is made. Branch or parallel lines, sometimes near, and again some miles distant, have been traced along the valley of the Bronx, on either side, and by a routc departing therefrom, passing through Bedford Village, to the Croton Valley, near Soddom Corniers, to which reference has aiso been made. I have not been able to find a route by the latter course so far feasible as to justify its adoption, without passing around the south end of the Comung Ridge, and thus far out of the limits of the State for a short distance, for which no chartered provision is now made.

In passing from the valley of the Bronx towards that point, before reaching Mile Square, the grade would rise at the rate of 40 feet upon a portion of the distance, and again, in passing the dividing ridge between Cross River and the Titicus, called the Long Pond Ridge, to near 50 feet per mile.

Between North Salem Village and the Croton Valley, in the direction desired towards Milltown, lies the wide and elevated Peach Pond Ridge, over which the line could not pass at a reasonaple expense, bearing in the course of the latter from the former
place without encountering grades, both in the ascent and descent, more than twice as highly elevated as are found at any point upon he route of the Bronx and Croton Valleys. If instead of passing hus directly over the ridge, a line is continued as was surveyed, more westerly and partially around it, to avoid a portion of the alevation, an ascent would still be encountered of nearly 60 feet per mile, and morcover, we should approach near to an intersec. tion with the Croton line at Doansville, and thus add to its length by a more circuitous direction $3 \frac{1}{2}$ miles.
Many of the citizens of Bedford, North Salem and their vicini. ty, manifest much intcrest in the work, and propose an examination of other routes which they suppose may be feasible through that district. This should, no doubt, be done previous to determining upon a location.

It will be seen by an inspection of the topographical features of the country, between White Plains and Kisku River, in New.Castle, as indicated on the map, that a route continued quite up the valley of the Bronx to its source, passing through Dark Valley, so called, and down that branch of the Kisko which originates at that place, to an intersection with the present line, near its crossing on the Kisko, would be more direct than that traversed by way of Saw. Mill River.
My time has not been allowed me to extend a line of levels over this route to fully determine the question of its feasibility, but I have made a personal examination of it, and am induced to recommend its survey in the hope of favorable result.

By a reference to the accompanying profile of the line, it will be observed, that over the greatest portion of the distance, (or about 30 miles) the grade is either level or ranges below about 12 feet per mile, that it reaches in the maximum to 35 feet; and I trust this may be reduced, on revising the line. The inclination, it will be scen also, is chiefly towards the city of New-York, the di. rection of the greater trade.

The character of the line, in respect to its inclination, will be scen in the following tabular exhibit of the grades, as they occur in passing from Fiarlem River northward to Milltown.

$\left\|\begin{array}{c} \text { Dis tance, int } \\ \text { chains of } 10 \% \\ \text { feet. } \end{array}\right\|$	Kate per mile.		$\left[\begin{array}{c} \text { Distance, in } \\ \text { chains of 10u } \\ \text { feet. } \end{array}\right.$	Rate per mile.	
	cel ascent.	leet descent.		leet ascent.	freet descent.
18	Level.		63		31.68
105	7.04		57	Level.	
183	11.44		105		19.36
. 84	19.36		54	Level.	
156	Level.		27	22.88	
78	5.28		36		26.40
105	12.32		33	2.64	
78	17.60	.	96		19.36
78	12.32		54	35.20	
117	14.08		48	Level.	
45	Level.		114		17.60
45	10.56		45	Level.	
93	22.00		75	31.68	
126	3.52	.	60	21.12	
99	19.36		42	12.32	
78	7.04		66	35.20	
51		13.20	75	3.52	
66		17.60	63		
60	Level.				

The $\mathbf{3 0}$ miles next succeeding, may, no doubt, be made to conform quite near to a level grade, and so regarded in such farther extension of the table.

I have based the estimate of the probable cost upon the plan of a road-bed, graded to a width of 24 feet, designed for a double track.

The mechanical structures, as Culverts, Bridges, \&c., so far as consistent, to be given a permanent character.

For the Superstructure of the Road, I have contemplated the adoption of the ordinary wooden rail, most generally in use, surmounted with an iron plate or bar, and supported upon longitudinal sills and cross-ties substantially united.
In the estimate which follows, the line is presented in several separate sections, conforming to several natural divisions occurring in the route.

ESTIMATE OF PROBABLE COST.

Section No. 1,

Extends from Harlem River to the Valley of the Bronx, at the head of Mill Creek. The soil consists principally of a sandy loam united with gravel. Distance 5 Milcs.

		Quantilies.	Rate	Amount.
Excavation of common earth, Cub. Yds.		56,312	10 c	\$5,631
Rock Excavation,	-	1,900	75 c	1,425
Embankment,E				
Grubbing, low chopping and clearing,				180
7 Culverts and Drains, Masonry	y	162	\$3	436
Foundations and Pits,				185
Road crossings,				$\stackrel{90}{ }$
Fencing,	Rods	2,937	\$1.50	4,480
Land,	Ac	45	\$1,0	4,500

Total Amount, \$27,305

Section No. 2,

Continues up the valley of the Bronx River to the mouth of of Davis' Brook, in the town of White Plains-soil of the same general character. Distance $15 \frac{1}{2}$ miles.

	Quantities.	Rate.	Amo
Excavation, common carth, Cub. Yds.	258,040	11 c	\$28,384
Rock excavation,	41,208	75 c	30,906
Embankment,	404,627	13c	52,601
Road crossings,			585
New road, Rods	30	\$2	60
37 Culverts \& Drains, Masonry Cub. Yds.	964	\$3	2,892
Foundations and Pits, "			1,110
2 Culverts over Bronx Riv- er, 25 ft . square Cub. Yds.	568	\$4	2,272
Foundations for same, "			400
2 Bridges over Bronx Riv. er, Masonry Cub. Yds.	437	\$3	1,311
Foundations for the same,			400
Superstructures for same, "			720
Protection Wall, . Cub. Yds.	2,542	\$1,25	3,177
Grubbing, low chopping and clearing,			1,023
Removing Barns,			70
Fencing, Rods	9,192	\$1,37	12,639
Land, Acres	$139 \frac{1}{2}$		10,462

Section No. 3,

Passes from the Bronx up Davis' Brook to Saw Mill River, thence up the valley of that stream to its summit, and down Chopequa Brook to Kisko River, near New-Castle Corners. A similar soil continues. Distance $10 \frac{1}{2}$ miles.

	Quantilies.	Rate.	Amount.
Excavation of common earth, Cub. Yds	184,775	11 c	\$20,3:5
Rock excavation, "	2,160	75 c	1,620
Embankment, ` "	191,707	13 c	24,922
Grubbing and clearing, "			313
22 Culverts and Drains, Masonry, "	802	\$3	2,406
Foundation for same, Pit excavation, \&c.			700
Road crossings,			390
New Road, Rods		\$2	32
Fencing, "	6,530	\$1,25	8,163
Land, Acres		\$70	6,650
	al Amount		\$65,521

Section No. 4,

Continues upon a soil in which the excavation will be chiefly gravel and sandy loam, from the Kisko by the valleys of the Branch and Muddy Brook, passing Cross River, and thence to the valley of Croton River, near Golden's Bridge. Distance 9 miles.

Section No. 5.

This section extends up the Croton Valley to the termination of the present survey near $1 \frac{3}{3}$ miles north of Milltown.

The soil consists prineipally of gravel and sandy loam. Dis. tance $\mathbf{1 2 . 6}$ miles.

Aggregate of tie Sections.

No.	Distence-Miles.	Amount.
1	5	\$27,305
2	15.5	149,012
3	10.5	65,521
4	9	89,510
5	12.6	98,118

The distance included in the foregoing sections, is 52.6 miles, and their total estimated amount, covering the cost of completing the Road-Bed for a double track, ready for the superstructure, is $\$ 429,466$, equal to $\$ 8,164.75$ per milc.

I have estimated the cost of a superstructure for a single track at $\$ 4,000$ per mile. To provide for the incidental expenses attending the construction of the work, as well as such as now can. not be foreseen. I have made an allowance of a further sum, equal to 12 per cent. upon the above amounts.

The estimate of the probable cost will therefore stand as follows.

Grading double track, 52.6 miles at \$ $\$, 164.75$,	\$429,466
Superstructure for a single track at \$4,000,	210,400
Contingencies, Enginecring and Superintendance, 12 per cent.	76,784
Total Amount	8716,650

Cost per mile, equil to $\$ 13,024,52$.
When there is added to the portion of the route embraced in the foregoing estimate, (no doubt the most cxpensive part,) the
next succeeding, and more eligible portion, extending through the County of Dutchess, and thence on to its junction with the Wes. tern, and the Albamy and West Stockbridge Railroad, (the one uniting with it from the east, and the other from the west) and contrast it with the lines of Railroad already executed, or in the progress of construction in the various sections of the country, it is believed a result highly favorable to this enterprise, as it regards cost of construction, character of grades, and the facilities for an economical and rapid transit, will be fully apparent to all.

Respectfully submitted, by your obedient,
(Signed) JOSEPH D. ALLEN.
November 8th, 1836.
Civil Engineer.

TO THE COMMISSIONERS OF THE NEW-YORK AND

ALBANY RAILROAD.

Gentlemen,-I have with much care, and attention examined the Report, Profile and Ground Plan, of a Survey and exploration of a line run by Joseph D. Allen, for a part of the proposed road extending from Harlem River, opposite the 4th Avenue to
near Mill Town, in the county of Putnam, about fifty-two miles.
Knowing Mr. Allen well, and appreciating his long experience on Public Work 3,_I have the most implicit confidence in his judgment and skill, in the location of a line of Roads, and upon a careful examination of the prices he has affixed to the several items of his estimate. I consider them very liberal, and such as will enable contractors to perform the work, in times like the present.

I am also acquainted with the ground over which Mr. Allen carried his line,-llaving some years since, examined th in relation to Water for the city; and in 1833. I examined it so far, as to pass over it with a view to a Railroad.

All these cxaminations, confirm me in the belief, that unlimited confidence can be placed in all that Mr. Allen has done and reported upon,-and I can vouch for the truth of the remarks made by Mr. Allen, that the line from the point where he left it, if pursued northwards, through Putnam and Dutchess, would be found to give ground, extremely favorable as to Grades, Curves, and expense, and a cheaper, and better Road may be made on that part of the Route thau the part now surveyed by Mr. Allen.

I have the honor to be,
Gentlemen, Your ob't. servt.
Signed. BENJAMIN WRIGHT.
New-York, January 16, 1836.

From the Jeurnal of the Franklin Institute.
A bill for the regulation of the boil. ers and engines of vessels propelled in the whole or in part by steam.*

TABLE OF CONTENTS.

§ 1. Requires an enrolment, and license of navigation.
§ 2. Provides a penalty for navigating without a license.
§ 3. Requires the appointment of an inspector of boilers and machinery, and defines his duties, \&c.
§ 4. Requires a certificate to the inspector from the owner or master of a steamboat, of the pressure of the steam intended to be used.
§ 5. Makes provisions intended to secure the safety of boilers.
Art. 1. Requires two safety-valves.
2. Provides for the graduation of the first.
3. Fixes the maximum pressure to be allowed upon it.
4. Provides for the regulation of the second.
5. Requires the second to be inelosed so as not to be accessible except by the captain of the boat.
c. Puts the second under the control of the captain of the boat.
7. Regulate; the least rise to be given to the lock-up valve.
8. Directs the form of the lever of the valve.
9 Provides for each two small cylinder boilers, one set of safetyvalves.
10. Requires a mercurial-gauge for low pressure boilers, and prescribes its arrangement.
11. Provides that it shall be open to examination by passengers.
12. Requires a fusible metal apparatus to be attached to every boiler.

[^10]13. Directs the fusible metal to be inclosed.
14. Provides for its not being tampered with.
15. Inspector to compound the fusible metal.
16. Prescribes the composition of the fusible metal.
§ 6. Requires an examination into the fulfilment of the foregoing provisions, by the inspector, previous to giving certificates.
7. Penalties for interfering in any way with any part of the apparatus provided for the safety of the boiler.
8. Prohibits more than two contiguous boilers to be connected by a water-pipe.
§ 9. Penaltics for the bursting of a boiler caused by a deposite.
§ 10. Prolibits boilers in which the metal is exposed to heat without being in contact with water.
§ 11. A thorough examination of the boilers, \&c., required of the inspecetor. Proofs directed and proof-pressure prescribed. Certificates to be given by the inspector to be posted up under the penalties prescribed. Fees of inspector.
§ 12. Proofs, \&c., to be made every six moths. Circumstances under which a license may be forfeited.
§ 13. Requires the pumps for supplying the boilers with water to be kept at work, when a boat is stopped for a temporary purpose. Penalty prescribed.
§ 14. Qualifications for the office of inspector laid down.
§ 15. Penalties for explosions when the master or engineer is engaged in gambling, or is intoxicated. Also from racing, \&c.
§ 16. A neglect to obtain or renew certificates as prescribed, to bar from the recovery of a claim for freight or insurance. Owners of boats to be in such cases responsible for loss; or damage by explosions.
§ 17 . Penalties in case of explosion when the captain, \&c. has neglected to have the required inspections made, and certificates issued.
§ 18. Provides a bounty for boats with boilers on the gilards, and suitable bulwarks
between them and the interior of the boat. § 19. Inspector to be dismissed in case of making false certificates, \&c.
§ 20. Provides for the recovery of fines, Sc. Proviso, that suits must be instituted within two years after the offence has oc. curred.
§ 1.*-Be it enacted by the Senate and the House of Representatives of the United States of America, in Congress assembled, That it shall be the duty of all owners of steamboats, or vessels propelled in the whole, or in part by steam, on or before the day of ——, one thousand eight hundred and - ; to make a new enrolment of the same under the existing laws of the United States, and to take out from the collector or surveyor of the port, as the case may be, where such steamboat or vessel is enrolled, a new license, under such conditions as are now imposed by law, and as shall be impos. ed by this act.
§ $2 . \dagger$-And be it further enated, That it shall not be lawful for the owner, master, or captain, of any steamboat, or vessel propelled in the whole, or in part, by steam, to transport any goods, wares, and merchandize, or passengers, in, or upon the bays, lakes, rivers, or other navigable wajers of the United States, from and after the said - day of - , one thousand eight hun. dred and - without having first obtained from the proper officer, a license under the existing laws, and without having complied with the conditions imposed by this act ; and for each and every violation of this section, the owner or owners of said steamboat, or vessel, shall forfeit and pay to the United States the sum of
§ $3 . \ddagger-$ And be it further enacted, That it shall be the duty of the President to appoint at such ports on the navigable waters, bays, lakes, and rivers, of the United States, as in his judgment will be most convenient to the owners and masters of steamboats, and vessels propelled in the whole or in part by steam, one or more persons who shall be

[^11]practical mechanics, of competent skill, to make inspections of the boilers and machinery employed in such boats and vessels, whose duty it shall be to make such inspec. tions, when called upon for that purpose, to give to the ownor or master of such boat or vessel, duplicate certificates of all such inspections, and the said person, so appointed, shall, beiore entering upon the duties of said appointment, take an oath, before some competent authority, faithiully to discharge and perform the same.
§ 4.-.And be it further enacted, That the owner, master, or captain of each and every boat or vessel propelled in the whole or in part by steam, shall certify, to said inspector, the greatest pressure, or total elastic force, of the steam intended to be produced in the boiler, which certificate shall regulate in the proofs, trials, and construction, hereinafter required.
5.-And be it further enacled, That each and every boiler of a steamboat, or vessel propelled in the whole or in part by steam, shall be constructed, and arranged, so as to comply with the following provisions:

1. There shall be two safety-valves, each of which shall be competent to discharge the steam made in the ordinary working of the boiler.
2. The first of said valves shall be graduated by the maker of the engine, and have stamped upon the lever. by which it is weighted, the pressure at which it will by calculation open, when the appropriate movable weight is placed at the several marks. Said pressure to be the difference between the pressure of the steam within, and atmospheric pressure on said valve.
3. When the movable weight exerts its greatest pressure, the total pressurc upon said valve shall not exceed the pressure as certified according to the provision of the fourth section of this act.
4. The second of said valves, denominated the lock-up valve, shall be immovably weighted, the total pressure upon it not to exceed said certified pressure.
5. Said lock-up valve, with its lever and other attachments, shall be inclosed in a grated box, or otherwisc duly arranged so that it can be raised, but not pressed down, except as above provided, upon its seat.
6. Said inclosure, or arrangements, shall be secured with a lock, of which the captain or master of said boat shall alone have the key.
7. Said inclosure or arrangements, shall admit a rise in the valve of at least one-fourth of the diameter of its seat.
8. The lever of said valve shall be so constructed as ou the rising of the valve, to diminish the effect of the acting weight, by at least one-tenth of the ordinary pressure derived from said weight.
9. When two boilers, each of not more than forty inches diameter, are connected by a steam-pipe, each pair of said boilers may
be furnished with be furnished with safety-valves, as described in this section, for a single boiler.
10. When the certified pressure provided in section fourth, does not exceed two atmospheres, each and cevery boiler shall be furnished with a mercurial-gauge, indicating by a float or rod, upon a duly graduated and

the boiler over atmospheric pressure in inches

 of mercury.11. Said gauge and scale shall be so placed as to be readily examined by any and every passenger on board of said boat.
12. Eachiand every boiler shall be provid. ed with a fusible matal apparatus of suitable form and dimensions, to be applied to the boiler itself, or to its flues, at the place which may be considered that of greatest heat, or most liable to exposure froma deficient supply of water.
13. Said fusible metal shall be contained in a tuobe to prevent its exposure to pressure, and shall on softening, communicate an alarm by some suitable device.
14. Said apparatus shall be duly securod from being rendered ineffective, in the manner of the lock-up sifety-valic heretofore provided.
15. The fusible metalhereinbefore referred to, shall be compounded by the inspector, who shall place it in the apparatus as afore said, and shall satisfy himself that the whole is duly arranged as heretofore prescribed; for which service he shall receive, on certifying the same, a compensation of
16. The said alloys shall be compounded according to the certified pressure of steam within the boiler, by the following table of parts, by waight, of the ingredients.
tadle of alloys for uSe in closed tubes, AND WITH A Metaltic stem.

ω	\cdots	10	$\because 1$	Certified pressure in atmospheres.
∞	∞	∞	$\infty 1$	Tin.
∞	∞	∞	$\infty 1$	Lead.
$\stackrel{+}{\square}$	cr	io	$\mathrm{Cr}^{2} \mathrm{i}$	Bismuth.
\checkmark	0	$\stackrel{7}{ }$	\sim	Cerlified pres. sure in atmospheres.
	∞	∞	$\infty 1$	T'in.
∞	∞	∞	$\infty 1$	Lead.
	is	\cdots	$\cdots 1$	Bismuih.
-	-	\cdots		Certified pressure in almospheres.
∞	∞	∞	∞	Tin.
$\underset{ \pm}{\Xi}$	$\stackrel{\circ}{\circ}$	∞	∞	Lead.
		ఉ̈	-15	Cerlified pres. sure in almospheres.
		∞	$\infty 1$	'Tin.
		- is	$\begin{aligned} & \text { ए } \\ & \text { es } \end{aligned}$	Lead.

§ 6. - And be it fur:her enacted, That be. fore delivering the certificate hereinafter to be provided for, the inspector, heretofore provided, shall examine the apparatus required by section fifth, and. shall ascertain that all the provisions of that article are complied with.
§ 7.-And be it further enacted, That any person or persons whatsoever who shall wilfully overload or otherwise render inoperative said safety-valve or valves, or render ineffective said mercurial-gauge or gauges, by plugging up or stopping off, or in any other manner prrvening their action, or shail in any manner, impair, or interfere, with the usefulness of said fusible metal apparatus,
shall for every offence be subject shall for every offence be subject to the penalty of dollurs, and to an imprisonment at the discretion of the court, not to
exceed exceed ——, and in case of accident to said
steam-boiler, resulting from said offence, br
which life is lost, shall be deemed to have been guilty of manslaughter, and punished according to law for said offence.
§ S.-And be it further enacted, That not more, than two boilers of a boat, or vessel, propelled in the whole or in part by steam, and those immediately contigious, shall have connected water pipes, nor shall the license heretofore provided for, be issued until the inspector has satisfied himself, and has certified, that the provision of this section is complied with.
§ 9.-Aud be it further enacted, That for each and every bursting of the boiler of a steamboat or vessel propelled in the whole, or in part, by steam, which shall occur from a deposite of sedimentary matter fwithin a boiler, the master of said vessel, shall forfeit the sum of dollars; and that in case life shall be lost by the same, he shall be deemed to have been guilty of manslaughter, and shall be liable to prosecu. tion acordingly.
§ 10.--And be it further enacted, That no boat or vessel propelled in the whole, or in part, by steam, shall be licensed until the inspector has certified on examination, that no part of the boiler of said boat is, ordinarily, directly exposed to flame, or to heated air from the draught, without the immediate contact of water.
§ 11.*-. And. be it further inacted, That it shall be the duty of the person who shall be called upon to inspect the boilers and machinery of any steamboat or vessel, in conformity to the provisions of this act, carefulli, fully, and thoroughly, to inspect and examine the engine and machinery of said boat or vessel, and to state his opinion of their soundness : and he shall, moreover, provide himself with a suitable hydraulic pump, and, after examining into the state and condition of the boiler, or boilers, of said boat, or vessel, it shall be his duty to test the strength and soundness of said boiler, or boilers, by applying to the same a hydraufic pressure equal to three times the certified pressure which the boilers are to carry in steam; and if he shall be of opinion, after such examination and test, that the said machinery and boilers are sound and fit for use, he shall deliver to the owner or master of said vessel or boat, duplicate cortificates to that effect, stating therein the age of said boilers, and the pressurc of steam which may be carried by them, and which shall in no case exceed one-third part of the proof-pressure, one of which certiscates it shall be the duty of said master or owner, to deliver to the collector or surveyor of the port, whenever he shall apply for license or for renewal of license: the other he shall, under a penalty of hundred dollars for every day that he shall neglect so to do while the boat is running, cause to be posted up and liept in come conspicuions part of the boat or vessel, for the information of the public ; and for each and every inspection of the said machinery, and inspection and test of theesaid boiler or boilers, the said inspector shall be allowed and paid by the owner or
$* 55$ of the bill reported in the Senate of U.S.
aill slighl verbal changes.
master thereof, and before the delivery of said certificates, the sum of - dollars.
§ 12.*-And be it further enacled, 'That it shall be the duty of the owners or mas. ters of said boats or vessels, to cause the examination of the machinery, and the examination and test of the boilers, as provided in the sections of this act, to be made, at least, once in every six months; and to deliver to the collector or surveyor of the port where such boat or vessel, has been enrolled or licensed, the certificate of such inspection ; and on failure thereof, he or they, shall forfeit the license granted to such boat or vessel, and be subject to the same penalty as though he had run the said boat or vessel, without having obtained such license.
§ $13 . \dagger$-And be it further enacted, That whenever the master of any boat, or vessel, or the person, or persons, charged with the navigating said boat or vessel which is propelled in the whole or in part by steam, shall stop the motion, or headway, of said boat, or vessel ; or the said boat or vessel, shall be stopped for the purpose of discharging, or taking in caryo, fuel, or passengers; he, or they, shall keep the engine of said boat, or vessel, in motion sufficient to work the pumf, and give the necessary supply of water, under the penalty of dollars for each and every offence in neglecting or violating the requirements of this section.
§ $14 . \ddagger-$ And be it further enacted, That no other than a practical mechanic who shall be of the age of twenty-one years, or upwards, shall have served two years in a steam engine factory, or general machine making establishment, and who shall have a thorough knowledge of the working of an engine, and shall produce satisfactory testimonials of steady habits. shall be employed as an engineer on board of any boat or vessel propelled in whole or in part by steam, provided that for every violation of this section, the owners or master of ssaid boat or vesse dollars.
§ $15 . \S-$ And be it further enacted, That for every explazion which shall happen from any cause whilst the captain, master, or engineer shall be engaged in gambling, or attending to any game of chance, or hazard, or shall be intoxicated, or which shall happen from racing, or from carrying higher steam than the quantify authorized by the certificate, the owner of such steamboat, or vessel, shall be subject to the penalties provided for in the sixteenth section of this act ; and the captain, master, or engineer shall be respectively subject to the penalties hereafter provided in the seventeenth section of this act.
§ $16 . \|-$-and be it further enacted, That any owner or master, of any stemuboat, or

[^12]vessel propelled in the whole or in part by steam, who shall fail to obtain, or neglect to renew, the certificates of examination hereinbefore provided for in the several sections of this act, shall be barred from the recovery of any claim for freight or insurance that nay accrue when without said certificate, and should any loss or damage to property, or injury to persons, in such case occur in consequence of the breaking of any part of the machinery, or bursting of the boiler or boiler:, the owner shall be re. sponsible to the full amount of said loss, damage, or injury.
§ 17.*-And be il further enacted, That the captain or master of any boat or vessel propelled in the whole or in part by steam, which may not have been examined, and obtained the certificates required by the several sections of this act, shall in the event of loss or dainage to property, or injury to persons, occasioned by the breaking of any part of the machinery, or the bursting of the boiler. or boilers, be subject to a fine of not less than. - , yor more than - dollars, and an imprisonment of not less than ——, nor more than ; and that in event of loss of life being the result of such accident, then said captain, or master, shall be adjudged guilty of manslaughter.
§ 18.-- Ind be it further enacted, That any boat or vessel propelled in the whole or in part by steam, which shall have its boilers upon the guards of the boat, and shall have between them, and the interior of the boat, or vessel, a sufficient bulwark of timber, or other suitable material, so that passengers shall be protected eflectually from injury in the event of explosion, shall be, on a certificate to the foregoing effect from the inspector heretofore provided, exempted from the payment of fees for the taking out of the license of navigation, and shall have remitted one half of the fees for proving and for other purposes of precaution heretofore provided. The fees remitted in such case to be assumed and paid to the respective officers by the United States.
§ $19 . \uparrow-$ Ind be it further enacted, That for any fulse certificate, or one given without the thorough examination contemplated hy this act, the inspector hercin provided shall be dismissed from office, and fined not less than _ dollars, nor more than dollars, and imprisoned not less than -_, nor more than -; and shall be incapable of ever being re-appointed to said office.
§ $20 . \ddagger-A n d$ be i ! further enacted, That all penalties, fines and forfeitures imposed by this act, may be sued for and recovered in any court of the United States of competent jurisdiction within the district, or circuit, where the same may have been incurred, in the name of the United States -one half for the use of the informer, and the other lalf to the use and bencfit of the Unitel Statez.

Provided, That all suits, actions, or in-

[^13]dictments instituted, commenced, or found, under this act, shall be commenced or found, within two years after the offence has been committed, or the cause of action accrued.

Miscellancous.

From Ure's Philosophy of Manufactures. general view of manufacturing industry. (Continued.)

In an analysis of manufacturing industry, the "general functions of machines, and the effects of their improvements, ought to be well considered. Machines are of three kinds :-

1. Machines concerned in the production of power.
2. Machines concerned in the transmission and regulation of power.
3. Machines concerned in the application of power, to modify the various forms of matter into objects of commerce.
I. Machines engaged in producing power operate by counteracting gravity, inertia, or cohesion. The steam engine, by the expansive agency of vapor, raises and depresses its ponderous piston, and thereby moves its massive beams and geering.The hydraulic wheel produces similareffecte by the natural flow or fall of water from a higher to a lower level ; and the windmill by the currents of the atmosphere. Blasting of rocks, in mining, exhibits elastic power overcoming cohesion.
II. The machines engaged in transmitting and regulating power are, toothod wheels, fly wheels of various kirds, valve governors, shafts, and other geering of mills.
III. The machines engaged in applying power to modify the forms of matter appear, at first sight, to be so multifarious as to set systematic arrangement at defiance. An outline of their connexions and dependencies has been attempted in the next chapter.
The philosophy of manufactures is well displayed in the economy of power. The value of steam impelled labor may be inferred from the following statement of facts, communicated to me by an eminent engineer, educated in the school of Bolton and Watt :-A manufacturer in Manchester works a 60 -horse Bolton and Watt's steamengine, at a power of 120 horses during the day, and 60 horses during the night; thus extorting from it an impelling force three times greater than he contracted or paid for. One steam horse-power is equivalent of 33,000 pounds avoirdupois, raised one foot high per minute; bet an animal horse-power is equivalent to only 22,000 pounds raised one foot high per minute, or, in other terms, to drag a canal boat 220 feet per minute, with a force of 100 pounds acting on a spring : therefore a steam horse-power is equivalent in working efficiency to one living horse, and one-half the labor of another. But a horse can work at its full efficiency only eight hours out of the twentyfour, whereas a steam-engine needs no period of repose; and therefore to make the animal power equal to the physical power, a relay of $1 \frac{1}{2}$ fresh horses must be found
three times in the twenty-four hours, which amounts to $4 \frac{1}{2}$ horses daily. Hence a common 60-horse steam-engine does the work of $4 \frac{1}{2}$ times 60 horses, or of 270 horses. Dut the above 60 -horse steamengine does one-half more work in twentyfour hours, or that of 405 living horses !The keep of a horse canuot be estimated at less than $1 \mathrm{~s} .2 d$. per day ; and therefore that of 405 horses would be about $24 l$. daily, or 7500l. sterling in a year of 313 days. As 80 pounds of coals, or one bushel, will produce steam equivalent to the power of one horse in a steam-engine during eight hours' work, sixty bushels, worth about $30 s$. at Manchester, will maintain a 60 -horse engine in fuel during eight effective hours, and 200 bushels, worth 100 s., the above hard-worked engine, during twenty-four hours. Hence the expense per annum is 1565l. sterling, being little more than onefifth of that of living horses. As to prime cost and superintendence, the animal power would be greatly more expensive than the steam power. There are many engines made by Bolton and Watt, forty years ago, which have continued in constant work all that time with very slight repairs. What a multitude of valuable horses would have been worn out in doing the service of these machines! and what a vast quantity of grain would they have consumed! Had British industry not been aided by Watt's invention, it must have gone on with a retarding pace, in consequence of the increasing cost of motive power, and would long ere now, have experienced, in the price of horses, and scarcity of water-falls, an insurmountable barrier to further advancement, could horses, even at the low prices to which their rival, steam, has kept them, be employed to drive a cotton minl at the present day, they would devour all the profits of the manufacturer.
Steam-engines furnish the means not only of their support but of their multiplication. They create a vast demand for fuel ; and, while they lend their powerful arms to drain the pits and to raise the coals, they call into employment multitudes of miners, engineers, ship-builders, and sailors, and cause the construction of the canals and railways: and, while they enable these rich fields of industry to be cultivated to the utmost, they leave thousands of fine arable fields free for the production of food to man, which must have been otherwise allotted to the food of horses. Steam-engines more--ver, by the cheapness and steadiness of their action, fabricate cheap goods, and procure in their exchange a liberal supply of the necessaries and comforts of life, produced in foreign lands.
Improvements in machinery have a threesold bearing :-
1st. They make it possible to fabricate some articles which, but for them, could not be fabricated at all.

2d. They enable an operative to turn out a greater quantity of work than he could before-time, labor, and quality of work remaining constant.

3d. They effect a substitution of labor comparatively unskilled, for that which is
more skilled.

The introduction of new machines into any manufacture, with the effect of superseding hand labor, is tempered by the system of patents, which maintains them for a certain time at a monopoly price, and thereby obstructs their rapid multiplication. Did we admit the principles on which the use of particular self-ącting mechanisms is ohjected to by workmen, we should not be able, in any case, to define the limits of their application. Had parliament acted on such principles sixty years ago, none of our man ufactures could have attained to their present state of profitable employment to either masters or men. The immediate causes of their vast augmentation may be ascribed, under the blessing of Providence, to the general spirit of industry and enterprize among a free and an enlightened people, left to the unrestrained exercise of their talents in the employment of a vast capital, pushing to the utmost the principle of the analysis of labor, summoning to their service all the resources of scientific research and mechanical ingenuity; and finally, availing themselves of all the benefits to be derived from visiting foreign countries, not only in order to form new and confirm old commercial connexions, but to obtain an intimate knowledge of the wants, the tastes, the habits, the discoveries and inprovements, the productions, and fabrics of other civilized nations. Thus we bring home facts and suggestions; thus we perfect our old establishment, and add new branches to our domostic stock; opening, at the same time, new markets for the sale of our manufacturing and commercial industry, and qualifying ourselves for supplying them in the best and most economical manner. By these means alone, and, above all, by the effect of machinery in improving the quality, and cheapening the fabrication of our various articles of export, notwithstainding an immense load of taxes, and a higher price of grain, our commerce and manufactures have also increased in such a degree, as to surpass the most sanguine calculations of the ablest political economists who have speculated on the prospects of mankind. We should never cease to bear in mind, that we are surrounded by powerful nations, composed of a preople equally industrious, and more sober than ourselves, whe, released from the turmoil of war, are intent on cultivating the productive arts of pea e, and of pushing their commerce and navigation ; whose eagerness of competition is stimulated by the view of the rich prizes which we have ulready won.
The attempts continually made to carry our implements and machines into foreign countries, and to tempt our artisans to settle and superintend them there, evince the high value set by other nations on cur mechanical substitutes for hand labor ; and as they cannot be directly counteracted, they should be rendered, as far as possible, unavailing, by introducing such successive improvements at home as may always keep us ioremost in the career of construction. It vould be therefore no less disastrous to the operative, than to the capitalist, were any xtraneous obstacles thrown in their way, since any good machine suppressed, or re-
jected, in this country, would infallibly be received with open arms by some of our neighbors, and most readily by our mechanical rivals in France, Belgium, Germany, and the United States.
Mill architecture is a science of recent origin, which even at this day is little understrod, beyond the factory precincts. It had been ably begun by Mr. Watt, but, till it fell into the hands of Messrs. Fairbairn and Liilie, the eminent engineers of Manchester, it was too subject to the whims of the several individuals, often utterly ignorant of statics or dynamics, or the laws of equilibrium and impulse, who had capital to lay out in building a mill. Each had his own set of caprices and prejudices, which he sought to embody in his edifice, little aware how much the different orders of machines depended for the productiveness and precision of their performance, on the right magnitudes, proportions, and adjustments of the mainshafting and wheel-geering. These are, in fact, the grand nerves and arteries which transmit vitality and volition, so to speak, with due steadiness, delicacy, and speed, to the automatic organs. Hence, if they be ill-made or ill-distributed, nothing can go well, as happens to a man laboring under aneurismal and nervous affections.

About three years ago, the above named engineers dissolved a partnership celebrated over the world ; since which time each has expanded his energies, and distinguished himself in a peculiar line of work. I shall have occasion hereafter to describe several of Mr. Lillie's excellent mechanical constructons. Mr. Fairbairn has entered largely into the line of factory architect, for which his three-fold great workshops are admirably adapted. The capitalist has merely to state the extent of his resources the nature of his manufacture, its intended site, and facilities of position in reference to water or coal, when he will be furnished with designs, estimates, and offers on the most economical terms, consistent with excellence, according to a plan, combining elegance of external aspect, with solidity, convenience, and refinement in the internal structure. As engineer he becomes responsible for the masonry, carpentry, and other work of the building, for the erection of a sufficient power, whether of a steamengine, or water-wheel, to drive every machisie it is to contain, and for the mounting of all the shafts ind great wheels by which the power of the first mover is distributed. The frontispiece of this volume exhibits a perspective view of a magnificent factory, lately finished by Mr. Fairbnirn, and now at work under its spirited proprietor, Mr. Orrell. It is beautifully situated in the envirens of Stockport, on a branch of the Mersey, the great river feeder of the cotton trade of England. In beauty of architectural design, it will yield to no analogous edifice, and, may indeed, bear a comparison in respect of grandeur, elegance, and smplicity, with many aristocratic mansions. The length of the apartments in each floor of the body of the house is three hundred feet, the breadth filty feet, and the height of each floor twelve feet. Each window consists of two casements, extending from its top to
its sill, one of which, nearly as large as a common window, may be thrown entirely open for admitting fresh air, independent of the mechanical ventilation. I have been favored, through the liberality of the architect and proprietor of this pattern structure, with an analytical section and ground plan of it, by which I shall be enabled, in the treatise on the cotton trade, to place before my readers a view of the whole anatomy of the mill, in the following order.

1. Its two-fold heart, or twin steam-engines, one of which makes its maximum effort, while the other makes its minimum, to secure perfect equability of impulsion through all the ramifications of the shafts, and to prevent arterial throbbing or tremor, formerly so common, and só injurious to the work of delicate machines.
2. The great bevel wheel-geering, which transmits the power of the engine in rectangular directions, either transversely or vertically, and with any modification of speed.
3. The horizontal and upright shafts, with their several pulleys.
4. The distribution of the strape, or belts, that convey the power from these revolving shafts and pulleys.
5. The respective positions of the various productive organs in their respective floors, such as the preparation machines, throstles, mules, power-looms, dressing machines, warping mills, \&c. \&c.
The recent innovations in proportioning the sizes, regulating the connections, and adjusting the movements of the system of shaft-geering, form a fine feature in the philosophy of manufactures. Thus not only an improvement has been made in the regularity of impulsion, but a considerable increase of power from the same primemover has been obtained; amounting in some cases, of old mills remounted by Messrs. Fairbairn and Lillie, to fully twenty per cent. The durability of shafts so ex${ }^{\square}$ puisitely turned and polished, is another great advantage. The spinning factory of Messrs. Ashworth, at Egerton, which has been at work for several years, exhibits an elegant pattern of the enginecring just described: for it has some subordinate shafts, hardly thicker than the human wrist, which convey the power of ten horses, and revolve with great speed, without the slightest noise or vibration. The prime-mover of the whole is a gigantic water-wheel of sixty feet diameter, and one hundred horses' power. I have frequently been at a loss, in walking through several of the millwright factories, to know whether the polished shafts that drive the automatic lathes and planing machines, were at rest or in motion, so truly and silently did they revolve.

The method of increased velocities in the driving arms or shafts of factories, is undoubtedly, one of the most remarkable improvements in practical dynamics. It diminishes greatly the incrtia of the mass to be moved, by giving to much lighter shafts and wheels the same momentum, and it permits the pulleys or drums, which immediately impel the machines by straps, to be reduced to a size much nearer to that of the steam pulleys fixed on the main axes of
these machines. About thirty years ago the velocities of the main shafts, proceeding from the moving power, whether of steam or water amounted to no more than from thirty to forty evolutions per minute, and of the smaller and remoter shafts, to only forty or fifty. At the same period the drums were heavy tubs, and from thirty, to upwards of sixty inches in diameter. The improved system is under deep obligations for its actual state of perfection to the above-named engineers, though it had commenced, as we have stated, before their time. In the mills mounted by these gentlemen it is interesting to see slender shafts, like small sinewy arms, rapidly transmitting vast power through all the ramifications of a great factory.

The following details will place this matter in the clearest light :-A mill propelled by a steam-engine of fifty horses' power was formerly geered with shafts, having an average transverse section of thirty-six square inches, or varying in size from four to eight inches square. An engine of like power at the present day will, in consequence of the increased velpcities above described, work with cylindrical shafts not exceeding five and a half, and often only three inches in diamcter; possessing therefore an average arca of only fifteen square inches, instead of thirty-six. The horizontal shalts that run under the ceilings of the different working rooms are two inches, and seldom excced two and a quarter in diameter. Hence the mass of geering has been reduced fully one-hall. But the shafts now make from one hundred and twenty, to one hundred and fifty revolutions in a minute, and, occasionally, as where trostlers are turned, so many as two hundred in the same time. Thus we see the requisite momentum is gained with a light shaft, while the friction is proportionally diminished, and the difing drum revolves with a velocity in accordance with the accelerated pace of the modern machines. The several speeds will be given in discussing their respective subjects.

The philosophy of manufactures investigates, in the next place, the most economical and energetic modes of applying the motive force to the various working organs ; the carding-engines, the drawing-heads, the roving-frames, the throstles, the mules, the power-looms, the dressing-machines, \&c.
The British capitalist is vigorously seconded by the British engineer, and need not, like the Continental adventurer, leave his funds long dormant, after an opportuni ty of placing them profitably in factory enterprise occurs. One mill-wright establishment in Manchester turns out from three hundred to four hundred yards of shaft-geering every week, finely finished, at a very moderate price, because almost every tool is now more or less automatic, and performs its work more cheaply and with greater precision than the hand could possi bly do. Where many counterparts or similar pieces enter into spinning apparatus, they are all made so perfectly identical in forn and size, by the self-acting tools, such as the planing and key-groove cutting machines, that any one of them will at once
fit into the position of any of its fellows, in the general frame.
For these and other admirable automatic instruments, which have so greatly facilitated the construction and repair of factory ma. clines, and which are to be found at present in all our considerabie cotton mills, this country is under the greatest obligations to Messrs. Sharp, Roberts and Co. of Manchester. By such aids, fine-cotton spinners are enabled to mount their mules and the sub. servient frames within their own premises, with peculiarities of construction suited to their style of work; and many of them remodel more or less the apparatus made in the machinc-shops. Thus the bobbin and flyframes of Messrs. Cocker and Higgings, so justly admired, require occasionally to be modified in certuin minutix, essential to fine work, before being used by certain manufacturers. It is this skill in machine mounting or adjusting, combined with tact in spinning, which gives to our factorics not merely their existing superiority over foreign rivalry, but the best security for its permanence. Indeed, the concentration of mechanical talent and activity in the district of Manchester and Leeds is indescribable by the pen, and must be studied confidentially behind the scenes, in order to be duly understood and apprecia: ted.
The following anecdote will illustrate this position. A manufacturer at Stockport; whose name I shall suppress, being, not leng ago, about to mount two hundred power: looms in his mill, fancied he might save a pound sterling in the price of each, by having them made by a neighbor machine: maker, instead of obtaining them from Messrs. Sharp and Roberts, in Manchester, the principal coustructors of power-looms: In order to give his fabricator every chance of success, the economist surreptitiously pro: cured iron patterns cast from one of the looms of that company, which in its perfect state costs no more than $£ 9.15 \mathrm{~s}$. His two hundred looms were accordingly constructed at Stockport, supposed to be fac: similes of those regularly made in Manches. ter, and they were set to work. Hardly a day passed, however, without one part or another breaking down, insomuch that the crank or tappet.wheels had to be replaced three times, in almost every loom, in the course of twelve months. The fabric of the cloth was also indifferent. The proprietor perplexed beyond measure, inquired of a neighbor who worked similar power-looms; made by the Manchester mechanicians; whether his wheels likewise went to pieces every other day, and learned to his mortification, that not one of them had broken in the course of working, but that the four or five spare ones, originally sent from Manchester along with his two hundred and thirty-six power-looms, were unused and quite at his servicc. The old proverb of 'penny wise and pound foolish' never had a better illustration. His weaving factory had been most irregular and unproductive, while that of his neighbor had been uniformly prosperous. Being now heartily sick and ashamed of his fac-simile copies, he took measures in secret to have them replaced, as soon as possible, by Sharp and Roberts's substanclal machines.
balloon voyage to the cóntinent.
The public anxiety has been for some time excited by a report that it was the intention of three gentlemen to make the hazardous experiment of crossing the British Channel in a balloon, and that they resolved to ascend, not from the coast, but from the metropolis itself. The report appears to have been well founded, and, after several attempts on preceding days, which had been abandoned in consequence of the unfavora ble weather ; they took their departure yesterday from Vauxhall Gardens. The asscent was intended to be a private and not a public one, so far as the admission to the gardens or giving notice in the newspapers; but the secret was communicated to a few, and those persons, making in all about a dozen, eagerly embraced the opportunity of witnessing so remarkable an event. Mr. Holland, Mr. Monck Mason, and Mr. Green, have the honor and risk of departing on this voyage of discovery. They proposed, by regulating the ascent, to seek for such a stream of air as would take them, if possible, towards Paris, and if that should not be practicable, they would be guided by the current which might lead towards the Belgitn capital. They do not appear to calculate on any wind prevailing but that from west-north -west or south-west, which would enable them to fulfill their design, and they boldly encounter all the hazard of being blown down Channel by an adverse brecze on the one side, or the North Sea on the other. They determined, in case they could not make the opposite coast, whether French or Belgian, to remain up in the air all night, and they took care to be provided with warm clothing and provision for such an unpleasant alternative.

The inflation commenced about seven in the morning, and by one everything was in readiness. The balloon was inflated almost to its utmost dimensions, and appeared capable of sustaining an acrial flight for many hours, or even days. In the car were upwards of a ton of ballast, several gallons of brandy and wine, a large supply of coffce, cold fowls, ham, etc., an apparatus, with unslacked lime, for heating the coffee, and, all appliances to insure comfort and prevent starvation and cold. There were also a supply of blue lights, stars, and other fireworks, to be let down at night, if the voyage were not accomplished before dark, in order to enable the æronauts to reconoitre the country from their elevation, and choose the point of their descent, and a number of parachutes, to which letters were fastened, to be dropped at intervals on the shores of the Continent, for the purpose of apprising the public of their transit, arrival, and safetyin a word, a more complete equipment cannot be conceived; and it was highly entertaining to see the preparations of the passengers, and the good humor and confidence with which they shook hands with their friends, and took their seats. They were also furnished with passports from the French and Dutch embassies, and with a letter for the King of Holland from his representative in this country. At one o'clock the inflation of the balloon being complete, the three gentlemen shook hands with their friends, and at a given signal majestically left the earth. The immense machine which held
them rose splendidly from the Gardens, hung for a short time in sight of the persons who had coilected to witness the daring attempt, and then, feeling the breeze which impelied it, glided away to the castward, and was gradually lost to the straing eyes of the anxious crowd. The wind was perfectly fair for the French coast. The wind, however, by three o'clock veered more to the north, which would, of coursc, blow the bal. loon further to the southward of the French coast. Mr. Gye is already on the continent to receive the intrepid voyagers, and Mr. F. Gye, with Hughes, jun., started last night for Paris to welcome their arriyal and to arrange preparations for an ascent from that metropolis. Whatever may be the result of this experiment, we regret that it was not put off till the ensuing spring or the early part of the summer, when a longer day and more favorable weather would diminish es. sentially the risks. It is also to be regretted that the travellers did not start soon after daybreak, instead of waiting till one in the afternoon, with only four or five hours of light before them.

From Dover.-We have received the following account from a correspondent:"Dover five o'clock, P. M: We were this afternoon highly gratified by witnessing the passing of Mr. Green's splendid balloon on his ærial voyage from London to the Contrnent, going a little to the eastward of the town, or very nearly over the Castle, the spot from which Jeffrey and Blanchard, some years since, took their departure to cross the Channel in a similar manner. A few minutes befose five he signalised his departure from England by displaying a very brilliant light, which continued burning obout ten minutes. The course of the balloon, on his crossing the Channel, was in a direction nearly E. N. E., with a gentle wind by the church vane W. S. W. Should he continue this course he will probably by morning in make the island of Walcheren, or South Beveland; or passing over these, continue his course to Holland. The altitude of the balloon was increasing as he approached Dover, and continued steady about the same as he passed from over teria firma to cross the Channel. The velocity of the balloon did not exceed four or five miles per hour. Half past Six o'clock. The balloon is not yet out of sight, its situation being distin guished by variegated lights."

Another Dover correspondent has transmitted us the copy of a note which was dropt from the balloon in a parachute near the village of Whitfield about two miles from Dover. The party appeared to be according to this informant going towards Dunkirk near the Belgic coast. The person who picked up the note was at work at Whitfield Mill, and, seeing the balloon descending, he stop. ped the mill to render assistance, when he saw the parachute coming down, from which he took the letter ; it is as follows:-

" bound for the continent."

" Mr. Green, Mr. Monck Mason, and Mr.
Robert Holland, present their compliments to the Mayor of Dover, and beg to inform him that they left Vauxhall Gardens at halfpast one o'clock, and were nearly over Canterbury at four o'clock.
"To the Mayor of Dover." [Globe.]

Dr. Vignet, first physician to the Military, Hospital at Phalsburgh, las confirmed a discovery made by Dr. Viale, of the existence of insects in the Cholera. When Dr. Vignet was at the head of the hospital at Oran, he had upwards of 400 Cholera patients under lis care, and ascertained to a certainty that the Indian Cholera is occasioned by myriads of insects, some visible to the naked eve and some not. He has published, at Metz, a work on this subject, and on the treatment he used in Africa in curing the diseasc.

American Rifevish. At Vevay on the Ohio, the vine is extensively cultivated by Swiss emigrants, who founded a colony there as early as 1804. Some of the vineyards have twenty acres in vines, which yield nearly 4,000 gallons of wine per year-worth from one to three dullars per gallon. The quality of the wine made at some viney Irds, is pronounced by competent judges equal to the best Rhenish imported into this country.

We have just learned that the Government of Prussia has placed a vast mass of the most valuable statistical information at the disposal of Mr. M'Culloch, to be used either for the improvement of his dictionary or otherwise, as he may think fit. This conduct reflects infinite credit on the intelligence and liberality of the Prussian Government. The information communieated is all official. It is in the shape of replies to queries transmitted to Berlin through his Excellency, Baron Bulow, who has taken the greatest interest in the matter. We have been assured that his Prussian Majesty, as well as his Ministers, was pleased to express his approbation of the object for which the information was sought, and his wish that it should be full and authentic. It may be questioned whether there be another Governinent in the world (certainly we know of none) that would, at the mere solicitation of a private individual-and that individual a foreigner-have taken so much pains to furnish him with the means of fairly appreciating and exhibiting its policy in an economical point of view.
[Chronicle.]
The following phenomenon was observed lately at Gluckstadt, on the Elbe, and at Stzehoil and Heilingenstedten on the Stoer. During the continuance of twelve hours, the tides of these rivers neither rose nor fell, the waters remained constantly at the same level, and the ships at anchor, instead of turning as usual at the flux and reflux, remained immoveable. Some persons attribute this to an earthquake in some distant country, as the same thing happened on the 1st November, 1755, the day of the great earthquake at Lisbon.

We learn from Naples, that Professor Zalm has recently discovered, at Pompeii, a table service in silver, comprising 44 plates, 1 large dish, 3 small vessels, 2 spoons, and 4 forks, of admirable workmanship. They are all in very good preservation, and were to be sent to the Royal Family at Portici.

Advertisements.

A YOUNG GENTLEMAN, a Gradu-

 ate of the United States Military Academy, is desirous of obtaining employment as Civil Eingineer The situntion of Assistant Enginecr on some work (Railroad or Canal) would be preferred. The mosi unexceptionable references as to character and ability will be given.Address J. M. N., at the office of the Railruad Journal, post paid.

1-4t
MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Paterson, NewJersey. The undersigned receive urders for the fol lowing articles, manufactured by thrm, of the must superior description in every particular. Their works superior description in every particular. Their works
being extensive, and the number of hands employed being large, they are onahled to execute both large and small orders, with promptness and despateh-

TAILROAD WORK

Locomotive Steam-Engines and Tenders; Driving and other Locomotive Wheels, Axles, Springs and Flange Tires; Car Wheels of east iron, from a vnriety of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of best American refined zuron ; Springs ; Boxes and Bolts for Cars.

COTPON WOOL AND FIAX MACHINERY,

Of all descriptions and of the most improv d Paterns, Style, and Workmanship.
Mill Geering and Millwright work generally ; Hydraulic and other Presses; Press Screws; Callenders; Lathes and Touls of all kinds, Iron and Brass Castings of all descriptions.

ROGERS, KÉTCHÜM \& GROSVENOR.
Patterson, Newajersey, or 60 Wallstret, N. Y

TO CONTRACTORS

STONE CUTTIERS and MASONS. JAMES RIVER and KANAWHA CANAL-Contractors for mechanical work are hereby mformed that a large amount of Masonry, consisting of loeks, Culverts, and Aqueducts, is yet w be let oul tha line wf the James and Kanawha Canal.
Persons desirous of obtaining such work, and prepared to erbihit proper testinounials of their ability to execute it, will apply at the office of the subscriber in the city of Richmond.
Stone Cutters and Masuns wishing employment in the South during the winter monhs, may count with certainty on receiving libcral wages, by engaging with the contracturs on the work.
CHAS. ELLET, Jr., Chief Eog. J. L.. \& K. Cu.
Richmond, Nov. 29, 1836.
51-61

AMES' CELEBRATED SHOVELS,

SPADES, \&c.

300 dozens Ames' superior back-strap Shovels
$\begin{array}{llll}150 & \text { do do do plain do } \\ 150 & \text { do do do eaststcel Shovels \& }\end{array}$
150 do do do caststcel Shovels \& Spades $\begin{array}{lll}150 & \text { do do do do caststcel Sho } \\ 100 & \text { do } \\ \text { do }\end{array}$ 50 do do plated Spades
do socked shovels and Spades.
Together with Pick Axce, Churn Drills, and Crow Bers (steel pointed,) mannfactured from Snlisbury refined iron-for snle by the manufacturing ngents, WITHERELL, AMES \& CO.

No. 2 Liberty strcet, New-York. BACKUS, AMES \& CO.

No. 8 State street, Albnny
N. B -Also furnished to order, Shapes of every deecription, made from Saishury refined lron v4-If

AN ELEGANT STEAM ENGINE AND BOILERS, FOR SALE.
THE Steam Engine and Boilers, belonging to the STEAMBOAT HELEN, and now in the Noveliy yard, N. Y. Cunsisting of one Ilorizontal high pres. sure Engine, (but may be made to condense with litthe additional expense) 36 inches diameter, 10 feet stpoke, with latest improved Piston Valves, and Metalic packing throughout.

Also, four 'Tubular Boilers, constructed on the English Locomotive plan, containing a fire surface of over 600 feet in each, or 2500 feet in all-will be suld cheap. All communications addressed (post paid) to the sabscriber, will meet with due nttention-

HENRY BUPREN.

PATEN'T RAILROAD, SHIP AND BOAT SPIKES.

析 The Troy Iron nnd Nail Factory keeps constantly for sale a very extensive assurtment of W rought spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, whieh after five yenrs successful operation, and now aimost universal use in the United States, (as well ns England, where the subscrincr obtained a patent,) are found superior to any ever offered in market.
Railroad Cimpanies mny be supplied with Spikes having countersink heads suitable to the holes in iron rails ty any nmount and on short noticc. Almost all the Railruads now in progress in the United States are fastenel with Spikes made at the above named fac-tory-fur which purpuse they are found invaluable, as their adhesion is more than double any common spikes mado by the hanmer.
** All orders directed to the Agent, Troy, N. Y., willí be punctunlly attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
${ }^{*}{ }^{*}$ Spikes nre kopt for sale, at factory prices, by I. \& J. Townsend, Albany, and the principal Iron Merchants in Albany and 'lroy ; J.I. Brower, 222 Water street, New-York; A. M. Jones, Philadelphia; T. Janviers, Baltimore ; Degrand \& Smith, Buston.
P. S.-L lailruad Companies would do well to forward their orders us early as practicable, ns the subscriber is desirrus of extending tive manufacturing so as to keep pace with the daily increasing drmand for his Spikes.
(1J23am)
H. ISURDEN.

RAILWAY IRON, LOCOMOTIVES,\&c.
THE subscribers offer the following articles for sale.
Railway Iron, flat bare, with countersunk holes and mitred joiuts,
350 tons $2 \frac{1}{2}$ by $4,15 \mathrm{ft}$ in length, weighing $4 \frac{68}{1080}$, $p e r \mathrm{ft}$.

with Spikes and Splicing Plates adapted the reto. To be sold free of duty to state govermacnts or incorporated companies.
Orders for Pennsylvania Builer Iron executed.
Rail Road Car and Locunutive Engine 'Tires, wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 iaches oiameter.
E. V. Patent Chain Cable Bolts for Railway Car nxies, in lengths of 12 ftet 6 inelies, to 13 feet $2 t, 2 t$ $3,34,3!, 34$, and $3 z$ inches diameter.
Chains for luclised llanes, short and stay links, manufactured from the E. V. Cable Bolts, and proved at die grentest strain.
India Rubber Rope for Inclined Planes, made from New Zealand flax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and stone bluck of Edge Railways.
Every description of Railwny Iron, as well as Locumotive Engines, impurted nt ilie sliortest notice, by the agency of one of our partners, who resides in Fingland for this purpose.
Mr. Solomon W. Ruherts, a highly respectable American Lingineer, resides in Eingland for tho purpose of inspecting all Locomutives, Machinery, Railway lron \&c. ordered through ns

28-tif
Philadelphia, No.4, South Front st.

STEPHENSON,

Builder of a superior slyle of Passenger Cars for Railvoads.
No. 264 Flizabeth street, near Bleecker street, New-York.
RAILROAD COMPANIES would do well to exa mine these Cars; n specimell of which may he scen on that part of the New.York and Harlaem Railroad now in operation

J2511
NO'IICE 'TO CON'IRACTORS.
Proposals will be received at the office of the Hudssun and Berkshire Rnilroad Company, in the city of Hudson, utitil the 15th of January, 1437, for One Million feet, buard measure, of Southern pine, of the following dimensions - -6 inches square, and in lengihs of $21,24,27$, and 30 feet long-also, ior 14, $\mathbf{v 0 0}$ Chestnut or Cedar ties, 8 fcet long, and 6 inches square-and also, 4,000 sills, of Hemlock, Ches $n \mathrm{n}$, or White Pine, 4 by 10 inches, and in lengths of 15 . 18 , ard 91 feet long. The whole to be delivered by the lst day of July, 1837. George Ricu

Hudson, Dec. 22, 1836.
Engineer.

NEW ARRANGEMENT.

ropes for inclined planes of railroads.
WE the subscribers having formed a co-partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroads, and for other usis, offer to supply ropes for inclined planes, of any lengih required without splice, at short notice, the manufacturing of cordnge, heretofore carried on by S . S. Durfee \& Cu., will he dune by the new firm, the yame superintendant and machinery are employed by the netv firm that were employed by S. S. Durfee \& Co. All orders will be promptly attended w, and ropes will be shipped to any port in the United States. 12th month, 12ih, 1836. Hudson, Culumbia County State of New-York.

33-tif.
ROBT. C. FOLGER
GEORGE COLEMAN
A SPLENDID OPPORTUNITY TO MAKE A FORTUNE.

THE Subscriber having obtained Letters Patent, from

 the Government of France, granting him the exclusive privilege of manufacturing Horse Shoes, by his newly invented machines, now offers the same for sale on terms which canuot fail to make an independent fortune to any enterprising gentlemen wishing to embark in the same.The machines aro in constant operation ot the Troy Iron and Nail Factory, and all that is neceseary to satisfy tho most increduluus, that it is the most valuable Patent, ever obtained, either in this or any other country, is to witness the ojeration which is open
for inspection ω all during workigg houre for inspection tw all during workigg hours. All letters audressed to the subscriber (post paid) will re. eeive dueattention.

HENRY BURDEN.
N. B. Horse Shoes of all sizes will be kept cons stantly for sale by the pincipal Iron and Hard-ware Merchants, in the United States, at a small adrance above the price of Horse Shoe Iron in Bar. All persons selling the same, are authorised to warrant every shoe, …sde from the dest refined irun, and any failing to render the nost perfect sat:gfacoTIs, both as zegards workmanship and quality of Iron, will be received back, and the price of the same refunded.

II, BURDEN.

HARVEY'S PATENT RAILROAD SPIKES.

THE Subscribers are manufacturing and are now prepared to make contracts for the supply of the above article. Samples may be seen and obtainees at Messis. BOORMAN, JUINSON, AYRES \& Co. No. 112 Greenwich Street, New-York, or at the Makers in Puughkeepsie, who sefer to the subjoined certificates in relation to the article.

> HARVEY \& I $25 t h, J 836$.

Poughkeepsie, October 25th, 1836.
The undersigned having sllentively examined Harvey's Patent Flanciedund Grooved Spites is of the opinion, thaithey are decidedly preferable for Mailroads to any other Spikes with which he is ac:quainted ; and shall unhesitatingly recommend their adupton by the different Railroad Companies whose works lie has in charge.

BENJ. WRIGHT,
${ }^{7}$ Chief Engineer N. Y. \& E. R. R.
New-York, April 4th, 1836.
Harvey's Flanched and Grooved Spikes are evidently superior for Railroads to thase in common use, and I shall preommend their adoption on the roads under my charge if their increased cost over the latter is not grenter than some twenty per cent.

JNO. M. FESSENDON, Engineer.
Boston, April 261h, 1836.

ARCIIMEDES WORKS.
(100 North Moor atreet, N. Y.)
New-Yorx, February 12th, 1836.
THE undersigned begs leave to inform the proprieturs of llailroads that they are prepared to farniwh all Kinds of Machinery fur Railroads, Locomotive Engines of any size, Car Wheels, such as are now in successful operation on the Camden and Amboy Railroad, nune of which have failed-Castings of all kinds, Wheels, A xles, and Buxes, furnished at shortest notice.
II. R. DUNHAM \& CO.

ALBANY EAGLE AIR FURNACE AND

 MACHINE: SHOP.WILLIAM V. MANY manufactures to order, iron castinas for Gearing Mills and Factoriez ol every description
ALSG-Steam Engines and Railroad Castings on every description.
The collection of Patterns for Manhinory, is not

\therefore

 AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISIIED WEEKLY, AT NO. 132 NASSAU STREET, NEW-YORK, AT FIVE DOLLARS PER ANNIM, PAIABLE IN AIVANGE

SITURDAY, FEBRUARE 4, 1337.
[VOLUME V. $-\therefore$ a 5.

AMERICAN KALLROAD JOURNAL.

NEW-YORK, FEBRUAKY 4, 183%.
TO CIVIL ENGINEERS, \&ic,
E. \& G. W. BLUNT, 154 il ater-st., corner of Maiden Lane, have recently recrived an nasortment of LEVELS, from different manufariu. rers, among others from Trough'on \& Surins, wtich they warrant of the first quality. Circumferenwors, Levelling Staves, Prismatic Compasses, Mathematical instruments, Books for Engineers, etc., constanty on hand.
One of the above firm is now in Fngland superintending the manulacture of Theodulites, Tranit Inatruments, etc.-and any orders for Instrumear, not now on hand, will be furwarded him, and executed promptly.

5-1f
List of súbscribers to the Railroad Journal, that have paid, (continued.)
J. B. Jervis, City, N. Y., Jan. 1, 1838.
J. L. Shoemaker,
1838.
J. Strunk, jr. Olean Pt. N. Y., " 1838.
I. M. Sherwood, Auburn, "Sept. 1, 1837.

Moses Long, Rochester, " "13, 1837.
V. R. Many, Albany,
"Feb. 13, 1837.
H. Bostwick,
C. C. Dennis, "
J. B. Mouiton, Courtland,
" $"$
1837
C. Bishop, Homer, " 1837.
11. Wider, "Poston, Mass.," 1838.

A. Andrews,	"	" "	1833
J. M. Fessenden,	"	" "	1838.
Jas. F. Baldwin,	"	"Sept	18:37.
S. Nott, Lynn,			1838

W. G. Morris, Mellciontaine, Pa.," 1838.
J. F. Wright, Erie, " " 1837.
C. C. Moore, New-Cnatle, "Nor. 1,1837.
W. Otis, East-Greenwich, R. I. Jan. 1,1838.
N. Kuykindalls, Romney, Va. July, 1,1837.
W. G. Bonner, Warrenton, Gco. March 15, 1837.

Died, on the 16 th inst. at his residence at Baldwinsville, of inflammation on the lungs, Col. Stephen W. Baldwin, in the 42d year of his age. Col. Baldwin has done much to advance the interest of the place in which he lived, and was highly estecmed in all the relations of life. In his dealings he was just towards all, and the poor always found in bin a friend. Those who knew him best will most justly appreciate his worth, and most deeply mourn his loss.-[Onondaga Standard.]

Journal of the American Institute, Jan., 1837.-This Journal again makes its appearance in the usual neatness of execu. tion, and value of material. Severa articles in it are of particular interest.

American Journal of Science and Arts, Jan., 1837.-A valuable number of this work so creditable to American Science. A memoir of the Rev. Dr. Prince, of Salem, and several contributions from gentlemen o! talents, will interest the general reader.

The articles of Dr. Feuchtwanger, and al. so those of Dr. Hare, are well worth the attention of the chenical reader, particularly
the latter, on new and curious combinations in essential oils.
Several Zoological notices by Dr. Haxlan are also of high merit.
iIfluassee Railroad.-The corps of Eingimeers employed to survey the route for the Hiwassee Railroad have arrived, and willen ter forthwith upon the survey and location of the road. We have conversed with Mr. Trautwine, Principal Engineer, and he gives it as his decided opivion that the part of the route he has seen, from "moxville to this place, is equal, and some portions of it the best route for the location of a Railroad he has ever seen. The company are determined to commence the work immediately, and continue it until it is completed.
On last Monday the Stockiolders elected the following named gentlemen Directors, viz :- Gen. S. D. Jacols, Flon. C. F. Keith, Maj. Thos. Brown, Col O. G. Marrell, Jacob Pearson, John H. Crozier, James H. Fyffe, T. N. Van Dyke, and A D. Keys, Esqrs.

On the same day the Board of Directors met and elected Gen. S. D. Jacobs Presi. dent, and A. M. Coffey, Eeq. Secretary and Treasurer.-[Tenn. Jour.]

Watertown and Cape Vincent Rail. road.-The books for subscription to this work were opened on the line of the route during the three first days of last week-and the Stock is entirely taken up with the exception of about fifteer thousand dollars ; two-thirds of this sum is already engaged.

Auburn and Rociester Railroad.We see in the Seneca Falls Farmer, (in a statement derived doibtless from the Secro. tary of the Board who resides in that villaga, hat upwards of $\$ 1,035,000$ have been sub. scribed to the stock of tho A \& R. Rail, road Company.

Auburn and Great Sonus Bay Raleroad. -The Auburn Journal of the 11th inst. says that "a petition had been for a day or two in circulation for the incorporation of a company, with a capital of $\$ 400$, 000 , for the purpose of constructing a Railroad from that village to Solus. Another failroad to connect Auburn with Ithaca, is projected, and measures are on foot to carry forward both enterprises.

The Belinst and Q'elece Railroad is re:ving the streition of the people of Maine. They are recommending to tive consideration of the lowistature, now in session.

We iure indebted to the N. Y. Times for he following account of the Great Railroad Meeting, held on the 20th January last, in this city.
We exccedingly regret that other engagements prevented us from. attending, as we understand the proceedings were of a nature highly gratifying to the friends of internal improvement in general, and of this enterprise in particular.
It will be seen that the Company have already been offered for the lands in their possession, and chiefly given to them, the annual payment of 6 per cent. upen such instalments as may be payed in. The Company of course have no desire to part with lands so valuable to them on the completion of this work.
There is no doubt, if we can form an opinion from the spirit manifested on the subject, but that the neccssary subscriptions will imnicdiately be made.
PUBLIC MEETING ON THE SUBJECT OF THE NEWYORK AND ERIE RAILROAD.
Pursuant to a call signed by a large num. ber of the merchants, mechanics and landowners of the city of New. York, a very numerous and respectable meeting assenbled on the evening of the 20th of January, 1837, at Clinton Hall.
The meeting was called to order by Mr. James N. WElls, on whose motion, His Honor the Mayor, was unanimously chosen P'resident; and JAMes N. Wells and NAthinniel Weed, were appointed Vice Presidents; and Thomas R. Mercein and Will. 1ant SAMUEL Johsson, Secretaries.

The Mayor on taking the chair, announ. ced the object of the meeting to be, as stated in tho call," "to receive from the Board of Directors of the New-York and Erie Railroad Company, important statements respecting the progress of their undertaking, and its improved financial condition, and to atiopt measures for an energetic piosecution auti carly completion of the work."
At thic request of Mr. James G. King, the P'resident of the Ruilroad Company, Mr. Jobmion reid a portion of the Report heretofore inate to the Common Council of this city, by a joint Committee, of which Mr. J. was the Chairman; setting forth the immense importance of the work to this city, in all its brancheg. of industry. . Which be-
ing done, Mr. King proceeded to make n statement of all that the company had hitherto done, and of the circumstances-first of the desolating fire of December last, and then of the recent money pressure- (wiinh he remarked incidentally, he thought he might congratulate his audience upon having now passed,) by reason of which they had not before called upon their fellow citizens to fill up the stock. The time, however, had not come for action, vigorous, prompt, and sustained, if we were in earnest in the purpose of opening this new avenue - available at ell seasons-to the West.Tuat to produce such action was the object of inviting this meeting, and to the end that none might act without full knowledge.Mr. K. proceeded to state the grounds upon which-after personal inspection by some of their body-and the most careful examinations and re-examinations by Engineers second to none in their profession-the Board of Directors were willing to stake their characters for intelligence and sound ju igment, upon the practicability, and the certain and positive benefits, of the projected road-which, if reliance could be placed upon most careful estimates by cautious men-and he knew no better ground of reliance in any such undertaking-could be made for six millions of dollars. Of this amount there were now subscribed and paid in to the extent called for, one million eight hundred thousand dollars,-the State was pledged for tuo millions more on the com. pletion of a single track for the whole ronte, and the city of New.York was asked to make the sum up to five millions_confident that before that should be expended, the benefits of the road would be so manifest, and the rise in value of property along its routc so great, that no difficulty would occur in obtaining the remaining nillion. One million tevo hundred th msand dollars then was all that was asked from this city-so as to make up the private subscriptions, to three millions.

Mr. K. here added tiat great and lionorable exertions were made, to secure the passage of the law, granting the credit of Stateon the floor of the Assembly, by General Prosper M. Wetmore, and his colleagues, Messrs. Cowdrey, Sharp, Comner, and West, of the city delegation; and in the Senate, by Messrs. Livingston and Van Schaick-to each and all of whom, the thanks of their fellow citizens were most justly due. In addition to the motives of patriotism, of pride, of self-interest, whic. combine to prompt New-York to accomplish this great work, Mr. K. stated, that donations had been made to the Company alo:!g the line of the road west of the Gencsee river, of so great value, as to cuabic them to offer to those who were, and those who might become, subscribers to the stock, six per cent. per annum-(to be provided by the sales, as needed, of these lands,)-upon all sums called in till 1841, with the further proviso, that the residue of the lands then unsold should be rateably divided among the then holders of the three millions of stock. As an evidence even now of the worth of these lands, the Secretary, at Mr. K.'s in. stance, read an offer to the Company, signod by G. Hoyt, C. Hoyt, N. Devereux, and

Nevins \& Townsend- of four hundred thousand dollars for these lands, to be paid in such sums, on the 1st of July of each year until 1841, as should suffice for the interest, at 6 per cent., accruing at these periods on the instalments of stock paid up. Mr. K. added, however, that there was no intention, on the part of the Company, to accept this offer, preferring to reserve for their stockholders the rise in the value of these lands which the progress of the road could not fail to occasion, selling, ouly from time to time what might be needful to meet the payment of dividends. Finaliy, whatever sums were now subscribed, would only be called in, in instalments amounting to 25 per cent. per annum, for four years; and. the first payment of $12 \frac{1}{2}$ per cent. might be made in notes at three or four months.
As to the revenue of the road, when com. pleted and in full operation, Mr. K. observed, that after a strict and careful examination, by his assoclates and himself, they could not entertain a reasonable doubt of such results, from the profits of transporta.tion of passengers and merchandize, as to render the stock of the highest value in point of security and of dividends. Indeed, that it was impossible to come to any other conslusion, when they considered the cheapness of construction, the general facilities of the grades, the various tributary railroads and canals, the outlet upon the western lakes, the carly navigation of the Alleghany river, and the enterprise of the increasing population of the thrifty towns, villages and settle. ments, along the whole length of the road, rendered doubly prosperous by the outlay among them of so many millions.
Mr. K. claimed particular attention to the fact, that his associates and himself had no motive, beyond what every other stockholder possessed, in the value of the stock. They had no separate pecuniary interest, tu mislead their judgment-they orv: ed no lands or property adjoining the road-nor within the Southern counties-and they put formard therr claims to public confidence, upcn the ground of their entire disinterestednes 5.

Mr. K. concluded by stating that he had never known inducements of a pecuniary character held out for co-operation in an enterprise promising such vast results, stronger than those which he had been able, in behalf of his colleagues and himself, to present to this meeting; but so deeply did he feel the importance of tho cause, that in addition, he would invoke the patrotism, never found wanting, of the merchants, traders, professional men, mechanics and other industrious classes of this powerful city. He would appeal to their enlightened spirit of enterprise, which could discem, and aim at, distant benefits; and to that just regard to their own interests, which would not permit them to stand idle, while a nival city and State are straining every nerse to carry off, before their eyes, the precious trade of the great West -nor to suffer this mighty work, confided to his associates and himself, to languish, perhaps to perish, tor the waut of adequate protection.
Mr. John A. Sterens followed Mr. K.: and said that he stood before that meeting
a recent convert; that until very lately he had entertained strong doubts of the practicability and usefulness of the work-but that after a careful and minute examination he had become fully convinced, that what on a loose and general view had seemed tu him visionary, was in truth must practicable -most desirable-and would be most clearly profitable, not only to the public, but to those who might invest their fundin the work. He: had no interest in the question beyond that of every one of his fellow citizens-had no lands along the route-and up to that time had not even subscribed to the stack : but his attention having recently been invited to the subject, and entertaining, as he did, a strong belief that the sagacious and experienced individuals, who were associated in the Board of Directors, must have well informed themselves as to the character of the work, and the resources on which they relied for revenue, he had spent some time in examining, as thoroughly as had been in his power, the details of the enterprise. He had carefully, read the reports of the engineers, and abler or clearer statements he was sure were no where to be found-had examined the profiles and grades, and compared them with those of other roads in successtul operation-had sifted the data as to probable expenditures and revenue, and that he had come deliberately to the conclusion, that the work was feasiblethat it would furnish the means of cheap and rapid transportation-that its tolls, when completed, would afford to the stockholders a profitable revenue-that the auxiliary resources on which the Directors relied for dividends, while the work was in progress, were of great value and import-ance-and that it was incumbent on the citizens of New-York at once to urge it on to its completion.

Deeming it probable that there might be in that meeting many like myself, who had imbibed erroneous impressions as to the true character of the work, he thougbt it useful to enter into detail, and put his friends in possession of most of the data, which had induced the change of his own opinions on this subject.
Mr. S. proceeded accordingly to describe, with accuracy, and clearness the various acclivities and curvatures of tho road-the total absence, throughout the whole line, of inclined planes-the favorble contrast, in those respecte, with the Pennsylvania and the Baltimorc and Ohio Railroads--and concluded by declaring his firm conviction, derived from close examination of the proofs, that locomotive engines, drawing heavy loads, as well of merchandize and agricultural products, as of passengers, could profitably traverse the whole route from the Hudson to the Lake.

In the course of his remarks on this subject, Mr. S. stated the strihing and conclusive fact, that, although the route passes over, or rather winds through an uneven country in a portion of its line, yet that the greatest acclivity whith it encounters at any point, vill roi be steeper than the pre sent grade of the Harlam Railhoad, in th, Bowery; in this city, opposite Vauxhall, ano
that the greatest portion of the whole line, has not more than one half of that decric of inclination-and he appealed to his fe!low citizens, who daily withessed the rapid passage along that street, of loaded vehicles drawn by horses, to point out what difficulty could cxast in passing over grade: of less severity wi h locomotive engines.

Mr S. proceeded to point out the importance of securiug a conn xion in the early spring, between the port of NewYork and the populous valleys of the Ohio and Mississippi, and called the attention of the meeting to the fact, which he deemed all important, that the head of navigation of those rivers. forming the cominercial key of that whole region of territory, actually lay rithin the limits of this State, in the county of Cattaraugus, and on the very line of the proposed road. He was confident, he said, judging, from his own want of acquaintance until a very recent period with that important feature in the enterprise, that his fello:v citizens were not thoroughly aware of the capacity and value of that strean. He read to the meeting a very interesting letter o the subject, from Judge Chamberlain, of Cattaraugus County, which nad been printed under the direction of the Senate of this State, while the loan law was under consideration, and he showed from the facts therejn set forth, that when the railroad shall be completed from the Hidson to that river, the merchandize of this city can be sent down into the valley of the Ohio, befure the 10 th of March, earlier even than the opening of the Pemnsylvania Canal, and nearly six weeks before the opening of the Erie Canal.
Mr. S. addel, that he was fully satisfied, from the general character of the country, and of the grades of the road, that it could be cheaply constructed and profitably used -that the large population which it would accommodate, and which is now rapidly increasing, would afford a lucrative revenue in the trausportation both of persons and property; and that such revenue would steadily increase with the growth of the country and the development of its resources.
In conclusion, Mr. S. described the struggle which is now exhibited of four important Atlantic States:-Viroinia, throligh the James River and Kanawha Canals and Railroad-Maryland, by the Baltimore and Ohio Railroad-Pemsylvania, by her Railroads ond Canals; and, lastly, Neir-York, with the proposed Railroad, all striving to win the rich prize of the Western trade. And he earnestly appealed to his fellow citizens to come forward at once, and by all the means in their power, to hasten the comp!etion of a work in which their commercial ascendancy and permanent prosperity were s: dceply involved.
He, therefore, submitted the following resolution, which was passed unanimously:

Resolved, That the early completion o the New-York and Erie Railroad is, in the pinion of this meeting, an object of the lighest in portance, both to the local interests of this city, and to its commerce witl. the interior; and that this meeting entesains the fullest confidence in the feasibility
of the undertaling-in the resources relied on for anmal divident's wh le the work is it: pr gress-and in the security and value of the stock when the ruad shall be in cperation.
Mr. Ceorge Grisurold succeeded Mr. Stevens.

Mr. G. said, that the ime had come when t was necessary for the citizens of NewYork to determine whether a work, such as they had heard described, and of which the importance to our prosperity could not be overrated, should be uryed on to rapid completion, or suffered to languish and diethis was the question, and on the decision of this meeting it depended, whether the enterprise should succeed or fail. He could not doubt the result of the appeal that had been made. Pride, patriotism, selfinterest, all combined to induce us to proceed. Already Pennsylvania, hy a railroad in progress to Erie, on the Lake, is aiming to strike the very point we are tending to; and shall we sit still and let a rival -an honorable and emulous rival indeedtake from us the prize. Nature, art, enterprise, and skill had given us the ascendancy: a harbor, to which the world presented so superior-approachable at all times-that is, added Mr. G.-when pilots are to be found-the fincst ships in the world, the best sailor:, as he verily believed, and vast enterprise, save us the lead and that lead nothing could take away from us, it we were oniy alive to our true inte rests. The work under consideration appealed to all those interests-to the mer ${ }^{2}$ chant, to the householder, to the profes: sional man, to the ship builder,-nay, there was not a cartman, sailor, rigger, or laborer connected with the city, who weuld not be more or less benefitted, either in the increase of work, the augmentation in the value of property, or the extension of business, by this new opening to the far West. And to insure these most desirable results what was asked? A subscription payable in equal parts in four years, of twelve hundred thousand dollars! not four dollars a head for our population-not one dollar a heal amnually for four years! Can there be a doubt that this trifle, this very trifle compared with the resoulces and means of the city, would be furthcoming?
Mr. G. concluded by saying, that as evideace he did not recommend to others what he was not prepared to aid in himself, he would state that, in behalf of himself and some friends with whom he had consulted, if one million were subscribed by the citizens at large he would take the remaining tieo hundred thousand dollars! He believed it would be an excellent investment.

He, therefore, submitted the following resolution, which was unanimously adopted:
Resolved, That in view of the rival enterprises of other St, ses, this community is loudly calied on to sustain the efforts necessary to a vigorous prosecution and rapid iccomplishment of this undertaking, by neans of which the earliest and nost peedy communication will be established etween tbis city and the vast and various markets in the valleys of the Ohio and

Mississippi, and on the borders of the western and north-western Lakes.
On motion of Mr. Robert Chesebrough, it was unanimously

Resolved, That the entire population of this city, from the poorest to the most pros. perous-laborers, mechanics and manufacturers, as well as merchants. land owners and profussional men-are alike deeply in. terested in the completion of this work, as a medium of constant and abundant supplies from the remote interior, of provisions, fuel, lumber and other articles of consumption, at all times, and especially during the winter months,-since by such supplies, renewed from day to day, the expenses of living will be materially diminished, and the healt!. comfort and prosperity of all classes of citizeus essentially promoted.

It being announced to the meeting, that Mr. Ogden now of the State of Lllinois, and Lutely of Delaware county, in this State, was present, and that he had actively advocated the Loan Law, as a member of Assembly from that county, in the session of 1835.

Mr. O., on the call of the meeting, made a brief exposition of the nature and extent of the products which the Southern counties would afford for transportation on the proposed road, and particularly of the valuable lumber which was now exported from that section of the State, throughout the whole valley of the Mississippi.

He proceeded further to advert to the rapid improvement now taking place through. out the whole of the west, particularly in constructing railroads destined to be tributary to the one under consideration, and to extend the line of communication into the remotest portions of those fertile and rapidly peopling regions of the interior, all of whom, said Mr. O., are looking, with eager cyes, to the New.York and Erie Railroad, and preparea to meet it at least half way, and extend to its projectors and supporters the right liand o. fellowship.

General Tallmadge felt quite sure that the wants of the Company would be immediately met, for he placed the fullest reliance upon the statements which had been made, and upon the ability of this city to afford the re. quisite aid ; and he was, morcover, well acquainted with the value of the Southern tien of counties. He would reniind the mecting of events of which he hiniself was a wituess. When the State of New-York made application to the General Government for assistance in carrying out her sehemes of improvement, they appeared so vast even to the mind of President Jefferson, that he pronounced them to be "a hundred years in advance of the times."-That application, and the refusal, on account of its character being deemed so chimerical, did actually prostrate the credit of this State, and postpone the accompiishment of her great designs, unti, taking courage, and relying upon her own energies, New.York unaided, carried into vigorous execution her great system of Internal Improvernent_elevating her credit to the highest point abroad and at home,and reaping a full measure of glory and pros. perity. Similar results, said Gen. T., will assuredly follow, if the New-York and Erie Railroad shall now be sustained by those to whom the appeal is made-and thus another
will be added to the bright examples, of what may be accomplished by a people blessed with a healthful and fertile soil-and with their faculties developed and strengthened bv general education, and by free political institutions. He would therefore move the following resolution, which was unanimously adopted.
Resolved, That it is expedient to adopt measures without delay, to increase the available subscriptions to the stock of the New.York and Erie Railroad Company to three millions of dollars,-that a committee of thirty-ffre citizens, with power to add to their number, be appointed by the chair, to obtain subscriptions, and that it be recom. mended to the Board of Directors forthwith to open books for that purpose, at the Merchants' Exchange, and at such otijer places as they shall deem expedient.
The following gentlemen were then nominated by his Honor the Mayor :-
John Haggerty, John A. Stevens, Robert Chesebrough, Moses H. Grinnell, Samuel S. Howland, James N. Wells, Chas. N. Talbut, Moses Taylor, Benj. Birdsall, Nath'l. Weed, Frederick Sheldon, E. S. Gould, Stephen Allen, \quad Simeon Draper, Jr. Charles Kelsey, Abm. G. Thompson, Tiumas R. Mercein, David Austin, Daniel Jackson, D. W. Wetmore, Shepherd Knapp, Samuel Jones, Robert Ray, James B. Murray, Charles Hoyt, Ogden E. Edwards, Christopher Wolfe, Henry H. Elliott, David Lee, Edward G. Faile, Charles Denison, Alfred R. Mount, Jacob Lorillard, Martin E. Thompson, Philetus H. Woodruff, And Andrew Lockwood,
It was therefore Resolved, that the proceedings of this meeting be published, and the mecting adjourned.
C. W. Lawrexce, President.
$\left.\begin{array}{l}\text { James N. Wells, } \\ \text { Nathle. Weed, }\end{array}\right\}$ Vice-Presidents.
Thomas R. Mercein,
Secretaries.

We feel proud in being able to lay be..)re our readers this Report in relation to the affairs of a Company, that in all its arrange. ments financial and professional, may fearlessly challenge competition.

In New-York we feel additional interest in a work of so much impo:tance to our city. May it go on as prosperously as it has com. menced.
REPORT OF THF COMMITTEE OF THE I.EGIS. LATURE, APPOINTED TO EXAMINE INTO THE condition, affairs, revenue, anj futURE PROSPECTS, OF THE NEW-JERSEY RAIL. boad and transportation company.
Mr. Willis, from the Joint Committee, made the following Report to the Honse of Assembly.
The Joint Committee of Council and As. sembly who were charged by a resolution passed at the last sitting of the Legislature with the "duty of examining and investigating the condition and affairs of the New.

Jersey Railroad and Transportation Compa. ny, the expenditures they have made on their work, the probable amount necessary for its completion, with the revenue now re. ceiving by the Company, and all such other facts as may aid the Legislature in deciding upon the subscription to the capital stock of the Company, reserved by the charter, according to the best interests of the State," beg leave to report :

That they have during the late recess visited and examined the works and property of the Company, and made a minute and careful investigation of their books of accounts and papers necessary for the full understanding of the various matters required by the foregoing resolution, and have unanimously agreed in submitting the following h ghly satisfactory statement of the result of their examination, which, in order to be as plain and intelligible as possible, exhibits eaci subject investigated by the Committee in detail.

1. Condition of the Work.

The work is fully completed with a single line of rails, and an adequate number of tarnouts, from the Raritan to the Passaic rivers, (a distance of $22 \frac{1}{4}$ miles) upon the most approved mode of structure, with heavy upright iron rails; on the whole of this distance, a locomotive engiue has been used since the middle of last July, making tiree trips a day.

From the Passaic to the Hudson river, (a distance of about 8 miles,) the road is but partially finished. A single line of rails, however, has been laid on the permanent route of this portion of the work, from the Passaic to near the Hackeusac river, and an double track about one mile east of the Hud. son, and a temporary track on the interve. ning portion, viz. the Hackensac Bridge and Bergen Hill. Over the whole of this distance, cars have been used with horse.power, since September 15t! 1,1834 , making a trip each way every hour and a half during the day, besides a night line of three trips.

Throughout the whole route, the grade of the road is no where to exceed 26 feet to the mile, as will be seen by reference to the map and profile accompanying this Report, it be. ing understood that the entire distance between New-York and Philadelphia will admit of a railroad construction of this low graduation.
The parts which are incomplete are the Dock and place for depot at Jerscy City, the deep cutting at Bergen Hill, the abutments of the Hackensac Bridge, the Bridge or Via. duct over the Raritan, and the extension of the road three miles south of Raritan to the point of it termination. The work at these several points is now in progress, with the prospect of being completed within one year. The cost of the unfinished portions, with the additional fistures, and the right of way not yet obtained, is estimated by the chief Engineer, L. A. Sykes, at \$300,416, as per pa. per marked A.

2. Availab!e Means of the Company.

The Capital Stock subscribed and actually paid in, is $\$ 1,125,000$, being 3 of the whole capital. The remaining $\frac{1}{4}$ of the capital, amounting to $\$ 375,000$ (the privilege of subscribing to which being reserved to the

State, and of course not available, the Company, in order to proceed with the work without delay or interruption, have tempora rily borrowed the sum of $\$ 158,082.14$.
Surplus lands, which from motives of po Licy, or the necessit! of the case, the Company have purchased in connexion with the right of way, and which are disposable by the Company, are estimated to be worth at least $\$ 100,000$.

Debls due the Company and cash on hand, exclusive of the transportation account \$18,757.88.

In addition to the above, the Company have purchased and hold, agreeably to the authority and requirements of the 10th section of the charter, stocks of other companies, as follows, viz.

Of the united Hackensack
and Passaic Bridge Company, \$113,759 19
The Newark Turnpike Com.
pany,
New Brunswick Bridge Company,
Essex and Middlesex Turn.
pike Company,
25,780 58
34,920 00
18,192 33
\$192,652 10
Locomotive engines, cars and horses, which at a depreciation of from 8 to 25 per cent. on the cost, are estimated worth
$\$ 64,54246$
Wood on hand,
3,000
3. Total Expenditures, exclusive of the Transportation Account.
Cost of the construction of the
road. Bridges Viaducts \&c \$860,335 35
Location and purchase of
fands, and right of way,
Locomotive Engines,
Cars,
Cost of Horses,
Wood,
Expended for Stocks in other Cost referred to above,

222,606 42
25,042 46
38.105 72

13,189 73
7,185 31

In rebuilding a bridge for the
Hackensack and Passaic Co.
For repairs of Newark Turnpike,
Loans and debts now due to the Company,

192,652 10
11,210 78
2,473 79
3,587 64
Expended on Interest account and Dividends on acconnt of School Fund Stock,

1,407 98
4. Revenue and Fulure Prospects.

The nett receipts for transportation, from Sept. 15, 1834, when the cars commenced running, to June 1,1835, a period of $8 \frac{1}{2}$ months, are
$\$ 18,30671$
To which add the gross amount of receipts since June 1, 1835, viz.

169,447 55

Making total

F' From which dejuct the whe 187,754 charged to transportatio whole amoun ame period, and which a count within the same period, and which has been greatly en hanced in consequence of the tetnporary track over Bergen Hill, requiring the use o horse-power, viz.
$\$ 81,43504$
Also the whole amount of Dividends, which have been declared on and after July 1,1835 , and which have been uniformly at the rate of

6 per cent. per annum on the capital stock paid in, viz.

47,315 00
$\$ 128,75004$
Leaving a balance in favor of the receipts on transportation account up to Dec, 1, 1836, which is . applicable to the payment of Dividends and incidental expenses, of \$59,004.22.

An estimate of the continual increase of revenue. from transportation ; and of the future prospects of the Company, may be made from the annexed statement (marked B) showing the number of passengers for each month since June 1st, 1835-and also from the close of the payer (marked C) showing the gross amount of receipts for trans. portation for three suczessive periods of six inonths each.

In addition to which a farther increase of revenue may be anticipated from the completion of the following tributary roads, viz: "The Morris and Essex railroad," four miles of which are finished and in use, the passengers of which are now carried between Newark and Jersey City, in the cars of the New.Jersey company, by an arrangement between the respective parties. "The Somerville railroad," which is in a course of construction, and intersects the New-Jersey railroad at Elizabethtown :and the continuous line of railroad across the State, which will be effected when the Branch railroad from New-Brunswick to the Camden and Amboy railroad, authori sed and required by a supplement to the charter of the latter company is completed; for the speedy accomplishment of whith work, so beneficial to the State and to the whole comnunity, definite arrangements have been made by the respective companies interested; each being bound to carry each other's passengers in a cominodious and expe itious manner; and the receipts to be divided between them in a pro rata proportion ; each party, however, preserving its distinct and separate interests, as satisfactorily appears from an examination of the contract.

It is to be recollected, that the revenue hitherto received, has been derived principally from the transportation of passengers; and that the amount must be greatly enhanced, as well as the expense greatly diminished, when the cut through Bergen Hill is completed, so as to admit of the ap. plication of steam power to the transit of merchandize.

The sum of $\$ 59,004.22$, which stands on the books of the company, to the credit of the transportation account, and which is stated above to be applicable to the pay ment of Dividends, has been borrowed by the construction account, that is to say, the company have expended the same is carrying forward the work. It is, however, un. lerstood to be the intention of the Board of Directors to replace this sum; and it is yet in undecided question whether to refund a sufficient amount to meet the next regular semi-annual dividends, or to postpone the payment of said dividends, until the company are in funds, from the disposal of the reserved capital stock; a question, which in the opinion of your committee
justly enritles them, to the prompt decision of the legislature.

5. Viscellaneous Facts.

A contract has been made with the " Pa terson Railroad Company," which is to continue during the charters of the respec. tive companies; by which is received a transit duty of 6 cents per passenger and 12 cents per ton of merchandize transported over the New-Jcrsey road from the junctiont near Bergen Hill to Jersey City.
The St-te of New-Jersey has inerged the anount of its stock in the "Newark Turnpike Company;" viz: $\$ 12,500$ in the stock of this company, for which the State holds a guarantee of a minimum dividend of 8 per cent. per annum.

The sum of $\$ 192,652.10$ invested in the stocks of the several bridges and turnpike companies referred to in the preceding part of this report, yield a revenue of between 6 and 7 per cent. per annum on the cost.And notwithstanding a reduction of tolls of about $33_{2}^{\frac{2}{2}}$ per cent. ; and notwithstanding the diversion of travel by the railroad and by steamboat between Newark and NewYork, the amount of revenue from these sources has increased, and is continually increasing.
In conclusion it is but just to add, that all the financial cperations of the company, have been based upon cash payments, and are copiously and clearly exlibited in the books of accounts and vouches. Thit notwithstanding the magnitude and the difficulties of the work, it has been advanced to its present state, with as little delay as rould have been reasonably expected ; affording just ground of confidence in the determination of the Board of Directors to bring it to its final completion in the short period of a twelve-month; und although numcrous and heavy contracts have been made with different individuals, no Insses have been sustained by the company, with the exception of a single instance, in which the securities held, are perhaps of a dubious character, amounting to $\$ 1,260.09$.

By way ot recapitulation, annexed to this report are two balance sheets (marked C and D) prepared by the Treasurer of the company, of the correctness of which your committee have satisfactory evidence, from an examination of the books and papers, which exhibit a summary view of the condition and affars of the corporation, up to December 1st, 1836.
'The committee do not at this time present any bill for the specific nction of the legislature. They consider it, however, proper to state, that the Company have placed in their hands two resolutions expressive of their wishes on so much of the subjocl as they refer to, which resolutions are annexed to this report, and marked E. By the tirst of these, it will be perceived that in order to make the reserved stock of the company available for the progress of their work to its completion, they request of the legislature as speedy a decision upon the question of subscription as praclicable, in order that individual subscriptions may be obtained without delay, should the State conclude to waive her right; a reques*
which your committee conceive to be reasonable, and do therefore recommend the early action of the legislature upon the subject. The other resolution offers to guarantee to the State ofn stock to the amount of two hundred thousand dilla s, dividends at the rate of at 1 -ast five per cent. per annum; or on one hundied thonsand dollars, dividends at the rate of at least six per cont. per annum, and such further and larger dividends as shall be declared by the company: and they also agree to refund to the State the aforesaid sums respectively, and retake the stock if the State should subscribe either amount, whenever repayment of the monies received by New-Jersey under the Deposite Act, shall be required by the General Governinent.

The cominttee therefore, submit to the legislature the foregoing facts, as the result of their labors under the resolation by which they were created; and they deen it incumbent on themselves to say, that in their examinations, investigations, and whole intercourse with the company, the committee have been furnished with every facility for the full and fuithful discharge of their trust. All which is respectfully subrnitted.
'Thomas A:nowsmith, Committee
J. C. Smallwood, of Council.
M. Wihes,

Elias-P. Seeiey, Committee $\left.\begin{array}{l}\text { Join A. Beeecher, } \\ \text { W. C. Aiexander, }\end{array}\right\} \begin{gathered}\text { of } \\ \text { Assembly. }\end{gathered}$ Wm. Pierson, jr. J

$$
[\mathrm{A}]
$$

To the President and Directors of the New-Jersey Railroad and Tiansportation Company :

Gentlemen :-Agreeably to instructions, I hereby lay before you an estimate of the expense requisite for completing your rail roitd from the Hudson river to the Westerr termination, in the city of New-Brulswick. All the gradiug to be of sufficient width for two tracks, and one track to be laid com plete with the requisite number of turnouts, sidings, car-houses, engine-houses, \&c.
To complete filling dock at Jersey City, 105,000 cub. yds. at 28 c .
"Grading through Bergen Hill, 37,032 solid rock at \$2
" Grading through Bergen Hill, 1,000 solid rock at 70c.
"Grading t'누ough Bergen Hill, 5,600 solid earth at 15 c .
" Grading through Bergen Hill, 19,400 solid earth at 10 c .
"Grading through Bergen Hill, 2,000 solid wall at 50 c .
"Grading through Bergen Hill, 30,000 embankment at 25 c .
"Embankment, sections 7 and $8,18,000$ cubic yds. at 33c.

7,500
86,044
"Embankment, sections 8 to $13,25,000$ cubic yds. at 50c.

- Grading sections 14 to 67 and completing bridges, Raritan bridge excepied,
- haritan viaduct masoniy 3,227 cubic yd3. at $\$ 4.87 \frac{1}{2}$,
"Raritan viaduct Snperstructure. (Has. sards contract),
- Raritan viaduct Tisning and painting bridge,
"Raritan viaduct draws and sundries,

Superstructure of road, single track to termination,
Car-houses, Depots, \&c.
Add for right of way to termination,

Transportation, balance to

45,000

15,932

23,600

10,000
8,000 $\quad 57,532$

24,000
$20: 000$
20,000
$\$ 300.416$
The above I believe to be a full and sul. ficient estimate.
L. A. Syees, Enginecr.

Newark, November 1st, 1836.
[b]
Whole number of Passengers on the New-Jersey Railroad for the following 18 months, ending 1st December, 1836.

June,	1835,	11,809
July,	'6	18,222
August,	"	13,148
Septen:ber,	"	14,196
October,	"	19,231
November,	"	13,609
December,	"	12,144
Jamary,	1836,	16,606
Tebruary,	،	9,270
Maich,	"	15,856
Ipril,	'	24,694
May,	"	19,939
June,	*	21,244
July,	"	40,659
Iugust,	'	34,332
September,	"	42,596
October,	"	34,829
November,	"	33,525

N. B. Of passer.gers have been transported over the coad within the last six months, being $\frac{1}{3}$ of the time enbraced in the above statement.

[C]

Summary Statement from the Balance. Sheet of the New-Jersey Railroad and Transportaticn Company, November 30, 1836. 183

Capital Stock, amount actu. ally paid in,
$\$ 1,125,0000 C$
Nevins, Townsend \& Co.
Cash advanced the Co., 158,08214
credit of this account, Brunswick Bridge Stock, amount of purchase,
Ground-Rent, balance to credit of this account, Unpaid Dividends,

59,004 22
33,920 00.
67416 68850

61568
balance tolls received,
29825

\$1,379,282 95

Disburscments.
Construction of Road and Bridges,
Location, purchase of land and right of way,
Lecomotive Engines, cos per account,

25,042 46
Cars, do. 38,105 72
Horses, do. 13,18973
Wood, do. 7,185 31
Stocks of Hackensack and Passaic Bridge Comp..
Of Brunswick B.idge Company,
Of Newark Turnpike Com. pany,
Of Essex and Middlesex Turupike Company,

Due from Hackensack and Passaic Bridge Comp.,
Due from Newark 'Turnpike Company,
Do. Sundry Individuals,
Cash, balance in hand,
2,473 79
3,587 64
1.48567

Treasurer of School Fund Stock,

87500
Interest Account,
53298
\$1,379,2ヶ2 95
The forcgoing statement shows the gross amount of receipts and indebtedness of the Company, including capital stock, to be
\$1,379,282 95
From which deduct amount to credit of transportation account,

59,004 22
\$1,320,278 73
Of this sum there has been invested in the stocks of the Bridge and Turnpike Companies, which produce an income of 6 to 7 per cent. per annum, and which is not properly chargeable to expenditures on the road,
\$192,652 10
The cost of Loconotives now in use is,
$\$ 25,04246$
The depreciation on which is estimated at

The cars now in use cost,
Ind are estimated to be impaired,

2,00000
23,042 46
38,105 72
6,603 72

31,500 00°

The horses on hand are estimated worth at least,

10,000 00
The wood on hand is estimated at,
Debts due the Company, including cash on hand,
Besides which, in purchasing Lands for the location of the Road, more has been bought than will be required, and it is believed that the surplus Lands, after the right of way is completed, will sell (making allowance for some further expenditures on that account,) for at least,

3,000 00
18,757 88

100,000 00

1, 1836,6 months, the gross receipts were,
J. Worthington, Treasurer.

378,952 44
$\$ 941,32529$
It thus appears, that less than a million of dollars of the Capital has been applied to the location and constructien of the Road, a very considerable portion of which has been expended upon the excavations at Bergen Hill, the embankments on the Newark meadows, and the Viaduct over the Raritan at Brunswick, none of which have been yet used for any purpose of profit or income.
The balance to the credit of Transportation account has principally accrued from the business of the Company since the 1 st of May last, and furnishes the means, even in the present unfinished state of the work, to contiaue the dividends on the stock of 6 per cent. per anau n; that account has been already charged with all the incidental expenses of Transportation, leaving a balance as is seen, of
Still, with a view to greater precision, it may be proper to deduct from this sum the estimates of the Superintendent, (which he considers large, for the depreciations of the Locomotives now in use,
Of the Cars,
Of Horses,
And for the consumption of Wood,

Leaving a nett balance of profits from Transportation, of,
The following are the amounts received for transportation of Passengers and Merchandize, from Sept. 15, 1834, (when the road was open,) to Dec. 1, 1836, from the Books of the Company.
From Sept. 15, 1834, to June 1, 1835, $8 \frac{1}{2}$ months, the nett receipts were,
From June 1, 1835, to Dec. 1, 1835, 6 months, the gross receipts were,
From Dec. 1, 1835, to June 1, 1836, 6 months, the gross receipts were,
From June 1, 1836, to Dec.
$\$ 59,00422$
\$43,023 46
\$18,30671

38,216 43

41,261 04
\$2,000 00 7,605 72
3,18973
4,185 31
15,98076
Location-Amount of expenditures liquidated and paid,
Wards Dock, paid for this property, not required for right of way,
Commercial Dock, do. do. do. do. do., First Baptist Church, naid on account this property at New-Brunswick,
James Crane, advanced to obtain right of way at E. Town,

Locomotive EnginesThe amount paid for 3 now in use,
H. R. Dunham \& Co. paid on account of a new one,

Cars-The amount paid for those in use,
John Stcphenson, on account, additional cars

Horses-Amount paid for Horses,
Woon-Amount paid for wood (550 cords on hand,)
Srock-Of the united Passaic and Hackensack Bridge Co., 877 shares purchased (123 remaining,
Of the Newark Turnpike Co., paid for 462 shares, (38 remaining.)
Essex and Middlesex do. do. 921 (79 do.,)
New-Brunswick Bridge Co., cost
\$727,050 16

52,342 39

21,000 00
28,955 29
5,000 14
25,987 37
$\$ 860,33535$

199,582 11

2,625 00
13,750 00

6,32750

32181
222,606 42

21,542 46
3,500 00
$\overline{25,04246}$
26,805 72
11,300 00
38,105 72
$\$ 13,18973$
7,155 31
) $\$ 113,75919$
25,780 58
18,192 33
34,920 90
34,920 90

Hackensack and Passaic
Bridge Co-Balance due from them for constructing a new bridge,

9,910 78
Daniel Blasdell, paid him on account contract for covering do.,

1,300 00
11.21075

Newark Turnpike Ci., "xpended for repairing road,

2, 478.89
Lewis Condit, this amount due from him,

2,14755
Thomas Salter, do. do.,
Reserved Stock, $\frac{1}{4}$ of capi-
tal reserved by charter,
Treasurer of School Fund, loss by agreement to guarantee 8 per cent. on stock,

87300
Interest Account, balance of this account,

53298
Estate of Z. Drake, balance
1,260 09
1,485 67
\$1,754,2S2 95
credit.
Capital Stock, whole amount of capital,
$\$ 1,500,00000$
Nevins, Townsend \& Co. this amount advanced by and through them,

158,082 14
Bills Payable, sundry bonds given for New-Brunswick Bridge Co., stock,

34,920 00
Transportation, balance of this account,

59,004 22
John P. Jackson, do. due him,

29825
Ground Rent, do. of this account,

67416
$\begin{array}{lr}\text { First Dividend, unpaid } & 750 \\ \text { Second do. do. } & 9600\end{array}$
Third do. do. 58500
New-Brunswick Bridge Co. balance of this account,
$\$ 61568$
81,754,282 95
Office of the New-Jersey Railroad and Transportation Company,

December 12th, 1836.
The following resolutions were passed
by the Board of Directors of the NewJersey Railroad and 'Transportation Company, at their meeting, December, 12th, 1836.

Resolved, That as the decision of the
Legislature of New-Jersey, upon the question of subscribing to one-fourth of the capital stock of this Compary, reserved to the State by the charter is desirable, in order that this reserved stock may bê made available to the company eithcr by the subscription of the State or individuals; the Legislature be respectfully requested to decide the question as soon as practicable.

Resolved, That in case the State of NewJersey will relinquish a portion of the stock of this company reserved by the charter, that this company will guarantec on a per. manent subscription to stock to the amount
of two hundred thousand dollars, dividends
the rate of at least five per cent. per annum; or on a permanent subscription of one hundred thousand dollars, dividends at the rate of at east six per cent. per annum, and such further and lurger dividends as shall be declared by the company. And this Company will also agree that in case repayment of the monies riccived by NewJersey under the Deposite Act, shall be required by the Gencrul Government, this Company will retake from the State at par such an amount of the stock which may be subscribed as aforesaid, as will enable the State to repay to the Gencral Government nt such times as they may require repayment, a just proportion of the sum subscribed by the State for sald stock.

I certify the foregoing to be a true extract from the minutes of the Bourd of Directors of the New.Jersey Railroad and 'Transportation Company.

John P. Jackson, Secretary of
N. J. R. R. \&'T'. Co.

The following Report from the pen of one of our most promising enginerrs, deserves a careful perusal. The importarice of the work, completing as it does, one of the grand east and west chains of improvement is a sufficient argument, if any be needed, for the earnest ccas:deration or t.e subject by ever! friend of internal improvement.
report on the survey for a ship canal from richmond to warwich, being the plan proposed for the coniection of the James river and kanawha mpitove. ment with tide water. by C.arles Ellet, Jr. C. E.

Ricinown, November 2sth, 1836.

To the President and Directors of the James River and Kanarcha Company.
Gentlemen,-In compliance with the resolution of your board oi" August 23d.. "That the Caief Engineer be requested to take measures at as early a day as practica. ble, to have a survey and estimato made of the best possible plan of lockir g down from the oid canal at some proper poant in or near the city of Richmond, to tide water in James river, and the best plan to unite wit 1 . the river and the dock, each plan being separat from the others, and report the survey, plans, \&c. to the board;" I herewith present my views on that subject. and tae plan wiveh I deem best adapted to the case. I have rot attempted to comply with the full purport of the resolution, and furnish a separate map and estimate of cach of the plans that might be adopted, since the time whicir could be devoted to this question is limited, and most of those plans are manifestly inadequate to the wants of the trade and tine convenience of the city.

I have thefore restricted myself, for the present, to the determination of the best mode of connecting the work with tide water, and making the most suitable arrangement for the accoinmodation of the internai and foreign commerce of the port.

I am aware, that in offering my present plan in place of those which have been suggented at other times, as sufficient to satisfiy the procise requirement of the law, I have
exceeded the o'ject contemplated by the charter, and have periaps transgressed the limit of the powers of the company; bu whatever influence that consideration may have on the action of the board, I presume it should hardly prevent the development of a project whic , may possess sufficient im . portance to lead to a modification of the charter itself.

To open a communication between the canal and the river by either of the lines which I have pointel oat for the purpose, is easily accomplished. There is no difficulty in placing the protuce brought by the canal in ticie water, or chelivering it on the wharves of the dock; and if this were all that is required by the character and purposes of the work, the duty of forming this connection would be oue of great simplicity. But the improvement in which yon are engaged is designed to become the meilium of intercommunication between foreign countries and the interior of our own ; the line of transit of the imports, which coming from abroad, are to be distributed in the west, and of the products of the west which are intended for foreign markets. And in thiseffort it comes in competition with two lines on the north ulready in full operation, and of several athers of almost equal pretensions, either contemplated or in progress of construction. So that however fuir may be the present ,rospects of the company in this field of enterprise, it becomes the friends of the improvement to enhance to the utmost the advautages which they possess, and overcome, as far as practicable, the impediments in the way of their success. Anrong the advan. tages of the line, one of the most conspicuous, is. perhaps, the poissession ot a valley 'uiguly favorable for the construction of the work, while among tie obstacles to be mastered in the rivalry, is the comparative incon. venience of the navization which leads to its outlet. And altnougin tinis difficuty may appear to apply rather to the importer and the shipper tuan to the James and Kanawha Company, it is not to b3 doubted, that the characier and standing of the work are directly interested in its renuval.

Every ton of westerin produce, and every baie of gools which are brought to the city, are subject to a tax in the cost and risk of trusportation, and in time in passing from the canal to the shipping, or from the vessel to the warehouses ; and tie cost of lighterage, though considerable in itself, is a smal. anount in comparison with the inconvenience and loss of having the business winic: needs the eye of the master, transucted b: agents, at the distance of sixty miles fron tue city, aud the risk ol transportution, th du'ay of the vessel, and the inactivity of capital waile tue ship and cargo are detainee in port. Tue company is affected by thi loss. The risk is attended by an additiona msurance, an the delay by an increase o freight; and these charges are a tax upo the trade, which, to the extent of its ope ration, places tue work in a position und favorable to an equal competition with it rivals.
It becomes necessary, therefore, in add. tion in the impoitance of opening a passag ior the proluce from the canal to tis wharves, to remove as far as practicable, $t u$ expense of delivering it on shipboard; and
if this can be effected by a plan which will simultaneously reduce the other charges and risks to which it is exposed, and promote the rosperity of the city, which is the terminaion of the work, its claims on the consideraion of the company will be proportionally suhanced. But until the inconvenience of transshipment is overcomc, and the delay and cost of transporting the cargo of each vessel that is consigned to this port, to Warwick, or to City Point, are obviated, these conditions cannot be satisfied. And I am iersuaded that no plan that leaves a space between the termination of the James River and Kanawha improvement and the shipping can be regarded as adequate to the commerce of the city or the wants of the trado of the interior; and that no termination should be received as admissible that does not bring the shipping up to the business part of the town, and enable us to lay the canal boats along side the vessels.
The plan I propose is designed to effect this object ; and without discussiug the merits of other projects, by which it is supposed such a connectien mig't be accomplished, further than is necessary to show their inad. equacy to the purpose, I will confine myself to the reasons which have prompted me to recommend the one before you, and to the ficts whic. establist its sufficiency, and the profitableness of the investment.

Tue condition of James river from Warwick to Harrison's bar is generally known. There is, I am informed, no point where the depta is less than 14 feet at common tides; and it is not unusual for ships of burthen to take in a part of their lading at Warwick and afterward drop down below Harrison's bar and make up their cargo. But owing to the difficulty of ascending the river to Warwick without the aid of steam, and the necessity of employing ligiters after doing so, this is not a frequent practice ; and it is more usually preferred to take in the whole c argo at City Point or Rermuda Hundred, than risk the chances of a precarioss passage without gaining the advantage of relief irom the incoaveniences of the lower position. But if the navigation were good from Warwick to Richmond, and vessels could receive on the wharvestiat portion of their lading with which they can pass the bars, it is not to be questioned that the master of every vessel receiving her load at this port vould be induced by such a condition of taings to come up to the city. Altiough there is no sulficient reason to dombt the ructicability of remoring, or at least reduc. ing the bars below Warwick, so that with rroper arrangements above that place the vioole lading migitt be taken on board at aichmond, it siould be observed, that even a the ev nt of those obstructions being found reniediable, but a very small portion of the viole trade of the place would have to be ransported in ligaters. Neglecting that part if the shipments waich would continue to be aade in sloops and schooners, as at present, , very considerable proportion of the foreign :ade, (per'aps more than one half, would re carried in brigs, or ships of less than foar undred tons burthen, which could pass iver the bars fully loaded. Of the remain: ig half, perhaps four-fifiths would be received ris board at the city, and consequently only the remaining one-fifth of that part which
would be shipped in vessels of four hundred tons or more, or one-tenth of all that is carried in vessels too large to come up to the wharves at this time, need be transported below the bars in lighters. The reduction of the bars, however important in other re spects, is not therefore essential to the success of a plan requiring a heavy expenditure for removing the obstructions near Richmond.

The survey of the river, recently made by order of Congress, will doubtless exhibit the character and formation of the bars below Warwick, and will perhaps detect the causes of their deposit; and, until the result of that examination is known, it will be premature to speculate on the cost of removing them. But, as the propriety of undertaking the improvement of the navigation above, does not depend on the success of the attempt that may be made below, we may consider the plan proper to be adopted for the latter, without reference to the former.

In the plan I now present for your consideration, it is not proposed to make use of the bed of the river, by attempting to remove the obstructions between Rocketts and Warwick. Independently of the cost of carrying into execution any plan for that purpose, I deem the success of such an experiment more than dubious. The bars which are deposited at the head of tide, are formed by the materials brought down by the streams from the interior of the country; and they consist, in fact, of the waste of the whole district drained by the tributaries of the river at the mouth of which the material subsides. This matter is loosened by the action of frost and moved by the rain-the heavier particles subsiding as the transporting power of the water diminishes, while the lighter are swept on and contribute to the formation of bars at the head of tide, and of deltas at the mouths of the streams. . The deposit is greatest where the diminution of the fall of the river is most abrupt, and the resistance to the motion of the water is greatest ; and, consequently, on approaching tidewater, where the transporting power of the siver is suddenly neutralized, much of the matter which was forced along the bottom is left by the current, and of that which was held in suspension much is precipitated.

The wearing away of the upland is un. ceasing, and the process of transportation is not less constant ; and no plan for improving the navigation at the points where tie resistance of the material wiich is deposited is superior to the tidal force can be perfect which does not provide for the disposal of this matter.
The objection then to the project of a dam below the shoal water, and raising the surface from that point up to Richmond a sufficient height to float the shipping that can come to Warwick, is that instead of dispos. ing of this material, we prepare still water to destroy the force of the çurrent, and a basin to receive the sediment that is prcipitated. We have not the necessary data to determine the time that would be required to fill this basin, so as again to interfere with the navigation of the pond. But, when we ob serve the grea, quantity of sediment that i discharged by the river at every freshet, an know that the deposit would chiefly occu.
to increase until the depth of the water would be reduced to the point where the transporting power would again become superior to the resistance, we shall appreciate the uncer. tainty of the expedient. The height to which the deposit would rise in the poid b? fore the force of tare current would be sufii cient to carry the particles over the damthe width of the water-way and all oties things being constant_may be determined by the present condition of the bed of the river; for, the character of the deposit remaining the same, and the quantily oi water being uniform, the area of the secton, and consequently its depth must eventually acquir e their present values.

To deepen the channel by actual excava tion would be still less practicable. The rock below Rocketts might be removed; but the sand between it and Warwick presents a difficulty which could scarcely be overcome in that way. For, admitting the practicability of deepening the channel by excavating the sand to a sufficient depth over a space of three miles, it will hardly be contended that the benefit conferred on the city by such a labor, will be equivalent to the in. terest on the capital expended, and the addi. tional cust of removing the annual deposit o the river.
To contract the water-way, and add to the depth of the channel by increasing the excavating power of the current, is a more rational suggestion: but, independently of the cost, there are serious objections against the adop:ion of the plan. Twe materials removed must be so distributed as to form no new obstruction to the navigation ; to accomplish which, would require an extension of the works that will scarcely be justified by the object of the improvement.
Viewing then the insuperable objections against an attempt to improve the bed of the river sufficiently to subserve the purposes of the navigation, and the termination of the central improvement, 1 have been forced, in order to comply with the positive terms of the resolution under which I have acted, to seck other means of satisfying the conditions necessary to a proper connection of the work with tide-water.
For this purpose I propose building a dam, as represented on the accompanying plan, across the river below Mayo's bridge, and creating a pond deep enough to float ships of burtien from Shochoe creek to Haxall's nills: To construct a ship canal from this poand through the low grounds on the south side of James river to the deep water at Warwick: To make a dock. or harbor, se parate from the pond, to receive the shipping and protect it from the floods, on the norta side of the river, embracing about thirteen acres of ground above and below the abut. ment of Mayo's bridge.
Believing, confidently, that the depth of water on the bars below Warwick may be increased so that loaded ships may be broug! oo the termination of the canal, the plan ars stimate are based on that assumption-a east they are inteaded to provide for tha itate of things. Taerefore, as seventee cet depth of water is required for a silip o ;00 toas burden, of cominon mould, I hav leemed that the least admissible depth thin should be given to the canal. The width a the surface is assumed at 120 foot, suld at
the bottom at 52 feet, which is amply suffisient for the passage of two such vessels. Cie length of the canal, from the end of the owing-path bridge across the pond, to the iver lock above Warwick, is $4 \frac{1}{3}$ miles. The ocks are 35 feet wide in the clear, and 155 ieet long, between the gates.
The dan will raise the surface of the river $19 \frac{1}{2}$ feet above low water, and will itself be raised on an average 26 feet above the rock on which it is to be founded. Provisio: will be made, in building it, for drawing off the water and discharging the deposit which will accumulate in the bottom of the pond.

The plan does not contemplate the admis. sion of steamboats, either into the basin above the dam or into the dock appropriated to the shipping. Independently of the danger to the vessels to be apprehended from the near approach of fire, it does not appear to me advisable to mingle the light trade in which they are engaged with the heavy business that would be transacted around the dock. It seems preferable to continue the steamboat landing at Rocketts, to repair the old dock from the pier up to Shockoe creek, for the use of vessels engaged in the coast. ing trade, and reserve the proposed dock above the creek for the reception of the shipping that is now found at Warwick, City Point and Bermuda Hundred. But although the heavy ships would be confined to the upper do $\leqslant \mathrm{k}$, and the pond above the dam, it is not proposed to exclude the small craft from them, or to prevent the canal boats from descending to the lower one, or to tide water. The plan recommended is designed to offer proper facilities to every part of the trade; a lock from one dock to the other (to be built over Shockoe creek and enable us to dispose of that uuisance, will permit the passage of canal boats and smalr vessels, while a mole 80 feet wide around the upper dock will give ample space for the use of drays and teams, and for ships to discharge their cargoes or to receive their lading.

A capacious basin will be formed in the river by the refluent water from the dam, which will greatly increase the extent of wharfage and the accommodations for the shipping.
The bridge should be moved furtier up the stream, and rebuilt in a more substantial manner and at a greater eleration.

The islands in the river should be cut down to low water mark, and their materials transferred to the dam and the embank. ment of the dock.

The surface of the ship canal on the south side of the river will be about five and a ralf feet above that of the pond created by the dam, at ordinary water, and the surface of the water in the dock will be level with that in the pond. Double gates between the lock and pond will enabie us to regulate the uight of the former, and protect the shiping from the effect of freshets; and asluice pening from tise upper dock to tie river selow the dan wili permit us to draw off the vater whenever circumstances require it. The canal will be supplied by means of a eeder brought from a point a little above ie dam, which at preseat furmishos the waor power to the cotion factory and fivur nills in Manchester.
It would the natural, on a fis: gl.zice to,
suppose that great inconvenience might result from an unusual rise of water in the river, the velocity of the current tending to interfere with the navigation of the pond. But the plan which would be adopted for the purpose of towing vessels from the canal to the dock will preclude the possibility of ac. cident, and operate more successfully duriny a freshet than in low water. The flood of last June would produce a velocity in the pond of but about fifteen inches per second, and a pressure upon the hull of the largest ship the work is designed to admit of about one ton. So that we have only to fasten the vessel by ropes capable of sustaining a tension of that amount to sheeves traversing guides on the superstructure of the bridge to secure the safety of the ship and obtain the assistance of the water in propelling her across the pond.

It is proper to remark, that this upper dock is not necessary to the success of the work; and that although it is included in the estimate for the purpuse of showing the cost of the plan when complete, I should not think it advisable to construct the outer pier until the increase of trade shall render it expedient. Ships may lie in the eddy formed by the abutment of the dam and the shore, even during a freshet, in perfect security; and the cost of the work, exclusive of this item, is all that ought to be considered in testing the profitableness of the investment.

estimate.

excavation, embankment, \&c., for the Ship channel.
535,000 cubic yards ex-
cavation, at 18 c .
383,000 cubic yards embankment, at 24 c .
26,000. cubic yards puddling, at 10 c. 1 culvert,
3 do. at \$2,000,
LOWER LOCK.
96,300
91,920
2,600
6,000
6,000

6,850 cubic yards ma-
sonry, at $\$ 350 \quad 58,225$
Gates and foundation,
Excavation for founda.
tion and bailing,
15,000
UPPER LOcE.
3,570 cubic yards masoury, at $\$ 800$

$$
28,560
$$

Gates and foundations,
5,690
Dam across James riv-
er.
66,000
\$382,805

роск.

135,000 cubic yards embankment, at 25 c . 33,75
45,300 cubic yards dry walling, at \$2 00,
Gates and hollow quoins, \& c ., 91,001

Add for rebuilding Mayo's brildge, 2,70

Total cost of connecting the canal wit., tide water,
$\$ 550,255$

It has been observed that the cost of the outer inole should not be included in this esimate, being an expense which ought not to be incurred until the increase of business shall Corce its construction.

It ought also to be added, that the plan berewith submitted, and to which the estiinate applies, includes within the limits of the basin that portion of the old dock between the abutment of Mayo's bridge and Shockoe creek which is now covered with a deposit of mud brought down by that stream. But this ground is the property of another com. pany, who may wish to appropriate the space to a different purpose; and I have therefore prepared an alteruative plan, which will be less costly than the other, and will enable us to avoid interfering with the interests of the proprictors of that work
Tie above estimate amounts to $\mathbf{5 5 0 , 2 5 5}$ Derlucting the cost of the outer
picr, \&c.

58,000

Leaves,

$\$ 492,255$
for the cost of the plan which would be offered in the event of objections being made by the owners of the dock against the appropriation of the ground to ihe purpose of the im. provement.

There is still an important item in the cost of the work which has not yet been considcred. The damages to properly resulting from the destruction of water power, and the occupation of the low grounds on the south side of the river, will be considerable. And from the value of this property we are justified in drawing an argument in faror of the immediate prosecution of the enterprise. Tliat the public will not always be content with the present mode of transacting the business connceted with the c.ommerce of the city, and that an improvement which will bring the shipping up to the wharves will eveutually be forced into existence, must be admitted; and it becomes a question of importance whether the company shall go on and eflect the connection of their work with tide water at an expenditure of perhaps a hundred thousand dollars, and increase, by their arrangements, the value of all the property in the neighborhood of the termination of their line, and afterward construct the work now proposed, at an additional expense due to the cost of the previous improvements and the augmented value of the property which will be injured: or, whether they shall mark out and publish their plan at once, and acquire a right to the ground which their works will occupy before the alternative improvement shall have given it a value which it does not now possess and which they will in the end have to pay for.

Witin regard to the property injured_it - onsists entisely of the low grounds between Manchester and Warwick, the island, and ine lots and manufacturing establishments n the north side of the river and west of Hayo's bridge. 'Tne cotton factory and ther establishments using water power on ace south side of the river can be perfectly motected at a cost of fifteen thousand dolars, and will be somewhat improved by an sddition of three feet head of water on their wheels.

It is not easy to estimate the damage to
which Mr. Haxall and the few other proprie. tors around him will be entitled, since these damages will consist of the difference between the present value of their property and that which it will bear after the consstruction of the work_facts which cannot be obtained until the consummation of the improvement shall have furnished data for an estimatc. But by observing that though the company will have to pay largely for the possession of this property, the most valua. ble part of it_the flour mills_is so situated as to be admirably adapted for warehouses, having the canal on one side, and a depth of water sufficient to float a loaded ship on the other-that the machinery will be valuable in new situations, and that the water power destroyed by the dam must be obtained from the canal, we will perceive that the actual loss will be greatly reduced.

I feel neither capable nor at liberty to estimate the present value of the property that will be occupied or injured by the erection of the dam; and we should probably find it still more difficult to fix, in anticipation, the price it will command after the construction of the work slaall have concentrated the most important part of the trade of the city on the borders of the basin. We might per. haps form a fair estimate by referring to similar situations around the docks of other commercial cities; but as such an indication could only be reccived as evidence by those who have yielded their confidence to the enterprise, it could not be cxpected to govern altogether, the proprictors. 1 think it would, therefore, be more expedient for the company, after embarking in the undertaking, to obtain possession of the property, either by negotiation or assessment, and themselves risk the consequences of the work. I doubt not that there are those. who would value highly such an investment.
I have estimated the cost of preser-
ving the establishments in Man. chester at

15,000
To which add the estimatedcost,
$\mathbf{5 5 0 , 2 5 5}$
And we have for the capital required for the construction of the work, without including the liquidation of the .probable as. sessments,
$\$ 565,255$
It remains to be seen how far the actual commerce of the city will justify such an ex. penditure ; though it is well to note that a por. tion of this expense, which I am not prepared to estimate, would have to be incurred by a compliance with the clause of the charter requiring the company to connect their work with tide water, by whatever plan might be adopted for that purpose, and is not therefore strictly to be compensated for by the tolls on the ship canal.

It is not my intention in determining that portion of the present charges on the com. merce of Richmond which might be trans. ferred to tolls on the proposed improsement, to endeavor to sum up all the articles that are registered at the custom house, or attempt a nearer approach to accuracy than can be obtained by making a fair estimate of the heaviest articles of trade. It will be suf. icient to attend to the coal and to the tobac. co, flour, salt, iron and dry goods, which are
now shipped to foreign ports in large vessels, and subject to a clarge for wharfage and lighterege, to determine the value of the improvement. I have found some difficulty in obtaining even facts necessary for this estimate, which could be strictly relied on. But. having referred to the books of the custom house for the amount of tobacco exported, and of iron imported during the last year; to the books of the James and Kanawha company and to the-colliers on the south side of the river, for the average shipments of coal ; and to merchants extensively engaged in commerce, whose avocations I think preclude the possibility of serious error, for the quantities of flour, salt and dry goods, I offer my estimate on those items with full confidence.
From these sources of information, I find that there are about two millions cight hundred thousand bushels of coal annually ship. ed from Richmond and Manchester, for different ports aiong the coast; the greater part of which is transported in craft of from 70 to 130 tons burden-the largest that can be safely and conveniently loaded in the present conditicn of the navigation.
It is belicved by the gentlemen engaged in this business whom I have the advantage of consulting, that if facilities were offered which would enable them to ship the article readily in vessels of a heavier class, they would save in freight from two to three cents a bushel on tho produce of all the coal fields in this district. So that, if the improvement now projected were in operation, and ships could be loaded with the coal from the south side in Manchester, and from the north side in the pond or harbor, the colliers could afford to pay from two to three cents per bushel for the use of the canal and its basins. It does not follow that it would be politic or just to tax the mineral that amount; but it would be proper to add for this item a sum sufficient to pay the company reasonable toll. I have not yet turned my attention to the subject of a proper tarff of charges for the use of the work; but as the cost of its construction will be at least six times as great as that of an equal distance of the James and Kanawha canal, the tolls ought, in round numbers, to be six times higher. On this principle, the company would be justified in charging one cent per busiel on all the coal passing through the canal-making an annual revenue from this source of $\$ 28,000$, and relieving the coal trade of an annual tax of from thirty to fifty thousand.
If we now determine the cost of lighterage on the imports and exports of the cityincluding only that portion of the trade which is shipped directly abroad, or comes directly from foreign ports, and neglecting all that is sent coustwise-we shall have for the cost of transportation to City Point, on the

26,866 hhds. tobacco,

1,400 tonsiron, (1835,) a 50 c. 3,900 bales dry goods, a 75 c .

700 2,92 ${ }^{5}$ \$7,625
The cotton, the West India and the coast. ing trade are not embraced in this estimate, because the former, whatever may be its future importance, would amount at present to but a small sum, and the latter, the West India and the coasting trade, are now carried on in a class of vessels, that, with the existing facilitics, can take in the greater part if not the whole of their lading at the present landing. And my estimate is intended only to slow what are the charges to which the actual foreign commerce is subject, without basing conjectures of the probable revenue of the work, on possible contingencies however likely to occur. I leave it to the shipder to speculate on the probable extent of the change which will take place in the chraacter and capacity of the coasting vessels that will be used when the obstacles to the employment of a larger class are removed, as well as the valuc of the influence of this change on the income to be antripated from the work we are considering.
Transfering the cost of lighterage to tolls on the ship canal and wharfage in the basin, we have for the anmual
Tolls from the coal trade,
28,000
exports,
imports,
30,716
7,625
Total,
\$66,341
We observe, that of these charges, supposing them to be made the basis of a tariff for the work, but about $\$ 38,000$ is levied on the business of the shipper ; and it will hardly be denied, that he can well afford to pay such a tribute. Throwing aside the countless inconveniences of which he will be relieved, in having the ship and cargo where re can attend to his business in person, and which none but himself can estimate, he will save an amout in time, which can be represented by an equivalent in money almost equal to that charge.
Supposing this trade to be conducted in ships of six hundred tons, there will be ex. ports sufficient to make up forty-six cargoes annually. The delay now incident to load. ing a ship, over and above that which would take place if the vessel could come into the heart of the city, as is proposed to bring her, cannot be estimated a! less than twelve days -time which must be compensated for, if the slip and cargo have different owners, by a charge of demurrage or in the form of freight ; and in the daily expenses and deterioration of the ship, and inactivity of the capital invested in the cargo, if, as is frequenty - the case in the trade of this city, the ship ind cargo are owned by the same persons.
To estimate the value of this delay, I wil! issume for the average cost of such a vesse 335,000 , and for the cost of her cargo 360,000 -the depreciation of the value 0 . re ship after ten years service, at half he. riginal cost, and the annual insurance, equa o the interest on the whole cost. Thesc tata will enable us to approximate with suf icient accuracy the value of this delay, a : onstant and certain losses are concerned: sut it furnishes no indication of the other countless disadvantages to which the trade
is subject under the present system. Relucing the above expenses to dollars, we ave for the
Interest on the cost of spip per diem,
Insurance on ship per diem
Depreciation of value of ship, per diem,
Interest on value of corgo, per diem,
Daily expenses-pay of captain, mates, hands, renewal of cordage, rigging, \&c.,

2000

Total cost per diem,

$\$ 4617$
And for 12 days, or for each cargo,

55404 And for the annual exports, $\mathbf{2 5 , 4 8 5} 00$

There might still be added, if we had the necessary data, a considerable sum for warchouses charges due to this delay, and the damage to goods, and the liability to pilferage incident to the present mode of transportation. But these are facts that can be better appreciated by the mercantile community, whose interests are more directly, though not more seriously, affected by them. It is sufficient for the object of my remarks, to know that the interest on the capital required for the construction of the work, exclusive of the probable assessments, amounts to $\$ 33,91530$; and the tolls which may be levied on the coal, added ts the present charges for wharfage and lighterage, is $\$ 66,341$, or nearly twice as much.

I have nothing more to add on the subject ; for I believe that it cannot be doubted that the present commerce of the city will abundantly justify the enterprise. And if the actual trade is adequate to the purpose, may we not assume that long before the prea sent system of improvement is consummated, the increase of business will be sufficient to render this final link a most profitable ad. dition to the works of the company? It is as unnecessary as it would be difficult to estimate the value of that increase; but with the means that are now resorted to for the developement of the resourees of the State, by providing a channel for the transportation of the products of Tennessee and Ohio, and an ample power at Richmoad to manufacture them, it camnot but be great.

I submit the plan respectfully for your consideration.

CHARLES ELLET, Jr.,
C:iief Engineer,
James River and Kanaviaa Company.

From the Farmers' Register.

THE PORTSMOUTH AND ROANOKE RAILWAY the navigation of the meherrifa nottoway, and blackwater rifers. By the Editor.
The Portsmouth and Roanoke Railway route, as far westward as the Meherrin, is remarkably level-and of course the trains re propelled with proportionable facility, and diminished expenditure of power. It is, indeed, an admirable track for its general sraightness, no less than its level course. But still there were great causes of difficuly and expense in the first construction, ind so will there continue to be in futare repairs. The country is low, and the
streams passed are bordered by swamps. or low grounds, which required long bridges elevated on sustaining posts and framed timbers. All these Lritges remain uncovered, except the one across the Blackwa ter, and of course their decay will be rapid, and very costly repairs will soon be necessary. After passing the Meherrin, the route is quite undulating, and generally iscending to where it crosses the Petersburg railway, less than two miles from the south ern termination of the latter, at Blakely on the Roanoke.

I took my seat in the train at Suffolk, for the intersection near the Roanoke, there to take the Petersburg train, as the shortest way to reach the latter town. And circuitous as is the whole route thus passed over, I travelled the 118 miles from Suffolk to Petersburg in 9 hours-including all the stoppages, except one, of half an hour, between leaving the Portsinouth train and the arrival of the one from Petersburg. If the two companiee woull agree in their hours of arrival and departure, so as to permit such a journey always on stated days, (as might be done without inconvenience,) and the arrangement was made known, there would be many persons who would come by the two railways fiom Norfolk to Petersburg, rather than wait one, and sometimes two days, for a passage by the steamboats.
Both these two great railways cross the Meherrin and Nottoway rivers below their falls, and the Portsmouti road also crosses the Blackwater river-and this last, and that only below the railway, is alone made any use of for navigation to bring country produce to be put on the railway, for market. And it is probable that no such use would have been made of the Blackwater, for boats bringing crops made in the neighneighborhood, but for their being shown the way, by this being made a regular steamboat route from Edenton, and by which much cotton is brought from North Carolina, to be sent by the railway to Norfolk. The almost total disuse of these three easily navigated rivers, is one of the most remarkable instances of the inveteracy of long established habits in our coun. trymen, and the slowness with which they adopt improved facilities, when effered to their acceptance. 'lhese three rivers. though small, flow over very level beds, and would require but little lator and expense to be made navigable for flat boats for distances which combined, would make at least 120 miles, without incluting the Chowan, formed by the jurction of the Meherrin and Nottoway, which is now used for navigation. The length of the Mehorrin, from the lowest falls to where it unites with the Nottoway, to form the Chowan, is more than 50 miles, as measured on the map. The Noltoway, from the lower falls above the Petersburg railway, to the point of junction just named, is more than 40 miles-and the Blackwater from the southern line of Surry county, to where that river joins the Nottoway, is 30 miles-

From above the Petersburg railway, there are no falls or rocks, in either the Meherrin or Nottoway-nor, indeed, any obst ction to downward navigation, except trees fallen by accident, or more gen.
erally by design, into the streams, and which: if sawed into pieces at low water. woud all be swept away, together with the rafts and sand bars which they have sersed to form, by the first freshet. It is true, that these streams are very low in summen droughts: but the crops of the country (cotion and corn,) are seldom ready for market before the streams are full-and the timber which this navigation would bring into use, and make valuable for market, inight wat until the water was sufficiently deep for is transportion. The Nottoway lands are among the inost produc tive in the counties of Sussex and South ampton-and its passing through the heaviest producing region, is another reason why this river should be used for navigation.But brcause these waters led to no suitable market before, and because every farmer has always been in the habit of sending his crops to market by his carts or wagon, no one thinks yet, of taking the far cheaper way of boats to either of the railways.Meherrin and Notoway might doubtless be profitably improved and navigated far above their falls, as routes to the upper railway: but it would be idle to urge that, while the alvantages offered by their far better waters below the falls are overlooked. and almost totally neglected

It has been a long time since the attention of the writer of these remarks was attracted to the peculiar circumstances of these waters, and the adrantages that might be derived from bringing them into use. To induce others more interested, and having more local information, to think upon that and other kindred subjects, the subjoined "Hints and Queries," were published in 1825; which may now furnish some amusement, if nothing nore, by the strong contrast displayed of the condition of things, and of prospects, then and now. If the reader, at this cime, should condemn the scherre then proposed for bringing these natural canals into use, as altogether absurd, and ridiculons, (as it certainly would have been, if the present state of improvement could have been inticipated,) let It be remembered, that at that time no one hal thought of constructing railroads in this regrion-nor establisting the now prosper ous cotton and other fictorites, which will be so increased in time, as to require as much of the water of the Appomattox, as then ran in waste down the fills. For these two great improvements, tlie country owes much to the enterprising spirit of Petersiourg-and to the fortunate results of these bold but judicious adventures, Petersburg owes her present and fast growing prosperity, which stand in such marked contrast to the state of decline which seemed progressive as late as when this piece was published. But the writer was not more in the dark then, as to the near approachitg revival of the prosperity of Petershurg, from the railway and the fac:ories then not planned, than he was in supposing that furnishing a proper outlet to the three rivers would bring them into use. They have now be:ter outlets than he then supposed possible to obtain-being intersected, in five different places, by railroads furnisling speedy and cheap conveyance
to two different market towns: and yet 'hese rivers are almost as little used now, as before the construction of these great works.

Miscellanecus.

Frum Ure's Philosophy of Manufactures. genehal view of manufacturing industry.
 (Continued.)

The astonishing expedition with which a great Cotton Factory, comprehending spinning and weaving, can be erected in Lancashirc, arises from the vast eollections of patterns of every variety, from those of gigantic steam-engines, water-wheels, irongirders, and joists, lown to the smallest member of a throstle or loom, in possession of the engineers, mill-wrights, and machinemakers. In the course of last year, Mr. Fairbairn equipped water-wheels equivalent to 700 horses' power, and steam-engines to 400 horses' power, from his engineer factory alone, independent of his mill-wright, and steam-boiler establishment. Hence, whenever capital comes forward to take advantage of an improved demand for good's, the means of fructifying it are provided with such rapidity, that it may realize its own amount in profit, ere an analogous factory could be set a-going in France, Belgium, or Germany.

The facilities resulting from the employment of selfacting tools have not only improved the accuracy, and accelerated the construction of the machinery of a mill, but have also lowered its cost and increased its mobility, in a remarkable degree. At present, a throstle frame made in the best manner may be had complete at the rate of $9 \varepsilon .6 d$. per spindle; and a self-actor at about 8s. per spindle, inc uding the patent liecnce for the latter The spindles in cotton factories move with so little friction that one horse power drives 500 on the fine hand-mule, 300 on the self-actor mule, and 180 on the throstle; which power includes all the subsidiary preparation machines, as carding, roving, \&c. A power of three horses is adequate to drive 30 large looms with their dressing machine.

The fine bobbin and fly-roving frame, is now so greatly improved, that it can do a certain part of the work formerly done by the stretching mule; and performs as much for $9 s$. as the other did for $50 s$.

The dressing machine does at present 200 pieces of thirty yards each in a week, $=6000$ yards, and costs in wages to the dresers 50s. This branch of the trade having in consequence of the high wages been, like the mule spinning, continual y disturbed by unions and strikes, has led to the invention of a self-acting machine which will dress at least 6000 yards of warp in two days, under the superintendence of a laborer at $3 s$. a.day; that is, at a cost in wages of 6s. This me. chanism is at the same time greatly simpler and cheaper than the former, and will soon come into general use for coarse calicoes. It affords an instructive warning to workmen to beware of strikes, by proving how sure. ly science, at the call of capital, will defeat every unjustifiable union which the laborers may form.

It is one of the most important truths resulting from the analysis of manufacturing industry, that unions are conspiracies of workmen against the interests of their own order, and never fail to end in the suicide of the body corporate which forms them ; an event the more speedy, the more coercive or the better organized the union is. The very name of union makes capital restive, and puts ingenuity on the alert to defeat its objects. When the stream of lator is suffered to glide on quietly within its banks, all goes well; when forcibly dammed up, it becomes unprofitably stagnant for a time, and then brings on a disastrous inundation. Were it not for unions, the vicissitudes of employment, and the substitution of automatic for hand work, would seldom be so abrupt as to distress the operative.*

Some mayimagine that the present work, which purposes to give a minute analysis and description of the several processes of manufacture, may prove injurious to the trade of this country, by putting foreigners in possession of much useful knowledge, now hardly within their reach. 'To this I reply, that knowledge is available just in proportion to the capacity and means of the persons who acquire it. Every invention and improvement relative to cotton fabrics is primarily attracted to Manchester as the surest and most productive scene of its development, where it can be mist profitable to the inventor, because most profitable to the trade concentred thpre. Lancashire is the fertile and well-labored soil in which the seed of factory knowledge will bring forth fruit one hundred fold, whereas abroad it can yield little more than a tenfold return. However well informed the mill proprietors of Great Britain may be, and they unquestionably may bear a comparison in talent as in wealth with the landed aristocracy in any part of the world, still they may profit extremely by the methodical study of the elements of their prosperity. Many of the machines at present employed by them involve the most elegant applications of both physical and mechanical science; such indeed as if duly studied would enable them to understand the operative part of their business as clearly as the commercial, and thus protect them from those hazardous innovations which crafty projectors are perpetually pressing upon their adoption. Prodigious sums are wastefully expended every year by gentlemen manufacturers in this way, which would be saved by a more thorough acquaintance with those principles of science and art which I shall endeavor to expound.
Several individuals who have embarked vast fortunes in factories are to a very geeat extent the victims at least, if not the dupes, of scheming inanagers, who are ever ready to display their perverse ingenuity by the substitution of some intricate trap, for a simpler but less showy mechanism. I have known not a few cases, where a complete system of good machines, capable of doing excellent work, has been capriciously turned out of a cotton factory and replaced by
*II. The full discussion of this topic beiungs to Book
another of greater expense, but of less productive powers, and less suited to the style of work, than the old one if skiltully managed. These substitutions are continual i_{i} many establisiments. 'Ihey interlere mos essentially, and often unnecessarily, with the going of the mill, and are referrible al most always to injudicious choice at first, and eapricious alterations afterwads,-ccircumstances over which the proprictor, from irnorance of the structure 0° a guod machine, cannot always venture to exercise the poper control. There are no doubl many mill-managers perfectly fitted by judgment, knowledge, and integrity to secoud the sound commercial views of the mill-owner, and to advance the business with a profitable career. These practical men form the soul of our factory system. But with a wrony-headed, plausible manager, the proprietor is sure to be led such a mechanical dance as will bewilder him completely, unless he has acquired a clear insight into the arcana of the business by deliberate study of the composition and performance of each machine in his factory. It may be supposed that this species of education can be most easily acquired in the midst of the machinery itself: But this is a mistake which experience speedily proves.

There exists in most cotton-spinning factories a beautiful piece of mechanism called the bobbin ant fly frame, regulated by a principle of self-acting equations, which would do honor to the genius of Brunel. In venturing to affirm that very few mill-owners understand the structure of this machine, I do not draw the inference presumptuously from the difficulty which I myself encountered in comprehendirg the automatic adjustments of its parts; but from meeting with several masters of the Manchester mills who were incompetent to explain the train of its motions, however obligingly they undertook the task. In fact one scientific gentleman, a complete master of that mechanism and of every other used in the trade, who kindly acted on many occasious as Mentor in my factory researches, assured me that lis father, a very talented cotton-spinner, as the country well knows, never can retain a clear comprehension of certain differential adjustments in the above machine for a week after it has been explained to him. Some of its movements being necessarily inclosed, and of a curious nature, can be best studied in an analytical drawing, where the whole concatenated motions are brought at once under the student's eye. Such complex mechanisms, indeed, like the topography of an irregular city, are most readily comprehended by inspection of a plan, in which the mutual bearings and connexions of the parts are analytically shown. The representations which I shall have the honor of presenting to the public were made by a talented draughtsman, who accompanied and lived with me in the factory distriets, and they were submitted to some of the most eminent engineers and machinemakers of Manchester, from whom they received unqualified praise for accuracy as well as clegance of execution.

I shall conclude this general view by stating, that the moving power, besides performing its proper factory tasks of carding, roving, spinning, weaving, \&c., does a vast deal of miscellaneous drudgery. It raises: the cuals from ther bin in the boiler-yard oy a sloping series of buckets, like those vi a dredging machine for deepening rivers, and delivers them on an elevated railway platform into a waggon-through the dropwottom of which they are duly distributed among the range of hoppers attached to Stanley's ingenous furnace-feeding machines, and are thereby strewn into the tires in proportion to the demand for steam to work or warm the mill. In this way the fire-man is entirely freed from muscular effort, so that he can tend with ease many great steam-boilers, and is not liable through ignorance or negligence to mismanage the heat, or dissipate the fuel in such black clouds as lower over a London brewery. It is no uncommon thing in Manchester to see engine-boilers equivalent to the force of from 200 to 300 horses generating their sieam without any sensible smoke.
But their is another office more truly menial assigued to the engine, that of transporting any of the work-people upwards or downwards to any floor of the lactory, to which their business may call them at any time, and this with equal celerity and salety. To ascend and descend rapidly through several flights of stairs is no trifling source of fatigue, as domestic servants in soue fashionable houses well know. Masters of mills, with the twofold mo ive of benevolence and economy, have long ago taken measures to supersede this paisful exertion, by the construction of noveable flatforms, inclosed in upright 150 lbs . English, was completely exhaust. ed in ascending, by steps, sixty-five feet in thiry-two seconds. 'l'he full work of a man is obtained by his going up stairs at the rate of forty-five feet in one minute. A man weighing 160 lbs . can ascend by stairs three feet per second for a space of fifteen or twenty seconds; and if he be supposed guine up stairs for a day, he actually raises 450 tbs . to the height of 3281 feet; or $1,476,450 \mathrm{lbs}$. one feet high. If the day be reckoned at ten hours, or 600 minutes, he will raise 2460 lbs . one foot high in a minnte, which is only one-thirteenth of Watt's estimate of a horse's power $=\mathbf{3 2 0 0 0}$ lbs. raised one foot high per minute. With a winch a man does, aecording to Coulomb, only five-eights as much work as in going up stairs. If the above observations be nearly correct, they prove the expenditure of power in ascending stairs to be great. Coulomb says that this mode of action is the most advantageous for the muscular force of man, though be rates its amount at little more than onc-half of Smeaton's estimate of an English laborer's force.
The mechanism of the teagle will be understood by the following description and drawing taken from one of the most improved forms made by Frost of Derby, who in concert with the late William Strutt, E q., had the merit of inventing this very elegant automatic machine.
The tea le (tackle?) or hoist, consists of three principle parts.

1. The perpendicular shaft or pit, having a horizontal section, of about five or six feet square, placed in the most convenien part of the building, and ex ending from the ground-floor to the top story.
2. The ascending and descending plat. tunnels placed in convenient parts of their many-stored buildings. This apparatiss is called a hoist or a teagle, and is usually of such size and stability, as to allow half a dozen of persons, old and young, to travel at once from any one floor to any other. The motion is perfectly sınooth and agree. able, as I have often experienced; and is so entirely under control, as to cease at any desired instant opposite to any of the issue-doors in the side of the tunnel.

The muscular force expended in mount. ing stairs was made the subject of experiment by M: Coulomb. Amontons had previously found that an active man, weighing form, suspended by ropes from pulleys, and moved up and down by machinery. It is a strong frame-work of timber, about six feet high, boxed up on three sides with deals, leaving the front side open, in correspondence with a series of doors on the several floors of the factory. The power required for hoisting is moderated by overbalancing the platform with two counterweights, together about a hundred weight heavier than itself, which azcencl and descend equably with the descent and ascent of the platform; and which, as well as the platform, are suspendel by ropes from the opposite sides of the shaft to secure a steady vertical motion. Two large planks are fixed upright upon the opposite walls of the shaft, as guiles to the platform, and two smaller ones as guides to the counterweights, the latter being sunk groovewise into the building
3. The third part of the teagle is the machinery capable of being set in train with the moving power.
I shall give first a popular explanation of the principle on which the hoist operates.
Every observant visiter of a factory must have noticed that the endless strap or belt which descends from the drifting shaft to the steain pulley on the end of a carding, spinning, or weaving organ, sometimes has its two pieces rumuing parallel to each other, as in that view, and sometimes has them crossed over each other.The first arrangement, called the open strap, communicates motion in the one direction, while the other arrangement communicates motion in the opposite direction. Suppose now, that there is a fist pulley on the axis of any machine, and close to it, on either side, a similar pulley loose on the same axis ; of which one is driven by an open strap, and the other by a orossed on close one. If the one strap be shifted upon the fast pulley, it will drive the machine in one direction, but if the other strap be shifted upon it, it will drive the machine in the opposite direction; that is, the machin aocording as it is driven by the open 01 close strap may be made to work upwards or downwards at pleasure, as in raising o. lowering weights, \&c.

When both belts are shifted upon the loose pulleys, the machine has no hold ol
the load, and would therefore allow it to fall by the influence of gravity, were there not some restraining power. This reatraint is exercised by a brake, whicl presses strongly on the circumference of a wheel in rain with the machinery, and fixes the whole by a force of friction pro portional to the weight acting on the brake Now, to move the load up or down, the rake must be removel at the sarne instan hat the appropriate strap is shifted upon he fast pulley of the machine. The same contrivance which replaces the strap on he loose pulley, replaces the pressure of he brake on the friction-wheel.
Before describing minutely the structure of the hoist, it is proper to mention that all movements produced by straps onght to be pretty rapid, since, when slow, they are apt to permit a slipping of the bands on the sur ace of the driving drums or pilleys. As, therefore, in this way, the pulley-shaft of the teagle would require too great a speed, for being connecied directly with the hoisting rope, it transfers its motion, by means of a pinion and a wheel, to a second shaft, which travels at such a rate as to cause the platform to rise or fall through two feet in the second.

The drawings and description of the teagle are omitted, as being foreign to the general tenor of the article.
M. Chaix, a Frenchman who has been long a resident in the Iste of France, has discovered a simple and ingenious mode of preventing the formation of the crust which is generally found inside the boilers of steanengines, and which, being formed principally of calcarcous substances, prevents the transmission of heat from the furnace to the water. An experiment has been made on board the Phare steaner at Toulon, by order of the Minister of Marine, and was perfectly successful, showing that the process not only prevents new concretions, but evendetaches and destroys a formed crusts.

Mme. Cheron was murdered at Maisons on the $14 t^{\prime}$ of January, 1S34. Two stu. dents having by some means obtained possession of her skull, fancied it indicated a remarkably avaricions disposition; and, in order to satisty themselves whether their judgment was correct, submitted it to the ex amination of the celebrated phrenologist. Dr. Leroy, who fully confirmed their conclusions. A man who had managed hes afthirs for 20 years, and a physician who had long been intimate with her, were written to, and their answers established the sei entific diecision of it the Doctor by the evidence of facts showing that the deceased would acquire moncy per fas et nefas, and, though enjoying a revenue of about 6000 frances per annum, would live in the most miserable manner. Upon this, Dr. Lerey sent a detailed reportito the Phrenological society, which was read at a full meeting The Messager, on the 28th August last published the report, and mixed up the annl ysis of the cranium of Mme. Cueron wit hose of Lacenaire, Fieschi, and Avril Upon this, the surviving relatives of Mm. Sheron brought a prosecution for defamatio. against Ir. Leroy and the Messager. The
trial cameon yesterday before the Tribunal of Correctional Police, when, after a long learing, the Doctor and the Editor of the Messager were acquitted.
It has been impossible to form any cal:ulation app oaching to correctness of the imbunt of the population of Paris previous to the 15 th century. Under Philip le Bel I was said to be 50,000 . Under Louis XI, after the expulsion of the English, it was 150,000 . In the middle of the 16 th century it rose to 200,000 or 220,000 . At the beginning of 1590 , although reduced by the wars of religion, it was reckoned that there were 200,000. It, however, resumed its progressive ircrease under Henry IV. and Louis XIII. In the latter part of the reign of Louis XIV., and the first of the Regency, it amounted to very nearly 510,000 . In 1762 it reached 576,000 . In 1755 there were 71,114 families liable to taxes. In the reign of Louis XVI., Paris centained 600,000 inhabitants. In 1805 he number was 547,750 ; in 1817 it came to 713,966 ; in 1827 to 890,431 ; in 1831 to 774,338; and in 1832 to 770,286 . We are now assured that, according to arecent census, the popalation of this city amounts to about one rrillion, and, coasequently, has nearly doubled in the course of 31 years.-[French paper.]

Copper Smoke.-Attached to the new copper works belonging to Messrs. Vigors \& Co., in Owm Avon, is a tuanel for consuming and conveying copper smoke 1100 yards in length, viz : from the smelting furnaces to the top of the high hill towards the nortio-west, called Mol-y-Mynyddan. In this elevated spot the small yuantity, if any, that will escape precipitation, will find its way into the air. Few persons, pro. bably, are aware of the immense quantity of copper thus saved to the proprietor, which in former times was deposited on the neighboring lands, subjecting him to most expensive actions. In a tunnel not long made by Messrs. Williams \& Co., in their works on the Swansea river, 200 tons of copper were taken cut, which had been precipitated in the short space of one yearthe value of this was 2000l., and much was still left in the tunnel. Chambers are Inade in the tunnel for attracting the smoke, which is further promoted by the use of steam, so that little of it is allowed to reach the place of exit till it has deposited in transitu all its substance. This material; the refire, which not only was formeriy lost, but did serious mischief to the adjoining lands, thereby entailing lawsuits of ruinous expense, becomes now a matter of profit.
[Merthyr paper.]
In the course of September, a gold watch and other articles, given by Napolen to the Abbe Buonavita, who was his chaplain at Saint Helena, were sold by auction at the Isle of France. The watch with its chain went for 755 piastres, a silver tea pot or 100 piastres, a sugar dish for. 140, a ilver goblet for 131, a pair of salt-cellars or 55, a small gold goblet for 253, a silver ork and spoon for 75 , and another fork and poon lor 80, a pair of sugar-tongs for 105 , a knife for 30 , and the case in which the
above articles were inclosed for 30 piastres, making a total of 1,756 piastres, or 9,500 francs. The purchiser of the watch, which Napoleon wore at the battle of Austerlitz, efterwards refused a very considerable sum for his bargain.
Preparation of Extracts.-The usual mode of obtaining vegetable extracts is by the aid of heat, but it is well known that the medicinal properties of compounds are often essentially altered by changes of temperature, and that the proximate principles of plants on whieh the virtue of extracts depends, may therefore be subverted at the high temperature at which they are sometimes obtained.
Mr. Guillard proposes to avoid the risk of such a deterioration; by pounding the fresh plant in a mortar. pressing out the juice in the cold, and evaporating it by a current of air from a smith's bellows. In this way he has perfectly succeeded in procuring the extract of Aconitum Napellus, after pounding pressing and filtering, when the temperature of the laboratory did not exceed 10° to 13° cent,

A more perfect mode, perhaps, would be to evaporate by means of a vacuum, without heat, by which the agency of the atmospheric oxygen would be very much avoided, as well as that of increased temperature. [INem.]
A Good Beginning.-Mr. Charles Park has sent to the Patent Office a duplicate model of his "Patent Worming and Rope Serving Machine." This is an example worthy of allimitation. In acknowledging the receipt of the model, the superintendent of the Patent Office says :
"To you belongs the merit of having been first to aid thus in the restoration of the Patent Office, and I trust that the example, which you have given to the Patentees, with so much promptitude, will be extensively followed."

A valuable mine of copper has recently been discovered in the forest of Troncay, in the Nievre, and a company is being formed for the purpose of working it.
The Journal de Rouen observes, that the rapid extension of the silk manufacture in England must have a scrious effect upon thal of France. The exportation of silk from England during the last year exceeded that of the former by the amount of $8,000,000$ francs. This is said to have arisen from the employment of steam mechanical looms, of which there are 1,700 in England, and of these 306 are in use in Manchester. By means of these looms, two women are now able to produce as much manufactured silk as six men could formerly without them. The economy of labor, adds the journal, renders the English formidable opponents to the French in the foregn markets.
We hear that the Board of Health of Paris is about to verify by experiments, on a large scale, the extraction of tallow by water, mixed with sulphuric acid, in one of the abattoirs, and particularly the quality of the tallow, resulting from this new process, which has been so successfully em-
ployed by 'a tallow-melter at Roucn. If
this new mode should be approved, an important advantage will result in the salubrity of the meling-houses, and a greater still to the tallow trade.

At a recent meeting of the Warwickshire Society of Natural History and Archæology, Professor Buckland stated that he had discovered at Guy's Cliff the remains of an extinct species of animal, which had never before been found or mentioned by geologists, and that the Castle, Collegiate Church, and town of Warwick, were built upon a stratum utterly unkngwn to English geologists. Another discovery which he had made was, that the town of Jeamington rested on the remains of animals which had existed in other times.- [Warwick Herald.]

New Manufactories.-It will be gratifying to all who take an interest in the welfare of Poughkeepsic, to hear that new and important branches of business, are, one after another, being established here, to contribute to the growth and prosperity of the town. Among the several new branches which have been commenced during the few last months, we are pleased to notice Mr. Hurlbert's Manufactory of Paper Hangings, which already manufac tures about one thousand pieces of paper hangings per week.-A cursory examination of his papers, has impressed us with the belief, that for good taste in the patterns and getting up, as well as for skill in mising the colors, and beauty and excellence in the finish, they will be found fully equal to the French papcrs, which have liitherto greatly excelled all others.

The Manufacture of Carpets, is another new business just commenced. One esiablishment is already partially in operation, another wil: commence operations in a few weeks. We have seen the first piece of superfine ingrain carpeting e:er wove in Poughkeepsie. It is from the manufactory of Messrs. D. L. Starr \& Co. The piece contains one hundred yards, and is of such an excellent quality as readily to pass for an important carpet. This estab lishment as well as the one getting up by Messrs. Delafield \& Whinfield, is expected to be in full operation by the month of May. The two concerns will give employment to about 50 men, and manufacture more than $\$ 100,000$ worth of carpeting annually.
In addition to the above, Mr. Raymond has just put in operation a concern for spinning stocking yarn, which turns cut about 50 lbs. of yarn per day. - [Poughkeepsie Journal.]

New mode of preparing Kerm's Mine. ral and the Goldex Sulphur of Antimo-ny.-By M. Museulus. For the golden sulphur of antimony, I take-
Lime slacked with a sufficient quantity of water,
Sub. carbonate of potash, or dry subcarbonate of soda,
Finely pulverized sulphuret of antimony,

6 parts.

Flower of sulphur,
4
2
1

Mix them all well together, and put them in a funnel or other separating vessel, with a few small pebbles or coarse lits of glass underneath, and cover the mixture with a layer of sand. Pour on this by degrees, cold water, until the filtered liquid is no longer precipitated by hydrochloric acid.
The liquid thus obtained is to be sufficient. ly diluted with pure water and treated with nydrochloric acid. The precipitate, or golden sulphur of antimony, is to be carefully washed, and dried in the common wav.The product is about equal to the sulphuret of antimony employed.
To prepare Kerm's mineral, proceed in the same manner, only leaving out the flower of sulphur. The liquid obtained is to be treated with a solution of bicarbonate of soda; or by passing through it a current of carbonic acid gas.

This method of preparing these two substances, by displacement, is new, and much more simple and cconomical, in time, and expense, than the usual mode, and the products are as fine and abundant. The proportions may not perhaps be so rigorously exact as further experience may dictate. It is possible that a previous maceration may be useful.

Note by M. Boullay.-We have repeated the process of M. Musculus, and find that the golden sulphuret of antimony, which it yields, is very beautiful-the kermes is heavy and the color not very grod, but by substituting the dry carbonate of soda for potash, and adding to the filtered fluid an equal volume of pure water, deprived of air by heat, prior to the precipitation, we have obtained the kermes in great abundance, light, and of fine bright color.

Thus the preparation of kermes, till now so embarrassing and capricious, will be extremely easy to praciice, in small quantities as well as large, and the pharmaceuist will be no longer excusable in depending on commerce, now he can extract the kermes by simple lixiviation, in the cold, instead of long and reiterated cbullition.- [Journal de Pharm.]

Preservation of Caxtharides.-The rapidity with which mites attack cantharides, and the fact that they devour the soft parts of the flies, which are the most active, render any mode of effectual preservation very useful.

An experience of ten years enables me to affirm, that the pr cess of Appert will thoroughly preserve them. The bottles containing the dried and sifted flies, bcing thoroughly corked, and fastened with double pack thread, are to be placed upright in a kettle of water, which is to be heated to ebullition and kept boiling, for half an hour, the bottle remaining nintil the water gets cold. They may then be put away in any cool place. If the insects are pulverized on boing first taken from the drying stove, again left in the stove for a few hours previous to their being bottled, and afterwards treated as above, they will be still more effectually preserved. The eggs of the mites which adhere to the cantharides, though they may escape the heat of the stove, are de. stroyed by the boiling temperature, in well closed bottles.-[Idem.]

Advertiscments.

FRAN:E BRIDGES.

'THE undersigned, General A gent of Col. S. H. LONG, to build Bridges, or vend the right to others to build, on his Patent Plan, would respectfully infurm Railroad and Bridge Corpora.ions, thar he is prepareat to inake contracts to build, and furmi.h al materials for superstructures of the kind, in any par of the Unired States, (Maryland exceptrd.)
Bridges on the above planare to be seen at the fol nwing localities, viz. On the main road leading from Balcimore to Washington, two miles from the furmer place. Across the Metawaukeag river on the Mililary road, in Maine. On the national road in Illinois at sundry points. Onthe Ba!cimure and Susquehan na Rrailroad at three points. On the Hudsun and Patterson Railroad, in two places. On the Buston and Worcester Railroad, at several points. On the Buson and Providence Railroad, at sundry points. Acruse the Contoornok river at Henniker, N H. Across the Souhegan river, at Milford, N. II. Acruss the Connecticut river, at Haverliill, N. If. Across the Concoocouh river, at Hancock, N. II. Acruss the Autoocook river, at Hancock, N. Cnire, Maine. Across drobcosgis niver, at rurner cervile, Maine. Across the Kennebec river, at Waterville, Maine. Across the Genesse river, at Squakiehill, Muunt Morris,
New-York. Acruss the Wh i. Niver, at Hartford New-Yurk. Acruss the While liver, at Hartfor,
Vt. Across the Conner iicut River, at Lebanon, N . H. Across the mouth of the Broken Straw Creek Penn. Across the mouth of the Cataraugus Creek, N. I. A Railroad Brilge diagunally ac oss the Erie Canal, in the City of Ruchester, N. Y. A Ra Iroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in 1 -ngtl; one of the spans is over 200 feet. It is prubably the FiRMLST wood. N shidge ever builh in A merica.
Notwithstanding his present engagements io build between twenty and thirty Railrond Bridges, and several common bridges, several of which are now in progress of construction, the subscriber wiil promptly atend to business of the kind to much greaterextelt and on liberal terms.

MOSES LANG
Rocheater, Jan. 13th, 1837.
4-y

NEW ARRANGEMENT.

zopes for inclined planes of railroads.
WE the subscribers having formed a co-partnership under the style and firin of Fulger Ropes for inclined planea of railruads, and for oither uas s, offer wosupply ropes fur inclined planes, of any length requircd without splice, at short notice, the malufacturing of cordage, heretofore carried on by S. S. Durfee \& Co., will be dune by the new firm, the seme superintendant and machinery are employed by the new firm that were employed by S. SeDurfee \& Co. All orders will be pronipty attendell to, and rupes will be shipped to any port in the United Nates.
12th month, 12ih, 1836. II adson, Columbia County S:ate of New-York

33-~ 5 .
ROBT. C. FOLFER,
(iEORGE COLEMAN

HARVEY'S PATENT RAILHOAD SPIKES.

THE Subscribers are manufacturing and are now prepared to make con'racts for the suyply of the above article. Samples may be xeen anil obtained at Messrs. BOORMAN, JUHNSUN, AYRES \& Co No. 119 Greenwich Street, New-Yurk, or at the Makers in Poughkeepsie, who refer to the subjolned cer tificates in relation to the article.

HARVEY \& KNIGHT.

Poughreepsic, Ocluber $25 t h, 1836$.
The andersigned having attentively examined Harvey's Patent Flancied and Grooved Spikes HARVEY \& PATENT FLANCiIED and Grioved Spikes Railroads to any other Spikes with which he is acquainted ; and shall unlieaitatingly recommend thei adoption by the different Railruad Companics whose works he has in charge.

BENJ. WRIGHT,
Chief Enginecr N. Y. \& E. R. R
New-Yorx, April 4th, 1836.
Harvey's Flanched and Grooved Spikes are evi dently superior for Railroad- to thuse in common use and I shall recommend their aduption on the roads in der my charge if their increased cost over the latte is not greater than some twenty per cont.

JNO. M. FESSENDON, Engineer.
Boston, April 301 h, 1836 . No. 1-6t.

STEPHENSON,
Builder of a superior style of Passenger Cars for Railroads.
No. 264 Elizabeth street, near Bleecker street, New-York.
RAILROAD COMPANIES would do well to exa mine these Cars; a specimell of which may he seen of that part of the New-York and Harlaem Railruad r.w in eperntion

J25ıı

AMES' CELEBRATEU SHOVELS,

 SPADES, \&c.300 dozens Ames' superior bark-strap Shovels
150 do do do plain do
150 do do do caststeel Shovels \& Spades 150 do do Gold-mining Shovels 100 do do plated Spades
50 do do sacket Shovels and Spades.
Together with Pick Axes, Churn Drills. and Crow Hars (steel pointed,) mannfactured frum Salisbory reTaed iron-for snle hy the manufacturing agents

WITHLRELL, AMES \& CO
No. 2 Liberty street, New-York.
BACKUS, AMES \& CO.
No. 8 State street, Albany
N. B - Also furnished to order, Shapes of every de. arrintion, made from Salshury refined Irun v4-If

an elegant steam engine

 AND BOILERS, FOR SALE.THF, Steam Engine and Builers, belonging to the STEAMBOAT HELEN, and now in the Noveliy yari, N Y. Curisisting of one Horizontal high prea. sure tingine, (but miy be mate to corndense with little additional expense) 36 inches diametcr, 10 feet struke, with lateat inaproved Piston Valves, and Metaic packing throughour.
Also, four Tubular Builers, constructed on the Engtixh Locumotive plan, containing a fire surface ol over 600 feet in each, or 2500 fret in all-will be suld cheap. All communications addressed (post pard) tothe subscriber, will mee: with due attention

HENRY BURDEN.
Truy Iron Wurks, Nov. 15, 1836.
\therefore-tf

ARCHIMEDES WORKS
 (100 North Moor street, N. Y.)

New-Yoak, February 12th, 1836.
THE undersigned begs leave to inform the proprie ors of Railronds that they are prepared to furnixh al inds of Machinery for Railroads, Lacomotive Engincs uf any size, Car Wheels, such as are now in suceessful operation on the Camden and Amboy Railroad none of which have failed-Castings of all kinds, Whaels, A xles, and Buxer, furnished at shortest notice.
II. R. DUNHAM \& CO.

ILBANY EAGLE AIR FURNACE AND

 MACHINE SHOP.WILLIAM V. MANY manufactures to order. iron cabtings for Gearing Mills and Factories oi every description
ALSG-Steam Engines and Railruad Castings o very description.
The collection of Patterns for Machincry, is not equalled in the United States. $\quad 9-1 y$

A SPLENDID OPPORTUNITY TO

 make a fortune.THE Subscrilier having ubtained Lettera Patent,from the Guvernment of France, granting him the exclusive privilege of manufacturing Horne shoey, by his newly invented machines, now offers lise same for sale on terms which canuot tail to make an independ ent fortune to any enterprising gentlemen wishing to embark in the same.
The machines are in constantoperation at the Troy Iron and Nail Factory, and all that is neceasary to satisfy the most increduluus, that it is the most valuable Patent, ever oblained, either in this or any other coustry, is to witness the a seration which is open bor inspection to all during workitg hours All letters audressed to the subscriber (post paid) will re. eive due attention.
Troy Iron Works,
HENRY BURDEN.
N. B. Horse Shoes of all sizes will be kept cons tantly for sale by the pincipal Iron and Haril-ware Herchants, in the I nited States, at a small adiance tbuve the price of Horse Shoe Iron in Bar. All perons selling the same, are authorised to warrant zvery ghue, ade from the best refined iron, and sny faining to render the most renfect sat:beacUTIN, both as regards workinanohip and quality ol ron, will be received back, and the price of the same refunded.
H. BURDEN. 47-H

PATENT RAILROAD, SHIP AND BOAT SPIKES.
3 The Troy Iron and Nail Factory keepe con tantly for sale a very extensive assortment of Wrough spikes and Nains, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after ve years surcessful uperation, and now aimost uni ersal use in the United Slater, (as well as England where the subscriber obtained a patent,) are found superior to any ever offered in market.
Railruad Cimpanies may be supplied with Spikes baving countersink heads suitable to the holes ini iron rails to any smount and on short notice. Almoat all the Railruads now in progress in the United Statew are rastened with Spikes made at the above mamed fac cory-for which purpuse they are found invaluable, as their adhesiun is more than double any common spikes made by the hammer.
${ }_{*}^{*}{ }^{*}$ All orders directed to the Agent, Troy, N. Y: will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spikes are knpt for sale, at factory prices, by I 'Mrey J.I. Brower 2z2 Waser trens Naw York; A M. Jones, Philadelphia; T sanviers, Baltimore; Degrand \& Smith, Buston.
P. S.- Railruad Companies would do well to for ward their orders us eurly as practicable, as the subscriber is desirrus of extending the manufacturing so as to keep pace with the daily increasing demand fo his Spikes. (IJ23an)
H. BURUEN.

RAILWAYIRON, LOCOMOTIVES,\&C.
THE subscribers offer the following artickes for sale.
Railuay Iron, flat bars, with countersunk holes and raitred juints,
350 tons $2 \downarrow$ by $t, 15 \mathrm{ft}$ in length, weighing

with Spikes and Splicing Plates adapted thereto. To
be sold free of duty to State governments or incor porated companies.
Orders lior Pennsyivania Builer Iron executed.
Rail Road Car and Locomotive. Engine Tires, wronght and turned or unturted, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 inches aiameter.
E. V. Patent Choin Cable Bults for Railway Car xles, in lengths of 12 net 6 inches, to 13 feet 24,24 $3,3 t .3 t, 31$, and $3 t$ inches diameter.
Chains for Inclisied Plaies, short and stay links manulactured from the E. V.Cable Bolts, and proved at hie grealest strain.
India Rubber Rope for Inclined Plines, made from Now Zealand flax.
Also Pau-ot Hemp Cordage for Inclined Manes, and Canal 'lowing Lines.
Patent Felt for placing between the iron chair and slon bluck of Edge Railways.
Every description of Railway Iron, as twell as Lo comutive Engines, imported at the sbortest notice, by the agency of one of our partners, who resides in Fingland tor this purpone
Mr. Solumun W. Ruberts, a highly respectable American Enginecr, resides in England for the pur pose of in specting all Locomutives, Machinery, Rail way Iron \&c. ordered ihrough us
A. \& G. RALSTON.

25-1f
Philadelphia, No.4, Sonth Front st
MACHINE WORKS OF ROGERS, KETCHUM ind GROSVENOR, Paterson, NewJersey. The undersigned receive orders for the fol lowing artlcles, manufactured by thrm, of the mon superior deacription in every particular. Their works bi ing extensive, and the number of hands employed being large, they are onahled to execute both large and small orders with promptness and desparch

RAILROAD WORK.

Loromotive Steam-Engines and Tenders ; Drive ing and other Lucomutive Wheels, Axles, Springs and Flange Tires; Car Wheels of east iron, frum a va riety of patterns, and Chills; Car Whecls of cast iron with wrought Tires; Axles of best American refined ron ; Springs ; Boxes and Bolts for Cars.
COTTRON WOOL AND FLAX MACHINERY,
Of all descriptions and of the most improvid Pat erns. Style and Workmanship.
Mill Geering and Millwright work genorally; Hy Iraulic and other Presses; Press Scrows; Callen lers; Lathes and Toola of all kinds, Iron and Breat Castings of all descriptionte.

KOGERS, KETCHUM \& GROSVENOR Pattors00, Now-Jersoy, or ©0. Wall arreet, N.' Y

published wrekly, at no. 132 nassau street, new-york, at five dollars per annum, payable in advance

CONTENTS :

american railroad journal.

NEW-YORK, FEBRUARY 11, 1837.
List of subscribers to the Railioad
Jonrnal, that have paid, (continued.)
Wm. Creighton, city N. Y., July 1, 1837 A. Brocklebank, " " Aug. 15, 1837
O. Eddy, Ithica, " Nov. 11, 1837
P. Hastie. Hamilton, " Jan. 1, 1838
S. C. Ruggies, Goshen, " " 1838
L. Williams, Auburn, " $\quad 1838$

Hon. Stephen White, Boston, Ms., "
Saml. Ashburner, " ""
J. Archibald, Carbondale, Pa., "
E. K. Wiley, Springfield, IIl., '"
G. M. Totten, Warrenton, N. C. '
C. W. Wever, Baltimore, M. D., "
S. E. Mercer, Crawfordsville, Ga.,"

Arch Duke John, of Austria, "
Jas. Greenleaf, Washington, D. C., Aug. 15, 1837.

We understand that the Charlestion and Cincinnati Railroad Company have appointed Maj. W. G. M'Neil, Chief Engineer of their Road.
We consider this appointment a guarantee for the prompt construction of this work. the greatest in the world.

AVERY'S ROTARY ENGINE.

The constant applications from all part: If the country, for information in relation: o this wonderful maciine, induces us to give uch facts in relation to it as come within. uur knowledge.
The following letter signed by four genmen, of the hignest respectability anl intelligence, residing at Ilhaca, Tomplkins couaty, N. Y., gives the facts and impressions of a short visit to a saw mill, erected by Abraham Bell, Esq., of Jersey City, and Seth Geer, Esq., of this city, in the midst of a Pine foresl, in Tompkins county, cleven nules from Ithaca.

The accomparying cut is a fuir represell. tation of the mill referred to, with the exception of the mode of driving the saws. In the mill of Massrs. Bell and Geer, the saws are driven by a drum to each saze, but in this cut, there is but one drum, and the saws are driven by the walking beam, as will be seen on referring to the description.

Ithaca, N. Y. Dec. 13, 1833.

To D. K. Minor,

Sir,_In compliance with your request, we cheerfully give you our views and opin. ions of the performance of Seth Geer and Abraham Bell's saw-mill, driven by "Avery's Rotary Engine," situated in the town of Enfield, Tompkins county, N. Y.
The simplicity of the Engine, and conse. quently the ease and facility with which it can be managed by persons of ordinary in. telligence, and who would be wholly incom. petent to work a piston engine, first excited our attention ; and upon a careful examina. tion of the machine, elicited our united applause. It is unnecessary for us to give an
slaborate description of the Eugine, which s estimated at 20 horse power:
The power is applied to the saw in the nost simple manner by banls; the motion seng retuced by increasing the s.zc of the Irum, so as to give the saw any required velocity. Tue saw thut we examined made 22) strok's in a minute, sawng three boards rom a $\log 12$ fect long and 2 fect in diameter, in mine minutes, or cuntirg at the rate of over 11,50 feet per day, ifit could be kept in constant motion-but allowing one half the tine to be los: in running the cariage back and adjusting the lorrs, it would cut from 5 to 6 thousand feet of lumber per day. The mill was arranged for 2 saws, whichthe workmen assured us they usually kept constantiy at woik; but t e hand to one of the rag. wheels having been sent to tie shop to be repaired, we witnessed the performa.ce of but one saw. Tine workmen told us that t.e power was sufficient for both saws.

The plan for confining the saw without a saw-gate, was, as we were informed, invented by Mr. Mooley, and appeared to an-wer the purpose well.
It is with plea ure that we assure you, Sir, that we were highly gratified with the whole perfurmance, and with the utmost confidence, recommend Avery's Rotary Engme as a moving power for saw-mills. Respectfully,

Your most obedient, \&c.; George McCormick, J. J. Speed, Jr., Henry Ackley, Henry Ingersoll.
The cut represents a saw-mill with two saws driven by a Rotary Engine. There may be two gangs as well as two saus.-

A represents the boiler; B the engine; \mathbf{C} the steam-pipe; D the shaft, into the end, or side, of which the stean passes from the boiler, through the pipe \mathbf{C}; E the governor, which regulates the passage of steam; \mathbf{F}^{\prime} the drum around which the driving band passes from the pully on the end of the shaft D. On the end of this drum is a crank for driving the walking-beam H , to each end of which is attached one or more saws, as at G, G.

This mill is represented as situated on a side hill, and the drum placed in a pit under the mill.

An Engine of this description, without boilers and machinery, todrive tive saw gates can be furnished for six hundred dollars,and the boilers, pumps, furnace irons, and fire bars; governor, and all the necessary machinery up to, and inciuding the walk-ing-beam, or drums, for fifleen to seventeen hundred dollars; or 2,100 to 2,306 dollars for the whole machinery up to the saw, and the same for one saw gate will be fifteen to sixteen hundred dollars, delivered at the shop of E. Lynds \& Son, Syracuse, Onondaga County, or at the "Novelty Works," in this city, by application to Mr. Joseph Curtis, 132 Nassau-street.

The power of this engine will be ample to drive 1 saw in 1 gate, and three or four in the other-or to drive tivo saws in the single mill, or mill with one gate.

Since writing the above, we have been
furnished with the following statements, Grist Mill at this place, do certify, that the from gentlemen who fully understand the subject.
The first is from Henry Seymour, Esq., late-and from the commencement of the Erie Canal-one of the acting Canal Commissioners. Mr. Seymour is himself the owner of a Saw-mill of the ordinary kind, and he fully understands what a saw-mill should do.
'The other is from the owners and millers of the new Grist Mill erected in Cayuga County, N. Y., in relation to which we recently published a letter foom Mr. Avery.

These certificates are from gentlemen who understand the subject, and they may be relied upon.

Syracuse Jan. 31, 1837,
To Elam Lynds, Esq.
Ddar Sir,_I saw to-day the saw-mill in Cicero, which is propelled by one of A very's Rotary Engines. While I was present, the saw cut a hemlock \log of about two fect diameter with ease and rapidity, and appeared to have power sufficient to accomplish much more. The work was well done, and I was well pleased witha the power and performauce of the engine in all respects.

Yours very respectfully,
Henry Seymour.
Cato, Cayuga Co. N. Y.
Jauuary 25th, 1837.
We the subscribers, owners of the Steam

Rotary Engine, that drives our mill, is one of Avery's Engines, and manufactured by Messrs. Elam Lÿnds \& Son, and is in our opinion, the best steam power for a grist mill that can be had. It gives us perfect satisfaction, and we checrfully give this certificate.
The grinding we do is for customers, in grists of from one to ten bushels, and of all kinds of grain, so that we are unable to say how much we could grind in a given time, but this we can say, that the Engine will drive the stones to grind all the grain that any mill can grind with three run of stones, which is the number we have. We bave never been able to ascertain the amount of fiel we shouid require if we were grinding for flouring, or indeed for our present use; but of this we are confident, that with good wood, we could grind more than 100 bushels with a cordof wood. We do not use the full power of the Engine, and it is believed by us and others, that the Engine would drive two run more if we had them, and do good business with the five running at once, without any addition to the Engine or Boiler.
B. Conger.

Henry Furman.

We the subscribers, Millers, tending the above mill, fully agree with the above certificate.

P. D. Livingston, David Corp.

lllinois internal improvements.
The enterprize and liberal views of the citizens of Chicago, evinced by the pro.
ceedings of a mecting held at Russell's Saloon on the 18 th ult., which' we publis'I herewit , are worthy of innitation by tie cittz \because..s of New.York. The aged matrons wio claims to be the "commercial emporiums" of the Union, may well - take lessons of wis dom from the course of this infant Hercules of the West.

From the Chicazo American.
internal improvement meeting.
Pursuant to public notice, a large and respectable meeting of the citizens of Chicago was held at Russell's Saloon, Monday evening January 18 th; to take into consideration the propriety of recommending to the Legislature, the adoption of measures for the speedy construction of the great Central Railroad, and the organization of a gencral system of internal improvement, in this State.

On motion, Win. H. Brown, Esq., was called to the chair, and Wm. Stuart appointed Secretary.

On motion of Francis Peyton, Esq., who stated the objects of the meeting, a Commit. tee of five were appointed by the C.air, consisting of F. Peyton, J. N. Balestier, John H. Kinsic, Esqrs., and Col, E. D. Taylor, and Capt. J. B. F. Russell, to report resolutions, expressive of the sense of the meeting; and thercupon, F. Peyton, Esp., from the Committee, presented tae following, viz:

Whereas it is the interest of the northern parts of the State of Illinois to give a hearty support to all incasures of pablic improvement, projected for the benefil of any part of said State, and whereas a lively interest prevails in this section of country, in favor of the immediate construction of the great Central Railroad, and a gencral system of improvement, therefore,

Resolved, That we approve of the law of the last session of the Legislature, adopting a Central Railroad, and feel a lively interest in the completion of said road, and that our representatives be instructed to support such measures as may be necessary to carry into effect that law.

Resolved, That we also approve of a general system of Internal Improvement, the benefits of which shall be felt in all parts of the State, and do most heartily tender our co-operation in support of the same.

Resolved, That our Senator and Representatives be instructed to use all honorable means to effect the objects contemplated by the above resolutions.

Resolved, That these proceedings be signed by tae Caairman and Sacretary, and published in the papers of the town, and that copies be sent to our Senator and Representatives, to be laid before the Legislature.
Which were read and in full adopted.
On motion, adjourned.
Wm. H. Brown, Chairman.
Wm. Stuart, Secretary.
Illinois and Michigan Canal.-We have received from Hon. P. Pruyne t'se Annual Report of the Canal Commissioners, with the accompanying documents, the publication of waich, from their gre t length
we are compelled to postpone till we are compelled to postpone till our next.

Infthe meantime it may be well to present to our readers the following estimate taken $\because o n t$ ie Report :--
Simnet D.vision, $\$ 587!33 \frac{1}{2}$ Mildle " $1,51,0,95$ 4
Western " 1,272.055 08 [Chicago American.]

From the West Chestrar Village Record west chester rallroad.

At an annual meeting of the stockholders of the West Chester Railroad Company, held pursuant to public notice, in the city of Pholadelphia, on the 16th day of January, 1837, Dr. M. C. Suallcross, was called to the Chair, and Dr. P. M. Paice, appointed Secretary.
The President of the Company submitted the following Report, which was read, and upou motion of E. Chauncey, approved, and ordered to be printed.
simth annual report of the west chester rahmoad company.
This is the time fixed upon by the churter, at which the President and Directors of said Company, are directed to exhibit to the stockholders a statement of the affairs and proceediags for he last year.

The begiming of the year, ant nearly three months of it, was very inauspicions tor ali kinds of travelling on our Railroad, and f equently it was readered inpassable by the violent and unusual snow storms, and consequently our expenses were considerably increased in proportion to the receipts-but notwithstanding these impedi ments, the business upon the road has been more productive for the last than the previous year:-
The line of burthen cars, with their horses, belonguy to the Company, were in May last, sold to Messis. James and Darlington, who continue to run the line upon the road.
The receipts for passengers, the last year, aunount to
$\$ 14,145.45$
Do. for tolls, rent, freight, \&c.
to the sum of
5,203 35
Making altogether the sum of $\$ 19,34980$ Expenses, including tolls to the State, interest on loans, reparrs to road, \&c.

16,159 47
Leaving a balance of $\$ 3,190 \quad 33$ nearly the whule of which balance has been derived from the carrying of passengers for the last six months: upwards of nine thousand eight hundred passengers have been carried in and upon our cars, to and from Philadelphia to West Chester, in the last half year.
'I'he following statement shows the amount of transportation of Merchandize, \&c., on the road during the last year:
Passed Eastward towaids the

City,
Do. Westward from do.
Making
658 tons.
1026 tons.

Passed on and over the Branch road to West Chester, of lime, marble, lumber, \&c.

1684 tons.
\qquad

The final results of the operations of the Commay fir the mast vear are more par-
\qquad the hast hall year.

In its birst itidia coarection with other Western lines became secessary on account of the railroad Bridge at Schuythill being unfinished, and cominon stages required to get from the inclined plane into the City.

On the first of July, 1830, the Company took the passenger business into their own hands; since then they have had a trial of what thej can accomplish on their own exclusive footing; and the result has proved the absence of any extraordinary occurrence or accident, the road and business of the company may be made to yield a fair profit on the capital invested.

It i.s true the profits realized have not been divided among the Stockholders, but the investments made of them cannot fail to be more advantageons to them in the luture returns to be realized.
A stable sefined a necessary appendage to the HINtel which had been erected on Broad street, an: if nestected tor a few years, the ra id increase of inuildings wruld. have deprived them of the opportunity of vecurug a vacant lof for its erection.
It had long been a subject of complaint that passengers were stt down at a distance from the town of West Chester, and subjected to the inconvenience of walking in all linds of weather to their houses orstopping places. It was therefore indispensible t., the proper accommodation of the public, that the railroad stinuld be extended into the built part of the town where it now terminates, under a neat and conveniently constructed Car house, with offices in front.

These may properly be paid for at a more favorable period of the moncy market, by a loan for the amount expended, and the profits of the company distributed as a dividend amony the Stockholders.

Having accomplished these important and necessary improvements. the Company fresee no further occasion for investments of a permanent nature, until the business of the Hotel in Broad street, may make an extension of it by back buildings necessary; and a suitable return therefor certain.
Believing that they have now arrived at a period when the railroad will yield a return equal to the ordinary rate of interest; the Directors cannot but feel themselves authorized to look to the future, with the confidence that the stockholders will have a permanent basis for a similar income; besides the reasonable expectation of profit afforded by the increased accommodations to the pu lic, the greater rapidity of travelling under the arrangement established for the last half year; and the natural increase of business, from all the new branches of trade and industry connected with it, and the extension of the population, business and prosperity of West Chester and of Chester county.

In this respect, the Directurs notice with
particular pleasure, not only as it concerns the profits of the Company, but the interests of the public and the character of the place, the highly prosperous condition o! all the schools for learning in the Borough oî West Chester; and they cannot repress the wish that these, and the scientific Lectures and associations so happily commenced, may always continue to distinguish and attract the public regard to that Borough. However humbly the railroad may subserve the surrounding prosperity, whether it be to convey the scholars to the schorls, merchandize to the storekeeper, the produce: of the firmer to market, or the building matetials for the extension of the town, the stockholders must derive a prospective :"vantuge in the general improvement, giteaty exceeding in value the momentary compensation for the transit their railways atford
(Attest, Ziba Pyle, President.
Wm. Williamson, Secretary.
TBEASURER'S REPORT.
STATEMENT OF THE ACCOUNTS OF THE West chenter railioad company, for the: year lises.

DR.

To Capital Stock, paid in
$\$ 109,92500$
Rectipts for tolls, passengers,
freight, rents, dividends on
Bank Stock, \&c.
19,349 80
$\$ 129,27480$

CR.

By Cash paid for construction of road, buildings, cars, horses, \&c.
Balance of Capital unexpended
Balance due at last statement,
Cash paid, expenses for salaries to agents, repairs, keeping horses, tolls paid to Statr, interest upon loans, \&c.

15,766 64
Balance, being profits,
109,556 46
36853
392 S3

3,190 33
129,274 80
treaburer in account with the depot
in the city of phil.adelphia. DR.
To amount of Loan
Balance due 'Treasurer,
29,000 00
2,489 18
31,489 18
CR.
By Cash paid on account of
Depot,
31,489. 18
All which is respectfully submitted,
Wm. Williamson, Treasurer.
January 5, 1837.
On motion, Resolved, That the Chairman and Secretary act as judges of the election now to be held for Directors of the Company for the ellsuing year.
Upon counting the votes, it appeared that the following nauned persons had each
received 1146 votes, being the whole number given, viz :-Ziba Pyle, Jonatban Valentine, Algernon S. Roberts, Coleman Fisher, Eli K. Price, William H. Dillingham, and William P. Sharpless, who were thereupon declared duly elected Directors of the Company for one year.
M. C. Shallcross, Chairman. Philit M. Price, Secretary.

The following damages awarded to the seamen injured last summer on the Boston and Providence Railroad, will prove a precedent in all similar cases.

The liability of the Company in all cases of accident, arising from carelessness o. their agents, is just, and it will be found beneficial to Railroad Companies, that such a decision has been made.
The property of the road will suffer much less in the hands of careful and judicious men, than when entrusted to those who know no more of the business than a quack doctor does of anatomy.

The slight increase of expense in selecting and recompensing suitable persons, will bear no comparison with the final gain, in safety and diminished wear and tear upon the road.
The Rallroid Cases.-The case of J.mes Thompson, vs. the Boston and Providence Rsilroad Corporation, the trial of which commenced in the Supreme Judicial Court last week, has been going on from day to day, until yesterday evening, when it was brought to a close. The plaintiff was one of the United States seamen who were in the forward car of the trivin on the Providence Railroad, on the 29th of June last, and suffered i:jury from the collission between that train and the Dedham train, going from Boston towards Providence. There were five other suils brought by the other seamen who sustained injury at the same time; and since the commencement of the trial, it has been agreed by the counsel of the respective parties, that they sho.ld all be submitted to the same jury, as they all rest upon the same ground, and iepended upon the same evidence, with the exception of the nature of the injury suffered by each, respecting which, additional testimuny was given. A great mass of testimony has been given in the tial, and as the case is novel in its character, and important to the parties, it has undergone a most thorough investigation by the learned and able counsel, both for presenting a full view of the facts, and for applying correctly the principles of the law. The caze was summed up yesterday aflerneon in a most lucid and satisfactory manner, by Chief Justice Shaw, and delivered to ihe jury. They wer- instructed. in case they should decide against the deiendants, to a ward, not vindictive damages, but a reasonable remuneration, under the circumstances of the case, for the injury sustained by each of the six plaintiffs.
[Adv.]
At the opening of the Court, yesterday
morning, the Jury returned a verdict for the Plaintifis and awarded to each the sums following :-
James Thompson,
$\$ 225000$ Joshua Howell, 300000 Thomas Murdock, 225000
Charles W. White, 150000
John A. Russ,
John B. Cummins, 200000

Benjamin Ranson,
17500
17500
$\$ 11,35000$

From the St. Thomas (U. C.) Liberal.

important ratlroad meeting.

Tuesday, Jan. 3, 1837.

A meeting of the Directors of the Niagara and Detroit Rivers Railroad Company, took place this day in the city of Toronto, at 11 o'clock, A. M., pursuant to notice from John Prince, Esq., President of the Board. In consequence of Mr. Prince's attendance being at that time required in the House of Assembly, the Board adjourned to six o'clock, P. M., at which time they met at the "Ontario House," when there were pre-sent-

> Mr. Prince, President, Mr. Hamilton,
> Mr. Shäw,
> Mr. Johnson,
> Mr. Caldwell,
> Mr. Lewis,
> Mr. Haggart, and
> Mr. Mercer, as proxy for
> Mr. Brush, and
> Mr. Cahon,

Mr. Cadwell and Mr. Haggart (not being present at the former meeting) were sworn in as Directors, in compliance with the 22 d section of the Charter.

The amount of instalments paid in, being repurted by the several Directors, and all being unanimous as to the expediency of commencing immediately, a survey of the route, it was moved by Mr. Shaw, seconded by Col. Hamilton, and carried -

Resolved, That Mr. Mercer, be authorized by the Board, to proceed to the United States for the purpose of employing a competent Engineer, to make the surveys for the Nia. gara and Detroit Rivers Railroad; and that the proceed forthwith to Judge Wright, and take his opinion as to the most competent person to be employed; and if he cannot obtain from Judge Wright the recommenda. tion of a competent and celebrated Engineer, then, that he be authorized to employ the best one that he can get; and that the President be hereby authorized to clothe him with full authority to carry this Resolution into effect.
Resolved, That the Directors of the Niagara and Detroit Rivers Railroad Company, meet the Parliamentary Committee on a "Great Western Railroad," (as proposed,) at half-past nine in the Committiee Room of the House of Assembly.

Wednesday, Jan. 4.
A conference having taken place in the Committee Room of the Assembly, by appointment, with the Chairman, and several of the Select Committee of the House of As. sembly, on the "Great Western Railroad," mentioned in the Licutenant Governor's

Speech, at the opening of the present Session, and also with the President and some of the Directors of the London and Gore Railroad Company, it was
Resolved, Unanimously,(by the President and Directors of the Niagara and Detroit Rivers Railroad Company,) that it would be inexpedient and impolitic in us, under existing circumstances, to agree to form an union or junction with either of the above roads.

Resolved, That this Board do adjourn till nine o'clock A. M., to-morrow.

Thursday, Jan. 5.
The Directors met pursuant to adjournment in the Committee Room, when the following Resolutions were passed:

Resolved, That our President, John Prince Esq., M. P. P., be requested to present a petition to the House of Assembly in the name of the President and Directors of the Niagara and Detroit Rivers Railroad Company, praying for the loan of a sum of money (not less than one hundred thousand pounds) to aid in erecting the said road; the tolls of the road to be pledged to the repayment of the said loan, with interest.

The petition was drawn up, and signed accordingly.

Resolved, That no amendment of the Act be applied for, during the present session.

Resolved, That the President do fortiawith issue Scrip to the persons who have paid up the first instalment on their respective shares. John Prince, President.
Resolved, That the thanks of the Board be given to our President, for his zeal and ability in advancing the interests of the Company.

John Talbot, Secretary.

Detroit, Dec. 5, 1836.

My Dear Sir,-Your friends Messis. Mercer and Gardiner, have shown me your letter to the latter, in which you advert to Gov. Head's project of a Great Western Railroad through Upper Canada.

Taking it for granted, that this is not a question of "distribution of the surplus revenue." I presume the suggestion involves considerations, affecting, not only, the geographical eligibility of tine route, but such, also, as relate to the probability of inducing individual enterprize to aid in the construction of the work, to its productiveness, when finished, and to its subservience to the purposes of geaeral uninterrupted intercourse. for the public by which it is to be sustained.

It is sufficiently obvious, and well enough understood, I believe, that the choice of route is confined to two. One from the head of Lake Ontario, to the foot of Lake Huron. The other from Black Roik, to Sandwich or Detroit. "If the principles above suggested, are to have any application in these cases, then it becomes necessary to put you in pos. session of facts with which it would be uareasonable to suppose you acquainted. 1 desire to premise, however, taat I am not writiag a treatise upon Railroads. I am but presenting at the instance of mutual friends, a hasty and undigested sketch, which, if i. answer the use of a statistic memorandun. will accomplish all I propose. I add also that when I use round numbers, they resui from the omision, not the addition of frac. tions; and that the sources of my inform-
ation; are, the Warehouses the Custom Houses, the Stage proprietors, the Ferry Masters.

Thirty steamboats of the first and sccond classes, ply between this and Buffalo. Of the first class, two arrive and depart daily ; and of the second class one. The former, average two hundred passengers cach. each way; the latter 60 . The former average fifty tons freight, each, arriving; the latter twenty.
One hundred and fifty vessels are employed. Of these an average of three arrive and depart daily, averaging each, each vay, ten passengers, and averaging one hundred tons freight each. The exports I have omitted to ascertain. It would require more leisure than I can conveniently bestow.

An average of two hundred wagons, one hundred and fifty pair horses, tivo hundred pair oxen, and eight hundred persons, with their moveables, are crossed per montin, at the Detroit Ferry, having come up through Canada. The receipts at the Ferry have doubled since the last year.

These averages are calculated for the 86 ven months of the year during which this state of things continues.
'Tie receipts at the Western Stages Office since the lst of March last, have been $\$ 90,000$. Whether those have been created by all manner of other requisitions, ranging from' a big double waggon, to a little French Poney, and in default of that, the substratum of a pair of double soled cowisides ic would be impossible for me to say.
Calculate these data for two hundred days, which is less than seven months, and you have 1000 persons arrival and de.
parture, daily, or
200,000
400 tons freight import, or
80,000
This is exclusive of the transportation of property by the Ferry, and that of persons and property, by Eastern Stages and the small St:amboats in connection not enumerated in the preceding estunate.

Taking a glance now at the Map. Directly east of this, on the sea board at Boston begins a Railroad, partly in operation ; partly in process of construction, and all chartered, running through the centre of Massachusetts, and New-York directly to Buffalo; of this, one hundred and forty miles are com. pleted. Passing over the interruption of Canada the line is taken up again at Detroit, and carried to near the head of Lake Michi. gan,-and of this the first will be completed next July. From the nead of Lake Michifan the country presents a perfectly flat surface westwardly to tue valley of Rock River, enptying into the Mississippi. Into the line from Buston to Buffalo, tributaries are made or making from Rhode Island, Conuecticut, New-Hampshire, Vermont, New-Jersey, and Pennsylvania, and a branch at Buffalo diverts to itself, the great New-York and Erie Raiload.
Compare, then, under these circumstances ae relative advantages of these two routes arough Canada.
Of the geographical features of the southrn route it is unnecessary for me to speak. You are sufficiently familiar with them. A - svel ridge peculiarly adapted by its uniform. iy of surface, and the character of its soil, io the economical construction of such a
work; it presents, in addition, in the absence of any expense for the land, and in the abundance of timber upon its borders, facilities, unsurpassed, for such an object, anyw sere.
The aid it will invite may be judged of, irom its position, lying as it does, between the terminating prints of two extensive lines now in process of constructiois. The llow and ebb of population will force a channel through for itself. Tise natural progress of things will build it, and as a rival to auything else, it will exhibit one of those formidable oppositions, that end in becoming the ad. ministration itself. The distributive shares of Michigan, in the surplus revenue, is more than half a million of dollars, intended to be appropriated to internal improvements. Of these, none is more important to her than the Detroit and Eit. Josep:i's Railro.id-and the moment the company is relieved from this undertaking, they design to transfer their capital and enterprize to the construction o. the Niagara and Detroit Rivers Railroad.Buffalo and Detroit can never suffer such a project to sleep.

As regards its productiveness, it is sufficiently indicated by the fact I have given you. Superadd to this, that its charer is perpetual; that it is in the direct line to avoid the water, and therefore, nether tiable to be cust off or interfered with, by shortening lines, nor interrupted by five months of winter ; absol bing the intercourse from the sea board to the Mississippi; and you have the promise of a steadily mereas. ing value of siock, such as is not to be found elsewhere, within iny knowleilge.

Shall I ask, whether it wo ald be better for the people of Canada to become participants in, or the owners of this stocks, or whether they had better carry a line of Ruad from Hamilion to Fort Gratiot, having upon one side of it, half the time a frozen Lake, and on the other for the present a comparative wilderness. If New-York with its dense population and the capital of is cities, is so long in makng the Hadson and Lake Erie; if Detroit a 100 years old, with uts enterprize and weahin conbmang with the southern part of Mich:gan whech comprises the mass of its population, fund: it so laborious an undertaking in seach Lake Michigan, when, I would like to know, will that Railroad be build which is to continue the Canada Road from River St. Clair to Lake Michigan upon the 431 parallel of latitude? And when it reaches the Lake, how, for half the tirie will they get over it? I saw a paper the other day, published at Paliner, the County seat of St. Clair, glorifying in the idea that the Cainden Road was to terminate there and remarking in a sort of parenthesis, that the extension of the Palmer and Romeo Rail. road (which is not built yet) would carry it across the Peninsula. And even if that. were done (I mean the first section of tho Romeo Road) which is not yet begun, do you know, that the roestern eyfremity af the proposed road, which is Roneo, is east of the eastern beginning of the District Road?

But you must be tired. If you are not I am sure I am, so we shall both be gain. ers, if I stop this long yarn.

My friend Mr. Oliver Newberry, than whom Michigan has no more enterprizing
citizen, nor any whose business relations are more extended, will corroborate the statements and views of this letter. I am, very dear sir,

Your friend,
(Signet)
E. A. Brusin.

I corcinir in the facts and views expressed in the foregoing letter.
(Signed) Oliver Neipberry. Join Prince, Esq., M. P. P.

Toronto.

From the St. Louis Commercial Bulletiñ.
Internal Improvements. - We pubJish to-day the Report made by Mr. W. B. Guins, Civil Engineer, of his reconnoissance for a Railroad ronte from Lonisiana, nthis State, on the Upper Mississippi River, to Columbit, a distance of about 85 miles; also, that of Mr. Ereskine Stanbury, Civil Engineer, of a ronte from Fayette, to this city, both of which we consider of interest to the people of Missouri. We are sorry to lind, that the Report of the latter developes a state of facts calculated to preclude all hope of construc. thig a ralload to connect the north-western portion of our State with this place, until the necessities of the country demind, and the resonrces of the Siate be, equal to, the underaking, which does nol, at present appear to exist, nor likely to do so for some time to cumo.

It haz always appearel to us, not only more practicable, but of more importance to St. Louis, and the prosperity of the State generally, to construct a railroad from this, in a south-western course, or in the direction of the Iron Mountain, mineral and pine region, lying between the Merrimack and the heads of the St . Francis river.

A road constructed in that direction would inmelliately derelope the ereat mineral wealh for which Missouri is so famed, and which could not be brought into usefulnesz and profit hitherto, in consequence of its remoteness from a means of transpur tation to a fair and profitable market, St . Louls, the State, yes, the adjoining States and Territories, need all the products of the mines and forests of that region in order to advance its interests, and adminis ter to the comfort of the inhabitants.

The increased demand for iron alone, has in the last two years raised the price froin 50 to 100 per cent. and being an artıcle of absolute necessity, it becomes a matter of inportance in tije statesman and economist to inquire into the propriety of adopting a system calculated to bring into use our own resources in the manufacture of the ineshaustible beds of ore, instend of paying tribute to other States for an article evidently inferior in quality

The same may be said in regard to lum. ber; we are daily paying extravagant prices tor this article, brought from th. Ohin river, and of inferior quality to that prolluced from the pine forests of our own State.

The lead also produced from that region, to say nothing of copper, zinc and tin. would be manufactured and brought into market by means of a railroad, and render Missouri within herself, the most indepen-
dent of all the States, and St. Louis the greatest workshop and emporium of manufactured articles of all the citics of the Union.

The system proposed by the committee on Internal Improvement in our Legislature we corceive to be a magnificent scheme, and if carried out, will add to the wealth and prosperity of our State, to the honor of our Governor, and those who may have assisted in devising the plan.

REPORT OF THE CIVIL ENGINEER, ON A projected railhoad, from louisiana to columbia, in this state.

St. Louis, 1st Deceinber, 1836.
A. B. Cilambers, William Cornelius, Esqrs., and others; Committee for the people of Pike and Broome Counties.

Gentlemen: In obedience 10 instrlc. tions from the War Department, directing ine to make such an examination of the projected railroad from Louisiana to Col umbia as the persons interested in it might desire, I repaired to Louisiana in the month of September last, and then reported to A, B. Chambers, Esf., the Chairman of the committee for the citizens of Pike county, by whom and I. Herrick, Esq., I was furnished all the information necessary to enable me to perform this duty. Having completed a reconnoisance and survey of the route, and knowing your anxiety to present to the Legislature of the State now in session, some of the results of these examinations, I have the honor to offer you such a report as the little time which a necessary atiention to other duties in a neigh. boring S:ace leaves at my disposal of this object. It is of necessity general, and the calculations it emborlies only proximate; bat I trust it is so nearly exact that you may be safely guided by it in your future action upon the subject
Although the country traversed by this survey is well known to you, it may not be improper to glance at its general character in illustration of the factlyies and innpediunents to be encountered in the progress of such a work. By a glance at the map of the State it will be perceived, that the peninsula formed by the junction of the Missouri with the Mississippi, is in'erzected by numerous streams, the trihularics of these rivers, running across the direct line from Louisiana to Colur bia. These streams are formed by the jurction of a great number of small branches the vallie: of which are gencrally deep, and often present separately, obstacles as formidable to the passage of a road across them as loes the principal stream below the point of iheir union. The great plain drained by these wa:er-courzes which is first surmounted, in the direction of the road, at Bowling Green, at an elevation of four hundred and for y.ffour feet above high water inark on the Mississippi, presents generally a surfac, remarkably smooth, but undulating iren the above staled altitude, to that of abou two hundred feet. A large portion of it i orairie, of a rich and ferule character while the banks of the numerous streams intersecting it, afford a variety of woods of a quality suitable for railroads, and suffi-
cient for all the purposes of husbandry:Casting the eye over the map of this region we trace a bioad and continuous ridge between the waters of the Missouri and Mississippi. This ridge is called the Grand Prarre, and shoots out from its principal stem, branches on either side, very nearly to the banks of those great rivers. One of these branches, or "arms of prairie," as they are faniliarly terined, passing around the heads of the river Au Cuivre, reaches quite to Bowling Green-while another, in part prairie and in part wooded,leads around the head of Hinkson's Creek to Columbia. As this ridge is smooth and generally nearly level, it might be supposed to offer the best route for the proposed road; but for consiccrations which I shall enumerate, I preferred rather to adopt, in the preliminary sur. vey, a route nearly coincident with the straight line to Columbia, and only deviating from it to obtain easy crossings of the streams. Were the road constructed on the ridge just indicated, there is more than a reasonable apprehension, that water to supply locomolive steam engines, at proper intervals, could not be obtained; nor would supplies of fuel be conveniently prccured. But besides these objections, the road would pass through a tract of country uninhabited, and uninhabitable--being flat, wet, and without wood-whence no proftable return could be received by the proprietors for their large expenditure of money. The route surveyed is 85 miles in length, being but a few miles longer than the straight line between the extremities, and in the greater part of the way, offering a surface well adapted to the construction of a railroad, in siew both of the cheapness of its construction, and the facility of transportation upon it.

From Louisiana, the line pursues the valley of Noix Creek, ascending nine miles at rates varying from fifleen to forty feet per mile-whence to the Court House in Bowling Green, there is an abrupt ascent of about two hundred and forty feet, in one mile and a half. To surmount this great height, locomotive power would be quite competent, at a diminished speed, when the rails were in a favorable condition, at which time an engine weighing eight and a half tons, of power equal to such as are in use on the Bultimore and Washington railroad, would ascend this plane at the rate of about three miles an hour, with a train of one hundred tons gross, or about seventy tons of goods. But it remains to be proved by experience, that in the worst state of the road, a locomotive engine would have sufficient ractive power to overcome ascents much above one hundred feet per mile. Again, this difficulty may be overcome by stationary power, either of steam or horses, kept in readiness to assist in drawing the trains up the plane. And lastly, future surveys may point out the means of forming a more easy and suitable grade. But the solution of this difficulty is dependent upon so many considerations, of cest, speed, and capaci'y for transportation, that I leave it to the future, with the mere statement of the means by which it may with certainty, be accomplished. Leaving Bowling Green,
the line surveyed, passing by Major Davis' and Jeremiah Morris', crosses Indian Creek a branch of the Au Cuivie, just below the "forks," and a little above Vanney's mill; thence gently ascending to the prairie, it crosses Prairie Fork at the ford of the Indian road, continues in direct line to the west fork of the Au Cuivre, near its junction with Hickory Fork, and passing it, ascends Lost Fork to a level prairie, that is pursued about fourteen miles, on a surface graded as it were by the hand of nature, avoiding Boon Creek, and all the branches of the Loutre. Leaving this prairie the line crosses the south fork of Salt River, about three miles from its source, and ascendiug Beaver Dam Creck, regains the prairie about balf a mile north of James Harrison's house.This prairie is the highest ground passed over on the route, being four hundred and fifty-nine feet above the plane of reference. From Harrison's the route was continued over the Grand Prairie, around the head waters of the river Aux Vases, to Cedar Creek, which was crossed about a mile below Toneyer's mill. There are three branches of this creek crossed within two miles, but none of them are of much majnitude. From Cedar Creek, the survey was directed towards Hinkson's Creek, which must be reached by a cut of forty or fifty feet deep, through the crest of the intermediate ridge. The point selected for crossing the latter stream, viz : at the widow Redmond's, about half a mile below Crockett's mill, is believed, from personal observation and information derived from others, to be the most favorable for that object, within a distance of eight miles from Columbia. From this point may be had the longest plane by which to ascend the ridge, that bounds the valley of the creek on the west, which is every where abrupt, and here more than one hundred feet high. Having' ascended this ridge along the valiey of a small branch, that runs down the eastern face of it, through Mr. Mills' farm, the route was prolonged on its crest to the principal street in the town of Columbia, passing between the waters of Hinkson and Bear creeks, in a line generally direct, but a little serpentine, and over a surface slightly undulating.
In conclusion of this general sketch, I will add that of the whole length of the line surveyed, a great part is level, or so nearly so, that at small cost it may be made to conform to grades that will offer but little resistance to the burdens that may be transported upon the road; while there is but one portion, namely, that at Bowling Green, which excites the least doubt of its propet adaptation to locomotives.
Having thus briefly indicated the route adopted for the survey it will be pertinent to remark, that although you desire me, in the jetter conveying your wishes on the subject, so to conduct the survey, that the line might be prolonged in the most advantageous way to Rocheport, without sacrificing the interests of Columbia, it was made without any reference to such an extension, in consequence of my ill health at the time I made a reconnoisance of the country, and the necessity of my constant attention afterwards to the party in the field, and be.
cause of the failure on the part of the citizens of Rocheport to communicate to me any information in regard to the nature of the country. But notwithstanding, I believe the line may be continued to Rocheport from the point at which it surmounts the ridge on the west of Hinkson's creek, through the vallies of Bear creek and Rocky fork, the latter of which runs into Rocher Perci nearly in direct line to Rocheport, as successfully as by any other route which can be found; for in this region the ridges are so high and the vallies of the principal streams so deep that it is in vain to seek to pass across the latter except by the ravines of the longer branches that lead into them.
mode of construction.
The road being graded to a surface width of sixteen feet in cuttings and fourteen in embankment, the form of superstructure which I would recommend to you for adoption is one which experience has proven efficient, and which, involving the least expenditure of money, pruduce approves as the best until an improved condition of your country and an increase of traffic upon your road shall justify the substitution of more imperishable and costly materials. I propose to you, to form the superstructure of sills or transverse pieces laid at intervals of three feet from centre to centre, and notched at each end to receive the longitudinal or string piecos, the latter having a cross section of five by eight inches, and being plated on the inner edge of the upper surface with iron bars two and a quarter inches broad and five eighths of an inch thick secured to the wood by iron spikes. These dimensions of the rails as well as the nearness of the sills, and nothing less, it is belıeved will ensure an unyielding surface under the pressure of the efficient but heavy engines now in use, which with a less firm structure might cause by the yielding of the rails, the disruption of the iron bars, besides a great increase of resistance to the transportation upon the road. Estimate of Cost.
For grading, entire distance
\$242,000
21,000
42,000
305,000
For a single mile of superstructure.
" 42,000 feet of scantling a $\$ 15, \$ 630,00$
" 22 tons iron bars a $\$ 80$,
1760,00
" 1760 sills a 25 cts.
" laying the rails a $\$ 2$ per rod, " spikes and plates,

440,00
640,00
200,00
3670,00
Eighty-five miles of a tract a $\$ 3570$ per mile

311,950
To which must be added for the necessary turnouts, with their castings

10,000
\$626,950
To these sums must be added the cost of machinery, store-houses, work-shops, etci, but these are so entirely dependent upon the amount of business required to be done by the road, that I omit any statement of it. In tonclusion I repeat that this es-
limate is not offered as an exact one, but :ather as the ultimate limit of your expenditures, should you adopt the plan I propose.

The profiles and maps which should accompany this report, for want of time, have not been prepared, but Mr. Erskein Stanbury who with my assistant, Mr. Webster U. S. Assistant Civil Engineer, rendered me efficient aid in the survey, has undertaken to preparc thein and furnish you with them in the course of the winter.

Of the benefits which your community and the State at large would derive from the successful issue of your enterprize, it is perhaps superfluous for me to speak. The mere statement of facts is peoof sufficient and needs not demonstration to enferce it. Your projected road runs through a region of country rich and fertile in soil, and presenting a pleasant variety of prairie and woodland, the greatest portion of which is yet untilled, because of the difficulty of its co nmunication with a market. That the advantages which it offers would immediately attract thousands to the Stare to swell her population-that the rich beds of bituminous coal which frequently show themselves on the surface, and that mines of metallic ore, of which there are abundant indications in the general mctalliferous character of the country and the appearance of fragments on the surface, itself scarcely known-that these great sources of wealth would at once be developed to swell the commerce of the State and enrich her inhabitants so soon as an easy access to market is secured, there cannot be a reasonable doubt. But it is needless to dwell longer upon this topic. I feel assured that the zeal and intelligence of those to whom the fate of the work is intrusted, are such as to insure to it all the support which public policy and private interest demand.

I have the honor to be,
Very respectiully,
Your obedient servant,
W. Burling Guion, U. S.

Civil Enginecr.
report to the stockiolders of the schuyleill navigation company.
The President and Managers, in presenting their customary annual Report, have much pleasure in stating, that no material circumstance has occurred to interrupt the regular progress of the important trade transacted upon the works under their charge, during the past year, and that the affairs or the Company exhibit a degree of prosperity highly gratifying.

The statements herewith sulmitted as part of this Report, narked B, C, D, show a large and steady increase of the trade, and there appears to be very reasonable probability of its further improvensent and continuance.

The principal item of transportation, and from which the Company derives the largest portion of its revenue, is Anthracite coal, which, as a fuel, may now be considpred an article of necessity, although but few years have elapsed since its introduction, and many prejudices to encounter;
yet, f:om the general preference given to it, no apprehensions are now entertained oi oveistocking the warket. I he supply o the past year, by the schuylkill Navigation alone, has been 432,045 tons, and althong! this has exceeded the shipments of the proceeding year, 37,173 tons, it has me with a ready demand, and a much larg er quantity could have been sold for expor tation, had it been brought in season.

The whole quantity of Anthacite coal sent to market by the several canals in 1836, is as follows:
By the Schuylkill,
Tons 432,045
By the Union,
By the Lehigh,
By the Delaware and Fitd-
son, " 106,270
Making the whole supply, " 606,526
Beirg an increase of 134,518 tons beyond the recipts ol 1835 .

Therc was likewise brought to market $5,0 \leq 2$ tons of Birumincus coa! from the Susquehann nines, yia. the Union Ca:mal

The coal is brought to the Schuylkill, by the following Railroads:
Danville and Pottsville Railroad, from the Girard mines,

Tons 13,547
Mount Ca bon Railroad,
Schuylkill Valley Railroad,
Mill Creek Railroad,
West Branch Railroad,
Litt e Schuylkill Railroad,"

From other sources,
Tons 449,784
Of which there has been sent to market. 432,045 tons, by 9,526 boats; of these 472 discharged their cargoes between Port Carbon and Philadelphia,

Tons
21,749
There was shipped from Pniladelphia, on board 2964 vessels, bound for distant ports, \qquad
There has been sold for home consumption (in addition to 26,000 tons of the preceeding year's supply, on hand lst of January, 1836,)
Allowance for waste, five per cent.
There remains on hand at the Philadelphia landings, 1st January, 1837, "

The amount of toll received on Anthracite coal,
Amountonall otherarticles,
Total amount of toll re. ceived in 1836,
Of which there was from the ascending trade,
And from the descending trade,

The tennage of the as$\left.\begin{array}{r}\text { cendin trade, } 61,079 \\ \text { Che descendiug, } 570,094\end{array}\right\}$ Tons 631,173 The descending, 570,094
The number of hoats passed through Fair Iount Locks in 1836, were as follows :-
Descending ,boats, laden with Anthracite coal,
Ladea with produce, limestone, \&ic.
Ascending beats, laden with merchandize,
Empty,

Boats 24,479

Of the ascending boats, 2041 were found for the Union Calial, on which the toll announted to
Ind the ascending toll,
©37,989 70
32,22555
$\$ 70,21525$
The rents received in 1836 , from real est te, ground ients, and water rents, amount to,
Ind the arrears uncollected, are
The estimated income for 1837, from rents, is
The following improvements have been inade since the lit t Report, at points where much delay has been experienced, which will be found highly beneficial in facilitating the trade.
One new cut stone Lock at Bridshorough two new ent stone Locks below the Tunnel ; in Schuylkill connty there yet remains some embankmient to be made at this point, which will be finished before te commencement of the spring busitiess.
Several new substantial Tollhouses have been put up, where the old temporary build. inys were scarcely tentable.

The old set of locks at Manayunk, which were much docayed, have been rebuilt, and other important improvements at this point, have also been made.

The towingpaths have been raised in many sections, and covered with hard materials. The channels have been cleared of obstructions, so that boats carrying from fifty to sixty tons pass freely.

- The Mountain Dam and one at the head of the Duncan caual, have both been substantially strengthened by \log cribbing, filled with stone.

The Norristown Dam, one of the oldest on the line, built upon a gravel foundation, with a sheeting of lugs to prevent its being undermined, had during the heavy ice freshet of March last,sustained considerable damage by the sheeting timbers being cut off by ice, and otherwise mucl injured, this was remporarily repaired by a large quantity of
stone thrown around the injured part; to attempt a thorough repair of this important Dam, in such manner as to give confidence in its stability, under the circumstances of its construction, was considered by the Coard of Managers as impracticable; it was therefore determined to com-
\$76,253 29
446,375 06
$\$ 399,47259$
123,160 67
\$522,632 26 mence building an cntire new one, which was located eight feet duwn the stream from the old Dam. Four handred and twenty
feet of this have been finished in the most substantial manner, based upon the rock. The old Dann remained entire as a backing, the intermediate space between them, has bren pile planked, filled solid to the top, made entirely tight and covered with timber. The remaining part, being about one half the distance across the nver, is intended to be completed the next season, for which the timber is prepared. The expense of this work has been heavy, in consequence of the depth of excavation, necessary to obtain a permanenc rock foundation; a part of which has been charged to the contingent fund, and the balance to current expenses.

A second reservoir on Tumbling run (an active stream near the head of the navigation,) which had been commenced in 1835, has been finished in the most substantial manner.

The dimensions of the two reservoirs, when full of water, are as follows :

No. 1 measures, on the surface, 28 acres, contains $23,158,152$ cubic feet of water, and is 41 feet 8 inches in depth over the iron conduit pipes, at the Mound dam.
No. 2 measures, on the surface, 30 acres, contains thirty millions of cubic feet of water, and is 52 feet 10 inches in depth over the pipes. Each reservoir has two ranges of ron pipes, of twelve inches diameter, passing through the base of the dam, for the purpose of supplying the navigation, which are opened and stut with perfect facility, by iron valves, as occasion requires; the surplus waters run of through a short canal, cut out of the solid rock, on the side of the mountain, several feet below the top of the embankments, to prevent injury by heavy freshets.

The great utility of these reservoirs has been fully manifested the current year; for about two months during the period of active business, the strcams near the head of the navigation were remarkably low, and afforded but a linited supply of water, for the accommodation of so extended a trade. Tue deficiency was fully made up by the aid obtained from those reservairs, and we have much satisfaction in stating, that the water was so judiciously applied, as to leave at least one hali the stock held in re. serve.

At the canal immediately above Reading, much inconvenience has been experienced by the operations of an extensive grist mill, which required so heavy draft of water from it, as frequently to interrupt and annoy the free passage of boats through the Locks, To remedy this evil, it was fou:d necessary to purcbase the mill, for which, together with fifteen acres of land, a dwelling and other buidings connected therewith, $\$ 18,000$ have been paid. The water power for the use of this mill can now be so arranged, as to obviate the difficulties.
The Company being in want of timber, for the use of the works, have purchased a tract of land near the canal, in Schuylkill county, well stocked with white oak and other materials suited to their improvements; it contains 378 acres, and cost 83,800 . When the timber shall have been exhausted, the land will be sold, and it is believed that the wants of the Company will thus be

The expediency of doubling the Locks. for the purpose of affording as far as practicable a separate ascending and descending navigation, has heretofore been carried into execution at such points as were found by experience to present the greatest delay in the passage of boats; there yet remain two or three places at which any material inconvenience occurs, and only one on the whole line where combined locks remain tobe doubled. To improve these as early as possible, orders have been given for the preparation of a large quantity of cut stone to be delivered at the several points to be improved, and in readiness to cummeuce building additional locks, as early the next season as the weather will permit ; and it is intended to progress,as fast as possible,further toimprove the-capacity of the works, and to afford that additional accommodation to the increasing trade, which its importance and duty to the public interest rquire.

At the last annual meetipg of the stockholders, an ordinance was passed authorizing a loan of $\$ 200,000$, at a rate of interest not exceeding 5 per cent. a ycar, for the purpose of enabling the Board of Managers further to improve and increase the capacity of the works under their charge ; towards the accomplishment of this desirable object. and the payments for real estate purchased, there has bsen expended, during the past year, $\$ 105,58314$, for the payment of which only $\$ 44,02694$ of the loan thus au. thorised, have been negotiated. The unprecedented scarcity of money, and the consequent rise of the rate of interest in the money market, rendered a further sale impracticable, without increasing the rate of interest prescribed, or of selling the loan below par; the Board of Managers not feeling authorised to adopt either of these alternatives was compelled to borrow temporarily from the Toll Fund, the sum of $\$ 61,55621$, to supply the deficiency. Tnis amount it will be necessary to return to its proper account, by a further sale of the loan, on such terms as the stockholders may authorise.

The navigation of our canals was closed by ice, much earlicr this season than usual, and caused considerable disappointment, as it - put an entire stop to business, at a time when in its full tide of operation.

On closing the works for the season, they were found to be in as good order as usual, or as could have been expected, after a sea. son of active trade; but on a line of im. provement extending 108 miles, with 34 dams and pools, 27 canals, and towingpaths the whole extent, with 117 locks, forming the original navigation, and overcoming a fall of 610 feet, also 45 new cut stone twin locks, built for the purpose or increasing the means of passing the boats through withou: detention, many repairs will necessarily bc required. For the accomplishment of these repairs, preparations have already beer made, that the whole may be finished and ready in time for the opening of business next spring, as early as the season will ad-
mit. mit.

All which is respectfully submitted,
Joshua Lippimcott, Pres't,
January 4th, 1837 .

STATEMENT OF THE ACCOUNTS OF THE COMPA. NY, JANUARY 1, 1837.
(B) DR.

Japital Stock, 33,312 shares, a $\$ 50$
Permanent Loans,
Bond payable, given for Damages,
Temporary Loan from the Toll Fund,

Balance of Income and Expense account,as per statement of dividend committec, Fcbruary 1836,
\$10,806 77
Tolls received for 1836,
522,633 26
Rents received in 1836,
16,328 85
Contingent Fund,
Individual Accounts,
Uuclaimed Interest,
Unclaimed Dividends,
3,353 02
15836
4,412 36
2,879 00

CR.

General Charges, cost of the works,
Do. for damages paid,
Do. for Real Estate,
\$2,994,947 23
105,060 91
159,516 82
\$3,259,524 96
Bonds Recciveable for Lands sold,

Temporary Loan,
Current expenses, being cost of repairs, sal ary, to officers, locktenders' wages, \&c., for the year 18:36,
Interest on Loans for 1836,
Dividend, August last,
Individual Accounts,
Loans and Stock of the Company,
Special Deposite inBank,of unclaimed Interest and Dividends,
Cash in Bank,
$14,258 \quad 18$
\$3,273,783 14
61,556 21

102,718 06
77,215 14
158,105 34
2,590 77
29,625 81

7,291 36
121,463 93
\$560,571 62
C
Tonnage of articles ascending the
river, 1836 . river, 1836.
Merchandize, 22,350

Plaster,
(Irain, (Train,
Iron,
Blooms and
Castings,
Iron Ore,
3ricks,
Porter \& Ale,
Lumber,
Marble and
Joal,
slour,
Sundries,

Limestone, $\quad 2,744$ Castings,
2,793 Flour,
3,402 Whiskey,
10,518 Lumber, 1,128 Gran, 3,040 444
2,707
2,707 Nails,
2,280 Lime, 666 Limestone,
72 Iron Ore,
1,845 Butter,
2,062 Bituminous
3,020 Coal,
388 Marble,

Timnage of articles descending the river, 1826.

432,045
9,403
1,971
12,153
16,267
4,667
6,725
2,050
18,62ธ
44,920
1,851
440
427
5,08:
345

Burrs,	124	Wood,	2,039
Clay,	215	Tobacco,	779
Wood,	241	Bacon and	
staves,	280	Pork,	680
Sand,	205	Sundries,	3,387
Hides,	627	Bricks,	164
Tar \& Pitch,	83	Wool,	123
Hemp,	92	Glass,	138
Rails,	141	Rags,	103
Wool,	134	Staves,	316
Tons		Starch,	55
	61,079	Logs,	188
		Lard,	81
		Live Stock,	174
		Shingles,	1,665
		Tons	0,094

wilkinson's alarm.
Sir,-Among the " Notes and Notices" in your 687th Number, I observe one doscribing an "alarm-lamp," said to be invented by a gunsmith of Easingwold, in Yorkshire. I apprehend the writer has made some slight mistake with respect to this invantion, which originated with Mr. Wilkinson, the justly celebrated gunsmith of Pall Mali, Loudon.
Having constructed a percussion-lock upon a new principle about fifteen months ago, which I considered applicable to large pieces of ordnance, and knowing Mr. Wilkin. son to be the very best authority upon these matters, I obtained an introduction to him. Mr . Wilkinson received me with the utmost politencss; and having examined my new lock, he pointed out, in the kindest manner possible, the reasons why it could not answer the purpose for which I had intended it. He then exhibited and explained to me many curious and ingenious things with which I found him surrounded, and, among other things, he showed me his new alarm for the detection of poachers, rick-burners, \&c. This alarm consisted of a percussion-lock of a very strong and durable construction, fix. ed upon a stout post, from which wires were led in various directions over the grounds to be protected, in the same way as the wires of spring-guns used to be. The lock is made to communicate with a rocket or a maroon, or with both. In the event of any of the wires being touched, the lock is discharged, and striling a percussion.cap, ignites the maroun, the audible report of which alarms the persons who are on the look-out; a rocket at the same iastant ascends, and remains stationary for five or tell minutes over the spot, throwing down a vivid light, which indicates the situation, and exhibits the progress of the depredators.
Mr. Wilkinsou's a'arm has been very extensively employed by noblemen and gen. tlemen for the protection of their property fiom miduight marauders, and it is the best contrivance for the purpose I ever met with. These alarms are in cvery way infinitely superior to the inhuman " man-traps and ipring.guns," even were they still legal; they are properly described as "being per ectly free from danger to servants or othars having the care of them; but calculated when they go off to strike terror into the sreast of the most audacious depredator."

I remain, Sir, yours respectfully,
Wm. Baddeley.
London, October 8, 1836.

VIEWOFPATERSGN,

NEW-JERSEX.

The village of Paterson, is situated on the Passaic river. in the north-eastern Section ol the County of Essex, in the State of New-Jersey, and is about 16 miles by way of the Patterson Railroad in a north-west direction from the city of New. York.

This place has long been a celebrated resort for travellers and parties of pleasure, whose curiosity has been excited to view the magnificent falls on the Passaic, and the romantic scencry of the surrounding country : and within a few years it has attained a more permanent and substantial notoricty from other causes than that of an admiration of the beauties of naturc. These causes are its local situation to become a large and populous city and its vast water power which will be first briefly noticed.

1st. The water power afforded by the Falls on the Passaic. This is owned by a company, which was incorporated by the Le. gislature of New-Jersey, in 1791, under the name of the Society for Establishing Uuseful Mannfactures, and extendfrom about $\frac{1}{3}$ of a mile above the "Great Falls," to about $\frac{1}{2}$ a mile below the sam", comprising a considerable width of land on both sides the river. At a short distance above the "Ereat Falls" a substantial dam 42 feet in height has been constructed across the Passaic which turns a sufficiency of water by means of a canal cut through a solid rock into a spacious basin from whence the water is conducted in such quantities as may be required into three separate canals or raceways, affording a head and fall from each, of about 22 fect. The waters of these canals flow again into the Passaic, and each is a little over $\frac{1}{3}$ of a mile in lengti, afiording sites, in all, for about 70 mills, requring each a cubic foot of water, which is equal to about 25 horse power, and capable of carrying 2500 spindles.

2 d . The descent of the Passaic from the lower termination of the Society or Company's grant to tide water, a distance of bctween 7 and 8 miles, is 37 feet 10 of which is within half a mile of the lower termination of the Company's grant, and by means of a canal would afford a number of valuable sites for hydraulic works of any kind.

3d. The Morris Canal runs near the southern part of the village, and the Canal Company have constructed a basin at the distance of about 100 feet from the upper basin already mentioned, and owned by the Society for Establishing Useful Manufactures. From the former basin to the latter, the descent is $61 \frac{1}{2}$ feet, affording 20 mill sites: and here it may be proper to observe, that the canal at this place; has an abundance of water, furnished by means of feeders from Long Pond, situated at about 10 or 12 miles north of this place it is also worthy of notice, that the water flowing from the basin of the Morris Canal, empties into the basin owned by the Society, and can be again used in their canals or raceways.

From the foregoing statement, it will be perceived, that there is sufficient water power at laterson, and in its vicinity for more than $\mathbf{1 0 0}$ mills, dud considering its favorable location and growing importance, a short account of the origin of its growth, progress, present condition, and fituro prospects, is deemed worthy of notice.

ORIGIN OF ITS GROWTH AND PROGRESS.

As early as the year 1792, Gon. Alexander Hamilton foresaw the importance in a national point oi' view, of bringing into active operation, a portion of the resources of the country, by the establishment of domestic manufactures, and not only adroiated the measure with his pen, in his celcbrated report to Congress upon that subject, but exerted his personal influence among his friends and acquaintances to individually embark in so lavdable and patriotic an undertaking; and through his persuasion, a number of gentlemen of wealt!, were induced to form an association with a view of testing the principle. During that year ($\mathbf{1 7 9 1}$, , this association was incorperated by an act of the Legislature of NewJersey, unde:" the titte: of "The Society for Establishing Useful Manufactures," with a capital of $\$ 1,000,000$, and the right to ac. quire and hold property to the rmonnt ot $\$ 4,000,000$. The act of incorporation is perpetual ind was penned by Gen. Hamil. ton, although the had no intereat but that of the prillic good in the transnction. After making various surveys, the Company in the year 1792, mite a purcidise of the place already described when they comnencel ofrations. Owing, however, to the inex.
perience of some, and the competition arising from the introduction of foreign fabrics, similar to those intended to be successfully manufactured here, the association did not prosper. The first fac. tory at this jlace was erected in 1794, for the purpose of spinning cotton. During the same year, shawls and and other goods manufactured from cotton, were printed, and although the company made strong eflorts to sustain the establishment ; they were obliged, after an experiment of three four years, to entirely abandon their works, having lost over $\$ 50,000$ in their operations. The cotton mill was' subsequently leased to individuals, who continued, although on a limited scale, to manufacture candlewick and other coarse cotton yarns until the year 1807, when it was accidentally destoyed by fire, and has never since been rebuilt.

In 1811, 12 and 14, several mills were erected, but the business done in them did not prove to be profitable, nor was it till about the year 1824 that the manufacturing establishments of this place were brought into successful operation. Since which they have rapidly increased, as will appear by the following statement, and bid fair to progress in a much greater ratio. And as one evidence of this, may be mentioned the increased value of water privileges, which for one cubic foot,

In 1804	was rented at	$\$ 7500$	year		
For 1807 to 10	".	".	100	00	"
For 1811 to 15	".	".	$\mathbf{1 6 0} 00$	"	"

Since which they have gradually risen to $\$ 200,250,300,400$, 500 , and now to 600 .

MANUFACTURING ESTABLISHMENTS.

Seventeen Cotton Mills, in which are over 50,000 spindles employing annually; 1,500 to 2,000 hands, and consuming from 4 to 6,000 pounds of raw cotton.
Four Macline Factories, employing 7 or 800 hands. In these factories, cotton and other machinery are manufactured on an extensive scale.
One extensive establishment for the manufactory of locomotive engines by Messrs. Rogers, Ketchum \& Grosvenor.

Two extensive Paper Mills, in one of which are daily manufactured three tons of paper.
One Factory for manufucturing linen duck and bagging. em. ploys about 200 hauds, and annually consumes over $500,000 \mathrm{lbs}$. of flax.
One Sattinct Factory, with a dying establishment connected with it, has about 1,400 spindles, employs from 60 to 80 hands and consumes annually over 100,000 lbs. of wool.
Two Printing and Dying establishments, that do a large business.
Two Bleeching establishments, employing from 20 to $\mathbf{3 0}$ hands. One Saw Mill, with two saw-carriages.
One Patent Fire Arms Factory, being erected, where patent fire arms will be manufactured on an extensive scale.
In the aboyementioned factories are annually employed over 3,000 hands, whose wages exceed $\$ 500,000$.

MEANS OF INTERCOURSE WITH THE CITY OF NEW.YORK.

The means of intercourse between this place and the city of New.York, are so great, and the travelling so expeditious, that the two places are brought as it were almost into the immediate neighborthood of each other.

1st. The Paterson Railroad extending from this place to Jersey City, a distance of 16 miles. Trips are made to and from these places 4 or 5 times a day, each occupying from an hour to an hour and a quarter.

2d. The Morris Canal, extends from opposite Easton, in the State of Peunsylvania, to Jersey City, a distance of 90 miles, and flows a little sonth of the compact part of the village. The canal is just completed, an! will be of immense importance to this place, as respects the supply of anthracite coal from the mines in Pennsylvania, which will be afforded here in abundance at a cheap rate. 'Iyaversing the rich counties of Warren and Morris, in this State, the former of which abounds in excellent timber, and the latter in vast mineral resources, the citizens of this place, will also be supplicl with abundance of materials for the purpose of building; and
the day is perhaps not far distant, when the minerals found in the
County of Morris will le extensively wrought here. County of Morris will le extensively wrought here.

The distance from Patterson to New-York, by way of the Canal is 24 miles, and generally for nine montlss in a year, it will af-
3d. A company has been incorporated by the Legislature of this State, for the purpose of rendering the Passaic navigable from this place to tide water, a distance of between 7 and 8 miles The stock has been subscribed for that purpose, and when the work is accomplished, trips will be made in steamboats, from this place to New-York in 4 or 5 hours.
4th. A petition is before the Legislature of the State, for the incorporation of a company to construct a Railroad from this place to the boundary line of the State of New.York, and from thence, if the right can be obtained, to intersect the Erie Railroad in the State of New-York. The distance from Paterson on the contem. plated route to the New.York State line is about 14 miles, from thence to the contemplated route of the Erie Railroad is less than half a mile. Should this project go into operation the route to New.York by way of the Erie road would be considerably shortened and the principal transportation of merchandize and passengers from Lake Erie and other places in the State of New-York would pass through this village.

POPULATION AND PRESENT STATE OF THE VILLAGE.

The population of this village is estimated at aboul 12,000, a large portion of which is engaged in Manufactures, the remaining portion is divided into Merchants, professional men, and mechanics, such as tailors, shoemakers, house-carpenters, painters, \&c., who carry on a respectable business, but on a less extensive scale than that of the large factories. There are 20 pay schools, 13 male and 7 female, an academy, and a free school supported by the town, in which are instructed from 100 to 150 children, also, a free infant school, in which about 200 children are taught. There are also, 7 Sunday schools under the direction of different religious denominations in which are instructed over 1500 pupils9 Cnurches or houses built for religious worship. Viz. 1 Presbyterian, 2 Reformed Dutch, 1 Roman Catholic, 1 Methodist, 1 Episcopalian, 1 Baptist, 1 true Dutch ${ }^{\circ}$ Reformed, and 1 Free Church, a Museum, 2 Banks. There is in Patterson a Mechanics' Society, incorporated by the Legislature for improvement in Sci.
ence and the Mechanic Arts. This Society have laid the foundation for a library and philosophical apparatus.

There is also a philosophical Society composed of a number of young gentlemen who have associated for literary improvement.They mect weekly and have collected a respectable library.Besides these there are several benevolent associations.

The site of the village is generally level, and the streets regularly laid out. It has excellent water and there is not a more bealthy location in the United States. Its markets are well supplied by the farmers from the surrounding country, and the demand for their productions has materially enha.iced the value of real estate for a number of miles in different directions.

FUTURE PROSPECTS.

This is a subject not of detail, but affording matter for various opinions. In taking a retrospective view of the United States for the last thirty years in the advancement of wealth, enterprize and improvement, the mind is scarcely competent to imagine what it will be in thirty or forty years to come. Within a few years past a powerful impetus bas been given to the enterprize of the country by means of internal improvements, and the establishment of domestic manufactures; and it is now conceded, pretty much, by every one, that these are the great engines which bring into requisition and active operation, the resources of the country, and must be its settled policy. No country is more favorably situated to become a manufacturing nation than that of the United States-the freedom of her institutions, which, with the general diffusion of knowledge, must necessarily bring into active operation the genius and talent of her citizens, her vast mineral resources, and the diversity of the soil and climate are all eminently calculated to favor the policy, and judging from the past, it is thought not to be extravagant, to suppose that in thirty or forty years the United States will become the greatest manufacturing nation in the world. Experience has shown that in all large trading countries it is the interest of different classes of tradesmen to congregate in large cities and such as afford the greatest facilities for the interchange of various commodities and the transaction of business generally.The same principle will apply to manufacturing establishments, we see it verified in England, which has her Birmingham, her Manchester and her Leeds. And taking into view the local situation of Patterson-its vast water powers, and its contiguity to the great commercial emporium of the United States, is it not reasonable to suppose that this place, in a few years will be to the city of New-York, what Manchester now is to Liverpool.

Miscellanecus.

BRITISH ASSOCIATION.

From the Journal of the Franklin Institute.
tide observations at liverpool and LoNDON.
M. Lubbock being called upon to give an account of the recent discussion of tide observations, for which a liberal grant of money had been made by the Association, rose and stated, that through the indefatigable exertions of Mr. Dessiou, considerable progress had been made in the reduction of the observations made at Liverpool by Mr. Hutchinson.

The diurnal inequality of difference between the superior and inferior tide of the same day, which in the Thames was very ir.considerable, if not insensible, was found at Liverpool to amount to more thán a foot; a matter upon which the learned gentleman laid considerable stress, as calculated to lead to important practical results. The object of these reductions was to compare the results of theory with these observations, and with those of Mr. Jones and Mr. Russell: made at the port of London. The principal ohjects of comparison were the heights
of the several tides, and the intervals between tide and tide; and these were examined in their relations to the parallax and declination of the Moon and of the Sun, and in reference to local, and what may in one sense be called accidental causes, as storms, \&c. Of this latter, one of the most curious, as well as important, is the effect of the pressure of the atmospheric column. The learned gentleman stated, that M. Duassy had ascertained, that at the harbor of Brest a variation of the height of high water was found to take place, which was inversely as the rise or fall of the barometer, and that a fall of the barometer of 0.622 parts of an inch, was found to cause an increase of the height of the tide, equal to 8.78 inches in that port. To confirm this interesting and hitherto unsuspected cause of variation, had been one principal object of the researches of the learned gentleman, and at his request. Mr. Dessiou had calculated the heights and times of high water at Liveriool for the yea 1784, and compared them with the height: of the barometer, as recorded by Mr. Hutehinson for the same year; and by a mose careful induction, it had turned out that the height of the tide had been on an averagc increased by one inch for each tenth of an inch that the barometer fell, coteris paribus;
but the time was found not to be much, if at all affected. Mr. Lubbock then proceeded to examine the semi-menstrual declination and parallax correction, and stated that the result was a remarkable conformity between the results of Bernouilli's theory, and the results of observations continued for nineteen years at the London Docks. But to render the aecordance is exact as it was found to be capable of being, it was necessary to compare the time of the tide, not with that transit of the Moon which immediately preceded it, but with that which took place about five lunar half' days. To explain this popularly, the learned gentleman stated, that however paradoxical it might appear to persons not acquainted with the subject, yet true it was, that although the tide depended essentially upon the Moon, yet, any particular tide, as it reaches London, Iwoud not be in any way sensibly affected, were the Moon at that instant, or even at its last transit, to have beer aunihilated; for it was the Moon as it existed fiffy or sixty hours before, which caused the disturbance of the ocean, which ultimately resulted in that tide reaching the port of London. The learned gentleman then exhibited several diagrams, in which the variations of the neights of the tide, as resulting fron calcula.
tions founded upon the theory, were compared with the results of observations. The general forms of the two curves which represented these two results, corresponded very remarkably; but the curve corresponding to the aetual observations, appeared thr more angular or broken in its form, for which the learned gentleman satisfactorily accounted, by stating that the observations were neither sufficiently numerous, nor sufficiently precise, from the very manner in which they were taken and recorded, to warrant an expectation of a closer conformity, or a more regular curvature. When it is recollected that the observations are at first written on a slate, and then transferred to the written register, by men otherwise much employed, and whose rank in life was not such as would lead us to expect scrupulous care. it was not to be wondered at, if occasionally an error of transcript should occur, or even if the observation of one transit was sct down as belonging to the next. When to tide thesecircumstances it was added, that the at London was in all probability, if not certainly, made up of two tides, one having already come round the British Islands.' meet. ing the other as it came up the British Channel, it was altogether surprising that the coincidence should be so exact ; and it was one among many other valuable results of these investigations, that it was now pretty certain that tide tables constructed for the port of London, by the theory of Bernouilli, would give the height and interval with a precision quite sufficient for all practical purposes, and which might be relied on as sufficiently exact, when due caution was used in their construction, and the necessary and known corrections applied. In conclusion, Mr. Lubbock said, the observations for the port of London had now been continued from the commencement of this century, and those for Liverpool, as we understood, about twen. ty-five years.

Prof. Whewell observed, that as, in the discussion of the relative level of land and sea, the tides of the ocean were an important element, he should preface the remarks upon that subject, which he intended to submit, by making a few observations upon the very valunble communication of his friend Mr. Lubbock. This communication he highly culogized, and pointed, out to the Section the importance of many of the conclusions, slould they prove hereafter to be generally applicable : but he expressed strongly his fears that this would not be the case, Observation had, in the instance of the tides, far outstripped theory, for many reasons, which it would be impos. sible to detail; but among the most prominent were the complexity of the problem itself involving the astronomical theories both of the Sun and Moon; the masses of these bodies; the motions of disturbed fluids, and local eauses tending to alter or modify the general geographical effect of the great tide wave at any particular place. It was upol. a careful review of these considerations, thai he was led to fear that it would be still man! years before theory would become so guardei and supported by local observations; as to a ford a sufficiently correct guide to be implicit? re ied on in these speculations. He instanc ed the tides of the British Cinannel, whici. a consequence of their excessive magnitude.
afforded magnified representations of the phenomena, by which the deviations become more rensarkable. At the port of Bristol the tide rose to a height of fifty feet, while towards the lower part of the Channel they only rose twenty, and along other parts of the coast not quite so high. The most strik. ing of Mr. Lubbock's conclusions was that by which it appeared that the ocean assumed the form of the spheroid of equilibrium, according to the theory of Bernoiulli, but at five transits of the Moon preceding the tide itself. By the calculations of Mr. Bent, however, it would appear, that although the observed laws of the tides at Bristol might be made to agree with Bernouilli's theory of equilibrium tides, by referring them to a certain anterior transit,-so far as the changes due to parallax were concerned, as also as far as those due to declination were concern-ed,-yet it turned out that this anterior period itself was not the same for parallax as for declination. The two series of changes have not therefore a common origin or a epoch ; so that in fact there is no anterior period which would give thecretical tides agreeing with observed tides; and, therefore, at least the Bristol tides do not at present appear to confirm the result obtained by Mr. Lubbock from the London tides. The learned gentleman then illustrated these views by diagrams, by the aid of which he explained to the Section the luni-tidal intervals, and the curve of semi-menstrual ine-quality-(this latter term, and the doctrine connected with it, was introduced into the subject of the tides by the learned gentleman himself, and, as is admited by all acquainted with the subject, with the most valuable result.)

Relative Level of Land and Sea, Prof. Whewell then proceeded to give an account of the procecdings of the committee appointed to fix the relative level of land and sea, with a view to ascertain its permanence, or the contrary. He observed, that the committee had not taken any active, practical steps for the important purpose for which they were appointed, because they had met with many unexpected difficult es requiring much consideration. It was, however, intended to appoint a committee for the same purposes, who should be furnished with instructious founded upon the views at which the former committee had by their labors and experience arrived. One method proposed was, that marks should be made along various parts of the coast, which marks should be reterred to the level of the sea; but here the inquiry met es in the very outset-what is the proper and preciee notion to be attached to the purase tae level of the sea? Was it high water-mark, or low water-mark? Was it at the level of the mean tide, which recent researches seemed to establish? In-hydrographical subjects the level of the sea was taken from low water, and this, although in many respects aconvenient, could not yet be dispensed with, for many reasons, one of which he night glance at-that by its adoption, stooal: which were dry at low water, were capable of being represeuted upon the maps as wel is the land. Tue second method proposec appeared to the learned Professor to be the sue fion which the most important and conlusive results were to be expected. It con.
sisted in accurately leveling, by land survey, 'ines in various directions, and by perma. sently fixing, in various places, numerous marks of similar levels af the time; by the aid of these marks, at fature periods, it could be ascertained whether or not the levels, in particular places, had or had not changed, and thus the question would be settled whether or not the land in particular locali. ties was rising or falling. Still further, by running on those lines, which would have some resemblance to the isothermal lines of Humboldt, as far as the sea coast, and mark. ing their extremities along the coast, a solution would at length be obtained to that most important practical question, what is the proper or rermanent level of the sea at a given place? Until something like this were accomplished, the learned Professor expressed his strong conviction of the hopelessness of expecting any thing like accuracy in many important and even practical cases. As an example, he supposed the question to be the altitude of Dunbury Hill referred to the level of the sea. If that level of the sea were taken at Bristol, where the tide rises, as before stated, fifty feet, the level of low water would differ from the same level on the sea coast at Devonshire, where the sea rises, say eighteen feet; and supposing, as is most probable, the place of the meantide to be true permanent level by no less a quantity than sixteen feet, which would therefore make that hill to appear sixteen feet higher, upon a hydrographical map constructed by a person taking his level from the coast of Devonshire, than it would appear upon the map of an engineer taking his level at Bristol. In the method proposed, the lines of equal level would run, suppoe from Bristol to Ilfracomb in one direction, and from Bristol to Lyme Regis in the other, and by these a common standard of level would soon be obtained for the entire coast.
Professor Sir William Hamilton rose toexpress the sincere pleasure he felt at the masterly expositions of Mr. Lubbock and Professor Whewell. One ennclusion to which Mr. Lubbock had arrived was to him peculiarly interesting, viz., that by which it appeared that the influence of the Moon upon the tides was not manifested in its effects until some time after it had been exerted, for a similar observation had recently been made by Professor Hansteen respecting the mutual disturbances of the planets. Mr. Lubbock rose to say, that the agreement between the results calculated from the theory of Bernouilli and those obtained from actual observation, were much more exact than Professor Whewell seemed to imagine; in truth, so close was the agreement, that they might be said absolutely to agree, since tae difference was less than the errors that might be expected to occur in making and recording the observations themselves. Mr. Whewell explained that he wished to confine is observations to the Bristol tides, as these were the observations to which he had paricularly turned his attention; and with re. spect to which, he should be able, at the presint meeting, to exhibit diagrams to the secion, which he felt confident would amply sear out his assertions respecting the tides. Mr. Lubbock stated, that so near, indeed so exact, had been the coincidence between the
observations made at London and Liverpool, and the theory, that he was so strongly inclined to believe that that coincidence would be found at length to be universal. Professor Stevelly inquired from Mr. Lubbock, whether he did not think it quite possible that local causes might exist, which weuld be fully capable of producing the deviations from the theory of Bernouilli; as, for instance, in the case of Bristol, so ably insisted upon by Professor Whewell, where the causes of the extraordinary elevation are the land-locking of the tide-wave, as it ascends the narrowing channel, and the reflexions of other tide-waves from several places. Now, particularly in the case of reflex tides, may it not so happen, and does it not, in fact, happen in several places, that they bring the actual tide to a given port at a time very different from that at which the influence of the Moon and Sun, if unimpeded, would cause it to arrive, and thus separate, as Professor Whewell had stated, the origin or epoch of the variations due, suppose to parallax and seclension, and even cause other deviations from Bernouill's theory? Mr. Lubbock replied, that unquestionably it might so happen ; but, in his opinion, the discussion of a few observations, like those made at Bristol, could not be expected to point out very exactly the origin or epoch of either of the variations of parallax or declination, with sufficient exactness, to furnish secure data for determining that they did not correspond to any one, common previous transit of the Moon.

JERRARD'S MATHEMATICAL RESEARCHES.

Prof. Sir William Hamilton read his report on Mr. George B. Jerrard's mathematical researches, connected with the general solution of algebraic equations. He wished, in the first place, to inform the Section, that no part of the grant of $80 l$. had been expended, which the Association had so liberally placed at his disposal for the purpose of procuring the assistance of persons competent to verify, by numercial computations; the method of Mr. Jerrard. The s.ason that he had not deemed it necessary to - resort to this expense was, that he had, at a very early period after the mecting of the British Association in Dublin, satisfied his own mind that the method of Mr. Jerrard entirely failed in accomplishing the solution of equations of the fitth and sixth degree; and he trusted that he should be able to lay before the Section, with as much clearness as the abstruse nature of the subject would admit of, the principal steps of a demonstration, which, to the mind of the learned Professor himself, at least, carried a complete conviction, that the method of Mr. Jerrard was not applicable until the equation, as a minor limit, had reached the seventh degrec. In order that he might carry the Section fully along with him, Professor Hamilton stated, that it would be necessary to give again : rather detailed account of the peculiarities of the very ingenious notation, devised by Mr. Jerrard, for denoting certain algebraic processes, resorted to in the application of his method. The Professor then proceeded to detail to the Section the several steps of Mr. Jerrard's method, clearly marking the steps previously known to analysts, and such as Mr. Jerrard had the merit of originating.

The principal peculiarity of formule seemed to be, that in an equation, transferred in ? particular manner for the purpose of elimi nating the co-efficients of the original cqua tion, the co-efficients were so ingenious]: obtained as to be entircly independent of thi degree of the original equation, and there fore to be of a similar form in all possible equations, the solutions of which were sought. As soon as he had prepared these formula. the Professor proceeded to demonstrate to the Section, that from the very nature of theil connexion with the original equation, they must fail in giving its solution, where it only rose to the fourth dimension, because he showed that this would involve the solution of an equation of the sixth degree, as a pre. liminary step. Equations, however, of this degree had been long solved, and it was only, therefore, in connexion with the generality of Mr. Jerrard's method, that its failure, as regarded them, was of any consequence. He then proceeded to give a similar demonstration of its failure, as regarded equations of the fifth and of the sixth degree; and during his discussion of this step of lis demonstration he took occasion to show that Mr. Jerrard's method had succeeded in reducing equations of the fifth degree to tables of double entry-a discovery, upon the value of which be enlarged considerably, and highly eulogized and complimented the author; insomnch, that he stated that if the method had accomplished nothing but this alone, Mr. Jerrard would have received the congratulations of the scientific world. He then proceeded to show, thit unless the index of the equation reached as a minor limit the number seven at least, a certain intermediate equation, concerned in the elimation, would be met with, along with a muliple of it, which, therefore, would not give a num. ber of distunct results sufficient to complete eliminations ; but, beyond that degree, he stated that he had satisfied himself that Mr. Jerrard's method would afford solutions of equations, which, even if they should, from their complexity, or other causes, be useless to the practical or merely arithmetical alge. braist, yet to those engaged in prosecuting inquiries involving purely symbolic algebra, he felt confident they would afford facilities and general methods of investigation, hitherto almost unlooked for and unexpected.

Mr. Babbage complimented Sir W. Hamilton upon the very lucid exposition which he had given of a subject which he characterized as bordering upon the very extremest limits of human knowledge, and congratulated Mr. Jerrard upon the success with which he had contrived so effectually to distinguish between the symbols of operation and those of quantity, in expressing the resuits of elimination. Engaged, as it was well known he was, in a branch of practical numerical science, he could not sulfer himself to be supposed to look with indifference upon a discovery which, if it sloould even fail in affording any practically important assis tance to his particular branch, must yet be admitted to afford the strongest promise of advantage to the more purely abstract branch of algebraic investıgation. Professor Peacock observed, that during the progress ot the discussion of this question he had no: tailed to remark the many advantages which
method, from the collateral improvements to which the prosecution of his principal object lad led, partly in suggesting new, and hithero unexplored, methods of elimination, and rartly by leading to a notation, which so :learly distinguished between the marks of juantity and the observations and changes which were to be resorted to in reference to them ; but as to the result itselt, he need sharacterize it no higher, when he added, that it was an advance in the science, which it did not appear that the celcbrated La Grange had ever contemplated, and which was not approached by the result of Stchern. hausen.
experinents with a view to determine THE INTERIOR TEMPERATUEE OF THE EARTH.
Prof. Phillips stated that this subject had for a long period engaged the anxious attention of scientific men, both at home and upon the continent; that the most accurate, as well as numerous, experiments indicated a decided elevation of temperature as a more depressed station below the earth's surface was attained; even when the depths descended to were small, this elevation of temperature became large enough to arrest attention; in fact, the temperature of the air, of the water, of the rocks, and of the soil, was found to auginent as we descended. But in order to ascertain, if possible, what portion of this luat arose from, or was connected with, an elevated temperature of the internal parts of the globe, as well as to ascertain whether the causes of those were local or universal, and, if possible, to arrive at the law of its distribution, it was deemed a matter of much importance to get rid altogether of the effect of the air's temperature upon the thermometer, as also the action of water, because the sources of the water in mines, \&c. must be in most cases entirely beyond the reach of observation. All these circum. stances induced the committee appointed by the Association to conduct experiments upon this subject, to take the temperatures of the rocks themselves alone, as the fundamental experiments. Witl this view, they had no less than thirty-six thermoincters made and carefully compared, and, although they well knew that these thermometers, fifter all the care which had been bestowed upon their construction, were by no means perfect or exact, yet, as their errors liad been carefully noted, by a comparison with the standard thermometers of the Royal Societies of London and Edinburgh, and each thermometer numbered, the errors admitted of an easy correction. Many of these thermometers had been already placed under the care of persons adequately instructed to conduct the requisite experiments, and some of them were still in the possession of the committec, who would gladly place them in the charge of any person giving adequate sccurity that they should be applied to the purpase for which they had been procured. The method of using thein was this: a hole large enough to. receive one of the thernometers, was first drilled into the solid rock, at the bottom of the mine, pit, or other proper place of obser. vation, to the depth of two or three feet at least ; into this the thermometer was then introduced and suffered there to remain for a number of days sufficient to ensure the at.
tainment of the temperature of the rock it． self．The temperature of the air at thr mouth of the pit，and，if possible，the mean temperature of the place，must be observec or obtained．Professor Phillips then stated， that observations had been made in this manner，and with some of these instruments． under the directions of Professor Forbes，at mines in the Lead Hills，in Scotland，and that Professor Forbes would take some early opportunity of bringing these observations more immediately under the notice of the Section；at Newcastle，under the direction of Mr．Briddle；at Wearmouth，under the care of Mr．Anderson；near Manchester， and at Northampton，under the direction of Mr．Hodgkinson；and within a few days， Professor Phillips had been enabled，through the kindness of a friend，te place a ther－ mometer in a deep coal mine at Bedminster， in this immediate vicinity（Bristol．）The results of these observations，so far as they had as yet proceeded，amply confirmed the fact of the merease of temperature in the parts under the earth＇s surface．As one example，the Professor stated，that in a mine， the perpendicular depth of which，below the surface，was 525 yards，the thermometer in the rock stood at 78° ，while the temperature in the open air at the mouth of the mine， varied from 30° to 80^{\prime} ，the mean tempera－ ture of the place being $47 \frac{1}{2}^{\circ}$ ．

Prof．Forbes then gave，from nemory， an account of the experiments which he had been the means of instituting in the Lead Hills．Before he did so，however，he wished to state that he had been informed that an artesian well had lately been met with in granite，and he then gave a general descrip－ tion of artesian wells．It was to this effect ： that heretofore，in making borings in certain districts through certain alternation of clays， and at length through certain rocks，a supply of water was reached，which rapidly rose through the boring to the surface，and con－ tinued to overflow at the top sometimes，as the term fountain indicated，in considerable quantity，and with considerable force．He instanced the artesian wells，or fountains，of the London clay districts；and added，that the temperature of these waters was found universally to increase with the depth of their source bencath the surface of the earth． Heretofore，no such well had been obtained by boring through the granite；and if the account，which he had received，were correct， and of its correctness he entertained little doubt，this would be a matter of considera－ ble interest as well to the geologist as to those who were engaged in scientific pursuits similar to those now under consideration． The observations made under his direction in the Lead Hills，alluded to by Professor Phillips，were almost entirely conducted by Mr．Irvinc．These obervations were par． ticularly interesting，from the fact，that the mines，in consequence of a strike among the workmen，had not been worked for many months，and at the same time it mosi fortunately happened that they were self－ drained，that is，by machinery worked by external power，without the aid of either ani－ mals or steam．This most fortunate con－ currence of favorable circumstances，whicl could be expected to be met with in so very few instances，at once embarrassed the obser． vations from many sources of error，which，
but for this，would have still left considerable loubts of the results being，partially，at least． iffected by the heat generated by animal： residing and work in the mines，as well as of artificial fires kept up for the purposes of ventilation or of originating power．It was upon these grounds that he perceived the importance of them，but had it not been for the valuable astistance afforded him by Mr． Irvine，who descended into the mine，and placed the thermometer and made the ob－ servations，he could scarcely have been as successful as the results already obtained warranted him in loping he should be． These results，which，of course，had not as yet reached the degree of accuracy which he still looked for，lead to the conclusion the：t the temperature in that mine increased about 50 of Fahrenheit for a descent of ninety－five fathoms．Professor Stevelly stated，that as practical utility was one of the principal objects of the British Association， he might be permitted to add，that the wa－ ters of these wells，in consequence of their temperature being in genereal elevated above the mean temperature of the place at which they delivered their waters，had been applied to the very important practical purpose of freeing machinery of ice in winter，insomuch， that by their instrumentality，machinery， such as water wheels，\＆c．，which had al． ways previously been clogged by ice for a considerable part of the winter，to the great loss of the owner＇s manufactory，were，by the aid of the waters of these fountains， kept constantly free；while the same water has been，in some instances，conducted ：hrough the factory itself，with a view to keep up a uniform and elevated temperature with－ in its walls，thus affording a second and a very valuable practical application．

Impróvement in the Manufacture of Charcoal．－It is well known that there is a very great loss of the carbonaceous portion of the wood in the usual careless way in which charcoal is made ；and yet the great－ er density which the coal acquires by this process，than by that of close distillation，ren－ ders its quality very superior for the purpose of reducing ores．This is probably owing to the slower carbonisation which the wood undergoes，by which its molecules are dilated with less rapidity and force

It has been ascertained by experiment， that when the interstices of the wood stacks for charcoal are filled with saw dust and the stack itself covered with it prior to the ap－ plication of fire，the product of coal is from seven to nine per cent．greater than in the ordinary way．It requires rather more caro in the beginning，to get the fire under way， and prevent its going out．

By covering，or mixing the charcoal witl tar，before it is put into the furnace with ore： so great a degree of activity is given to the fire，it may be worth the experiment to as． certain whether it would not be good econo－ my to employ the tar of certain districts in this way．－［Journal Conn．Usuelles，Mai． 1836．］

Process for determining the existence of Sulphurous Acid in Common Hydro． hlloric Acid．By M．Girardin，Prof at Rouen．－Put into a glass about half an
ounce of the hydrochloric acid to be tried， and add to it 120 to 180 grains of the proto． chloride of tin（common muriate of tin）very white and not altered by the air，stir it with a rod，and add to it two or three times as much distilled water，and agitate the mixture． If no sulphurous acid be present，nothing ap－ pears；the salt dissolves，and the fluid only becomes a little disturbed by the action of the air on the salt ；but if the smaller por－ tion of sulphurous acid be present，a cloud is fimmediately perceived，the acid becomes yellow，and when the distilled water is add． ed，the odor of sulphuretted hydrogen is manifest，a brown appearance ensues，and a powder is deposited．These phenomena are so obvious，that there need not be a mo－ ment＇s hesitation with respect to the sulphur－ ous acid．
Sometimes the brown color does not ap－ pear till after some minutes have elapsed－ The more sulphur，the deeper it is．The sulphuretted hydrogen is evident only when the water is added．The yellowish brown powder which subsides is a mixture of sul－ phuret and peroxide of tin．

This process will detect a hundredth part of sulphurous acid in the hydrochloric．－ The method is now practised in the work－ shops of Rouen．－［Annales de Chim．Mars． 1836．］

From the Journal of the Franklin Institute．
description of a machine for milling coin，invented and introduced into the mint of the united states；by franklin peale．
For the purpose of reducing manual labor，and expediting the processes of the Mint，I was induced，during the latter part of the last year，to make designs for the construction of a Milling machine，to be propelled by the steam power ordinarily employed in the Mint，a model of which I had the honor to exhibit at one of the late conversation meetings of the Institute．－ From these designs and model，the ma－ chines to which this communication relates， have been most satisfactorily executed in the workshops of the Mint，and are now in full operation in the coining depurtment．

To those who are unacquainted with Mint operations，it will be well to explain， that the operation of milling has for its ob－ ject，to tirow up a thickened edge upon the blanks or planchets，previous to their being struck，by which means a better bor－ der can be given to the coin，with less labor or injury to the dies，it is also，sometimes employed to impress letters or ornaments upon the edge of the coins．

A classical tripod，of cast－iron，supports the table on which are placed the feeding rubes and dies；through the centre of the stand a verical shaft rises from the room beneath，on the lower end of which is a pulley and its band，furnisied with a clutch box，by means of which，moyement is given，or arrested，as occasion requires．A winch handle may be applied to the hexa－ gonal top of the axis，for the purpose of adjustment，or to propel the machine，if equired，by manual force．
Upon the central axis is a wheel，fur－ nished with two steel dies upon it periphery，
the length of each of which corresponds to the circumference of the coin to be milled; and on the trilateral spaces of the table, are firmly screwed blocks for the outside dies, furnished with the necessary adjust-
ing screws, by means of which the proper degree of pressure is given. Upon the axis immediately above the central wheel, an oval cam, or eccentric, is placed, for the movement of the feeders; this cam is set
in time to place the blanks between the dies, when the extremities of the latter are opposite to each other. The feeders are levers, moving on centres, placed on each of the three arms of the gallows which supports the upper ends ot the axis; which levers are kept against the cam by spiral springs, contained within a cavity at the centre of motion. A circuiar blade, or pitcher, as it is technically called, takes the lowest blank from the pile contained in the feeding tubes, and pushes it forward, at the required moment, and a light curved spring prevents its being thrown in advance of the morement. Nearly all of the parts are exhibited in the annexed views.
This machine is triplicate, and all its feeders may be put in motion at the same time, or any one of them, as occasion may require. Each division is capable of milling 200 pieces, or more, per minute, equal to 12,000 per hour, with the attendance of a boy only; and during this rapid operation, separates any defective pieces that may pass into the tubes. This machine has been in operation since February of the present year, and has given unqualified satisfaction in every respect.

The Director of the Museum at Kertch, a town in the Crimea, on the Black Sea, lately discovered an ancient tomb of oblong shape, formed of very large hewn stones without any cement, containing a species of coffin in cyprus-wood, inclosing a bronze urn, with the cover firmly soldered on, in which were the remains of burnt bones. Near the urn were two broken vases of alabaster, which, probably, contained odoriferons essences as used by the Greeks at their funcrals. The shape of the urn, which has three tandles, and is in very fine preservation, makes it of high interest and value. It is not perhaps possible to fix its precise date, but there is every reason to believe, from the form and construction of the tomb, that it goes as far back as the first colonization of this country by the Greeks, that is, 150 years before Christ.

A highly curious and valuable antique has receutly been discovered at Weston, near Bath. It is of pure silver, hexagonal, of a tapering form, and about 14 inches in length. The top is cornct-shaped, ornamented with acanthus leaves, and was attached probably to the handle. It has been conjectured that this article was employed to hold a torch to light a funeral pile, and to be Roman.[Bath llexald.]

Adrertisements.

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads.

No. 264 Elizabet h street, near Bleecker street, New-hork.
RAILROAD COMPANIES would do well to exa mine these Cars; a specimen of which may be seen on that part of the New-York and Harlaem Railroad now in operalior.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build, on his Patent Plan, would respectfully inform Raiload and Bridge Corporations, that he if prepared to make cuntracts to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the following localitiea, viz. On the main road leading frum Balcimore to Washington, two miles front the furmer place. Acrons the Metawatukeag river on the Military road, in Maine. On the national road in Illinois, at sundry points. Ontbe Balumore and Susquehanne Rrailroad at three points. On the Hudson and Patterson Railroad, in two places. On the Boston and Worcester Railroad, at several points. On the Bus. ton and Providence Railroad, at sindry points. Acruss the Contoocrok river at Henniker, N II. Across the Souhegan river, at Milford, N. H. Across the Connecticut river, at Hnverliill, N. H. Across the Contoocook river, at Hancock, N. II. Across the An. droncoggin river, at Turner Centre, Maine. Across the Kennebec river, at Waterville, Maine. Acmss the Genesse river, at Squakiphill, Muunt Morris. New-York. Across the White River, at Hartfird Vt. Across the Connecticut River, at Lebanon, N. H. Across the mouth of the Broken Straw Creek, H. Across the mouth of the Broken Straw Creek,
Penn. Across the mouth of the Cataraugus. Creek, N. Y. A Railroaid Bridge diagonally across the Erie, Canal, in the City of Rochester, N. Y. A Ralroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the prasiest woond N hRIDGE ever built in America.

Notwithstanding his present engagements to build between twenty and thirty Railroad Bridges, and several common bridges, several of which are now in progress of consiruction, the subscriber will promptly attend to business of the kind to much greater extent and on liberal terms.

Rochester, Jan. 13th, 1837.
moses Lavg.

HARVEY'S PATENT RAILROAD SPIKES.

THE Subacribers are manufacturing and are now prepared to make coniracts for the supply of the above article. Samples may be seen and obtained at Messrs. BOORMAN, JUHNSON, AYRES \& Co No. 119 Greenwich Street, New-York, or at the Makers in Poughkeepsie, who refer to the subjoined cersificates in relation to the article.

HARVEY \& KNIGHT.
Pefgheerpate, October 25 th, 1836.
The undersigned having ottentively examined Harifey P Patent Flanciedand Grooved Spikes is of the opinion, that they are decidedly preferable for Railroads to any other Spikes with which he is acquainted; and shall unliesitatingly recommend their duption by the different Raitruad Companies whose wurks be bas in chargc.

BENJ. WRIGHT,
Chief Engineer N. Y. \& E. R. R.
New-Yori, April 4th, 1836.
Harvey's Flanched aınl Grooveá Spikes are evidently superior for Railroad to thuse in common use, and I shall recommend thrir adontion on the roads under my charge if their increased cost over the latter is not greater than some twenty per cent.

JNO. M. FESSENDON, Engineer.
April $26 \mathrm{~h}, \mathrm{i} 836$.
Bostun, April 26ih, is36.
ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.
WILLIAM V. MANY manufactures to order, inon castings for Gearing Mills and Factories of every Aleseription
ALSO-Steam Engines and Railroad Castings o every description.
The collection of Patterns for Martinery, is not equalled in the United States.

TO CIVIL ENGINEERS, \&c.
E. \& G. W. BLUN'T, 154 Water.st., corner of Maiden Lane, have recently received an aseortment of LEVELS, from different manufa "." rers, among others from Troughton \& Surins, which they warrant of the first quality. Circumferentors,
Levelling Staves, Prismatic Compasses, Mathematical Levelling Staves, Prismatic Compasses, Mathematical
instruments, Books for Engineers, etc., constantly on hand.
One of the above firm ja how in England superintending the manulacture of Theodulites, Transit In struments, etc.- and any ordera for Instrumeats, not now on hand, will be furwarded him, and executed promptly.
$5-1 f$

ARCHIMEDES WORKS.
(100 North Moor street, N. Y.)
New.York, Febraary 12th, 1836. THE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furnish all kinds of Machinery for Railroads, Locomotive Eaginc* of any size, Car Wheels, such as are now in sucress. iul operation on the Camden and Ambuy Railroad itwne of which have failed-Castings of all kinds Whaels, Axles, and Buxes, furnished aishurfest nutice
H. R. DUNHAM \& CO.

AMES' CELEBRATED SHOVELS,

SPADES, \&c.
300 dozens Ames' superior back-strap Shovels

150 do do Gold-mining Shovels
100 do do plated Spades
$\begin{aligned} & 100 \text { do do plated Spades } \\ & 50 \text { do } \\ & \text { do socket Shovels and Spades. }\end{aligned}$
Fogether with Piek Axes, Churn Drills, anil Crow Bars (steel pointed, mannfactured from Salis)ury refized iron-for sale hy the manufacturing agents,

WITHERELL, AMES \& CO.
No. 2 Liberty street, New-York.
BACKUS, AMES \& CO.
No. 8 State strcet, Albany
N. B - Also furnished to order, Shapes of every dearrintion. made from Salshury refined Iron v4-If

an elegant steam engine AND BOILERS, FOR SAILE.

THE Steam Engine and Builers, belonging to the STEAMBOAT HELEN, and now in the Noveliy yard, N Y. Cunsisting of one Morizontal high pres.
sure Engine, (but my be made to condense with litsure Engine, (but my be made to cordense with lit-
tle ndditional expense) 36 inches diametcr, 10 feet struke, with latest inproved Piston Valves, and Meta. lic packing throughout.
Also, four Tubular Builers, constructed on the Englixh Locomotive -plan, containing a fire surface ot over 600 feet in each, or 2500 fret in all-will be suld cheap. All communications addressed (post paid)
tothe subscriber, will mee: with dne attention to the subscriber, will mee: with dne attention

HENRY BLRDE.N.
1836.
Troy Iron Works, Nov. 15, 1836.
A SPLENDID OPPORTUNITY TO MAKE A FORTUNE.
THE Subscriber having obtaned Letters Patent, from the Guvernment of France, granting him the exclusive privilege of manufacturing Horse shoes, by his newly invented machines, now offers the same lor sale on terms which canuut fail to make an independent fortune to any enterprising gentemen wishing to embark in the same.
The machines are in constant operation at the Troy Iron and . Dail Factury, and all that is necessery to satisfy the most incredulous, that it is the moss Valuasle Patent, ever obtained, eitler in thisurany other rountry, is to witness the ig reration which is open for inspection to all during workugg huers. All let. tefs audressed to the subscriber (post paid) will re. eive due attention.
'I'roy Iron W orks,
IIENRY BURUEN.
N. B. Horse Shues of all sizes will be kept cona stantly for sale by the pincipal Irun and Hard. ware Merchants, in the 1 nited States, at a small adiance above the price of Horse Shoe Iron in Bar. All perSUns selling the same, are Authorisen to warrant EvERY shoe, iflade from the akst refined iran, and any faining to render the most perfect satispacutin, buth as iegards workinanship and quality of Iron, wilf be received back, and the price ol the same
refuided. refuided.
II. BULDEN. tith

NEW ARRANGEMENT.

ropes for inclined planes of railroads.
WE the subscribers having formed a co-partnership under the atyle and firm of Folger \& Coleman, for the manufacturing and selling of Ropes fur inclind planea ut railruads, and for outher usis, offer to supply ropes fur inclined planes, of ans lengib required without splice, at short notic e , the maliufacturing of cordnge, heretofure carried on by S. S. Durfee © Co., will he dune by the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee of Co. All orders will be promplly attendell to, and ropes will be shipped to any port in she United Miates.
12th month, 12ih, 1836. Hudson, Culumbia County State of New-York.

33-4.
ROBT. C. FOLGER.
MiEORGE UOLEMAN,

PATENT RAILROAD, SHIP AND BOAT SPIKES.
The Troy Iron and Nail Factory keepa conrtantly for sale a very extensive assurtroent of Wrought Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five ycars successful operation, and now aimest uni. versal use in the United States, (as well as England versal use in the United states, (as well as England,
where the subscriber obtained a patent,) are found Where the subscriber obtained a pate
superior to any ever offered in market.
Railroad Cumpanies may be supplied with Spikes having countersink heads snitable w the holes in iron rails, tu any amount and on shert notice. Almost all the Railroads now in progress in the United Statew are fastened with Spikes made at the above named fac-tory-for which purpose they are found invaluable, as their adhesion is more than double any commun spikes made by the hammer.
*** All orders directed to the Agent, Troy, N. Y., will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
\& * *. Tuiknses are krpt for sale, at factory prices, hy I. \& J. Tuwnsend, Albany, and the principal Iron Mierchants in Albany and Troy; J.1. Brower, 222 Water
street, New-York : A. M. Jones, Philadelphis: T. Janviers, Baltimore; Degrand \& Smith, Buston.
P. S.-Railruad Companies would do well to forward their orders us eurly as practicable, as the subscriber is desir us of extending the manufacturing so as to keep pace with the daily increasing demand fur
his Spikes. (1J23am) H. BURUEN.

RAILWAY IRON, LOCOMOTIVES,\&c. THE subscribers offer the following articles for sale.
Railway lron, flat bars, with countersunk holés and mitrell juints,
350 tons $2!$ by $\mathrm{t}, 15 \mathrm{ft}$ in length, weighing 1 bs

with Spikes and Splicing Plates adapted thereto. To be sold fipe of duty to State goveruments or incorporated companus.
Orders tur Pennsylvania Builer Iron executed.
Rail Road Car and Locumotive Eugine Tirea, wrought and turned or unturned, weady to be fitted on the wheels, viz $30,33,36,42,44,54$, and 60 iaches oiameter.
E. V. Patent Chein Cable Bolts for Railway Car axles, in leugthe of $12 \dot{s}$ et 6 inches, to 13 feet 24,24 3, 31.34, 34, and 31 inches diameter.
Chains for Inclazed Planes, shurt and stay links, manufactured from ihe E. V.Cable Bolts, and proved at lie gratest atrain.
India Hubber Rope for Inclined Plines, made from N' w Zeraland flax.
Also Pau'nt Hemp Cordage for Inclined Planes, and Canal Tuwing Jines.
Paient Frlt fur placing between the iron chair and ston bluck of Euge Ra: ways.
Every description of Kailway Iron, as well as Locomotive Engines, inflperted at the shortest notice, by the agency of one of our partners, who resides in Fingland tor this purpose.
Mr. Solsmun W. Ruherta, a highly respectable American Eugineer, resides in Elugland for the purpuse of in ipecting all Laromutives, Machinery, Railway lrun \&c. ordered thruugh us
28 if
A. \& G. HALSTON.

* Philadelphia, No. 4, South Front st.

MACHINE WORKS OE ROGERS, KETCIIUN AND GROSVENOR, Paterton, NewJersey. The undersigned rec, ive orders for the following articles, manufaetured by thom, of the muat superior description is every particu'ar. 'I heir works b. ing extensive, and the number of lands employed hring large, thej are enabled to execute both large and small urders 'sith prumptniss and despatch-

RAILROAD WORK.

Locomotive Stenm-Enginps and Tenders; Driving and uther Licumintive Wheels, Axles, Sprinf:s and rlaige Tires; Car Wheels of east iron, from a viriety of patterns, and Chills; Car Wherls uf cast iron.
with wrought Tites. with wiought Tires; Axles of best A merican refined iron ; Springs ; Boxes and Bults for Cars.
COTTON WOOL A.ND FLAX MACHINERY,
Of all descriptions and of the must improvid Patterns, Stylo and Wurkmanship.
Mill Gecring and Millwright work generally; HyIraulic and uther Presses; Prase screwa; Callenlers; Lathes and Touls of all kinds, Iren and Brase Castinge of all descriptions.
hOGERS, KETCHUM \& GROSVENOR
Pattorson, New.Jersey, or 60. Wall street, N.

AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT NO. 132 NASSAU STREET, NEW-YORK; AT FIVE DOLLARE PER ANNUM, I'AYABLE IN ADVANVE
D. K MINOR, and

GEORGE C, SCHAEFFER; $\}$ Editors and
GEORGE C. SCHAEFFER; \} Prorietors.]

SITURDIY, FEBRUARY 1\&, 182\%.
|J. W. Erwin, Rossvile, Onio; Jan. 1, le3s H Lesner, Ric!mind, Inda., " 1837
E. \& T. Fairbauks, St. Jobnsbury Plain, V'., Jàn. 1, 1838
J. Hinde, Esq. London, Eug., Jan. 1, 1838
great western rallroad in uppercan ada and moligan, and concentiration of inprovements at the town of hunon, foot of lake heron, mich. igan.

Our readers will remember, that in the Journal of last week we inserted, as taken from the "St. Thomas (U. C.) Liberal," an account of a meeting of the Directors of the "Detroit and Niacara River Railroad Company," hell at 'Toron:o ; and also a Letter from E. A. Brush, Fsq., of Detroit, adrocating the contemplated improvement; since then we have received additional information of morements niaking for the accomplishment of the same object-a Great Western Railroad-but by a different and much shorter route, which wé now lay before them for their consideration.

To the Editurs of the Railroad Journal.
Gentifmen,-I find in the last number of the Railroad Journal, an account of the proceedings of a meeting of the Directors f the "Niagara River and Detroit Railroad Company," held at Toronto, on the 3rd of January last ; accompatiied by a letter from E. A. Brush, Esq.; comparing he relative adrantages of the two routes hrough Canada, viz.: from Black Rock - Detroit, and thence across the peninsula - St. Josephs, with that from Hamilton,
at the head of Lake Ortario, to Fort Gratioi, at the fuot of Lake Huron, and from hance in a direct cuaree to Crand Riser, on Lake Michigan.
When the gecgraphy of the North and West is consudered, otte thing appears beyond a do:bl: that to cumplete the lint of direct comnercial comanunication beaween the Atlantic and the Misissippi, a section of the rouic inust pass over the southwest: ern conner of Upper Canada. The Com: pany, the proceedings of whose Directors you published last weetr, has been formied for the construction of such a road from Black Rock to Sandwich or Detroit ; and the meeting was held for the purpose of raising funds, and raking measures for the employment of an Enginecr. But there is a question whether this would be the nost eligible route. There surely a;e zerous otjections to it. It woull be a Rallond running nearly parallel with the shore of Lake Erie, a distance almost equal to its whole length ; and tern inating at the two points indicated, it would be connected with neither of the great Lakes; not even with Lake Erie; but the Internal Commerce of those great waters, which must a some day be of such immense importance, would be subject to all the delay of River novigation, before its commodities could reach the main thorough are to the Ocean. The route proposed, different from this, and which the subjoined report so strongly advocates, is to connect the head of Lake Ontario, almost in a direct line, with the foot of Lake Huron. This route shartens the distance at least one half, if nat more.A single glance at the map shows the natural directness of this route. Every
facility is afforded in the contiguous and almos: inexhaustible timber lands of the vicinity, for nearly any amount or kind of :wood material, while the suiface of country is peculiarly level and favorable. When I consider this finness of the country intermediate to the two Lakes for any public work, in connexion with the short distance and near abundance of material, I almost wonder how, among all the enterprising echemes which characterize the age, this should so long have escaped notice.

From late intelligence, however, it would appear that the opening prospect of this road, although late, has yet met with a de. gree of favor proportioned to its lateness. It will be seen from the report following, that the Special Committee of the Commons of Canada, most strongly urge upon the attention of Parliament, the advantages of this route, as emphatically the route of the "Great Western Railroad." The loan of $\$ 800,000$, which they advise to be made to the Company, already chartered for the construction of a road the greater part of the distance, shows clearly their opinion of the importance of the measure, as well as the enterprising spirit with which they hasten its completion.

I will remark too, while upon the subject, that his example of Canada, has not been without its influence upon Michigan. Indeed, the interest of the two is so intimately connected with this concentration of improvement at the foot of Lakc Huron, that it would have been truly singular if she had not stepped forward to give another signal proof of the characteristic public spirit of her citizens. By late intelligence, I learn that the Committee on Internal Improve. ments of the Legislature, now in session at Detroit, in their general report, recommend the construction, by the State, of two grand Railroads across the Peninsula, viz: one from Detroit to St. Josephs, and the other from Fort Gratiot, or Huron, to Grand River. They urge the House to consider these as govermment works, and upon a fund of $\$ 5,000,000$, to be loaned expressly for the purpose, to assume the direction and provide for the immediate construction of them. Notice is also given in the Detroit papers, of an application to the present session for a charter to construct a road from Detroit to Huron, at the foot of the lake. This will complete the chain, and thus, taken in connexion with routes of communication West of Lake Michigan, between Chicago and the Mississsippi, we have the great Northwestern thoroughfare from the Valey of the West to the Eastern ocean com. pletely defined and adjusted. I will soon
furnish your readers with the sobstance of the Michigan, report in a succeeding num. ber.
extract from the report.-to the honorable the commons house of assembly.
The Committee to whom was referred that part of His Excellency the Lieutenant Governor's speech at the opening of the present session which relates to the subject of a great western railway, and also the petition of the President and Directors of the London and Gore Railroad Company, beg leave to transmit the following as their first report:
That having given the important matter referred sto them, that of "a great Western Railroad, as being of infinite benefit to the Province, as well as promoting our friendly intercourse with the neighboring States," in connection with the before mentioned petition, their best consideration, your committec are of opinion that the route taken up by the London and Gore Railroad Company, from the head of Lake Ontario to the town of Loudon, is the proper one for accomplish. ing the object recommended by His Excel. lency, and to give so laudable a purpose full effect, your committee recommend that the charter of the London and Gore Railroad Company should he amended, if they do not at present possess sufficient authority, so as to enable them to continue their line of route from the town of London to Point Edward, at the foot of Lake Huron, and that your Hon. orable House should address His Excellency the Lientenant (lover:sor, praying that His Excellency will be pleased to set apart the proceeds to be derived from the sales of the Crown Reserves in the several townships in the London and Western Districts which have been surveyed since the granting of the Canada Company's charter, as well as the proceeds of such other lands of the Crown in that portion of the Province as may be yet subject to the disposition of His Majesty's government, to be applied in the construction of the said Railroad. On this subject your committec have agreed to an address, which they take leave to report herewith, and recommend to the adoption of your Honora. ble House.

Your Committee are deeply impressed with the belief, that the facilities which will be created by the completion of "a great Western Railroad," for all kinds of travelling and goods passing in transitu, and the transportation of the surplus products of the portion of country through whose vicinity it will pass, to their proper markets, besides increasing to an incalculable degree our pow. ers of production, will add greatly to the value of the waste lands of the Crown in the western portion of the Province particularly in the rear of the north western coart of Lake Huron, the exploring of which has hitherto been neglected. And your Committee will add, that the completion of the work will afford the most ample facilities to our neigh. bors of the American States, who will find it to their advantage to pass through the Province on their way to the great western interior of their country, by which means the tolls and profits of the work, and the necessary resources for keeping it in repair will be increased in a degree commensurate with the business which the improvement will create.

Your Committee are aware that the London and Gore Railroad Company have already made their survey to the town of Chatham, and determined to prosecute the work to that point as soon as they bave sutticient means, and when this work is completed, all travellers, with their commodities, can avail them elves of a daily water communication by steamers from Chatham to Sandwich or Detroit, so that those who may be desirous of passing from: Detroit on the railroad from that place to the town of St. Joseph, near the head of Lake Michigan, can be accommodated.

Your committee beg leave to'suggest that if the town lots held by government in the several towns of London, Brantford, and Chathatn, and in all other town plots which may hereafter be laid out in the vicinity of the said route under the authority of Government, will be readily sold after the public confidence is well established in the work, and that the proceeds thereof would go very far towards the completion of the same-that the commencement and vigorous prosecution of the work will excite a spirit of emulation, enterprise and activity throughout the western country hitherio lying dormant. That a considerable portion of the people of this Province, occupying some of the best lands in the country through which it is intended said railroad shall pass, are completely shut out from market for want of a proper internal communication. That the completion of this would have the effect of securing to this Province the principal part of the travel now crossing Lake Erie in American bottoms, and diverting the same to Lake Ontario, and by that means through the St. Lawrence Canal-thereby rendering the work truly a great national undertaking.

That your committee would recommend that the stock of the said Company be increased to the sum of $£ 500,000$, and that a loan of $£ 200,000$ be granted to the said Company on the following terms and conditions, and that the same be secured out of the Public revenue.

Your committee have agreed to the subjoined resolution, which they earnstly recommend to the adoption of your Honorable house.

All which, is respectfully submitted.

Allen Nafier Macnab.

Chairman.
Resolved, That there be granted to His Majesty, the sum of $£ 200,000$ to be advanced by way of loan, to the London and Gore Railroad Company as circumstances may require, on the credit of the Public revenue. That the same be secured to the Province by the said railroad, and all its works, and that the style and the title of the said Company be henceforward chang. ed to that of "the Great Western Railroad Company."
address to his excellenay the hievtenant governor, reported by the committee.
Mayit please Your Excellency,We, His Majesty's most dutiful and loyal subjects, the Commons House of Assembly of Upper Canada, in Provincial Parliament
assembled, humbly beg leave to inform Your Excellency, that we have taken into our most serious considerution th. 1 part of Your Excellency's Speech from the 'Thront at the opening of the present Session; which recominends the construction of a "Great We:tern Railroad as being of infinite ben efit to this Province, as well as promoting our friendly intercourse with the neighbor ing States.:

We entirely concur in the sentiments expressed by your Excellency, and are of opinion that the important object can be best attained by extending the charter of the London and Go:e Railroad Company, and determining the Western part of its route to be from the town of London to Point Edward, at the foot of lake Huron, or head of the river St. Clair. The "great Western Railroad" will then be from the head of lake Ontario to the foot of lake Huron, a distance of $\mathbf{1 3 2}$ miles.

And for the furtherance of this most desirable object, we humbly pray that your Excellency will be pleased to set apart the proceeds to be derived from the sales of the Crown Reserves in the several townships in the London and Western districts, which had been surveyed since the granting of the Canada Company's charter, as well as the proceeds of such otier lands of the Crown in that portion of the Province as may be yet subject to the disposition of his Majesty's government, to be applied in constructing the said great Western Railroad.

At a Meeting of the President and Directors of the Baltimore and Ohio Railroad Company held yesterday, the following preamble and resolutions were adopted-copies of which have been furnished to us-and which we take great pleasure in publishing. confident as we are, that the appeal, thus made to the citizens of Baltimore, decply interested as they most undoubtedly are, will be promptly responded to-
"Whereas it has been represented to the Board of Directors of the Baltimore and Ohio Railroad Company, that unless the sum required to be subscribed to the Staunton and Potomac Railroad Company, before that Company can go into operation, to wit. the sum of five hundred thousand dollars shall be subscribed before the first day of March next, that the charter of the said company will expire by limitation and become wholly void-and whereas, should the said charte be thus permitted to expire, it is altogether uncertain whether the same privilege would ever again be granted by the Legisplature of Virginia, although, while the chatter is in existence, there is every reason to believe that the latter State, true to her general po licy, will contribute two-fifths of the amount necessary to complete the work-Ani wnereas it is represented that the citizens o the: Vulleyof Virginia have subscribed twa hundred and fifty thousand dollars, which i: all that can be anticipated in that direction and that the city of Baltimore is the source from which alone can be procured the amount necessary to secure the charter an to secure also the subscription of the Stat of Virginia. And, whereas, the importanc of the Staunton and Potomac Railroad whether as a new channel of communication.
between Baltimore and the rich and productive region that it traverses, or as a tributary o the Baltimore and Onio Railroad, eahancng the value of the later work, cannot be oo highly appreciated by the people of Bal imore-Tuerefore, be it Resolved, That in he opinio.s of this Board the completion of ae Staunton and Potomac Railroad is a natter of the highest consequence to the sity of Baltimore, as the certain means of ecuring an immense trade and travel from he South.West, that will otherwise seck the Atlantic sea oard by other clamnels.
Resolved, That in the opinion of this Board it especialy concerns all those who are interested in the prosperity and increase of Baltimore, to lend their aid by subscribing to the stock of the Staunton and Potomac Railroad Company, with a view to the preservation of its charter and the completion of the work that it is authorized to make.

Resolved, Tinat a copy of these resolutions be addressed to the Board of trade, representing, as that body does, the interests of the commercial community ; and that taeir aid in obtaining the requi ite subseription be most respectfully solicited.

Resolved, That Messrs. Co'aen, Patterson, Swan, Donaldson and McKim be a committee to take such measures as may be useful in their judgment to procure the subscription aerein refericd to, and to the necessary extent.

Resolved, That a copy of these resolu. tions be publis!sed in the newspapers of this city."-[Balt. Gaz. Feb. 8th.]

From the Indiana Farmer.

Almost cvery day furnishes some new attempt to extend or to modify the interual improvement system of last winter; but it appears ell are destined to the same tate. On Tues lay last an attempt of this sort was made, the ultimate object of whica was, to change tie rout of the railroad from this place to Layfayette, so as not to make Craw. lordsville a point, bat to run on a direct line to Lafayette.

The friends of the measure contended for it on the score of economy ; its opponents used the same argument, urging that if the proposed measure should carry, that then the Albany and Crawfordsville road must beextended to Lafayette to connect with the canal; while upou the present plan the distance was only lengthened soine 7 miles, and the one road from Crawfordsville would serve to connect both works with the canal. Several gentlemen took part in the debate; but especially Mr. Longly of Boon, in favor, and Messrs. Curry and Lee, of Montgomery, gainst the measure. And as above intimared, it failed.

Daniel Yandes has been appointed by and with the advice and consent of the Senate, is a member of the Board or Internal In. srovements, Vice David Burr, resigned.Indiana Farmer.]

Michigan Road.-On Wednesday, in he House, a bill provid ng for an appropriaon of $\$ 30,000$ to the Michigan road, $; 10,000$ north, and 10,000 dollars south o Indianapolis-was considered, spiritedly de sated, and finally passed; but on Taursday
moraing, after a long and animated debate the voie of the preceding day, passing the bill, was reconsidered, and the bill, after sone diselason, was re-committed with in structions, from the tenor of which we infer: red tast no direct appropriation would be made for tise improvement of this great tho. roughfare of travel at present.-[Indiana Farmer.]

Dunkire Harbor.--Tue last Van Buren Times feels somewhat piqued at what we published two weeks ago, about Dunkirk Harbor. Now, we know that facts are stubborn things, and did not expect at the time that the 'Times could withstand what was contained in Lt. Smith's Report, without at least one struggle, if not more. If the Times does not like the language of the report, it must call on Mr. Smit:-he is answerable to an enlightened public, for the language he there makes use ol.

The slang of the Times with regard to Dunkirk Hubbor, is not worthy of notice. Cae public it would sceny, knows the nerits of the two places, better taais the editor of tue Times; and we are willing to abide by and decision, thouga tue Tumes is not. Damiak Bcacon.]

Frum the llarrishurg intelligencer. the great rallroad.

The project of extending the railroad from Harrisburg to Sunbury, and from Suna bury to Erie, is one of the noblest, inost useliul, and practicalle of any of the day. Dat third of the whole distance is nearly completed. The whole length irom Philadelphia, by the State railroad to Lancaster, the Middletown railroad to Harrisburg, and a railroad by the way of Sunbury and Williamsport tu Jake Erie, will not exceed 400 niles. The whole of this distance can be made with ut a single inc'ined plane where stationary engines must be used, and following the waters of the Susquebanna, the Sinnemahoning, the Tionesta, the Alleghany and the Brokenstraw, three fourths of the whole distance there will no: be a plane of any kind of an inclination of 50 feet to the nile. 'The State railroad froin Lancaszer to Philadelphia, will have the highest grades upun the whole route. This alune will give the Peunsylvania railroad the advantage over every other railroad frum the Atlantic to the Lakes; that has ever, ur can be project d. Its leugth, too, is one fifth less. Besides, it will run tbrough one of the richest mineral regions in the world.The products and trade of the gieat Lakes, will not on'y seek an outlet to the Ocean by this route, but the great iron, as well as the bituminous coal region of the West Branch, and the anthracite inountains and rich agricultural vallies of the Susquehanna will swell the vast stream of wealth, that wisl pour into the lap of our commercial netropolis, when this great work shall have veen completed.

We have lately read the report of the engineer that surveyed, the New-York Rail. road, through the Southern counties of that State, from Dınkirk, on Lake Erie, to rappan, 24 miles from the city of Now

York, on the Hudson river. The following is it length :
Western Part,
Eas ern Part,
Froms the Eastern termination,
to the city of New.York,
260 miles. 222 do.

24 do. Whole length, 506 miles.
Thus, it will be seen, that the route through Philadelphia, and then across New Jerscy, will be nearer to New-York itself, from her own termination, Dunkirk, than on her own railroad, when it is finished.But this is not all the advantage we have in distance. Dunkirk is about 40 miles further down the Lake, than the town of Eric. and this distunce, added to the New-York road, will show, that no passengers from the westorn States will take the New-York road, when our road is finished,-when Philadelphia can be reached through Pennsylvania, by a route 150 miles shorter, and New.York itself is 50 miles nearer, than on her own contemplated railroad. But even this great saving of distance is not our greatest advantage. The New-York railroad has a number of inclined planes. By the report now lying before us we perceive, that there are eleven planes, with an inclination of 50 feet to the mile. Six p anes with inclinations varying from 50 to 60 feet per mile, and five having inclinations from 50 to 70 feet per mile. Twelve miles have a grade of 70 feet inclination to the mile. Four miles and nearly one half ascending at the rate of 72 feet per mile. Three fourths of a mile, at 100 feet per snile; and more than one mile and a half at 316 feet per mile. The following are only a few of the planes, with tbeir grades, length and distance from Tappan on Hudsun river, 24 miles from New-York:
Distance from Length of the Inclination
Hudson river.

Miles.	Miles.	Chains.	Peet. 76
188	5	278	100
193	5		60
194	1		70
203	7		61
207	3		70
348	4	40	65
349	1	25	72
473	1	60	316

Frum the Petersburgh In:elligenser.
At a meeting of the Stockholders of the Roanoke, Danville and Junction Railroad Company, convened at Powell's Hotel, in the 'L'own of Petersburgh, on Monday, the 23d day of January, 1837, pursuant to public notice, given by the Cornmissioners, named for the Town of Danville, in conformity to the provisions of the 4th section of the General Assembly of Virginia, entitled "an Act to incorporate the Roanoke. Danville and Junction Railroad Company," passed the day of 1836.

It appearing to the meeting that 4859 Shares of the Capital Stock have been subscibed-and a majority of said shares being represented by Subscribers present, and by proxy: On motion of Mr. Spooner, Andrew S. Fulton, Esq., was called to the
chair, and John D. Townes, appointed Secretary.

A report of the proceeding of the Commissioners, for the 'Jown of Danville, was presented by George Townes, Esq., read, and ordered to be printed.

On motion of Mr. Woodis, the meeting proceeded to the election of a President and five Dircctors; when Vincent Witcher, Esq., was unanimously elected President, and George Townes, Benjamin W. S. Cabell, and william Linn, of Danville; John Foster, of Evansham, and Wright Southgate, of Norfolk, were duly elected Disectors of the Comp:any for 12 months.

On motion, it was resolved, that the Pies. ident of the Company be allowed the sum of Fifteen hundred Dollars, as a salary for 12 months.

Olı motion of Mr. Spooner, it was
Resolved, That a committee be appointed to prepare a memorial to be presented to the Legislature of Virgima, asking a subscription by the State to the Stock of the Roanoke, Danville and Junction Rail road Company-and to prepare and repor to a future meeting of the C mpany, such Bye-Laws und Regulations as may be deemed necessary for the govermment of the Company and its officers. Messrs. Spooner, Branch, G Townes, Garland and Martin, were appointed a committee pursuant to the foregoing r solution.
On motion, it was
Resolved, That the annial meeting of the Company be held in the Town of Danville, on the last Monday in July next.
On motion of Mr. Townes, the meeting adjourned until to-morrow mornmg, 16 o'clock.
'Tursdar January 24, 1837.
The meeting convened pursuant to ad journment.
The Secretary not being present, Mr. Garland was appointed Secretary, pro tem.

On motion of Mr. Wondis, it was
Resolved, That the President and Directors be and they are hereby authorised and required to refund to the respective contributors, the several sums advanced by them to defray the expenses attending the experimental survey.

The Committee appointed on yesterday, 10 prepare a memorial to be submitted to the Legislature, made a report, which was concurred in, and it is ordered that the President of the Company, cause the sanie to be presented to the Legislature withou: delay.

On motion of George Townes, Esq., it was

Resolved, That the President and. Di rectors be requested to proceed with all possible despatch to the execution of the work, and all other business necessary is The expedition and successful completior. thereof.
Rcsolved, That these proceedings b_{1} signed by the Chairman and Secretary and that the respective Editors of News papers published in Norfolk, Petersbury Richmond, Danville, Evansham, and At ingdon be, and they are hereby requester to publish the same.

On motion of Mr. Martin, the meetin adjourned.

A. S Fulton, Chairman.

J. D. Townes, Secretary.

From the Dunkirk Beacon.

Dunkirk Harbor, etc.-The report of Lieut. Smith, Superintendent of the public works on Lake Erie, will be found in part, below. We give such extracts as relate to Dunkirk, and such other harbors as are in this vicinity. By this report, it appears that Dunkirk is the point fixed upon by the gen. eral government, to exoend the sum of one hundred and vinely-four thousand dollars, for erecting a permanent stone wall nine feet high on the breakwater in front of the harbor. This report gives a broad and comprehensive view of what has 'ong been needed at this harbor; it recommends, second, the construction of a permanent stone wall nine feet high, on the pier at dhe western entrance into the bay, from the contemplated beacon light, 480 yards rumning in toward the shore. Third, the construction of a pier 320 yards long, to be sunk in eight feet water, and car. ried up to two feet above the surface of the water; to be crected on the south side of the eastern channel. Fourth, to add 480 yards crib work to the east end of the breakwater or pier in front of the bay.
There is one feature in the report which we take pleasure in mentioning-it knows no harbor between Buffalo and Erie, except Dunkirk. We mention this for the exclusive benefit ofour Van Buren neighbors, who we understand, deny the correctness of ex. tracts which have been made from the report, in eastern papers.

Office of Sup. Public Works,
Buffalo, N. Y. September 20, 1856. Brig. Gen. Gratiot, U. S. Army,

Chief Engincer, Wushington, D. C.
Sir :-I have the honor to report, that I assumed the duties of general superintendent of such of the works on the south shore of Lake Erie as are confined to the Engineer Department, by your direction, from the 1st to the 9 th August last ; my predecessor ha. ving, on the last named day, ceased to dis. burse.

With the rema,k, applicable alike to every work on this lake, that the appropriations were not received for this year until late in the month of August, and that the season from that time has been such a one as has uever before been known, of continued and violent storms, generally from some northwardly direction, with the water of the lake, on an average, at two feet eight inches greal. er height during the whole season, than it las been in any season for twelve years past, 1 offer the following report of the progress of the works.

Dunkirk Harbor, New-York.-The progress of this work during the season has consisted in: 1st. The buildingup to 5 feet in height above the surface of the water, and inishing off 156 feet of the west pier, and 166 feet to the height of 4 feet above the wa. er, making 322 feet. Of the foregoing 20 teet left unfinished last fall was carried way by storms and ice to $3 \frac{1}{2}$ feet below the water, and is now rebuilt. This portion of the work is constructed in a depth of ten ceet of water, and is 22 feet in width: .. The
west pier is entirely complete on the present plan. 2 d . Building up 200 feet of the we.st end of the outer pier to the lieight of 4 feet above the surface of the water. To repair this effectually, it was necessary to cut down and remove, 1 foot below the surface, 140 feet of this work during the season. This is aloo, now, complete and in good condition. 3d. Filling up with stone, planking, and capping 280 feet of the outer pier left unfinished last fall, the stone having been carried out by the storms and ice during the gales last fall and winter to the depth of 4 feet ; this is now finished and in good order. Of this pier, 1,120 feet still remain to be repaired this season. The repairs will consist of filling it up anew with stone herctofore carried away at different heights, covering the whole anew with plank ; a repair rendered necessary by the decayed state of the present plank, and the danger of still further injury to the work from the storms. The harbor of Dunkirk has recently been rendered of vastly more importance than heretofore, by the decision of the Hudson and Erie Railroad Company to terminate that great work at this place. It has been found a valuable harbor in the severe and sudden storms to which Lake Erie is liable, and it appears to be of infinite consequence that it should be made permanent. It is, therefore, respectfully recom mended, that the necessary steps should be taken the coming year to construct the piers of stone, laid in hydraulic cement above the water, in a manner somewhat similar to the construction of the mole of Buffalo Harbor, and with this view the estimate marked C is respectfully submitted.

Recapitulation of the different sums required for theservice of the works at Dunkirk harbor, Nevo-York, as per tstimate.

1. An estimate for fuids for a stone wall on the breakwater,
2. An estimate for a stone wall on the western pier,
3. An estimate for the construction of a new pier on the south side of east channel,
4. An estimate for extending the breakwater 480 yards eastward,
5. An estimate for 'arge stone for backing up works,
\$98,981 72
48,020 50

14,829 80

22,974 29
10,000 00
Total amount required to complete works, Amount required for the service of 1837,

$$
1838,
$$

$$
1839
$$

1840,
$\$ 194,806 \quad 31$
\$47,784 09
50,00000
50,00000
47,022 22
$\$ 194,806.13$
Dunkirí, October 10, 1836.
Respectfully submitted,
By your obedient servant,
Thomas Forster, Superintendent.
Brig. Gen. C. Ghatiot,
Chief Engineer, Washington.
From the Buffalo Daily Commercial Advertiser. the canal convention.
This Convention, which aasembled at the Court House yesterday; was creditable both
in numbers and character to Western NewYork, and an evidence of the deep interest generally prevalent for the speedy comp c tion of the great work it was designed to promote. The doings of an assembly of a character so imposing, cannot but arrest the attention of the Legislature, and exert a salutary influence in proseculing to comple. tion, the great work of enlarging the Erie Canal at a much earlier day than was contemplated at the adoption of the project.
The Couvention, at 11 o'clock, A. M. was called to order by the Hon. Jonathan Childs, and on motion James Seymour, of this city, was appointed temporarily to the Chair, and Washington Hunt, Esq. of Lockport, and John L. Kimberly, of Buffalo, were appointed temporary Secretaries. At this point of the proceedings Mr. O'Reily rose and stated in behalt of the citizens of this city, that the Convention was not called to subserve any other project than that indicated in the call for the Convention. This was warmly responded to, by a gentleman from Buffalo, on behalf of that delegation, and by Jesse Hawley, on the part of the Niagara delegation.
The counties was then called when it appeared that delegates were in attendance from Erie, Niagara, Orleans, Monroc, Wayne, Livingston, Alleghany, Seneca, and Cayuga counties. On motion, it was resolved, that the delegates from the several counties designate three from each delegation to nominate officers for the convention.
After a short retirement, the committee returned and reported the Hon. Nathan Dayton, of Niagara, as President. and Josiah Trowbridge, of Erie, James Seymour, of Monroe, Jesse Cliark, of Seneca, and Allen Ayrault, of Liviugston, as Vice Presidents. The committee also made choice of S . G. Andrews, of Monroe, James L. Barton, of Baffalo, Theron S. Strong, of Palmyra, and A. H. McKinstry, of Albion, as Secretaries.

On motion it was then resolved, that a committee of six be appointed to report resolutions for the consideration of the convention. Whereupon Henry O'Reilly of Rochester, C. Turner of Niagara, R. W. Haskins, of Erie, A. H. Benuett, of Livingston, Geo: W. Cuyler, of Wayne, and Tneodore Rapple, of Cayuga, were appointed such committee. Tue convention tien adjourned till 3 o'clock, P. M.
Tne convention met pursuant to adjournment when it was ascertained that J. Clark, one of the persons designated as Vice Pre. sident. was not present, and a motion made that Jesse Hawley, Esq. of Niagara, be chosen in his stead, whicir was unanimously agreed to.

The committee having returned, Orasmus Turner of Lockport read the preamble adopted by the committee. It set forth in an eloquent and happy manner the great importance of the speedy completion of the enlarged canal-important as a means of acilitating our own business, but doubly so is offering the only alternative for the retenion of the already great and rapidly augnenting commerce of the illimitable West.

Mr. Hart, of Wayne, who had previously $1_{\text {submitted a }}$ a resalution connecting the enurgement of the Genessee Valley Canal with that of the Eric Canal, and which, with
the various motions growing out of it, had bren laid on the table, seemed unwilling to let it rest there, as it was connected with a speceh, of which he seemed in pain to be delivered. The convention, therefore, unanimously assented to his proceeding. He commenced by adverting to the eve of in. ternal improvement in the state of New. York-the completion of the main trunk, the Fric Canal, and the various lateral brancles to which that has given birth-vindicated the policy of their construction, al. though a yearly tax on the main channel. Having thus cleared the way, he came to his favorite project, which was none other than giving tice Eric canal and that of the Genesee Valloy a like capacity.
He denominated the proposed canal an important leg in the triangle-proceeded to show that without sueh capacity the canal would never become a source oi revenue, but with it, and extended by an improvement of the Allegany river, it would open to Rochester the extensive trade of the Ohio vailey, and become the favorite channel for the transit of a great tradc. In connection with the subject he adverted to the accumulation of ice in Buffalo harbor, as opposing an impe. diment to early navigation, alledging that the Genesee Valley canal would obviate this difficulty. After insisting on the propriety of the resolution wmeh had boen the occa. sion of his remarks, and adding the hope that it would yet find favor with the conven. tion, he resumed his scat.
After the reading of the preamble was concluded, Mr. O'Reily, chairman of the committee, reported six resolutions, happily embolying the necessity of the work and the arguments in favor of its speedy prosecution. Tne preamble and resolutions having been thus presented to the meeting, it was moved and carried that the the report of the committee be accepted.
If the numerous assemblage of people early in the day gave satisfactory evidence that the importa: ice of the convention was appreciated, the spirit evinced on the ques. tion of the adoption of the resolutions as they were scverally proposed, would have rendered assurance doubly sure. The first and sceond wery adopted without discussion, but on the third being proposed, E. Darwin Smith, Esq. of this city, rose and made some stirring remarks on the subjects em. braced in the resolution. He was followed by Messrs. Hawley and Ketchum, of Buffalo, in a strain of stirring eloquence. Also, by Judgc Hunt, of Niagara. Judge Cantine, of Orteans, and (iencral Brooks and Mr. Bryan, of Livingston, all of whom spoke with that fceling and efficiency which a warm zeal and a just cause always inspire. The speakers were severally catered by a crawded assembly of eager listeners. Several other gentlemen, whose names wero not known to us, addressed the meeting with effect.
The discussion was arrested by a motion to adjourn till 9 a'clack the following day, but was subsequently amended to seven o'clock in the evening, to which time the convention adiourned in the groatest harmony.
Seven o'clock:-The convention met according to adjournment, and praceoded to adopt the remaining resolutions, Their
propriety was enforced by pertinent remarks from J. H. Beach, H. L. Stevens, Esq., E. Darwin Smith, Jesse Hawley, Esq., Judge Huut and O. Hastings, Esq., as also by other gentlomen whose names were not dis. tinctly heard. The resolutions were adopted by acclamation.
$0-50 m=$ caustic reflections were made on the apathy evinced by the eities of NewYork, Albany and Troy in relation to the proceedings had here preliminary to the present convention, and the fact stated -50 that of all the journals in New.York none save the Journal of Commerce deigned them a passing allusioa. Yet with all these discouragements to encounter, Western NewYork is determined to press this matter on the attention ol the Legislature with all the moral weight possessed by her enterprising and indefatigable population. The remarks on the resolutions having been coneluded, the convention adjourned till to-day at 9 o clock A. M.

Thursday, Jan. 19.

The convention re issembled this morn. ing pursuant to an adjournment and was called to order by the chair.

Jesse Hawley, Esq. of Lockport, presented a resolution complaining of the apathy evinced by the city of New. York, in rela. tion to the enlargeinent of the Erie canal, which, having been read, was, at the instance of the mover, laid on the table.

Judge Hunt of Lockport, submitted a resolution designated the appointing of a cum. mittee for the purpose of laying the proceed. ings of the convention before the Chamber of Commerce for the city of New. York, which was also laid on the table.

The unfinished business of the previous evening being called for, a resolution was read by Mr. O'Reilly setting forth the ad. vantages waich the specdy completion of this work offered.

Mr. Hastings, of Rochester, objected to the resolution as too minute and diffusive in character, and more appropriate for embodi ment in a memorial.

Mr. Gay concurred in the same views.
Mr. Hart thought the resolution too con-jectural-tile simple facts were all that were necessary to ensure the subject a profound consideration from tive public.

Mr. Hawley said the object of a resolution was to embody sentiments, not facts. On motion, the resolution was read, when its structure was objected to by Mr. Ketchum, who thought it more fitting a memorial. After considerable informal discussion the resolution was laid on the taile.

Mr. O'Reilly called the attention of the convention oa tile subject waich convened it, and proceeded to deprecate the introduc. tion of any extraneous matte, when he was called to order and sat down, but on motion of Judge Hunt, of Lockport, was allowed to proceed, which he did by a recapitulation of the reasons why no other subject should come before the coavention than that indicar ted in the call.

The reading of the preamble being called for, the question was on its adoption, waen Mr. Hastings objected to it as a preamble, but was willing to adopt it as an ad. dress.
-Mr. Hawley, of Buffalo,objected to chang. ing the name, and after having concluded his remarks the preamble was adopted, as also the resolution in connection.

A gentleman from Buffalo rose, and by permission of the convention proceeded to reply in a playful manuer to the "ice" argument of the gentleman from Wayne. He stated that Buffalo had indeed much ice, but, bountifully as she was supplied with that article, it so happened that they contrived to " use it up" by the time the canal was ready for navigation in the spring. But should icebergs so accumulate at the harbor as to deny egress therefrom, the people would uncomplaingly submit to the fetters that enchained them, and settle down to the occupation of "seal catching!" He further stated that Buffalo felt no hostility to the Genesee Valley Canal, and that the repugnance of the Buffalo delegation to conneeting it with the Erie canal, arose solely from their want of authority to act on it.

The convention proceeded to the business more immediately connected with the objects of it, and after an extended discussion, the Chair was anthorised to appoint a central executive committee to carry into effect the proceedings of the convention. and to transact such other business in relation thereto as may be deemed advisable.

A memorial was reported and accepted and p'aced in the hands of the committee.

The Chair announced the following gentlemen residents of this city as the centrul executive committee :
Henry O'Relly, E. Darwin Smith, G. Andrews, 'Thos. H. Rochester. Jonathan C̣hild, James Seymour and Horace (ray.

The following county coinmittees were announced by the respective delegations.
Erie County-W. A Mosely, R. W. Haskins, Seth C. Hawley, J. M. Kimberly and Jas. L. Barton.
Niagara Cou ity—G. H. Boughton, W. H. Hunt, E. Ransom, C. Turner and Jesse Hawley.

Livingston County-A. Ayrault, A. A.
Bennet, C. H. Bryan, Micah Brgaks, and Cuarles Colt.
Genesee County-H. J. Rediald, D. E. Evans, T. Cary, G. W. Lay Rnf James Brisbane.
Orleans County-Hugh McKurdx, A. B. Mills, Alexas Ward, A. H. Cole and A. Nickoson.
Wayne County-Richard Wood, E. Blackman, J. Andrews, J. Hemmingway, and A. Purdy.
The central executive tommittee was charged with the duties of a county committee so far as Moaroe county was concerned. The business of the convention having been thus disposed of, Dr. Brown of this city moved a resolution tendering the thanks of of tue convention to the President for the manner in which he had discharged the duties of the station assigned him.
The resolution was unanimously adopted, whereupon the President, in a neat, briet and pertinet address signified his apprecia. tion of the honor done him by the conven tion.

A resolution of a similar character was presented in behalf of the other officers of
the convention and adopted by a like unani. mity.

Mr. O'Reilly then presented the thaks of the citizens of Monroe to the several coun. ties represented, and to the delegates there. from, for the promptness with which the call for a convention had been responded to, and expressed the hope that the citizens of West. ern New.York would be always found ready to co.operate with the like unanimity in the promotion.

The convention then adjourned sine die.
official.
Adjutant General's Office, Washington,Feb. 3, 1837. \} geveral order, no. 2.
I.-The Secretary of War, ad interim, has received the following resolution from the Senate of the United States:
Resolved, That the Secretary of War be requested to cause an examination to be made by a board of officers, into the im. provements in fire-arms made by Hall, Cochran, Colt, and the Baron Hackett; and that the general resuits be presented to the Senate in tabular statements, showing the advantages of each in all important military points of view, and especially as to-

1. The celerity of fire.
\because. The extent of the recoil.
2. The efficiency of the fire.
3. The inconvenience from heated barrel in rapid firing.
4. The capacity of being used as a rifie.
5. The simplicity and cheapness of con. struction.
6. Durability.
7. Saving of ammunition and appenda. ges.
8. The number of charges which may be carried by an infantry soldier.
9. The advantages when used against a clarge of cavalry.
10. The advantages when used by cavalry.
Ii.- In conformity with the provisions of the foregoing rosolution, the Secretary directs that a board, to be composed of the following officers, to wit :
Brev. Rrig. Gen. J. R. Fenwick, Colonel of the 4th Artillery ;
Brev. Brig. Gen. N. Towson, Paymaster General ;
Col. G. Croghan, Inspector General ;
Brev. Lt. Col. Worth, Ordnance;
Lt. Col. Wainewright, Marne Corps;
Lt. Col. Talcott, Ordnance;
Capt. B. Huger, Ordnance;
be assembled at the Washington Arsenal on Monday, the 20 th of February instant, at 11 o'clock, for the purpose of making a thorough examination of the improvements in fire-arms made by Hall, Colt, Cochran, and the Baron Hackett, in the manner and mode specified in the resolution.
III. The board will report the general results, for the information of the Secretary oí War, in tabular form, showing the utility of each fire-arm in all important military points uf view, as required by the resolution; and will also report such further information on this subject as they may be able to cominunicate, with their opinion on the relative advantages of the several improvements submitted to their examination.

First Lieut. J. N. Macomb, of the Artillery, and Aid-de-camp, will record the proceedings of the board. By order,

Roger Jones, Adjutant Gen. of the Army.

Misceliancous.

About a year since an article was published in this Journal on the subject of the em. ployment of ziac for roofs, by Dr. L. D. Gale, and in this article it may be remembered that several serious objections were urged against the employment of that material. The following article from the American Journal of Science and Arts-January 1837, will be found to give an entirely dif. ferent view of the subject.

It is highly important that the merits of the case should be well ascertained before opinion is made up. Believing that the experiment detailed by Dr. Gale could not give erroneous results, we had decided in our own minds. It appears however, that further experiment is necessary.
on zinc, as a cóvering for buildings; in
a letter from prof. a. caswell, to messes. crocker, brothers \& CO.
You sometime ago requested me to examine an article on Zinc, as a roofing material, published by Dr. Gale of New.York, in a late number of the Mechanics' Magazine. I regret that it has not been in my power to give your request earlier attention.

The remarks of Dr. G., which were copied by several papers at the time, were fitted, in your opinion, to prejudice the public mind unjustly upon a subject of great im. portance. He discourages the use of zinc as a roofing material, upon several distinct accounts, the principal of which, are the following.

1. The difficulty of making the roof tight.
2. The deterioration of the water which falls from it.
3. The comparatively small resistance which it offers to the progress of fire.
4. As to the first of these objections, the brittleness of the metal and its great expansion from heat are adduced, to show that a roof cannot be made sufficiently tight. Zinc in the unvrought state is well known to be very brittle, and there may be in the market volled or sheet zinc of a bad quality. But no one need be dsceived on this point, since nothing is casier than to test its flexibility. Sheet zinc which will bear to be doubled and hammered down witbout any appearance of fracture in the bend, may be used as a covering for buildings, without the least fear of leakaga. Such is ths fact with regard to sheet zinc which I have examined from your manufactory ; and such, I am as. sured, is the fact with regard to foreign zinc from the best manufactories. But any detailed examination of the brittleness and expansion of zinc, so far as this question is concerned, is entirely obviated by the well ascertained fact, that there is no practical difficulty in making a zinc roof perfectly tight. The numerous certificates which you have submitted to my examination, from
most respectable gentlemen, who have made the experiment, place the subject beyond all reasonable doubt. A zinc roof may as easily be made tight as any other whatever.
5. The second objection respects the deterioration of the water which falls from the roof. This consideration is particularly im. zortant to all those who are in the habit of using cistern water for culinary and other domestic purposes.
It is alleged that a poisonous suboxide of zinc is dissolved in the water, which renders it unfit for cooking, and impairs its proprieties for vashing. On this point I have consulted the ablest modern writers on chemis. try, Branic, Turner. Thomson, Berzelius, and others. The oxides of zinc seem not to have been much studied. The principal one known, and perhaps the only one certainly known, is the white oxide, (sometimes called the flowers of zinc,) which is quite insoluble in water, and hence could not vitiate its proprieties. Berzelius thinks there are two others, the suboxide and the superoxide.

The suboxide is the gray coating formed on the surface of zinc by exposure to the weather, and this is the substance which, it is said, is dissolved and mixed with the water, which falls from a zinc roof, thereby impreg. nating it with deleterious properties. This opiuion, so far as I can learn, is unsupported by any writer on chemistry. Turner says, : zinc ut.dergoes little change by the action of air and moisture." Aikin's Chemical Dictionary, a work of merit and authority, says, "the action of the air upon zinc, at the common temperature, is very slight; it acquires a very thin superficial coating of gray oxide, which adheres to the metal and prevents any further change." The statement of Thomson is, that zinc, when exposed to the air, soon loses its lustre, but "scarcely undergoes any other change."The accusunt given by Berzelius, the ablest chemist of the age, is very explicit and much to the point. He says, "this oxide is formet on the surface of zine which remains a long time exposed to the contact of the air. It has a dark gray color when moistened, but by drying becomes of a light gra \because. Ordinarily it forms a thin crust on the surface, which neither increases nor experiences any change in the air; but acquires great hardness, and resists, better than the metal itself, the mechanical and chemical action of other bodies. A piece of zinc sufficiently suboxidized at the surface, dissolves with extreme slowness in the acids, and only at the boiling temperature.
Such are the opinions of chemists, and particularly of Berzelius, whose unrivalled skill and accuracy in chemical analysis have been the admiration of all cotemporary chemists.
The opinion of Dr. G., is considerably at variance with those now adduced. I think he has not stated very fully, and certainly not very satisfactorily, the reasons on which it is founded. He mentions, however, as a proof that this suboxide is dissolved in water from zinc roofs, that if it is suffered to stand for some time exposed to the air, the suboxide gradually takes oxygen from the atmos. phere, and is thus converted into the insoluble white oxide before mentioned, and is then precipitated in the form of a white powder. To test its purity by this method, I have kept
water from a zinc roof exposed in clean glass vessels for several days, without any, the slightest appearance of a precipitate, or even a pellicle upon the surface. And what is still better as a test, I have kept it for several days in closed bottles with oxygen gas, and subjected it to frequent agitation, without the least appearance of a precipitate, or any diminution of transparency. I must think, therefore, that if such water contains the suboxide of zinc, its presence is not to be detected in this way.

Tiat the quautity of zine dissolved in water must be exceedingly small, is obvious from the following consideration. A sheet not more than the forticth of an inch in thick. ness, would probably last at least half a century, on the roof of a building. Indeed, for any thing we know as to the rate of its oxidation, it might last for centuries. The concurrent opinion of chemists, and this confirm. ed by obsarvation and experimeut, so far as these have extended, is, that after the gray oxide is once formed, any further change takes place scarcely at all, or with extreme slowness. But on the supposition that it would last ouly fitiy years, the whole quanti. ty of rain which falls in the course of a year, or about three fect on the level, would dis. solve the two thousandth part of an inch in thichness of zinc. This, to produce any appreciable effect, must be one of the most virulent of poisons, equal at least to prussic acid. But so far from being an active poison, it remains to be shown that it is poison. ous at all, even if a minute portion of it did mingle with the water. The white oxide of zinc is not poisonous, and the inference seems to be gratuitous that this is so.
It is due no less to the public than your. selves, that the truth upon this subject should be known and promulgated. I am quite satisfied, for one, that we are not in the least danger of being poisoned by the use of water from zinc roofs. The portions of this water which I have examined, could not be distin. guished from pure river water by any test that I have been able to apply to it. I feel myself warranted, therefore, in the conclu. sion, that it has suffcred no deterioration whatever from the zinc.
3. A third obiection is that zinc affords inadequate protection against fire.

This objection is based upon the fact that zinc melts at a low temperature; and in case of fusion, leaves the wood work of the build. ing unprotected. This objection is rather specious than real. Zinc melts at the temperature of about 700° Fahr, or a little be. low red heat. Whenever, therefore, the heat from adjacent buildings is any thing less than that of redness, zinc would afford as complete protection as copper or iroa.When the heat has reached the melting point of zinc, which it seldom would do except in the most compact parts of cities, very little confidence could be placed in the protection of iron or copper. The dry wood work of the roof, under a covering of red hot iron, with air enough for combustion circulating through openings and crevices, would soon be in flames; and when once in flames it would be extremely difficult to extinguish it by the application of water. It would be applied with great disadvantage to the under side of the roof, and almost to no purpose at all upon the top. If therefore the heat, in
any case, should become so intense as to melt zine the probability of protection from iron or copper will be but small.

Complete protection against fire is perhaps unattainable; at least we can never be sure we have attained it. In the progress of the arts, great improvencuts no doubt will be made in the mode of defence agrainst the attacks of this destroyer. I inn not aware that the following construction for a roof has ever been tricd. For cheapness, tightness, durability and resistance to fire, it scems to be well deserving the attention of builders. Let the rough boards of the roof, (and the rougher the better,) be covered with al thick coating of common lime mortar, then kay down the ribs, if I may so call them, for the zine phites,-then cover the whole with zine, accarding to the nost approved method of applying it. Such it rool' would be in no danger of lewhage, unless the water accumulated mon it so as to stand above the ribs, in which case no root would be tight unless it were corked or soldered throughout. This covering, if I im righly informed, woald be nearly as cheap as slute-quite as cheap as tin, cheaper than iron, and more than tiree times cheaper than copper ; and would at the same time resist lire much better than either of them. A heat that would melt down the copper and hon, would of course, melt the zinc, but would lease the mortar uninjured. The peculiar adyantage of the mortar is, t^{t} at it is infusible except at a very high temperature, while the closeness with which it adheres to the wood work is such as to exclude the air and thus prevent combustion. If the mortar should be kept at a red heat for some length of time, the wood beneath it would be charred, but could hardly be burnt. In case of fusion the zinc might be replaced without injury to the morthr. I know of no construstion for at roof that would be more completely fire proof than this.

Suchape my views on the sulbject to which you called my attention. If they shall serve in any measisure, to remove projudice, and allay unlounded appreaensions on a subject of great and growiug inportance to the pub. lic, it will afford me much pleasure.

Brown University, Octuber 1, 18:36.
Frym the Journal of the Americas Institute.

COAL.

Messus. Editchs,-This community, and, in lact, a large part of the country, are allve tọ the high price of coal. Winter is gathering upon them with increasing sternness ; and although thus far not as livigntint as the last, the dread that the worst is stil, to come, agitates and alarms. This condtion of the public mund is calculated to brin! forth advisers in scores; because it is a time when they will be listened to. Sume favorite panacea becomespopulitr. The people, liks suffering patients, are sure tuat they feel dos tress, and, like them, they cannot be satisfie until they have swallowed the popular rene $d y$, or been bled or steaned, as the fashio. aft the time may dictate,

The sovereign specific-the grand catho ficon-which will make plenty, and, of cours cheapness, is free trade;-iake off all d. ties, a.d open your ports to the whoie worl and all will be well. Petitions to Congres:
for this purpose have been circulated, and thousands have signed in the full belief that they wore contributing thereby to mitigate the rigors of our severe winters, and brius our shivering inhabitaits into at milder zonc. I have been repeatedly accosted by those engaged in carrying around these petitions. to lend my name-to iniom Congress that the weather is cold, and that fucl is high, and numbly pray them to pass laws to make us warm :-not exactly to legislate usinto a mild. er climate, but to legislate dowa the price of coal, by taking off the duty, about $\$ 2$ per chaldron, which is required to be paid on im. ported coal. Not having a particle of confidence in this prescription, I häve sought for reasons from those who take such interest as to go from house to house and store to store, to beg signatures.
I have desired them to name an instance, when the means of a home supply existed, where a reduction of duties effected a reduction of prices. 1 desired them to examine the history of our tariff, and see for them. selves whether reduced prices lad not been the invariable effect of high protecting dutics. I instanced to them coltons, leather, cabinet wares, hats, \&c., which were anong t.e carliest articles protected by high duties, and which duties have been regularly contime tinucd down o this; all these are now so abundant and cheap, that we are deriving : good profit while we undersell them in foreign markets to those very foreigners from whom lommerly, before higa duties were imposed, we purchased our supplics. Not a tree trade coal advocate has been found to deny these facts.
I have not, however, been so fortunate as to shake the fuith of a single man. It is opposed to their theory; tiky are suffering, and, like the afflicted patients, unwiling to submit to a gradual, bat certain cure, they yield to the persuasions of the empiric, and shut their eyes against facts and experieuce. Some have said that coal is an exception; that all that is wanted is to break down the coal monopoizers, extortioners and grinders ; that coal is nevessary tor the poor. I ask, is not bread; too, a necessary? Do rot flour dealers inonopolize? It has been stated, that there is a coafederacy of monopolists extendng from New. York to Buflalo; and it is probably truly stated, that a more universal scareity in bread stuffs exist from the short crops of the last season, than has prevailed at any time within the last fifteen years.

The duty on forcign wheat is twenty-five cents per bushel. Are there not stronger reasons for the repeal of this duty, than even the duty on coal? Are the flour mos. aopolists less obdurate? Is their combinaton more limited, or less effective? Is the cuture supply less certain? Let those who loubt exphore the coal regions of the west, and they will find a supply, not thousands of eet below the surface, as in England, bu. orming the very surface itself, and of suffi rent depth for the supply of not only Ame. cib but all Europe, for centuries to come. Chat the susply is inexhaustible, no one wha eny. Front the best calculations, it may nder ordinary circumstances, be afforded ic ur city at les than half its present price
The supply of wheat cannot be relied o. with the same certainty. Bad crops may
occur. and reduce production particular years greatly below the common average, as they lid the last ycar. No deficiency can hap. pen in our coal beds. Why then these exortionate prices? Coal has suddenly superseded other fuel, not only in our popuous cities, but in the country-for manufactures, for steamboats, as well as to warm our rouses. Just as our forestshad disappeared, our coal beds-those exhaustless magazines of fuel-began to be known.
It is but a short period since a few samples were brought here for exhibition. The last year there was brought to market, from three mines in a siugle State, 556,935 tons ; and for the coming year, preparation for its. supply are making upon a larger scale than ever. The ratio of increass from these mines alone, is such as must soon fully equal the demand, and new mines are constantly opening; and the competition, so highly stimulated by ready sales and high prices, must inevitably and speedily reduce the article to its minimum price, unless that competition is checked by indiscreet legislation. All that is required, is for more capital to be turned into the coal trade at home.

If the facilities for the importation of foreign coal aro increased by the repeal of the duty, the inducement for our capitalists to. make extensive arrangements for supplying our market the next year is clearly lessened -probably to a teufold greater amount than the increased toreign importation. The foreign importation is also calculated to derange prices. This consideration, in all probability, would influence the capitalist to withliold tuc employinent of inis money be. yond what it ought to be invested.

Tue foreign supply, under any circum. stances, will be but a drop in the bucket, when conspared with our consumption. The foreign importations of las, year were only 14,453 tons. If that amount were imported tor forty years in succession, it would but a trille exceed the amount procured the last year from the three mines I have already referred to. If the repeal of the duty were to be doubled, the foreign supply would amount only to a fraction, compared with the probable home supply of the coming year.

I dely those who desire the repeal of the duty on coal, to name a rcason which does not, in fuil force, apply to wheat, and flour, and potatoes. The present prices of these latter articles, beyond the average of former prices, is quite equal to those of coul. The duty, in proportion to present prices, is as great ; and the possibility of a real scarcity, lirom short crops, may happen to wheat, Hour and potatoes, but never can to coal.
The quantity of coal brought to market or several years past, has doubled every three years. Uur population requires abont wenty yeurs to double. The article is, therefore, increasing more than six times as ast as the consmmers. Under these circumstances, we lave nothing to do but to glve competition full play, and monopoly oon will get its quietus.
Suppose we adnut, because coal is a necessary, and the price is high, that the duty uught to be repcaled. The same reason will uply to every other necessary. We must :arry the principle through, or stand charg:d with partial.ty ; and in years of plenty, our markets would be glutted with the agri-
cultural products of Europe, and our farmers made the stfferers. Motions and petition: would be offered in Congress to repeal the, duties on other articles, and our whole socia. system would be disturbed and deranged. Pennsylvania would not be peaceable if, without a good reason, her great staple should be made an exception. Our whole protective policy must be demolished. To me n is folly to endeavor by a repeal of duties, to tempt our citizens to send their money three thousand miles, and employ foreigners to dig coal from the deep bowels of old England, instead of using it at home in rewarding our own industry, and by its circulation enriching our own people. It would be mach sounder political economy to give bounties to encourage its exportation, and by these means break down the monopoly so loudly complained of.

Clinton.

That the price of coal will be regulated by supply and demand, will not be denied. The question then arises, will the supply be increased or diminished, by the repeal of the duty on foreign coal? We believe it will be diminished. With the coal dealers, who fully understand the subject, it will have no effect ; but some sensitive capitalists will, no doubt, be influenced to withold their money, which they might otherwise employ in the coal business themselves, or loan to others disposed to carry it on. The whole quan. tity that, under any circumstances, will, be imported, must be so small, that comparatively a very little effect on our coal operations will more than overbalance the increase from importation, arising from a repeal of the duty. The consequence will be, that coal will bear a higher price than if the duty is continued. And we are told, that some of the most incelligent coal dealers are perfectly willing for the repeal, and laugh at those who think by such means to affect their trade. In 1820, only 365 tons were brought to market from all the Pennsylvania mines. In 1835, 556,935 tons. Fifteen years, therefore, had increased the quantity fifteen hundred and twenty-five times. No monopoly, if the business is let alone, can long withstand the accumulating supply.
Our correspondent has overlooked a very important consideration which has helped to sustain coal the present season. The severity of the last winter caused an extra consumption, which has been computed at fifty per cent. Great numbers, to guard against extortionate prices, obtained their winter's supply the last fall, contrary to their practice in former years. There is not, therefore, exhibited in the coal yards the quantity which, it would seem, might be required. Instead of being there as formerly, and in greater abundance, it is in the vaults, of individuals. We believe at this momen: the aggregate of coal in the yards and private vaults, will exceed the winter's con-sumption-especially if the winter continues as favorable as it has commenced.
Some have been alarmed because the coai mines have been alleged to be in a few hands who have it in their power to perpetuate monopoly. A very little knowledge of oar country would satisfy them that a compan: might as well monopolize the land as th coal. As our correspondent says, ne. mines are constantly making their appea: ance ; and the positive indications of other:
are abundantly sufficient to quiet all appre ensions from monopoly. In no one thin ins Providence been more bountiful to tha Jinted States, than in the article of coal We may as well alarm ourselves at comb. rations to monopolize water or air. If ou nembers of Congress, who are so distress id about the poor, will substitute for their rereal bill a bill for the appropriation of a sum, squal to what the debate will cost, if it i: entered upon-for the purpose of getting coal, to be sold to the poor at a fair price, they will manifest more sense, without diminishing at all the claims for our confidence in their sincerity.
The idea of those who would repeal the coal duty, to help relieve us from the ad. mitted evils of our surplus revenue, will pardon us if we find their proposed remedy bordering on the ludicrous, inasmuch as the revenue from that source has not, in years past. averaged forty thousand dollars per annum!

If a proposition should be made to empty one of our lakes with ladels, it would not be more ridiculous. The time expended by Congress in hearing a dozen long-winded speeches, calculating the ordinary per diem cost, will operate much more effectually in this reduction, and would indeed afford tre only argument we have ever heard in favor of the everlasting speeches, fashionable in the national school of rhetoric at Was'ington.
We will sum up what we have to say. Let the consumers of coal, eschew all petitions, keep up their courage, and be of good cheer, exercise rigid economy in the use of coal this winter, and we have no doubt but that the couning spring, the monopolists of coal will be sufficiently punished by a surplus that must remain a burthen to them unti! another season. The report on the Morris Canal, published in a former number, a document made up with great care, affords us the cheering information that by means of tiecir canal, anthracite coal may be afforded for $\$ 366$ per toin, and bituminous coal at $\$ 456$-delivered in the city of New. York. As sure as cause :und effect follow cach other, the price must be soon reduced so is to afford to those engaged in it no move than a bare reasonable profit.

From the Journal of the Ainerican In. stitute we take the following article on an interesting subject.

The following extacts from a correspondence between Mr. Durant, of Jersey City, and a well known friend of donestic ndustry, has been obligingly furnished us for publication. We think it will particularly interest our silk-growing reaulers.

New-York, Now. 2S, 1836.

Sir,-You will recollect suggesting to ne last summer, that your was chgageal in experiments to produce two or more crop: of silk worms in one seazon. If this coul, se effected, it is evident the quan ity o. ilk might be greatiy angmentell in o:d ountry. It is not necessiry to dwell oi he importance of experiments for the pha ose, when we know that fificen or a wean! allions of tollars of our hard earnings ar: every year drained off into toreign coun
riez, for silks which we consume. Fifty notsund bushels of wheat, say one hunirel thousiand "lollars value, is sufficient to rut our "let alone," or "free trade" adncates almost ino convulsions, while their lerves are as calm as "a summer's sea" inder a full knowledge that more than one tundred and fify thousand times that unount in silk was imported last year.But not to dwell on the absurdities of this minnomer, free trade, (which I trust our farmers, who are iniended to be entrapped, will perfectly understand,) I will proceed direcily to my object, which is to ask froun you a detailed statement of your experiments the last season, in producing two or more crops of the silk worm.

Experiments for a similar purpose are making in France. The eggs have been kept from hatching in ice houses, until the time when the hatching process is to be commenced. Experiments made by keeping the eggs in a cellar, where the varia tion of temperature was from six to nine and a half degrees, were unsuccessful, being, as expressed, too great to keep the living principle dormant.

I am one who fully believe that we are ${ }_{r}$ in a few years, to go ahead of all other countries in producing this commodity-a comnodity which must be invaluable, in helping to a favorable balance in trade, as, like specie, it will exchange in any market in the world. Let the ingenuity and tact. of our country be brought to bear on ite production, and there can be no mistake. But our silk culturists should have early and accurate details of all important experiments made by each other.

Yourz, respectfully.

Mr. Charles F. Durant.

Jerser City, Nov. 30, 1836.
Sin,-Your letier, soliciting a detailed statement of iny experiments the past sea. son to produce two or more crops of the silk worm, is before me.
I agree with you in the opinion therein expresse I, that " the silk culturists should have early and accurate informatian of all imporiant experiments made by each outhen?" though I doubt whether much benest is derived from a publication of the crube essays and mere approximation to sone desirable result in physical science. Such is the state of the experiments to which you allule; with the ofjgact only partiaty accomplished, I have sangrume hopes of ultimate success: and yet I fear it would tire your own and readers' palience, to bewr a recital of all the reasons that support these hopes, or the causes which have operated to prevent the success of the entire series of experitnents

The desired object, as I remarked to you, was a succession of worus, from the first opening of the leaf in spring uncil it can no longer afford that nourishing mittier so esarntial to the life and production of the worm. 'I'his, in the latitude of 40°, woull mbrace a period of about five months, say rom May to October, and would permit tearly four successive crops io accupy the ame shelves, allowing forty wo days for he feeding or first state ot existence, which, think, will be the average duration, with the temperature of this latitude.

Seven successive crops, in this period of time, may occupy the same shelves, if for the first twenty days in the existence 0 : each, they could be fed on a shelf specially appropriated for that purpose. This, 1 think, should always be done; for, at this age, they do not occupy one hundredth part of the space which they require when winding, and consequently, there must result by this mode, a great saving of room and labor to feed them.

By this method, 1 fed two crops on one frame the present season. They were both from eggs of 1835 . The eggs of the first crop were kept uncovered the entire season, where they were deposited by the moth, at my residence in this place, exposed to York Bay and the sea air-the sash of one window lowered three inches, to admit at all times the temperature of the season; and, notwithstanding the extreme cold of last winter, every fecundated egg was hatched from the 7 th to the 9 th of May, before trees in the open ground had put forth leaves.

I had anticipated this result, and in autumn covered with sea-weed and bass inatting a nursery of young trees in the garden. On these the leaves began to appear as early as the 17 th of April, and by the 9th of May furnished abundant food for the crop, until they could be supplied from trees in the open grounds. 'lhey completed the first state of existence froin the 17th to the 23d of June. The cocoons were large, and, with a few exceptions, perfectly formed. With a mere theoretical knowledge of the process, I reeled them without difficulty; and some sewing silk, which I made from the same stock, was judged by connoisseurs equal to the best innported from Italy. You saw specimens of the whole at the last Fair of the Institute, and I think you will agree with me, that the result of the experiment will warrant the assertion, that silk worm eggs can be preserved uninjured through our coldest winters, and silk of a good quality produced without artificial heat.

The second crop was from ecgs of the same year as the first, and produced by rodarding the process of nature. With this view, the whole experiment was planned and commenced as far batck as the second state of existence, by enclosing the cocmens in a box, to shut out the light. They were then removed to the cellar, where the teinperature was lower than the room in which they passed the first state. This kept the ehrysalis back seven days longer than those in the feeding roorn. As soon as they attained the winged or perfect state, I separated the mothe, to prevent copulation, till the end of six days, whict is a further gain of four days. Most of the eggs were fecundated, as very few were deposited previnus to copulation. 'The box was kept closed, nnil removed to the roon, previonsly described, which exposed the egigs to the same temperature and treat. ment as those for the first, excopt the exclusion of light, and removed to the cellar again in March, 10 prevent the temperature rising above 55 Fiblienticit. From the 15:h of May, I openedilue box a few min utes each day, is observe with a micro
scope the progress of the embryo worms, which had advanced so far on the 21st May, that I feared injury from the humid umosphere of the cellar, and removed ther to the feeding room. On the noorning of the 30 th, a few worms had escaped from the eggs ; and, judging it imprudent to keep them longer in embryo, I placed them on it sheet of paper, exposed to the direct - olar rays through the window. Every fecundated ego passed to the first state by the evening of the same day. They were in number about four thousand, apparently healthy and vigorous.

The first crop was now twenty-two days old, and occupying the franne on which they continued to be fed, until the winding of the cocoons, which was accomplished by the 21st of June, when they were removed, to give place to the second crop, which were now twenty-two days old, and so sinall, that up to this time, the four ihousand were fed on two sheets of paper. On the 15 th of July, most of the second crop had finished winding. The cocoons were generally small and imperfect, though a few among them were nearly equal in size and perfection to the first.
The probable cause of this deficiency in size and quality of the cocoons, can be traced to so many parts of the experiment, that a description of all would require more lime than I can at present devote. The dampness of the cellar probably contribu ed largely, as vater, in all its forms, whether in bulk, dew, or vapor, is a bane to the silk worm. In some instances, protracted rains obliged me to pick leaves in a wet state, and, though I dried them between cloths, probably particles of water still adhered to thein. During the latter part of their feeding, the hydrometer indicated a humid atmosphere, and it was at times so cold, that Fahrenheit fell below 60°-an injurious effect, which I could not counteract, as I had resolved to dispense with artificial heat. That these were the most immediate causes, I infer from the fact, that a few of the cocoons were large and perfectly formed.

You remark, that "experiments made in France, by keeping the eggs in a cellar where the variation of temperature was from six to nine and a half degrees, were unsuccessful, being, as expressed, 'too high to keep the living principle dormant. " In the degrees of temperature, I suppose you allude to the centigrade scale, as mod ern French chemists have wisely adopted the C'elsius thermoneter, by which pure water, uider a barometrical pressure of thirty inches, will freeze at zero and boil at 100°. By this scale 9.5 plus corresponds to 49.2 of Fahrenheit, an average temperature below thit of my cellar, which proves that the French experiments did not fail from the causes stated by them, but rather by commencing too late. To produce a second crop by this process, we must commence as far back as the moth of a previous year.

My experiments for a third, and succeeding crops, were to hasten the process of uatur?, liy producinu an artificial winter.For this purpose, I placed the eggs of the first crop, as soor as deposited by the moth,
in an ice-house, and, at the end of sixteen days, submitted them to the action of solar heat, without the desired effect.

Some eggs, after remaining six days where deposited by the moth, I submitted to a winter of plus 3° Fanrenheit, by mixing sulphate of soda five parts, and diluted sulphuric acid four parts; others to a temperature of plus 10°, by muriate of ammo. nia five, nitrate of potash five, and water sixteen parts, and then exposed them to the solar heat. Though these attempts proved abortive, I still think that nature may be supplied with an artificial uinter, and eggs hatched the same month in which they are deposited by the moth.

When such a desirable result is accomplished, who will fix limits to the immense wealth which the silk worm will create in this country? Silk, from remote times, has been a source of immense wealth to Asia. Its cultivation has kept pace with the intelligence and riches of Europe.Our country has all the essential advan. tages of climate for its production, with a numerous and intelligent population, who cannot fail 10 see the advantages of appropriating to their use the valuable labor and productions of a worm, which can create a greater revolution in political economy, with such simple means as nature ever employs to work good results, than did Gaul's great emperor make in political existence with the sword, fire, and concomitant horrors of a continental war.

Yours, \&c.,
C. F. Durant.
M. Thenard has resigned the Professorship of Chemistry at the Ecole Polytechnique, and it is expected that he will be succeeded y M. Dumas.

Agriculture, \&c.

From the New-York Farmer.

Life in Lllinoise; Agriculture, \&c. -The following communication of E. R. W., contains information not only interesting, but highly important, to thousands of our citizens who are struggling with adver. sity and want. It points out a path by which the man of small means and entire dependance may become, in a good degree, independant, with a farm, house, and fields of grain of his own.

It would be no less surprising to us, than it is to our correspondent, that so few of our citizens of small means avail themselves of the advantages of the fertile West, if we were not aware of the lack of correct information possessed by them, of the best mode of getting there, and then of living until they can prepare to live. There is, in truth, very little known here, of the detail of the process of becoming farmers in a new country-and it is of course viewed as a herculean task. This difficulty, however, might be easily obviated, if some intelligent western farmer, who has formerly been a resident of this city, and therefore familiar with our mode of living, would
publish a small work, showing the condition, prospects; and advantages of the country, together with judicious directions how to remove a family in the most comfortable and economical manner; advising what necessaries of life ought to be carried, and what can be obtained there to advantage, 一and pointing out the best manner of commencing operations when there.

Such a work, by a judicious hand, could not fail to be highly useful; and we doubt not our correspondent, E. R. W., is a suitable person to prepare it. If he will do so, wo will give it all the publicity in our power.

We shall at least hold him to his intimation at the close of his communication; hope soon to hear from him again.

For the New-York Farmer.

Springfield, Sangamon Co., Ill.
Messrs. Editors,-Having had some opportunty, from travel and residence in this country for a year or two past, to be come a little acquainted with the state of things in these Western regions, I thought I would add to my business concern a few observations for your paper. They may be of some service to those, whom high prices and hard time at the East have induced to think of other countries, where labor is more abundant and better compensated.

It has often struck me as somewhat a matter of astonishment, that among the multitudes who earn a scanty and precarious living by their labor in the eastern cities, so few of them can make up their minds to remove to these countries, where, with no greater exertions, they could soon acquire every necessary comfort and convenience of life. Does the mere facts of our having been born and brought up in the city of New.York, and formed local attachments there, opperate so powerfully that we would rather remain there in poverty and want, than to live in another State in plenty and comfort? Let me take the case of a very numerous class in the eastern cities, those females who sew for their living. There are some few of this class who receive an adequate compensation for their labor, but the number of such is small. The great majority of them do not receive more than half enough to support them comfortably. The case of widows with small children is particularly hard. Out of the miserable pittance they receive for their labor, the best they can do is to protract a ioyless existence, half fed, and hilf clothed ' -their children stunted in body for want of proper and sufficient food, and degraded , in mind through want of that mental and moral training which it is impossible for the parent to provide. How is it possible for those who receive from $12 \frac{1}{2}$ to 25 cents for making a shirt, vest, or pants., even of the commonest kind, to maintain themselves decently, much less support and educate two or thrue children. Even if they received 50 cents for making such articles, (which, however, is more than hundreds of them do receive,) it would be totally inade-
quate for their wants, under the present prices of things. In this country, things re very different. There is, throughout the whole country, a want of laborere, in almost every branch of business. And, of course, wages are high. Those seamstresses, for instance, who cannot procure enough work at 50 cents at the east, would here have the same kind of work urged on them, at most seasons of the year, for 75 cents to $\$ 100$.

There is another branch of business in which many females might find profitable employment in this country, that is, as domestics in private families. The domestic here is not exactly the same as at the east. She is not a servant girl-she is the help ol the housekeeper. It is not by any means a disreputable employment. Such persons readily command from $\$ 150 \mathrm{cts}$. to $\$ 2$ a week; in public houses something more. Most kiuds of journeymen's work are done by the piece in this country, and the prices are high enough to enable a good active hand, in almost any business, to earn from 10 to $\$ 18$ a week. Perhaps the general rate is about $\$ 12$. Common laborers are worth $\$ 1$ a day--good farm hands, 15 to $\$ 18$ a month, and scarcely to be had at those rates. In regard to the expenses of living in this town, an idea may be gathered from the following statement of prices. Beef and pork are 3 to 5 cents a pound. Vegetables of all kinds very abundant and cheap in their season, but usually scarce and high during winter. Potatocs 25 cents a bushel. Corn meal 50 cents. Flour $\$ 11$ a barrel. Butter (in summer) $12 \frac{1}{2}$ cents per lb., this winter it coir mands from 20 to 25 cents. Flour is usually worth from $3 \frac{1}{2}$ to 5 dollars a barrel, but the wheat crop has partially failed for 2 or 3 years past, and consequently the article is high.Fuwls are worth from 8 to $12 \frac{1}{2}$ cents.Families who are provident, and lay up their stores at the right season of the year, can live here moderately. A cow can be kept during summer without any expense, as they get their living on the praries, and thrive on the abundant pasture they afford. To winter a cow would cost about 5 or 6 dollars, and for this small yearly expense, a family may have an abundant' supply of trilk.
One great advantage an enterprising family enjoys here, is the facility of getting a dwelling house of their own. A lot may be had for 50 or 100 dollars, and a house, small, but sufficient for a contented family, nay be put up for two or three hundred.To do this is but the work of a year or two, and the man becomes a landholder,-his dignity is considerably heigntened thereb:He feels an interest at stake in the prosperity of the town, and is far more likely to apply himself diligently to business, than while he had no such inducements to influnce him.
It may be asked, will these advantages continue long? I think a short consideration of the causes which give rise to them, will show that they are like to continue lor nany years. The farmi:-g interest is the principle one in this State, and is eminently
prosperous, The land is fertile, the cli-
mate propitious, and such a thing as a general failure of crops, I believe, is unknown. From the ease with which new farms can made frobem the prarie, and from the immense extent of prarie land now lying uncultivated, the prosperity of the farmer must long c ntinue as great as at present. For he will have no inducement to settle in any neighborhood where he will not be well paid for his labor, when by going a little further, he can buy his land cheaper and sell his produce for more. As long as there is vacant land in different parts of this State and in adjoining States, the farming business will continue prosperous. It is the farmers who chiefly support the store keepers and mechanics of the towns, and of course the prosperity of the one will insure that of the other classes. For the same reasons, merchants or mechanics will have no cause for crowding into any place in such numbers as to overrun the business, when there are new towns continually springing up, where their commedities and labor will be in greater demand. Many persons feel an unwillingness to emigrate to the West, under the apprehension that a sort of semi barbarous state of society, exists therethat the people are rough and uncouth in their manners, and without education and retinement. On this subject, I would remark, that most of the inliabitants of this State, are emigrants from the older States of the east and south, who brought with them all the education and refinement they possessed there. Enterprise and energy eminently characterise them as a body.It was those traits of character that led them to seek this new country. In this town, you may go into a church on Sunday, and see an assembly as genteel in appearance, and as attentive and orderly in their deportment, as a New-York congregation. And you may also hear as good a sermon. There is a much larger proportion of children in Sunday schools in this town, than in the city of New-York; and nost of the benevolent enterprises of the day are pa:ronized with a good degree of liberality.The poople in their manners are usually sociable and pieasing. Strangers are welcomed with cordiality, and far less suspicion and distrust manifested than in the older countries. Upon the whole, it is only necessary to become acquainted with the characier ol the people here to admire it.

At some future time, I shall probably enlarge on some of these topics, and also communicate some information respecting farming in this country.
E. R. W.

From the New-York Farmed. No. 1.

general sketches.-NEW-england Agmi. CUTTUEE.

Bo II. C.

I propose to sketch some very general views of the Agriculture of the Northem and Western parts of the country, which I have had recently the gratification of visiting. With much of New-England, I have been long acquainted; and this season has afforded me the opportunity of sceing sone of the Western parts of New.York, the North.Western and cential parts of Penn.
sylvania, and parts of Michigan, and Ohio. not under all the advantages, which I could have desired; but with as many as usualls fa'l to the lot of travellers in their transit over the country, by the usual public conveyances.

There is a strong impression prevailing. and not without plausible reasons, that the Agriculture of New. Fngland is on the decline; I do not mean in respect to the char. acter, but the extent of the cultivation. Much less land in proportion to the popula. tion is under cultivation than was under celtivation twenty years ago; though in respect to the modes of cultivation, and the utensils employed, especially the plough, great improvements have been made. The amount of crops, from the same extent of iand, has been greatly increased, and they are more carefully husbanded than formally. Yet it is a discreditable fact, that New-England is dependant upon other parts of the country for the common necessaries of life; and has little to export, excepting perhaps a small amount of beef; and the amount of this ar. ticle, which New-England exports, does rot exceed that, which is brought here alive from other parts of the country.
Maine, with an admirable wheat soil in many parts, grows comparatively little ; and wheat flouer with the Rochester, N. Y. brand upon it, is to be found far in the interior, a hundred miles, it inay be, from the sea coast. Little Indian corn is produceć, and small quantities of rye. Outs are ruised in considerable amount; but not more than is demanded for home consumption. Excellent patatoes are produced; and of these as well as of hay sôn.e are sent to the capital of New-England, and there is an occasional shipment to the Southern cities. A good many cattle are driven from Maine to Brighton and likewise into the British provinces ; and, as grass fed cattle, they are of a good description; but agriculture in Maine, though the State, notwithstanding its climate, possesses in this respect great advantages, cannot be set down as a primary interest of the State. The fisheries, and especially the lumber business, are the great objects of pursuit.

New.Hampshire is even in this matter, behind Maine, and this from the natural condition of the soil. To a stranger unacquainted with the hardinood and spirit of the peo. ple, it is matter of difficult solution how the iuhabitants of this State are sustained. There are it is true, some sumy spots. Some extremely well managed and beautiful farms are to be met with in Greenland near Ports. mouth, Tuere is some good cultivation near Exeter and in Salisbury on the Merrimack. There is excellent, I may justly call it, pattern furming among the Shakers at Canterbury and Endfield, where all that persevering industry and untiring labor, applied with skill and julgment can accamplish, seems to have been done. Tuere is excellent farming in that part of New.Hampshire, which lies upon Connecticut river; at Walpole, Crias lestown, Claremont, Lebano:Haverhill, and Lancaster. But a conside. rable portion of this state is dooned to perpetual unfruitfuhess; is covered with moun. tains of granite, which defy all cultivation and subject to late vegetation in the Sprine and carly Autumnal frosts, discouraring ic the enterprize and oiten, fatal to the lator:
of the husbandman. Indian Corn is in most parts of the State a precarious crop. Wheat, in those parts of the State where it is at all cultivated, has for three or four years, been much cut off by the grain worm. Rye is in no part of New. England a large crop. and this too, has suffered severely from the same pest. Some small amount of cattle are raised, but the severity and length of the winters make this an expensive process.On some of the Connecticut river lands the crops of oats have been.abundant, in some instances rising to ninety bushels to the acre; but nothing like this is to be generally calculated upon and hardly an approach to the necessary supply of bread stuff is at any time produced in the State. There are some valuable intervale lands near the head waters of the Saco, which present favorable exam. ples of good cultivation ; but they are quite limited. Considerable portions of the State are well adapted to the growth of woul ; and at present New-Hampshire may boast of some as well managed flocks; and the production of some as fine wool as any part of the world can furnish.

Vermont is, undoubtedly, the best as it is the most cxclusively Agricultural State in New.England. The Indian corn crop in Vermont, is, however, a very precarious crop on account of the climate ; and it produces at present, comparatively little wheat. Wheat was formerly cultivated in Vermont with much success, but for various reasons the cultivation for a few years past has fallen off. Wool is now the great object of atten. tion, and the sheep husbandry is pursued with eminent skill and advantage. Vermont likewise may boast of some of the finest dairies in the country ; and a large amount of butter and cheese are sent out of the State. Tie town of Barnet, on the banks of the Connecticut, has been long and deservedly celebrated for its careful cultivation and excellent dairy produce. 'The Agriculture of the towns on the Western side of the mountains, and on the lake shore is very superior.

The Agriculture of Massachusetts, is, with few exceptions, in a compara ively humble state. Of bread stuff, it produces but a small part of its necessary supply. Of wheat, a very small amount is raised. Of rye, much more thun of wheat, but the mount is not large. Indian corn is more largely cultivated, but the farmurs, who produce more than five hundred bushels per year, are a small number. Barley is cultivated to some extent in some parts of the State; in others the cultivation has been abandoned on account of the grain worm, believed to be the sume by which the wheat as been cut off, but this fact is not as yet ascertained. Oats are a small crop, and great quantities of horse feed, oats, corn, and hity are imported into the sea ports and tneir vicunty, a considerable anount of oroon corn is raised ; and the brush is man. tfuctured and sent into different parts of the Jnion ; and the hops grown in this State Vermont, and New-Hampshire, form in some years a notable article for exportation. Donsitterable beet is fattened in Massachusets; and Worcester and Berkshire coun. ius especialiy, ure extensively engaged is "he busiacss of dairying. A lurge amoun 1° wool, and some of the finest qualities are
grown in this State. The culture of the mulberry and the feeding of silkworms are begining to be objects of attention. Some iosnp and tobacco are raised, but the culti. vation is quite limited. Massachusetts how. ever, though highly spirited, enterprising, and liberal in her agricultural improvements by means of well managed societies, liberal donations from the State, and the disinterest. ed efforts of many eminent individuals, has comparatively little agricultural wealth; the farms are generally small, and in many cases cultivated as an appendage to a trade, profession, or some commercial pursuit.
Rhode Island is essentially a manufactur. ing and commercial community. With the exception ot a few favored spots, the soid is sterile and hard of cultivation. The Island itself, from which the State derives its name is singularly beautiful in its position and as. pect, in most cases, of a strong and produc. tive soil, and having singular advantages for obtaing manure on account of its proximity to the sea. Much sea grass, rock weed, and kelp are obtained, and in some places fish, the munhaden, which are taken in great abundance, are freely and successtully used. With the exception however, of the product of potatoes, and especially of onions, which it grows to a large extent, the State has no agricultural produce to export ; and is almost wnolly dependant on other places for its supply of bread.

Connecticut likewise is a manufacturing State; and agriculture scarcely exists as an exclusive protession. Some parts o. Connecticut have been long remarked for the extensive cultivation of Onions, and a considerable amount of wool and tobacco is rased in the State, but its agricultural products are by no means equal to its wants. Cunnecticut has some large, and is full of small, manutacturing establishments ; and no part of the United States has a greater appearance of neatness, comfurt, and good economy. Its manulactured articles are lound in all parts of the Union.

It is sometimes asked how, with a soil and climate not very propitious, the Yankees live, and live in comtort; and if they do not acquire large and overgrown fortunes, yet present more than a fair proportion of examples of humble competence, and as much independence as usually falls to the human condition? The answer may be comprehended in three words, industry, enterprise, and frugality. Clinate and soil may be against them, but the condition in which Providence has thrown them, contributes to nourish a spirit of self-dependance, and to form a haidihood of character which is the foundation of their suc. cess. Their enterprise carries them into all parts of the country, and the world; and if the usual traits of the Yankee character go with thein, their enterprise seldom disappoint their calculations.

I trust it was not mere prejudice, for of hat I should feel quite ashamed; that in travelling through the new parts of the country, I persuaded myself that I could, in most cases, point out a Yankee settlement or home tead, without inquiry. In several instances, where I attempted the :xperiment, the inquiry confirmed my conjectures. There was a certain air of care-
fulness about the house and out-buildings, which distinguished them from most others. I am far from thinking their ways are always best ; and as it respects agriculiure. they are far behind the Pennsylvania Farmers; but in the capacity of "getting along" on small means, and with honor comfort, and independence, no people surpass them.

The Yankec too has an officiousness in other men's matters, which if it has its evils. as it is sometimes complained of, it is not without its advantages. He no sooner plants himself in any situation, than he has a "notion" that the community would be better for good roads, secure bridges, a school house, an academy, and a meeting house ; and these matters, in general standing in pretty close connection, usually, though silently, announce, who presides over the muncipality. 'The Yankees have a propensity too to have their houses painted, their yards neatly secured, their gates on the hinges and shut, and the pigs kept out of the hall and the front parlour.

This appearance of neatness, care, frugality, and thrift, indicates generally the residence of a Yankee settler; and leads us back to the circumstances under which such a character is usually formed.

With a hard and unpropitious soil, a severe climate, and a population which, if confined to its own resources, wonld press sorely upon its means of subsistence, he is compelled to labor and exertion, that he may live; obliged to gather up the fragments that remain, so that nothing shall be lost, he is trained in habits of extreme frugality ; and his invention is continually toned and stimulated by the great spur of necessity, and a spirit of enterprise aroused and cherished, that he may increase his resources. When the Yankee emigrant carries these habits with him to his new place of residence among the fertile lands of the West, success and wealth are certain ; but it too often happens, that when he find: himself in a situation where such constant and strenuous exertions are not repuired, and he discovers that even moderate exertion is most amply rewarded, far beyond his experience and even his imagination, the love of ease, alinost an essential element in the human constitution, prevail over his early habits of industry; abundance begets extravagance and waste; he sinks into the negligent habits of those around him ; and stops short in the very midst of improvement.

January, 1837.
H. C.

From the Farmers' Register.

observations made during an excursion TO THE DISMAL SWAMP. BY THE EDITOR.
The following article from the Farmers Register, will be found highly interesting.

Whoever has heard any description, how ever slight and imperfect, of the great nıo rass known by the name of the Disma Swamp, must have been interested and im pressed by the peculiar features and remark able circumstances mentioned. Yet few persons have made any personal observatio of, or paid much attention to these things
except those whose near residence, and early and long continued business and habits o. life, have made them so familiar with the swamp, that they have lost, or perhap: never enjoyed, the freshness of feeling whici novelty would have excited. Persons thu: long acquainted with the ground, do no seem to think its circumstances very re markable, and therefore do not offer their information to strangers. On the other hand strangers, who at least might learn the facts thus acquired by residents, do not even di. rect inquiries so as to draw them forth, because totally ignorant of their interest, and even existence. Few strangers would ever have been induced by curiosity to attempt the great labors necessary for even a slight examination; nor would any have probably seen more than some points on the outer margin, but for the great highways now opened through the swamp-the great canal, the road on its bank, from Norfolk to North Carolina, and the railway which dijs into the northern extremity of the s'ramp. These passages have given to thousands a rapid passing glance at certain portions of the scenery : but in every other respect, these :Iumerous passengers have added nothing to the scant information previously possessed by the public. No visiter has made the investigat on of the peculiarities of this unknown land a main object_and still less has any person paid attention to the geological and agricultural aspects in which this region well deserves consideration. I am but little qualified, either by scientific acquirements, or by opportunity for personal investigation, to supply these deficiences. Still, ir the absence of better digested and more accurate information, I will now offer such facts as were learned or observed, during a recent hurried visit to the Dismal Swamp, together with the speculations that these facts and observations suggested to my mind. Under circumstances so unfavorable for careful or iull investigation, it is not probable that mis. takes can be aroided. But I am willing to hazard being found in error, in the hope that the needed corrections may be furnished, and more full as well as correct information be given, by others better acquainted with the localities.

The part of the Dismal Swamp lying in Virginia, is about 25 miles from cast to west, and about 20 from north to south_that is from near Suffolk to the Carolina line. The swamp stretches perhaps 20 miles more southward within North Carolina, but with, much contracted width, and limits not wel defined on maps, or by report. With such minor variations as will be mentioned here. after, the whole of this extensive region is one great morass, or quagmire, except for the partial firmness caused by its cover of vegetables, and their matted roots. It would be naturally supposed that the swamp wamuch lower than all the surrounding lands; ind the general receptacle of the numerou. streams flowing from them. But, on thr contrary, the swamp is higher than nearly all the firm and dry lands that encompass it ind the interior of the swamp is generally iigher than the outer parts. The only ex. -eption to both these statements is found 0 . ae western side, where for some distance ay 12 or 15 miles, the streams flow from nigher land into the swamp, and supply all
its abundant and overflowing water. But owards the north, east and routh, the waters low from the swamp to different rivers, and pive abundant evidence, by their courses fand their rate of descent, of the swamp beng higher than the surrounding drier and firm ground. I do not mean that, at the junction of the two, the swanpy ground is ighest. On the contrary, it is generally bordered by a flat ridge of land perceptibly, though very little ligher: but this ridge slopes dowuward on all sides except the west, and soon descends to a level greatly below the general surface of the swamp. The accurately levelled profile of the railway from Portsmouth to Suffolk. and of the Dismal Swamp Canal, and the Land Company's Canal, all furnish still stronger and more accurate evidences of the general fact stated. The railway passes through about 4 miles of the northern extremity of the swamp-and is there higher than when on the firm land some miles away on either side; and is 6 to 7 feet higher than on firm and dry ground near to Suffolk and to Ports. mouth. The central part of the swamp is 5 or 6 feet above the middle section of the Dismal Swamp Canal, which section is some 13 feet above the rivers into which it empties at both ends-and these rivers are not more than 5 or 6 feet below much of the dry but low-lying land oi this generally flat country. If it could be supposed that the streams, which flow into the western part of the present swamp, had for ages been bringing, not water, but mire almost as fluid as water, the spreading of that mire over the basin of firm subsoil, which now underlies the swamp, would have cuused nearly such slopes, and form of the surface, as now exist_descending from the issuing streams on the west to the centic of the area, and thence descending towards every other part of the circumference. The surrounding slightly elevated rim, and various small and narrow ridges of poor and firm land, which rise like low islands in various places above the surface of the swamp, and the gradually descending. slopes from such summits under the adjacent swamp soil, all give countenance to the supposition that the swamp is a comparatively rccent formation or deposite on the lower foundation.

But whence came this enormous deposì of 25 mules in width, and in many parts 10 ta 15 feet in thickness? The flood of liquid mire, which was supposed above for the purpose of illustration, of course was impossible Neither could the deposite have been made by the alluvium of the streams -because they bring down rery litlle, and because the soil of the swamp is not such as would be formed by such a cause. It is not principally earthy-as are allalluvial leposites, of every grade of fertility and consistence-but vegrtabl:-and this peculiar and regular constitution may point out he origin, and explain the growth, of this vust body of high morass.
Before sceing the Dismal Swamp, and naking some examination of its different oils. I had always considered that no true peat soil evisted in Virginia-and that is ould not form, nor remain long, it already ormed, owing to the warmith and leogith of our summers, and the consequent ease
fermentation and putrefaction. I have several times incidentally expressed th: opinion in different publications, and th: last time, but a few days befure visiting th region. (Far. Reg. p. 534 vol. IV.) still hold this opimon,as to all common lan and localities, and in circumstances simila to those in which most peat mosses exiin Europe. But the Disnal Swamp certainly a peat soil, or soil formed almo exclusively of vegetable master, though th kinds of plants, and the manner of the for mation, may differ much froun European peat. In Scotland, the climate is so damp. and the summers are so short and cool, that in many situations, the natural vegetation of one year, if left undisturbed, will not rot during the next; and it remains, either wholly or priacipally. adding to the height of the surface soil, without giving it any increase of fertility. If water flows into such land, it is absorbed by the regetable matter, and acts to give greater vigor to growing mosses, and otheraquatic plants, and still more to retard their puirefaction when daad. Thus, in the situations most favorable to the formation, that is the cold. est and most moist, (witkout being overflowed by water,) the peat grows to many feet in depth-and even on pasture lands, or arable left untilled, the surface becomes peaty or moory, having an excess of vegetatle inatter, but in that undecomposed state which makes a soil loss, instead of more productive under tillage. Hence, the peats of Britian, whether of 6 inches or 6 yards deep, are barren, or at least tending to make a soil unproductive: and when brought under tillage, besides drainage, these soils require operations to decompose their excess of vegetatile matter, to fit then for producing grain crops. For this purpose, the dry and shallow peats are pared and burnt-and the deep peats are limed, dug up and stirred, and eren manured with dung, to quicken fermentation. Now no such formation of soil can take place in such a climate as ours, because the summer's heat and continuance are more than sufficient, under ordinary circumstances, to ferment all the vegetable matter that the preceding year had produced. Paring and burning the soil, which is a common and excellent part of preparatory tillage in England, on any common highland soils that have been left in pasture, could not be effected in Virginia-and if it could, would be injurious, by destroying the vegetable matter, which, if not burnt, would be decomposed soon enough.

It is true that we hare soils as entirely of vegetable formation as many of the peats of Britain. Such are all the fresh water tide marshes, parts of many swamp: and the whole of the great Dismal Swamp But the difference I take to be this. Th. vegetable soils, being kept constantly eithe, covered by, or saturated with water, ar kept from entirely rotting, and are increaed in thickness by annual accessions o vegetables. But though not enough rotte to lose much of the bulk, they are enoug so to form manure: and these lands net only perfect draining to be at once highl. fertile. Then indeed the soil begins to ro too rapidly ; and if kept dry, will continue
to rot as long as a great excess of vegetale matter remains. Hence the opiniol hich I have lonis maintained by reason. wis, and to my very great loss have seen roved in pracuce, that our fresh wate, de marshes, if diked and drained, will ro way, as deep as they are miade dry enougrl or tillage.
The soils of the Dismal Swamp ar a ich nearer to the peat of Europe that ny other that I have observed: indeed the :pper layers of the juniper lands, to thi lepth of some inches, may be formed of the same mosses. But below the living roots, though still it is all of vegetable formation, the plants are so rotted they are simply a soft black mud. The general cover of all this kind of ground, under the shelter of the large trees, shrubs, or reeds, is a thick carpet of tender mossy plants, which rise to 4 or 5 inches high, and which are taken up by the hand so easily, that they seem to have scarcely any hold of the ground. Where these grow, the surface is as wet as water can make it, if not cover ed an inch or two. This, the least solid of the whole, is the soil most favorable to the juniper trees-which stand, barely supported by the long tap root, in these quaking boge of "surf" or " sponge," as this earth is called by the laborers.

The peat of Europe, or at least certain qualities of it, is good fuel: and I have but lately learned from a very intelligent gentlemen who resided in Boston during the late war with England, that the peat of Massachusetts was then used for fuel, in consequence of the scarcity and high price of coal. In an article in a New England paper which has since reached me, I see the use of the same fuel recommend d at this time. The vegetable soil of the $\mathrm{Dis}-$ mal Swamp, (like that of our tide marshed,) when dry, is highly combustible-and being principally of vegetable origin, would leave but little ashes, or earthly residue. But on account of being so well rotted, it would probably make but poor fuel.
The iminense and continually growing fields of peat, which are spread over the earth in cold countries, are probably the materials for future beds of coal, after be ing buried deep in the earth by some of the convulsions of Nature which have so often changed the face of the globe. When compressed by the weight of mountains to the density of stone, the peat of the mosi open texture, or the most rotted and worinless, may become a coal valuable for fuel I do not believe that geologists admit this. iheory of the formation of coal: but i. jeems to me a more plusible origin that from other than peaty matter.

It is not difficult to conceive how the soi of the Dismal Swamp should have beet rrowing in thickness, and spreading oves nore extent of surface; and that it sha! :ontinue to do both, if the existing causes ure suffered to operate. The stream which flow from the western highland ar :ucked up by the earth, which from th. rature of its composition, absorbs and bold vater like a sponge: and it is thus fille ir very slightly overflowed by water, a: et no part covered deeply, because tl superfluous water finds or forms channel:
to escape into rivers, which head at various idjacent and much lower points. This ontinual wetness, and the extreme richifss of the soil, combine to produce a proligious growth of aquatic plants, of various inds, and of all sizes, from the dimimutive noss to the gigantic cypress. The wet soil causes more evaporation than would take place from water alone-and evaporaion causes cold-and the heat of the sun is in great measure excluded by the thick cover of trees. Hence, a coldness of the earth, suitable to a far more northern climate is produced, and maintained. The leaves and moss, and other vegetable matters that fall, are but partially decomposed, and thus add annually to the thickness of the soil.

As might be inferred from the operation of the causes named, but little of the surface of tho swamp is many inches either above or below the water, though the level of the swamp is in some places five feet lower than in others, and perhaps much more. Standing, but shallow water tends to raise the earth to its surface: and if, by drainage, drought, or any other circumstance, a part of the land should be so much higher than the water as to become quite dry, the first accidental fire would reduces it to a lower level.
It may well be supposed, from the fore ${ }^{*}$ going general description, that the swamp furnishes very difficult ground to travel upon. But I had no adequate conception of the magnitude of the difficulties before personally making the trial. In addition to the general wetness of the earth-the most dry being a mire, from sirking in which the traveller is guarded only by the mat of living roots-the undergrowth of evergreen sbrubs, and vines or reeds, cause still greater impediments to his progress.
It is difficult to imagine a sufficient motive to have induced any man to penetrate a mile into the swamp, before paths were cut and made solid enough, for the purpose of getting the timber. And these obstacles long prevented any person from going iar fron the borders. It was as late as some twenty years before the revolutionary war, that the lake, which is the most beautiful and magnificent feature of the region, was first discovered by a hunter, named Drummond, who had lost his way, and therefore wandered"niles through this "Slough of Despond." He could not have reached the lake in the shortest line from the main land in less than three niles-and probably it was many more. What must have been he sensations of a man, so lo t in such a „loomy labyrinth, when he came suddenly spon the border of this splendid sheet of vide water! Lake Drummond is nearly, oval-seven miles long, and more than five wide. It has no beach, the thick and tall orest being at and in its margin. The vater is generally even with, and often sently overflowing its banks-and the banks if such they may be called) sink perpenlicularly, so that whether the waters of the the are higher or lower than is usual, it rakes no difference in the breadth of the -ater, and but little difference in the general appearance of the shores. There may
be a difference between the highest and lowest water, from the opposite effects of the wettest and dryest seasons, of three or four feet-and there would not be as much, perhaps, but for the artificial reducing of the water, in the dryest seasons, to suppiy the great canal for the purposes of navigation.
This beautiful lake-and which no doubt seems the more beautiful on account of the gloomy scenery passed to reach its borders; is so much like belonging to fairy land, that it is not strange that it should have been connected with sundry popular delusions. Some persons at first had affirmed, and others believed, that the lake had no bottom, or that it communicated with the neighbor ing ocean by a subterraneous passage. There was but slender ground for this delusion, as the lake is quite shallow, and the level of the bottom very regular. Mr. Mills Riddick sen. of Suffolk, told me that he as sisted Commodore Barron in sounding across the lake. The depth about the middle, where greatest, was 15 feet. The bottom is of mud like the swamp, but sometimes a pure white sand colors the mud a foot, or perhaps more, in depth.

About the time that the lake was discovered, another event took place which produced ultimately the present proprietary state, and peculiar busincss and management of the swamp. This was the "taking up" by Gen. Washington, and a few other gentlemen acting upon his suggestion, of all the then unappropriated lands of the Dismal Swamp in Virginia. Before that time no persons had taken possessioh (by course of law,) of any lands, but those at and near the margin of the high land, because the interior lands were not deemed worth paying the lowest taxes on. Gen. Washington whose business as a land surveyor gave him many opportunities of acquiring possession of valuable public lands, and who obtained much of his wealth in that manner-saw a rich farm on the border, which had been rendered productive by being draned. Thinking that the whole swamp was equally available for cultivation, he formed the association above named, bought the farm in question, and took up all the remaining State lands, esti mated then at 40,000 acres, but which are now supposed to be much mure. 'They excluded the lake from their patent, though it was completely surrounded by their land, considering it not worth paying a tax for.By this ill judged economy the company has since suffered. When the Dismal Swamp Canal Company was afterwards chartered, they were granted by the commonwealth the exclusive use of the water of Lake Drummond to feed their eana-and this grant serves to shackle the efforts of the Land Company, (since also incorporated,) and would prevent the adoption of any general plan for draining. As is usually the case with corporations that come in contact, they seem more fond of squabbling with and opposing each other, than of uniting in any general procedure for the good of both.

The only object of the Land Company at first were agricultural-and they commence, and for years carried on tillage on their farm and drainage to extend it. For the latter pur. pose, they dug a canal of some miles in
length from the high land to the lake, which is still large enougi for the passage of boats. This is now known as the " Washington Ditch." But whether their plans were judidious, or had the defects inherent in such joint stock companies, their labor and capital yielded little profit. 'The war soon followed, and before its end half their slaves went off to the enemy, as was generally the case in places so near tieir encampment.After peace was made, the work still went on badly, until the Company undertook the getting of juniper shingles. This business, which was not at first counted on, has since become their sole pursuit, and immensely profitable, and must continue profitable until the timber is mostly consumed. which indeed is rapidly approaching completion. The shares into which the stock was originally divided, have increased in price from $\$ 3000$ each to more than $\$ 15,000$; and the dividends made are large even for the highest price. But unlike most other stocks, this is diminishing in real value, with every year's waste of timber-and unless the land itself is made of value by drainage, the stock of this rich company will, at some future time, lose its market value, as rapidty and to many owners as unexpedly, as it was formerly acquired.

What I have stated of the Land Company, was learned from gentlemen who have been long and well acquainted with the general affairs of the company; but as their knowledge was not official, and rested on memory, facts may have been incorrectly stated as to dates, amounts, or other mitior circumstances.
It had long been my intention to visit these scenes-but it was only very lately that a first and hasty visit was made, which has enabled me to judge of and to describe them, as far as will here appear.
On Nov. 17th, I reached Suffolk by way of the railway, from Portsmouth, which passes through a few miles of the swamplat its northern extremity, and thus permitted a first slight glance. It scems unfortunate that the first approach to the swamp, of almost every person hereafter, will be on the rapidly moving railway train. The savage gloom of the face of nature is altogether unsuited to the highty artificial facilities by means of which the traveller is flying pastand the discordance serves to lessen the high gratification which either the conveyance or the scene alone would cause, when new to the observer.
It was too late on that day to commence a voyage to the lake-nor could it be made on the next: for though every thing else necessary had been carefully provided, there were no good boatmen out of the swamp-and without those accustomed to the peculiar mode of navigating the canal, there was no getting on. The leisure afforded by these disappointments permitted me to visit some of the most interesting lands in the neigh. borhood-and to see sorne improvements on swamp lands, to which my remarks will now be confined. Having mounted on horseback, we returned by a different route, to the swamp where it is crossed by the railway. This great public improvement had effeeted much of the first and heaviest labor necessary for draining the adjacent swamp lands, and had clearly indicated the proper mode
to pursue-and the proprietor on one side, Mr. David Jordan, was making proper use of the opportunities thus offered. The swamp land here is $\mathbf{6}$ to $\mathbf{7}$ feet higher than the part of Suffolk which the railway passes over ; and the ditches dug on each side, to drain and to raise the track of the road, furnish decp and wide discharging outlets, to receive the waters from all smaller ones draining from the swamp. This land had been filled or covered with water before the railway was begun : the ditches dug by Mr. Jordan, are at right angles to the road, and emptying as above stated, have laid the land dry, and kept the water as much below the surface as the depth of his ditches, which is from 2 to $2 \frac{1}{2}$ feet. Still this is not enough for so spongy a soil, which will draw much moisture upward, and from considerable depth:. I advised giving 10 or 12 inches more of depth to the smaller ditches, and still more to the large railroad ditch, which can be easily done. The water comes from the general overflowing or saturation of the swamp, and therefore a good large ditch ought to surround the whole piece designed to be reclained.
This tract of land was bought by Mr. Jordan and Mr. Benton, after the railway was made, at $\$ 7.50$ the acre. Immediately adjoining, and also on the road, another body of land of 2000 acres had been bought before the road was commenced, for only $\$ 900$, a most striking evidence of value thus increased. All the wood is now made mar. ketable, and is cut to a great profis, and sent by the train to Portsmouth. It is cut (by the job) into 4 feet lengths, at 50 cents the cord; carted and corded along side the road for 25 cents more-(and this expense might be lessened one-half, by making branch wooden railways-) and the wood is sold at $\$ 1.25$ in that situation, and now commands $\$ 4$ if delivered in Portsmouth. As but little super. intendence is required, the profit from an acre must be very considerable.

The swamp soil next the railway was from $1 \frac{1}{2}$ to 2 feet thick, resting on a good dark colored clay. The soil did not appear to vary materially in texture, as seen in the new ditches several hundred yards towards the interior. It is of the more firm and earthly kind, known as "gum swamp," but which scems to be composed in great meas. ure of vegetable matter. It appears precisely like the soil of the gum and ash tide swamps on James River. Farther from the railroad, the ditch reached land which form. erly had been burnt over, so as to destroy its trees, and it was now covered by the closest possible growth of reeds, among which were scattered many young pines. The soil did not seem to change, otherwise than by be. coming deeper. The sub-soil here is a stiff yellowish clay.
(To be Continued.)

Advertisements.

STEPHENSON,
Builder of a superior style of Passeng a Cars for Railroads.

No. 264 Elizabeth atreet, near Bleecker atreet, New-York.

RAILROAD COMPANIES would do well to eza mine these Cars; a specimen of which may be seen on that part of the New.York and Harlsem Railroed
now in operation.

FRAME BRIDGES.

THE undersigned, General Agent of Co S. II. LONG, to build Bridges, or vend the right others io build, on his Patent Ilan, woully respecifful! inform Railroad and Bridge Curporacious, thas he prepareal to make contracts to build, and furni-h a materials for superstructur-s of the kind, in any pn of the United States, (Maryland exceptrd.)
Bridges on the abose plan are to be seen at the fi Inwing localities, viz. On the main road leating fro Beltimore to Wishington, two miles from the firms place. Across the Metawamkeag riwar on :he Mit tary mad, in laine. Oi, th - mational ruad in Illinu at'sundry points. Onthe Balimore and Snsquehau na Rrailroad at three points. On the IIudson an Patte:mon Railroad, intwo places. On the Bustonan Worcester Railroad, at aeveral points. On the Bus Worcester Railroad, at aeveral points. On the Buss
ton and Providence Railroad, at sundry pointe. Acrows the Contoornok river at IIenniker, N II. Across the Souhegan river, at Milford, N. H. Across the Comnecticut river, at Ifaverlill, N. H. Acress the Cons toocouh river, at Hancock, N. II. Across the Alt droscoggin river, at Turner Centre, Mnine. Across the Kennebec river, at Waterville, Mnine. Acrns* the Genesse river, at squaki-hill, Mount Morris New-York. Across the Whip River, at Hartforis V_{t}. Acruss the Connericut River, at Lebnnon, N VI. Across the Conneriicut River, at Lebannon, N PI. Across the month of the lhroken Niraw Creek. N. Y. A Railroar Bridge diagunally ace oss the Erie Canal, in the City of Rochester, N. Y. A Ra lroa Bradge at Upper still Water, Orono, Maine. Thi: Bridg 'is 500 feet in I ngth; one of the spans is oves 200 feet. It is probably the firmest woours pridge ever built in America.
Notwithstanding his present eneagements to built between iswenty and thirty Railr nad Bridzes, nid several common bridges, speveral of which are now in progress of construction, the subscriber witl promptly attend to business of the kind to much grater extent and on liberal terms.

Rochester, Jan. 13tn, 1837.
:MOSES LONG.

HARVEY'S PATENT RAILROAD

 SPIKES.THE Subscrihers are manufarturing and are now prepared to make con'racts for the supply of the abive article. Samples inay be ween and obtained at Measra. ROORMAN, JUINSOV, AYRES \& Co. No. 119 Greenwich Sireet, New-Yurk, or st the MaNo. 112 Greenwich
kers in Poughkeepsie, who sefer to the subjoined cersificates in relation to the article.

HARVEY \& KNIGHT.
Poughieepsie, October 25 hh, 1836.
The undersigned having stlentively examined Harvey's Patent Flanchid and Grooved Spikes is of the opinion, thait they are decidedly preferable for Railrosds to sny other Spikes with which he is acquainted; and shall unlesitatingly recommend their adoption hy the different Railruad Companies whose works he has in chargc.

BENJ. WRIGHT,
Chief Engineer N. Y. \& E. R.'R.
New-Yoar, April 4th, 1836.
Harvey's Flanched anl Grooveá Spikes are evidently superior for Raitroadv to thuse in common use, and I shall recommend their adoution on the roads under my ehatge if their increased cost over the latter is nut greater than some twenty por cent.

> JNO M. FESSENDON, Engineer.

Boston, April $261 \mathrm{~h}, \mathrm{i} 836$. No. $4-6 \mathrm{t}$.

ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.
WILLIAM V. MANI manufactures to order reon castings for Gearing Mills and Factoriea ol overy description.
ALSO-Steam. Engines and Railroad Castings o every description.
The collection of Patterns for Marhinery, is not equalled inthe United States.
$y, 18 n o$
$9-1 y$
TO CIVIL ENGINEERS, \&c.
E. \& G. W. BLUNT, 15411 ater st., corner of Malden Lane, have rerently received an ossortment of LLVL. LS, irom different manufa ' ${ }^{\prime}$ rers, among others from Troughoun \& Surins, which they warrant of the tirst quality Circumferentors, Lovelling Sraves, Prismatic Compasses, Mathematical Instruments, Bouks for Engineers, etc., cunstantly on hand.

Une of the above firm is now in Fngland superintending the manulacture of Theodulites, 'I'ransit in strmonts, etc.-and any orders for Instrimiears, no now on hand, will be forwarded him, and executed
promply.

ARCHIMEDES WORKS.

(100 North Monr street, N. Y.;
New-Yorg, Februnry 12th, 1836 THE nndersigned begs leave to inform the propris res of Railroads that they nre prevared to furnish al inds of Machinery fot Railruads, Locomonive Engine: any size, Car Wheels, such as are nuw in success Il operation on the Camden and Amboy Railroad inf of which have firilrd-Castings of all kinds hoels, Axles, and Bexes, furnizhed at shortest nutice
II. R. LUNHAM © CO.

AMES' CELEBRATED SHOVELS; SPADES, \&c.

300 duzens Ames' superior back-strap Shovela $\begin{array}{lllll}150 & \text { do do do plain do } \\ 50 & \text { do do do do } & \text { do } \\ \text { doststeel Shovels }\end{array}$
$\begin{array}{lll}50 & \text { do do do caststeel Shovels \& Spadea } \\ 50 & \text { do do Gold-mining Shevels }\end{array}$ $\begin{array}{lll}150 & \text { do } & \text { do Gold-mining Shovels } \\ .00 & \text { do } \\ \text { do plated Spades }\end{array}$ $\begin{array}{lll}.00 & \text { du do plated Spades } \\ 50 & \text { do do socket Sho }\end{array}$
Fogether with Pick Axes, Churn Drills, and Crow Usars (steel pointed, mannfactured from Salisbury refized iron-for snle by the manufacturing agents,

WITHERET AMES \& CO
No. 2 Liberty street, New-York. BACKUS, $\operatorname{AMES} \&$ CO.

No. 8 State street, Albany
N. B-Also furnished to order, Sliapes of every de rrintion. mate frum Salshury refined Iron v4-if

AN ELEGAN'I STEAM ENGINE AND BOILERS, FOR SALE.

THE, Steam Engine and Boilers, brlonging to the S'TEAMBOAT MELEN, and now in the Novelty yard, $\mathbf{N} Y$. Cursisting of une Horizuttal high prea. sure tingine, (hut may be made to cordense with litile additional expense) 36 inches diametcr, 10 feet stroke, wihh latest inproved I'iston Valves, and Metalic packing throughout.
Also, four Tubular Boilers, constructed on the Englinh Lacomotive plan, containing a fire surface English Locumotive plan, containing a fre surfare
of over 600 feet in each, or 250°) fet in all-will be sold cheap. Atl communications addressed (post paid) w the subscriber, will mee: with due attention

HENRY BLRDEN.
Troy lron Wurks, Nov. 15, 1836.
1-If

A SPLENDID OPPORTUNITY TO

MAKE A FORTUNE.

THE Subscriher having ubtaned Letters Patent.from the Guvernment of France, grantung him the exclu. sive privilege of manufacturing Horse Shues, by his newly invonted machunes, now offers the same for sate on terms which canuot tail to make an inderendent fortune to any enterprising gentlemen wishing to emliark in the same.
The machines are in constant operation at he Troy Iron and Nuil Factury, and all that is necessary to satisfy the most incredulues, that it is the most valuable Patent, ever oblained, either in thisor any wher country, is to witness the oweration which is open for inspection wo all during workng hours. All letters audressed to the subscriber (post paid) will re. eeive dueattention.
'Troy Iron W orka,
IIENRY BURUEN.
N. B. Hurse Shoes of all sizes will be kept cons stantly for sale by the pincipal Irun and Haril-ware Merchants, in the I nited Siutes, at a small adsanse above the price of Ilorse Shoe Jron in Bur. All persons selling the same, are authorisen to warrant every shoe, ade from the aest refined trun, and any faining to render the must peafect satrsfacotin, both as regards workinanship and quality of lron, wild be received back, and the price of the same refunded.
H. BUliDEN. $47=1 t$

NEW ARRANGEMENT.

ropes for inclined planes of railroads.

WE the subscribers having formed a co-partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Rupes fir inclin if planes ot railruads, and for other "isc s, offer to supply ropes for inclined planes, of smi lengit required without splice, at short notite, the malufacturing of cordnge, heretofure carried on by m. 1 Durfee $\&(\%$., will be done by the new firm, the tame supprintrndsut and machinery are employed by ihe new firm that wrie empluyed by S. S. Durfee \& Co. All urders will be prompily att nded w, and mopes will be shipped to any port in the United Siates 12th munth, 12.h, 1836. Hadson, Columhia County 5 ate of New-York.
33-18.
ROBT. C. FULCER.
! HEORGE COLEMAN,

PATENT RAILROAD, SHIP AND BOAT SPIKES.
The Troy Iron and Nail Factory keepa coniantly for sale a very extensive assortment of W rough -pikes and Nails, frum 3 to 10 inches, manufactured sy the subscriber's Patent Machinery, which sfter we years successful operation, and now aimont universal use in the United Siater; (as well es England, where the suhscriber obtained a patent,) are found where the suhscriber obtained a pat.
uperior to any ever uffered in markit.
"Raitroat Companies may be supplied with Epikes asing countersink heads suitable w the hules inirin ails lu any amount and on short nutice. Almost ald he Railruads now in progress in the United States are uastrned with Spikes made at the abuve uamed fac-iory-fur which purpuse they are found invaluable. as their adiesion is more than double any commun spikes made by the hammer.
*** All urders directed to the Agent, Troy, N. Y., will be punctually attended to.

HENRY

Troy, N. Y., July, 1831.
** Spikes are kept for asele, at factory prices, by I. \& J. Townsend, Albany, and the principel Iron Mer chants in Albany and Trny ; J.I. Brower, $2 \dot{2} 2$ Water street, New-York; A.M. 'Jonps, Philadelphie; T. larviera, Baltimore; Degrand \& Smith, Boston.
P. S.-Railruad Cumpanies would do well to forward their orders as eurly as practicable, as the subscriber is desir us of extending the manufacturing so as to keep pare with the daily inerear BUUEN his Spikes.
(1J23am:)
H. BURDEN.

RAILWAY IRON, LOCOMOTIVES,\&c.

THE subscribers offer the following articles for sale.
llailnay lron, flat bare, with countersunk holes and mitrel juints,
350 tons $2 \frac{1}{4}$ by $1,15 \mathrm{ft}$ in length, weighing 4
lbs.
 $\begin{array}{rllllll}280 & \text { " } & \text { " } & \text { t, " } & \text { " } & \text { " } & 3 \frac{50}{10} \\ 80 & & 4, & " & " & " & 2 t\end{array}$

wiin Spikes and Splicing Plateo adspted thereto. To be suld fite of duty to State goveruments or incerporated comparmis.
Orders tur Penpsylvania Builer Iron executed.
Rail Road Car and Locumutive Engine Tires, wrought and turned or unlurned, wady to be fitted en the wheels, viz $30,33,36,42,44,54$, and 60 iaches oinmeter.
E. V. Patent Cbein Cable Bulta for Railway Car axles, in lengthe of 12 fiet 6 inclies, to 13 feet $2 t, 2 f$ $3,3 t, 3 t, 34$, and $3 \frac{1}{2}$ inches diameter.

Chains for Inclined Planes, short and stay links, manulactured from the E. V. Cable Boles, and proved at the greatest strain.
India Rubher Rope for Inclined Prnes, made from Niw Zealand flax.
Alse Patent Ilemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Frlt fur placing between the jron'chair' and an bluck of Edge Ra! ways.
Every description of Railway Irem, as u-1\} as hocomotive Engines, imported at the shortest motice, by the agency of one of our partners, who resildes in Fingland for this purpose.
Mr. Solumun W. Ruberta, a highly respectable American Enginecr, resides in kingland for the purposie of inspecting all Locomutitcs, Machinery; Railway Iron \&ie. ordered thruugh us

28 tf Philadelphia, No. 4, South Frint st.
MACHINE WORKS OF ROGERS, KF,TCHUM \&ND GROSVENOR, Paterion; NewJersey. The undersigned reetive orders fur the following articles, manufactured by thrm, of the moat sinperior descripiun in every particular. 'Their works siperior descripiun in every paricular. Their works
bu ing extensive, and the number of hands employed bung exiensive, and henimmber of hands exmployed
bring large, they are onahled to execute both large and small erders with promptness and despatch.

RAILROAD WORK:

Locomotive Steam-Engines and Tenders; Driving and orlier Lucumative Wheels, Axtes, Springes and Flai.ge Tires; Car Wheela uf east iron, frum a variety of pallerns, and Chills; Car Wherls of cast iron, with wsollght Tiry s ; A xles of best A merican refined irun ; Spring*; Boxes and Bults for Cars.
COTTTON WOOL, A.VD FLAX MACHJNERY,
Of all descriptions and of the most improvid Patarns, Style and Workmanship.
Mill Gerring and Millwright work generally; Hydraulic and uther Preases; Press Screws; Callenders; Lathes and Touls of all kinds, Iron and Brass Castings of all descriphione
hOGERS, KETCHÜM \& GROSVENOR
Paterson, New-Jersey, or 60 GROSVENOR

 AMERICAN TAILTOAD
 HOUREAL, AND ADVOCATE OF INTHERAK, MIPRQUEMENGS.

PUBLISHED WEEKLY, AT NO. 132 NASSAU STHEET, NEW-YORR, AT FIVF DOLLARS PER ANXUM, PAYABLE IN ADVANGE

CONTENTS :

Editorial Notices.
Railroad and Canal Stocks
Fitension of the Erie Canal \qquad
Trade of the West
....................... . 114
Report of Erskine Stansbury. 115
Report of the Engineer of the Eastern Shore Lail-
road. .. 1
Minutes of Evidence before a Select Committee of the House of Lordz, on the Tolls on Steam Carriages Bill
Introductory Lecture
123
Agriculture. . 124
Advertisements.

AMERICAN REILROAD JOURNAI.
NEW-YORK, FEBRUALY 25, 1837.
List of susscribers to the Railioad
Journal: that have paid, (continued.)
H. Mc Farlan, City, N. Y., Jan. 1, 1833 Mr. Stoddard, Brooklyn, L. I., " " Messis. Bancroft \& Co., " " "
M. S. Brackett, Syracuse, N. Y. " ."
J. D. Allen, Oswega, N. Y., " "
G. Pearsall Smithsboro, N. Y., May 1, 1836
R. C. Hewctt, Lexington, Ky., Jan. 1, 1837
S. Fitch,
" "
G. W. Shields, "
" 6
R. Downing, Bergen, N. J., Feb. 15, 1837 A. Paris, Boston, Mass., Jan. 1, 1838 Post Master, Rushville, Ill., " "
Geo. Sullivan, London, Eng.,
" 1857

Bennet's Steam Boiler.-Very few inventions of recent date have excited so much notice as that of Mr. Bennet. We have had the pleasure of examining his models and of hearing his explanations. The novelty and originality of the idea of forcing the flame and entire volume of air
from the furnace through the water, are striking, and to some, startling features in a boiler to a steam engine. Ncvertheless, Mr. B., who has catered very thoroughly into the inves'igation of the operation of the machine, demonstrates very sutisfactorily the entire safcty and certainty of this mode of applying stcam.

The very elegant machinery for the Atlantic Steam Navigation Company's Boat is constructed upon this principle, and will afford a very excellent trial of the system.

Mr. B. may be found at the rooms of the American Institute, where be will afford every explanation of his models.

The subject is worthy of attention, as several curious points of chemical relations are involved. It is of course intended by such an application of heat, to ecconomise the consumption of fuel, and if the boiler operates at all, this will be the inevitable result.

Áldrich's Inclined Plane for Rail-roads.-A description and cut of the inclined plane will be found on $p .764$ of the last volume of the Railroad Journal. The in: tention of the inventor is by a simple and substantial arrangement, with rack work to enable engines to ascend plains of various degrees of inclination without disturbing their horizontal position, a great desideratum in Railroad economy.

The inventor founds the claim of usefulness upon the extreme simplicity of his machines, a basis upon which every improvement in Railroads or Locomotives must be placed before it can be deemed worthy of considerative engineers.

Mr A, is also to be found at the rooms of the Ancrican Institute.

RAILROAD ANU CANAI STOCKS, in New-York and Phila. deldhia.

PHILADELPHA STOCK MRAKET. RALLROAD STOCKS

New-Castle and Frenchrow:

Do loan, $5 \frac{1}{4}$ per cent Wilminglon and Susquehanaa Camden anc Amboj; shares;

Do loan, 6's 1836 Danville and P shares Danvilie and P share
Norristown,
do

Do 6 per cent loan Valley Railruad
Westchester do Minehill do
\mathbf{N}. L. and Penn. Tp. dò Philad -lphia r.d Trenten do West Philadelphia Railroad Harrisburg and Lancaster Cumberland Beaver and Meaduw

Miscellaneous stodeks North American Coal Compary Steam Bt. Sts. Columbian Excliange Stock
Arcade
Arcade
Theatres -Walnut street Arch street

Gas Company

$25 \quad 12$

CANAL STOCKS.

Schuylkill Navigation,	50	1644	165
Do loans, 5 1845	100	98	100:
Do do 1855	100	100	101*
Wo do 5t 1837	100	98	100°
Lehigh Coal and Narigation	50	824	83:
Do loan, $6 \quad 1889$	100	861	971
Do do 61839	100	97	98
Do do 6 1844	100	99	100
Do do 5 1840	100	96	974
Union Canal, shares	200	180	190
Do loan, 1836	100	83	86
Do do 1940	100	85	90
Chesapik \& Delaware Canal, shares	200	20	40
Do loen, 1837	100	60	67
Lo do 1840	100	60	67
Delaware and Hudson,	100	904	91
Do loan	100	95	100
Louisville and Portand .	100	1124	117
Convartible 6 per cent. Joans,	100	110	120
Sandy and Bever	45	10	40
Morris Canal.	100	36	96

Extension of the Erie Canal.-A single moment's reflection, cannot fail ot convincing the most scrupulous that it is for the best interests of the State, that the Erie Canal be extended, immediately, to some - point farther up the lake, so as to avoid the existing obstacle to the most profitable portion of our trade with the western States. All must be aware of the fuct that the Eric Canal is in ordinary seasons open in the spring several days before the Lake at its lower extremity, is navigable, a circumstance, which seems very likely to operate materially to our disadvantage.Pennsylvania has caught from us the spirit of enterprise, and seems determined through the medium of a projected chain of internal communication from her castern border to Lake Erie, fo secure to herself no small portion of the lucrative business of the west. which is at present enjoyed by the State of New-York, and unless prompt measures are taken by the latter, the desired object of the former will, we fear, be successfully effected. The bare tact ot the difference in the time of the opening of lake navigation between Buffalo and the ports further west, might nut, when abstractly considercd, be thought of very great moment, but when we look at its indirect bearing, and ultimate consequences, the importance of conquering this obstacle is at once apparent.
The Western Merchants will, of course, make their purchases as near home as the nature of things admit; if they can by purchasing at Philadelphia, receive their goods one week or two weeks carlier than they could from New-York, they would undoubtedly do so, and having once become diverted from the latter place, they would close up and discontinue all communication.

Under such circumstances it behooves the Sta:e of New-York, in order to subserve her interests as well as sustain the character she has already acquircd on the score of improvement and enterprise, to avert such a state of things; and how? the only possible way for her to do it will be to extend the Erie Canal from Buffalo to some point far enough west to remoty the evil complained of; and as soon as this work is vigorously set about, the idea of constructing a cliannel through Pennsylvania, to the Atlantic coast, will be regarded as wild and chimerical. The project of extending the Eric Canal was, we believe, contemplated by the late Gov. Clinton, and subsequently submitted to the consideration of the Legislature, by our present worthy chief magistrate, (vide. Governor's message, 1836,) and it is vitally important thut it be fully carried out ; public policy requires it - the interest of the western and northern counties imperatively demands it -the city of New-York is anxious for its consummation, and relying upon the wisdom and liberality of the Legislature, we are confident that the subject will be thoroughly canvassed. It will be perceived by the following, that Pennsylvania is moving with a tixed determination to undermine us, and she will succeed too, uniless we check her in the bud.

Harrisburg, Jan. 17, 1837.
The following resolution was offered by Mr. Taylor, of Indiana, and it relates to a highly inportant public measure, and one which will one day become the glory of Pennsylvania, I will copy it entire. It was read the second time and adopted:
"Reso'red, That the committce on Inland Navigation be instructed to inquire into the expediency of reporting a bill, extending the West Branch division of the Pennsylvania Canal, on the Susquehanna River, to the Alleghany River, by the route proposed by the Engineer, Mr. Aycrigg, in his roport of the 13 th December last to the Canal Commissioners : and to authorize, at least, one half of the distance, reported to be put under contract ihe ensuing summer, appropriating the sum or sums of money necessary to defray the expenses which may be incurred thereby during the current year."

The whole distance of the route from the Susquohanna to the Alleghany, is 128 miles. This being made, and a short distance down the Alleghany to the mouth of the Kiskeminetas, and up the Alleghany to Franklin-and Philadelphia will be connected with the Ohio and Lake Erie, by a continuous water communication. Then let the Union Canal be purchased by the State, or the company assisted, and that important work widened and deepened, and the trade of the Lakes and the Ohio both is securred to us forever! Secured, did I suy? There will still be wanting another work; and that work will be constructed. I incan the great railroad from Philadelphia, hy the way of the West Branch to Erie. This great railroad can be made without a singlo inclined plane at which stationary engimes must be used; and the distance will not exceed 400 iniles. NewYoik has a project to unite Dunkirk, on Lake Erie, thirty or forty miles down the Lake from Erie, with the city of NewYork. I now have the report of the enginecrs on that route, and am satisfied that it will be nearer to New-York itsell, through Pennsylvania and Philadelphia, from Erie, than on the New-York road. The NewYork road is five hundred and six miles leng. There are eleven planes of the grade of 50 feet to the mile, and fourteen having a grade of more than 50 feet to the mile; there are ten planes of 60 feet and upwards to a mile, whose aggregate length is more than 30 miles; there are two planes of 78 feet to the mile; one five miles long, and another seven; there is one of more than three-fourths of a mile in length, with 100 feet inclination to a mile; one plane of nearly four miles and one-half, with an inclination of 72 feet; and of more than ane mile and a half, with an inclination of 316 feet to the mile. You can readily see, that if the Pennsylvania road is commenced, the New-York road will hardly be found a profitable investment for money.

Our Pittsburg friends without reason, 1 think are opposing the road to Erie. They want a railroad from Pittsburg to the foot of the Laurel Hill, and then, a MacAdamized road of 60 or 70 miles in length, over the monntains, to Chambersburg. Now, let us
have both of these improvements. Nothing can check the great prosperity of Pittsburg. By building up Erie, and creating a trade between her and the Ohio River, Pittsburg will be also benefitted. We must have the Lake trade and the Lake business through Pennsylvania. It must not go down the Lake to Buffalo, and then to New-York, in consequence of an illiberal policy towards Erie.

From the Van Buren Times.

Trade of the Webt-Tunnage of Lake Erie-Harbors, \&c.-But a few years have elapsed since Lake Erie was literally a "desert waste of waters;" nought was seen on her expansive bosom save the curcling wimple here and there, caused by the sport of the water fowl, or the light canoe of the red man as it shot from some of the numerous coves indenting its then forest-fringed borders. The hardy adventurer, with his guide, might traverse the vast extent of territory adjacent, without finding a single trace of civilization, relying on his "dog and gun" for sabsistence, and reposing at night by his solitary watch fire, now startled by the shrill scream of the panther, or lulled into slumber by the music of the waves as they chased each other upon the sand. Anon, an occasional opening was discovered in the wood, and a rude shantee, told the weary hunter that he was nearing the habitation of a "pioneer of the new country." Time rolled on, and with it the tide of emigration rolled west ward. The Genius of enterprise waved her wand, and towns, villages, and cities sprang up as by enchantment-churches and institutions of learning were reared where once stood the wigwain, and the Indian, like his favorite game, betook himself to the yet unexplored regions of the far west. The waving harvest showed that agriculture had been busy, and the din of machinery of all kinds denoted that manutacture had not been idle; Commerce, the natural concomitant of industry and civilization spreads her white canvass, and the hitherto "desert" Lake is comerted into a national highway.

The trade of the west has within the past five years outstripped the most wide calculation, and our commercial facilities have increased in a proportionate ratio. From a statement recently published in the Buffalo Com. Adv., it appears that there are now afloat on Lake Erie, 58 sloops, 148 schooners, 7 brigs, 1 barque, 2 ships, and 47 steamboats. Total number of vessels, 263. The tonnage owned at the different ports is as follows:

Buffalo,	854109
Detroit,	670373
Cleveland,	451833
Sandusky,	179275
Prespue Isle, (Erie,	156229
Miami,	92757
Total,	,045 76

The steamboats and vessels now building will swell the number stated, to at least three hundred ; of those now on the stocks and to be completed the ensuing season, fifteen are steamboats of the first class.-

The Black Rock Advocate says that "th tonnage on the Lake increases in a ratio of nearly fifty per cent. per annum. For some years past it has been much greater, and from the accelerated growth of the great region west of us, we may anticipate a growth of the trading and shipping interest on the Lake hitherto upparalleled. But ten years ago, and only five moderate sized steamboats floated on our waters, and these five did hardly a living business; now, all those in service are in full employ during the navigating season, and at no former period have their profits been so great as during the past year. But ten years since, fifty or sixty small sail vessels plied on the Lakes, and engrossed all the carrying trade. Within the next ten years, wo predict, one thmesand sleamboals ant sail boats, of an average tonnage equal to those now employed, will whiten Lake Erie and crowd our ports, adding millions to our commercial wealth, and thousands on thousands to our population ;" "our warehouses choked with merchandise, receiving and discharging their storage; our steamboats and shipping groaning under their enormous cargoes, and literally alive with travellers and emigrants, arriving and departing; and our mills taling in their millions of wheat from the far off west, and lading into canal boats their rich products of flour for the Atlantic ports."
We said that our commercial facilities Were increasing in a proportionate ratio to the trade, we refer expressly to craft for transportation. In harbors, for the convenience and safety of this craft we are wofully deficient. The reader will readily perceive that this great western traffic is principally with eastern cities, for which purpose channels of communication are constructed to the lower extremity of the Lake, at which point most of the harbors have been neglected, and consequently are unimproved, and unless the gencral government does something to render their condition more tolerable, our hitherto flourishing commercial operations must be crippled, and our onward march greatly impeded. As we have before remarked, the harbors in their present state are inadequate to the number of vessels already on the Lake, and the many disasters which have resulted in consequence, call loudly for the improvement of such as can be made secure and convenient.

From the St. Louis Com. Butitin In the Board of Aidermen, City of St. Louls, Jan. 24, 1637. \}
The Register laid before the Board a letter from J. B. Brant, dated this day, enclosing the report of Erskine Stansbury, Esq. of a reonnoisance made by him of the railroad route from this city to the valley of Belleview, Missouri, which was severally read, and, on riotion of Mr. Clark, the report was ordered to be published in all the newspapers of the city, and that the other papers throughout the State be requested to publish the same also. And further, that the claims of said Stansbury for raaking the claims of said Stansbury for rationg
said reconnoisance be allowed, as authorize
ed by a resolution of the 16 th December, 1836.

Sir: Havin ed to me in your letter of the 20th December last, I have now the honor to lay before you the following report of a reconnoisance of a route for a railroad from this city to the valley of Belleview, commonly called the St. Louis and Iron Mountain railroad; and it:affords me much gratification that the nature of the country is such as to permit the report to be a favorable one.
In order that the reasens by which I was governed in the selections of the route I have chosen, may be better understood, a short description of the country to be thaversed, may not be unnecessary.

The valley of Belleview, the point to which I was directed to extend my examinations, is situated between several of the head branches of the Big river, and is bounded on either side by a lofty ranse of mountains; it is from thirteen to fifteen miles long, and varies from five to ten in width; possesses a rich and fertile soil, a large proportion of which is under cultivation, and is thickly settled. By a glance at the map it will be perceived that Big river (among whose head waters this valley is situatel,, takes its rise near the head waters of the river St. Francis, and runs in its whole length nearly parrellel to the Mississippi river, alhough in exactly opposite direction, and at length, discharges its waters into the Maramec river about 30 miles above its mouth. This Jatter stream, together with the Gravois creek and the river Des Pere, run across the country in a direction transverse to the route, and consequently will have to be crossed by the road. From this short sketch, the facilities presented by the route as well as the difficulties to be overcome, can readily be understood.
Having by personal examination, ascertained that a crossing of the Maramec river, (the largest - stream on the route,) might be effected at Fenton, my examinations, commencing at this city, were directed towards that point. Leaving St. Louis, and pass. ing along the south side of Choteau's Pond, the route may follow the valley of the branch emptying into it, until it reaches its source, which is near the house of $\mathbf{M r}$ Payne, and about four and a half miles from the city. A drain, which takes its rise on the opposite side of the ridge and runs past Mr. Wilson P. Hunt's old place, into the Des Pere, whose valley is very smooth, and nearly straight, affords a slope sufficiently gentle by which to approach that stream. Upon the opposite side, a branch commonly called Lick Branch, empties its waters into the river a short distance above, and its valley may be followed to its head, which is near the farm of Wm. Rich Wells, whence a cut of considerable depth through the top of the ridere diviling the waters of the Des Pere from those of Gravois creck, leads into the valley of another drain, which passing the house of Mr. Wells, empties its waters into the latter stream at the farm of Mr. Wells, senior, A branch; which takes its rise in this ridge dividing the waters of the Maramec from thuse of Gravois creek, eup-
house of old Mr. Welle. The valley of this branch affords a slope by which to approach the ridge. It may be followed to its source when a cut to the depth of fifty feet or upwards, thro'igh the cone of the ridge, a dis. tance of half a mile, becomes necessary, in order to reach the valley of a branch which takes its rise on the opposite side of the ridge, and discharges its waters in the Maramec. The adrantage to be gained by this deep cut in the diminution of the grades upon both sides of this ridge and the consequent increase of the speed of travel, upon the road more than counterbalances the cost of making it. The bottom upon the east side of the Maranec is upwards of a mile in width, and a part of it is subject to be overflown by the high floods. 1 high einbankment for the greater part of this distance will be necessary, the earth for a part of which may be taken from the decp cut above mentioned. The Maramec being uavigable for steamboats above this point: the bridge across it must be sufficiently high above the water to permit boats to pass under it at the highest stage. Stane, of a good quality, for the piers and abutments, tnay be had in the immediate vicinity, and it is supposed that a firm foundation may be found by going down a few feet below the surface, as it ledge of limestone rock shows itself near the surface of the water, \therefore short distance below.
The ralley of a branch discharging its waters into the Maramec at Fenton, may be followed to within a short distance of jts souree, when for some distance it runs parallel to the valley of Siline Creek, which also emptics into the Maramee some four or five miles below. I propose to cut through the narrow ridge dividing these two streams, and to follow the valley of Saline creek, which runs more in the desired direction than the other, to within a short distance of its source, whence a rather abrupt turn brings us on to the ridge dividing the waters of Big river from those going into the Mississippi.
Upon arriving at this ridge, three routes present themselves: one by following the ridge upon the west side of Big river, another by the valley of the river itself, and a third by the ridge npon the east side of the river. By following the ridge upon the west side of the river, the distance would be considerably increased, and the necessity of descending by a high grade from the ridge to the river, together with a consequent ascent upon the other side to about :he saine level, deterred me from adopting that route. The route by the valley of the river itself is also ohjectionable. Bigg river is subject to very high floods, which frequently overflow its banks, which would consequently occasion muct. expense in embankments. Besides this, the sinuosity of the river would require that it should frequently be crossed, by which the expense of bridging would be incurred, and in arddition, the valley itself is so crooked, that by following it, the opinion is entertained, that the distance would be nealy, if not quite, donbled. For these reasons, this route was rejecter, and that pron the east sile of the river was preferreal. Either of the other routes, however, are of sulficient importanco
t_{0} demand a careful and accurate examination before the final location of the route is determined upon. The present examination was only preliminary, and was directed inore to the practubility of constructing a road at all, than to the selection of the route. Before this can be done, a careful and accurate survey of several routes should be executed. and upon a comparative estimate of the cost \&c., that route selected which should be found best adapted to the purposes of the road, and of most advantage to the company, and to the country at large.

The ridge upon the east side of the river partakes very much of the character of many others in the State. It is narrow, very crooked, is indented with innumerable drains, many of which are wide and nearly all of thern deep; and though it is generally level, numerous depressions with correspond ing elevation;, are of frequent occurrence. Its general level is very high, being, as I suppo:c, from 150 to 300 feet above the level of Big river, and of course considerably more than that above the Mississippi. Its general course is nearly direct, and by occasional excavations and high embankments, across the vallies of drains, the line may be made considerably more straight than by following the top of the ridge.

Upon arriving at the head of Stong's Branch, it will be advisable to cross Big river in order to avoid the increase of distance which would be incurred by following round a bend, which it here makes, to the castward. For this purpose the valley of that branch may be followed to the river, a distance of about three mile $3_{\text {, }}$ crossing which, the valley of Madden's branch, which empties into the river a short distance above, affords a slope by which to ascend to the ridge upon the west side of the river. This ridge continues from the head of this branch to the head of Flat creek, which strean runs a south course, and empties its waters into Big river at the crossing of the road leading from P'otosi to Caledonia. By following the ridge the route would traverse a rich mineral region, passing in its course in the immediate vicinity of Bellefontain mines. Old mines, New and Old Shibboleth, Mas: sons Diggings, Potosi, in that part of the country familiarly called Mine a Burton besides numerous other diggings not of sufficent inportance to be mentioned. The ridge, like that upon the east side of the river, is narrow and generally level, but ha, frequent elevations and depressions in it which, however, are not of sufficient magnitude to present any serious obstruction. The course would probably be as direct, by following it, as by any other route, which might be found in a country, so rough and broken as this. Following down the valley of Flat creek which is smooth and nearly straight, the route passes Springfield furnace, and reaches Big river, (here running east) a short distance above Hunter's mill. Crossing the river by a bridge, it may follow a drain, coming in from the south, to the immediate vicinity of Caledonıa.
The Iron Mountain lies in a direction nearly south-east from Caledonia, distant about 10 miles. The only obstruction in the route is the crossing of Cedar creek, a strean of considerable magritude, which
runs in a north-easterly course into Big river several miles below Hunter's mill. A bridge with a single arch, at a high level above it, may be ihrown across it, whence a deep cut for about a hundred yards in length, and a high embankment for about $\frac{3}{8}$ of a mile, the valley of Saline creek, a branch of Cedar, is reached, and may be pursued to its source. This stream, a branch of Big river, rises in a highly level plane, from which, within the circumferance of two miles, the head branches of the. St . Francis and Black river also take their rise, and each runs off upon its several courses towards the Mississippi, into which at length they all empty hundreds of miles apart. From the head of Saline creek the Iron Mountain bears a few degrees north of east, about four miles distant. A direct line to it from the crossing of Cedar could not be obtained on account of the lofty range of mountains bounding the eastern side of the valley. The line may, therefore, be continued from this level plane through a rich and level country presenting no obstructions.
Having thus briefly given a description of the route, the mode of construction and probable cost are next to be considered. With regard to the first I would recommend the same plan as that suggested in the report of Mr. Guion, U. S. Civil Engineer, in his report upon the Louisiana and Columbia railroad. Experience has proved that with the exception of the edge rail, this plan is better than any other that has been tried It is that the superstructure be built "of sills or transverse pieces laid at intervals of three feet from centre to centre, and notch. ed at each end to receive the longitudinal or string pieces, the latter having a cross section of five by eight inches, and being plated on the inner edge of the upper surface with iron bars two and a quarter inches broad by five eights of an inch thick, secured to the wood by iron spikes." The estimate cost of a mile of superstructure upon this plan as made by that gentleman, is $\$ 3670$ 00, which might probably be considerably reduced, in consequence of the abundance of timber for the sills every where found upon the route and the vicinity of the Pine region to the lower part of it The iron, of which 22 tons are used per mile, is estimated at eighy dollars a ton, but it is supposed that as soon as the Iron Company, chartered during the present session of the Legislature, goes into operation, iron for railroad purposes can be sold for a much less sum.

There is no data from which to estimate the cost of gradation, but the opinion is entertained that this part of its cost will not be very great. Several deep cuts occur, and one or two high embakinents, but in all these cases the cuts will be for short distances. A corsiderable part of the route is level and very smooth, and will require little more grading then the necessary levelling of the road bed preparatory to laying down the superstructure. The whole distance is estinrated at 85 miles, and I am of opinion that it may be constructed for a sum not greater than that estimated for any other road in the State of equal length.
The benefits that would accrue to the

State at large, and to this part of it in particular, are of so great importance as to demand to be noticed. The country traversed by the road, partakes of a mixed character: that part of it between St. Louis and the head of Saline creek, together with all that portion from the first crossing of Big river, to its termination, is interspersed with narrow but beautiful vallies, possessing a rich and fertile soil, many of which are now under a good state of cultivation, and return to the farmer an ample reward for his toils. That part of it which follows the dividing ridge is rough and barren, but at short distances on cither side, the vallies of the numerous branches which indent its sides, af. ford good localities for small farms, and are very generally inhabited and cultivated. The great source of interest in this country, however, is the almost inexhaustible mineral wealth which it contains. The sulphuret of lead, commonly called lead mineral, which yields to the smelter from 60 to 80 per cent. of pure lead, may be said to exist in almost every hill and almost every valley: Vast quantities of it, even in the present very imperfect manner of mining, are annually discovered and smelted, and when mining is conducted upon more scientific principles, no doubt is entertained that the quantity obtained will be greatly increased. Copper has been discovered and worked io advanlage, and indications of its existence are found in several places through the country. Tin is supposed to exist, and indications of scveral other metals, among which is silver, are said to have been tliscovered. Since my return to this city, anthracite coal, which heretofore was supposed to be confined east of the Allcghany chain, has been discovered, but in what quantities I have been unable to ascertain. About three miles from Potosi the route passes through a belt of fine timber, the main body of which is said to be twelve miles in breadth, and thirty miles in length, the lumber from which would be a large item of transporta. tion, and would always command a fair price and ready sale in this city. But the object of by far the greatest interest in this part of the country, and which would afford one of the chief articles of transportation, are the two Iron mountains, now owned by Messrs. Van Doren and Pease. These two hills, one of which is upwards of six hundred feet in height, and the other about three, cover an area of about nine hundred acros, and consist of an iron ore of the purest quality ever discovered, in quantities to specify which, would exceed belief. It is supposed, however, that it would be within the bounds to assert, that iron, in quanlity sufficint to supply the wants of that article in the United States for a thousand yeare, might be obtained.

Owing to the want of easy communica(ion with a market, the greater part of this wealth is now locked up. The construction of this road would afford this desired facility, and bring, as it were, into existence the immense mineral resources of this country, and place the Siate of Missouri in that rank which, from the fertility of her soil, her great mineral wealth, and the hardy and enterprizing disposition of her people, she is entitled to assumc.

Permit me to add, in conclusion, that in this examination much valuable information and assistance has been afforded me by many gentleman on the route, for whose kindness and attention I am much indebted. I am, sir, with great respect,

your obedient servant,

Erskine Stansbury.
Civil Engineer.
Maj. J. B. Brant, Chairman
of Com. on Surveying, of Inter. Imp. Con. On motion of Mr. Grimsley,
Resolved, That the report of Erskine Stansbury, Esq. on the subject of the contemplated railroad from this city to the valley of Belleview, be forwarded by the Register to the Governor, together with a copy of this resolution, with a request that he lay the same before the General Assembly of Missouri.

Attest, J. A Wherry, Register.

From the Farmeri' Register.

heport of the engineer of the eastern shore railroad. Washington City, Nov. 10, 1836. ${ }^{\text {. }}$
to the commissioners appointed to survey the route of the eastern shore railetoad:
Gentlemen,-Of the various surveys which have been made under your direction for the purpose of ascertaining the best route for a railroad on the Eastern Shore of Maryland, conformably to the several acts and resolutions of December session, 1835, the one which I have selected as the basis of the preliminary estimates, begins at the Wilmington and Susquehanna Railroad, near the town of Elkton, and continuing throughout its whole course within the State, crosses the Chesapeake and Delaware Canal a few hundred yards west of the pivot bridge, and after passing a little to the west of the head of Bohemia and Sassafras Rivers, thence by the i.ead of Chester or Millington, and the head of Choptank or Greensborough, and by the North-West Branch, eastward of the Blooinery, to the Nanticoke River, which it crosses between Sharptown and the Delaware line. From the Nanticoke, it follows a very direct course to Princess Annc, whence it diverges south-westwardly to the mouth of Little Annemesic River, on Tangier Sound, its terminus. Its total length is $118 \frac{1}{\text { a }}$ miles.
The purpose of this communication limits me very cursorily to remark, in relation to the character of the line, that for lowness of grade and directness of communication, I know of no road of its length by any means comparable to it. The grades rarely reach, and never exceed twenty-one feet to the mile, and this only, on very few miles of its length in Cecil County, and at the crossing of the principal water courses. On much the greater part of the route, the grades do not attain one half that rate per
mile. mile.
Between the points of passage of the rivers above named, the lines were intended to be traced perfectly straight, and so far
as this was practicable as this was practicable in an experimental survey, it has been done. They are very oblique to each other, and the curves by
which they are to be connected, need in no\| case be of less radius than one mile, and for nearly one hundred miles of the route, very probably of not less than five miles radius.

T'ae annexed estimate is founded, on the facts collected during the experimental survey, and although it was not supposed that this would follow the best ground, the stations were nevertheless taken at 300 feet apart, where the surface of the country was nearly level, and at 200 feet or less, where it became undulating or broken-this is mentioned to show that the quantities stated in the estimate, are not assumed without careful inquiry. The other elements of the estimate are as follows, viz., the road-bed to be formed for a single track, except at the embankments, where it is to receive a breadth of 20 feet at the crossing of the principal creeks and rivers. The viaducts to be of the best timber, and to have a breadth of 20 feet of flooring. The rails to be of $2 \frac{1}{4}$ by $\frac{5}{8}$ inch iron, resting on woodon string pieces, 6 by 6 inches, and 10 by 12 inches sleepers, all of the very best quality. The cost of materials and workmanship generally are assumed at the highest current prices, and wherever in framing the estimate of road-bed and bridges there was a doubt as to quantity or value, the sum taken was a maximum, and the price of the iron is that for which it is offered by a most respectable house. I am warranted, therefore, I think, in assuring the Commissioners, that the amount of the estimate need not be exceeded in the construction of the road.

Ample provision it is believed is also made for the transportation upon the road, and for connecting it with the great strean of southern travel, which seeking its way to the north will find this in connection with the ports of Norfolk and Portsmouth, and with the rivers of the south-western part of the Chesapeake Bay, a safe and convenient as well as a very expedilious, and at all times too, an uuinterrupted channel of communication.
In the present state of our statistical information, we are unable to present other than general views of the business which may be expected to come upon the road. It is, however, mainly to the transportation of passengers, that this, as well as all other railways, not directly in connection with great mineral regions, are to look for profitable returns upon the capital invested, and it is to this source the friends of the road may with the most undoubting confidence turn themselves.
From the southern seaboard, the country bordering on the Gulf of Mexico, the lower Mississippi and its tributaries, and from all the country which lies south and south-west of the States of Virginia and Kentucky, the number of travellers who annually seok the north in pursuit of business, of health, or of recreation, and who again return back upon the south, is absolutely incalculable; along the navigable water courses, they are seen to crowd the numerous steam boats, and on the seaboard, the packet vessels are fully occupied. During the boating season, the travelling
from the south and south-west is almost altogether by steam boats, notwithstanding the acknowledged danger and delays incident to this mode of journeying, west of the mountains. When this season is past, the traveller has no other course, whether he proceeds to the north or returns southwardly, than to take the ports of the Gulf, or to cross the mountains, and journey by the valley of the Tennessec, and thence home. The latter course is often preferred, and the number of travellers, and the quantity of goods also by that route, often greatly exceed the means of conveyance. Nearer the seaboard, the condition of the traveller upoh the road is not more envia. ble, and the voyage by the coast is beset with some danger, and much discomfort. Conscious of this condition of things, the intelligent uen of the south and west are using every effort to awaken and direct enterprise. From the Gulf of Mexico, roads are in contemplation, or are already undertaken, the prolongation of which, must be through the principal towns of the interior of the States of Georgia and the Carolinas towards the western termination of the Portsmouth and Roanoke Railroad. With these projects are and will be connected, others to lead to the cominercial capitals of those States, and from the Mississippi, others will procecd by the way of Gcorgia, by the vallcy of the Tennessee, or more directly by Knoxville, and all them uniting with the great line of communication which I have just mentioned, all of them directing theinselves towards the Roanoke. By the valley of the Roanoke also, and of one of its tributarics, a railroad which has recently been surveyed, will be conveyed to the same point, the agricultural and mineral wealth of an extensive region, and will return to it the merchandise which it will consume.

It is ascertained that the travel last year between Charleston and Savannalh, and the northern cities alone, amounted to between 50 and 60,000 passengers. The cortemplation of this great number is alone sufficient to convey to us some idea of the multitudes who throng to the north, from the vast regions of the south and west, the greater part of whom, undoubtedly; would prefer to travel by reilroads, and who, as I have shown, would le conducted by them directly towards your road. Whether, on arriving at the Roanoke River, the choice being before them of the route by Richmond and Potomac Creek, by Norfolk and the Chesapeake Bay, to the Frenchtown Railroad, or of your road by the bay and peninsula, is a question, which the friends of the Eastern Shore Railroad will willingly leave to the decision of the traveller. That the general preference would be given to the conveyance by railroads over that by sea, or by the Mississippi and Ohio Rivers during the boating season, or to the mountain roads at any season, cannot admit of doubt.

I have not yet arranged the data by which may be shown the great advantage which the road offers for the rapid transmission of intelligence, and its consequent connection with the transjortation of the mail.-

What I have already said, whilo speaking of the experimental survey and of the grades, is, however, sufficient to enable the Commssioners to perceive the necessary connection which it must have with this source of revenue.

Situated as the south-westorn terminus of the line is, in a climate comparatively mild, the navigation of the waters near it, are rarely closed, and never certainly so much olzetructed by ice as to present serions difficulty in keeping it free to vessels arriving on our coast, cspecially from the south, and destined for a port inaccessible by reason of the inclemency of the season, Tangler sound and the neighboring waters, ulways easy of access and safe, ofler sufficient harbors and anchorages in near connection with the road, and capable of being brought in direct contact with it. 'The advantage, therefore, which it presents of an occasional winter-harbor for aterchant ycssels, and the facilities which the road presents for the conveyance of their cargoes to ticir proper destination, are, I concerive, of no inconsiderable importance, viewed vither in relation to the interests of the Dastern Shore, or to those of the conmercial cities of Battinore, Pluludelphia and Wilmington.
i have already, gen:lemen, exceeded the limits which I had assigned to this letter, and must, very reluctantly, pass over a brancl of the subject not less interestiug, nor less fruitful of mutual advantages than those I have already spoken of; I mean the beuefit which this improvement is likely to receive from, and to confer upon the country through which it is proposed to carry it-its comection with the agricultural improvement, and the general amelioration of the condition of the peninsula. These and other topics must be reserved as suljects to be considered in a gencral report hereafter to be furnished.

The plans and profiles of the ground, and of the several parts of the work, and the details of the estimates, are already prepared in the rough form, and will be in readiness to accompany my report, on which also some considerable progress has been made, should it be in my power, as it has been certainly my desire to complete it. Of this, however, 1 bave no expectation, as I am under orders which separate me from this duty, the moment my health is sufficiently re-established to permit me to travel. The general report which may be somewhat voluminous, and will embrace much detail, will necessarily occupy some time in its preparation; but it can be ready quite soon enough for any purpose for which the Commissioners may have oceasion to use it.
It has been my intention also to give plans and estimates for the castern line as far as it has been surveyed, and of the route which, on separating from the one on which the annexed abstract of estimate is founded, at or near the right bank of Sassaifras River, would cross Back Creck at Chesapeake City, and pursue thence the most favorable ground, would cross Big Lilk River, at or immediately west of Elkton.
The survey of the ground over which
the Branch Road, south of Princess Anne, leading to the Virginia line, with the intention of uniting hercafter with the Virginia Road to Cherry Stone, has been completed so far as the compass work applied to it. We are, therefore, enabled to assume the length of the branch; and this, together with the striking resemblance which much of it bears to the ground over which the levelling was carried for the location of the main stem near Princess Anne, enables me to give an approximate estimate for this branch, and which will be sent to the cominissioners whenever they may desire it.
The lateral roads contemplated to be surveyed under the resolution of your Legislature, No. 108, it has ars yet been impracticable to survey, but their location, I presume, will be made at as carly a period as possible,
I have the honor to be,
Vcry respectiully,
Gentlemen, your obcdient servant, James Kearney.

Tbstract of an cstimate of the cost of the main stem of the Eastern Shore Railroad, of $118 \frac{1}{2}$ miles lons, and of the cost of a steam boal line from its south-western termination, near Tangier Sound, 85 miles to Portsmouth, in Virginia.

For the road,

Dolls. Cts.
For $1,129,076$ cubic yards, excavation and embankment,
For clearing and grubbing,
For bridges and culverts,
For sleepers, string pieces, wedges, and iron for superstructure, and for crossings and sidings,
For depots, water stations, wharves and fencing,
For purchise and condemnation of laud,

263,592 27
11,397 00
120,928 00

302,034 50
70,000 00
21,500 00
\$945,773 77
109,75485
Coutingencies at 12 per cent.
Total cost of the road and its appurtenances,
$1,024,37862$
For locomotive engines, and for passengers' und burden cars,
For two steam boats,
81,000 00
150,000 00
Total estinate,
November 10, 1836.
'The subject of Steam carriages on common roads, has excited little or no attention with us. In Englaud the case is different; experimeats havo been made, and continued for ycars, and the subject is growing to be steh in inportant one, that the question of tolls upon such vehioles has called forth a vast deal of excitement among those interested. The following minutes of evidence on that sulject, are taken from the London Mechanics' Magazine, as we find them. We hope the length of the article will not deter any one from rcading it, containing ass it docs,
the best information of the practical operation and every-day work of their machinc. Many useful hints may be found, and the amusing style of question and muswer, take much from the dullness of the detail.

From the London Mechanics' Magazino•
minutes of evioence before a select committee of the house of lords on tife tolls on steam carriages' blel. SEsSION 1836.

Mr. Goldworthy Gurney
Has had no engine on the road since 1831; before this period they ran a good deal in the neighborhood of London. Went to Bath and came back in 1829. Carriages in 1830 were established hetween Gloucester and Cheltenham, and ran there uninter. ruptedly for four months three times a day. They carried upwards of 4,000 persons over 5,000 and 6,000 miles of ground without any hurt or accident. And not running on that road now, because they were stopped by turnpike acts, which laid a toll of 11s. each time of passing at both gates, a distance of eight miles, making 22s for each journcy.

His carriage can be made to run round a circle of twenty feet diameter, at a speed of six or seven miles an hour.
Cannot'say exactly how many miles his carriages have run along public roads; but should think 15,000 milcs.
Has not built an engine, nor had any one on the road since 1831 .
Thinks that if his carriages had gone on and been persevered in they would have prevented some of the railroads now in opera. tion. Is quite satisfied of that. By a little experience and managenent, steam carriages will go nearly as fast and fully as safe on a common road as on a railroad. After a twelvemonth or two years obscrivation the public would be satisfied with them; and a rapid rate would be permitted. It is rather a singular fact that when you are travelling at the rate of cighteen miles an hour in a steam carriage on a common road you are not sensible of the rapidity.

Have you ever travelled eighteen miles an hour in a carriage on acommon road? -Yes, I have gone eighteen miles within an hour.

From what place? -From Finchley to Regent's Park and back again twice, up the Highgate 'Tunnel. We travelled the first twenty-four miles in two hours in our jour. ney to Bath.
Have all the boilers tried on common roads been attended with loss of life, if constructed above a given size? -I would not say that all have, but all I am aequainted with.

What is the extreme size you would recommend? -The extreme size for public safety I am of opinion ought not to exceed eight or nine iuches diameter. I think it essential to keep within that size ; they may be reduced still lower. I am sure all enginecrs of experience would bear anc out in statang that this size is sufficient for all purposes on common roads.
The Committee are to understand that your carriage, though less in weight, has more power than the locomotive engines employed on railroads?-Yes, compared to weight ; on a ruilway they are very heavy. Have you heard of an instance which oc-
curred some two years ago of the gates on the Liverpool and Manchester railroad being carried off in the middle of the night ?-1 recollect hearing of the circumstance.

Would such a thing occur with your carriage, if it were to come against a turnpike gate? -It might possibly, by charging a turnpike gate with full steam, and carry it away ; but a man must be mad to do it.

Do you conceive your power is sufficient to do that under ordinary circumstances?I think not.

Have you heard of an instance of Mr. Hancock's engine striking the corner of a house ? - I was in the country at the time I heard of the circumstances, but I do not know whose carriage it was; I do not think it was Mr. Hancock's.* I simply heard of a wall being driven in at Paddington. A great number of caricatures of steam carriages have cortainly taken place; a great many undigested experiments have been made on the public.roads, which have tended much to prejudice the public mind against the subject.

What means do you propose for preventing the establishment of other caricatures, as you call them, of your project?-I think the toll being placed on the weight of the carriage will limit them in size. The clause in the bill subjecting them to double pressure will be also another means; I think the clause limiting the size of the boiler will be the principal. Possibly, if the prohibitory tolls be taken off, and the subject be allowed to go on fairly, fair and legitimate carriages will alone be soon on the road.
In what manner do you propose to guard against the introduction of other carriages further than as the weight would prevent their running with success? -The weight of the carriage would be only one guard, the proof to which the boiler is submitted would be a second, and the limited size of the boiler would be a third. Those are as much as I can point out capable of legislation.

You were understood to state that there is no difficulty, however small the boiler, to raise the power of the engine? -However small the vessels composing the boiler, you rnay with vessels not exceeding an inch in diameter obtain forty-horse power, or even one hundred-horse power.

Do you suppose it would not answer for an individual to undertake to draw a train weighing twenty or thirty tons to pay a toll upon them? -In the first place, I think it would not be practicable to do it ; sccondly, the expense would be very considerably more than horses: for when we exceed a given relative weight the expense of steam becomes greater than that of horses.
Can you state what the limit is ?-If I speak in engineer's terms, a horse power boiler should not exceed three hundred weight; if it excceds this weight it becomes far more expensive than horses.

If you could have, without increasing the size of the boiler, a forty-horse power en-
gine, it is perfectly evident you could carry gine, it is perfectly evident you could carry three times forty hundred weight ? - I think I am misundersrood. In regard to pressure. I have been speaking of the separate vessels

[^14]composing the boiler; if ane veisel will arnerate stean enough for a horss po ver, $t^{\text {th}} \geq 1$ it will require two for a two hors prever I you require a forty-horse foiver, you mu* have forty vesseis, cacil vesjol or surisi representing a horse power. Tia boiler for producing steam sufficicit for a hore powe: must be practically uader three hinlred weight.
In your engine for every liorse power you would have a distinct boiler? - For every horse power there is a given number of those tubes, increasing in direct ratio as tho hors? power is increased; so the number of thoze must always be increased in that ratio.

You were understool to say yoa could increase the pressure on your boiler to any given exteat ?-Certainly. Tire tubas when formed together compose the biler as a whole, every tube will baar the same pressure.
-You were understood to have stated that a boiler could bsar pressure to a hundred atmospheres ?-I said it was capable of almost unlimited resistance.
How would you restrain any individual from making a pressure on a given tubs of above one-horse power?-I hardly understand the question. If he was to double the pressure upon a tube, the power of the engine would be increased. This is a question more of force or intensity than a question of power. Series of tubes would work the engine under the power of one hundred to an inch, or at fifty; the rate would determine the power. What is gained ia power may be lost in tims. The actual power is represented by the quantity of steam, not by the prossure.
Your steam carriages are totally imapplicable for merchandise? - Quite so; only for passengers and quick travelling.

With how many carriages in their train? -Not more than one.
You can go, you say, at the rate of eighteen miles an hour?-Certainly it can be done, but the best practical rate is from twelve to fourteen.
How soon after the new tolls were imposed did you give up running between Gloucester and Cheltenham ?-Not till they were imposed.
How soon after? -Directly.
Did you find it a profitable speculation? -The speculation belonged to Sir Cuarles Dance; he was the proprietor of the carriage ; and the speculation was his. It ap. pears from the accounts of expenditure and return that there must have been a considerable profit.
You considered it a profitable undertaking ?-Yes. I have a letter of Sir Charles Dance's, in which he states it himself.

Can you say why Sir Charles Dance did not try running in the neighborhood of London, where there were no such tolls?After he returned from Gloucester lic becarne acquainted with Messrs. Maudslay and Field, the great practical engineers; they made alterations in the carriage, with a view of improving it. Experiments were made
after thatbySirCharles Dance and Mr. Field, to determine the valc of these alterations; but they never ran; nor did Sir Charles intend to run till we could get the question of tolls scttled; it was not the particular roal on |f which the tolls were liuel then that slopped

Is, but the fist that wherever we attemptel to 1 inis, or coatliants wore 111 l le, we ware ust by an Act of Pirlizument.

Wi; ti new ay i.statce of and aci locing
 neat tujep plue ol the roud, oi the existing act had ez:irod?-I c minot answer that ques. tion as t. t tio causia direstly winch occasion. od act; to pasis; but this I can state, that oa the great line of ruad between London and Liverpool, Liverpoal and Ediaburgh, which wars coltrietel for, the turapike tolls were lail; aliso between Glaygow and Ed. inbargi.

Are you correctly informsil on that?Yes, as to the amount of tolls, b it nit as to the inatives.
Was it on all ?--Mn particular tensts.
Are yon informal umler whit circuinstances those acts were obtained ?-I am not informel umber what circumstances.-If firmly believe they were misinformed as to the subject. 'Ihere wias no intention on the part of the tristees to put on tolls in the way of prohibition, but as a fancied just protection. In my petition in 1831 I stated this. I pr.yed that inquiries might be made, in order that just and equitable tolls might be placed on steam-carriages.

Then it appears it was only on certain roads that those tolls were lail? -On certain roads which occurred along the great roads, here and there, but so sufficient that if we take the roads from Liverpool to Elinburgh, taking all, "they would amount to 1 s . for every inile run over, taking the whole distance;" this was stated in evidence by the contractor. If the tolls were laitl on at the rest of the gates on the line in the same proportion, they would have amounted to 11.

Are you not aware that you might have run during the periols, if the acts were still to exist; you might have run without any fear of an inctease of toll?-Yes; but to what purpose? My object was not to run for profit as a coach proprietor; its public introduction was the work of great capitalists. I had not capital enough to introduce a subject of such importance; and the capitalists who were disposed to estaolish it, and had licences, were not disposed to gro on with it when that spirit was shown on the part of the Legislature.

You had got the patent. Your object was not to run the carriages, but to sell the right of running carriages to other persons. You were not the person who gave it up, but they gave it up ?-Yes.

You found no person who would undertake to run with your patent, and in that way you were injured?-Capitalists undertook to run to a certain extent; contracts were made with great capitalists, but those did not withdraw from their contracts until the bill for their repeal was lost in the Lords. If this bill passes I could to-morrow find capitalists.

How is it that no capitalist have been found to run on the road near London, where no such toll is imposed, and where two or three carriages are running? -I conceive if carriages are now running it is on the faith of tolls being taken off, or they may be experimental carriages; hut the reason why capitalists will mon rum car-
riages in the neighborhool of town, is the fear of the spirit in which those acts bave been passed.

It appears capitalists have been found to run other carriages. Hincock runs his own coaches?-1 do not think any capjitalist woull be disposed to run short stages; the great advantage is in long distances; the stopping on shor: s'ages would increase the expense very much in the consumption of coke, and other expeuses,

Do you apprehend Hancock's is an unprofitable speculation ?-I have not a conception whether it is or not,

The ques:ion is, how do you conceive it arises that no person has bought of you the right to start a conch near 1 ondon, when other coaches have been running and plying for hire near London?-In 1831, when acts passel, I shut up my establishment, and I retired from the subject, at that time feeling injury bad been donc to me, and thinking I was unfairly treated; when the repead did not pass I sold all iny materials for manufacturing, and gave up my manufactory. Capitalists would not apply IG me after that, and I have not applied to thrm. I have been engaged in other pursuits lately, waiting in the full expectation that the question would be soon settled so as to enable me again to apply myself to the subject. I may be allowed 10 remark that the instant this bill passed the Commons, and it was expecterl it would pass the Lords, large capitalists have applied to a considerable extent, to whom I have granted licences.

MR. WAl.TER HANCOCK.

Has now threo steam carriages running between Paddington and the Bank. The engines to each carriage aro of two fourhorse power; perform about twelve miles an hour, ant consume from a bushel and a half to two bughels of coke an hour.

Have you ever been in the back part of your coach when it was travelling? Frequently.

Hąve you scen whether any sparks came ont of the butiom?-In the former part of iny experience I found that a great objection, and I in consequence formed the, fire-place so as to prevent any corning out, and now you may travel hundreds of miles i:) my carriage, and not see a spark come out of it. It was a matter of difficulty to get over the objection, but I summounter it by excluding the possibility of any spark leing seen.

You have stated that no sparks came out at the buttom; does any smoke come out at the top?-No. We have destroyed both the steain and smoke. Occasionally when the gas is not so clear as it generally is there has been a little smoke seen.
Do you use cuke of any particular sort? - The common gas coke.

How do you let off your surplus steam? -I have two safety-valves. It is not lieard; there is no noise of steam escaping.

How do you avoid that?-'Hhere is an apparatus in the carriage that prevents it , so as to deaden the sound.

Tho noise is there, but deadened?-The force is there, but deadened before it flows out in the common atmosphere; but this is not allowed; it is grailully spent.

Is that by taking it into a larger chamber ?-I think there are about twenty or thirty of those chambers the steam passes through.

Do any sparks fly out at the top of the chininey ?-I never discovered any; there have been great improvements of late.

What are your great improvements ?They throw the steam in a particular direction so as to come into contact with the fire, after it has passed the chamber ; the steam not passing out, as in common locomotive engines, has not the power of drawing up the ashes as in the common engines.

Have you had any accident with your carriage?-I never had any accident myself; there was one accident occured, but there was no personal injury by it ; I never had an accident occur with my carriages upon the road from the boiler.
Did any accident occur with any car-riage?-Yes.
When was that?-I think three or four years ago.

None has occurred since that ?-No.
Was that when the carriage was in mo-tion?-It wats on the first irial of a new carriage called the "Enterprisc," a carriage now rumning for hire on the City. road. The man who was attending the machinery did not thoroughly understand he nature of the machinery, and he got one of his safcty-valves at wotk. He had one valve lied down. We had what we call a blowing-machine to produce a greater heat ; he had immense heat. I have no doubt he lad the boiler filled full of water. The engines going vely fast increased the pressure to as nearly as possible $1,400 \mathrm{lbs}$. upon the inch before it rent itself. The enginecr, on his coming up the yard, says, "For God's sake relcase that valve." In the act of his turning about the rent took place; he was so paralysed he never could be restored.

How did it produce this effect; was he wounded ?-No; not touched in the least.

Where was this ?-Down at Stratforl, at the manufactory.

You mean that the valve was confined? -Yes.

Was any one huit upon that occasion? -No.

What became of the man ?-The doctor could not bleed him, and he died in consequence of fright.

Have your boilers ever burst?-I have had rents in the boilers I suppose a hundred times.

Have any bad consequences ensued to the passengers ?-No; quite the contrary. On the road we had been running very successfully all the day. We were taking in water. Onc of the chambers had given way, and when we were about to start agoin there was not half the pressure. We examined into the causc, and found that the bottom part of one of our chambers had rent about an inch and a half. We had just steam enough to get the carriage to the yard; it produced no noise whatever.

There were no inconvenient consequences resulted ?-No; only the delay.

How long have you been at work on!
steam-carriages for the road?-I think the last nine years.

Do you know how many miles your carriages have travelled?-I should be quite within compass if I said $\mathbf{3 0 , 0 0 0}$ to $\mathbf{4 0 , 0 0 0}$ miles.

How soon can you stop?-I have been abliged to stop the machine within two to four feet. A boy fell down before the carriage, and it was not three feet when I stopped it.

Can you stop at that distance ?-I can stop within two feet going up hill.

What is your usual pace of travelling ? -I generally go eight miles an hour. In going to Birmingham we averaged sixteen and seventeen miles an hour at times for hours.

In how short a space can you stop on a good hard road? -That will depend upon the speed we are going.

If you were travelling eight miles an hour ?-Within ten feet ; the man puts his hand upon a lever to turn the steam off, aad gives a signal to put on the break.

What is your charge per mile?-It is sixpence from Paddington to the Bank, which is about five miles; rather more than one penny a mile.

What is the charge of the omnibuses ?The same.

What is the weight of your machine and carriage altogether?-I should think about three tons and a half to four tons.

What tolls do you pay?-On the Pad-dington-road 4 d ., that is, on the City-road.

What is the rate on other carriages ?An omnibus pays 2 d . for carrying the same number of passengers.
The danger of a boiler bursting is in proportion to its size, is it not-on the same principle that a cannon requires to be made stronger than a smaller gun ?-That will depend upon the size and thickness. In my boilcr all the braces would require to be stronger, and the outer plates stronger. These boilers, I have no doubt, would bear a pressure of five to six hundred pounds the inch.

You stated that you make the same charge that the omnibuses do; could you afford it rather cheaper 3-The money I have lost in experiments has been from $10,000 l$. to $12,000 l$, and I have sacrificed nine to ten years full of my time. I ought to get as much as I can by the fare, but not to make it unreasonable.

Do you find your carriage fills ?-Very well indeed.
Does it fill with persons who go in it onca from curiosity, or persons who regularly go by it ?-We have regular customers.

Do you perform the space in less time?Yes; we aveage from the city to Padding. ton and back froman hour and a quarter to an hour and twenty minutes.

What is the distance ?-Nearly ten miles. What do the omnibuses take? -Before I came upon the road they were two hours and twenty minutes; but now they do it in near ly the same time that I do, being driven to it by the competition through steam. It has produced a public good in that respect against the will of the drivers.

Do the omnibuses contrive to go as you do
by an increase of their positive speed, or by abstaining from stopping? - Both.
What is the average pace you go?-About nine or ten miles an hour; the omnibuses go from eight to nine miles an hour.
How many horse power have you on your engine ? -I think it is between eight and ten on the "Enterprize ;" the "Era," I think, is about eight.
You reckon that, as equivalent to having how many horses attached to your carriage? _ We reckon both of those to carry passengers equal to an omnibus with two horses, but I take into consideration the weight of the carriage and the weight of the horses. There is a mistake in the Bill. I think now that we shall pay double the tolls that other carriages do. We are not allowed the weight of the horses and the weight of the carriage. We suppose a horse draws one ton, and that is measured for a steam-coach; then there is no consideration of the weight of the hrorses and the vehicle drawn by the horses.

You think that even if this Bill passes in its present form, steam-carriages will be at a disadvantage compared with other carriages? -Yes. We ought to have two tons and a half instead of a ton allowed to one-hior je power, to include horse and cart und load, the weight of which will amount to two tons and a half.

You calculate a horse power in a steamcarriage to be equivalent to three hundred weight?-Yes.

You call the draught by a locomotive engine of one-horse power equivalent to three hundred weight ! consequently, before you could draw a ton, you must have three-horse power to do the same thing? -The "Era" carriage drew the "Infant." The "Infant" and the "Era" are about the same weight, about three tons and a half in weight. The average speed of the "Era" is about ten miles an hour, and with an engine behind it went about the rate of seven or seven and a half an hour. I consumed no more coke in the distance in those seven miles. According to that our carriages will draw about the same weight with the same steam and water, but we lose about two miles and a half per hour in speed. A horse power we consider equal to lifting 250 lbs . over a pulley, and that is very different from drawing; a horse power is considered as equal in drawing a ton. If we were to run one of those carriages the day through it would do as much as thirty horses.

Your carriage does work equal to thirty horses ?-Yes; if they were to keep on the whole day. The work I am doing now is about equal to ten horses. Ten horses would be employed to do the same work. Five journeys from Paddington to London would take ten horses. This is about the same.

Do you go at the rate of ten miles an hour through the narrow streets?-No, certainly not; we pass through the streets very gently. I have been through the streets in the city hundreds of times, and persons would hardly know we were passing.

Do you concur in the opinion that there is much danger arising from a large boiler? So much depends upon the principle on which it is made. I have no objection to a boiler of 100 -horse power on my principle; there is no difficulty in making a boiler of the
size of this room upon that principle; it can be extended or increased by increasing the number of chambers.

That is a number of small boilers joined together?-Yes. I can increase the size of the boiler by increasing the number.

Tine question refers to one large boiler in its own capacity? - Under any circumstan. ces I rather feel timid in a steam-vessel with a large capacity. When we come to increase the size of the surface if has a greater effect to burst if metal is weak.

What is the largest boiler which you think could with safety be used on tha public high roads ?-A cylinder of twenty inches diameter, if the materials are well sclected, and with the proper proportion of thickness, produces as great a safety in proportion as any other vessel. The cylindrical form is strong, but it is no stronger than any thing that is square, if the parts of the vessel are supported with sufficient materials. It all depends upon the thickness. The strain of a cylinder is the same as if it were of a given length, and was pulled at cach end. If the thickness of the metal is not sufficient to sustain the pressure inside it will be sure to rent, and a cylinder of twelve inches may be made equally dan gerous, if it is nat strong, as one of twenty.

Would the danger from blowing up a cylinder of ten inches be equal to that of blowing up a larger cylinder?-Certainly. A cylinder of ten inches, if it communicated to any other part of the boiler so as to make a continuous explosion, it would be nothing more than a discharge from the engine with greater report. If one of the bolts in my boiler was to break. I should have twenty. five safety valves ; there will be fifty apertures for the steam to escape, and there will be nothing like a report. All the seams or joints will be open, and the steam will escape, and lose its force.
It is in evidence that for public safety the extreme size of a boiler ought not to exceed eigit or nine inches in circumference, and that it is essential to keep within that size. Do you concur in that opinion ?-I think that a vessel of three times the size of it is capable of bearing the power. There is no necessity for limiting the size if the vessels are sufficiently strong.

The object of that observation was, that if it was not sufficiently strong, and did explode, no damage would arise ; that is your opinion?-If it were twenty-fuur inches, and were to burst, I do not think that there would be any danger if no longer than three feet. I am making a carriage where the cylinder will be sixteen inches in diameter, and vessels containing a much larger portion of steam than a cylinder for a ten inch boiler.

What is the object of that carriage ?For passengers.
Do you conceive that this method of travelling upon the high roads can ever bc adapted to the conveyance of heavy goods? -Yes; I think passengers may be taken in the steam carriage itself, and goo's behind.
The question respects heavy goods?Yes. Not the heaviest goods; perhaps they would not be so profitable; but ligit Bir. mingham goods, and things of that description.

It would not be likely to supersede the heavy waggons ?-I think it is very probable it might ; in fact I consider it a medium superior to horse conveyance, and inferior to the railroad in regard to speed, but likely to prove much more profitable.

Are you acquainted with Mr. Gurney's plan ?-Yes. We differ entirely.

You imagine yours to be preferable ?-1 think the fair answer to that would be the great expenditure Mr. Gurney has made to bring it to bear; and that mine have been brought into use at a much less expenditure, say one-fourth, and all at my own expense. Mr. Gurney had the capital of a number of persons.
You consider the advantage of yours to be principally in economy ? - I consider that my boiler stands the work much better than his. I had some difficulty in getting the proportions of strength of iron-work to the machinery.

Your other machinery is pretty nearly the same? -The arrangement is different. The whole is on springs in mine, and upright; and his horizontal, and a crank axletree; mine is straight.

You have both adopted a mode of getting rid of the draught through the chimney?I have a blowing machinc, so that I can increase the draught at pleasure.

Do you not use the steam for that purpose ?-No ; it makes too much noise; it would frighten the horses.
Does Mr. Gcrney's carriage make any noise ? -It made a hissing noise when I saw it, just before it went down to Cheltenham and Gloucester, from the escape of the steam into the climney. There was a very good draught, but it would make too much noise for us. It is the same as is adopted on the railroad. If I adopt that plan I should frighten the horses off a common road.

You thing that his carriage would frighten a horse off the road?-I am quite confident that the letting off the steam without its bo. ing quieted would frighten harses. If wa couid use the steam in the chimney without producing any nuisance we should save a considerable expense.

You would not be afraid of any competi, tion from Mr. Gurney munning against you ? -I sloould not be afraid of competition.

Do you think any other carriages which have been running can be put intu compretition with yours?-Tae tining s:ands entirely upon its own merits, and the best will be ap= preciated.
mr. joshua field callev in and examized,
Have you turned your attention to the construction of locomotive-carriages to run on public highways ?-I have been emplayed in making experiments on this subject by some gentlemen as a metter of business.

Is there an engine gacs by the name of Field and Maudslay's?-The machine in question was made for same gentlemen; it was not our property.
Will you state winat was its weight, and how ma y persuns it was coastructed to carry ?--It weighed, with water and coals, six tons; it was merely a drag to draw another carriage.

How many carriages would it draw ; one ur mose ?--It was guntidiy applied to druta
one ordinary omnibus ; but it has drawn two and three.

Along what sort of road; a good hard road?- The roads about London.

Gravel roads ?-Yes, or Macudamised.
Is it at work now?-No.
Was it meant to work?-It was built as an experiment.

To try what ?-To try what might be done on the roads.

Did it succeed ?-Yes.
What was the object you wanted to at-tain?-The object of the party was to give the subject a fair trial.

Did it ever run any length of time? -It performed many journeys last summer.
On the roads immediately about London' -Yes; it went various times to Reading.

Drawing carriages after it ?-On those occasions it drew one carriage.
. What rate did it travel at $?^{}$-From twelve, fourteen, fifteen, sixteen and even at the rate of eighteen miles an hour.

What was the pressure ; how many horse power?-It is difficult to estimate the power of such a machine by horse-power without the resistance being known.

What other means of estimating the power of a steam.engine have you ?-Fixed steamengines are casily estimated by horse power, but the power of a locomotive engine varies with every rate at which it runs.

In proportion as you increase the rate you would lose the power; what you gained in velocity you would lose in power?-Not ex. actly so ; it would take more power to drive a carriage sixteen miles an hour than it would twelve; at the highest velocity it would exert the greatest power.

Have the goodness to give the Committee some way of estimating the power of an engine in any way you think you can explain it most satisfactorily ?-The ordinary mode of estimating the power of a steam-engine is to ascertain the effective pressure of the steam .on the piston ; the area of the piston, and the rate at which it travels, reducing this to pounds weight, moving one foot per minute, gives the power of the engine moving at this rate; then dividing this sum by $33,000 \mathrm{lbs}$., which is supused to be the weight one horse can raise one foot in a minute. gives the number of horses' power.

Apply that to your engine, if that is your mode of estimating the force of an engine; apply that, and tell us what the power of your engrine was in that curriage?-That would be extremely difficult to d_{0} in this case, some of the data not being known; but I think the object of the inquiry would be answered by stating that the cylinders were ten inches in diameter, the steam from 50 to 100 lbs . on the square inch, and sixteon inches stroke; such an engine may be estimated at about twenty horses-power.

You had a number of cylinders?-Two.
What lengrth of time did you complete your journey to Reading ?-'Three hours and ten minutes average both ways.

How often do you go there ?-It went five or six times down that road, some journeys to Slough, and once to Marlisorough.

Did you gro with it ?-Once only to Slough, and once to Marlburongh.

Wid you ubserve that your carriage frightened the horses o:a the roind? - Oceisionally horses would s!!?

Did the horses shy more or less than at meeting a stage-coach ?-More so, from the novelty of the thing.

Would a noise accompany your carriage? - A little.

From the carriuge or the steam ?-More from the hissing of the steam.

Were there any sparks; none were visi. ble by day-light ?-No.

Have you ever travelled by night? -On one occasion.

Were there any sparks ?-A considerable number.

Have you taken any precautions or tried any thing to prevent the emission of sparks? -We had at one time a wire-gauze over the top.

Did it answer?-As it rather impaired the draft it was taken off, and was not on when we travelled by night.

Have you seen that wire-gauze applied to other locomotive-engines on railroads?Yes.

Travelling at the same speed?-Yes; at all speeds on the railroads they have gauze.

Have you seen them travelling at the same speed, fourteen miles an hour, or whatever it is, with the wire-gauze on the top of the chimney ?-Yes; and at much higher velo. cities.

But at that velocity did not sparks fly out, and would they not at a more great velocity than at a moderate one?-I never observed any.

When they travelled at that velocity have you observed the sparks fly out, notwithstanding the gauze?-I have only travelled by day-time.

Did you use coal or coke ?-Coal, and that accounts for the great number of sparks.

Is yours a large chamber-the boiler ?It was divided into a great number of small tubes.

Of what size?-The largest was two inches in diameter.

Were they cylindrical ?-Yes.
And so small as that?-The largest part exposed to the pressure of the steam was only two inches in diameter.

How much coal did you consume in an hour, do you know? -I cannot speak very accurately to this, as those experiments were made more to ascertain the effect than the quantities of coal consumed.

Did you observe what eflect it had on the road; did it make ruts?-Not at all.

What was the width of the tire of your wheels ?-'Three inches and a half.
They did not sink into the road?-No, not at all.

Were the roads wet or dry? - These experiments were chiefly made in the summer, but the earriage has run when the roads were soft and muddy.

Then it was very dry weather?-Yes, for the most part.

Have you ever travelled by any of the stean-carriages that go by the name of Han. cock's?-Oice.

When was that; lately?-It was about eigheen moaths aro.

Du yo:t know his constructions ?-Yes;
gemerally.
[). yo: vonnina it safe?-I think it is.

Where was it you travelled; on the Newroad ?-Yes.

Did you observe that the horses were frightence at it?-No.
There was no starting?-No.
Did the horses pay more attention to it than they did to the Paddington omnibuses or the Paddington stages?-I did not ob. serve that they did.

You conceive the mechanism is such as to secure safety to the individuals who travelled by it?-Yes.

Did it seem to move and turn very readily? - Very easily.

You had no accident with it while you were upon it ?-No.
Have you ever seen Mr. Gurney's steamcarriage !-I never saw one of Gurney's under way, except an old one belonging to Sir Charles Dance, quite altered as it regards the boiler.

But not Gurney's most improved and lastmade carriage ; his best carriage ?-No.

Do you know the nature of the construc. tion of his carriage ?-Yes, as it was five years ago.
Do you consider his safe ?-I did not con. sider the large flat-sided chamber safe.
But not latterly; it has a round cylindrical tube ?-I do not know.
Do you know Colonel Macerone's? No.
You do not know any thing about it ?No.
Are there any others you know, whose mechanism you are acquainted with ?-I have seen Mr. Ogle's, but not at work.

Do you know the nature of his plan? Yes.
Do you consider that safe ?-Yes; I think the boiler safe.
Safe with respect to explosion ?-Yes.
You have never seen it under way, therefore you do not know its effect ?-No.
The only one you have seen tried is the one youl built, and Hancock's?-The only steam-carriages I have seen moving are that we built ourselves, and an old one of Sir Charles Dance's partly composed of one of Gurncy's original carriages, Mr. Hancock's, and one made by one of my partners, which was a railroad-engine, put on the road with plain wheels for experiment.
Have you seen that under way?-Yes.
Do you consider the mechanism of that such as to be safe for passengers?-Yes; as safe as the ordinary railroad-engine.

Did you find the horses start at that ?-A little; not much.

More than at Hancock's ?-I think so, as the noise is greater from the escape-steam.

Did Hancock's make a noise ?-Not much.

Is it the rattling of the carriage, or the whizzing of the steam?-I think about half each.
They do not neutralize each other? No.

You have never seen Gurney's?-No.
Did horses start at Sir Charles Dance's? -A little occasionally.
More than at Hancock's ?-I cannot say, but should think them much the same in that respect.

Do you know the mechanism of that of Dance's ?-Yes.

Concluded in next Number

PFrom the Mechanic's Magazine. introductory lecture,

To a course delivered before the General Society of Mechanics' and Tradesmen, by James Renwick, L. L. D., Professor of Natural Experimental Philosophy and Chemistry, in Columbia College, NewYork.

In opening the first course of public Lectures which has been prepared for this Institution, I cannot but feel that my task is attended with some difficulty. Unable to forsee the wants and wishes of an audience now for the first time assembled, I have been in doubt whether it would be best to adopt a strictly scientific, or a merely popular plan, or whether a middle course might not be preferable, in which the dry discussions of pure science should be relieved by illustrations of a more familiar character.

There has also, been a question whether the few lectures ought not to be devoted solely to such subjects as might possess the charm of novelty, and thus illustrate no more than the recent additions which have been made to philosophic knowledge, or whether they should embrace matters more familiarly known.

It has, after due deliberation, been inferred that this audience has not been collected merely for the purpose of learning what has recently been done in science, but would prefer to receive a connected view of the subjects which may be treated of; in which way, while mere novelties will not be wholly excluded, they will occupy no more space than their real importance entitles them to demand. It often happens that a new discovery attracts for a season an undue portion of attention, and different subjects have thus, in rotation, filled up a measure of the time devoted to the study of science, far beyond that which is due to their intrinsic merits, or their value in practical application. Thus, common electricity for several years demanded nearly half the time which was devoted to the physical sciences; it was then superceded by galvanic electricity; while at the present moment electro-magnetism and the polarity of light, are the fashion. Without pretending to undervalue either of these branches of knowledge, it is sufficient to say that they have not been considered of sufficient practical value to be introduced in the opening course of such an Institution as that at whose request, I have the honor to address you.

In determining, then, to have reference rather to the real importance of the subjects to be treated of, than any temporary interest they may have assumed from novelty ol
fashion, two distinct modes of proceeding have presented themselves. It might, in the first place, have been attempted to compress, within the prescribed limits of the lectures, a brief and general view of the whole extent of physical sciencc. Such brief and general view might not be without its interest, but it would necessarily have been condensed within a space so confined as to render it extremely difficult to give to such of my hearers, as may not have had the benefit of a previous acquaintance, with at least, a part of the subject, any clear and satisfacto. ry idea of the whole. This plan would also have labored under the disadvantage of excluding in a great measure, all experimental illustration.
In the sccond place, it is easy to select from the variety of matter included under the general head of physical science, a few subjects of important practical valuc. Each of these would then admit of being fully investigated, and full space would be allowed for rendering them interesting by experiment and apparatus.

The latter has, for such reasons, been considered the preferable plan, and this view of the subject has received the sanction of the very intelligent committee of the Institution.

In respect to the style, which it would be most expedient to adopt, I have, upon my own responsibility determined on framing the lectures in a plain and didactic form, rather than attempt to dress them in literary ornaments. For the subsequent evenings of the course, the reading of written lectures will be avoided as far as will be consistent with a clear and perspicuous exhibition of principles. Concelving that it is probable, that, at least a part of the audience, has had no opportunity heretofore of iustruction in physical science, and is therefore assem. bled for the purpose of acquiring elementary knowledge, the mode which experience has shown to be best adapted to that particular object will be pursued. To those of my auditors who have already made proficiency in such studies, this must serve as an apology, for bringing before them matters to which they are familiar. Still, even to them, it may not be unintercsting, to review what they have long since acquired ; and to fortify their recollections by witnessing again facts and illustrations, which, however often repeated, cannot wholly cease to be wortiny of attention.

If such impressions be not erroncous; to define the limits of the sciences which fall within the seope of any studies, and to point out what parts of them have been selectel as the subjects of the present course, will furm no unfitting introduction.

The physical scionces pres out a wile and
extensive field. More than two centuries have elapsed since the proper mode of study. ing them was revived, and the few sound principles with which the ancients were acquainted, restored to their proper rank in tho scalc of human knowledge. From the time of this revival up to the present hour, no year, and indeed hardly a month, a week, or even a day, has elapsed, which has not added to the present stock of facts. From these facts, general principles and laws have been continually deduced, until the science of natural philosophy, which was at first of so little extent as to permit of its being successfully cultivated in connection with others, has been necessarily divided into many distinet branclıes, each of which may well occupy the whole attention, cven of the most powerful intellect.

Physical Science, or, in other words, Natural Philosophy, has for its object, the laws which govern the phenomena and appearances of the material world. Every thing, therefore, which is capable of perception by our senses, falls within its province, as well as all the agents which are efficient in influencing them, whether these agents be themselves objects of seusation, or known, only by the effects they producc on the bodies which are.
The world with which we become ac quainted by the evidence of our senses, and to which the name of material has been given, is made up of many substances extremely diverse in their specific characters, and yet agrecing in a few general proper. ties, which enable us to class them all under one general term. This term is Matter.

In what the essence of matter may con. sist, we know not; nor is it probabie that we shall ever learn, in this limited state of existence, the final causes by which it is separated, on the one hand fiom mere space, and on the other from spiritual existence. Metaphysicians have indeed with subtle inge. nuity speculated upon these causes, until they have resolved matter into cullections of mere occult qualities: while others have refined until they have denied its existence altogether. Such refinement of ingenuity appears almost ludicrous to the unisistructed mind, and it is not less repugnant to those who study physical science in the true spirit of philosophic inquiry. To those imbued with this spirit, or such as enter upon the study unbiassed, it is unnecessary to refuto such sophistry. The error lies at the root of the inquiry ; and it may be safely asserted, that, wherever metaphysicul arguments are adnuitted into the discussions of nutural philosophy, the chance of discovering truth will be in a great measure lost. It is from our senses, cither unassisicd, or aided by the in-
struments which the advance of science has both called for and supplied, that the whole basis of natural knowledge is to be derived, and it is to our senses that we must finally appeal to determine whether the inferences built upon that basis are correct or not.

In making the testimony of our senses the basis of all our knowledge of physical science, we proceed in one of two ways, namely : by observation, or experiment.

We are said to observe, when we watch for the phenomena as they occur in the regu. lar course of events, and mercyy note the ap. pearances which these phenomena present. We are said to experiment, when by means of apparatus or preparations, we cause actions to begin, which would not have occurred in the spontancous order of nature; in this method of proceeding, we may not only induce an action, which might not have taLen place without our intervention, but we may modify, and in some cases, cause it to cease ; but we can do no more. The phenomenon itself is due to natural causes which are beyond our control, and escape our scrutiny. Hence experiment, after all, is no more than a case of the more general method of observation, the proper time for which, we may choose for ourselves, but whose result is independent of us.

These two methods cannot be adopted indiserminately, nor is each applicable in every different instance. Thus, if we wish to examine the phenomona of the heavenly bodies, no other method is practicable but that of observation; their motions proceed in a space far beyond the limit of any of our senses except that of sight, and the several appearances which they present, occur at pegular periods, but in a way which is beyond any control or modification on our part. Astro:somy is therefore emphatically the science of observation. But when we wish to examine the internal constitution of bodies, we find the elements of which they ure composed, united by forces which require the application of a more intense force of the same desciption, or of some powerful physical agent to overcome them. Such forces we can call to our aid, and such phy. sical agents we can control and employ. Chemistry is therefore as emphatically the Science of Experiment. Other departments of Natural Pinilosophy may be investigated by mixed methods, in which observation and experiment, each fulfil their proper office.

It may perhaps be urged tinat the evidence of our senses is fial foon being infallible, and there is probally no person persent who may not, at some time or other, have been lud into error, by relying uron this evidence apac. We have however the moans of comparing and combining a number of dif firesit appearmence, and of reasoning upon
the basis of other phenomena, in relation to which no doubt can possibly exist, and we may in this way correct what would at first give rise to erroncous impressions, and actually deduce and demonstrate the true state of things, from the very perceptions which at first appear to contradict it. Thus, a savage or a child, who for the first time contemplates his own image in a mirror, may think this image the actual body of another person. By bringing the sense of feeling to the aid of that of sight, he will speedily learn the existence of the mirror, in what at first appeared an empty space, and careful observation will prove that the position of the image is dependent upon that of his own body, and follows his own motions ; but if the appearance were to occur for the first time to one acquainted with the general laws of the reflection of light, he would be at once enabled to include the phenomenon of the image among the cases of that general problem. So also, our senses appear to inform us that the sun rises daily in the East, and performs his appointed course until he sets in the West, over the firm and apparently immoveable earth. So soon as his light has faded, innumerable stars show themselves which seem to be affected by a similar motion. But he who has made progress in physical science, can, by the very comparison of these apparent motions with each other, prove that they are all owing to the rotation of the planet of which we are ourselves inhabitants; which, so far from being of the importance that a comparison with our own pigmy stature leads us to beleive it, is a mere point in the vast system of the universe, and instead of being at rest is in a state of continual and rapid motion. The sun himself can be shown to be a million times and more, as large as our puny earth, and many of thestars, which to us seem mere luninous speeks, to be even greater than that splendid luminary. Yet the whole of this knowledge rests for its basis upon the very facts, which to our first impressions, seem to demonstrate the reverse of the truths which are finally attained.
In order to understand low truth may be reached, even from contradictory appearan. ces, it is cxpedient that we should treat in a brief manner of the mode of proceeding in physical science. This method is founded in nature, and is not only that by which philosophers proceed, when they pursue a proper mode of inquiry, but is that, by which children and the radest individuals of our race, learn whatever is absolutely necessary to their safety and sustenance. As we advance in age, and in mental cultivation we are often tempted so deviate from the path which nature has pointed out, in the pursuit of more easy roads to truth; prompt-
ed partly by indolence, which induces us to ondeavor to avoid the slow and laborious method, by which alone, true knowledge can be acquired, and partly by the influence of bad example. It therefore becomes neces. sary that rules for conducting the process should be laid down, and that we shall never be satisfied that our inferences are correct unless these rules have been rigidly ad. hered to.

Concluded in next Number.

Agriculture, \&c.

From the Farmers' Register.

observations made during an excursion to the dismal swamp.
Early on the morning of Nov. 19, our party assembled at the northern end of the Land Company's Canal, about a mile from Suffolk. To this point all their shingles are brought by boats-and passed over to the tide creek close by, and which is about 20 feet lower in level, where they are received by vessels which carry them to the northern cities. Our party was mostly composed of gentlemen of Suffolk, who most kindly aided all my views and wishes. The boat was flat bottomed, long and spacious, belong. ing to the Land Company, and designed solely for conveying passengers in trips to the lake, for pleasure or business. It was well suited for the purpose, and was well manned and provided for this occasion.The mode of propelling the boat is the same as is always used for the shingle boats. A strong pole is fastened across the square head, and another in like manner at the stern, at right angles to the boat, the other ends extending across the tow-path on the margin of the canal. By these poles the men push the boat along in a rapid walk, and at the same time lean on them so as very much to lighten their labor. Four experienced hands accompanied our boat, who relieved each other from time to time. It seemed strange to me that horse power had not been substituted for that of man for this business; for though it would be costly to provide enough solid earth to make a towpath for horses, when once done, one horse would pull as many boats as perhaps 15 or 20 men could shove.

This canal was dug 12 feet wide, 4 feet deep, and is 10 miles in length, and very nearly straight. Its water is almost a level -a gentle current flowing from the middle part towards each end. The firm land soon was passed through- (in which the banks are from 1 to 2 , and for a short space 3 to 4 feet high_-) and we then entered the swamp. The tow-path still continued to be a firm but low bank for a short space more -and then for the remaining 7 or 8 miles was scarcely above the surface of the adjoining swamp, and merely afforded better footing by being trodden, and thereby consolidated, and by the poles and other wood placed along where water covered the ground for the boatsmen's steps. The earth thrown out in digging the canal must have made on each side a wide and high bank. But so little elevation now remains, that it furnish. es alone sufficient proof of the correctness of any previous opinion, that such land, if kept dry, will rot away, leaving nothing bu ${ }_{t}$
the very small portion of earthy matter in the soil. A permanent horse towpath could therefore only be made by earth boated from the firm land, or by wood. Wooden roads for mules are made throughout the swamp, to convey the shingles to the borders of the canal, or lake-and these roads are so rough, and bad, that it seems as if as much power must be lost on them, as by using hand labor to propel the loaded boats. Some of these roads are 5 or $\mathbf{6}$ miles in length-and their united length must be very great. They are constructed as follows. Double lines of poles are laid in the direction of the road, about the distance apart of the cart wheels. Across these are laid split pieces, merely long enough for a single track of a cart, of 4 to 6 inc.les in diameter, and as angular and irregular as may be supposed, from mauling. Thase lie close to each other across the sleepers, and present a very rough and unstable surface for the wheels, and still worse for the feet of the mules. Still, I was told that on such roads, a mule will draw as havay a load as on ordinary roads, on land. If so, it would seem that they would draw ten times as much on smooth longitudinal tracks, or such wooden rail, or tram-roads, as are described in Vol. I. of the Farmers' Register.

The escape of the water in numerous places over the margin of the canal, served to explain how there could be a regular cur. rent always setting towards the closed end of a level canal.

We soon reached juniper trees, (or white cedars) and the softest swamp soil, in which situation only, these trees grow. I had never before seen a juniper-and should not now have distinguished them from the red or true cedars, but for their situation, greater height, and the beautiful straightness of their long naked trunks. The length of the branches, and the spreading and bulk of the whole top, bear but small proportion to the diameter and length of the trunks of the juniper. The trees are beautiful, and especially when they stand thick, forming a high roof of their evergreen tops, supported by numerous co lumns formed by their long and straight stemis. They are not often large, or are too valuable as timber to be permitted to reach much size. Most of our whole course was through the " burnt woods," a large track of which nearly all the growing trees had been formerly killed and consumed by great fires in former times.

Though the form of the juniper is well adapted to stand on its soft and yielding foundation of mire, still when large it is easily overthrown by winds-and perhaps as many such were lying beneath the surface of the peat, as were standing erect. When thrown down, they are soon covered by water, and keeping wet, they never rot, except the sap wood, which is less than an inch thick. Much of the timber now got, is from trees long covered a foot or two deep under the surface soil, and which are found by the workmen by sounding, and then dug to and sawn off into shingle cuts, though half covered by water. Some of the great fires, in certain places, have brought to view and mitto use, more good timber than they injured, by burning the soil down to where numerous trees had lain perhaps for a century concealed, and their existence unsuspected.

By the way - in digging down into the swamp, charcoal, the plain evidence of the former fires, and of the height at which the surface had then stood, is often found at several feet below the present surface-thus giving practical proof of the growth of the soil in thickness by the operation of the natural causes before reasoned from. But I get on slowly upon the canal.
The canal, when perfectly straight for a long course, with the trees on each side almost joining their branches across, presents a betutiful vista and perspective view-and with our singular boat and its equipage would have furnished a fine subject for a painter. Still more striking were the same scenes when we returned at night, with the bright light of our fire partially displacing the general darkness. The landscape painter would find many new subjects in this region, where every thing is strange and new-and so might the student of botany and other branches of natural history. A writer like Irving might here fiud enough intercsting mattor for descrption and narrative, to fill a volume. The land and the water-the vegetables and the wild animals-the inhabitants in their habits and occupations-are all as different from the surrounding country, as if the traveller had suddenly passed into a far remote region.
I landed several times in the course of the day, at places of different appearance and growth, and of different levels, and walked far enough to see the swamp in all its various conditions. The parts most casy to walk through (and these are scarely passabe) are where the original gigantic forest growth has not been destroyed or hurt by fire, or where the reeds, forming a thick growth, have all died, and thus pormited one, with some effort, to break his way through such a brittle though close barricadc. The getting of timber being confined to the junipar trees, and these being of comparetively small size, the original grandeur of the forest is but little impaired by the labors of man. The cypress is here the king of the forestand this, with the gums, and all other trees except juniper, are left untouched. The cypress grows on the same kind of land with the black gum-which, as before stated, is much firmer than the juniper lands. The farmers here, who have given any consideration to the subject, suppose that though the juniper land, if drained, would sink and soon fail, that the gum and cypress lands would be permanent. No doubt they would be more durable8-but the vegetable matter that will burn, will also rot, if placed in circumstances favorable to fermentation : and soon or late, all the excess of vegeteble matter in the soil, not combined with, and fixed by the earths, and especially by calcareous earth, must rot away, and disappear.
We passed through sundry such changes of land, and of its vegetable cover, as have been described-but still a general uniformity of appearance prevailed, owing to the decp gloom and miry surface of the surrounding swanp, the sluggish and dark watcr of the canal, and its scarcely varying course. The only sign of life was seen at intervals in a " camp" of a pair of shinglegetters. Their houses, or shanties, are barely wide enough for five or six men to lic iin, closely packed side by side-their heads
to the back wall, and their feet stretched to the open front, close by a fire kept up through the night. The roof is sloping, to shed the rain, and where highest, not above four feet from the floor. Of the shavings made in smoothing the shingles, the thinnest make a bed for the laborers, and the balance form the ouly dry and solid foundation for their house, and their homestead, or working yard. Yet they live plentifully, and are pleased with their employment - and the main objection to it with their masters, (they being generally slaves,) and the community, is that the laborers have too much leisure time, and of ccurse spend it improperly. Their heavy labors for the week are generally finished in five, and often in four days-and then the remainder of the week is spent out of the swamp, and given to idleness, and by many to drunkenness. All the work is donc by tasks: and the employers have nothing to do but pay for the labor executed. About 500 men are thus employed in the whole swamp, by the Land Company, and by numerous individual land owners. With all their exposure, the laborers are remarkably healthy, and almost entirely free from the autumnal fevers that so severely scourge all the surrounding country. It is said that no case has yet occured of a shigle-getter dying of disease in the swamp-nor did my informants know that any one had been so sick as to require to be brought out. A young white woman lately died, whose father and his family have lived ten years in the swamp -but she had just returned from a visit of some length to the open country outside. It is well known that the borders of extensive peats in Britain are healthy, and in that respect are very different from the marshes of the same regions.

At length we came to another straight canal, (the old "Washington Ditch,") by entering which a slight deviation was made from our previous straight course. This turn obstructs the view, and thereby adds to the pleasure of the surprise that immediately follows. .But a few yards mone are traversed, when the boat passes, almost without waruing of a change, from its narrow and shaded channelupon the wide-spread surface of the lake. The boatmen, having exchanged their poles for oars, rowed nearly two miles toward the centre of the lake. It is encompassed to its inargin every where by a thick growth of tall trees, in which the eypresses, by their greater height and singularly formed summits, show most conspicu. ously. The general level horizon presented to the cye by the surrounding forest, is made lower and irregular in two large places on opposite sides of the lake, plainly indicating the wide and desolating passage of the last great fire, which left nothing alive in its track, nor any thing standing, except some of the largest trunkss of trees, many of which still remain, though naked and scathed by fire to their summits. But so rapid is the growth on this swamp, that the burnt land is generally and closely covered by a young forest of considerable height, and among which are junipers of twelve inches through, which are already used for slingle timber.

It was a bright and clear day, and not a breath of wind was felt before emerging from the canal. But though there im. perceptible, there was enough wind to ruffle
the surface of the lake. The observer would at first suppose that the lake was in a great measure secured from the effect of wind, by its inland situation, and its close surrounding forest barrier. But high as is this barrier, it is low in comparison to the elevation of hish lands in general-and the low leyel of all the adjacent country, and the vicinity of the Atlantic, permit to the winds such a sweep, that Lake Drummond is remarkably subject to their effects; and the violence of storms, is here about as commonly exhibited as on the sea.
The water, though clear and transparent, is so deeply colored by the extract of vegetable matter, as to seem black when seen in the lake and canals. When taken up in a glass, it is found that this deepness of color is delusive-and that it is about the color of pale rum or wine. It is every where through the swamp the same in quality, though not always as deeply tinged. It is, by some, considered medicinal, and is preferred for drinking by all the laborers, anothers most accustomed to its peculiar and at first, disagreeable flavor, to any other water whatever. Some twenty-five years lago, invalids; and especially those suffering under pulmonary affections, were in the habit of visiting the swamp in the summer, to drink the swamp water for improvement of health; and they often remained for weeks together at a tavern on the Dismal Swamp Canal, beyond the opposite side of the lake.
The water in the lake, is now about 18 inches below the usual level, and of course we found the swamp so much the drier, and more accessible, near the borders of the lake. But notwithstanding this cause for the unusual dryness of the surface, and notwithstanding also, the thick carpet of recently fallen leaves and other vegetable matter on the surface, sustaining the footsteps, I was continually reminded, by the yielding of the miry earth below, of the unsoundness of the support. Through the greater part of the year, the basin of the lake is full to the brim, and overowing at many places into the surrounding swamp. The water in the Land Compa. ny's canal through which we passed, however, was then kept at its ordinary height, by means of a wooden stop-gate placed acress the mouth of the canal.

The fish of the lake are of species similar to those of the ponds and fresh water streams of the-neighboring country-but of some, the sizes are much greater. The gar is sometimes seen above five feet long. Some kinds of the fish are highly valued, and dining on them is not the least enjoyment of the pleasure parties that often make excursions in summer to the lake.

Reeds, at remote intervals, bear sceds which have a considerable resemblance to wheat, and which will make tolerably good bread. These seeds are so seldom borne and are usually so few, that most persons do not know of their existence. Whenever a reed brings seed, it dies the same autumn. A few years ago was a general and great "reed mast," as a full bearing of seed is here called-and all the reeds consequertly died at once. The present growth is in many places as thick and as beautiful as ever-varying lowever in leeight in diffe-
rent places, as if of different years' sowing, from 18 feet to 9 or less. But it seems as if nature demands a change of crops in this as in many other cases. I infer this from walking into large pieces of ground covered by a former growth of reeds, of which all had died in the last great mast season, and not a single living reed had followed, or was seen on such places. It is a vulgar error that the reeds bring sced once only in seven years. There are few more beautiful single plants than a reed of large size-and their general appearance is as pleasing when in smaller size they stand so thick as to form an almost impene trable undergrowth.
It is not known to most persons that bears still inhabit the Dismal Swamp, though long ago driven from every other part of lower and middle Virginia. But proably most have thought, as I did before this visit, that they were so rarely met with, that the killing of a single one would be a matter for great exultation, and cause of some notoricty to the huntsman who was so lucky. But, I now learned that they were so numerous, that there were but few men who resided near the margin of the swamp who had not killed one or more. A youg gentleman of our party, had shot several dozens of these beasts. He told me that the largest weighed, after being skinined and gutted, more than 500 pounds. They do not usually weigh half as much. It is difficult to rase many cattle or hogs on the adjacent farms, though the swamp furnishes such abundant food for both, owing to the slaughter committed on them by the bears. A bear will with ease kill a full grown cow, and has strength to drag away the carcass to a suitable hiding place. No dogs will hunt these animals to inuch purpose, and therefore it is not often attempted. The most numerous pack will seldom ever bring them to bay, and will never attempt to scize on them. The bears are traced and found by the hunters, by listeluing for the noise of their nightly drepredations in corn-fields, or among live stnck, or when breaking the limbs of the trees they climb in search of acorns or gum berrios: or they are baited and killed by traps, or havily loaded set muskets, the latter being a common and successful mode of destroying them. I heard related by the gentlemen of our party, and by the boatmen, sundry accounts of such adventures-and enongh could casily be had to fill a second volune of Davy Crockett. Indeed, the story of one remarkable adventure which has been bestowed in print on Crockett, I belicve, or if not, on some other western bear hunter, I found had been pilfered from the honors of an old borderer of the Dismal Swamp: for whether the story be true or false, (and it is fully believed here,) it had been told by the hero of it for forty years before his death.
Some more formal testimony of the great number of bears in the swamp was presented at the recent meeting of the Land Company, in a written proposal subnitted to them by an individual for getting up their oak timber. This paper stated as a reason for their taking such measures, that the oaks were suffering, and many dying under the effects of the depredations of the bcars. Tliis statement which would otherwise have
been to me impossible to conceive a meaning for, was explained by the account received of the habits of these annimals. Heavy and apparently clumsy as they are, they aro expert climbers, and in that manner seck the gum berries and acorns, which, in their season, form a favorite part of their food. To reach the acorus on the extremities, they draw to them and break off the limbs, even when of large size-and into these broken places worms of a particular kind enter, or eggs are laid, as in the case of the pine bug, and in time the trees are killed by their borings.
A still more ferocions animal found here is the larger of two species of what are called voild cals. This name is certainly mis. applied-but my acquanitance with this branch of natural history is not sufficient to enable me to fix the kind of either animal, from the descriptions given. The larger is brown, with a short tail, and is about as large as a middle sized or rather stout dog. Tho smaller kind is mole-colored, and has a long tail. Polc cats are also sometimss found in the borders of the swamp.
The most singular recent fact with respect to beasts of prey, is the appearance here of a solitary wolf a few years ago. As no wolf has been heard of east of the mountains for many years, the kind of this destructive animal was not suspected until long after he had been committing his ravages on the sheep about Suffolk-and more than a year passed before he was at last killed. His howling had often been heard by the inhabitants of that town, so near did he forage -but as his shelter in the swamp was perfectly secure from intrusion, and he mov. ed out only by night, and as no dog would pursuc him, it seemed long impossible to destroy him. He at last, like many warlike or predatory heroes, from Sampson down to Macheath, fell a prey to female attractions. Tired of celibacy, he was seeking a mate, though of a different race-a bitch at a farm house: and her other suitors made so great an outcry over the foreign intruder, that his presence was discovered, and he was shot.

Upon inquiring for some one who had witncssed and was able to describe the great fire of 1806, the boatmon referred me to old Toby Fisher, who was then, as he still is and has continued to be, a shingle-getter in the swamp. Accordingly, we visited Toby's camp-and his account was readily obtained. The first judication of the extent of the fire was the uncommon prevalence of smoke, and its long continucd increase. But a shift of wind would remove it from the neighborlood of the laborers, and for as much as a week together they were free from it. At last, the fire approached so near that the falling of the great trees was heard in rapid and continued succession, like the reports of guns heard at a distance-and when still nearer, bears and other "varmunts" were seen flecing from destruction, and some timus singed and lamed from having been forced through the fire. At last the laborers nearest the approaching flames were driven in, and in such alarm, that all liastily embarked on the lake, and left the swamp. From 30,000 to 50,000 slingles, ready for market, which were the property of a single individual (the father of one of our party, fided been previously thrown iuto the old

ADVOCATE OF INTERNAL IMPROVEMEN'ES.

canal_but without obtaining much of the expected effect in saving them from the flames. The upper layers, above the water, having taken fire and been consumed, and their weight removed, the next layer would rise to the same height-and though wet, were soon dried enough, by so powerful a heat, to take fire also. Thus the shingles, which had been completely submerged, continued to rise and to burn, until but a small part was lef. The fire continued about a month, and passed over the greatest part of the swamp. From other authority, I learned that the soil was in many of the dryest places burnt down as deep as two feet, producing such effects as have been already mentioned.
To such a fire, in former times, acting on a still dryer state of the swamp, it scems probable that the lake owes its existence, by the soil being burnt so low as to allow water to be retained, and of depth too great for plants to grow therein, which otherwise would have recommenced a growth of peat and by it ultimately have filled again the void. That this vast basin was thus hollowed out by fire seems to. be proved by stumps at the bottom being found charred on their surface-by the perpendicularity of the banks-and the operation is rendered probable, strange and great as the effect may be, by the reasonableness of its taking place, when the supposed existing circumstances rre considered. I do not suppose that the basin was burnt to its present depth-and merely because it is not likely that the earth could have been dry to the depth of fifteen feet, or even half that depth. Butif burnt to three feet only, and then filledwith water, the continued growth in thickness of the margin of the swamp generally, in the course of ages would raise the surface to fifteen feet above the present bottom ofthe lake.

But if the swamp soil is growing in thickness, and (as I suppose) the lake in depth, it is also believed and with much appearance of truth, that the lake is likewise continually growing in superficial extent. That this is taking place along a large part of its margin, is evident to present observers, and still more to those who remember the state of things many years ago, and have witnessed the gradual encroachments of the water. Some however doubt whether other-parts of the shore may not be growing, by filling up. I do not see why the water may not be apreading on all sides. The violence of the waves, in high winds, must undermine anà wash away the banks-and of the earth thus removed, the lightest parts are dashed over upon the swamp, where they dry and rot, or otherwise add to the depth of the soil-and the more earthy and heavy, serve to raise the bottom of the lake, and the more so where nearest to the banks-and in this manner to cause the regular doepening towards the centre that is found to exist. Until the parts thus filled up shall rise near enough to the surface to support plants, and thus gradually grow to be high peat again, the lake must be widening on every side to which the waves are driven by violent winds.
The following results, showing the proportions of vegetable matter contained, were obtained by subjecting to trial different soils of the Dismal Swamp. The method used was to measure the bulk of eacl specimen, by pressing it moderately and equally into
a measuring glass, marked at equal portions of an ounce of water each. The measured portions of earth were then separately exposed, in an iron vessel, to a strong heat, for one or two hours, until each seemed as much reduced by combustion as could be by such means. Coal'y matter still remaincd with all the ashes, showing that the burning was not completely finished. All thesc soils have been before described, either particularly, or generally. The amounts lost may be supposed to show the comparative proportions contained, of vegetable matter.

1. Of the soil of the reed covered swamp and (Mr. Daniel Jordan's) described page 517 , taken about $1 \frac{1}{\frac{1}{2}}$ or 2 feet from the surface, 3 parts (oz. measures,) lost in bulk, by burning, $2 \frac{1}{4}$ parts, or 75 per cent.
2. Of the gum swamp soil, also Mr. Jordan's described page 517. taken from 1 to 2 feet below the surface, (but quite free from any mixture of the clay sub-soil)- 3 parts lost, by exposure to heat equal to any used, only half a part-or 16 per cent. This became black by burning, but could not be made to take fire, as the other specimens did. So small a loss was unlooked for.
3. Of the gum and cypress swamp soil near the north-western side of the lake. This was presumed to be some of the highest and firmest land, as it had been ditched and cultivated by old Draper in turnips, the best of which were as large as musket bu!lets, and had leaves 6 inches long. The specimen was free from unrotted vegctable matter. Five parts lost by burning $4 \frac{1}{2}$ parts, or 90 per cent.
4. Of juniper soil, taken from 6 to 10 inches below the surface, and below all living roots or unrotted vegetable matter. The specimen was a black slimy mud, which gave no indication to the eye of having an excessive proportion of vegetable matter. Eight parts (half a pint) of the soil after burning, left one third of a part-showing the vegetable matter destroyed by fire to be 96 per cent. This specimen and the next, only, burnt with flame for a short time.
5. Soil of gum and cypress, under its original growth-about 200 yards from the north-western side of the lake. The specimen taken from six to ten inches below the surface, and free from living roots, or unrotted vegetable matter. Eight parts (half a pint) was reduced by burning to one third of a part, or lost about 96 per cent. This specimen was burnt at a different time, and with more powerful heat than the others.
Before closing these remarks, some speculations will be submitted as to the feasibiity and policy of draining this immense body of swamp, supposing it permitted by the laws, and not opposed by any existing rights or interests.
In comparison with the magnitude of the object, it wouid seem to be both a cheap and certain operation to drain this whole body of land. All the water, axcept the rain that falls directly on its surface, it may be sup. posed flows from the streams coming in within the extent of some 10 or 15 miles of margin, from the highland on the western side. If a canal was dug through the western side of the swamp, its northern end emptying into the Shingle Yard Creek, near Sulfilk, and the southern end emptying into
the swamp and flows southward into Albemarle Sound, this canal would divert from the swamp all the waters which now run in and continually flood it, and the level of the water would be sunk just as deep as the bottom of the canal might be made. Lake Drummond would be deprived of its supplying source, and would become dry, except the deepest central part. Nearly the same extent of land might be drained, and the same objects effected, by deepening the Land Company's canal, and giving it a northern outlet to tide water, and by opening another cut from the Perquimans into the take, and both parts so deep as to lower the water 7 or 8 fect. Either of these modes however would destroy the mavigation of the Dismal Swamd Canal, for which such a vast amount has becn spent. But probably the water might be enough reduced to lay the land dry, without hurting the navigation or materially diminishing tho present extent of the surface of the lake. If lowering the water of the lake 5 fect only, would make the land dry enough, that reduction of level need not deprive the great canal of any of its present supply of water, because its feed. er from the lake now has 5 feet of descent, and of course might be as much deepened at the highest end. But if the middle section of the canal, between its highest locks: could be deepened so much as to dispense with those locks, every difficulty would be removed, and the navigation would be greatly improved and facilitated in future use, and the general drainage be made farmore perfect.
But there is a prior question of some im. portance. If a general plan of drainage is ever so cheap in execution, and certain in immediate results, would it be advantageous to so change the state of the swamp? The policy is at least doubfful, though the balance of advantages seem to be in favor of the drainage. An immense body of most fertile laad would be brought into cultivation : but it would rapidly rot away, and while rotting, would probably be as unhcalthy, as it now is remarkable for heallhiness.

But every thing on the subject of draining large swamps, held by many different proprietors, in Virginia, is mere matter for theoretical reasoning and of useless speculation. Nothirg can be done in practice, no matter how great the pronised advantages, or the existing evils. The laws, indirectly, yet completely, forbid the making of any such improvements on a large scale: and still greater obstacles are presented in this case, where, in addition to the existence of separate rights of hundreds of individual proprietors, there would be the clartered and landed rights, and conflicting claims, of two great joint stock companies. Under these various circumstances, it may be safely predicted that the possible good or ill effects of a general plan of draining the Dis. mal Swamp will never be practically known -at least, not during the continuance of the present legal policy of Virginia.

STEPHENSON,

Builder of a superior style of Passsnge Cars for Railroads.
No. 264 Elizabeth street, near Bleeckerstreet, New-York
railroad companies would do well to exaz mine these Cars ; a ppecimen of which many be seen on that yart of the New-York and Harlaew Rairroud on liat jpart of ar:

PATENT RAILROAD, SHIP AND BOAT SPIKES.

** The Troy Iron and Nail Factory keeps con stantly for sale a very extensive assortment of Wrough Spikes and Nairs, from 3 to 10 inches: manufactured by the aubscriber's Patent Machinery, which after five years successful operation, and now aimost uni versal use in the United States, (as well as England where the subscriber obtained a patent,) are found superior to any ever offered in market.

Railruad Companies may be supplicd with Spikes having countersink heads suitable to the holes in iron rails to any amount and on short notice. Almost all the Railroads now in progress in the United States are fastened with Spikes made at the above named fac-tory-for which purpose they are found invaluable as their adhesion is more than double any common spikes made by the hammer.
wi* All orders directed to the Agent, Troy, N. Y. will be punctaally attended to.

> HENRY BURDEN, Agent.

Troy, N. Y., July, 1831.

* Spikes are kept for sale, at factory prices, by I. \& J. Townsend, Albany, and the principal Iron Mer chants in Albany and Troy ; J.I. Brower, 2:2 Water street, Now-York; A. M. Junes, Philadelphia; 'T Janviers, Baltimore; Degrand \& Smith, Buston.
P.S.-Railroad Companies would do well to for ward their orders as early as practicable, as the sub seriber is tesirous of extending the manufacturing so as to keep pare with the daily increasing demand for his Spikes.
(1J23am)
H. BURDEN.

RAILWAY IRON, LOCOMOTIVES,\&c.
THE subscribers offer the following articles for anle.
Railwsy lron, flat bars, with countersunk holes and raitred joints,
350 tons $2 \frac{1}{2}$ by $t, 15 \mathrm{f}$ in length, weighing $\frac{\mathrm{lbs} \text {. }}{\frac{8}{100}}$ per ft
 $\begin{array}{llllllll}80 & \text { " } & 1 t & \text { " } & \frac{1}{2} & \text { " } & \text { " } & \text { " } \\ 90 & \text { " } & 1 & 4 & \frac{1}{2} & \text { " } & \text { " } 25 \\ 100 & \text { " } & \end{array}$
with Spikes and'Splicing Plates adapted thereto. To be sold free of duty to state governunents or incor porated companies.

Orders for Pennsylvania Boiler Iron executed
Mail Road Car and Locomotive Engine Tires, wrought and turned or unturned, ready to be fitted on the whecls, viz. $30,33,36,42,44,54$, and 60 iaches iameter.
E. V. Patent Chain Cable Bults for Railway Ca axles, in lengtha of 12 feet 6 inches, to 13 feet $\% t, 21$ $3,31,34,34$, and $3 \ddagger$ inches dianneter.
Chains fur-Inclined Planes, short and stay links, manufactured fromthe E. V. Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Mlanes, mado frum Ncw Zealand flax.
Also Patent IIemp Cordage for Inclined Planes, and Canal 'Iowing Lines.
Patent Felt for placing between the iron chair and tone bluck of Eilge Railways
Every description of Railway Iron, as woll as Locomotive Engines, imported at the shorteat noticc, by the agency of one of our partners, who resides in Fingland for this purpose.
Mr. Solumon W. Roberts, a highly rospeetable American Enginecr, resides in Eugland for the purAmerican of inspecting all Loconotives, Muchinery, Railpose of inspocting all Loconotive ordered through us
28 If
Philadelphia, No. 4 , South Front st.
MACIINE WORKS OF ROGERS, KETCHUM and GROSVENOI, Paterson, NewJersey. The undersigned receive orders for the ful lowing articles, manufactured by thrm, of the most smperior description inevery particular. Their works smperior description it every particular. Their works being large, they are enahled to execute both large and small orders with promptness and deepatch-

RAILROAD WORK.

Locomotive Steam-Engines and Tenders; Driving and other Locomotive Whecis, Axles, Springs and Flange Tires; Car Wheels of east iron, frum a veFlange Tires; Car Wheels of east irun, frum a va-
riety of patterns, and Chills; Car Wheels of cast irnn. riety of patterna, and Chilla; Car Wheels of cast irnn, iron ; Springe; Boxes and Bolts for Cars.
COTTON WOOL AND FLAX MACHINERY,
Of all descriptions and of the most improved Patterns, Style, and Workmanship.
Mill Geering and Millwright work generally; Hy draulic and other Presses; Presa Screws; Callenders; Lathes and Tools of all kinds; Iron aud Brase Castings of all descriptions.

ROGERS, KETCIIUM \& GROSVENOR
Pattereon, New-Jersey, or 60 Wall strect, N.

ARCHIMEDES WORKS.
(100 North Moor street, N. Y.)
Nuw-York, February 12th, 1836.
THE undersigned begs leave to inform the proprieors of Railroads that they are prepared to furnish all kinds of Machinery fur Railroads, Locomotive Engines of any size, Car Wheels, such as are now in success ful operation on the Camden and Amboy Railroad none of whick have failed-Castings of all kinds Whoels, Axles, and Buxes, furnished at shortest notice
I. R. DUNHAM \& CO.

AMES' CELEBRATED SHOVELS, SPADES, \&c.

Together with Pick Axes, Churn Drills, and Crow Bars (atcel pointed,) mannfactured from Salisbury re fied iron-for sale by the manufacturing agents,

VITHERELL, AMES \& CO.
No. 2 Liberty atreet, New-York.
BACKUS, AMES \& CO.
No. 8 State street, Albeny
N. B -Also furnished to order, Shapes of every de scription, made from Salsbury refined lron. v4-if

AN ELEGANT STEAM ENGINL

 AND BOILERS, FOR SALE.THE Steam Engine and Roilers, belonging to the STEAMBOAT' ILELEN, and now in the Novelty yard, N. Y. Cunsisting of one Horizontal high pres sure Engine, (but may be made to condense with litthe additional expense) 36 inches diameter, 10 fee stroke, with latest improved Piston Valves, and Metalic packing throughout.
Also, four Tubular Boilers, constructed on the English Locomotive plañ, containing a fire surface of over 600 feet in each, or 2500 feet in all-will b sold cheap. All communications addressed (post paid) tothe subscriber, will meet with due attention

HENRY BURDEN.
Troy Iron Works, Nov. 15, 1836.
*7-4f
A SPLENDID OPPORTUNITY TO
MAKE A FORTUNE.
TIIE Subscriber having obtained Letters Patent, from the Guverninent of France, granting him the exclusive privilege of manufacturing Horse Shoes, by his newly invented machines, now offers the same for sale on terms which canuot fail to make an independent fortune to any enterprising gentlemen wishing to embark in the same.

The machines are in constant operation at the Troy Iron and Nail Factory, and all that ia necessary to atisfy the most increduluus, that it is the most valuable Patent, ever oblained, either in this or any other country, is to witness the operation which is open fir inspection to all during workıng bours. All letters audressed to the subscriber (post paid) will re. eeive dueattention.

Troy Iron Works,

IIENRY BURDEN.
N. 13. IIorso Shoes of all sizes will be kept cons stantly for sale by the principal Iron and Hard-ware Merchants, in the United States, at a small advance abuve the price of Horse Shoe Iron in Bar. All persons selling the same, are aUThorisen to warrant
EVERY shoe, Hade from the best refined irun, and EVERY SHOE, Hiade from the BEST REFINED IRUN, and any failing to render tur most pebfect sataline
otin, both as regards workmanship and quality of Iron, will be received back, and the price of the same refunded.
H. BURDEN. $4 \boldsymbol{i}-1 t$

NEW ARRANGEMENT.

ropes for inclined flanes of railroads.
WE the subscribers having formed a co-partnership under the style and firm of Fulger \& Coleman, for the manufacturing and selling of Ropes fur inclined planes of railroads, and for other ust s, offer tosupply ropes for inclined planes, of any length required without splice, at short notice, the malufacturing of cordage, heretofure carried on by same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be promptly attended to, and roper will be shipped to any port in the United Siates. 12th month, $12 \mathrm{th}, 1836$. Hudson, Columbia County S:ate of New-York.
33-1f.
ROBT. C. FOIGER,
(iEORGE COLEMAN,

FRAME BRIDGES

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build, on his Patent Plas, would respectfully inform Kailroad and Bridge Corporations, that he in prepared to make cuntracts to build, and furnish all materials for superstructares of the kind, in any par of the United States, (Maryland excepted.)
Bridges on the above planare to be seen at the fol. lowing localities, viz. Un the main road leading from Baltimore to Washington, two miles from the former place. Aeross the Metawankeag river on the Mif. tary road, in Maine. On the nationsl road in Illinois, at sundry points. Onthe Balcimure and Susquehan. na Rrailroad at three points. On the Hudson and Patterson Railroad, in two places. On the Boston and Worcester Railroad, st several points. On the Boston and l'rovidence Railroad, at sundry points. Across the Contoocook river at Henniker, N H. Across the Sunhegan river, at Milford, N. H. Across the Cennecticut river, at Haverlill, N. H. Across the Concoocook river, at Hancock, N. II. Acrose the An droscoggin river, at Turner Centre, Maine. Acrosa the Kennebec river, at Waterville, Maine. Acrose the Genesse river, at Squakiehill, Mount Morrie New-York. Across the White River, at Hartford Vt. Across the Connecticut River, at Lebanon, N. H. Across the mouth of the Broken Straw Creek Penn. Across the moush of the Cateraugus Creek, N. Y. A lailroar Bridge diagonally acrose the Erie Canal, in the City of Rochester, N. Y. A Railrosd Brige at Upper Still Water, Orono, Maine. Thi Bridge is 500 feet in length; one of the spans is over 200 feet It probably the Fipures woout sRIDGE ever built in America.
Notwithstanding his present engagemente to build between twenty and thirty Railroad Bridges, and several common bridges, several of which are now in progress of construction, the subscriber wid prompty attend to business of the kind to much greater extent and on libcral terms.
moses love
Rochester, Jan. 13th, 1837.

HARVEY'S PATENT RAILROAD SPIKES.

THE Subscribers are manufacturing and ase now prepared to make contracts for the supply of the abrive article. Samples mey be seen and obtained at Messra. BOORMAN, JOHNSUN, AYRES \& Co. No. 119 Greenwich Street, New-York, or at the Makers in Poughkeepsie, who refer to the subjoined certificates in relation to the article.

HARVEY \& KNIGHT.
Pougheeepsie, October 25th, 1836.
The undersigned having attentively examined Iarvey's Patent Flanched and Grooved Spixes is of the opinion, that they are decidedly preferable for Railroads to any other Spikes with which he is acquainted; and ahall unlesitatingly recommend their adoption by the different Railroad Companiea whose worts he bas in charge.

BENJ. WRIGHT

Chief Engineer N. Y. \& E. R.'R.

New-Yore, April 4th, 1836.
Harvey's Flanched and Groovea Spikes are evidently superior for Railroads to thuse in common use, and I a hall recommend their adoption on the roeds under my charge if their increased cost over the latter is not greater than some twenty per cent.

JNO, M. FESSENDON, Engineer.
Boston, April 26th, 1836.

ALBANY EAGLE AIR FURNACE AND

MACHINE SHOP.
WILLIAM V. MANY manufactures to order, iron castinge for Gearing Mills and Factories of every description
ALSU-Steam Engines and Railread Castinge on every description.
The collection of Patterns for Marhinery; is not equalled in the United States.
-ly

'TO CIVIL ENGINEERS, \&c.

E. \& G. W. BLUN'T, 154 Water-st., coruer of Maiden Lane, have recently received an assortment of LEVELS, from different manufacturers, among others from Troughton \& Surins, which hey warrant of the first quality. Circumferentors, Levelling Staves, Prismatic Compasses, Mathematical Leveling Staves, Prissaatic Compasses, Mathematical
instruments, Books for Engineers, etc., conatantiy on hand.
Une of the above firm is now in England superimtending the manufacture of Theodulites, Transil Instruncuts, etc.-and any orders for Instrumeate, not now on hand, will be forwarded him, and executo promptly.

amprican RALLOMAD JOURNAL, and advocate of internal hbphovements.

PUBLISHED WEEKLY, AT NO. 132 NASSAU STREET, NEW-YORK, AG FiVE DOLLARS PER ANNUM, PAMABLE W ADVANCE
D. K MINOR, and

GEORGE C. SCHALEFFER, $\left\{\begin{array}{l}\text { Editora and } \\ \text { Prorietors.] }\end{array}\right.$

CONTENTS:

Adver isements ; Railroad and Canal Stocks. 129 Railroad Items. . .
Notes on Indianna.
Minntes of Evidence before a Select Commitice of the Huuse of Lords, on the Tulls vin Sicain
Carriages' Bill. (Concluded.)
Iotroductury Lecture. (Contin:ted)............... 130
Advertisements. I4t

AMERICAN REILROID JOURNAL.
NEW.YORK, MARCH 4, 1837

TO MANUFACTURERS OF IIY-

DRAULIC CEMENT.
PROPOSALS will be received by the subscriber, on the part of the James River and Kanawka Compan ea, for the delivery on the wharf, at the city of Richmond; Va., of Fifty Thonsand Bush. els of Hydraulic Cement. The amount called for must be furnished in quantities of about six thousand boshels per month, commencing on the first of A pril, and ending on the first of November next.
'To avoid future litigation, $i t$ is to be understood, on making the proposals, that tho bushel shall weigh seventy pounds nett, and that the Cement shall be deiivered in good ordder, and packed in tight casks or barrels.

Proposals will also be received for furnishing finty thousand bushe's, at any convenient point on the navigable waters of James-liver, or the nortli branch of James River, where the materials for its manuíacture has been discovered.

Persons familiar with the preparation of the Cement, wopuld do well to examine the Counties of llockbridge and Botelourt, with a virw to the establishment of works for tha supply of the western end of the line; and a contract for the above quamities will be made with them before they commence operations.

As there wiil be required on the line of the James River and Kanawka Improvement, in the course of $t^{\text {the }}$ present and next year, nut less then half a milljon of bashels of this Cement, and some hundred thousand bushels more in the progress of the work icwards the west, contracturs will fiod it to their interest to furnish the anicle on terms that lead to future engagements.
roposals to be directed to the subsciber at nichmord, Va_{n}.

CIIARLES ELLET, Jr_{r},
Chi fingineor of the J. R. and Ka Co. February 20th, 1857.

to kivulneers.

WE are gratificd to be able to amounce tu those desiting Instruaments, that Messrs. L. \& G W. BLUNI' oi this city, are now prepared io furnish at short nolice, LEi VEIS, from clifferent manufacturers, amung olhers fro:n Trouglaton \& Sims, which they warrant of the first quality. Circum? rentors, Levellirg Siaves, Itismatic Compasses, Mathematical Instru:nents, berks foi Enginecrs, etc constantly on hand.
One of the above firm is now in İngland supe in tending the manufactise of Theodolites, Transit In strumet ts, eic.-a ad any urders for Instruments, not now on hand, will be forwurifed him, and executed promptly.
*** Orders will bo rececived and promplly attended to by the Editors of this Juarnal.

941

RAILROAD AND CANAL
STOCKs, in New-York and Phila. delphia.

SALEES OF STOCi in NEW-YORK rebruary 27 ll .

Mohawk Railroad

Paterson Railroad
Buaton and Providence b 50 ds New.Jersey Trans Stonington

60 ds .
Stonington
b 60 ds .
Long Island Raiiruad
Paterson Railroad
b 90 ds . Sionington Railroa
cash
Harlaem Railroad
Utica and Sclienectady
Delaware and Hudson Canal
PHILAUELPHIA STOCK MARKET. February 241h.
RAILRUAD STOCKS
New-Castle and Frenchtuwn
Do loan, 5 it per cent Wilmington and Susquehanna Camplen and Amboy, shares,

Do luan, 6's 1836
Dànville and P shares Norristuwn, do
Du 6 per cent loan
Val'ey Kailruad
Westchester do
Minehill do do
N. L. and Penn. Tp. do

Philadelphia and Trentun do
West Philadelphia Railroad
Harrisburg and Lancaster
Cumbe !and
Beaver and Meadow
MISCELLANEOUS STOCKs
North American Coal Company

Railroads in Virginia.-"The Poto. mac and Staunton Railroad, now completed to the centre of Virginia ;" and " the Staunton and Lynchburg Railroad," referred to in the following extract from the "Harrisburgh Intelligencer," kave heretofore escaped our notice. We were aware that there was a Railroad from Harper's Ferry to Winchester, but not that it had been completed to Staunton, in Augusta County. That such would soon be the case, no one could doubt, who bad ever passed up that beautiful Valley-not only to Staunton, but also to Lexington, Firecastle, and Abingdon, und thence to Tennessee-but a Railroad from Staunton to Lynchburg would, we slould imagine, be no easy matter, unless it were to continue up the Valley to Lexington, and then follow the north tranch of James River through the Blue Ridge. Will some of our readers put us right in this matter 3 We seek information in relation to this road.
|From the Ilarrisburg Intelligencer.
A Line of Railroads from Philadelphia to New-Orleans.-It is not generally known; that companies have been incorporated for the construction of a continuous line of Railroads from Philadelphia to New-Drleans, thrcugh the great Cumberland valley. But such is the fact, and a part of the chain is already completed. The Philadelphia and Columbia Railroad, and the Cumberland Vulley Railroad from Harrisburg to Chambersburg, are now finished or under contract. The Franklin Railroad to connect Chambersburg with Harper's Ferry, will connect the foregoing Pennsylvania works with the Potomac and Staunton Railroad, now completed to the rentre of Virginia : the Staunton and Lynchburg Railroad: the Lynchburg and Tennessce Railroad-to connect the Virginia works with the Nashville and New-Orleans Railroad-will complete the chain, and form a direct comenunication between Philadelphia and New-Orleans, by Railroads, without inclined planes, on which locomotives can be used the whole distance. What a splendid inprevement !We are pleased to see that a committec of the Virginia Legislature has reconmended that the Statc appropriate out of the Surplus Revenue, 600,000 dollars to the Potomac and Staunton Railroad-450,000 dollars to the Staunton and Lynchburg Rail-road--and $1.255,000$ dollars to the Lynch. burg and 'Tennessee Railroad. Should the Uld Dominion follow the recommendation of this committee, we shall have a continuous Railroad to New-Orleans wihin five years.

We copy the annexed article from the Gochen Democrat, aid most cheerfully unite with the Editor of that paper, in the expression of the obinion that the Hudson and Delaware Railroad Company, will find it for their interest to unite with the citizens
of Goshen, in the construction of a Railroad, which shall lay open to Orange councy, the coal region of Pennsylvania-concentrate, not divide, the various interestswill be found the best policy.

Oun own Village.-We have but seldom referred to the subject of the contemplated public improvements through this section of the country, and whilst our brethren of the press, in other villages, bave been exaggerating their own prosperity and peculiar advantages, we have contented ourselves with looking upon the excitements thus sought to be produced without participating in them or following their example ihus set, so far as it regards us, and we have even abstained from repelling insinuations and statements hostile to our village and its interests, contained in such publications. Whatever may have been our anxieties or doubts heretofore, we have now the pleasure to state, from information derived from authentic sources, that little or no doubt remains upon the location of the New-York and Erie Railroad, through our village, although long persuaded from a careful examination of the subject that such was the preferable route, so far as the interests of the company and the publ.c were to be regarded. We regret the effurts which have been made to divert it from us, but we congratulate the citizens of our village, upon the probable success of their exertions in the resistance of those efforts. We hope to be able soon to assure our readers as to the final decision of the company on the above subject. But for the present, we only call the attention of the public to the advantage of our location, by adverting to the projected additional imprcvements which must doubtless intersect the New-York and Erie Railroad in this village.

The importance of the Goshen and Jersey Railroad which is designed to connect with the New-York and Erie Railroad at this place is not generally understood. The engineers have completed the :urvey to the Jersey line, and report that the route is not cn!y a feasible one but of the best in this section of country, the greater part of it being nearly a perfect level, and the highest grade not exceeding 20 feet in a mile. The engineers are continuing the survey to Columbia, N. J., and we learn that so far as they have gone the route is highly favorable. This road is intended to cennect with others lcading to the coal regions of Pennsylvania, and the western part of that Statc. Beside this, it is contidently believed that the road for which a ctarter bas been obtained, from Kingston to the Eric road, will be constructed through the valley of the Walkill, and terminate at this place. This would form a continuous line of railroad from Luffialo, by the route of the canal, to Cancjoharie, thence by way of the Canojoharie and Catskill road to Catskill, thence by way of Kingston and this village where it would intersect the New. York and Erie road, t, the city of New-Yerk. For the whole of this route charters have been obtained, (some portions being already completed and others under contract) ex-
cepting about 24 miles between Catskill and Kingston, and for this section an application for a charter is alreally pending before the legislature.

We are of opinion that the Hudson and Delaware Co., will fiad it to their interest, as well as the interest of the public to unite with the Goshen and Jersey road, at this place. If they should think proper to do so, and should prosecute their work with the same vigor with which they have commenced, with a corresponding zeal on the part of the Goshen and Jersey Company, we think there can be no doubt that the roads could be in order for the transportation of passengers and freight in less than two years when coal from Pennsylvania mines could be delivered in this village for four dollars per ton., and in Newburgh for less than five dollars per ton.

We might fill columns with the important advantages which would result from these contemplated improvements, but we have neither time nor space at present; we shall resume the subject hereafter.

From the Peteraburgh Intelligencer.

raleigh and gabton railroad.

It gives us much satisfaction to learn that this work is in rapid progress, and bids fair to be completed with as much despatch as any that has preceded it.

One half of the whole line of the Road, from Gaston to Chalk level, a distance of about 45 miles had been located and put under contract. Between 600 and 700 hands are at work, and although only five weeks have elapsed since a commencement was made, the extent of excavation and embankment is already considerable.

Exclusive of several contractors who have heretofore been regularly engaged in this occupation, some of the most wealthy and respectable planters residing in that part of the country have taken contracts, and are making excavations and embankments instead of Tobacco and Cottonlooking forward to the benefit which they will derive in the transportation of future crops to market, when the Railroad shall be completed, which will no doubt precede the maturity of their next years crop. The owners of Land, on and near the line of the Road, find a new resource in the market which it affords for their timber, heretofure of little or no value-for provisions of all sorts, and for any superfluous labor from the business of farming. Most of the foundations of the piers and abutments for the Bridge across Roanoke are above high water mark, and that great work will be speedily executed.
The Road has been located as far as Tar River, and will soon be completed to Raleigh. Persons are in readiness to take contracts on this half of the Road, and there is no doubt that the entire line will be let, very soon after the requisite preparations are made by the Engineers.

A spirit of activity, we understand, prevails along the whole extent of the country through which the road is to pass, and aff look forward with confidence to the benefits . hich it will confer.

The Legislature of North Carolina has granted a Charter for a Railroad from Raleigh to the South Carolina line, in the direction to Columbia; and books for subscription to the Stock will be opened in the course of a few weeks.

From the Newark Daily Adveriser.
belvidere deĺaware railroad.
Our readers are already informed that the Jeegislature granted banking privileges to this Company on the 7th inslant. We give below a summary of the Supplement to the Charter, which confers the privilege. The Birectors, we learn, have determined to locate the bank within two miles of the Delaware bridge at Easton-as near that place as is practicable. I. M. Sherrerd, Esq., who resides at Belvidere, has resigned the office of Secretary in favor of Charles Sitgreaves, Esq., and accepted that of Counsellor of the Company.

Messrs. Col. Porter, Dr. Green, and Duckworth have been charged with the duty of Commissioners for the disposal of the stock, receiving proposals for a banking house, depots, \&c. A survey and estimate of the road will be made at the earliest possible period by the Company's Engineer, Mr. Edwin A. Douglass. The whole enterprise, it is believed, will be completed within two years.

The Supplements provides-
1st. The Company is authorised to increase its stock to any amount not exceeding $\$ 500,000$-the original privilege being limited to a million.

2nd. To employ any part of the whole stock, not exceeding $\$ 500,000$ in Banking purposes ; the bank being located in Greenwich, Warren County, N. J., and its operations not to commence until the road is located and under contract; 20 per cent. of the Capital paid in, and $\$ 100,000 \mathrm{ex}$ pended on the road, and then whenever another equal sum shall be so expended, the like amount is authorized to the added to the banking capital, until the aggregate skall amount to $\$ 500,000$. The bank privilege ceases if the whole stock is not paid in within 10 years.
3rd. The banking capital is made liable to the present or any future tax, and the railroad, and all other property of the corporation, is liable for the bank, besides the Directors being personally responsible.The cashier and a majority of the directors to be residents of New-Jersey, and the President to be a citizen of this State or of Northampton, Pa.

4th. The usual powers and restrictions put into bank charters are contained, and the duration of the chater is limited to 21 years from the time allowed by the original act for completing the road, which expires on the 4th of July, 1846, so that the charter continues until the 4th of July, 1867, or upwards of thity years. The Railroad charter is perpetual.

The intelligence of the passage of this bill, we learn by the Belvidere Apollo, produced universal satisfaction, which was manifested by the reports of cannon, loud cheore, and uncorking of champaigne bot-
tles. The Apollo significantly adds-"For our own part we can rejoice over a bumper of pure water as cheerfully as over champaigne."

Railruad Meeting for a Railroad between Newport and Boston, via Taunton.-A meeting of citizens was held at Newport, the 18 th instant, to take into consideration the expediency of making a Railroad from that place to Taunton ; there to connect with the Railroad running thence to Boston.
At said meeting, committees were appointed for the following purposes, viz:

1. 'To ascertain and report upon, the practicability of constructing the contemplated road, reference being had to the several modes of construction now in use, with the estimate of the cost of euch, \&c.
2. To report upon the sources whence the proposed road may derive an income sufficient to pay a fair and certain prufit to its stockholders: on the presumable advantages to be derived by the various interests of Agriculture, Commerce, Manufactures, and general intercourse, \&c.
3. To report upon the importance and validity of the road, in a national and military point of view, and in reference to the establishment of a Naval Depot, Arsenal, and Foundry by Government.
4. To correspond with the Merchants, Manuiacturers, Steamboat Companies, Capitalists, and others in'erested, in NewYork, Providence, Boston, and elsewhere, to invite delegates from these places to altend a general Convention at Nowport, and to collect and publish such facts relative to this important enterprise, from time to time, as they may deem alvisable, and report their doings to the General Convention.
5. To report upon the nccessary measures for procuring a charter, and for uniting with the present incorporated companies.

New Harbor at Cleateland.--A writer in the Cleaveland Daily Herald, is endeavoring to demonstrate the practicability of forming a new harbor in front of that city, by the construction of a pier or breakwater of 7000 feet in length, at a distance of about 1000 feet fiom the shore at low water. He proposes to wharf out for 450 feet of this distance, at which point there is 10 feet water-the location of the pier to be in 15 feet watcr. He estimates the expense of the improvement at $\$ 175$,000 , and coutends that the enhanced value of real estate to be benefitted by it, will amply defray the entire cost, both of the pier, and of the wharing which would be required. The positions of the writer are however contradicted by another correspondent, who asserts that the undertaking will be enormously expensive, and is entirely impracticable.
One idea put forth by the writer who urges the improvement, may perhaps be deemed a little fanciful. He says:
*The contemplated Ship Canal around the Falls of Niagara, which will result in a line of uninterrupted ship navigation betwcen this city and the Atlantic ocean, pre
sents a strong argument in favor of the new harbor. Befnre the present generation shall have passed away, ships from Liverpool, and other foreign ports, will be seen to navigate these Lakes, and unlade their rich cargoes upon our wharves!"

The Middlesex and Monmoutin Railroad was organized at Frcehold on the 12 th inst. by the election of the following directors, viz: Daniel B. Ryall, William L. Dayton, Geo. C. Herren, Isaac K. Lippincott. Simon Arrowsmith, John H. Smock, William Little, Joseph F. Randulph, and Peter Vredenburgh.

At a subsequent meeting of the Directors, Daniel B. Ryall was el cted President, William L. Dayt n, Treasurer, and P. Vredenbirgh, Secretary.

The Priaceton Whig says, "The whole of the stock is now subscribed for, and active preparations are making to proceed with this highly useful and important work. One genaleubar from the South, we learn, has offered to make the whole road, so certain is he that it will be a profitable investment. But the directors prefer keeping it accorling to the original intention, in the hands of the farmers in its vicinity, for their more immediate benefit."

A Compromise.-A Gettysburg paper says: "We are gratified in being able to state, that the Wrightsville and Get'ysburg Railroad Company, and the Wrightsville and York Company have compromised, and that there will be but one road and joint stock between this place and Wrightsville. A bill for the consolidation of the companies is now before the Legislaiure, and will no doubt pass."

Grologigal Survey of Michigan.This bill has hecome a law. It is entitled to rank among the most important that have engaged the attention of the Legislature of Michigan. The expense of the survey is too trifling to be compared with its benefits. The whole is less than that of the Toledo campaigns, and it is distributed over four years- $\$ 3000$ are appropriated for $1837, \$ 6000$ for $1838, \$ 9000$ for 1839 , and $\$ 12000$ for 1840 .

Wrighisyilef and York Railroat. At an election for Directors of the $W_{\text {iights- }}$ ville and York Railroad Company, held at York on Monday last, James Howard, Luke Tiernan, John H. Hodges, add James Harwood, of Baltimore, Thomas McGrati, and Edward Chapin, of York, and James E. Mifflin, of Wrightsvile, were elected Directors, to serve for the ensuing year.-[Baltimore Gazette.]

Silver Creek and Dunkirk Har-bors.-The Hon. Mr. Sutherland, Chairman of the Committee on Commerce, has presented to Congress the Aunual Report of the Comulittee. By the Report it appears, that the sum of four thousand five hundred dollars is reported for the erection of a beacon light at Silver Creek harbor ; and that Dunkirk harbor has a report of
t_{100} thousand seven hundred dollars for a like purpose. The Delaware Breakwater, or general harbor appropriation bill has not yet been presented.-[Dunkik Beacon.]

A memorial has been presented to the Legislature of Pennsylvania,from William Norris, Engineer and Machinist, of Philadelphia, in which he proposes to take charge of the motive power on the Columbia and Philadelphia Railroad, for the term of three years. He engages to keep the stationary and locomotive engines, now on the road, in perfect repair, and to conduct the transportation of passengers and fieight, at all seasons of thu year, without delay, and to receive as compensation for these services, the tolls wiich shall be collected from the motive power.

We give the following "Notes on Indiana," believing that they wili be found !aigh. ly interesting to manv of our readers.

From the Springfield Ohio Pioneer. notes on indiana.

Mr. Editor,_Having recently returned from a visit through the Northern part of Indiana, and thinking that a few hurried remarks upon that country might not prove uninteresting to some of your readers, I submit the following particulars.

After having made a yoyage across the ocean of swamps, extending in width from St. Mary's,Ohio, to Fort Wayne, a distance of sixty miles, we reached the latter place, the country seat of Allen county, Indiana, situated on the east bank of the Maumee river, where the river is formed by the junc. tion of the Little St. Joseph's and St. Mary's rivers, and immediately on the ground where Wayne's fortification against the Indians stood, from whence it derived its name. The popuiation is about 1000 : half of which are French and Canadians. The public buildings are a court-house, jail, and three churches: it has a bank and a library. The land office is kept here. The river is navigable for barges and keel boats; and lately a small steamboat ascended as high up as this place; and from this may be dated a new era of its prosperity. The Wabash and Eric canal passes through this place: twen-ty-five miles of it is furnished from here to Huntington, and affords an extensive water power at this place. In short, Fort Wayne is situated in the midst of a rich and fertile country, which, together with its other local advantages, must make it in a few years be. come a thriving and populous city.

After crossing the rich and fertile counties of Noble and Elkhart, with their many advantages, in a North Western direction, we came into the county of St. Joseph.South Bend, the county seat, is beautifully situated on the south bank of the Great \mathbf{S}^{t}. Joseph's river, upon a sandy plain elevated about 25 or 30 feet above high water mark; and contains a population of about 1000 ; and perhaps is not excelled by any town in the Nort'. for beauty of situation. It has attained its present importance and beauty by its superior local advantages. Its growth though rapid, has been steady, and corres. ponding with the improvement of the sur. sombing country. The town plat was laid
off into lots, and brought into market be'ween five and six years ago: a more eligible site could not have been found in all Northern Indiana. Travellers are charmed with its beauty, and upon learning iss supe. rior local advantages are at once struck with the conviction, that it must and will, in a very short period of years, become a town of some five or ten thousand inhabitants. The St. Joseph's river, opposite the town, is about two hundred yards in width : it is a deep and majestic stream, and is navigable for steamboats as far up as South Bend, and even further, except when locked up by the frosts of winter. Its course is generally North.West, and a more beautiful and imposing stream was never gazed upon by man. Just opposite the town there is a fine fall in the river, which when properly improved will afford a most tremendous water power. A company of enterprising men are now improving it by cutting a race with a lock for boats to pass through, and furnish. ing materials for damming the river. It is calculated that a power will be brought un. der control sufficient to propel from fifty to a hundred sun of mill stones. This vast power will be immediately thrown into market : it will immediately arrest the attention of enterprising capitalists, and will, without doubt, all be employed in propelling various kinds of machinery m a very few years. Besides this vast power, there is a race dis. charging the waters of the Kankakee river into the St Joseph's on the town plat, afford. ing a volume of water sufficient to propel from ten to twenty run of mill stoncs. There may be some estimate of the power afforded by this improvement when it is made known that the proprietors baye been offered the sum of thirty thousand dollars: the whole improvement perhaps not costing more than three thousand dollars: And here are the waters of the South united with the North -the Lankakee river emptying into the Illinois river, and the St. Joseph discharging its. waters into the Michigan lake. Thus water, that was intended by nature to flow into the Gulf of Mexico is, by a little labor, made to flow into the Gulf of the St. Lawrence.

A canal is located through South Bend from Michigan city on Lake Michigan, to intersect the Wabash and Erie canal at Fort Wayne; and it will in all probability be put under contract the ensuing summer. The Michigan road-a graded road-exlending from Madison, on the Ohio river, to Michigan city, passes through South Bend. This, it will be readily seen, is an important road; it being the greatest thoroughfare through the centre of the State, from South to North; and tuwns through which it passes in the interior may boast of it as being a matter of no minor importance. At no distant day, a railroad pernaps from some point on Lake Eric, directly through South Bend, to Michigan city, and thence, in coursc of time, west to the Mississippi river will be constructed. The project is under way, and the combined enterprise and capital east and west will be enlisted for its prosecution. By reference to maps it will be seen that this railroad must pass di rectly through South Bend.

The Kankakee river may, with trifing expense, be rendered narigable for steam-
boats within twelve miles of South Bend. A canal across these twelve miles, will open to South Bend a water communication with the great Mississippi river, and its vast and extensive commerce.
The town is remarkably healthy, and the land of the country around it, is like most of the land in the northern part of the State -open oak and some heavily timbered land, prairies, and low lands.

The soil is of a sandy nature, but mixed with a sufficient quantity of marl and iron, which renders it productive, and is a guatanty of its durability.
The county of St. Josephs, thuogh but six years ago an untamed wilderness, the undisputed wild and uncultivated home of the savage, now contains a population of from five to six thousand enlightened and industrious farmers, and abounds with numerous well tilled, extensive, and productive farms. . Possessing such advantages, it is nok a matter of wonder that South Bend should have assumed her place amons the populove and flourishing towns of the North. It contains two churches, a printing press, from which issues weekly the "South Bend Free Press," a public library, fifteen dry goods stores, and two drug stores; three taverns and four groceries; four lawyers, three physicians. and mechanics of almost all the branches of the mechanic arts; there are, also several week day schools, two sabbath schools, a temperance society, and a lyceum, \&c. \&c.

About four miles from South Bend ap the river, on the same side, is a village by the name of Mishawaka, containing a popala. tion of about three hundred souls. If pessesses many adivantages, and among others, inexhaustible beds of iron ore near n, which is going to be worked by a company of enterprising capitalists, during the ensuing spring. They are making hasty arrange. ments for a furrace, rolling mill, \&c., and they have already in operation an extensive iron foundry, a flouring mill, and many other kinds of machinery. There are several large dry goods stores in this little village.

The next places that arrest the eye of the traveller, are Laporte and Michigan city, both of which are situated in Laporte county. The town of Laporte, the county seat, is situated near the centre of the coun. ty, on the south bank of a beautiful clear lake, of about a mile square; it is bounded on the east, south, and west, by extensive and beautiful dry prairies, and natural mea. dows, which are mostly all fenced and under cultivation, and dotted over with farm houses. On the south-west, the scenery is beautiful in the extreme, there being no for: est or in exceptance of the view, till the horizon and the earth seem to close. No. thing. can be more charming than a vie of this in autumn, when the sun is declining in the west with all the splendor of an autumn afternoon. Laporte has a population of from five to seven hundred. Its public buildings are a court house, a jail, and two or three churches; it has also, a library and a printing press, from which is issued weekly the Laporte Herald. The land of. fice for the Laporte district is kept at this place.

Michigan city is twelve miles from Lel porte, and situaled on the shore of Lake

Michigan, from whence it derived its name. The ground upon which it stands, is very sandy, and uneven, consisting of hills of toose, yellow sand, which was at one day all occupied or covered by the lake water, but the waves have through time thrown up these sandy barriers and caused the Lake to recede for several hundred yards. Tie population is perihaps about a thousand, who are mostly emigrants from the State of New-York. Its advantages consist entirely in tits being a landiug place for vessels of menchandise for the interior pait of the State. Thare is no hasbor as yet at this place, but the citizens are making arrangements for constructing one the ensuing sum. mer. The country iminediately around is mostly broken, and of a poor sandy soil, covered mostly with white pine timber, which affords excellent building timber. It is not more than three or four years since this place was laid out. Its growth has been very rapid, and bids fair to become one of the foremost of the towns on the lake.
Much more might be said of the rapid growth and prosperity of Indiana ; but having already lengthened this longer than I first intended for a newspaper arricle, it is sufficient to say that in a very few years In. diana will assume a place in the formost rank of her sister States.
H.

From the London Mechanica' Magazine-

minutes of evinence before a select committee of the house of lords on the tolls on steam carriages' bill. session 1836.
Do you consider that safe ?-Ithis just the same as one we made as it regards the boiler, and the mechanism very similar.

You consider yours safe of course ?-It is quite safe from explosion.
But is it safe in other respects; is it safe to travel along the road with ?-Yes.
Not only for the persons travelling, but for the persons it meets?-All carriages going at great velocities make more noise, and are consequently more likely to frighten horses.
Do you think they are as safe to meet as a mail-coach ?-Until horses are more accustomed to them.
You think there might be considerable arger at times from horses taking fright ?

Could you make a gauze sufficiently close to keep a draugat, and prevent the smallcst sparks escaping? -Tuat object can be attained only by increasing the gauzz heal to such extent that the sum of all the openings in the wire shall be equal to the area necesssary for the draft.
But do you think that object has been attained ?- do not know that it has.
Part of Hancock's plan is the one adopted on railroads also ; to turn the steam into the chimney to create a draugit ?-I rather think he turns the steam into the ash.pit, and so lets it pass with the air througla the fire.
And then it goes up the chimaey?-I am not fully acquainted with the construction
of it.
You say you think danger would attend the use of steam carriages till the ho:ses were accustomed to it; at the 'same timcl
you say, when you travelled by Hancock's along the New-road, there was no appearance of the horses being frightened?-No, there was not; and I think the noise and the smoke might be very much abated if it became a general thing. In the experiments I have been mostly engaged in, that has not bee:s so mucla a.a obiect as to produce the effect.
What legislative provisions woud you --Yes; from this as well as from any other cause.
How would the effect of them be at night, as far as you can judge ?-. It night the flame and the sparks are an objection; improvements may obviate this.
They are visible ?-Yes, at night, when coal is used; less if cole is used, as is the case with Hancoci's and some others.
You never saw it ?-No , but from the manner in which Hancock's flame is divided and the heat absorbed, I should think it likely that less flame would be visible.
Do you think his plan, as far as you can judge of it, would secure you from sparks falling in the road ?-I think it might be lessened in every construction by algauze at the top.
Are you of opinion that gauze at the top is an effectual remedy agaiist the emission of sparks from locomotive engines?-Not the smallest sparks perhaps, but the largest, certainly.
That would apply in the same way to Mr. Hancock's?-Yes, just the same.
suggest to enforce a due attention to that object ?-I am not prepared to suggest any.
What would be the mode of duing it that would occur to you to induce engineers to turn their a tentioa to that point ?-Any thing that would induce or oblige them to lessen the noise, flame, and sparts.
With regard to the smell, is there not a great effluvia arising from Hancosk's car. riage ?-I have understood there is: I did aot perceive it.
When you w ,ravelling along by it you did not perceivét t? - No.
What isist from?-It is from the steam passing througla the fire, and the products of the coke.
Have you any opinion of the size that it yould be desirable that the boilers to run along high roads shoald be allowed ?-I think it difficult to prescribe a rule of that kind.
Do you think it possible in any case dan. ger could arise from a boiler that is cylindrical, of which the diameter was not more than ten inches, supposing it were to burst ?-If
it exploded, evea that diameter would produce it exploded, evea that diameter would produce mischicf to those who were near it.
The notion is to divide tie boilers into c'aambers, and the chambers should not exceed ten inches in diameter; do you think danger would arise from the bursting of that ?-I should be afraid to st and near o.e when it exploded.
Can you state that size of the c'amber which, if it was to explode, would not be dan-gerous?-I should think any chamber ex. ploding beyond three inches in diameter would be dangerous.
Below that you think no serious harm could arise !-No ; it would rend, and let the steam out.
Do you find it very difficult to get mon ca-
pable of managing locomotive engines on roads or on railroads?-There has been so little experience hitherto that we lave al. ways trusted the carriage to one steersman, who is very expert, ani have nover lad any accident. He is a man formerly in the employ of Sir Charles Dance, and who came to us from him. I have travelled some hun. dred milcs with carriages which he has stecred, and he has in no instance met with an accident.
What carriages were those ?-It was the old carriage of Sir Charles Danee's and that made hy us.
You have been many hundred miles on that ?-Yes ; and that we made last summer.
As yos probably employ a geeat number of men of that class, do you think there are many men cāpable of conducting a steam carriage ?-I think every coachman would be able on stecr well witit prastice.
You mean a good coac!.!man could conduct a steam carriage !-Yes.
And your engineers, you must have an engineer wit', your carriage besides ?- Yes.
Is that a class of men yqu can easily find? -Yes.
And capable of doing it?-Yes, very casily.
Is there any such nicety in the work that if they were to get drunk, or take too much, they would be liable to accident ?- Not more so than on a railway, or a locomotive engine, or a steamboat.
But on a railway the locomotive-engine could not have the opportunity of stopping at different public-houses !-Certainly not.
Thierefore there would not be the same probability of a man getting drunk ?-The steersman may be considered exactly the same as a stage-coachman in that respect, all depends upon his care.
Yoin think there would be no more risk fron a drunken engiweer tha: from a drunk. en coachman ?-They are nuch the same.
There would be no more danger arising from the misconduct in that way oi an engineer than from that of a coacimmn!-No ; I think not.
And that the engine is not a more danger. ous vehcle to be conducted ?-No.
Within what space coast you stop your engine that you went to Ruading in, going at the rate of twelve or thirteen miles an hour?-In about the space a coach would stop.
Three or four yards?-Yes.
It was in Sir Ciarles Dance's you travelled so far, and is that as easily stopped ?-I spoke of that, and the carriage we made.
And would it turn as easily ?-Yes.
Would it turn as easily as a stage.coach to get out of the way?-Quite so.
Could yours ?-Quite so.
And does Hancock's ?-It is quite as man ageable as a stage-coach.
Do you think it desirable on high roads to have drags for other carriages, or to carry the passengers on the engine itself ?-I should think passengers would be more confortable in a separate carriage.
Which would be the safest for the public? - A separate carriage.

Do you not think that the length of th. carriage on the road would be a serious ir convenicnce, and be attended with considel
able danger? - It is not longer tian a coaci. and four horses alto e ether, with the ing.

Would you think it dangerous that a carriage of the length of one of the great timberwaggons that you sue should travel on the highnood at a great speed!--Exterdiag t'r! length beyoid cortain limits would increase the danger.
Yoa think it wowld desinable that that length should not be extealed?-Tie short. er it is the better.

Do youthink it would be desirable to have any mode of testiang the builur of steam car-riages?-I Hink ticy shoald be teisted.

You, of co irse, use some mule of testing them before you scud them out of your factory ?-Yes.

Would there be any means of enforcing suct a test to prevent neglect 0.1 the part of encineers, to provent mere slveaturers ?I tinink it mighit be done.

How could it be doas entirely ?-By foreing them with water. It woald require some officer to exmine and to see them tested.
Is there any difitioulty in the use of the instrument you use to test them to require a scientific person to apply it ?- Not at all.

Any individual migit do so ?- Eivery carriage has a hand-puap, which is an instrument by which tae boller might any time be proved. 'Tue punp winch fills the boiler before starting, or in case of the water being short, that pump is the most appropriate instrument for proving the boiler; so that if the safety valve was weighted to doable the ex.ent at whici it was determinell the boiler should work, it might be proved at any time.

Might it be proved, suppose the Legisla. ture required that the boilers should be tested before a magistrate, would he be capable of seeing the test was correctly applicd, or does it require a scientific person to do it?-It requires a scientific person, or it might be evaded.

Is there any means to be adojited by wish such a test shoud not be evided ?--I cinn suggest no other than tivat ol' a yuaidice person to superiatend it.

What do you think might be tho test of a boiler; how many times the pressure t.ait is intended?-I stould say douide.

You think that sufficient?-Yes.
What test do you generally adopt in your boilers?-Our boiler was so strong tuat it would have borne five times the pressure we worked it at, so that we were fres fiom may apprehension of explosion.

But with boilers gencraily you knu.v to what pressure it is intended to subject hem. and you subject them to a test ?-Boiler having to sustain great pressure are tested double.

Whea you make high pressure engines you must test tirem?-Yes; to double the pressure intended to be used.

You think double the pressure requirec would be sufficient? Yes, I think it would

If there were a provision that it should no be lawful to use any vessel to propel a car riage any part of tiee transverse section o which should not exceed ten inches circula or cylindrical-you think that is too lary an allowance--do you think that would no secure safety to the passengers?-It woul, certainly be dangerous to passengers if it should explode.

But if it is properly tested there is a seeurity against explosion ?-It would be safe if it were made sufficiently stming and tested.
If it were not made sufficiently strong it would not stand the test?-No.

If it doss stand the te.st, you thiak there woild be no danger in that?-No; making allowance for decay.
You say you knew the principle of Gur ney's mechanism, and you thought it safe? Yes.

Was not that the priaciple of his cham. bers-of his boilers?-The cylindrical ves. sels were considered safe, but the square flat vessels which he used at oue time I did not consider safc.

Bat the cyliadricai were inis pacent ?-I do not know what his patent is.

Though a vessel may have been tested and pronounced to be safe, yet is it not possible that it may be used for two great a time, and that danger may arise from that circum. stance ?-Certainly it is.

Can there be any limit fairly put as to time without doing injustice? -l think no limit could be set as to time, for a boiler may be as much injured in one day, and its strength impaired by recei!ent, as in o.dinary wear it would be in twelve months.

The test is only a guarantee of safety at the time it is applied ?-Exactly so.
These chambers mav be rerfectly saf: at one moment, withont any appearance oidanger, and may burst the west?-It is quite possible.
I do not know if you are of opinion that a small chamber, though it should burst, would not produce any disastrous conse. quences ?-I am perifectly aware of that. Indeed the boiler used in the experiment in which I have been cugaged is one of which Sir Charles Dance, in conjunction with myself, has' a patent, the principal feature of which is, that no part of the boiler exposed to the pressure of the steam should exceed three inches in diameter, and therefore may be considered perfectly free from danger from explosion under any circumstances with any degree of wear, so as to remove entirely the apprehension of any danger to the passengers fiom the explosion of the boilers.
mr. benjamin w. horize, coach proprietor.
There is a great hostility among coach proprietors to steam-carriages, is there not? -Not at all. If we should prefer either, we should prefer those on the higin road to those on the railroad, for the competition is greater. I speak with a degres oï honesty.

What weight do you require a hurse stould draw in a stage-coaci, a cuac.ı tairly loaded? -They so much vary ; fro.n two to th.ee ons.

In your own establishmeint what do you salculate the weight of the fast coaches winer oaded ?-About two tons ; not exceediag. You have some coaches faster than otiers! The difference of about three miles an hour. The fastest go about ten miles an hour ! -Eleven.
What is the full weight of a loaded coacl soing at the rate of eleven miles an hoar?Not excecding two tons.
What is the full weight of a loaded coacl, that does not go more than eight miles an nour ?-' Whey are short coaches that go
merely to Dorkirg, Sundridge, and Egham; they do not go at the rupid speed, as others do.
Have you any that go eight miles ?-All listance.s.

Have you any cight mile an hour coaches? -Yes. a Dorking coach that goes eight or sine miles an hour.

What is the weight of that loaded coach more than the others'?-It is the same as one that travels from $\mathbf{7 0}$ to $\mathbf{1 0 0}$ miles; it is the day and night.
The day coach does not excecd two tons; About that.

What is the weight of a night coach ?-It might be perhaps occasionally according to the season of the year; if it is a mercanti'e town it varies; it is occasionally half a ton more; two tons and a half.

What rate would that coach go ?-Nearly ten miles an hour.
Do you horse any vans ?-No.
Do you run to Norwich ?-Yes.
Does that come up loaded with turkeys at Christmas time ?-Yes.
What is the weight of it?-When we have turkeys there is hardly any passengers; scarcely any difference; it might weigh three tons ; hardly that.

You require about five hundred weight as the load of each horse ?-About that.

How many miles do you reckon that a horse ought to go at the rate of e'even miles an hour, drawing five hundred weight, per diem.-About eight miles.

Does the same horse do eight miles seven days in the week?-If it exceeds ten there is another horse kept, which brings it down fifty-six, and he will go fifty-six miles a weeks. We calculate a horse a mile; that brings eight miles to eight horses, or fifty-six miles a week. Very few coaches will average more.

You think you should be able to compete with steam-carriages; do you think you should beat them?-I fancy so. I only hope that steam-carriages will be on the high road instead of being on raiiroads; there is every probability of our coaches doing very well if they draw a.bout half the weight.With a tramro.d we could maintain ubout twelve miles an honr very easily; on a tramroad in narrow strects, where waggons or gigs are going, you will find the gig will over-run the hor je.

Is there any differ nce in the tolls, on the roads with which you are acquainted, between steam-cariziages and stage-coaches on any of tace roads ?-As far as the practical art of steam-carriages go, they do not have - ercounter much with turnpikes; there are very few about London ; the Metropolian Act has done away with them.
Ther : is great variation in your tolls, is ciere not ?-W Wonderful.
What are the highest tolls on the roa you go ?-Tue highest, taking the avorag jer mile, will differ from 9 s . to 17 s .6 d . o: different roads.

Per mile?-Yes; per mile per month; the difference will be on the whole of the month.

Where is the lighest ! -On the Birmin: ram line of road.
Are you connected with any coaches rur ning between Glasgow ?-We do not exter:
beyond Leeds or Manchester.

You run as far us Holyhead?-As far as Shrewsbury.
You pay a post-horse duty besides the tolls ?-We poy a stage-cjach duty.
Is it on the horses or the coach ?--The coach.
Is there any duty on the steam-coach ?I am very sorry to say there is but little paid there; 1 think the competition is unequal.
What is the amount of duty on the coach? -It is according to the number of passengers we take out licence for; most are rated at two-pence halfpenny per single mile, which is five-pence per day; the number of passengers we are allowed to carry in each mile are four inside and eight out, in winter time; if four insides and eleven outsides in sum. mer time, we pay six-pence. Stcam vesseis do no: pay, nor do steam-carriages pay any thing to speak of. The steam-carriages do on the railroad pay a trifing duty to government, according to the nu:nbers carried; if the machine is empty they do not pay ; we pay, passengers or no passengers. We have a petition before the Treasury for reducing the price of freight between Dover and Calais and Boulogne, by the packets, as coaches going to Dover and Margato are obliged to pay a duty, which we cannot afford in consequence of the low price by stcam, which does not pay duty.

You run the coaches ?-It is difficult to reduce the number of coaches; the loading is extremely uacertain ; we are obliged to keep the same number of coaches; we can. not reduce the number of coaches in conse. quence.
mb. George stephenson, c. E.
Have you turned your attention at all to locomotive carriages on public roads?-Of course I have thought a great deal about them, having been concerned in them twenty years.

What is your opinion of them ?-I think they will never be made to do any good on a common road; I do not see the sligitest possibility of it.
From what cause?-The friction is so much greater on a common road than on a ruilroad, and we find we cannot with engines beat horses used on railways so very nuch at slow speed, as to economy. One reason why an engine competes at a much less advantage on a common road with horse power, than on a railway, may be thus stated? a horse consumes no more power in maintaining his own motion in drawing a load on a common road than on a railway; whereas from the great weight of an enigne, and the resistance being increased tenfold, tian whole of its power is consumed in upholding its own motion.
The friction on a common road is, taking an average number, ten times what it is on a railway? Yes; a horse will on a railway take ten tinnes as much as on a oom'non road. That being the case, the locomotive engine that is to go at this power, is travelling on a smooth surface on the railway, but the same engine using the common road is on a very different surface. The friction is increased so very much, that it has enough to do to propel its own weight, without any thing else; therefore the great advantage in
on the railway than it is on the common road, that this alone makes a great differance.
You think, taking a given weight, say two tons, it would require ten times the power to propel it along a common road than on a railroad?-Yes, it would.

If you had to move two tons on a railway by a loso:nntive engine, what power shoolld you find it necessary to apply to make it go at the speed of foarteen miles an hour ; how many horse power?-It requires time to go into that. I will prepare that table. A horse will take ten tons, besides the weight of the carriages, at three miles an hour on a railway, and I think ohe ton at the same velocity on a common road. I could not tell off hand as to the exact proportions. It will require one horse power on a railway, and ten horse power on a common road.

You e well acquainted with the construction of these locomotive carriages?-1 think I am; I think I have a right to say I am. I do not think there is a possibility of keeping the engine in order for any leagth of time from the jolting of the engine. Ido not care what springs they put on.
Have you seen Mr. Hancock's carriage running? -No; I have been at Mr. Han. cock's place, and saw his arrangements. I thought there was a great deal of ingenuity about i, but I told him in my opinion there was not the slightest probability of making them pay. Tnere is no doubt of their making them go on a road, but not to make them pay, for I do not think any experienced engineer would be concerned in tiem. Many ingenious genilemen have turned their attention to it, but if they had had much experience in keepiug steam engines in order they wouid not have gone into it at all. The last engine made of Mr. Hancock's construction was made by Maudslay \& Co., and they are inost excellent engine builders ; it mnst be well done if they did it. I do not care how well they are done; I do not sec the slightest probability of their being made to answer.

Do you suppose that Mr. Hancock's en. gine, if it had beea running twelve montis. would have been ruming at a loss?-Yes. Iit I saw his books I engage to say he must have been running at a loss.

You think there is not much danger to be feared if they can be run with advantage-if they prevailed?-As to daager that may be prevented.

There is no danger of their becoming common?-No; I do not think there is any probability ; there will if full power is given to every one to use them.
If all the tolls that were laid on to stop them were taken off, you still think they would not run at an advantage ?-I do.

You have said that there was a probability of obviating the dangers; state what you concieve the dangers to be ?-Why, I think the most likely part of the machine to become dangerous is the boiler-the bursting of the boiler; they always endeaver to make them as light as they possibly can, and to carry as little weight as possible ; they construct the boiler to carry very little water; and even if the boiler is made very strong. on account of the small quantity of water being carried, when the steam is generated that soon gets dry, if there is little water it must boil away, and there are accidents that will happen to cause them to stop. If the
water gets boiled down to allow the pipes to become red-hot, hydrogen gas is generated, and explosion takes place. Explosions have taken place witht hese boilers; no satisfactory reasoa has been given how it occurre l, but it has done so. I imagine that there must be 2decomposition of the stexm; that when the iro: becomes red.hot. the oxygen of the steam will seize the iron, and of course the hydrogen is set at liberty, it is seprarated from the oxygen; then, if the plate is heated to a certain degrce, it will take fire and ex. plode: In the lozonotive engines on the cominon railroad we carry as intec water as wiil take us thirty mules.

On the milway?-Yes; my former observation is as to a common roid; I amstat. ing the difference batween that and the railway. Our boilers are very large comparatively, and hold a great deal of water; the engine may stand an hour or two, and will not boil down the water; therefore there is not the same risk on a railway. More than hat, we have a tank with a great deal of water to supply them in cuse it is wanted.

That you carry with you? -Yes. There was au cepplosion in Scotland from one of those, which was said to be by the breaking of a wheel. I do not see how that would make the boiler explode. I delieve the boiier burst, and oroke the wheel, and they merely made that excuse.

That was a large boiler?-One of the pipes, one of Gurney's constructiod; I think I saw it in Scotland; 1 saw it repairing; I understood it to be the same engine, but Mr. Russell took it up.

You saw an engine which was stated to be on Mr. Gurney's principle that had burst?No, before this engine burst; I understood it was the same eagine, if that which has been shown me was it.

Do you conceive a boiler can be construct. ed so small as to do tie work required of it o: a public road, and at the same time not to be dangero:as if it bursts?-No; I think if the builhr is made very s:nall it will not do sufficient work to work the engine forward at a desirable velucity.
Have you sce:a these boilors of M:. Han. cock's engine ? - Yoc, I have; they are marely a namber of thit tubzs.

The number of filt chambers is vary small ; if one were to burst would a.ay evil arise? -No, I do not tiul there woill be much evil from one of these chambers burst. ing; there is not that quautity of explosive matter to make the sans injury; it might injure the individuals near it, but it would not do much damaze.

You conceive, for security to tie public, boilers must be limited in size? -Of course. I do not know that there will be any means of guarding against danger by testing the boiler, which would be perfectly safe if it was always certain that the water was always kept at acertain heigat, but if not there is no safety in testing; they might test before they went off, and before many miles the boiler gets too low, and the material becomes in a very different state? therefore testing ceases then to be of use.

That testing does not meet the objection you mentioned bafore of the hydrogen gas being generated?-Certainly not.
The only security to the public would be, The only security to the public would be,
that the chambers should be so smal! that if
it did burst no injury wo:ld arise ? - Certain ly ; each of them shou!d be so small that is would not do much irjury if it did burst.

What should be the limit of the size of these chambers:-I could rot go ir.to that without consideration.

You know the nature of Mr. Hancock's mech-rism?-Yes.
Do you think there is any conger attend. ing it ?-I think there is rot much danger.

Do you know Mr. Gu:ney's patc:it? Yos.
Do you think there is dangor attending that ?-Trare is not so much dunger in the tubes if thay are kept small, lut ti:en you canrot gemerate sufficient stann:.

You think there is no danger? ?-Yes; 1 think there is more danger in Mr. Gumey's than in others, for there is a geeater giantity of steana held in the fifes thon what is theld in the clambers of Mr. Hancock's.
What is the danger, exilos:on ?-I'es.
Do you thak pipes of that size, if they cxploded, would itigue the passerecre? ?-If there is a long continuation of pipes connected with it, I thirk that with so fur hold good in Mr. Hancock's; ifthoy are so con. nected that the connexion will give a free outlet from the other chambers, it is still ob. iectionalule.
Are they so ?-No ; there must be a connexion to get the steam generated ; I do not know the size of the apertures. I know if one or more tubes gives way in locomot've engines of an inch and a lealf or two inches in diameter, it does not do much injury; they stop the two ents up, and yo on acaia. I do not think they can 'o thiot wit.' Mr. Gurney's or Mr. Hancock's.

Have you ever travelled by Mr. Hancock's or any one of the steam carrages?-No; I saw one down here, and I storpod to see it go off.

Did it make much roise ? -No, I thiek it did not.

As much as one of your lo.onotive en-gines?-No; ours gets the steam ofil into the chimney; by that we get power to send us along; if they get power in t.ic same way they would go faster on the roads. It is that iet that occasions a noise iilee tir burking of a dog. They do make use of somethiag in the road engines, but it is muzzlet, so that the noise does not escape; they must always make use of the outict through the cylinder to force the current of atmoseheric air through the fire, but they muzzale it so that the noise is not heard. Our engines are from twenty-five to thirty horse-power, a:id those on the roads are not more than tince or four horse-power. I am not quite aware, though the power may be great to begin with?, it may be soon got rid of so as not to be powce at all. It is no: fair to calculate power by the size o. cylinilers. 'Tuc question is, can they leep it up; if they could keep it up at the rate it set off, it would be a fair calculation to measure from the cylinder; whereas they frequantly stop to allow the stcam to increase the strength, then the boiler is not sufficient to supply the steam.

Do you understand that to be the ease? Yes; that one that came to Liverpool was a long time on the road, but it stopped very often.

And was assisted sometimes ?-Yes.
What is the size of the chambers you
make use of on t!ec Marchester and Liver. poo' railway? -They rary from one inch to an inch and a half, and osters have two incines.

In diameter: ?-Yes.

Not larger than that ?-以No ; the first we put up was threc inches; that was the Rockte, the first swift en rine; we found thit we could make more steain by diminishing the diameter, and getting more (and we got more) surfuce, and we had them of less diameter since.
Wes there much smoke fiom these engines? -No, I did not see muc!!.

As much or less than the engines on the Liverpool and Mancliester?-It must be the sume, for they both burn coke ; if they burn coke they must have the same rroportions.

You du not thick there as any means of diminishing the smake ?-I know of rothing better than coke; there are still fumes; a quantity of sulphur comes off.

That offerds the rose, not the cye ?-It has an effect on the eye also.

It surely malics a very considerable degree of smoke ?-If well coled there is no smoke.

But on the Manelester ard Liverpool?Some parts of the coke is not well coked; but if it is properly done there can be no smoke from it, but fumest; there is a decomposition of the air passing through; what comes out mest be dificrent from what goos
Is it visible to the eye ?-No ; even the steam is not visille at a temperature of eighty or ninety degrees.
That is oil a very hot day?-Yes.
You lave turned your attention a gool deal with locomotives engines, to prevent the flying off of sparls trom the esh-pit ?-Yes, I have tried that, but have aot succedeed in it yet.

You could not say if Mr. Hancock's is less?-If his blast is less it will not make so many sparks. I think the ast pit may be managed; I think that may be so boxed in; it will be injurious to the making of steam, but still it will affect the engine. The freer the air gets to the fire, the more steam will be mada at a less cxpense.

You have not cone it on the Liverpool and Manchester Railroad?-They have had boxes, but they are obiiged to open at one end, and when the cinders drop out they fly out of the box, and then if they come in contact with the wheels, the wheels moving at such great velocity sometimes throw it a considerable distance.

Tie sides of the railrond are frequently burnt?-Yes.

Yoa lave had one or two serious acci lents with fire ?- 'hist is since I ctic the Lirerpool and Manchester.

You had one in the norta, on a rallroad you were concerned wit', had yoa not? There was alitle firmornse and building set fire to and barnt cown.
Are you awace of tixe particalar cireumstances of the case ?-I am perfectly sure of that being the case.

Do youkros at what time the engine passed, and what speed the engine ivas going?-No, I do not know.
The danger of course is great with a thing of that kind in proportion to the speed at which the engine is going? Mote sparks
get out at a higher velocity than at a lower velocity ; the draught is increased as the ve. locity is increased ; but it is not increased by passing through the air, but hy the greater quantity of stam being jettod into the chim. ney, which forms a vacuum. In the chimtey a pipe stands up like the jet-pipe of an extinguishing engine, and all the steam that is required to supply the power of the en. gine has to pass out of that jet-pipe. It moves at stch a velocity, it drives all the atmosphoric air ont, and leaves a vacuum be. low. There is ro opening to fill up the va. cuum, on!y through the fire, and of course we get t:e weight of the atmospheric to pass through the fire. In looking through the hole in the door I lave scen the fire as if it was dancing on the bars, the current so strong as almisst to lift the cinders, and manv of them ware brought out through the pipe and up the chimney.
Is there more effect of that kind in windy weather than on a still calm day? - Of course, if the wind is blowing laterally to the train of tie carriages it will.

Docs it make the draught more rapid ?No, it has no effect on the draught.

You have not tried to make gauze or wire covers at the top of the chimney?-Covers we have ; and we have triel various sizes, so as to kecp t.re sparks in and let the vapor out ; but it has been all useless. I have tried it at various sizes till I have been obliged to take it off, the engine was so diminished in power; it was injurious to keep it on.
You saw Mr. Hancoek's engine; had he any precautions of that kind? That I do not know; I have not seen that part of his engine.
What is the usual weight you carry in one of your trains; your passenger train?-Forty or fifty tons; no, not more than thirty to forty tons, carriages and passengers together. We have engines now made that if they were travelling on a level road we coald take 400 tons; they will take a large ship-load of goods at once, at fifteen miles an hour ; we can make them take 400 tons on a level. I would engage to make one of 100 horse-power to move on a ,ilway; we have made them at 50 horse-powar, and have sent some of the same power to Belgium, and, I think, some to America.
You think that yod are not yet arrived at that point that you can do any good with a locomotive-engine, effectually guarding against any sparks dropping out or flying out fom the chamney? - No we have not, certainly; from al I have done and seen it has rot yet got to that state.

You were understood to say according to the velosity you zo those sparks were carried oo a considerable distance if they met wita the wheel ?-T.Tat is from the ash-pit; the spalks from the chimney are guided by the wind ; if the wind is blowing longitudiallly with the road the sparks do not leave the line of railway so much, but if the wind blows at right angles the sparks are carried to a considerable distance. The sparks from the chimney of a locomotive-engine are not, like the sparks from a common chimney the. is on fire. You frequently see a chimney of are, and sparks come out ; these have ne the same tendency to ignite; they are s. light that when they fall to the ground the. are almost extinguished, and combustio,
ceases. But thase that come out of a loco. motive chimney have more weight in them, -they are cinders, and there is a quantity of heat remaining in them.
If there were a cap in the form of an umbrella, and they were thrown back into the chimney across, would bad consequences arise from that ?-It would diminish the power of the engine; that has been tried; ; it was one of the schemes resorted to on the Liverpool Railroad by putting a kind of umbrella so that the sparks should be thrown downwards ; and it diminished the power of the engine.
Suppose you had a lateral outside chimney, made of very fine wire, so as to carry the sparks down that, and let them fall on the grcund ?-I think such a covering might be made, only it would be very large and cumbersome, yet it might be made so as to prevent sparks getting out, except of very smalld dimensions; but it must be very large and expensive to keep up, and it would be destroyed; the frec outlit of the chimney would be obstructed, and the power of the engine so much diminished, it could not tra. vel with velocity. Tie sole power of the engine depends on the exhaustion of the steam into the chimney; if it was only the height of chimney, the draught, without the blast-pipe, would be so much diminished as to reduce a 50 -horse power engine to not more than 2 or 3 -horse power.
With regard to the power of stopping the engine on the road, in what space do you conceive you could stop an engine going at full speed on a common road at fourteen miles an hour? - I siopuld think from fifty to 100 yards; it depends on the weight and the momentum. The only means made use of in stopping them suddenly is preventing the wheel revolving by the application of the break, and reversing the power of the en. gine, so that the wheel becomes a sledge, and brings the revolving motion into a sledge motion. It is this sledge motion that takes up the momentum. It requries some calculation to know how soon. The weight of the engine must be given, and the velocity and the friction taken, to state at what distance it can be taken up; it depends also on the state of the road. If it is very wet weather it will not be taken up in the same time as if it were dry. When it is icy the sliding mo. tion would allow the carriages to move forward with as little friction as the revolving motion, which is well known in those coantries where dogs are used for drawing sledges through the snow, so that it amounts to a railway ; in such cases a sliding wheel would not stop them so soon.
Do you think a weight of three tons could be stopped as easily as a four-horse coach, and in ass short a space of time ? -I do not think a four-horse coach could be stopped at much less than fifty yards, going at fourteen miles an hour. I think the engine would be
as powerful in stopping the carriage as the as powerful in stopping the carriage as the horses, but I capnot conceive a four-hosse
coach travelling fitteen miles an hour would coach travelling fifteen miles an hour would stop in much less distance than fifty yords.
I think the horses would have a little advan. I think the horses would have a little advan. momentum of the carriage.
How soon could you bring up an engine, travelling ten or eleven miles an hoir, on a
thiuk about forty yards, going at ten niles an hour. I judge from what I have seen frequently done, when a coach is called to stop it does not stop immediately.
You find great difficulty on the railroad in turning, do you not, in taking a short turn ?-We do.

That is one of the points in which the system is chiefly deficient ?-Yes, the power is very much diminished indeed if the curve amouts to above a certain ratio ; a mil. radius is the standing point we have got to; we endeavor to keep as near to that as we can. The wheels of the carriage are made conical, so that when we do come to a curve, the larger part of the wheel goes to the exterior rail, and makes up for the extra dis. tance, so that in some degree we manage it in tiat way; still tiere is the momentum to be retarded in its progress. All matter put into certain velocity requires a certain power to ciange its positioa.
You have on the railroads things that turn to chenge direction of the engine ? We have ; but that engine must be in a standing position.
You never venturc to turn an enginc except in that way?-No.
Do yon conceive that in these steam-carriages it would be possible to turn round the corner without stopping the engine ?-Yes, they certainly can turn better than we can do, they have a swivel motion in the under part of the frame that they can turn it like a gent'eman's carriage. It would be danger. ous to have railway engines so constructed. In our engines if the wheels are left to get out of square, that is, if an obstacle is on one rail when moving at a great velocity. if the wheels are left to swing round as the w'ieels of gentlenen's carriages, the wheel that struck the obstacle would be retarded in its progress, and the engine would turn round and go off the road.
The difficulty depends on laving the rail to run on ; but it would not exist on the common road ?-No; they can be mnde to turn on a common road something like a gentleman's carriage ; but that cannot be made use of on a railrond at high velocities, from the circumstances I have stated; that is, from the construction of the engines. Neither can loose wheels be made use of; tha wheels in our engines are always made to revolve with the axle-tree, so that when the wheels are made to work in a square frame they cannot change their position. If al. obstacle happens to be oa the road, and oan of these wineels comes in contact with it, the other wheel assists in getting over it, for they all are confined in the direction of t.ie rails. There is a contrivance I saw the other day for passing round curves, but it is by. aving a centre to move on, so as to chang the direction of the whechs to suit the curvi like 4 gentloman's carringe. I thought it would not do.
That would not be saie ?--No; nor cois. machiuery be attached so properly to it ; wi frequently, with powerfil engintes, connse all the four wheels to gether; you cumbot a that if they move on a centre.
The result of your evilence scons to be hat you think testing no use? 1 do .o think it is ; it nught be of some use ; titt i would not be so useful as to prevent danger

And you are of opinioh that there would be danger of a boiler bursting if the chamber were above a certain size ?- If they are connected together; it depends on their connexion. Our pipes are not connected together; therefore it is only that one, aper. ture which gives way, and allows the steam to escape.
In your engines you use a pipe of what diameter ?-Varying from an inch to two inches diameter.
Should you think a pipe of any larger diameter dangerous?-As it increases in diameter the danger must increase with it.

Whereabout does the danger commence? -I think at three inches diameter ; I think if it gets above that it will become dangerous; dangerous at tbree, but still more as it increases in diameter.
You do not think any mode has been yet devised that will prevent the escape of sparks from the chimney ?-I think not, not without diminishing the power of the engine.
In engines of large power ?-Of course engines with smaller power will have chambers of smaller dimensions, and the same covering put in small engines will affect it in proportion as it will in the large one.
Is there any mode devised at present of entirely preventing the tall of ashes into the ash-pit?-Nothing more than what I have stated.
Without injury to the power of the engine ?-I think not; not that I am aware of.
mr. alexander gordon, c. e.
Think: that he is quite an impartial person as regards the merits of the different carriages. Believes that several steamcarriage inventors say that he is partial, but as almost the whule of them say that, considers it as a proof that he is not.
Have you travelled by all those carringes that have been going ?-I have travelled by Gurney's, by Macerone's, Hancock's, Field's, Ogle's, and Russell's, and others.

What spee:l do you think those steancarriages can travel upon the soad 3-I have travelled at a speed varying from two miles to fourteen, fificen, and sixteen, and I have gone a mile at the rate of twenty.
The average rate, taking a good road without any peculiar feature belonging to it, would be how much !-Varying from ten to fourteen would be the rates at which they could travel with most profit.
And without danger to the public?Yes; they are perfectly under command.
In what possible space can you stop one of those carriages ?-Certainly in a less space than a two horise coach.
What do you concei:e is the greatest capacity which is consisteat with safety? -I should not like to give a hasty upiuion upon that. It is a dificult sulbject to touch upon. I should pr.fir not to use a charnber larger thin that now buore your Lordships, and used by Mr. Hanenck; nor if I were to use one of Mr. G irncy's should I ase oue larger tha it that he has at present ; yor would I iravel with such a carriage as Russell's boiler, waich was attended with the accident near G'asgow; it had a large chamber.

You cannot state what should, in your opinion be the extreme size of the chamber of a boiler 3 - If the chamber of the boiler be cylindrical, I think eight inches or ten inches at most ; but I understood the question to refer to a clause in the bill now before your Lordships. In that bill there is a prohibition, I understand, of certain rectngular figures.

What is the proper shape for the chambers or compartments of boilers for these carriages, and of what size may they be made consistently with the safety of the public?-To transmit hat from the fire to the water in the boiler, so as to generate steam of the requisite intensity, a certain surface of the boiler, on which the fire and heated gases play, is necessary; this surface mest bear some proportion to the quantity of water to be evaporated. The requisite quantity of surface was in the early steam-engines obtained on the outside of the lower portion of the boiler, which theretore required to be of large size; subsequently the boiler was diminished, and the requisite quantity of surface preserved by directing the flue through the water in a large pipe. Steam-boat boilers required to have still more of these flues from the furnace to the chimney, so that these boilers might expose the smallest weight of water to the largest heating surface. Railroad engines required a still greater proportional reduction of water to obtain lightness, and a still greater proportional heating surface; this was obtained by inultiplying the number of flues through the water from the fireplace to the chimney; the flues were reduced in their size, and more of them (sometimes 150 small tubes) were caused to pass, carrying the heated gases and flame through one large chamber in which the water is contained. Such is the geueral description of railway boilers now in use : they have each one large water and steamchamber surrounding the fire-place and Ques ; they are erroncously called by some, tubular boilers, whereas they are large chambered boilers with tubular flues. The material difference between the boiler just named and the small chambered boilers of Gurney, of Dance and Field, of Hancock, and of Maceroni, and ot a few others, is that the fire-place and flues in these latter form the large chamber, and the water in small chambers, in filins or streams, is presented to the heat in the large oven or furnace. These numerous small chambers of water and steam are safer than the large chamber of water and steam, because the fracture of one of the small chambers does not involve the danger of an explosion of the whole. The ingenuily of the inventors is seen in the arrangements of the tubes or chambers, so as to allow the contained water to receive its heat from the fire, and to part with its steam unmixed with liquid (i. e. dry steann) to the eagires. Hancock's boiler may be considered a number of s:nail rectangular builers, ranged beside each other,-as books in a libriry,-anu conuected logether, in each of which circulation and separation are required to go on : Gurney's boiler is a number of small tubes in the fire; water sweeps along them, be-
comes heated, and rising into a chamber or chambers out of the fire the steam is separated from the water, and ready for the engines, whilst the water (with or without an addition to replace evaporation) returns by another channel to sweep again through the small heated pipes. The boiler of Sir Charles Dance and Mr. Field is very similar to that of Mr. Gurney. Of the boilers which have been used on turnpike roads sone are circular in the cross section of their parts, others are nearly rectangular in the cross section. The circular is known to be, according to both theory and practice, stronger than any other figure. Were it necessary I could give your Lordships numerous instances which occurred to me during many years' practice, with some thousands of my father's portable gass reservoirs, at a pressure of 450 lbs . on each square inch. The repellant and fluent particles of steam force outwards in radical lines, and their force is best resisted by hocping them in, all round ; the forces are then equal, and they are resisted by the absolute strength of the metal or the resisting force of cohesion. If, however, we confine steam in a square box, other straight-sided figare, we expose the metal on the straight side of the box to another kind of strain,-the greatest strain to which metal can be exposel,- the power of the steam tending to break the metal transversely; the box is forced by the internal pressure to alter its shape, and bulges out ; the metal is crippled, and fracture takes place, generally near the angle, the portions of metal on the same plane pertorming in some degree the functions of levers. Of the two shapes there can be no doubt the circular is incomparably the stronger.With regard to the size of channbers of such boilers as are to be allowed on the turnpike road, I think that until some means of preventing explosion, not yet known, are introduced, no cylinder of greater diameter than eight inches should be allowed in such
boiler or steam-generator for the turnpike road, and no ractangular or other shaped figure of such boiler or generator shall be of more than forty-nine square inches of transverse sectional area, and no vessel or compartment of such boiler should be made in part or wholly of cast-iron. I have in this answer specified the area of the rectangular figure, which is equal to the area of the circle, eight inches diameter, not because the rectangular figure in any measure equals the circle in strength, but because if an explosion does take place the same amount of steam and water may be pre. sumed to escape. I believe, however, the area of the fracture would in case of accident always be the largest in the rectangular figure.
Inform the committee of the weights of stage coaches, vans, waggons, and steam conches, with the view to levying a toll on the latter; and also of the probability of steam. conveyance being more general on the turnpike road or on the railroad ?-Of these conveyances the most destructive to the road are the light stage conch end mail coach. In them there is a greater proportional weight resting on a square inch of the tire than there is in any of the other cunveyances above stated. The difference in the rates of travelling is of less consequence ; of the proportional damage done to the road surface by horses feet at a quick or at a low rate, I do not know that any experiments have been rrade; and in my opinion the damage done by a steamcarriage and load to the road is certainly not one-third part of the damage done to the road hy the mail or stage-coach and its horses, the weights moved being in both cases the same, and, after long and careful examination and experiment, I should say, that were I the proprietor of a road I should prefer the steam-carriage, even of six tons weight, as the least destructive; and hav ing special regard to the interests of the road-trusts of the country I say the same.

	$\begin{gathered} \text { Rate in Miles } \\ \text { per hour. } \end{gathered}$	Average Weight in 'Tons, Coach and Load. without Horses.	Obscrvations.
Mail or stage.coach	8 to 11	$2 \frac{1}{4}$	-
		$4 \frac{1}{2}$	in any or these
Six-horse waggon	3 to 32	$4 \frac{1}{2}$	yances nay be
Eight-horse waggon	3 to 3 $\frac{1}{8}$	6 to	stated as Ten Hun. dred Weight.
Steam-carriages		Six Tons and travelled by. The	are much heavier. I have best amongst many that I Three Tons.

> MR. THOMAS HARRIS.

Was the engineer who superintended Mr. Gurney's stean carriage while running for Sir Charles Dance between Gloucester and Cheltenham.

While you were running between Gloucester and Cheltenham, do you imagine th it was a profitable speculation to Mr. Gurney?-I do not know; there was a great expense in establishing coach-houses and buildings, and the time was not long enough, I should think, to refund. I think ive could have done very well.

Do you think the traffic on the road paid the expense of carrying :t on?-Yes; it cleared it well.

Would it pay the expense of carrying it on in London?-I have rot a doubt it would.
Then it is not from the extent of tolls you were prevented from doing it near London ?-I believe not.

Do you know for what reason Mr. Gurney did not continue?-It was a matter of choice on the part of Sir Charles Dance.

rev. mr. williams.

You can give evidence as to steam-carriages ?-Yes; I have rode on them more than any person in England. I am a great advocate for them.
You are an amateur traveller in them 3Yes; and I understand something of the
mechanisn as well. I know something of the construction of all that were built in London.
Have you ever travelled ly Gurney's carriage 3-Yes.
Do you know the nature of his machine? -Yes, it is a tubular boiler.
Can it be used on roads with sarety to the passengers ?-The fact is, his boiler is safe, perfectly safe, but he has got an appendage to this boiler which is called a separator, or, as I call it, a danger-chainber, in order to separate the water from the steam. Within the tubes the stcam forms, as it were, a corkscrew or coil, and brings out the water with the steam before it passes to the cylinder waere the piston is. In order that the steam should be efficacious he has got the separators, and these are of large capacity ; the consequence is, it does not signify whether the boiler is tubuler, spherical, or of any other construction. If you bottle up that steam, they are all dangerous, which is the case with Gurney's; it is a dangerous boiler as long as there is a place of capacity for the steam, for if that steam is not passed off to the piston that works in the cylinder up and down, or horizontally, if you do nut pass it off immediately it will burst any thing, whether it is a sphere or whatever other shape.
That separator is peculiar to Gurney's ? -Yes, I think so.
You think that it is productive of danger ? -Yes.

Have you been by Gurney's carriage ? -Yes ; several miles.
Have you met with any aceidents? -No.
You trusted your life in it, notwithstanding your knowledge of the danger ?-Yes; knewing that the engineer, Mr. Stone, made his valve only to a safe pressure ; but suppose you come to a depth of gravel on the Cheltenham-road, eight or nine incies thick; the depth of the gravel was rather more than is usually laid by trustees on roads; it was not enough to impede a manlcoach, but it impeded his carriage, and the consequence was that they used a very great pressure there to get over, but with it the axletree broke.
Were you in the carriage at the time ? No.
You were not one of those who were blown up?-No.

Therefore danger did not occur 3-No.
Have you known a case where it did occur from the boiler bursting?-Yee, at Glasgow ; it was Gurney's carriage, sold to a person of the name of Ward; their carriage was in a coal-wharf at Glasgow; the person who had the management of it put on the s:eam, and was going to show it off to great advantage; the steam was so poiverful, that either the separator or the boiler burst, and a boy or man was much injured.
Was there a separator?-Yes.
Did you see that ?-Yes.
Was not that a carriage with a large chamber ?-Not much larger than tho usua: chamber.

Was it not with a large square chamber hung under the carriage ?-No; I think a cylindrical one.

But the one that burst ?--Yes; I have rode on them likewise ; the Scotch carriages; $\mathbf{1}$ have rode on it $\mathbf{3 0 0}$ miles.
But keep to Mr. Gurney's carriage; was that it (Pointing to a dravinr.)-No, that is Russel's; here is the boiler, which is of large capacity, and would not bear a pressure of above 35 to the square inch. I rode in this from Hammersmith to London scores and scores of tines, knowing they never worked at a pressure of 20 or 25 , therefore it is safe, though it is a boiler of large capacity; the safety depends on the engineers; they may blow up any of hem if they load the valves to more than they can bear ; but it ca.a be prevented by a lock-up valve.
You think all steam is dangerous?Yes; it depeads on the engineer employed if he has the sole control of the valves.
You venture on board steam-iackets ?Frequently; and I consider them more dangerous than steam-carriages, having boilers. of great capacity, containing thou sands of gallons.
Then you are an eneny to steam in general 1-No; it depends on the engineer entirely; if he is fool-hardy enough to use higher pressure than a boiler can bear, no carriage is safe.
Did you ever travel by Mr. Horne's stage-coach 3-Yes.
There your safety depends on the coach-man?-Yes, and on the management of the horses entirely, and the coach-bulder; if the axletree breaks, or a spoke or spokes break, you must come down, and most likely dislocate a limb, or lose your life. I should rather a steam-coach for traveling on, if one safety-valve is locked up from the engineer, than the best-conducted horsecoach that I know of. I do not consider boilers without the steam-chamber at all dangerous; but if they have got such steamreservoirs, they are dangerous.

Go back to this carriage of Mr. Gurney's that burst at Glasgow; when was that? I cannot recollect dates.

Who was the proprictor of it ?-A person of the name of Ward, a man who lost a great deal of money speculating in Gurney projects, like many other gentlemen that advanced money in his concerns, to th? amount, I have been told, of 40,0001 .This is Russel's carriage (producing a draving); an advocate in Edinburgh, at Mr. Dauney, a friend of mine, losit 10,000l. by embarking in it.

Do you know Mr. Hancock's cariiage ? - Yes; I have rode in them upwards of 4,000 miles ; the reason why I did so was, he was continually working on all roads, winter and summer ; the prohibitory tolls had nothing to do with his carriages; he could go distances on roads where lhe Acts had not been renered, the same as M. Gurney might have done if he had 'ee: a i a siluation to run. In the metropoli a: districts the Acts were renewed, and::p plied to steam or any other power; but tio expenses attached to that are not probitb: tory ; it is 4 d. oa his carriage insteal is 2d., being double tolls in propartion t omnibuses.
Do you think the tolls were prohibiory
in the other places 1-Yes; but Mr. Hancock did run thrice from London to Brighton, and paid no tolls at all.
Do you think his carriage is dangerous? -No; he has no steam-chambers. An accident happened in his factory; a part proprietor in one of his carriages tied down the safety-valve with a coil of wire, so that it was impossible any thing could bear the pressure; a rend seven inches long took place; he was not hurt, but paralysed from fright, the surgeon said. There has been no serious accideut from any stcain-carriage of Mr. Hancock that I am aware of.
Not any whatever? $-\mathbf{N}$ n, not on the roads, never an accident while going.
Did you ever hear of the Birmingham carriage !-Yes, but on turnpike-roads. I rode in that carriage, (pointing to Squire's and Maceroni's,) which is a very excellent carriage ; I have rode from London to Uxbridge and back, to London twice, and also in Ogle's several times.
The result of your opinion seems to be, that they are al dangerous, but that no accident happens ?-If the engineer is a foolhardy fellow, it is dangerous. I have rode 200 miles in one, and I have rode in Mr. Ogle's carriage 100 miles; now his carriage is as fast as any of the carriages, and as safe; I do not think he has a steamchamber; the boiler in his carriage is composed of a tube within a tube, and caloric impinges on the watcr inside and out; he generates steam as fast as the engines require it, which is the case with Mr. Hancock's. I do not think any of them are dangerous, provided the engineer is not intrusted with the key of one of the safetyvalves.
mr. willina cubitt, c. e.
You were one of the party of engineers who subscribed towards the building of a locomotive carriage by Messrs. Maudslay and Field ?-I was. It originated in a sort of challenge which I gave the parties to prove the possibility of doing the thing.

What was the result of the acceptance of that challenge? - The result of it was that a carriage was built, and remarkably well built; it travelled exceedingly well, and was very menagrable; it proved that the thing was perfecelly practicable, but was not economical or expedient to be applied to the purposes of traffic.
Can you state to what extent it was not economical ?-It was not economical in this respect, inasmuch as the expense of the machine and the expense of keeping it in order was ton great to be put in competition with railway travelling or even with common roads: Such, at any rate, was the result, in my judgarant, from the experiments we were eabled to make.
In what respect did the inexpediency of it consist; was it in travelling?-It was on tecount of the great cost of it.
Did you not draw a distinction between the two ; expediency aad economy ?-intended to say it was nut expedient because it was $n \mathrm{t}$ economical.
Has it no other disadcantage ? $-N o$; the thing is periectly practicable; there is no difficulty whatever is making a good no difficulty whatever ir making a good
carriage which will travel remarkably well.

We have gone up steep hills with the one we had in Dulwich and the neighborhood, but the great cost is against it.
Is it not dangerous to the passengers? -Not under proper management any more chan any otber machine.
Do you mean than any other coach? Yes.
Is it not dangerous to the people on the road by frightening the horses?-Not at all ; I have been frequently through crowded roads in the neighborhood of London and I have never seen the horses frightened.

What was the weight of it?-Between five and six tons.

Was that as light as could be made 1-It might have been made a little lighter.

Did it do much damage to the roads?Not the least. I think if it were made properperly it would rather mend the roads than otherwise, inasmuch as the wheels must be broad wheels, and cylindrical, and therefore they roll the roads.
Have you ever seen Mr. Gurney's steam-carriage ?-Never.
You do not know any thing about the contrivance of that 3-No. The contrivances are all on one principle; the great object is to contrive a boiler which will combine lightness and a capability of giving a great quantity of steam.
In your opinion they are not so economical as stage-coaches?-They are not so generally useful or economical as stagecoaches, because there must be unimmense establishment to set them going; to run from here to Bath would require a great many locomotive carriages, and a vast establishment of workshops and stations? in fact under such management as railway carriages, which would be attended with much more expense.
What was the cost of yours ?-One thousand guineas, by agreement.
What was the size of the boiler?-Our boiler was a boiler of peculiar construction; it was an assemblage of tubes, and I believe it was on the principla of what is called Gurney's boiler; at least I think so.

Who directed the form of the engine ?Mr. Field himzelf, subject to the approval of myself and one or two other engineers.
And you all came to the conclusion you have stated: it was an unanimons opinion was it ?-I do not know that it was unanimous ; we never met to express an opision upon the subject, nor do I know what the opinion's of the other parties are; I do not even know what Mr. Field's opinion is, whose judgment I should most rely upon. I made six or seven journeys, and the result of my experience was that it was practicable but not expedient, beeause it was not economical.

Fron the experiments you have made are you satistied that more economy could not be introduced in the management of steam carriages, 一that they conld ut be conducted sufirictently economicaliy; have you made sufficient experiments to satisfy yourself upon that point?-I can only speak from the experience i have hall; I duibt they could be conducted econo:nically except upon such an iminense scale as it would be impossible to establish; for in stance, it would be iupossible to establish a
steam-carriage-to have one or two stcamcarriages running from London to Bath, it would cost more than it would be worth, and they could not take passengers in competition with well-managed coaching; they could not do that but by the investment of immense capital, having an immense establishment, and doing every thing upon a very great scale. It would be necessary perhaps to have a hundred steam-carriages to keep a concern continually going.

Is not the formation of a large capital perfectly possible ?-It is.

Are not railways conducted by companies ?-Yes, they aro; but there is not the difficulty attending the construction of a railway and the managemenr of carriages on railroads that there is with steam-coaches; we require a totally different class of persons. In a railway a man of comparatively common talent will do for what they call the engineer, that is to manage a locomotive engine ; but in managing a steamcoach it is quite different, there is the greatest presence of mind required, he should be a person of great sharpness and firmness to manage a steam-carriage on a common road ; we were fortunate in having a very able man at the time we made the experiment ; he was a man of the greatest nerve and spirit, and he was also a person of great mechanical skill; it made us all nervous sometimes to see him steer through a string of carriages in the way he did.

Have you ever made any calculation as to the difference of speed between what could be accomplished on a common road and what could be accomplished on a railroad ?-No; but I should say I scarcely know a limit to the speed that could be obtained upon a level an! good railway ; I should say there is no limit till the power is balanced by the atmosphere, which would be upwards of sixty miles an hour certainly.

MR. JOHN BRAITHWAITE, C. E.

Have you directed your attention to the distinction between locomotive-engines and carriages that run on the highway ?-I have; not that I consider much difference between them.

Are you acquainted with the construction of any of those carriages ?-My attention has been called to them, but not with regard to any particular plan ; Mr. Hancock's and others, Mr. Gurney's and Colonel Macerone's all of them have been experimentalizing for a considerable time, but it does not appear that the result has been what we shou d call practically successful.

As an engineer well acquainted with these things, do you inagine that the science is sufficiently advanced to enable you to build such an engine as would be both sate and sufficiently economical for general pu:poses "-Certainly not.

Do you thiak there is any danger in them ? I do not think there is any danger.

Tben the objection is decidedly upon the zround of the expense being greater than the proht would justify? I I should say so nost decidedly.

For what railways do you construct locoinotive engines?-At this present inoment we are constructing a great many for Cuba, and we have also been anplied to by the

Birmingham and London Railway Company. The great difficulty is to get parties who will construct them with sufficient care and attention. Some time since I was competing with Mr. Stephenson upon the Liverpool and Manchester Railway with an engine, which was called the Novelty. It was then given as ile opinion of many persons that if locomotive-engines cost as much as I asked of the Liverpool and Man. chester Directors, namely, 10001 , that that of itself would be a decided prohibition to the introduction of steam-carriages on railways; and yet, notwithstanding that, we are now receiving not only 10001 ., but in many instances $1200 l ., 13001 ., 1400 l$., and. 1500l., for locomotive-engines.

How is it that their price is not a prohi-bition?-From the circumstance of the great duty which the engines now do, which was never anticipated. At one time it was thought we never should do more than something like twelve miles an hour; but the result was, that we did at the rate of forty-five miles an hour.

Do any of your engines run upon that road ?-No ; I do not choose to build engines after a model which I know to be ob. jectionable, unless desired as a manufactur. er; and as they saddle us with the responsibility of proving these engines, which would necessarily take me a distance of 200 miles from my place of abode, it is rather too far to undertake the management of them.
Have you any carriages runuing on any existing railway?-Not at present; we are making several ; hut of course, having a very extensive manufactory, we are obliged to make for the market. We are making them upon the model laid down by the Liverpool and Manchester Railway Com-pany,-Mr. Stephenson's improved by Mr. Berry.

Have you turned your attention to the means of preventing sparks from flying out ?-Yes, I have.

Have you, in your opinion, succeeded in effectually preventing it ?-No, I have not.

Have you succeeded in effectually preventing any loss of cinders from the ashpit ?-Yes; we have a tray constructed at the bottom part of the grating to receive any thing that falls.
Do they not fall out ?-Occasionally they may do so, when they have been stoking very furiously for the purpose of effecting particular objects, such as getting up the inclines; then they require abundance of steam, and stoke furiously; and now and then cinders fall out in spite of the greatest care.

Fron the Mechanic's Magazine.
 introductory lecture,

The basis of all physical knowledge has bcen stated to lie in experiment, and the careful observation of facts. The truths thus obtained, so long as they are considered individually, are of value to direct our practice, only when the circumstances under which they were originally noted, recur without variation. It is not only necessary to record them, therefore, but to classify them; in order that phenomena, which are
probably connected, either in their supposed cause, or in their appearances, may be considered together. Up to this time we use no scientific process, the record and classification of the facts, is purely historical, and has been said to constitute a department of that division of human knowledge, under the name of Natural History. This name it may be incidentally stated, is now usually given to the description of the external characters of the bodies which we rank by their obvious qualities in the three great king. doms of nature, the Mineral, the Vegetable, and the Animal. This department of knowledge has, however, been elevated, by the introduction of Philosophic reasoning, to the rank of a science, and we should, in speaking of it, give it its true value, by including its several branches under the denomination of "The Natural," as distinguished from the Physical Sciences. When certain facts, obtained by observation or experiment have been classified, we are generally able to find among the phenomena which they present, one or more which are applicable to them all. A general proposition expressive of this agreement may then be deduced and applied to them without exception. Several such general propositions may be found to agree In some one or more points, and this agreement may be, therefore, expressed in a proposition of still more extensive application. Proceeding in this manner, from individual instances to general, and from general propositions to those still more general, we may finally, sometimes, reach propositions which include in their expression all substances on which experiment can be made, or which observation can reach. Such a proposition, unlimited in its application, is called a law of nature.
At other times we find the proposition to be limited in its application, to one or more classes or orders of natural bodies.
We are said, in thus obtaining general propositions from individual facts, to em ploy the process of induction.
It is, however, impossible to collect every individual instance, and thus obtain complete proof of the general laws by induction alone. But we are warranted in concluding the truth of the proposition to be absolute, if we find it to apply to every case in which it is possible to make experiment or perform observation. We are now said to reason from analogy.
As an instance of the inductive process; of reasoning by analogy; and of the limit of some inductive propositions: I shall cite a very familiar case, drawn from Natural History, and partly connected with our most early impressions.
A child observes, that in his parents and play-fellows, the sensstion of vision is operated by two concurring organs, and is not slow to become aware that he himself is similarly constituted. He finds the same provision existing in a ${ }^{4} 1$ the individuals of his race which he meets. He therefore infers, I partly by induction, ard partly by analogy, that "All men have two eyes." This is the first step in generalization, for until he had reached it, it would have been necessary for him to name the individuals
in whom he observed the common fact.He will probably have ascertained the truth of the same proposition, in respect to a variety of species of animals, but he cannot make the second step in generalization, until he have studied the elements of Natural History. He will then find that man, and all the animals in whom he has observed this peculiarity, belong to a grand division of the animal kingdom, which naturalists call the vertebrated, and will by two successive steps in the analysis-steps we need not repeat here,-reach the most general proposition of all, namely : "All vertebrated animals have two eyes." He can. not proceed farther, for he will find in other grand divisions of the animal kingdom, provisions totally distinct, or the faculty and organ wholly wanting ; for, some ant mated beings have eyes innumerable, and others none. In reaching this most geil eral proposition, he must have proceeded parly by analogy, and he can now apply the analogy to obtain even more extensive knowledge; for if he find, buried thousands of feet beneath the present surface of the earth, a fossil bone, although belonging to one of a family which has long since become extinct, he infers at once, that it, when living, had the same provision for receiving the impressions of light as existing vertebrated animals.
When a general proposition has once been obtained from individual instances by induction, we may, therefore; by analogy, make use of it to explain new facts, or to predict natural occurrences; we may also apply mathematical reasoring and calculation, and in either way may obtain propositions as certainly true as the result of the original induction itself.
We are now said to make use of theory; and although the term theoretic has been opposed to practical, as an epithet almost of reproach; it would were the individual to whom it is applied, worthy of it, be the highest possible praise ; for it inplies tha he is acquainted with all known facts, as well as capable of applying them to discover new combinations, and to explair what has not before been observed.
What is styled bypothesis, is however, totally distinct from iheory, and is liable to this reproach, for t is either founded on a partial view of facts, or has no other foun dation, except that it is capable of explain ing the phenomena which we observe.
In the course which I am now commen cing, I shall find occasion to illustrate these modes of reasoning, and explain these proce 3 ses further.
Physical Science is, then, built upon the foundation of innurnerable experiments and observations, and is made up of propositions of different degrees of generalization. In the study of this science, it is by no means necessary to pursue in detail the methods by which it was originally formed. To enter into all the experiments, would occupy, not the duration of a single life, but of several; and some of the observarions may be of phenomena so rare as to be repeated at intervals too distant to be seen oftener than once in the course of several generations. It is only necessary that we should have reliance on the veracity of
the observer in the latter case, or have concurrent testimony in the former. Thus when Hally observed a comet in 1759, his observations were received to be true; others of a subscquent generation revised his calculations and predicted its return for 1835. Living astronomers therefore looked for it with complete faith. This faith was fully warranted by the exact coincidence of the re-appearance with the prediction. So also, to draw an instance from another source: when many nautical men have informed us that they have met, in the ocean, with an animal as large as a ship, we see no reason to doubt their joint eridence, and receive the existence of the whale for a truih as well established, as if it were derived fron the evidence of our own eyes.
If, then, it be unnecessary for us to repeat the experiments and observations of othere, provided the truth of their resulis be established by sufficient evidence: Of what use, may it be asked, is experiment in a course of lectures on the physical sciences? The answer to this question is important in the present instsnce, as it will elucidate the plan which it is proposed to pursue. Experiments, then, are of importance, and in some cases absolutely necessary, in a well conducted course of philosophical instruction: First, because they brinğ our analogical reasonings and mathematical investigations to the test of the phenomena themselves, and thus enable us to perceive whether we have included all the circumstances of the case: Secondiy, because they enable us to illustrate general principles, by means of particular facts ; and to describe the indivilual instances, whence the general laws are deduced; and, thirdly, because they impress upon the mind more firmly, the recollection of the principles which they are applied to illustrate. It is also to be stated, that they afford an agreeable variety, and thus render a study attractive, by giving pleasure to the senses, which, in iheir absence, might be dry and laborious.
Such, then, are the views with which experiment will be introduced into the present course. The manner in which the general principles that will be developed were originally discovered, will be described in the way of history, and reference will be had to the distinguished philosophers, who have been authors of the several discoveries. To these we shall appeal as authorities, not however to follow with blind obedience, but with due regard to the evidence of the authenticity of their statements, and to corrobarating facts: This authenticity we shall test in individual cases by experiment, and thus show the truth of the induction, by the exhibition of a few of the facts whence it was originaliy obtained; at other times, we shall have recourse to experiment, solely as an illustration of the principles laid down, or for the purpose of serving as an artificial memory.
For strh experiments, liberal appropriation has been made, and it is hoped, that by proper exertions, the course may be rendered not only instructive, but interestng.
Haring thus explained the method by
which the principles of physical science are originally obtained, defined the value and use of experiment in a course of public lectures, let us return to the consideration of the class of existences, the examination of whose phenomena is the object of Natural Philosophy.

We have ulready seen the impossibility of lifting the veil which hides from $u *$ the agency of the Maker of "this universe and all created things," and of penetrating to the final causes which operate in the constitution of the substances and actions, which become known to us through the intervention of our senses. Failing in this, we adopt the method of defining the object of which physical science more especially treats, by its properties. Choosing for this purpose those, which by the method of induction, can be shown to be universal, and omitting every property which is not common to every part of the visible world.

The existences, then, which we include under the general name of matter, are marked by certain obvious properties which are common to them all. These essential properties are but two in number, and are known by the names of extension and impenetrability. By saying that matter possesses the property of extension, we merely mean, that it must occupy a portion of space in all the three dimensions of lengih, breadth and thickness. By impenctrability we express, that it is capable of occupying this portion of space, to the exclusion of all other material substances, or in other words, that me two portions of matter can exist in the same space, at the same instant of time.

From the fact that mater is extended, it follows that it is capable of being divided; and discussions have been entered into, for the purpose of examining how far this divisibility may be carried. It is sufficient for our purpose to state, that it is believed at present, upon a variety of concurring facts, that matter is by division finally resolvable into portions which are incapable of further division. This proposition is not however, susceptible of absolute proof, for the actual division, by mechanical, physical, or chemical means can be carried to such an extent. that the sight, even when aided by powerful instruments, can no longer follow the operation.

The ultimate portions into which it is believed that matter is finally resolved by division, are called atoms, or, in more familiar language, particles of matter. If it be true, that no two particles of matter can exist in the same space at the same time, it follows, that before any particle can enter and occu. py the place possessed by another, the latter must be moved from that place. Mobility or the capability of being sct in motion is therefore, although sonsetimes reckoned among the essential propertics of matter, no more than a necessary consequence of its impenetrabity.

Attraction also, which is often classed among the properties of matter, is not essentially so, for we can conceive matter to exist without it, which is not the case with the other two properties which we have named.

When we cease to consider matter in the abstract, and view it as it presents itself to our senses, we find it existing under certain determinate forms, or in peculiar and well
marked states of existence. To these determinate forms and peculiar states, we give the name of bodies.
Bodies, as we find them on the surface of the carth, are undergcing continual changes, although with different degrees of rapidity. Thus some small animals are born, enjoy the functions of life, and die, within a few hours; and no sooner has their life departed than a decomposition begins, which resolves them back again into inorganic matter. Other animals, and some productions of the vegetable kingdom, resist for centuries the atlacks of death, hut are finally made subject to the same general law. Even the most solid rocles yield gradually to the principle of change, and geverations of them succeed each other in geological chronology, as those of men do in civil history.

In some cascs, the disintegration is always attended by the destruction of the body, which the particles originally composed. Such is the case with all inorganic beings. But in the animal and vegetable kingdoms, although a waste of their particles is continually going on, this waste is supplied by the food which they consume, so long as the vital energy remains. In the youth of animals this supply exceeds the waste, and the body increases in bulk. In more ad. vanced age, the waste and supply balance each other. Such is the evtent of tue change, which we are thins und oing, that it has been proved by pliysologists that at the end of seven yeais, no one particle which at the begiuning of that period composed a pa: t, even of our hardest boues, is left in the human body.

In all these changes, experiment and observation conducted with the nicest care, and strictest attention to weight and measure, have shown that not the smallest particle of matter is ever lost. It may be traced, form. ing in succession a portion of many different bodies, but in the innumerable changes of form, which protets-like it undergoes, it still continues to exist, and to occupy its due extent of space, to the exclusioa of all other material substances. Tiie actions which we call natural, because they are due to causes inscrutable to us, operate with powerful, and in some cases, irresistible eaergy to produce clanges in the constitution of bodies. We can ourselves, bring to operate on bodies mechanic forces, by which they may be rapidly disintegrated; and the actions of flame, of chemical affinity, and of other physical powers are still more efficaceous in chang. ing the determinate forms in which matter exists at any given moment. But all these agents, natural, mechanical, physical or chemical, are wholly incapable of adding to: or diminis'ing in the least degree, the quantity of matter, which exists in the universe. Matter therefore, so far as any cause, which we can reach by our finite intelligence, is capable of acting upon it , is incapable of increase or diminution. It has therefore been inferred by some that it is eternal.
Persons of good intentions, but ignorant of physical science, have stigmatized the proposition of the indestructability of maticr as Atheistic. So tar, however, trom being so, this very fact, is among the most powerful of the proots of the existence of a deity, which natural theology brings to the aid of
revealed religion. We cannot conceive of
the existence of any thing without an adequate cause, and this truth is admitted under the name of the sufficient reason, both by infidels and believers. If then no finite cause be sufficient to generate material ex. istence, it necessrily follows, that all which we see or discover by our other causes, in the universe, must be the work of an omnipotent cause, -the creation of an agent of infinite power. If his workmanship be eternal, so must he also be ; and of his wisdom all nature furnishes abundant proof. If on the other hand the present state of things is ever to be brought to a close, it can only be so, by the same Almighty power, to which its original creation was owing.

The motion which bodies acquire, in consequence of the impenetrability of the matter of which they are composed, is subject to certain definite laws. The study of these, and the application of them to predict and explain natural phenomena, and to direct the works of human art, is the provisce of an extensive division of Physical Science, to which, from the intimate relation it bears to the practice of all the arts, the name of Mechanics' has been applied.

Mechanics' differs from the other divisions of natural philosophy, in approaching more closely to the rank of an exact science. The laws which govern the action of the forces by which motion is produced are few ; and are reached by the most simple. indection. Upon these laws a science of vast extent and almost unlimited application, can be built by the aid of mathematical reason. ing alone. So completely is the mode of proceeding identified with that employed in pure mathematics, that the original induction is often passed by unnoticed by such as con. tent themselves with the mere theory. When, however, this theory is to be applied to practical purposes, innumerable experiments become necessary, upon friction, the strength of materials, the resistance of fluid media, and other interfering causes. Such bowever has been the extent of the researches into these subjects, and the accuracy of the mathematical laws which have been deduced from them, that it is hardly possible for a new case to occur in practice. We can calculate the power, and forsee the acton of a machine, determine the proper dimensions of the parts of a proposed struc. ture, or predict the quantity of water which will be delivered by a pipe, although miles from the source may intervene, with almost as much precision as we can estimate the number of square feet in the floor of a room.
Situated, as we are, upon the surface of a body which we call the earth, our position causes us to draw a wide distinction between the bodies which we find in our own imme. diate vicinity, and those which our sight teaches us, to exist in distant parts of space. The appearnces of the latter bodies, to which we have given the name of heavenly, are pursued by a species of observations which we style Astronomic. To the astro nomy of observation it is necessary to cali in the aid of mathematical calculation; and we obtain by their union the science of Theoritu and practical astronony, the most elevat ed of those included under the general name of Physical.

The laws which govern the motion of the beavenly bodies, are shown by this science
to be identical with those which are involved in the motion of terrestial bodies. The motion of the ship upon the ocean, of कe carriage upon the railroad, and of the manu. jacturing machine, are all subject to exactly the same rules as those which guide the pla. nets through the regions of immeasurable space. When we apply these laws to the heavenly bodies, wecreate a science to which the name of celestial mechanics' has been given. This also goes in our language, although with little propriety, under the name of Physical Astronomy.
In the motions of bodies, in the changes whicn they undergo, and in some of their mutual actions upon each other, we perceive the influence of agents which cannot themselves be embodied or confined; and which therefore, although acting powerfully on matter, we cannot prove to be material. Among such agents are, heat, light, electricity, and magnetism. The investigations of the effects produced by them, and of the manner in which they act upon bodies, gives birth to a departınent of Natural Philosophy, to which the name of Physics is usually restricted.

The bodies which we meet with in nature are rarely simple in their constitution. Each of them is generally capable of being resolved into two or more other bodies of greater simplicity ; and by means, whose manner of action we shall have occasion to study, bodies are finally reached, which it is impossible for us, in the present state of our knowl. edge, to simplify further. These simple bodies may again be re-united, and thus caused to regenerate the body whence they were originally obtained, provided it had not been organised. In the combinations which these elements thus enter into, they are found to be subject to a few determinate and definite laws. The study of these laws, and of the natures and characters of the substances themselves, is the province of another department of Natural Philosophy, which is known under the name of Chemistry.

Such then is the basis of the division of the general subject of Natural Puilosophy, into distinct sciences. And it mey not be amiss to repeat their names, along with a more brief definition, in order to impress them more fully upon the minds of such portion of the audience as has not yet entered uron the study of these subjects. The divisions of Plysical Science, then, are :

1. Mcchanics, which treats of motion in general, as well as of the construction of machines, and other artificial structures.
2. Ast:onomy, which observes the motions of the heavenly bodies, and by the application of mathematical calculation to the records of the observations, enables us to predict the occurrence of the several phenomena.
3. Celestia! Mechanics, or Physical Astronomy, which applies the laws discovered in the motion of terrestrial matter, to the explanation of the phenomena of the heavenly bodies, and to the detection of minute variations, growing out of their mutual action, which can hardly be reached by observation alone.
4. Experimental Physics, which is generally restricted to the examination of the actions, and effects, of light, heat, electricity, and magnetism.
5. Chemistry which investigates the comoositions of bodies and inquires into the nature and character of their elements, and of the several compounds which these elements make up. However different these subjects may be from each other, there is, notwith. standing, an intimate connection between them all, and it is indeed hardly possible to make progress in any one of them, without at least a partial acquaintance with each of the others. Nor is it practicable in al. most any case, to produce a natural effect. in which actions which are included under at least three of the different heads, are not intimately connected. The taree species of action which are thus closely allied, are the mechanical, the chemical and the physical. The agent, too, by which the motions of the heavenly bodies are controlled, is of the same general character as those we call physical; and were it not that we rather study it in its great mechanical effects, than in its mere laws, might be classed with elec. tricity and magnetism.
A simple instance will serve to exhibit the connection, as well as to illustrate the difference, between these several kinds of action.
A smith places a piece of iron in his forge fire and heats it red hot; applying for the purpose fue physical agency of heat. He next lays it upon his anvil and beats it into some proposed form, the action thus applied is strictly mechanical, not only in common, but also in scientific language. But while he beats the red loot metal, sparks fly off in all directions, which are the result of the combination of the iron with one of the component parts of the atmosphere, a com. bination which is therefore governed by chemical laws. We might go farther, and show how the combustion of fuel, urged by the action of a bellows, whence the heat is originally derived is due to arother combi. nation of mechanical, physical and chemical action, but what has been already said will suffice for our purpose.

It has already been stated that it is my in. tention to select from the wide field of which an outline has now been given, a few subjects susceptible of familiar explanation, and popular illustration. I have been farther guided in the choice of these subjects by the desire to ex. hibit those particular points in which Mechanics, Physics and Chemistry are more closely connected with each other. The course will commence with a general view of the classes into which bodies are divided, by means of their mechancal characters. Among these we shall find that the class to which the atmosphere which surrounds our earth belongs is the most curious and interesting. We shall therefore enter fully into the investigation of its nature, and me. chanical properties. At every step we shall find that these properties are materially influenced, if not wholly due, to the physical agency of heat. The consideration of the effects of heat, and the laws by which it is governed, will therefore naturally follow.

Returning again to the atmosphere: its chemical character will be exanined, and the manner in which it can be separated into a number of constituents, described. The most important properties of these constituents, and of the elements analogous to them in character will then be illustrated by experiment. In the course of these ex
periments, we shall be led to the considereion of the more important principles of physical science, and finally to the discovery of the laws of chemical affinity, with the consideration of which, the course will conclude.
It is hardly necessary that I should point out to this intelligent audience, the advantages to be reaped from the study of the physical sciences. Derived, as they are, from the careful observations of the action of nature, continued for several generations ; and composed of laws and principles deduced by laborious study from innumerable facts, these sciences possess the merit of conveying to him, who wishes to enter into the practice of any of the useful arts, the accumulated experience of centuries. If therefore, it be not only possible, but a fact of claily occurrence, that a person, by practice alone may become eninent, in the manipulaticns of manufactures and the mechanic arts, he may save himself much labor, both of body and mind, by acquiring the principles of physical science, before he enters upon the manual part of his calling. These principles will enable him to foresee contingencies in the exercise of his att, which he might otherwise only learn by lon y and laborious experience. The difference in the progress of him who rests upon physical principles as the gaide of his practice, and him who is unable to employ them, will be in some measure the same, as that which exists between the pere sons by whose researches the fabric of Natural Philosophy was erected, and those who study it in its present state. The investigations of the former have continued undisturbed, and in regular succession for more than two conturies, yet to a youth of intelligence and duly grounded in clementary knowiedge, a couple of years may well suffice for the attainment of a complete outline of the sciences. The knowledge, too, which is acquired in the study of science, is capable of universal application, while that which is derived from practice alone, is of little value. except in the epecific case in which the experience was obtained. It is true indeed, that theoretic knowledge can never be a substitute for practical skil', but a far bigher degree of that skill can be acquired, by him who is previously imbued with a knowledge of the physical science, than by bim who is devoid of it. The cultivator of science and the practical man, ought therefore, in order to a complete success in their respective callings, to start from the same point. Both should be equally versed in the elements of natural philosophy. Their paths will then diverge from each other; the one will de vote his whole time and attention to the in crease of the facts of the science he studies or to the extension of its theoretic parts The other will apply the knowledge he has obtained to practical purposes.

Concluded in next Number.
Width of the Delaware Rivee of. posite Philadelphia.-On the 17th of January, 1837, the river Delaware was carefully measured with a four pole chain, on the icr, from the end of the wharf at English's (late I'aniel Cooper's) ferry, in

Camden, to the end of the wharf at Burr's (Blight's) ferry, south side of Market-st , in Philadelpyia, by Richard W. Howell, and Josiah Hartison, Esqrs., of Camden, and was ascertained to be 54 chainsand 50 links, being $22 \frac{1}{2}$ rods short of tbree quarters of a mile.
M. Thenard has resigned the Professorship of Chemistry at the Ecole Polytechnique. and it is expected that he will be succeeded by M. Dumas.

Advertisements.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others te build, on his Patent Plat, would respeetfully
inform Railload and Bridge Corporaiions, that he is inform Railroad and Bridge Corporaions, that he is
prepared to make cuntracts to build, and furnish all materiale for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the following localities, viz. On the main road leading from Baltimore ω Washington, two miles from the furmer place. Across the Motawaukeag river on the Military road, in Maine. On the national road in Illinois, at sundry points. On the Batimore and Susquehanna Rrailroad at three points. On the Hudsun and Patterzon Railroad, in two places. On the Buston and Worcester Railroad, at aeveral points. On the Boston and Providence Railroad, at sundry points. Across the Contoocook river at Henniker, N H. Across the Souhogan river, at Milford, N. H. Arrose the Connecticut river, at Haverliill, N. II. Across the Connoccook river, at Mancock, N. II. Across the Androseoggin fiver, at Turner Cenire, Maine. Across the Kennebec river, at Waserville, Maine. Across the Genesse river, at Squakiehill, Mount Morrie, Now-York. Across the Whie River, at Harfind $\mathbf{V t}_{\text {. A A }}$ Across the Connecticut River, at Lebnnon, N . H. Across the mouth of the Broken Stran Creek, Penn. Acrose the mouth of the Cataraugus Creek, N. Y. A Railroai' Bridge diagonally across the Erie, Canal, in the City of Rochester, N. Y. A Ra lroad Bndge at Upper Sill Water, Orono, Maine. This Bridge ia 500 feet in length; one of the spans is over 200 feet. It is prubably the Firmest wuour aridge ever built in America.

Notwithstanding his present engagements to build between twenty and thirty Railruad Bridges, and several common bridges, everal of which are now in prugreas of construction, the subscriber wìl promplly attend to business of the kind to much greater extent and on liberal terms.

Rochaster, Jan. 12th, 1837.
MOSES LOFG.

ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.
WILLIAM V. MANY manufactures to order. inon castings for Gearing Mills and Factories of every description
ALSO-Steam Engines and Railroad Castings o - very description.

The collection of Patterns for Marhinery, is not equalled in the United States. 9 -ly

TO CIVIL ENGINEERS, \&c.
E. \& G. W. BLUNT, 154 W ater.st., corner of Maiden Lane, have recently recesved an astortment of LEVE:LS, from different manufartu rers, among others from Tronghton \& Surins, which they warrant of the lirst quality. Circumferenturs, Levelling Siaves, Prismatic Compasses, Mathematical Inst ruments, Books fur Engineers, etc., cunstantiy on hand.

Une of the above firm is now in Fngland superintending the manutacture of 'Theodolites, 'I'ransit Jnthruments, etc.-and any orders for Instrunieats, not now on hand, will be forwarded him, and executed promptly

5-If
STEPHENSON,
Builder of a superior style of Pas senge Cars for Railroads.
No. 264 Elizabeth street, near Bleecher street, New.York.
RAILROAD COMPANIES would do well tn exa mune these Cars; a specimen of which may be seen on that part of the New-York and Harlaem Railroed now in nperatior.

ARCHIMEDES WORKS
(100 North Moor strect, N. Y.)
NEw-YORK, February 12th, 1836.
THE undersigned begs leave to inform the proprierors of Railroads that they are prepared to furnish all kinds uf Machinery for Railroads, Locomotive Engines of any size, Car Wheels, such as are now in successful operation on ihe Camden and Amboy Railroad, none of which have failed-Castings of all kinds, Whocls, Axles, and Buxes, furnished at shortest notice
H. R. DUNHAM \& CO.

AMES' CELEBRATED SHOVELS, SPADES, \&c.
300 dozens Ames' superiorback-strapShovela
150 do do do plain do
150
150
do do do do Gold-mining Shovels
100
do do
50

$$
\begin{array}{rll}
100 & \text { do plated Spades } \\
50 & \text { do do socket Shovels and Spades.' }
\end{array}
$$

Tugether with Pick Axcs, Churn Drilis; and Crow Bars (steel pointed, manntactured from Salisbury reGined iron-for sale by the manufariuring agents,
WITHERELL, AMES \& CO.

No. 2 Liberty strcet, New-York. BACKUS, AMES \& CO.

No. 8 State street, Albany
N. B - Also furnished to order, Shapes of every de acription, made frum Salsbury refined lron v4-If

an elegant steam engine AND BOILERS, FOR SALE.

THE Steam Engine and Builers, belonging to the STEAMBOAT HELEN, and now in the Novely yard, N. Y. Cursisting of one Horizuntal high pres. sure Engine, but may be made to condense with litle additional expense) 36 surhes diametcr, 10 feet struke, with latest improved Piston Valvcs, and Metalic packing throughout.
Also, four Tubular Builers, constructed on the Englixh Iwcumotive plan, containing a fire aurface of over 600 feet in each, or 2506 fret in all-will be sold cheap. All communications addressed (post paid) whe subscriber, will meet wath due attention
Troy Iron Works, Nov. 15, 1836.
7-rf
A SPLENDID OPPORTUNITY TO

MAKE A FORTUNE.

THE Subscriher having obtained Letters Patent,from the Government of Fraise, granting hinu the exclusive privilege of manulacturing Horse Shoes, by his newly invented machines, now offers the same for sale on terms which camuot fail to make an independent fortune to any enterprising gentlemen wishing to embark in the same.
The machines are in constantoperation at the Troy Iron and Nail Factory, and all that is necessary to satisfy the most increduluus, that it is the most valuable Patent, ever oblained, cilher in this or any other country, is to kitness the ex eration which is upen for inspection wall during workug hours. All letters gudressed to the suhseribur (fost paid) will re. ceivé ducattention.

Troy Jron Works,
IlF.NRY BURDEN.
N. B. Horse Shoes of all sizes will bekept cons stantly fur sale by the pincipal Iron and Hard-ware Merchants, in the L'nited Stutes, at a small adrance abave the price of Ilorse Shoe Itan in Bar. All persons aelling the same, are authorised to warrant every ghoe, . ade from the best aefined trun, and any failing to render the must peibfect satisfacoris, both as regards workmanship and quality of
Iron, will be received back, and the price of the same refunded. II. BULDEEN. 4i-1!

NEW ARRANGEMENT.

bopes for inclined planes of railmoads.
WE the subscribers having formed a co-partnerslip under the style and firm of Folger \& Coleman, for the manufacturing and selling of
Ropes fur inclined planea of railroads, and for uther usis, offer to supply ropes forinclined planes, of any length required without splice, at shors notice, the malafacturing of cordnge, heretofore carried on by S. S. Durfee \&Co., will be dune hy the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be promp,ly attendell to, and ropes will be shipped to any port in the United States. 12th month, 121h, 1836. Hadson, Columbis County State of New-York.
33-:f.
ROBT. C. FOLGER.

PATENT RAILROAD, SHIP AND bOAT SPIKES.
The Troy Iron and Nail Factory keeps cony for salea very extensive assortment of Wrought Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years successful operation, and now almost universal use in the United Stater, (as well as England, where the aubscriber obtained a patent,) are found superior to any ever offered in market.
Railroad Companies may be aupplied with 8pikea having countersink heads suitable to the boles in inon rails to any amount and on short notice. Almost all the Railroads now in progress in the United Statew are fastened with Spikes made at the above named factastened with Spikes made at the above named face-
tory - for which purpose they are found invaluable. as their adhesion is more than double any commeri spikes made by the hammer.
*** All orders directed to the Agent, Troy, N. Y. will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spikes are kept for sale, at factory pricra, by 1. \& J. Townsend, Albany, and the principal Iron Merchants in Albany and Troy ; J. I. Brower, 2r2 Wauer atreet, New-York; A. M. Jonea, Philadelphia; T. Jarviers, Baltimore ; Degrand \& Smith, Boston.
P. S.-Railruad Companies would do well to forward their orders as eurly as practicable, as the subscriber is desirnus of extending the manufacturing 80 as to keep pace with the daily increasing demand for
his Spikes. (IJ23am) H. BURUEN

RAILWAY IRON, LOCOMOTIVES,\&c.

THE subacribers offer the following articles for sale.
Railwey Iron, flat bara, with countersunk holes and raitred joints,

280 " 2 "

with Spikes and Splicing Plates adapted thereto. To be sold fien of duty to State governments or incorporated companies.
Orders tor Pennsylvania Boiler Iron exectated.
Kail Road Car and Locumotive Eingine Tires, wrought and turned or untumed, wady to be fitued of the whecls, viz. $30,33,36,42,44,54$, and 60 iachea aiameter.
E. V. Patent Choin Cable Bolts for Railway Car xles, in lengthe of 12 f.el 6 inclies, to 13 feet \&t, $2 t$ $3,3 t, 3 t, 31$, and 31 inches diameter.
Chains for Inclinad Planea, short and atay linke. manufactured from the E. V.Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Plines, made from New Zealand fax.
Also Patent Hemp Cordage for Inclined Planpz, and Canal Towing Linea.
Paient Felt for placing between the iron chair and tone bluck of Edge Ra:lways.
Every description of Railway Iron, as $n \cdot l l$ as Locomotive Engines, imported at the shorten notice, by the agency of one of our partners, who resides in Fagland tor this purpose.
Mr. Solumon W. Roberts, a highly reapectable American Einginecr, resides in Eingland for the purpuse of inspecting all Locomutives, Machinery, Baifway lion \&c. ordered thruagh us.
A. \& G. RALSTON.

28 tf
Philadelphia, No.4, South Front st.

MACHINE WORKS OF ROGERS,

 KETCHUM and GROSVENOR, Paterson, NewJersey. The undersigned receive ordera fur the fol luwing articles, manufactured by thrm, of the mont superiur descripion in every particular. 'I heir worke beng extensive, aud the number of handa employed being large, thes are onabled to execute both harge and small orders with promptness and deapatch:RAILROAD WOIRK.
Locomotive Stenm-Engines and Tenders; Driving and uther Lucomutive Wheele, Axles, Sprint;s and Flange Tires ; Car Wheels of east iron, from a veriely of patlerns, and Chills; Car Wheels of cast iron. rieth wrought Tires; Axles of best American refined
with with wrought Tires; Axles of best Americ.
iron ; Springs ; Boxes and Bolta fur Cars.
COTTION WOOL A, DD FLAX MACHINERY,
Of all descriptions and of the most improved Pat Mill Geryle and Workmanship.
Mill Geeriog and Millwright work generally; Hydraulic and other Presses; Frese Screws; Csllen ders; Lallises and Tools of all hirds; Irun and Brae Castings of all descriptione.

RUSERS, KETCHUM \& GROSVEVOR
Patharxon, New-Jersey, or 60 Wallmsery, N. Y

AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTIS.

PUBLISHED WEEKLY, at NO. 132 NASSAU STREET, NEW-YORK, at five dollars per annum, Payable in advance
D. K MUNOR, and

GEORGE C. SCHIAEFFER, $\} \begin{aligned} & \text { EDitors AND } \\ & \text { Prorietors.] }\end{aligned}$
S.ATURD.AY, MARCII 11; 1837.
:VOLUME VI-Na, 10.

CONTENTS:

Adver'inomenta, Editorial Notices. 145 Railroad and Canal Stocks ; Steam Mill ; Rail. romed and Locumotives.
Reilroeds.
Ilinois Internal Improvements. 143
Traneactions of the Inatitution of Civit Eingineers 149 Rains of the ancient city Aztalan............ . . 151
Buider's Manual. .
Agrigulture, etc 152

AMERICAN RAILROAD JOURNAI
NEW.YORK, MAKCH 11, 1837.

FOR SALE AT THIS OFFICE,

A Practical. Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pambour- 150 pages large octavodone up in paper covers so as to be sent by mail-Price $\$ 1$ 50. Postage for any distance under 100 miles, 40 cents, and 60 cents for any distance excecding 100 miles.

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price \$1: Postage, 20 cents, or 30 cents, as above.

Axso-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage, as above, 8 cents, or 12 cents.
** On the receipt of $\$ 3$, a copy of cach of the above works will be formarded by mail to any part of the United States.

10 10t

AVERY'S ROTARY STEAM EN.

 GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving Saw. Mills, Griin-Mills, and other Manufactories of any kind.Engines only will be furnished, or accom. panied with Boilers and the necessary Ma. chinery for putting them in operation, and an Engineer always sent to put them up.
Information will be given at all times to those who desire it, either by letter' or by exhibiting the Engines in operation in this

Inquirics by letier s!ould be very explicit and the answers stull be equally so.

D. K. MINOR,

132 Nassatl-st., New York.
With unleigned p'easure wo announce the speedy commencement of the Croton Aqueduct, a work interesting to all concerned in Interual Improvement, but ol vital importance to the inhabitants of the city of New. York.
'Ihe attention of Contractors is invited to the following announcement of the Water Commissioners.

From the nature of the work, and the substantial source from which the funds are drawn, we anticipate a large number of applications on favorable terms.

CROTON AQUEDUC'I.
NOTICE.-Sealed Proposals will be received by the Water Commissioners of the eity of New-York, until the 22d day of April next, at 3 0^{-c} clock, P. M., at their office in the city of New-York, and until the 24 th day of April, at 9 o'clock, P. M, at the office of their Engineer in the village of Sing Sing, for constructing a Dam across she Croton River, for the Excavation, Eubankment, Back Filling. Foundation and Prutection Walls; for an Aqueduct Bridge at Sing Sing, three Tunnels, several large and small culverts, and an Aqueduct of stone and brick masonry, with other incidental work, for that portion of the Cruton Aqueduct which exunds from the Dam on the Croton to sing sing, being between eight and nine miles in length
The prices tor the work must include the expense of materials necessary for the completion of the same, according the plans and specifications that will be
presented for examination, es horeinafter mentioned presented fur examination, es horeinafter mentioned.
The Work to be completed by the first day of Uc-
The Work to be completed by the first day of Ucober, 1839.
Security will be required for the performance of contracts-and yropusitions should be accompanied by the names of responsibie persons, signifying their assent to become sureties. If the character and re-
sponsilities of those proposing, and the sureties they shall offer, are not known to the Commissiviers or Eirgineers, a certificate of good character, and the extent of their responsibility, signed by the first judge or clerk of the county in which they severally reside, will be required
No transfer of contracts will be recognised.
Plan of the several structures and specifications of the kind of materials and manner of construction, may be examined at the office of the Commissioners, in the city of New-York, from the 10 th w the 14 th, inclusive, of April next. The line of Aqueduct will be located.f and the map and profile of the same, wgether with the plans and specitications above meniiunad, will be ready for examination at the office of the Engineer, at the village of Sing Sing, on the
15 th day of A pril wext and the Chief or Resideut

Engineer will be in attendance to explairs the plans, \&ic, and to furnish blank propesitivus.
Persons proposing for more work than they with to contract for, must specify the quaniny they deciipe
to take w take
The fult names of all persuns that are parties to' any pruposition, must be wrikert unt in the iguature for the same.
'The partiesintu the pruposinions which' may be necepted, will be required to enter into coltracte inativodiately atier the acceptance of the same.
The undersigned reserve to themselves the right to acsept or reject proposats that may be offered for the whole or any part of the above described work as they may consider the public interest to requiro:

CEPIEN ALLEN,
CHARLES DUSENBURY, Water
SAUL ALLEY,
Commiseionory.
JOIN B. JERVIS,

Chief Eingineer, New- Y ork Water Works. New-York, Fehruary 23, 183\%. : 105

TO ENGINEERS.

WE are gratified to be able to announce to those desiring Instruments, that Messrs E. \& G. W. BLUN'l' of this city, are now prepared in furnish at short nutice, LEVE:LS, from different minnuacturers, amung others from Troughton \& Sima, which they warrant of the first quality. CircumfMathematical Instruse Staves, Prismatic Compassen, Mathematical Instruments, Buoks for Ergineers, etc.
constantly on hand. cunstantly on hand.
Une of the above firm is now in Fngland superint teuding the manufacture of Theodolites, 'Tmnsm Instrumei ts, etc.-a ad any orders for Instraments, nos now on hand, will be forwarded him, and execined promptly.
** Orders will be received and promptly attended t, by the Ediwers of this Journah. 9 it
Preserve your Receipts, especially for newspapers, and periodicals, as such accounts ure more numerous than in most other kiuds of business and therefore errors are more like to occur. To avoid errors in our accounts, and to give the parties interested an early opportunity to correct them should they occur, we have adopted the plan of publish. ing in each number, the name, residence, and date paid to, of those who have paid during the week-and we request early information should error be detected by subscribers.

Payments in Anvance.-Our friends who have so promptly paid in advance, for tiee current year of the Journal, will pleaso accept our thanks. Those who have been to busy to think of such a trifle, will have the goodness to receive "in advance," oup thanks, and then we shall have no occasion
to respeat the expression on recciving their favors.

To those who have been so constantly engaged in business as to omit to pay for prerious ycars, we will merely say-it will afford us much pleasure to receive the amount and record their names as paid to January 1838.
railroad and canal STOCKs, in New-York and Philsdelphia.

SALES OF STOCK IN NEW.YORK

Mohawk Reilroad
Pat rson Railroad
Buston and Providenc
Now.Jersey Trans.
Stoninglon
Long lsland Raiiroad
Paterson Railrond
Stonington kailruad
Harlaem liail vad
Utica and Schenectady
Dela ware and Hudson Canal
PIILADELPIIIA STOCK MARKET.
Fehruary 24ih.
RAJLRUAD STOCKS

New-Casile and F'renchiown Do luan, $5 t$ pur cent
Wilmington and Suaqu hanna
Camden and Amboy, shares, Jo luan 6's 1836
Danville and P sharea
Norristuwn, do Du 6 per cens loan
Valles Katruad
Westchester do
Minelinll do
N. L. and Penn. Tp. do

Philadrlphia and Trenuon do
Weit Phladelphia Railroad
Harrishurg and Lancaster
Comberland
Beaver and Meadow
25

10 10099 JU1 | 50 | 39 | 42 |
| :--- | :--- | :--- | $\begin{array}{lll}140 & 136 & 1361\end{array}$ 100110120 $\begin{array}{lll}50 & 25 & 35\end{array}$ $30 \quad 34314$ $\begin{array}{lll}500 & 85 & 3100 \\ & 71 & 1\end{array}$

MIsCELLANFOUS STOCiks

North American Cual Company
Steam Bt. Sty. Columbian
Exchange Stuck
Arcado
The ares-Chefinut atrees -_Arch atreet Gas Company

CANAL STOCKS.
Schuylkill Navigation, share:

Do loans, 5	1843	
Do	do	1855

Wh do 54 1837
Lehigh Coal and Narigation
Do loan, 6
1838
$\begin{array}{rrr}\text { Du } & \text { lomn, } 6 & 1833 \\ \text { Do } & \text { do } 6 & 1839\end{array}$
Do du $6 \quad 1844$
Du du
Union Canal, shares
1\% Juar, shares 1836
do

Do luan, $\quad 1837$
Bo ware

Lo do
Delaware and Hudson, 1) u Juaa

Lonisville and Poriland
Cunvariible 6 per cent. Joans,
Samly and Bever
Murris Canal
Stean Mill.-We understand that the stock for the purpose of erecting a steam mill in this village, with three or four run 0 . stone has been uearly all taken up, and thal the work will be speedily commenced.[Goshen, Orange Co. Democrat.]
The above paragraph indicates a determination to make Goshen a place of business and of the success of the measure
we have not a doubt, as we understand the compauy propose to put up one of Avery's Rotary Engines-which is probably the most suitable nachinery in use for mills, either for sawing or grinding.
The manufacturers of those engines, will guarantee the engine to grind one hundred bushels of vheat with a cord of maple wood, or half a ton of Lehigh Pea Coal and one man will superintend the engine and make the fire for ten or twelve hours in the twenty-four.
railroads and locomotives.
In laying the following communication before our readers, we feel compelled to reiterate the remarks made in publishing other articles on the same subject. As far ns we are concerned, and as far as we understand the notions of those who have taken up the performances of Mr. Norris' and other powerful engines, as arguments against the use of stationary power and excessive excavation and embankment in ordinary cases, it is not intended to recommend the adoption of 360 nor ever of 100 feet to the mile as a suitable grade for railroads. No one can be so toolish as to propose these or any other grades as uniformly proper upon railroads, yet many of the remarks in the following communication as well as in others, on the same subject, are predicated upon such a supposition.
We understand these performances only as proofs of the great superiority of our American Locotnotives, on any and every grade. There is no doubt but that the experiments on the Columbia Railroad give a greater adhesion than those of any former trials, but of the fact there can be no doubt. We were of a party of 53 persons, in two passenger cars, drawn with the tender up the inclined plane, rising 360 feet in a mile, at the rate mentioned in a previous No. and this without any start, the engine being stationary at the foot of the plane.
We ' ave the discussion of this subject, as far as the theory is concerned, to those who have time to examine in oo the matter.
As for Mr. Norris, he goes upon the principle that "facts are stubbern things," and wo understand that in a week or two he will be able to make another and more conclusive trial of the power of his engines.
As to the remark in the communication on the blowing off of steam, we consider with the writer that this is no argument at all of superabundant power.
We are always obliged to our iriends for communications on this subject ; much discussion has already taken place in our
paper, and we are convinced with a happy result.
Any remarks, facts or calculations on a theme so prolific and so intimately connected with the science of civil engineering, can never come amiss.

For the Railroad Journal.
Fredonia, Fel. 7th, 1837.
To D. K. Minor, and

Geo. C. Schazffer, $\}$

Gentlemen,-I heve read in your paper of the 24th December, a Circular, by William Norris, Esq., of Philadelphia, containing an account of some very wonderfal feats said to have been performed by his Locomotive Engines, on the Columbia Railroad. Some of these were published last summer, but have not as yet, I believe, been noticed by scientific men, from the fict, I suppose, that the errors in them were so enormous and so apparent, that they stpposed they would be detecied by all, and were not therefore worth exposing.But the mass of those who read these accounts, now again put forth as facts, and who are interested in Railroad Improvements, are not scientific men, and it is to prevent such from daily quoting and swallowing absurdity with such grave astonishment, that I send you the following exposition. I have not the least desire to projudice community against Mr. Nurris' engines, which I have no doubt are really very superior ones, but I do not wish capitalists to mistake stecp roads for cheap ones, or to suppose they are going to draw loads which are really impossible for Mr. Norris' engines or any others.
I shall confine myself to the first and last articles of this Circular, merely premising that the others are records of deeds done in equally flagrant and open violation of the laws of gravitation. In the first article in this Circular, tiken from the Railroad Journal, of July 16th, 1836, it is stated that the engine "George Washington" started at the foot of a plane, having an inclination of ${ }_{1} \frac{x_{0}}{0}$, without previously acquired velocity, and went up said plane at the rate of $15 \frac{1}{2}$ miles per hour, drawing a load of 19,200 pounds, with a pressure under 60 pounds per square inch in her boiler.Now the resistance to motion which an engine must overcome when ascending an inclined plane, is composed of the following tems, viz. :
1st. The friction of the load $=8$ pounds per ton of said load.
2nd. The gravity of the whole mass= the whole weight multiplied by the size of the inclination.

3rd. The additional friction caused in
the engine by the load it draws $=1$ pound per ton of said load, including gravity; and
4th. The friction of the engine without load, which varies with different engines, but is never far from 15 pounds per ton weight of the engine.
In the case before us, the fric-
tion of the load $=\frac{8 \times 19200}{2240}$
$=63.56$ pounds,
The gravity of the mass
$=34130 \times \frac{7}{100}=2389.10$
pounds,
This being divided by 8 , gives 298.63, to which adding
8.57 (the weight of the engine in tons), gives a total load $=\mathbf{3 0 7 . 2 0}$ tons on a level,
which causes therefore an ad-
100.00
ditional friction of 307.20
pounds,
$R=2864.86$
The friction of the engine without load $=\frac{15 \times 14930}{2240}=100.00$ pounds, makiug
in all, a resistance $\mathbf{R}=\mathbf{2 8 6 4 . 8 6}$, to which the power applied to the engine must at least be equal, in order that it sh uld advance.

The dimensions of the "Goorge Washington" are thus given:

$$
\begin{aligned}
& \text { D=diameter of driving wheels } \\
& =48 \text { inches, } \quad \mathrm{D}=48 \\
& d=\text { diameter of cylinders } \\
& =10.25 \text { inches, } \quad d=10.25 \\
& l=\text { twice the length of the } \\
& \text { stroke }=35.25 \text { inches, } \quad l=35.25 \\
& \mathrm{~W}=\text { weight of engine }=14.930 \\
& \text { pounds, } \\
& \mathrm{W}=14.930 \\
& w=\text { adhering weight }=8700 \\
& \pi=3.1416
\end{aligned}
$$

The area of both pistons will be $\frac{1}{2} \pi d=$ 165 sq. in., which being multiplied by 60 , the pressure per square inch, bclow which it is stated the engine worked, and we have 9900 pounds power applied to the pistons; but as the power applied to two different points in the same machine is in the inverse ratio of the velocity of those points, and as the velocity of the piston is to that of the engine, as twice the length of the stroke to the circumference of the driving wheels, the 9900 pounds power applied to the piston, must be multiplied by the ratio $\frac{l}{\Gamma D}=\frac{1}{4.278}$ to transfer it to the engine. This gives the power of the engine $p=2314.16$ pounds, which it will be seen by refering to the table of resistances above, was insufficient to overcome the force of gravily. Therefore supposing the "George Washington" to be one of those Utopian

Motors, which move themselves and their loads without a pound of friction, yet the feat is impossible, without we can also "suspend the rule," with reference to the immutable law of gravitation. In the case of no friction, the engine placed upoa the plane, with the forces applied exactly as stated to have been, instcad of going up the grade, would go down, impelled by a constantly accelerating force, equal to $(g-p)=75$ pounds. Ac.ualiy, the engine would have remained in equilibrium on the plane, the surplus of gravity over the power of the engine being insufficient to overcome the friction which retards the downward, as well as the upward motion.
The statement thus demionstrated so vitally wrong, ones confidence in the whole experiment is greatly impaired. For instance, I am inclined to believe, that the load actually drawn up the plane, was not so great as stated, since this gives for the adhesion a value of about $\frac{1}{3}$ the adhering weight, which is more than twice as great as any yet observed elsewhere. But supposing the load to have been exactly as stated, then the pressure in the boiler and cylinders must have heen enormously greater. It is easy to calculate hoor much greater it must necessarily have been.The analytical expiession for the effective pressure in the boiler of an engine, in order that it may draw a given maxımum load, i; thus given by Pambour, $p-\delta^{\delta}=\frac{D(9 M+F)}{\frac{1}{2} l d^{2}}$ in which ρ represents the elastic force of the steam, $\delta=$ the atmospheric pressure per same square unit, and F, the friction of the engine without load. In this formula, putting for the Algebraic quantitics their values, we have the effective pressure $\rho-i$ $=\frac{48 \times(2763+100)}{\left(4_{1}^{1}\right)^{2} \times\left(\frac{4}{8}\right)}=74.2$, so that the engine must have worked at the pressure of 74.2 pounds per square inch.
The Editor of the "National Gazette" concludes his comments on this performance with the following: "It is remarkable that the engine was blowing off, on her arrival at the top, having acquired speed! and power during the ascent." It is indeed "remarkable" that this sapient editor did not know, that the blowing, instead of indicating a gain of speed, wis occasioned by the loss of it. If an engine goes a certain speed, and if by some obstacle her speed is reduced to one half, the fire being animated the same as before, about the samc amount of steam is generated in the boiler in the ame time, while- only half the number of :ylinders of steam is used-the conse. quence is, that the pressure riscs in the
boiler which lifts the valve, and causes the blowing which was so edifying to the Ed1tor of the Gazette.
I now come to the last article in the Circular, wherein Mr. Norris states that the engine, "Washington County Farmer," drew $141^{3} \frac{3}{3}$ tons, over a rise of 47 feet per mile, at the velocity of 22 miles per hoour. In this case, the whole resistance $R=4759$ pounds. The dimensions of this engine are not given, but supposiag the ratio $\frac{l}{\approx \mathrm{D}}$ the same as in the "George Washington," and the diameter of the pistons $=11$ inches, such an enormous pressure is required as to throw an air of incredulity over the per= formance. Please give if you can, the dimensions of this engine, and the pressure employed on this occasion.

Your obedient servant,
A. G. Steene,

New-York and Erie Railroad.

From the Philadelphia Comnercial Herald.
 rallroads, \&c.

The fair prospect of having shortly in ac: tual existence, a concatinating rout, for such velocity of transition as is afforded on railroads, and by steamboats on navigable rivers; between Porland in Maine, at the Northeastern extremity of the Union, and New. Orleans in Louisiana at its opposite extreme a distance of 1745 miles; is a matter of lively gratulation ; and what, ten years ago could not have been anticipated by the most sanguine; nor could hopes, now reasonable; have then becn cherished of the rapidity with which it seems this country is destined to arrive at greatness unparallieled by any other nation whilst in a state of adolesence. But it is now an unquestioned fact, that the vast project is not only in great progress, but likely soon to attain its consummation.
Portla:d, prior to the year 1832, was the seat of government for Maine; and in 1833 contained a population of 12.601 persons. For commerce it is conveniently located, one of the finest harbors on the continet, easy of access and seldonm frozen over. From this place to Dover in New-Hamp. shire a Rai road has been incorporated. The distance is 52 miles. Dover is a flourishing town at the head of the tide on the Cocreco 12 miles north-west of Portsmouth, on the Piscataqua, a river into which the Cocheco cmpties.
Portsmouth is the largest town in NewHampshire, and in 1830 its population was $3,0 \not 2$. The harbor is excellent, easy of iccess, and owing to the agitation of the water from the rapidity of the tide, never frozen. In 1836, a railroad was incorpoated, and it was commenced in July of the same year-to extend between this town ind Bostox, in Massachusetts. and is now in progress. Its location is by Newbury. port, a distance of 25 miles; thence by JALEM 20 miles, which is 14 miles from 3oston. Salem is the cecond town in New. England for commerce, wealth and populetion, which, in 1830, was 18,886 . The po-
pulation of Newburyport, the third commercial town in the State, was at the same period 6,388.

From Boston there are several routes to New.York. That by the Boston and Pro vidence Railroad, 41 miles in length, has been in use since June 183.5; where two trains of cars for passengers pass through each way daily, Sundays excepted; and another, called the steamtoat train, connected with the New-York and Providence steamboat line, conveys passengers to and from Providence every day the steamboat arrives there and departs thence.

That by Providence, and extending thence to Stonington, Comn., 47 miles, is in progress and expected soon to be completed, and will be connected by a ferry, 25 miles across, from Stonington to Greenport, Long-Island, with the Long-Island Railroad, 98 miles long; together 211 miles from Boston to New-York.

The other routc is by the Boston and Worcester Railroad, 44 miles in length to Worcester, on which, trains of cars for passengers pass through each way two or three times daily, Sundays excepted. The Western Railroad, extending from Woreester to the Connecticut river at Springficld, 48 miles, and thence to the boundary linc of the State of New York, where it will unite with railroads in progress to Albany, to Hudson and to Troy, was commenced in 1836. In the same year a railroad from Springfield to Hartford, Connecticut, 28 miles, was incorporated, which will meet one in progress from Hartford to New-llaven, 34 miles; thence to New.York, the distance is 76 miles. In all, by this route between Boston and-New.York, 230 miles. Between New. York and Philadelphia two routes exist. The one by steamboat from New. York to South Amboy, in New.Jersey; thence by the Ciunden and Amboy railroad, which was completed in 1832 to Burdentown, passing Spottswood and Hightstown, 35 miles ; and thence through Burlington to Camden on the river Delaware, cpposite Philadelphia, 26 miles; total 61 uniles from Amboy. The whole distance probably 85 miles through, during the greatest portion of the year, whilst no danger of obstruction by ice is apprehended. Steamboats are the vehicles of conveyance between Bordentown and Philadelphia on this route. The time occupicd in the passage from New. York to Philadelphia, this way is 7 or 8 hours.

The other communication between those two cities is by the New. Jersey Railroad, extending from Jersey city on the river Hud. son opposite New.York, through Newark, Elizabethtown, and Rahway, to New-Bruns. wick 31 miles in two hours. This road is in progress of coutinuation to the Delaware Bridge at Trenton 27 miles to meet there, the Philadelphia and Trenton Railroad, $26 \frac{1}{2}$; total 85 miles.

Between Philadelphia and Bultimore there are 2 routes-onc, by Steamboats on the river Delaware, 33 miles to New-Castle, in the State of Delaware, thence by the NewCastle anid Frenchtown Railroad. 16 miles completed in 1832, and thence on the Susquehanna river, Chesapeake Bay and the Patapsco river by Steamboats to Baltimore. The whole distance upwards of one hun-
dred miles. The other route, not yet completed; is the Philadelphia and Baltimore Railroac: from Philadelphia to Wilmington, in Delaware, there to be united with the Wilmington and Susquehanna Railroad, which forms a junction with the Baltimore and Port Deposit Railroad at Havre de Grace. Distance from Philadelphia to Baltimore 93 mules.

From Baltimore to the city of Washington, 40 miles by the Baltimore and Ohio railroad, thence by the Baltimore and Washington railroad 31 miles; completed in 1835 ; the whole distance, 40 miles. From Washington, the metropolis, by steamboat on the Potomac, passing, on the right bank Alexandria, to the termination of the Richmond, Fredericksburg, and Potomac railroad 50 miles.

Alexandria is a city of extensive business, containing a museum, in which are deposited, among other rareties, an elegant satin robe, scarlet on one side and white on the other, worn by General Washington when lie was baptized; a penknife with a pearl handle, presented to him by his mother in his twelfth year; a pearl button from the cout le had on at his first inauguration as President of the United States; a black glove which lie wore when in mourning for his mother ; a part of the last stick ot scaling wax he used; the original of his last letter, written by him, apologizing in behalf of Mrs. Waslington and himself, tor declin. ing an invitation to a ball at Alexandria ; a beautiful Masonic apron, with the belt of scarlet satin, and the white kid gloves worn by him the last time he participated in the social ceremonies of that institution.

From this termination, the said road, which will soon be completed, is located over the river Rappahanock, through Fredericks. burg, a place of considerable commerce, to Richmond, the seat of Government for Virginia, and in a beautiful and picturesque site. at the head of the tide, and at the falls of James river, and the largest town in the State, favorably situated for trade and manufactures, with an extensive commerce; 58 miles.

From Richmond to Petersburg, a railroad was incorporated last year. Petersburg is on the river Appomatox, at the head of the tide, the third commercial town in Virginia, and its trade in flour, tobacco and cotton, is considerable.

From Petersburg to Blakely, on the river Roanoke, 59 miles, a railroad is in operation ; from thence, a railroad has been incorporated to Raleigh, and is now in progress. Raleigh, 148 miles from Riclamond, is pleasantly situated near the centre of North Car. olina, and the seat of the Statc Govern. ment.

From Ralcigh to Faẏettville, regularly laid out near the West bank of Cape Fear river, at the head of navigation, and one of the most flourishing towns in North Carolina, a railroad has been projected-and another, thence to Charleston, South Carolina, in order to complete the line from the Potomac by Fredericksburg, Richmond, Petersburg, and Raleigh to Charleston. Between the two last named cities, the distance is about 274 miles.

From Charleston to Cincinnatı, Ohio, a railroad is projected, and charters hive been obtained lrom the legislatures of all thell

States through which it is to pass, and the distance computed at 607 miles. Thence it is designed to be continued to Louisville, Kentucky, 93 miles. From whence the communication is on the rivers Ohio and Mississippi, to New-Orleans.
From Charleston, South Carolina, the South Carolina railroad extends to Hamburg, on the river Savannah opposite to Augusta, 136 miles, and was completed in 1833.

From Augusta, Ga., a railroad is in progress to Athens, a distance of about 100 miles. And from the same city of Augusta, a railroad is projected to Columbus, on the Chattahooche, 210 miles; thence to Pensacola in Florida, about 110 miles, passing by Monticello and Montezuma.
From Baltimore to Wheeling, on the river Ohio, a railroad has been in progress since 1828. The distance is about 360 miles.

From Philadelphia to Pittsburg, situate at the head of the river Ohio, an eligible route has been ascertained for a railroad, which, no doubt, will be constructed before a lapse of many years; when a passage may be made over land from Portland, in Me., to Pittsburg, at a moderate calculation in the space of three days, whence steamboats ply on navigable rivers, to New-Orleans.

This sketch, it will be perceived, deline. ates the most prominent routes from the extreme north-eastern State in the Union, on the Atlantic, to the extreme south-castern Territory, with three lateral divergences to New-Orleans. And should the progress of improvement that has taken place within the last ten years, continue undisturbed, before the expiration of ten years more, the journey between Portland and New-Osleans, will be effected in six days.
X.

ILLINOIS INTERNAL IMPROVEMENTS.
The folowing extract from the report of a "Committee on Internal Improvement," to the Legislature of Illinois, evinces a disposition to keep pare with the other States of the Union-Illinois could not be expected to do less_more could hardly be expected frem the oldest and most powerful States in the Union.

The works which your committee have concluded to recommend to the consideration of the house, are given in the annexed schedule, together with the estimated costs and amount appropriated to each, viz :
1st. Improvement of Great
2d. Improvement of the 11 -
linois River
3d. Improvement of Rock
$\$ 100,000$ River

100,000
100,000
4th. Improvement of Kaskaskia River

50,000
5th. Improvement of Little Wabash River

50,000
6th. Improvement of Great Western mail route

100,000
7th. Central Railroad from the mouth of Ohio to Galena

3,500,000
8th. Southern Cross Railroads

1,600,000

9th. Northern Cross Railroads

Amounting to
$\$ 7,450000$
The said several works and the routes of the said railroads, are particularly described in a bill for "An Act to establishi and main. tain a general system of Iaternal Improvement," accompanying this report.

The estimated average costs of the respective railroads per mile. your committce have put a fraction less than eight thousud dollars, and have judged of the respective length of each, from the maps of the State, executed from that derived from the public surveys. From a topographical knowledge of the country, derived from the persona! obsereation of different members of the committee, it is believed, that the sum of four thousand dollars per mile, on an average throughout the State, will be a liberal estimate for the graduation and bridging of a road bed adapted to a double track railway ; and your committec have supposed, that four thousand dollars per mile, will be sufficient to lay down a substantial single track railway, adapted to locomotive power, and to the transportation of the bulky staples of the State, at the cheapest rates of tolls and chargrges. A single track railway, with necessary turn outs in suitable parts, to admit the passage of the trains moving in opposite directions, will alone be neccssary, and prudent to construct in the first instance; and the facilities afforded by the track in laying down an additional one which may be deemed necessary by the Legislature, and materially reduce the cost of constructing the second track.

TRANSACTIONS OF THE INSTITUTION OF cIVIL ENGINEERS.
It is seldom that we are enabled to give our readers so great a treat, as they will have in the perusal of the papers from this valuable work.

It is well known, that the most eminent engineers in England have formed an Institution for the advarcement and improvement of Civil Engineering as a profession. The papers read befure the society, some by the most distinguished members of the profession, have been collected in the elegant and costly work now before us, but few copies of which are in the United States.

We hasten to lay before our readers the various papers, as rapidly as the cuts can be prepared.

The expense of the work and its scarcity, will prevent the members of the profession (with but few exceptions) from obtaining even a sight of the Vol., we have therefore, without hesitation, determined to give as great a circulation to its usefulness as possible, though the expense incurred is not trifling, while our readers are enabled to have before them the cream of a work, costing double our yearly subscription, and not to be had for that, as it is only furni shed to the few subscribers in this country.

We have alrcady endeavored to give whatever may be new and useful to the profession, and our exertions shall not be intermitted,-the present No. is given as a guarantee of our promise.

We give in this No. the following papers: On jrocuring surplies of Water for Cities and Towns, by boring. John Sea: ward, Esq., M. Inst., C. E.

Some account of several sections through the Plastic Clay formation, in the vicinity of London. William Gravatt, Esq., F. R. S., M. Inst., C. E.

Some account of Boring for Water in London and its vicinity. John Donkin, Esq., M. Inst., C. E.
on PROCURING SUPPLISES OF WATER FOR cITIES AND TOWNS, BY BORING. COMmunicated by mr. JOHN SEAWARD, M. inst c.e.
A French gentleman of our anquaintance having recently addressed upon a project of supplying the different towns of France with water, by means of boring in the earth, according to the method which has come lately a good deal into fashion in different parts of England, and thus having brought the subject under our mature deliberation ; we offer the following remarks, which we were led to give in reply, with the hope that they may be found not altogether uninteresting to the In. stitution.

In the first place, as respects the project of furnishing water to the diffirent towns of France by means of simply boring in the earth; if by this is intended that the various towns are to be supplied with water econo. mically, for all domestic and manufacturing purposes, in the same abundant manner that it is furnished to the inhabitants of London and other towns of England, we must at once declare without any hesitation that, as a general principle, the scheme will be abortive, and if attempted will infullibly end in loss and disappointment.

In stating thus explicitly our opinion, we do not wish to be understood as being anywise unfavorable to boring in general; on the contrary, as an art when employed un. der suitable circumstances, we know that it can be made, on various occasions, highly subservient to the wants of man, but we also know that with many persons, a very erroneous opinion prevails as to the economy, and other merits and advantages of the art.

The method of "simple boring," as it is called, is not adapted for all situations and places ; it requires a combination of circum. stances not generally met with ; London and the surrounding district, whercin this art has been most successfully practised, is highly favored in this particular ; the stratum of soil is a bed of clay, varying from 100 to 200 feet thick, and is therefore very easily bored through. . It is remarkable that the springs under the bed of clay produce the finest and most salubrious water, while those above the bed of clay produce water so im. pure as to be unfit even for the most ordina. ry purposes. It is therefore easy to conceive, that this method would here meat with the most favorable encouragement, but in districts where the same circumstances do
not exist, there would not be the same induceinent to follow 1 t.
"Simple boring," is suitable only when the quantity of water required is comparatively small : thus if the object be to furnish a very superior water for a nobleman's mansion, for a small village or neighborhood, or even for a single manufactory, then this method is almirable, provided the circum. stances are in any proportion as favorable as in the district which surrounds London; but if the question be to provide an abundant supply of water for a large town or populous city, then certainly in every casc, the method of boring should, on the score of economy, be the last that ought to be resorted to for the purpose.

Tinat the bowels of the earth contain springs of water in abundance, there can be no doubt ; miners and colliers are aware of this fact to their cost and sorrow : but we know full well that those same springs, if thoy have sufficient natural force, must find their way to the surface of the earth somewhere, without any boring, and then form rivers and flowing brooks. Wiy then delve a great depth at an infinite expense, to procure that winch we can generally obtain so readily and economically on the surface of the earth ?

Tisere is scarcely a city or town of any maginitude but what has some fine river or copious brooks in its immediate neighborhood, these are the natural sources whence we should obtain our supply of water; but if the streams in the vicinity are so impregnated with deleterious matter, as to render the water untit for domestic or manufacturing purposes, and if no ready methol can be adojted for cleansing it, recourse should then be had to the water that falls from the heavens; tanks and reservoirs, (similar to those employed in feeding navigable canals,) should be formed in convenient situations, to receive the rain-water which falls on the adjacent hills: either of these means would furuish an abundant supply of this necessary element constantly and economically.

It is perfectly true, that a populous town may be so situated as to be at an inconven. ient distance from any salubrious river or brook, whence to obtain water, and local circumstances may be such as to render it impossible or inexpedient to form in the vicinity tanks or reservoirs to collect the rainwater from the hills; in this case, there appears to be no alternative but that of obtain. ing a supply from the bowels of the earth : in such case, it will be necessary to sink very capacious wells or shafts to a great depth, with suitable pumps and steam-engrines, to bring the water to the surface; and even then the supply may be so scanty as to ren. der it necessary to drive (in various direc. tions) horizontal levels or galleries from the bottom of the wells or shafts, in order to break in upon the springs wincla may exist at a distance; similar to the method practised in the salt-works of England, to obtain a co. pious supply of the brine ; but in such case to expect that by simply boring down into the earth, a plentiful supply of water can be obtained for the domastic and manufaciuring purposes of a populous town, is to expect what rarely or never can be accomplished.

The modern plan of boring to obtain water has been, without any rational grounds
cried up as a new and wonderiul discovery, but the truth is, that boring is an operation of great antiquity ; the miscr and collier make use of it in a variety of ways, and it has from time immemorial been a useful auxiliary to the well-digger ; he employs this process to discover where springs of water exist. By this means he can at a comparatively small expense detefrmine whether the situation is favorable or not for forming a well; at the same time he can ascertain the quality of the water when obtained, and the probable ultimate expense whicil must be incurred in order to secure a regular supply.
In some instances it has happened that in boring, from the cause just stated, the water has of its own natural force risen up through the hole, and fiowed over the surface in considerable quantity, and thus, without much further trouble or expense, a tolerably copious supply has been obtained. This circumstance it is that has brought into favor the iden of depending on simple boring alone as a regular systematic method of obtaining a supply of water; and it is but right to say. that the met'iod, in many instances, has been rematrably successful; but it should be borne in mind, that the supply, copious as it is called, has scarcely in any one instance exceeded what would be required for a moderately extensive manufactory, of for the domestic use of a yery small village; more. over aldhough considerable success has attended many of the experiments made to obtain water in this way, yet it is most certain that, as regards the obtaining of an abundant supply by the simple process of boring alone, in a majority of cascs, the method has completely fai.ed ; and, atter a very heavy and useless expense and loss of tim has been incurred in these failures, recourse has at leugth been had, either partially or wholly, to sinking a well.

The most rational plan for obtaining a good supply of water from under-ground is in the first place to sink a well to about hali the depth at which it is supposed the spring of water cxists: thus, if the spring is judged to be 100 yards below the surface, then tise well may be made 50 yards deep; this being properly built up and securell, the engine erected, and suitable pu:nps fixed, the remainder of the depth to the spring may be pierced through by the process of boring, and in this way a copious supply of water is frequently obtained. and as may be readily judgerl, the quantity of water obrained will vary according to the greater or less depth to which the well is formed; but et the same time it should be observed, that the deeper the well, the greater will be the expense of raising the water to the surface.
If necessary we could here enumerate a Jong list of losses, failures, anci consequent disappointrnents, which have attended the process of boring, within our own observation; for the present, however, we shall confine ourselves to two instances.

About four years ago we erected, almost in the heart of the metropolis, a 14 -horse condensing engine for a manufacturing purpose. As a good supply of water was wanted for that and other objects, the proprietor o! the establishment thought he could obaain this necessary element on his own premises, and make himself independent of the water.
companies. We recommended him to sinka well at once ; but contrary to our advice, he determined to try the process of simple boring, the situation of his premises being judged very favorable for that purpose. A aole was consequently bored to about 100 yards deep, and after some labor and expense water was obtained, but the supply was so scanty as not to be half sufficient for the 14 -horse engine; several attempts were made to remedy this but without effect ; the hole was at length abandoned, and a well was then formed, though not so deep as it should have been; boring was then re. sumed to the depth of what was considered the main spring; pumps were put down the well, and water was again obtained; but even after all, the supply was barely sufficient for the engine. The result at this business was, that the proprietor after having ais premises in confusion for nearly two ycars, in the end expended double as much money as would at once have formed a groal productive weil, and the interest of the money cxpended is considerably more than he would have had to pay to any water-com. pany for all The water the required for his engine and manufactory, besides losing a considerable portion of the power of his engine, which is expended in drawing the water to the surface.
Within a quarter of a mile of the above. descrbed well was situated a brewery furn. ished with a similarly-constructed well, from which a considerable supply of water had been obtained; it is, however worthy of remark, that no sooner did our engine commence drawing water from the new-formed well, than the brewers immediately lost a great part of the supply they had previously oeen accustomed to derive from theirs; the censequence was, they were under the necessity of sinking it decper, and of putting up more powerful pumps, in order to obtain their former supply.

We mention the above fact to show that, although there is no question but it is possible to tind a spring of water in almost any situation, yet the springs do not furnish that inexdaustible supply of water which some oersons innagine ; indeed a bare consideration of what is accomplished in mines and collierics must convince us of the truth of this fact ; were the springs of that inexhaustible nature some pretend, not a single mine or colliery in the universe could be worked to any moderate extent whatever.

The second instance of failure in boring, which has happened in our owa practice, we shall now proceed to relaie. About twenty years ago a canal was cut in the neighbornood of London which passes over a very hilly tract of land, and in the summer months there is great difficulty in obtaining a sufficient supply of water for the upper level. It is true the cinal passes very near some copious brooks and streams, winch with little expense or trouble might have been made available to supply every deficiency twenty times over; but from some circumstances the proprietors of the canal were not permitted to take advantage of these facilities, and as the rain-water they were enabled to collect from the hills was inadequate, they were under the necessity of resorting to the bowels of the earth to supply the deficiency. For
this purpose, a large hole was bored down at tho side of the canal, to a depth of two or three hundred feet, to what was understood to be the main spring; the water speedily rose and flowed over the surface ; however, it was soon discovered, that the quantity ob. tained by this means was so very small as to be of no practical utility : a well of large dimensions was then sunk down about 80 feet, the boring still continuing to the origi. nal depth ; pumps were fixed, and machinery worked by horses; the supply of water by this means was increased teufold, but still was inadequate for the purpose required. We were then employed to erect a steamengine with suitable pumps, \&c., and the well was sunk to double the original depth; a much more copious supply was now ob. tained, and the navigation thereby greatly assisted ; but after all, the expenses attend. ing these works, and the pumping up the water from such a depth, and that too still inadequate in quantity, are evils of such a serious magnitude, that these joined to other circumstances attuding this property, will probably before long cause the whole of the concern to be abandoned.
iVe could add many other instances of the total failure of what is called the simple boring system; of works tegun and never finished to any useful purpose ; of others pertinaciously carried on for four or five years, until the patience and the funds of the parties were alike exhausted; but we think enough has been stated above to prove to your satisfaction, how very uncertain has been this method of obtaining water. We think it right, however, to guard against the impression that boring for water is a bad system; on the contrary, allow us to repeat that we think most higuly of it ; but then only under proper management, and as a useful auxiliary to the sinking of capacious wells.

With respect to the project generally, of forming a regular establishment for the purpose ot supplying water to the various towns of France, we have to remark, that there can exist no physical impediment to the accomplishment of the plan; there is no question but every town in France might be made to enjoy the same inestimable advantages possessed by the inhabitants of London and other towns of England; that is to say, a cons'ant, abundant, and an economical sup. ply of good water, for all purposes of domes. uc and manufacturing ese; but of the three modes by which this can be accomplished, the one by boring or well-sinking is decidedly the most expensive, and the most uncertain in the final results.
some account of several sections throdge tae plastic clay formation in the vicinity of london. by william gravatt. F.R.S., M.INST.C.E.

tRing hill, herts.

A boring for water for the Grand Junction Canal commenced at 25 feet below the sum. init level of the hill near Marsheroft Bridge. Chalk 20 fect.
Hard blue
clay 30
Blue stone 4, At 54 feet the water rove to the top, and ran over 1800 cubic feet in 24 hours.

Hard blue

clay 47

101 feet-no more water than at 54 feet.
The boring discontinued in Nov. 1827.
A second boring in the same hill commenced 20 feet from the summit level.
Chalk 30 feet.
Hard blue
clay 34
Blue stone 4. Water rose up. The stone required punching before using the auger.
Blue clay 82 Strata of indurated clay at about every 4 feet, so hard as to require punching from
Black grit 10 (2 to 10 inches.
Blueclay 108 very hard.
268 feet. Boring discontinued no more water than at first. These two berings cost $£ 145$ and were 3 months in hand.

NORTVOOD, NEAR STÀNDWELL.
A well 4 feet diametcr sunk and bricked 250 feet through blue clay, into sand; the instant the sand was reached, the water rushod up to the top so fast as to endanger the workmen; it now stands within 8 feet of the surface of the canal, which is 86 feet above Trinity high water-mark.

WOOLWICH SANDPITS

Alluvium of various depths.
Rolled flints with sand 12 feet.
Clay, striped brown and red,a
sew shells
6 water, mere. ly drops.
Blue and brown clay, many shells

9
Iron shot sand, with ocherous lumps

9
Greenish sand; clean 8
Greenish sand with flint peb. bles
Light ash-colored sand, perfectly clean 35
Green sand, with green chalk 1
Chalk
unknown.

PLOMSTEAD COMMON Shafts for Chalk.

No. 1. Alluvial gravel, and pure ash.colored sand
Chalk penetrated to
120 feet. 24

No water at 144
No. II. Alluvial Gravel 36
Stopped by the water.
No. III. At a small distance from this, stopped again by water at the same depth.
N. B. These three shafts were in the
boston heath, near woolwich. A well sunk for water.

Gravel	65 feet
Sandy beds	65
Chalk	$\mathbf{7 0}$
	$\underline{200}$

The water stands only five feet deep in this well; a trifling supply of water was found in the gravel.

LEWISHAM LOAM PIT HILL.
Alluvium various.
Striped sand, yellow, fine, and iron shot

10 fect.
Striped loam, and plastic clay, with
thin seams of coaly matter 10
Yellow sand
3
Lead-colored clay, with casts of leaves

- 2

Brownish clay with cytherea 6
Taree thin beds of clay, the upper
and lower with cytherea, and the
middle with oysters.
3
Loam and sand 4
Iron shot sand, with flint pebbles 12
Coarse green sand
5
Clean ash colored sand 35
Green sand
91
Chalk with nodules of fint unknown. REDRIFF DRIFT SHAFT.

Vegetable mould
Brown clay
Gravel with water
Blue clay
Loam
Blue clay, with bivalve shells
Gravel and calcareous rock
Light blue soil with pyrites
Green sand
Leafy clay

681

A pipe sunk by Mr. Turner 95 fect deep, near Bermondsey new church;-when they reached 80 feet, the rod sunk down 15 feet at once; after pumping out several tons of green mud, the water rose to within 25 . feet of the top; it rises and falls about three feet with the tide ; the water is quite clear and tasteless. At a place not 500 yards from this, they sunk a pipe 190 feet with very little success, the water being out of reach of a pump, and appearing bad.
some accounts of borings for wateh in london and its vicinity. , bY mr. john DONIIN, M.INST.C.E.
particulars of a well sunt at the ex. CISE OFFICE, IN BROAD-STREET LONDON.
In the first place, after excavating the upper stratum of gravel and loose soil, four castiron curbs were sunk, each 6 feet long; the lowest of these entered the clay about 3 feet; the digging was then continued :hrough the clay to the depth of 140 feet, ind a curb of brickwork within the iron curt was sunk the whole depth in the ordinary way, the iron curb serving merely to support the upper stratum, and to prevent the land water getting into the well. Boring was then resortod to, to the depth of about 20 feet, when the water appeared, and rose
to within 60 feet of the top of the well ; a copper pipe was then driven through the last-mentioned 20 feet, to keep the passage open for the supply.
wells senk at messus. brandram's vitriol and white lead wores, lower ROAD, DEPTFORD.
The wood and brick curbing was sunk barely $\mathbf{3 0}$ feet ; the bricks were laid in Roman cement to keep out the water from the land springs; the well was then bored to the depth of about 180 feet into a bed of chalk, from which the soft water rises and flows to within 9 feet of the top of the well, through wrought iron tubes riveted together. The strata are chiefly composed of yellow and green sand and gravel, like those found at the tumel under the Thames.
account of borings made near london, where the waters rises above the surface of the land.
In Mr. Wilmot's garden at Isleworth, a boring was executed to the depth of 327 feet. The blue clay was found to exist from about 24 feet below the ground level, with little variation of color, to the depth of 240 feet : it is then of a lightish red, and afterwards of a darker color very much variegated. At the depth of 308 feet it is blackish, and at 310 feet very black; at 311 feet it becemes yel. low for some depth ; then light green, followed by dark green, out of which the water. rises, being a stratum of about 10 feet thick.

All the specimens, with the exception of the yellow, appeared to be clay; the yellow had a sandy appearance. Tine cast-iron pipe is sunk 327 feet, and is $2 \frac{1}{2}$ inches diam. eter. The water rises about 10 feet above the ground, and the well supplies eight gallons per minute. The land water here stands about 16 feet below the ground.

Lord Cassilis* has also had a boring exe. cuted in his grounds at Isleworth, to the

- Now Marquess of Ailsa.

depth of 290 feet; the quantity it supplies is about 30 gallons per minute, and its water. rises about 30 feet above the level of the surface.

Froms the Chicago American.

ruins of the ancient city aztalan.
We have received fron N. F. HyEr, Esq., of Milwaukee, a correct diagram of these ruin3, prepared from actual survey, and we confidently furnish it to our readers as a statement to be relied on.

It will be seen that it differs in some respects from the account sonnetime since published by us, but that account was as correct as could be ohtained from the then imperfect and slightly investigated stato of the discovery. These ruins form a new and prominent attraction among the many the west affords, and illustrate and confirm some of the theories and opinions of scholars in relation to the early character of the western territory. Much credit is due to the ente.prise and taste of those to whom the public is indebted, for the knowledge and particulars of this discovery ; and afford. ing, as it does, $=$ fine field for the research of the antiquarian, illustrates the importance of those scientific institutions that are forming in this new and comparatively unexplor-
ed section of our country, for the developement of its mysteries and the record of its discoveries. We are gratified to have our former account and opinion of these ruins thus materially confirmed, and hope that the
enterprise and iutelligenco of our western citizens, operating upon a spacious theatre, rich in wondors, will cause this to be among the first only in a tarain of discoveries for future record and admiration.

THE CITADEI.

Figure 1 represents the brick Wall, which at the base is 23 feet wide, 4 or 5 feet high, and 84 rods in extent.
2. Buttresses, 23 feet wide, and extending beyond the Wall 17 feet.
3. A square Mound or Plain, 15 feet high, and 53 feet square on top.
4. Mound, or elevated Plain, similar to No. 3, except en the top.
(5 refers to a Cellar 3 or 4 feet deep, and 6 to a Stairway, in figure 4, which our engraver found difficult to accurately deYipeate, and therefore have been left out.)

7 and 8 are parallel ridges of 2 feet in height, including a smooth Plain, or Road, and extending through the interior of the Fort.
9. Square Mound, with high ground leading to the river.
10. Ridge connecting Mounds, or what might have been Towers.
11. Plain, with slight elevation.
12. The termination of a Sewer, about 3 feet below the surface, and arched with stone.
13. Mounds, varying in size from 3 to 25 feet in height, and from $1 \frac{1}{2}$ to 15 rods in circumference.

Besides the mounds which appear on the plat, there are many others, of various sizes, to the northwest.

The enclosed diagram is intended to represent the ruins of the citadel as they now appear, together with some of the surrounding mounds, or tumuli; all which is taken from actual survey and measurement.

These ruins are situated in the town of Jefferson, directly west from Milwaukee, on the West side of the West branch of Rock River, towaship seven North, range fourteen East.

The weather was very tedious when I surveyed these ruins, and the ground being frozen, the examination, was not extended so far as I could wish; .but I intend to make a more thorough examination in the
spring. The wails were not originally of the width here described, as they would naturally spread out as they crumbled down; and in measuring the width, I have taken an average as it now appears.

There is much here to iadicate that this has once been the location of an ancient walled-city, of some miles in extent; but as I have not examined it sufficiently to give a definite opinion, I will leave the subject to the examination of the antiquarian and the curious; and to them I would say, that there has recently been a settlement commenced in the vicinity, where they can pursue their researches without the necessity of "camping out."

To the Edilor of the Chicago American :

Sir: I see by the papers that you have published a description of the "Ruins of the Ancient City of Aztalan." I have not seen your publication, but suspect that it is not quite correct, for at that time no accurate survey had ever been taken; and I am not aware that any description was ever given but that furnished by me; and that being taken from observation rerely, was found on actual survey to be somewhat incorrect, but the description above given can be relied upon.

Respectfully yours, \&c.
N. F. Hyer.

Milwaukce, Feb. 4, 1837.

Builder's Manual.-The importance to the community, of a correct knowledge of building, induces us to re publish in the Magazine "the Builders Pocket Manual, containing the elements of Building Surveying, and Architecture, with practical rules andinstructions connected with the subject, by A. C. Smeaton, eivil Engineer. ${ }^{.}$

This work will be found highly useful especially to young builders, as it describes and illustrates by engravings, the various modes of building. There are over 75 engravings. By the following "contents", our readers will perceive the character of the work. It will oe completed in the six ensuing numbers.

CONTENTS.

Introduction
The Builder
Bricklayer
Bricks
Tiles

Cements

Lime
Sand
Mortar
Roman Cement Puzzolana Tarras
Methods of Laying Bricks
Tue Carpenter
Oak
Fir
Larch
Beech
Ash
Elm
Chestnut
Walnut
Mahogany
Teak Wood
Poplar
Decay of Wood
Cause of the Decay
Circumstances favorable to Vegetable Decomposition
Means of preventing Decay -
Felling Timber -
Seasoning Timber
by a Vacuum
by Water
Smoking and Charring -
Boiling and Steaming, - Corrosive Subli. mate
Framing of Timbers
Composition and Reso-
lution of Forces -
Construction of Roofs
Dimensions of Timbers in Roofs -
Examples of Roofs
Floors
Trusses
Connecting Timbers
Timber Paritions -
Joints
The Joiner
Woods
Glue
Glueing Joints
A Very strong Glue
Different Methods of Joining
Dovetailing
Mortise and Tenon

[^15]Roman Tuscan Order
Roman Composite Order
Projections in the Doric Order in the Ionic Order in the Corinthian Order
English Architecture
Terms used in Building
introduction.
So intimately is the art of building connected with a provision for the comforts and conveniences of life,that it has engaged the attention of men from that period when they first formed themselves into societies. In the early ages of the world, little more could have been required than a temporary shelter from occasional atmospheric changes, and houses or huts were probably constructed in a very rude and imperfect manner; but as even communities were not then accustomed to confine themselves to any locality, such residences were sufficient for their purposes. But when large societies determined to occupy a place as a constant residence, they surrounded themselves with all those per. manent comforts which might be within their reach. The art of building necessarily attracted much of their attention, and nations vied with each other in an attempt to blend stability of structure and elegance of appearance. These are the objects of builders in the present day, but at the same time, the altered state of society requires that they should be equally careful to secure economy in the use of the materials, that no unnecessary expense may be incurred by their waste or misap. plication, or by the addition of unnecessary labor.
The importance of the subject has induced men to acquaint themselves with the general principles of construction, and the application of ornament ; and to give their attention to individual branches of the science and art of building, so as to obtain by the combined labors of many some knowledge of the whole. Many expensive and useful books have been published, by both architects and builders, upon different subjects connected with the art and science of building; but many of these books are not only too costly for the means of some persons desirous of knowledge, but would be almost useless if they could be obtained. A preliminary knowledge is required before the student can either perceive the importance of the information they contain, or the means by which it may be applied. There are it is true, many introductory books, but they chiefly treat of Architecture and Designing, and are of little assistance to the workman or the student.

In preparing this manual the author has endeavored to supply the reader with such important elementary knowledge as shall enable him to understand the general principles of building; and fit inin tor the perusal of those works which have been written on several subjects connected with the art. There are three classes of men engaged in the completion of a building, the architect, the builder, and the surveyor'; and each should be perfectly acquatinted with the business of the others. Some persons have professed the three atts, all
practice which cannot be too strongly condemned, since it is impossible that any man can give sufficient attention to all. to do either correctly or well. But at the same time an acquaintance with all is desirable, for they are so closely connected, that une cannot be properly practised with. out the assistance of the others.

The business of the Architect is to design buildings, to make such drawings, and to so describe them as shall enable the builder to execute that which he has plan. ned. The surveyor masures the work when finished, and affixes appropriate prices according to his judgment of the manner in which the workman has performed his task, and the difficulties which have altended the execution. An elementary work on Building should describe the manner in which these persons severally perform their tasks, and we have therefore divided our book into three parts or sections, which we have designated the Builder, the Surveyor, and the Architect.

THE
 BUILDER'S MANUAL.

THE BUILDER.

Writers on Architecture have frequently divided the art into three parts, because. in the erection of a building three things are required, strength, convenience and beautyIn order to obtain strength, good materials must bi employed, and they must be well applizd. There must be a proper arrangement of the several portions of edifices, so that instead of weighing down or oppressing each other, they may mutually strengther each other; and should faults be suspected to exist, in either the quality or dimensions of the materials used, they must be employ. ed where they would be sufficient for the purpose, should the suspicion be realized. The builder must also be carcful that any stress may be met by a suitable arrange. ment of parts, and that the streugth may be in a reciprocal proportion to the stress which is to be overcome.

To provide convenience, the building must be suited to the purpose for which it is intended. The rooms, for instance, should be of a size proportionate to the use for which they are to be employed, or the busi: ness that is to be done in them; a small house should not be encumbered and lessened with a large staircase, nor a large mansion be rendered uncomfortable by one that is cramped in its dimensions. "The hall," as Fuller says, " ought to lie open, and so ought galleries and stairs, provided the whole house be not spent in patns. Chambers and closets ought to be private and retired." Every part should be suited to the purpose for which it is to be used.
The beauty of a building does not alto. gether depend upon its arcinitectural decorations and ornaments ; but there must be a just proportion of all its parts, the width, length, and height, being everywhere so ad. justed as to produce that harmony calculated to give pleasure to the observer. Many persons err in overloading an edifice with
ornament, while others impair the general appearance by neglecting altogether its enrichment. There should never be introduced an ornament that has the appearance of supporting a weig.it where there is evidently no weight to support ; and when mouldings are employed, they should have an agreement with the dimensions of the walls on which they are to be fixed, being neither heavy in small apartments, nor diminutive in large ones.

The first thing to be done when a build. ing is to be erected, is to survey the ground on which it is to be placed, with a view to de. termine the nature of the soil, whether it be rocky, swampy, or composed of clay, gravel, or sand. When this has been determined the foundations may be arranged for: and the operations required must be regulated accordingly.
The dimensions must then be set out, as shown upon the plan of the basement. This is best done by first marking out the line of the principal front, and then placing stumps, or pins, at those parts where the side and internal walls meet it. When the several an. gles have been determined, and the line of walls marked out, the excavator may proceed to form the trenches which are to receive the footungs, or foundations; and the work is then regularly proceeded with, according to the drawings which are placed in the workman's hands. And here it may be necessary to remark, that architects gencrally form their drawings from a scale of one eighth of an inch to a foot; but this is not adopted in every case; and, therefore, to prevent mistake, the plans and elevations are generally figured. The scade of one inch to a foot is the most convenient for workmen, for they have then only to apply their rule to the several parts of the drawing, and, calculating every inch as a foot, it is scarcely possible for them to make a missake. But it is not always practicable to draw a plan to this scale, as it would in some instances extend the drawing to an inconvenient size.

These general remarks may be of some service to the beginner, as illustrating the objects to be obtained in building, and the manner in which the workman is to commence his operations. We may now pro. ceed to make some more particular remarks upon the several departments of building, the nature and composition of the materials employed in each, and the methou's by which they are worked. As this little volume is intended for the use of the student in all departments, we shall not consider any fact, however self evident it may appear, too sim. ple to be mentioned; but we shall endeavor to lead him on, by easy steps, from the simple to the more complex principles of the art, giving so much of the science as may appear necessary to afford a reason for the process that may be adopted.

THE BRICKLAYER.

As the art of bricklaying is generally supposed to be so simple as to require little or $n 0$ attention, it will be pecessary to re. move this false impression by a somewhat particular detail of the facts which relate to it. There are many persons, and even some workmen, who suppose that nothing more is required than that the bricks should be pro-
perly bedded, and the work level and perpendicular. But the workman who would attain perfection in his business, should acquaint himself with the different arrangements made use of in placing the bricks, so that one part of the work shall strengihen another, and thus prevent one portion from a greater liability to give way than another. It is also necessary that the workman should be acquainted with the several sorts of bricks, their qualities, and the uses for which they are particularly adapted.
It appears from history that bricks have been employed for building from a very early period. We are informed by the sacred records, that very shortly after the occurrence of that universal catastrophe, which swept from the earth nearly the whole human race, and remodelled its surface, the sons of Noah fixed their abode in a plain in the land of Shina or Chaldea, " and they said one to another, go to, let us make brick, and burn them thoroughly. And they had brick for stone, and lime had they for mortar." By the same authority we are informed that the Jews during their servitude to the Egyptians, were employed not only in making bricks, but also in building with them. "And they (the Egyptians) made their life bitter with hard bondage, in mortar, and in brick."-"And they built for Pharoah treasure cities, Pithom and Raamses." Nearly all the Egyptian buildings spared by the devastating hand of time, are constructed of stone, but there are some brick buildings still in existence, and Pocock mentions a pyramid constructed ef unburnt brick.
From all the evidence we can collect on the subject, except that to which we have referred, it does not appear that the Egyptians, or any other of the early inhabitants of the earth, were acquainted with the art of burning bricks; but both the Greeks and Romans used them. Vitruvius has given a description of the kind of bricks used in his own day, and has offered some suggestions as to the choice of the material from which they ought to be formed. The passage is interesting, es and the works of this author may not be in the possession of all our readers, we may be permitted to quote it from Mr. Guilt's translation. "They should be made of earth of a red or white chalky, or a strong sandy, nature. These sorts of earth are ductile and cohesive, and not being heavy, bricks made of them are more easily handled in carrying up the work. The proper scason for brick-making are the spring and autumn, because they then dry more equally. Tnose made in the summer soltice are defective, because the heat of the sun soon imparts to their external surfaces an appearance of sufficient dryness, whilst the internal parts of them are in a very difrerent state; hence when thoroughly dry, they slrink and break those parts which were dry in the first instance ; and thus broken, their strengthis gone. When plastering is laid and set hard on bricks which are no: perfectly dry, the bricks which will natural. ly shrink, and consequently occupy a les: space than the plastering, will thus leave the latter to stand of itself. It is not there. fore, without reason that the inhabitants of Utica allow no bricks to be used in their nuildings, which are not at least five years old, and also approved by a magistrate.
"There are three sorts of bricks, the first is that which the Greeks call Didoron, being the sort we use, that is, one foot long, and half a foot wide. The two other sorts are used in Grecian buildings; one is called Pentadoron, the other Tetradoron. By the word Doron, the Greeks mean a palm. That sort which is five palms each way is called Pentradon ; that of four palms, Tetradoron. The former of these two sorts is used in publis: buildings, the latter in private. Each sort has half bricks made to suit it, so that when a wall is executed, the course on one of the faces of the wall shows sides of whole bricks, the other face of half bricks, and being worked to the line on each face, bricks on each bed bend alternately over the course below."

There has been some dispute among an. tiquaries as to the time when bricks were first introduced into England. Dr. Lyttleton states in Archwologia, that there were no brick buildings earlier than the fourteenth century. Bagford says they were introduced in the reign of Henry the Seventh, but it must have been earlier than this, for Ewelme palace in Oxfordshire, erected by William de la Pole, and Herstmonceaux castle in Sussex, were both erected in the reign of Henry the Sixth. But we leave the antiquaries to determine this disputed question, and proceed to make a few remarks of a more practical character.

Bricks.

Brick is an artificial stone; formed of clay moulded in rectangular prisms of constant dimensions, and hardened by burning, or exposure to the sun. All bricks mado in England must be; according to act of parliament, nine inches long, four and half inches broad, and two and a ball thick.

There are several kinds of bricks; the most important to be mentioned are marls, stocks, and place bricks. All these are formed in moulds of the same size, and differ only in quality, which depends upon the character of the clay, the care taken in tempering it, and the manner in which it is burnt. The best marls are called firsts, and are used for the heads of doors and windows; the seconds are used for facing, that is, for the front of a building; and for this purpose they are admirably adapted, not only on accoant of their color, which is a yellowish white, but also for their compactuess, and capability of resisting the action of the atmosphere. Grey stocks aro sometimes used instead of maris, but they are of inferior quality. Place bricis are the refuse of a burning, and ara in fact these which have not been perfectly burnt. Clinkers are overburnt bricks.

For paving, Dutch cliukers, so called because imported from Holland, are frequently used ; they are very hard, and have a light yellow color. These bricks are six inches long, three inches broad, and are laid herring-bone way.

Tiles.

There are several sorts of tiles. Pav-ing-tites, used for kitchens and dairies in larmhouses, are about nine inches long, four and a half broad, and one and a half thick. Roofing-tiles are formed in difforent
ways, and are known as pan-tiles, plaintiles, hip-tiles, and ridge-tiles.

Pan, or Flemish-tiles, are fourteen inches and a half long, and ten and a half broad. It is seldom that these tiles are used, even in country towns, for any other purpose than that of covering sheds and out-houses ; and, as they have no pin-holes, they are altogether unfit for a high-pitched roof.

The size of plain-tiles is regulated by law, and they should be ten inches and a half long, six and a quarter broad, and five eighths of an inch thick. They are hung on the laths by oak pins, there being two boles in each tile.

Ridge and hip-tiles are of a semi-cylindrical furm, and are thirteen inches long, and sixteen inches girt on the exterior surface.

Brick-making.

Brick should be made of an earthy loam; but the manufacturer is not generaily very careful as to the earth he uses, so that it be only possible to make an article which he can sell, or employ himself. Hence it is that some bricks are very brittle, because there is too large a quantity of sand; and others are shaky, because they contain too little, and crack in the drying. It is absolutely necessary for the manufacture of a good brick, that the earth of which it is to be formed, should be exposed to the arr, and especially to the frosts of winter, at least during one ycar, that it may be pulverized, as this will and the tempering ; and the more it is turned over, during the time of its exposure, the better will be the brick.

An experiment, made by M. Gallon, fully proves the necessity of well tempering the oarth to be employed in brick-making, ${ }^{*} \mathrm{He}$ took a certain quanti:y of the earth prepared for the making of bricks, he let it remain for seven hours, then caused it to be moistened and beates during the space of thirty minutes; the next morning the same operation was repeated, and the earth was beaten for thirly minutes; in the afternoon it was beaten $t r$ fifteen minutes." Af er moulding a brick, made of this earih, he found that it weighed five pounds eleven ounces, but one made of the same earth without the same preparation, weighed five pounds seven ousices. When the bricks were dried and burnt, he tested their strengit, and found that under the same circumstances, the brick made of welltempered clay broke with a weight of one hundred and thirty pounds, while the other broke with a weight of seventy pounds. This result clearly proves the necessity of well-tempering the brick earth, which is usually done by a mill, put into motion by horses.

When the clay is prepared, it is pressed into a mould ten inches in length, and five in breadth; but the brick itself; when burnt, is not more than nine inches long, and five and a half broad, on account of the contraction it suffers by exposure to heat, driving off the water which is in combination with the clay. When the bricks are turnec from the mould, which is readily done, the mould being strewed with sand to prevent the adhesion of the clay, they are placed in
hacks in a diagonal position, so as to admit the air. Each hack is two bricks wide, and eight bricks, on edge, high. To prevent the access of rain, long sheds are sometimes erected, and the hacks are formed under them; but at other times they are covered with wheat or rye straw. The time required to dry the bricks must depend upon the weather; if favorable, it may be done in six or eight days.

Bricks are burnt either in clamps or kilns; the former are generally used, but the latter are preferable.

Clamps are made with the bricks to be burnt. The fourdation is made with place bricks, and of an oblorg form. The flue is first formed, passing through the clamp, and about a brick wide. Between each course of brick, a layer of cinders or breeze is placed, the tricks being placed diagonally about an inch apart on eacis side of the flue. When the clamp is about six feet high, a second flue is made similar to the other, that is to say, if the bricks are immediately required, if not, the flues may be placed about nine feet apart; each flue being filled with coal, breeze, and wond, closely pressed. A l:yer of breeze is always laid at the top of the whole. The fireplaces are usually placed on the western side of the clamp. The bricks may, if required, be burnt in twenty or thirty days, the time varying according to external circumstances. The outside of the clamp is sometimes plastered with clay when the weather is precarious.

Kilns are frequently used for burning bricks, but more commonly in the country than in the neighborhoud of London.They are to be preferred to clamps, as they require less fuel, and less time is required in the process. The walls of a kiln incline inwards, and are usually a brick and a half thick. A kiln is about thirteen ieet long, ten feet wide, and twelve feet high, and will burn about twenty thousand bricks at the same time. The bricks are laid upon an open floor, and after they have been thoroughly dried by a gentle fire, a pile of brick, closed with wet earth, is placed before the fireplace, space being left to add faggots as may be required. When the arches have a white heat, and fire appears at the top the heat is slackened, and then increased, until the bricks are thoroughly burnt, which is generally in about two days. The workman can always determine whether the bricks are dried or not, by the color of the smoke, which turns from a darkish to a transparent color, as soon as this has been accomplished; the burning is then commenced.

The advantages which result from a division of labor are well known, aild they ure not more evident in any mechanical employment, than in the manufacture of bricks. In a long day, that is to say, between five in the morning, and eight at night, a good moulder, will produce five thousand bricks.

There is a very judicious ramark in Mr . Partington's Builder's Complete Guide, but we are at a loss to say whether we are indebted to him, or to Mr. Malcolm for it; we have quoted it as it stands in the work|
we have named. "The color of Londod bricks is not red, as is the case with the common bricks and tiles, but of a light brownish yellow. This color is more pleasing to the eye, than that of the common red brick, and on this account the London bricks are preferred for building houses. The brick-masters assign a curious reason for this color. According to them, their bricks are kept as much as possible from the contact of the air during the burning. The consequence of this is, that the iron contained in them is not oxidized to so great a degree as in common bricks ; but this node of reasoning is far from exact. If air were entirely excluded, the bricks would not be burnt at all; because the fire would be extinguished. But if enough air be admitted to burn the coal. mixed with the clay, (which must be the case,) that air must also act upon the iron, and reduce it to the state of a peroxide; indeed there can be no doubt, but, that the iron in the Londou yellow bricks is in the state of a peroxide, as well as in the red bricks; for the peroxide of iron gives various colors to bodies according to circumstances. With it, we find bodies tinged, red, yellow, and brown, according to the substances with which the oxide is combined. We ascribe the color of the London bricks to the ashes of the coals, which, by uniting with the peroxides of iron, form a kind of yellow ochre."

A patent was scinetime since taken out by Mr. Shaw for the manufacture of brickz. This gentleman proposed a very ingenious arrangement, by which the clay could not only be pressed into the mould, without manual labor, but be also removed by machinery. The machinery may be moved by any mechanical power, whether it be manual, steam, or horse.

cements.

Having explained the manner in which bricks are made, and the means of distinguishing their qualities, it will be necessary to state the composition of the several kinds of cement, that are used in order to bind or connect the several parts together; and it may here be necessary to mention, that wo shall not confine our remarks to those cements which may be used by the bricklayer, but shall also refer to those which may be commonly employed by the mason; for as we must speak ot the origin of the cementitious principle, it seems desirable to explain all the severat kinds of substances, in the composition of which this principle is called into action. But before wo speak of the cements thernselves, it will be necessary to refer to the nature of that sub. stance, lime, which is their prucipal ingredient.

Lime.

Lime is easily distinguished from other substances by its properties. It is an earth having a white color, and produces a cuustic sensation upon the tongue; is incapable of fusion by ordinary tempera:ures, being one of the most infiusible substunces in mature, and is but litile soluble in wa'er, though it is more soluble in cold than in hot water. Lime is seldom, if ever, found pure in nature, but is gencrally in com i-
nation with an acid; most frequently with carbonic acid, as in the formation of chalk, limestone, and marble. Lime is a very abundant ingredient in the composition of the earth's crust, and generally makes its appearance as a carbonate, but both sulphates and carbonates of lime are found to occur as constituent parts of mineral substances. To obtain pure lime, that is, lime separated from an acid, with which it is uniformly combined in nature, the mineral must be submitted to a red heat, which drives off the acid, and leaves the lime in a state of purity ; it is then called caustic or quick!ime. Chalk, limestone, marble, oys-ter-shells, and other substances, are carbonates of lime ; and either of these will, when burnt, furnish the material required in building; but the two former are chiefly used for this purpose.

Builders are weil aware of the fact, that all limestones or mineral substances containing lime, as an ingredient, do not possess the same cementitious properties.One stone may yield, when burnt, a lime very superior to another, and this difference depends upon the quantity and character of the advantitious substances, which are combined with the lime. Many of these may be detected by the appearance of the mineral, or by very simple experiments.When the limestone has a deep brown or red color, it generally contains iron, and when burnt has a yellowish hue; when it does not freely effervesce with the application of an acid, and is sufticiently hard to scratch glass, it contains silex; when it effervesces slowly, and gives a milky appearance to the acid, it contains magnesia. The effects of these and other substances upon cements, have not been accurately determined.

The cementing quality of lime seems to arise from its chemical combination with the substances with which it is mixed.First of all it unites with a certain proportion of water, forming a hydrate of lime, which appears to have a chemieal attraction for silica, that is to say, the sand with which it is mixed. Aiter exposure to the atmosphere for a short time, it abstracts and applies a portion of carbonic acid, which greatly increases its hardness, and on this account all old mortars are remarkable for their cohesion and strength, frequently becoming stronger than the stones they unite. Sir Humphrey Davy, speak ing of cement, says, "The cements which act by combininy with carbonic acid, or the common mortars, are made by mixing together slaked lime and sand. These mortars at first solidify as hydrates, and are slowly converted into carbonate of lime, by the action of the carbonic acid of tho air. Mr. ''ennant found that a mortar of this kind in three years and a quarter, had regained 63 per cent. of the quantity of carbonic acid which constitutes the definite proportion in carbonate of lime." But there are two kinds of cement used in building : that in which lime forms a prominent combination with water, ard this is called a water cement; and that which .combines with carbonic acid, which is called a mortar : this distinction is a very im-
portant one ; one kind has the property of setting under water, the other has not.

Sand.

Sand is a very important ingredient in cements, and too much pains cannot be taken to obtain it pure. River sand should be always preferred to pit sand, for it is less likely to be mixed with clayey or other substances, which greatly injure the indurating property of the cement. But wherever the sand may be obtained, it should be well washed, and this is especially nenessary if taken from the sea; for the salt with which it is combined, having strong hygrometric properties, would prevent the cement from drying. This effect we remember to have frequently observed in a little seaport town, where beach-sand had been used by the builders, without sufficient washing.

Mortar.

Mortar is made of lime and sand, thoroughly mixed together, and brought into the consistency of a paste, by the addition of water. Different proportions of these substances are used by builders, and this must necessarily be the case, for a larger or smaller quantity of sand must be added in proportion to the quality of the lime. A good lime will take inore sand than a bad one, and the value of the cement may, in a great measure, be judged of by the quantity of sand it contains. Builders are accustomed, for instance, to use more sand with stone-lime than with chalk-lime; not that there is in general much difference between the two, when first burnt, but because the quality of the chalk-lime is speedily injured by a very rapid absorption of carbonic acid. With one hundred and fifty pecks, that is, thirty-seven and a half striked bushels of chalk-lime, the workman mixes two loads of sand, each load consisting of thirty striked bushels; but twenty bushels of stone-lime will frequently bear two loads and a half of sand. It is estimated that the mortar produced by either of these proportions, will do a rod of brickwork, that is, two hundred and seventy two and a quarter square feet, superficial measure, a brick and a half thick, that is, about fourteen inches. According to the experiments of Dr. Higgins, a proportion of one peck of lime to seven of sand, makes the best mortar.
When mortar iss to be used in a situation where it will diy quickly, it should be made with as little water as possible, but it is better that the mortar should dry gradually and slowly, as it then becomes more indurated. It is stated by some writers that inortar is injured by keeping, and under one condition, exposure to the air, it is; but, if excluled from the air, it is rather benefited than injured. Pliny states, that the Roman builders were prohibited by law froin using a mortar that was less than three years old ; and attributes the stability of all their large buildings to this circurnstance. But when old mortar is used, it should be well beaten up before it is employed. The reader must not, however, suppose that these remarks justify the exposure of inortar to the air for a con-
siderable time before it is used, a practice very common, but highly improper. This practice probably arose from the difficulty which workmen sometimes find in slaking the lime, in consquence of its being insufficiently bumt, or containing a large portion of argilaceous matter. But of all other things, it is important to use good lime, and to soak the bricks which are to be bedded, before they are laid; for, if the bricks are dry, they imbibe the moisture of the cement, and destroy its quality. There are two things which cause mortar and cements generally to crack, too small a quantity of sand and a too rapid exhalation of the water. There must always be a contraction, but it is least in those mortars which contain the greatest proportion of sand; for it is the moistened lime which contracts during the process of drying. All mortars may, for a time, be affected by atmospheric changes, and especially by alternate wetting and freezing; but this is the most remarkable in those which are liable to crack. A mortar which sets without cracking will always stand afterwards.
Dr. Higgins, to whom we are much indebted for his experiments upon cements, invented one which he speaks of as admirably adapted for both internal and external work; and becomes as hard as Portland stone when dry. "Take," he says, "fifty-six pounds of coarse sand, and forty-two pounds of fine sand; mix them on a large plank of hard wood, placed horizontally; then spread the sand so that it may stand at the height of six inches, with a flat surface, on the plank; wet it with the cementing liquor; to the wetter sand add fourteen pounds of the purified lime, in several successive portions, mixing and beating them together; then add fourteen pounds of bone-ash in successive portions, mixing and beating all together." Whatever may be the quality of this cement, it is not likely ever to come into general use, as it would be more expensive, and give more trouble in preparation, than many others which are now found to answer the builder's purpose. This, however, was proposed as a water-cement. Moriar is evidently unfit to be used in any situation where the force of water is to be resisted; for although it is said that mortar composed of lime and sand, in the proportion of one and seven, will not suffer from water, yet, as this composition is seldom, if ever, obtained, it would be folly to risk the security of a building by its use.

The insufficiency of mortar for all those works, the whole or part of which are under the water, induced the scientific builder and chemists to seek a substitute. Many compositions have been recommended, and several of them have been found to answer the purpose. There is one substance, however, Roman cement, which, above all others, is extremely useful for a number of purposes, and will require our attention; and if our remarks should occupy a space which may appear to have no proportion to the length of the other parts of the volume, the importance of the subject will be a suff: cient excuse.

Roman Cement.

Roman cement was accidentally discovered in the year 1796, by Mr. Parker, whose attention was attracted, when walking beneath the cliffs of blue clay, on the shores of the island of Sheppy, by the uniform appearance of the masses of stone which were strewed here and there upon the beach, and were seen projecting from the cliffs. As a mere natter of curiosity, he collected two or three fragments, and happened afterwards to throw one of these pieces in the fire. After it had been exposed for some time to the fire, it fell upon the hearth, and was there found by Mr. Parker, who was induced to make some experiments upon its cohesive properties, which led him to the discovery of its value, as a strong and durable cement. He then immediately applied to the Government of the day, for a patent, which was granted to him for fourteen years; and having secured to himself the right of manufacture, realized an ample fortune.
So great has been the recent demand for cement stone,that its quantity has been much diminished, and other substances have been substituted to so great an extent, that the cement now used is much inferior to that originally manufactured by Mr. Parker.So small is the quantity obtained on the Sheppy coast, that the manufacturer is scarcely repaid for the cost of a search. The natural physical causes which are constantly active, have a tendency to increase the quantity upon the beach which surrounds this interesting island; but all natural agents act in a slow and progressive manner, so as to afford a very inadequate supply for the demand which is now made for this material. The masses once abundantly strewed over the shores of the island of Sheppy have been long since removed by the cement manufacturers, and the supply which is now obtained from this spot depends upon the quantity of the cliff that may be thrown down by the undermining influence of land-springs, or by other cause. At the base of the cliffs which surrounds this island may be seen, here and there, extensive land springs, which weaken the foundation of the clay, and frequently cause masses of large extent to fall upon the beach. This cause is aided by the storms which, during the winter season, frequently blow upon its shore, and, either by the force of the waves or by the subsequent drying of the saturated mass of clay, weakens its cohesion, and produces the same effect. The falling of the cliffs produced by these and other means, furnishes a small quantity of cement stone, but a quantity altogether inadequate for the supply of the demand. But as far as observation extends, it appears that these nodular stones are found in all the deposits of London or blue clay. This stratum is found in Harwich, and other places, as well as at Sheppy ; and the attention of the manufacturer was consequently directed to them, for a supply of the material. But it has been stated, and experiment seems to justify the assertion, that the Sheppy stone yields a much better, cement than that which is obtained from other places: the cause cannot be readily determined; but so great a
value is placed upen the former, that some persons have actually excavated for the purpose of obtaining it. But the principal part of that now used by manufacturers is obtained from Harwich; and not less than from thirty to forty tons weight are annually collected in this place. The engineer and architect still prefer the Sheppy cement, which has a much lighter color than that made from the Harwich stonc. but is far more expensive. The manufacturer, however, now so frequently intermixeş other ingredients with the Harwich cement, to give it the same appearance as the Sheppy, that it is almost impossible to determine the quality by the color. Limestones, found in other places, have been substituted for the Sheppy nodules; all of which, excepting that which is found in small quantities in the marshes of Essex, near Steeple, are much inferior to it.

The manufacture of cement is extremely simple, although some experience is necessary, as the character of the cement will depend as much upon the manner in which it is made, as upon the property of the stone. After the stone has been broken into small pieces it is thrown into a kiln, with a proportion of small coal, to be burnt. A strong red heat must now be supported throughout, and considerable skill, or rather experience, is required to accomplish this purpose, for the relative degrees of hardness in the several pieces, and other causes, tend to give them an unequal temperature and to prevent perfect calcination. After the stone has remained from thirty to forty hours in the kiln, in which time it is usually perfectly burnt, it is taken to the miil, and being immediately ground to powder is packed in casks and sent into market. Promptness in all the processes which follow burning is absolutely necessary, for the contact of the air impairs the adhesive power of the cement. Hence it is that builders who study the character of their materials invariably prefer the cement which is made in large manufactories; a ready sale generally securing, them from the use of an old cement. Good cement perfectly burnt has a lightbrown color, and has very little weight ; but if imperfectly burnt it is heavy and has a dark color: when the stone is burnt overmuch, small black carbonized particles may be observed. It may be necessary to state that the cement should always be reduced to as fine a powder as possible; and to accomplish this an attempt was made some time since to sift it, but its exposure to the air was found :o injure its properties as cement. As a test to the value of a cement the experimenter may mix with it a quantity equal to two-thirds of clean, n ell washed, and dried sand, and should it then have a strong cohesive power he may depend upon its qualities ; but as soon as the two ingredients are mixed and moistened, the cement should be used, or it will either fail to set or to possess an adequate adhesive power. These suggestions, if carried out, will be found of great importance in the art of building, and particularly in those instances where great stability is required. The builder frequently attributes to the coment that which depends upon its own injudicious bad cement may be made tolerably effective for ordinary purposes, if it be little exposed to the atmosphere, and be used immediately after its mixture.
Roman cement should never be used in any situation where there is the slighest chance of warping or spring, for as it does not possess any elastic force it is sure to break way. For covering walls when used as a stucco it is well suited, but the bricks should be damped previous to its application, or they will absorb its moisture and give it a porous structure. But stucco will not bind upon a bed of stucco, and it is therefure necessary that it should be applied in one coat; for, as good cement will set in about twenty minutes, a second bed cannot be applied at any subserfuent period witbout endangering the stability of the work, for one coat is almost sure to separate from the other.
To ascertain the relative value of any number of cenients, mix them with certain proportions of sand, and that which is the hardest with the largest proportion is the best. As a collateral proof the specimens may be kept for a few days, and it will be found that a quantity of bloom formed upou their surfaces will have some relation to their qualities. Good cement, will always be raised to a great temperature when mixed, and those which are not may be considered worthless. There are some cements that harden very quickly, and yet are of very bad quality, and will in the course of a few hours become quite soft. These facts are well worthy the attention of the workman or the builder, for they will not only enable him to ascertain which is a good and which a bad material, but also to use the material he may choose, in the most advantageous manner.

Chemists and others who have investigated the properties of hydraulic limes are not by any means .agreed as to the cause of the cementitious quality. Saussure was of opinion that their peculiar properties were derived, from the presence of silex and alumina in certain proportions; Descotils attributes them to the presence of a large proportion of silex, and Eergman and Guyton to a small proportion of ma.ganese.

The Roman is the most valuable of all water-cements, as well for the ease with which it may be used, as its hardncss and durability. As it sets in about iffteen minutes, the workman cannct mix more than a small quantity at once. Experience will soon teach how much can be worked in a certain time : an oppropriate quantity must be taken upon a clean board and something more than an equal quantity of very clean ard dry river sand. When the lime and sand are thoroughly mixed, as much clean water as is necessary to form them into a paste should be added. The workman should then immedrately use it, and after it has been cnce applied, it should not be in any way disturbed. Forty bushels of cement, with its aporopriate quantity of sand, will do a rod ol brick-work. Gcod cement will take two parts of sand, and that cannot be called good which will net take one and a half.

When cement is used for coating or lining walls it must have as much sand as possible, so as not be too stiff to work. It mus also be always worsed in one cuat, and the surface to which it is applied should be clean and ivell wetted. Cement when thus used is called stucco, and should he laid on three-quarters of an inch in thickness. A bushel of cement with its proper proportion of sand will cover a surface of two square yards.
Cement is also used for casting ornament, for which purpose it answers exceedingly well. Gcthic work is sometimes finished in this way, but, although it may be desirable in some instances, it is generally better to use stone where very ornamented work is to be introduced.
There are several other kinds of cement which are occasionally employed by the bricklayer, but they are not of sufficient importance to be treated of in a work which can only give some of the most prominent facts in the art of building. But it may be asked, what was used before Parker's cement was discovered? This question leads us to make a few remarks upon two cements which were nnce extensively used in this country, Puzzolana and Tarras, but are now scarcely ever employed.

Puzzolana.

Puzzolana is a volcanic substance, consisting, according to Bergman's analysis, of from fifty-five to sixty per cent. of silica, from nineteen to twenty of alumina, five of lime, and twenty of iron. The Romans were accustomed to mix this substance wi!h lime in the manufacture of water-cements, and the same method was a long time adopted in England. The hardening of the mortar is supposed to arise from the union of the oxygen of the water with the iron.

Tarras.

Tarras or Tras is a substance found at Andernach, in the department of the Rhine, and, according to Bergman, differs but little from Puzzoiana in composition. Tarras mortar is well suited for all those situations in which it is constantly exposed to wate, but it cannot resist the action of alternate wet and dry, and indeed is never so firm when it sets in-exposure to air as under the water. The principal objection to the use of this mortar was its expense, and consequently the Dutch attempted to supply its place by the union of substances found in their own country, and succeeded so well that a large quantity was imported into this country, and extensivcly used. There are two proportions which have been adopted as the best for Tarras mortar : in one kind a measure of quick lime is mixed with a measure of Tarras, and being thoroughly mixed are brought into the consistence of paste by the addition of water, as little water being used as possible; in the other, onc measure of Tarras is mixed with two measures of slaked lime and three of sand, this issalmost as good a cement and mucl. cheaper than the former.

[^16]Farishes Isometrical drating square, as published in Brantons Machanics', page 209 ; should you think it worthy your attention vou will please give it place in your valuable Magazine, that it may benefit some who are making use of his perspective.

In the first place take a common drafting square A , with the blade something wider than usual, and (instead of his notched ruler so made as to form an angle of 60°, which he says is the most common angle,) put a piece of Brass B, so fitted as to slide from end to end. On that strike a semi-circle, graduato it into 180°, numbered from the base upwards to 90°; then by another small ruler C , turning on the point D , in the centre of the circle and one side running directly to it; it will readily be seen that we may draw a line to any angle by taking the degrees on the circle instead of being confined to one, as in his plan. I made one, only temporary, but am satisfied that it may be made so as to be a great improvement in Isometrical Perspective.
H. B.

Agriculture, \&c.

From the New-England Farmer. Providence, Feb. 11, 1837.
Mr. T. G. Fessenden,
Sir,-I perceive that you seem to recommend the use of Putatoes in making Bread. It is I presume, for economy, for no person would use them for any other purpose, in preference to flour. It should not be forgotten that 10 oz . of flour will, with a little yeast, ausd a due quartity of water, make 15 oz of bread, and that water is cheaper than even potatoes. If the bread be so made as that the moisture of the potatoes supplies the place of water, in the production of dough, you will lose all the bread, which would have been produced by the use of water. I have known potato oread made with a total loss of the potatoes, and yet heard a great boasting of the economy of the proceeding.

Will the black corn produce as much as the blue or white, if planted, both of them as they should be, three feet by 15 foot? ts earlier maturity is in its favor, but not io much as the loss of one-fourth of the rop; for in New-England the corn is not njured by frost one year in fuur, or periaps eight.

Mr. Bateman, of Newport, in this State,
has raised, as I am told, 1600 bushels of Mangel Wurtzel on an acre; he uses them in fattening catle. This crof requires the whole season, while the Ruta Baga may be raised to, perhaps, three-fourths of that amcunt after a crop of grass, or any kind of grain. The difference in the nutritive qualites of roots should be considered, and the purposes for which they are ed.

With high respect, I am

Your obedient servant,

Tristram Burgess.

By the Editor. - We are ever happy to receive articles like the above, from gentlemen, whose character, mental powers, and standing in the community are calculated to turn the attention of the reading and thinking part of mankind to the pursuits of economy. With regard to converting water into nutritious matter, and making it food for animals as well as plants, we have heretofore mado some remarks in a note to the Bosion edition of Mowbray's Treatise on Poultry and in the New-Eng. land Faımer, vol. x, p. 389. We will now take the liberty to repeat some of those observations, as they are pertinent to one of the topics of our able correspondent's communication, and will perhaps be new and useful to some of our readers :
"It is a fach which will be acknowledged as soon as stated, that a pound of Indien meal, or rice, or any other farinaceous substance, when boiled, contains inore nourishinent than several pounds in a raw state. Count Rumford has stated, "from the results of actual experiment, it appears that for each pound of Indian meal ellployed in making a pudding, we may reckon three lbs. nine ounces of the pudding.* And again, three pounds of Indian meal, three quarters of a pound of moiasses, and one ounce of salt, (in all 3 pounds 13 ounces of solid food,) having heen mixed with five pints of boiling water, and boiled six hours, produced a pudding. which weighed ten lbs. one ounce. \dagger Thus we gain from the raw material more than 300 per cent. in weight, and, no doubt, the gain as respects the quantity of nutriment contained in the pudding, over and abovo the component parts as they existed before boiling was still greater. The gain of weight in rice, in consequence of boiling, is more considerable than that of Indian meal, and every one knows that a small quantity of oat-meal will produce a very great relative proportion of gruel."

[^17]from 20 to 15 saccharine matter, from 4 to 30 gluten. As wheat and potatoes both contain mostly the same constituent parts. one would suppose there could be no loss by their mixture in bread; but there are properties belonging to the potato part of the inixture, which do not belong to that which is composed of the flour. The potatoes are cooked and boiled befere they are mixed with the flour or dough, while the flour is a raw material, and potatoes, we believe, are not increased in bulk or substance, by any process in cooking, like flour, Indian meal, or rice, \&c. This sub ject, however, deserves further investigation, and our able correspondent, by resuming it, would oblige us, and probably benefit the public.

Frum the Practical Farmer. morus multicaulis.

Sri,_Having seen many statements and suggestions in public prints, that the Chinese mulberry. (morus multicaulis.) was not as bardy as the White mulberry, and that it would not bear the extreme cold of our win. ters, \&c., I deem it proper to state my own observation on the subject. I was the first person south of New.York, who had the Morus Multicau'is ; it was sent to me by my old friends, W m. Prince and Sons, in 1828, in a collection of seven other varieties of mulberry. It was not then known by the present name, but it was called the Phillipine Island mulberry, and I believe was received by the Messrs Prince direct from those Islands. About a year after I received it, accounts were received from France of the receipt there of the Morus Multicaulis, and of its great value for feeding worms. On examining my trees, I at once found that my Phillipine Island Mulberry was the Mul. ticaulis, and immediately commenced feeding my Silk worms with it ; and from experiment, ascertained the truth of all the French had said about it. From that time to this, I have continued to urge upin all, the propriety of cultivating this, in prefe. rence to the white mulberry. Its advanta ges are, it is full as hardy as the white ; one pound of its leaves contain as much nutritive matter as a pound and a half of the white; the silk made from it is of a finer texture and more lustrous; its leaves are so large that a pound can be gathered at half the expense and trouble that a pound of White Mulberry leaves require; it can be cultivated with infinite y more despatch than any other kind. These are all great advan tages, and I am so well convinced of the correctness of this statement, that I do not hesitate to say, that within ten years, no other mulberry will be cultivated for feeding silk worms; simply because those who feed the worms upon the mulberry leaves wil not be enabled to compete with those who feed on Morus Multicauls, and they will be either compelled to abandon the silk business or adopt the multicaulis for feeding. In relation to the hardiness of the Morus Multi caulis, I have cultivated it for seven years never protected it in any manner whatever and never lost a tree by the cold of winter or auy other way. I had fifty young tree: in my garden last winter, and not even a buc on the extremity of the branches was injur.
ed: It is true that about fifty yards west from where the young trees stood, there is a grove of oak trees, and on the north, fifty yards distant. my dwelling-house stood; and my garden has an exposure to the south, with a gentle declination. But my residence in the winter of $1831-2$, was very different. It was on a farm, four miles in the country, in a northeast direction: the situation at an elevation of 3 to 400 feet rbove the tide water. There my Morus Multicaulis had an open exposure to the north-west wind; yet none were injured. During the whole time, I have had the white mulberry of various varieties, and have observed that they were all equally hardynone more so, than the multicaulis. I have seen the young unripened wood of all varieties destroyed by the winter, and was very early led to adopt measures to guard against it, and now I never lose a bud.

None but the young trees are ever injur. ed by winter, and all we have to do is to give them such a start as to enable them to ripen their wood previous to the approach of very cold weather. I raise all my trees from cu:tings in a hot bed. About the first of March, Im ke an ordinary hot bed, like those used for cabbage plants; then I take the young wood of last year's growth, and cut. it into pieces about two inches long, merely leaving a single bud on each; these I stick in the hot bed, three inches apart, in a slanting direction, the upper end inclining to the north, and burying it so that the bud is scarcely seen at the surface of the earth; sprinkle the bed with a watering pot, and put on the glasses; keep the bed properly moistened by watering every day, and throw matting over the glass at night, and in the middle of the day, to protect both from frost and the hot sun. By the middle of May. the plants will be four, six or eight inches high, and may then be transplanted to the place they are to grow, like cabbage-plants, watering them once a day for eight or ten days, if the weather is dry; they will be found to be well rooted, and wiil grow from four to six feet the same season, and will ripen their wood so that the ensuing winter will not injure them. After the first year, l have never seen any of them lost by the winter, except in some extra cases, and in these the white mulberry has suffered, and even the native mulberry, fully as much as the multicaulis. Last winter, a white mulberry tree, seven or eight years old, in the western part of the city of Baltimore, was killed to the ground; while my Morus Multicaulis not a quarter of a mile from it. and north of it too, and in a higher situation was not injured.

Gideon B. Smith.

> From the Genesee Farmer. BEET SUGAR. BY W. G.

There seems to be some little conflicting difference of opinion on the possibility of nanufacturing beet sugar profitably by inlividuals or families, among those whose atention has been drawn to the subject, and who profess to speak from experiment. Foi nstance, Mr. Sleigh of Philadelphia, in a ate communication to the U.S. Gazette o. hat city, says: "An establishment will not clear its expense, unless it be calculated to manufacture at least from two to five hun-
dred pounds of sugar a day; so that the idea of individuals in this country manufac. turing profitably for private consumption is preposterous; their sugar would stand them, including labor, a dollar a pound." This opinion Mr. Sleigh says he has come to "after numerous experiments."
On the other hand, Mr. Le Ray de Chaumont. Mr. Isnard, and others intimately ac. quaintrd with the manufacture in . France, assert that there can be no doubt of the practicability and profitableness of domestic or family manufacture, and that there are large quantities actually so manufactured in France. In addition to these statements, in "Journal des Debats," of April 15, 1836, appears an article on on this subject, in which it is stated, that four residents in the village of Wallers, department of the North, formed an association for making sagar, subscribing 50 francs each as cap tal. One was a blacksmith, the others farmers. These men were able to make from 40 to 50 lbs . a day, of sugar of a medium quality, a result surprising, considering their simple mode of conducting the process. They used curry combs to rasp the beet roots, used linen bags for expressing the juice, and the syrup thus obtained, was boiled in pots on the black. smith's fires. Several others are mentioned as having introduced the business on a small scale successfully, and the French editor intimates as his opinion, that the time is not distant, when eve, y family in that country, will make their own sugar, as they now do their preserves.
That some experience in the manufacture of beet sugar by companies and capitalists in this country must be acquired, before it can be introduced into families, can be readily conceived, but as the processes become simplified, and our farmers become familiarized with them, and with the culture of the beet, we can see no reason why it cannot be as well made in families here as in France; and there is no reason for doubt but that it will. If with cooking pots and a black. smith's fire, six or seven dollars worth of sugar were produced; there can surely be no obstacles that American perseverance, and an improved apparatus will find insupe. rable.
w We have received a highly valued favor from the Hon. Abbott La wrence, dated 15 th inst , House of Rppresentatives, Washington, relating to a parcel of Seed Corn, which has four or five ears on a stalk. \&c. The package has not yet arrived, and we received the notices of the donation and the statements with which it was acco.npanied, ton late for this paper. We have now only room to express our thanks to Mr. Lawrence for this repetition of his kinduess and attention to the Agricultural interests of New-England. His letter and the documents with which it was accompanied, shall be published in our next.
[New-England Farmer.]
-1) A Premium of One Hundred Dollars, is offered for the best experiment made in the year 1837, in fattening various adimals on apples-the premium to be award. ed by a Committee of three Farmers, to be named hereafter in this Journal.
[Amer. Temp. Union.]

List of subscribers to the Railioad
Journal, that have paid, (continued.) Thos. Hassard, City, N. Y., Jan. 1, 1838 N. Bliss,
A. B. Taylor, 1838 1837
G. M. Wilkins, 1838
W. H. Russell, 1838
D. C. Colden, 1838
S. Swartwout,

1838
New-York, Boston and Providence Railroad Co., City, Jan. 1, 1838
A. Hovey, Binghampton, N. Y., " 1838

Railroad Office, Painted Post, " " 1838
New-Haven Atheneum, New-Haven, Con., Jan. 1, 1838
H. M. Walker, Philadelphia, Pa., Jan. 1, 1838

Lt. Bliss, York, Pa.,
1838
A. Pardee, Hazleton, Pa.,
W. Kinney, Louisville, Ky.,

1838

- 1838
R. H. Chinn, Jacksonville, Ill., . " 1838
A. R. Johnson, Fort Levenwortl, Mo. Jan. 1, 1838
Ross. Winans, Baltimore, Md., Jan. 1, 1837 Error in last No., Wm. Norris, Philadelphic, Pa., to Jan. 1, 1838, instead of Jan. 1, 1837.

Alvertisements.

TO MANUFACTURERS OF HY-
 DRAULIC CEMENT

PROPOSALS will be received by the subscriber, on the part of the James River and Kanawka Companies, for the delivery on the wharf, at the city of Kichmond, Va., of Fify Thousand Bushels of Hydraulic Cement. The amount called for muat be furnished in quantities of about six thousand, bushels per month, commencing on the first of A pril and ending on the first of Noveraber next.
'To avoid future litigation, it is to be understood, on making the pruposals, that the bushel shall weigh seventy pounds NETT, and that the Cement shall be delivered in good ordder, and packed in light casks or barrels.
Proposals will also be received for furnishing fify thousand bushela, at any convenient point on the navigable waters of James River, or the north branch of James River, where the materials for its manulacture has been discovered.
Persons familiar with the preparation of the Ce ment, would do well to examine the Counties of lluckbridge and Botetourt, with a view to the establishmert of works for the supply of the western end of the line; and a contract for the above quanities will be made with them before they commence operations.

As there wiil be required on the line of the James River and Kanawka lmprovement, in the course of the present and next year, nut less than half a mill. ion of bushels of this Cement, and some hundred ion of bushels of this Cement, sand some hundred
thousand bushels more in the progress of the work thousand bushels more in the prigress of the work
wwards the west, contractors will find it to their interest to furnish the anicle on terms that lead to future engagements.
Proposale to be directed to the subscriber at Richmond, Va.

CIIARLES ELLET, Jr,
Chi f Engineer of the J. K. and Ka. Co.
Fobruary 20ih, 1837.
AN ELEGAN'L STEAM ENGINE
AND BOILERS, FOR SALE.
THE Steam Engine and Boiiers, belonging to the STEAMBOAT HELEN, and now in the Novelty yard, N. Y. Consisting of one Horizuntal high presoure Engine, (but may be made to condense with little additional expense) 36 inches diametcr, 10 feet stroke, with lateat improved Piston Valves, and Metalie packing throughout.

Also, four 'lubular Boilers, constructed on the English Locomotive plan, containing a fire surface of over 600 feet in each, or 2500 feet in all-will be suld cheep. All communications addressed (post pard) to the subscriber, will meet with due attention.

HENRY BURDEN.
Troy Iron Works, Nov. 15, 1836.

ARCHIMEDES WORKS.

(100 North Moor street, N. Y.)
New-York, February 12th, 1836.
THE undersigned bega leave to inform the propriecors of Railroads that they are prepared to furnish all kinds of Machinery for Railroads, Locomotive Engines of any size, Car Wheels, such as are now in successful operation on the Camden and Amboy Railroad, none of which have failed-Castings of all kinds, Whoels, Axles, and Buxes, furnished at shortest notice.
H. R. DUNHAM \& CO.

4-vts
AMES' CELEBRATED SHOVELS,

SPADES, \&c.

300 dozens Ames' superior back-wtrapShovels 150 do do do plain do do
150 do do do caststeel Shovels 150 do do do caststeel Shovels \& Spades 150 do do Gold-mining Shovels
100 do do plated Spades
50 do do socket Shovels and Spades.
Together with Pick Ares, Chnrn Drills, and Crow Bara (steel pointed,) mannfactured from Saliabury reGined iron-for sale by the manufacturing agents.

VITHLRELL AMES
No. 2 Liberty street, New-York. BACKUS, AMES \& CO.

No. 8 State atreet, Albany
N. B -Also furnished to order, Shaper of every deseription, made from Salsbury refined lron v4-tf
A SPLENDID OPPORTUNITY TO

MAKE A FORTUNE.

THE Subscriber having obtained Letters Patent, from the Government of France, granting hina the exclusive privilege of manulacturing IIorse Shoes, by his newly invented machines, now offers the same for sale on terms which canuot fail to make an independent fortune to any enterprising gentlemen wishing to embark in the same.
The machinesare in constant operation at the Troy Iron and Nail Factory, and all that is necessary to satisfy tho most incredulous, that it is the most valuable Patent, ever obtained, either in thisorany other country, is to witness the operation which is open for inapection to all during working hours. All letters audressed to the subscriber (post paid) will re. eeive dueattention.

IIENRY BURDEEN.
N. B. Horse Shoes of all sizes will be kept cons stantly for sale by the principal lrun and Hard-ware Merchants, in the United States, at a small adrance above the price of IIorse Shoe Iten in Bar. All persons selling the aame, are authorisen to waraant every shoe, made from the best refined trun, and any faitiug to render THE MOST perficct satisfacotin, both as segards workmanship and quality of Iron, will be received back, and the price of the same refunded.
II. BURDEN. 47-4

NEW ARRANGEMENT.

ROPES FOR INCLINED PLANES OF RAILROADS.
WE the subscribers having formed a co-partnership under the style and firm of Folger \& Culeman, for the manufacturing and selling of Ropes fur inclined planes of railruads, snd for other use s, offer to supply ropes for inclined planes, of any length required without splicu, at short notice, the masufacturing of cordnge, heretofore carried on by S. S. Durfee \& Co., will be done by the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be prompty attended to, and ropes will be shipped to any port in the United States. 12th month, 12th, 1836. Iludson, Columbia County State of New-York.

ROBT. C. FOLGER.
33-if.
(iEORGE COLEMAN,

ALBANY EAGLE AIR FURNACE ANU
 MACHINE SHOP.

WILLIAM V. MANY manufactures to order, ison castings for Gearing Mills and Factories of every description.
ALSO-Steam Engines and Railroad Castings o every description.
The collection of Patterns for Machinery, is no equalled in the United States. $\quad y-1 y$

STEPHENSON,
Builder of a superior style of Passenge Cars for Railroads.

No. 264 Elizabeth street, near Bleeckor atreet,

 New-York.RAILROAD COMPANIES would do well to ers mue these Cars; a specimen of which may be zeen on that part of the New-Iurk and Harlaem Railroad
now in operation
J25t!

PATENT RAILROAD, SHIP AND BOAT SPIKES.
** The Troy Iron and Nail Factory keeps constantly for sale a very extensive assortment of Wrought Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years successful operation, and now almost universal use in the United Statee, (as well an England, where the subscriber obtained a patent,) are found where tor to any ever offered in market.
Railroad Companies may be supplied with Spikes having countersink heads stitable to the holes in iron rails, io any amount and on short notice. Almost all the Railroads now in progress in the United Staten are fastened with Spikes made at the above named fac-tory-for which purpose they are found invaluable. as their adhesion is more than doable any common spikes made by the hammer.
${ }^{*}$ * All orders directed to the Agent, Troy, N. Y. will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spikes are kept for sale, at factory prices, by 1. \& J. Townsend, Albany, and the principal Iron Merchants in Albany and Troy ; J.I. Brower, $2 火 2$ Waser street, New-York; A. M. Jones, Philadelphia; T. Janviers, Baltimore; Degrand \& Smith, Boston.
P. S.-Railruad Companies would do well to forward their orders as eurly as pructicable, as the oubscriber is desirous of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes. (1J23am) H. BURDEN.
RAILWAY IRON, LOCOMOTIVES,\&とc.
THE subscribers offer the following articlen fos sale.
Railway Iron, flat bars, with countersunk holes and nitred juiats,
350 tons $2 \frac{1}{2}$ by $1,15 \mathrm{f}$ in length, weighing $4 \frac{18}{100}$ per Ω.
 with Spikes and Splicing Plates adapted thereto. To be sold free of duty to State governments or incorporated companies.
Orders for Pennsylvania Boiler Iron executed.
Rail Road Car and Locomotive Engine Tiren, wrought and turned or anturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 inchen aiameter.
E. V. Pa
E. V. Patent Chein Cable Bolt for Railway Car axles, in lengths of 12 feet 6 inches, to 13 feet 21,2 e 3, $31,3 \frac{1}{2}, 31$, and 31 inches diameter.
Chains for lnclined Planes, short and atay links, manufactured from the E. V.Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Planes, mada from NCW Zealand flax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and tone bluck of Edge Railwaye
Every deacription of Railway Iron, as well as Locomotive Engines, imported at the shortest nolice, by the agency of one of our partners, who resides in Fingland for this purpoee.
Mr. Solomun W. Roberts, a highly respectable American Enginecr, resides in England for the purpose of inspecting all Locomotives, Machinery, Railway Iron dsc. ordered through us.

28 tf Philadelphis No So
MACHINE WORKS OF ROGERS, KETCIIUM and GROSVENOR, Pateraon, NewJersey. The undersigned receive orders for the following articles, manufactared by thrm, of the mont superior description in every particular. Their works being extensive, and the number of hands employed being large, they are enabled to execute both large and small orders with promptness and despatch.

RAILROAD WOLK.

Locomotive Steam-Engines and Tenders; Driving and other Locomotive Wheels, Axles, Springe and Flange Tires ; Car Wheels of east irou, from a veriety of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of best American refined iron; Springs ; Boxes and Boles for Cars.
COTTON WOOL AND FLAX MACHINERY.
Of all descriptions and of the most improved Pablerns, Stylo, and Workmanship.
Mill Gecring and Millwright work generally; HyJraulic and other Preases; Preas Screws; Callendors; Lathes and Tools of all kinds; Iron and Brase Castings of all descriptions.

KOGERS, KETCHUM \& GROSVENOR
Patterson ${ }_{3}$ New-Jersey, or 60 Wallatreet, N.

PUBLISHED WEEKLY, AT NO, 132 NASSAU STREET, NEW-YORK, AT FIVE DULLARS PER ANNUM, PAYABLE IN ADVANCE
D. K MINOR, and

GEORGE C. SCHAEFFER, $\} \begin{aligned} & \text { Editors and } \\ & \text { Prorietors.] }\end{aligned}$

Abstract

\section*{CONTENTS:}

Adver isements; Editorial Notices; Railroad and Correspondence between Major McNeil and the...................... ${ }^{16}$ Correspondence between Major McNeil and the Contractors of Boston and Providence R. R .. 162 Contractors of Boston and Providence R. R .. 162 Internal Improvement. 162 Improvement Bill ; Buard of Assistant Aldermen 163 Miver Thames; Franklu Kailroad : Items.... 166 Bui'der's Manual. Agriculture, etc. Advertisemeuts.

AMERICAN IRAILICOAD JOUIRNAI
NEW-YORK, MARCH 18, 1837.
List of subscribers to the prailroad
Journal, that have paid, (continued.)
J. L. Smith City Jan 1,183
J. Matthiew,

Astor House,
G. W. Bruen,
W. Taylor,
J. Ely,

City Jan. 1, 1838 Jan. 1, 1838 July 1, 1837 Juy y 1, 1837 in full
J. W. Crane, Binghauripton, N. Y. Jan. 1, 1838
New Castle Manufacturing Co., New Castle, Del., Jan. 1, 1838
A. McGrew, Cincinnatti, Onio, Jan. 1, 1837 S. Williams, Florence, Ala., Jan. 1, 1838 Richard EHis, Richmond, Va., Oct. 1, 1837

TO ENGINEERS.

WE are gratified to be able to announce to those desiring Instruments, that Messrs. E. \& G. W. BLUN'T' of this city, are now prepared to furnish at shorl nutice, LEVELLS, from different manufacturers, among others from Troughton \& sims, which they warrant of the first qually. Circumlerentors, Levelling Staves, Prismatic Compasses, Mathematical Instruments, Books for Eingineers, etc constantly on hand.
Une of the above firm is now in England superint tending the manufacture of 'I'heodolites, Iransit Instrumetits, etc.-a ad any orders fir instruments, nonow on hand, will be forwarded Juin, and execuled promptly.
${ }^{*}{ }^{*}$ Orders will be received and promptly attended to by the Editors of thes Journal. promply attended
Tr It will not do, these hard times fod money, to be too modest. The Paper Maker must be paid, the Engraver, the Ink Maker, and the Printer muist be paid, -then why not Pay the Publishers and
the Editors the current year and all arrearages for the Journal ? It must be done.Please remit ey mail.
transactions of the institution of civil engineers of great britain.
The first volume of this valuable work, has just madt its appearance in this country. A few copies, say tuenty-five or thirty only, have been scut out, and those have nciuly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Eugineers from possessing it. In order therefore, to place it withia their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the close.

The price will be to subseribors thrce dollars, or five dollars for two copies-alvays in advance. The first number will be ready for delivery early in April-Subscriptions are solicited.

0- Missing Numbers Wanted.-IÎ any of our subscribers have numbers 4,5,6 and 7, of Volume or five last year, which they do not desire to preserve, they will confer a special favor by sending them to us, that we may complete a fuw copies of the volume.
** If any of our subscribers are in want of any other number of the same volume to complete their volume they will please give early notice and they shall be sent.
The Title page and Index for last year, or volume five, will be forwarded to subscribers with our next number.

RAILROAD AND CANAL STOCK:, in NewYork and Philadelphia.
SALES OF' STOCK IN NEW-YORK
March, 14ih.
Mohawk Rnilroad
Paterson Railroad Buston and Providence New-Jersey Traus Stoniugton
Wurcester Railroad
Long lsland Raiíruad
Paterson lailroad
Stonington Kailroad
Harlaem Kailroad
Ulica and Schenectady Delaware and Hudson Canal Morris Canal New Orleans Canal

cash	79
$"$	65
$"$	1026
$"$	100
$"$	69
$"$	91
$"$	74
$"$	65
$"$	69
	66
cash	1184
$"$	90
$"$	95
$"$	95

PIHLADELPLiIA STOCK MARKET.
March 10th.

RAILROAD STOCKS

New-Castle and Frenchtown Do luan, 54 per cellt Wilmington and Susquehanna Cauden and Anboy, shares, Do luan, W's 1836
Danville ald P share
orristown, do
Du 6 per cent loan
Valiey Railruad
Westchester do
Minehill do
N. L. and Pem. Tp. do Philadtlphia and Trenton do Weat Philadelphia Lailroad Harrisburg and Lancaster Harrisburg a
Cumberland
Cumberland Beaver and Meadow
Miscellaneous stocks North American Coal Company Steam 13t. Sts. Columbian Exchange Stuch

Areade

Theatres-Chestnut street Walnut street
-Arch street
Gas Company
CANAL STUCKS.:
Schuylkill Navigation, shares

Schuylkill Navigatiun,	shares			$4 t$
Do loans, 5	1845	100	98	100
Do do	1855	160	IVO	101
1\%o du 54	1837	100	98	100
Leluigh Coal and Na -rig	ation	50	86	87
Do loan, 6	1838	100	97	98
Do do 6	1839	100	97	96
Do du 6	1844	100	99	100
Do do 5	1840	100	96	97%

AMERICAN RAILROAD JOURNAL, AND

Union Canal, shares 1836	200	180	190
Lo loan, 1836	100	83	86
Do do 1940	100	83	40
Chesap'k \& Delaware Cuna!, shares	200	201	40
Do loan, 1837	100	60	67
Do do 1840	100	60	67
Delaware and Hudson,	100	924	921
Do luan	100	95	100
Louisvillo and Portland	100	1121	117
Converlible 6 per cent. loans,	100	110	120
Sandy and Bever	100	60	80
Morris Canal	100	97	98

The following correspondence, which we copy from the Courier and Enquirer of 25th February, merits the attention of those who have the superintendance, or are in any way connected with public works.

We adopt the remarks of the Courier and Enquirer as expressing our own sentiments in relation to the character, and course of the gentleman, and the subject which called forth this correspondence.

3 In giving place to the following correspondence between Major McNeil and the contractors who under him constructed the Boston and Providence Railroad-a work which probably has no rival in all that pertains to its durability-we deem it unnecessary to say ought in regard to the merits of Major McNeil as an engineer. His reputation is too well established in the estimation of the public to require any such testimony from us; but we deem it a duty alike to him and to contractors generally, to call public attention to the fact elicited by this correspondence, that the engineer considered himself not only the representative and agent of the Company, but so far the guardian of the interests of the contractors, as to feel it is his duty to make them a liberal ailowance for obstructions in excavations which no ordinary foresight and prudence on their part, could enable them to anticipate. Thus, where contracts are taken in good failh, and it was subsequently discovered that unanticipated obstructions occurred which would render their contracts exceedingly onerous, the Engineer allowed them, under the sanction of a very liberal board of direction, such additional compensation as justice and liberality dictated, without reference to the mere letter of their contracts.

Such conduct merited a proper expression of feeling on the part of the Contractors, while the constant aim of the Chief Engineer to add character to the business, entitles him to their respect and esteem.We hope the lesson inculcated by this correspondence, will not be lost upon other Engineers, and tho board of Directors under whom they act.-[Ed. Cour. © Enqr.] To Major Wm. Gibbs McNeill-

Sir,-At a meeting, holden at the Λ stor House, in the city of New-York, on Wednesday, Sept. 28th, 1836, Thomas Hassard, Esq., being called to the Chair, and Jonathan Crane appointed Secretary, it was voted unanimously, that

Whereas, the undersigned, having been Contractors and Agents on the Boston and Providence Railroad, of which you, sir, ware the Chief Engineer and Agent, feel it a duty to make an expression of their high consideration and respect, not merely for
the judgment and skill you have displayed in the location and construction of said road, but more especially for your liberal policy, your kind and affable treatment to those who have executed contracts under your agency :

Therefore, Resolved unanimously, That Thos. Hassard, E. Turner, and D. Carmichael, be a committee to present you, sir, a pair of silver pitchers and a vase, which we respectfully request you to accept, as a sniall memento of our mutual regard:

Most respectfully, yours,

Thos. Hassard,
Jonathan Crane,
W. J. Duval, John Borland, William Otis, Stephen Otis, Aaron Carso, R. G. Fairbanks, Daniel Carmichael, Wm. S. Otis,
James Muranus, Daniel B. Carson,
Wim. A. Bird,
John 'T. Clarke,
Ira Doder,
Jacob Stearn,
Thos. Bell, Levi Walton, Wre. McDermitt, Joseph Sturgess, E. Turner, E. D. Tu:ner, A. C. Velder, J. P. Vedder, Michael Onil, Joseph Mankin, Janus Mankin, Joln Moss, Alex'r. Birnie, Jchn L. Bevens, K. Beckwith, N. D. Williams, Riley.

To Major Wm. Gibbs .McNeill-

Sir,-The Contractors who have been engaged on the Boston and Providence Railroad, lately finished, under your superintendence, desirous of attesting their appreciation of your character and conduct, have appointed Messrs. E. Turner, D. Carmichael, ard myself, a committce to procure and present to you, the accompanying pieces of plate.
In the unavoidable absence of my colleagues, the pertormance of this pleasing duty devolves upon me. Having been for a longer period than any of my associates connected with works of which you were the Chief Engineer, it gives me peculiar pleasure that I ain selected to present you this evidence, that the kindness, courtesy and candor which has always marked your conduct towards us, has been duly appreciated.
In behalf of my associates, as such evidence, I ask your acceptance of a Silver Vase and a parr of Pitchers, herewith presented.

With great respect,
Your obedient servant,
'T'hos. Hassard.
New-York, January 1, 1837.

To Nu. Thomas Hassard-

Sir,-I beg to return to the Contractors of the Boston and Providence Railroad, represented by the Comnittee of which you are the Chairman, my most sincere thanks, not only for the splended plate which they have done me the honor to present to me, but for the warm expessions of their personal regards which, in their names, you have so kindly tendered me.
Such an evidence of their good feeling towards me is indeed amongst the most gratilying rewards, which have attended iny
efforts as an Engineer ; and I reciprocate, with all the cordiality of my heart, the triendship and affection which you assure me I have won at the hands of those represented by yourself. From an intimate interccurse for years past, I respect and esteem them personally, as I trust, it has een uniformly apparent, I do their calling. I look upon them as identified with the Boston and Providence Railroad; and if, in its conception, general plan and location, there be any thing to merit the approval of the public-in its substantial and permanent construction, indeed in the faithful execution of their trust, there is, in my opinion, infinitely more to command the gratitude alike of the stockholders and the engineer.

That intelligent, upright and experienced Contractors should be preferred, and while they maintain, (as those of the Boston and Providence Railroad have done, without, I believe, one single exception,) the deserved character of being such, should be sustained and enccuraged by the Engineer, is too obviously proper to admit of question. For I regard them as fellow laborers in a common cruse, and agents, in fact, with him, of the Corporation; and when their best energies shall, to his knowledge, have been given to the promotion of the interests of their employers, surely a just appreciation of the labors of the contractor-a consideration of circumstances, concealed from the cye of mand, and unanticipated, till disclosed by those labors, but which nevertheless, if overlooked, would deprive him of an adequate return, if not involve him and those dependent on him in ruin-surely, I say, such a course, on the part of the engineer, cannot be at variance with the true interests committed to him. That it has been my honest purpose, throughout, vigilantly to guard those interests, I am conscious is accorded. That I have done so, and that, at the same time, I know-while in the satisfactory fulfilment of your contracts, there is abundant evidence of that ability on your part, to be useful, which must ensure you ainple employment here-after-yon have lost neither in fame, nor fortune under me, is a satisfaction even greater than the apploving voice, which so flatteringly has reached me, from those with whom I have now for years been associated, on the Boston and Providence Railroad.
'I' received throughout the progress of that work, however, in the liberal and enlightened policy of its Direction, you will agree with me, that our united thanks are due.

In conclusion, allow me to bear my public testimony not on'y to the skill and industry with which you and your associates have, one and all, executed your contracts, but also to the cheerfulness and perseverance which have distinguished your efforts; and with my best wishes for your future welfare and happiness, believe me
Your friend, and obedient servant,
Wm. Gibes McNeile.
internal mprovenent in pennsylvania. The whole lenith of canal by the Com-
monwealth of Pennsylvania, in operation at this time is

100 miles
Railroad in operation belonging to the State
Canal extension commenced
Railway extension commenced
Canal by incorporated companies in operation
Railroad by incorporated companies in operation
Canal by companies being constructed
Whole length of canal in operation in the State
Whole length of Railway in operation

120
$209^{\frac{1}{2}}$

Aggregate of Canal and Railway in operation
$1192 \frac{1}{2}$
Whole length of Canal being constructed in the State
Whole length of Railway being constructed
$30.5 \frac{1}{2}$

Aggregate of Canal and Railway being constructed
$715 \frac{1}{2}$
Aggregate length of Cinal in the State when completed
$1191 \frac{1}{2}$
Aggregate length of Road when completed

7153
1,907

From the Harrisburg Reporter.

 THE IMPROVEMENT BILLWas reported in the House of Representatives yesterday, by Mr. J M'llvaine, chairman of the Committee on Internal Improvement. We have neither time nor room, at present, to do more than give the following brief abstract of its details :
To the Erie extension,
$\$ 600,000$
To the North Branch extension, 600,000
To an extension from the mouth of
Tangascootack to the Sinnemahoning,

100,000
From a navigable feeder from Al. leghany to the Kiskeminetas, near Kittanning,
To complete the railroad to avoid the inclined plane at Columbia,
To complete the Tangascootack line on the West Branch,
To the Gettysburg railroad,
For reservoirs in the neighborhood of Johnstown and Hollidaysburg,
For a survey to ascertain the practicability of a continued water communication between the West Branch and the Allegnany river,
For surveys to ascertain the practicability of a railroad from Cham. bersburg to Laughlinstown,
For the survey of a railroad line
from Nanticoke Pool, by way of
Tunkhannock, to Binglumpton,
For the survey of a railroad from Franklin to the harbor of Eric,
Forsurveys to ascertain the practicability of conneeting the canals on the Juniata and Conemaugh, by a railroad without inclined planes, (no sum specified,)
For making a navigable communj-
cation between Sheaver's creek, in IIuntingdon county, and t'ro Pennsylvania canal.
To construct a towny pt elomg the pool of the Nuiticoke dam on the east side of the North Branch, to the mouth of Salmon's creck,
To extend the Pennsylvania railrond
to Marietta, so as to aroid the in-
clined plane at Columbia.
40,000
In addition to the foregoing, the bill pro. vides for the following subscriptions of stock on behalf of the Commonwealth:
To the Danville and Pottsvilic rail-
mad,
$\$ 300,000$
To the Ba'd Eagle and Spring creek uavigation,

95,000
To the Lancaster, Mount Joy, Ports-
mouth and Harrisburg railroad, 150,000 To the Cumberland Valley railroad, 200,000 To the Unioa Canal company, 3000 shares To the Monongahela navigation company,

10!,000
To the Frauklin railroad,
To the Freeport and New-Castle railroad,
To the Pittsburg and Laughlinstown railroad,

200,000
To the Somerset and Jomstown turupike company,
To the Williamsport and Wasiangton turnpike,
To the Monongahela Bridge at Williamsport,
To the Warren and Franklin turnpike company,
To the Washington and Pittsburg turnpike company,
To the Peter's Mountain turupike company,

8,000

To the Mereer and Meadville turnpike company,
To the Downingtown, Eiphrata, and Harrisburg turnpike,
To the Susquelama and Water. ford turnpike,
To the Bald Eagle and Brus! Val. ley turnpike company.

5,000
-,000
5,000
10,000
35,000
500
6,000
1,000
1,000
boakd of assistant aldermen, january 9 th. 1837.
communication fron the water commissioners, setting forth the phogress of the works for supplying the city with pure and wholesome water. laid on the table and obt dered to be printed. John Newhouse, Clerk.
To the Honorable the Common Council of the City of New-York.
The Wa:er Commissioners had the honor of presenting a communication to the Common Council on the 1st day of August last, stating briefly the progress and situation of the works for supplying this city with pure and wholesome water, up to and including that date; and they now beg leave to lay
100,000
87,500
38,943
150,000
25,000

10,000

12,000

15,000
before your honorable body the material facts in the progress of the work from that date to the first day of January, 1837.

It was stated in the communication referred to, that Commissioners of appraisement had been appointed by the Vice-Chancellor to take certain lands for the Croton Aque-
duct, belonging to John Grffin, James Palmer, Zopliar Palmer, and Joshua Purdy.
0,539 Gue of tlee prorens appointed, however; wats ahsont irum this State at the time, and the vacancy was not t:lied by the ViceChancellor untit he 26 th of July, 1836.
The names of the gentlemen then, and now, acting as Commissioners of Appraisement, are as follows, viz: William Jay, of Bedford, Abraliam Milier, of Northcastle, and William Nelson, of Peckskill, all in the county of Westchester. They were nutified to meet on the second of August, 1S36; at the village of Sing Sing, for the purpose of appraising the amount of compensation to be paid the persons above named, as owners of the property, reguired by the Water Commissioners.

The appraisers accordingly met at the house of S. M. Tonipkins, in the village of Sing Sing, at 12 o'clock, M. on the 2d day of Augus', aforesaid, and completed their estimate and appraisal on the 3d of Angust; which was handed to Daniel B. 'Talunadge, Esq., the Solicitor of the Water Commissioners, to be reported forthwith to the Chancellor for confirmation.

This appraisal was duly confirmed by the Cbancellor on the Sth of August and was as follows:

For Land of

James Palmer, 5 \$50\% of acres, $\$ 70000$

 John Giiffin's
Jchn est lot, 1112800 " $\$ 425$ Jchn Griffin's

East lot, 144_{1080}^{180} " 1425$\}_{185000}$ Total of acres, 37 , ${ }^{5} 3_{0}^{3} L_{4}$ " Total, $\$ 309500$
The reasons why so small a portion of the land required for the Aqueduct, was placed under Commissioters of Appraisement in the first instance, was, because the map of these lots were among the first furnished us by the Engincers, and the owners of the land were the first who positively refused to sell or negociate with us for its purchase.
It may be proper to state in this place; the difficulties the Commissioners have to encounter in obtaining the land required for the works. In a former paper we alluded to the opposition attempted hy a portion of the inhabitants of Westchester ; their unreasonable demands, as indicated by resolutions passed at public meetings, and their remonstrances to the Legislature. The prejudices prodtuced in the minds of many by these proccedings, tends very much to embarass the operations of the Commissioners in their endeavors to oltain possession of the necessary land on fair and equitable terms, and without possession, either by purchase or through the appraisers, we are not authorised to use or disturb its soil in the prosecution of the work.

We are bound by the statute, first, to agree with the owner of any property which may be required for the purpose, as to the amount of compersation to be paid sucis owner; and it is only in the event of disagreement between the Commissioners and the owner, except in the casc of infants,
married women, insanc persons and absenrees, that we are nuthorised to apply to the Chancellor for the appointınent of Commissioners to examine the property and estimate the value thereof. 'The Chancellor before appointing Commissioners, requires an affidavit from the Water Commissioners, that an attempt has been made to agree with the owner of the property, and that they were unable to agree. There are on the line of Aqueduct and Croton reservoir about 200 owners. First, it is necessary to asc:ertain the name and residence of these respective owners, and that done, each resident must be seen in person. Some of them are not at home when called on ; others are a mile or two away froin their residence; and many who are seen, want time to make up their minds as to the amount of compensation they ought to receive ; and another, and in some instances, two or three calls must be made before the matter can be closed. This, to be effected on a line of thirty odd miles, is not very easily accomplished.

Having failed to purchase by agreement, and application having been made to the Chancellor for Commissioners of Apprai ement, the application will not be granted which every ow: rr is notified, in due form, of the fact, in order that he may appear in person, or by Counsel, and oppose the application if he deems proper. The Chancellor having appointed the Commissioners, each owner of land to bo taken, must again be served with a notice of the time and place of meeting, in order that they may appear and produce evidence of the value of their property, and the damage they will sustain by its occupation for the $W_{\text {ater }}$ Works. This having been got through with, and the report of the Cominissioners duly Jaid before the Chancellor, some distant day is appointed for hearing objections why the report should not be confirmed. After confirmation, searches are to be made, in order to ascertain the validity of title to each piece of land, be it more or less; and the objections or others, not coming forward before the expiration of sixty days to ciaim the anount awarded them, it becomes necessary that a tender of money should be made them personally, and on refusal to receive it, to pay it into Court. There is an additional embarassment which has grown up since the line of the Aqueduct was marked out. Whether it has emanated from the mania for speculating in lots, or from a disposition to enhance the value of the land, the Commissioners have no positive means of deciding ; but, the fact is, that since the period alluded to, we find the line of the Aqueduct crossing village lots in several places, where we formerly only tnet with fields appropriated to the plough or for pasture. Instead of one owner, therefore, as we have orgginally supposed, we find several; - the map of the line of Aqueduct must be made to conform to this new arrangement, and when the subject is brought before the Appraisers, there is no lack of evidence to prove, that as much has been oflered tor one of these new village lots, and that it is worth as much, or more, than would have been given for several
acres of the ground a short time previous. These embarassments, thus thrown in the way of our proceedings, may account, in a measure at least, for the delays which have occurred in the progress of this portion of the work.

None of the persons included in the first appraisement, called for the amount a warded them by the Commissioners before the expiration of the sixty days from confirmation, and we accordingly dispatched P. S. Cooke, Esq., with the amount in specie, to make the tender; two of them refused the tender, and the amount of their awards was paid into the Court of Chancery.

At themeetingof the Board of WaterCommissioners on the 13th of August 1836, a a resolution was passed, directing D. B. Tallınadge, Eisq, as solicitor of the Cominissioners to apply to the Vice Chancellor for the appointment of Commissioners of Appraisement on such portions of the land, not already purchased, as is dosignated on the map of the Aqueduct from number 5 to 38, inclusive. This range extends from the land of Henry Louns berry, designated on Map number 4, which has been purchased by the Commissioners, to the State farm at Sing Sing.

An act was passed by the Legislature on the 11th of May, 1836, anthorising the Water Commissioners, with the consent of the Governor, to construct the Aqueduct through the State farm appurtenent to the State prison at Sing Sing, and the consent of the Governor was officially obtained, for the purpose, on the 23d of September, 1836.

It was the middle of Octuber before the Chancellor decided on the appointment of Appraisers, in the case referred to the Solitor by the Commissioners on the 13 th of August last. He then appointed the same gentlemen who have served on the first case subinitted, viz: Messrs. Jay, Nelson, and Miller. 'They were regularly notified to meet at Sing Sing on the 281h of October, and a Committee from the Commissioners repaired to that place for the purpose of furnishing such information on the subject before the Appraisers, as might be deemed necessary and proper. Two of the gentlemen appointed appraisers attended at the place and time designated by their notice; the third did not attend, his notice having taken a wrong direction. 'They adjourned tn meet on the 3d of November, and measures were adopted to inform the absentee of the fact.

The Appraisers met aecordingly on the 3d of November, the whole Board being present. They spent threc days in hearing evidence brought forward by the owners of the land to be taken, and on the evening of the last day, completed their report. There werc twenty-eight owners of the land com. prised in the report of the Appraisers; the quantity taken was 57 acres 465 thousandths and the aggregate award amounted to $\$ 27,14012$ cents. This report was handed to our Solicitor on the 7thof November, 1836, to be presented to the Chancellor for confirmation. On the 28th of November, the question of confirming the report came up before the Chancellor for consideration, and Counsel was heard in opposition, and in favor of eight of the awards, when further
proceedings was adjourned to the 7th of December for a rehearsing. At the day appointed, the subject again came up, and judgment was given by the Chancellor, con. firming the whole report, except six cases, which were referred back to the same Ap. praisers for re-examination.

The following persons have since received the amount awarded them, viz :
John Sing, for 286 thousandths of an acre,
$\$ 3,50000$
Willet Holmes, 51 thousandths of an acre,
Russell Barnain, for one thousandth of an acre, 45000 35000 John Hogg, for one acre 392 thousandths,
John Hoag, for one acre 392 thousandths, Michael Lent, for 16 thousandths of an acre,

25000
Robert Acker, for 57 thou-
sandths of an acre,
12500
Estate of Henry Waller, for 294 thousandth,

250000
Ldward Auser, 2 acres, and 213 thousandths,

220000
Total, $\$ 967500$
Nearly the whole of this land forms parts of village lots.
At a meeting of the Water Commission. ers on the 18 th of October last, it was resolved, to apply to the Chanceilor for the appointment of Appraisers on all the land required for the Aqueduct, between the Croton and Harlæm river, which had not already been purchased or taken by appraisement. As yet, however, the Appraisers have not been appointed, neither have they met on the cases referred back to them for re-consideration.
In addition to these perplexing delays: (whether chargeable to the form of proceed. ings by the Court, or the neglect of applicants, the Commissioners are not competent judges,) they have had to contend with what they have considered much lack of energy in the operations of their Engineer department. We took oceasion to state in our communication of the 1st of August, already alluded to, that on the 23d of July, 1836, certain information was requested of tha Chief Engineer, which he had promised to furnish as soon as practicable; and that, on the pro. duction of which, we were still in hopes of being enable to place some part of the work under contract before the close of that year. These hopes, however, have not been reali. zed, and the Commissioners having felt much dissatisfaction for this disappointment, and for other cause, they finally determined to make a change in the office of Chief Engineer, and he was accordingly notified of the fact. After proper inquiry on the subject, they fixed upon John B. Jarvis, Esq., as Civil Engineer, who had been engaged on most of the great works constructed by this State, and who was extensively known as an energetic and practical conductor of the public works. The negotiations with Mr. Jar. vis have resulted favorably, he was appointed Chief Engineer of the works for supplying this city with water, on the 11th of Octo-
sand dollars ; and an official letter was transmitted to him by the Chairman, announcing the fact of his appointment. He arrived here on the 19th, and on the 20th two of the Commissions accompanied him to Sing Sing and Yonkers, where parties of the Engineer corps were engaged, and placed him in the direction of the Engineer department of the works. Mr. Jarvis has since inspected the whole line of the Aqueduct, from the Croton to the Harlæm river. His opinion of the route, so far as he was able to judge from viewing it, without instrumental examination, appears favorable, and the location of the dam at Garritson's Mills, he thinks the best, under the circumstances of the case, that could be obtained.
It was found that most of the stakes on the line had been removed ; whether intentionally by persons inimical to the work, or by accident while ploughing the field, or reaping the crop, the Commissioners have not been able to ascertain. A party was accordingly formed for re-setting the stakes in a more permanent manner than heretofore.
The Commissioners feeling a strong desire to have some part of the work under contract at the opening of the next working season, requested the Chief Engineer to have shafts sunk at the site for the dam, and on the line of the Aqueduct from that place to Sing Sing, about 8 miles in length, in order to exhibit the soil and nature of the ground to be excavated, both for the information of the contractors as well as ourselves. These operations were nearly completed, when the cold became so intense as to prevent further progress until a change of weather.

Examinations have also been made of the ledges of rock on the line of Aqueduct, and near the site of the dam, to ascertain whether suitable stone, by quarrying, can be obtained in convenient situations for the works. The result has been as favorable as could be expected under the circumstances in which the examination was made, it having been prosecuted without assistants to open the ledges of rock examined, and during the inclement month of December last. There can scarcely be a doubt, however, that abundance of stone, which will compose a majority of the materials wanted for the work will be found on the line. Specimens of the stone discovered are deposited in the office of the Water Commissioners.

When Mr. Jarvis entered on the duty of conducting the engineering of the works, there were nineteen persons attached to the corps. He immediately set about diminishing their number, and there are no w only five retained for service during the winter. Two of these are at the office at Sing Sing, engaged in preparing a map and profile of the several roads that intersect, or pass in the vcinity of the line of Aqueduct, in order that it may be seen at what place it will be necessary to obtain the privilege to pass over private property, in transporting to the work, the materials for constructing it ; and three of the party are employed in the office of the Water Commissioners in this city, preparing the map and drawings, necessary to form the basis of the specifications of the aqueduct, culverts, bridges, \&c.
In accordance with the 25 th section of
the act of the.2d of May, 1834, the Consmissioners have regularly reported to the Comptroller, every six months, a detailed account of their receipts and disbursements, since their first operations under the ordinance of the Common Council, passed the 7th May, 1835, which directed them to proceed with the work.
The amounts disbursed for all matters connected with the works of supplying this city with water, are as follows:
From July 1835, to January
1836,
From January 1536, to July 1836,
From July 1836, to January
1837,
31,82S 02
12,070 84
28,099 59

Total,

$\$ 71,99845$
For particulars, see our accounts rendered the Comptroller.

The following statement will show the whole quantity of land required for the Croton reservoir and the aqueduct, the quantity paid for, the quantity under agreement, and appraised but not paid for, and the quantity still to be acquired, either by purchase or through the intervention of appraisers.
The whole quantity of land
required for the Croton
Reservoir and Aquepuct,
from the Croton to Har- Acres Thous's. laem river,

813 14080
The quantity of land purchased and paid for around the Croton Reservoir,
The quantity taken by appraisement and paid for, The quantity purchased and paid for on the line of the Aqueduct, is
The quantity taken by appraisement and paid for on the line of the Aqueduct, is
$241 \frac{443}{100}$
231300

17 2815

1510015
The totalquantity paid for, is $298 \quad \frac{5.59}{15}$
The quantity under agreement but not paid for, is
The quantity appr_ised but not paid for, is
The quantity of the State farm, the use of which was authorised by the Governor,
The quantity still to be obtained eitherby purchase or Appraisement is $454 \quad 299$
It thus appears, the quan. tity of land paid for, the title of which is vested in the Corporation of this city, is

298 559
The quantity under contract
but not paid for, is
$57 \quad 1882$
The quantity still to be ac-
quired to Harlaem R., is 454 2080
And the quantity of the
State farm, is
24.47

Making the total as above 813 154.0
The solicitude manifested by the mem-
fellow citizens generally, for the progress of this great work, cannot be greater than that experienced by the Commissioners. It is this which has led to the change in the Eugineer department, and they liave reasoia to think, the result will be favorable to a more energetic prosecutior of the business, and that it now may be calculated with some decrec of certainty, that at least a portion of the work will be placed under contract in the spring of the present year.

Before closing this communication, the Commissioners beg leave respectfully to remind your Honorable body, that there are two subjects, presented by them for consideration which are yet undecided on, if the Commissioners are correctly informed, both of which require Legislative aid, and are considered important. One, on the subject of certain highways and turn pike roads, that will be covered with water by the dam:ning of the Croton river; and the other, respecting the sites for the necessary reservoirs on the Island of New-York. Until the first is disposed of, we are prevented from building the Cruton dam, as the roads alluded to, must be constructed before the reservoir is formed; and all operations oat the Island of New-York must be suspended, until the Legislature shall authorise an alteration of the city 1пар, in order that the reservoirs may be permanently located.

There is another subject, which the Commissioners refer to with great reluc. tance. It has appeared by the proceedings of one of your Honorable boards, as published in the newspapers some time since, that censure has been cast upon the Com. missioners for some unknown cause, and that in debate, it had been stated, they were under no accountability, either to the public or to the Common Council, and that a resolution had been proposed to apply to the Legislature for an act compelling them to make quarterly reports to the Common Council. There seems to be some mistake in this matter however, as the fact is, the Commissioners consider themselves accountable both to the public as well as to the Common Council. To the public they are accountable for an honest and upright discharge of their duty, and to the Commn Council they are accountable for a vigilant superintendance over those cinployed under them, and for the strictest economy in the expenditure of the funds placed in their hands In order that your Honorable body might see that these funds were properly disbursed, the Commissioners have uniforly, as has before been observed, reported to the Comptroller a detailed account of their receipts and expenditures. at the end of every six months, since the commencement of their operations. These reports are made in conformity with the 25 th section of the act of the 2d of May, 1834, to enable the Comptroller and finance Committee of the Board of Aldermen, to examine whether any improper expenditure had been incurred. The Commissioners have, in addition, always left their books open to the inspection of any member of the Common Council who might choose to examine them, and they have uniformly expressed to the

Comptroller, a readiness to appear before the finance, or any other Committec of your Honorable body, and produce their vouchers for the expenditures incurred. Feither ar they sensible of having at any time refused information to the Common Council, or any of its menbers or Committees, or neglected to report on any subject reterred to them ; and why your Honorable body should be led to doubt, that an ordinance or resolution directing the Commissioners to report quarterly to the Common Council, instead of half-ycarly to the Comptroller, would not be corplied with, and therfore, that it was necessary to ask an act of the Legisiature for that purpose, is beyond their comprehension. The Coun missioners will lismiss this subject however, with the lope, that nothing may occur, in the transactions of this important concern, to mar the grool understanding which ought, and which they still believe does exist, between them and your Honorable body.

All which is respectfully submitted.
Stephen Allen,
Charles Desenbury, \mid
Whiliam W. Fox,
ITrater
Saul Alefy,
Benjamin M. Prown,
Office of the Water Commiseioner's, New-York, January 9th, 1837.
'I'ue River 'Thames.-The removal of the old London Bridge has caused a considerable change in the river above, and also, though in a less degree, below the bridge. Owing to the contracted arches through which the water had to make its way at the old bridge, there was a fall of from 4 feet 9 inches to 5 feet at low water; this fall is now reduced to about 2 inches; so that the low water line above the bridge is nearly 5 feet lower at spring tides than formerly. In consequence, a greater increased body of tidal water now flows up and down the river. The effect of this is to scour and deepen the channel of the river; its influence in this respect being seusibly felt as far up as Putuam Dridne, $7 \frac{1}{2}$ miles above London Bridge. The shores above the latter, that were formerly foul and muddy, are now becoming clean shingle and gravel, and near low water the beach is quite hard and firm. The shoals are also decreasing below the bridge; and there can be little doubt that the change will, at no distant period, be felt from the Nore up to Teddington. The descent down the river has been equally facilitated; the mean velocitics of the flood and ebb between London and Westwinster-bridge are, flood three miles an hour, extrene three-and-a-half ; ebb three $\frac{1}{6}$; extreme three $\frac{1}{2}$.-[Hcrald.]

From the Getlysburgh Star and Banner.

the franklin railroad.
\mathcal{T} We have seen the report of Thomas Chambers, President of the Franklin Railroad Company. It is an extraordinary document, written in a spirit, not only of
low rivalry, but altogether destitute of truth. It ill becomes genllemen, striving for the improvement of the State, to travel out of their way to assail any work whieh they may suppose likely to be their competitor. We certainly feel no hostility to the Franklin and Cumberland Valloy Railroads.Let them be made, and if that is the shortest and best route, (by shortest we mean soonest travelled,) it will take the business, and has nothing to fear from our route. If ours is the best, let it be made, and have the indvantages which Nature gave it.

But to return to Mr. Chambers' illiberal Report. He makes the difference in distance trom Philadelphia to the junction of the two roads, with the Baltimore and Ohio Railroad nt or near Hagerstown but is miles, when, in truth, it is 29 miles, and so ho inust have known. Lancaster is the point fro.n which both routes diverge, and unite again at Hagerstown, or its inmediate vicinity; for all our purposes, Hageristown may be taken as the common termination. Take the present road on both routes:-
From Lancaster to York, it is 22 miles. From York to Gettysburgh, 23 " From Gettysburgh to Hagers-
town, 32 "
82 miles.
By the Cumberland Valley Route-
From Lancaster to Harrisburgh, 40 miles. From Harrisburgh to Chambers-
burgh, 51
From Chambersburgh to Hagers-
town, 20
111 miles.
82
Difference in favor of the York route,

29 miles.
Admitting this route to curve more than the Chambersburgh route, say at most, 4 miles, still this will be 25 miles shorter than the Franklin Railroad. Chambers has hunted up and quoted an old silly and false report made ly a boy employed by the State authorities some ten years since, to make a false report about the Sonthern Route to punish ouranti-improvement spirit!
We regret the insiduous report of Mr. Chambers, who might have sustained the interests of his own route without slandering and misrepresenting ours. It is the index of a narrow mind.

Items.

From the 1st of May to the 31st of December, 1836, 730,000 passengers were conveyed on the railroad from Antwerp to Brusscls : the receipts amounted to 734,236 .

Pig iron has been reduced by the iron works in the neighborhoou of Bradford, $£ 1$ a ton. A similar reduction has taken place in Wales.-[Ti:nes.]
The Gerinan Courrier gives the following of the 12th inst., from Vienna:-" Some new iron mines of considerable extent have been discovered at Eisenertz, in. Styria,
which place has long been celebrated forits rich mines of that metal; upwards of three hundred thousand quintals are annually drawn from the mines of Erzberg, and it is thought that those just discovered will be equally productive. It has been declared by persons acquainted with the article that the Styrian steel is harder and more flexible than that of Eogland, with which it can also compete in cheapness of manufacture.English steel costs here from 120 to 160 florins the quintal ; whereas the price of the quintal of Styrian steel will not exceed 60 florins. Austria may therefore dispense with English stcel, while that of Styria will become an important branch of commerce, not only in Europe, but in other parts of the world. The Prince Lobkowitz encourages with all his efforts this new undertaking, which yields abundant profit."
M. Degousse has succeeded in piercing a fourth Artesian Well, at Meaux. The depths of the bores of these wells are from 164 to 295 feet English, and the water rises to from $3 \frac{1}{4}$ feet to 16 feet 4 inches English. The quantity obtained at the Fulling Mills is 66 English gallons a minute, and that at the Seminary 37 gallons. The water is very soft, and has been proved by an amalysis to be fit for every purpose.

At Saint Denis de Thibcult, near Rouen, a discovery has lately been made of a large spherical Roman vase, of Terra Cotta, $5 \frac{1}{2}$ feet in circumference, inclosing a square vitrified vase, about a foot high, filled with burnt bones and ashes. These relicts are in perfect preservation, and M. Quesnel, on whose estate they were found, atout four feet below, the surface, has deposited them in the museum of antiquities at Rouen.
M. Aime Grimaud has within these three days made an experiment on the Seine of a new invention, by means of which vessels may be impelled across the seas in every dircction wilhout the use of fuel. Additional force will be given to windmills, and artificial falls of water may be formed so that such provinces as are now deficient in this necessary of life may be supplied. The new machine is composed of several wings forming together a wheel which is supported by a vertical mast that gives a motion to a transversal beam, at each extremity of which is a paddle wheel. This machine is so constructed that it acts in every direction of the wind, and has all the force of a steam-ongine. M. Grimaud has succeeded in making his way up the river against the current, which was streugthened by the late floods, and in traversing in it all directions, even in the teeth of the wind.

We have it from undoubted authority that a propelling power has been discovered for vehicles on common roads, which can be applied to mail-coaches, etc., at the cost of 6 d . per mile for a four horse poiwer. The inventor has obtained a patent in England, and is obtaining a similar instrument in the principal countries of Europe, and in the United States.- [Cumberland Packet.]
Λ mechanician of Cherbourg has just invented a press for the extraction of oil, which possesses very decided advantages over every other press hitherto in use, as a
greater power can be given to it, and it will extract twice the quantity of oil in the sume time as the other presses hitherto in use.The force oî a single man applied to this machine will produce a pressure equal to 400,000 pounds weight. The new press also occupies but little room, as it will stand in the space of four square feet.

The National Intelligencer gives the following biographical sketch of the late John Loudon McAdam:

Mr. McAdam was of the proscribed clan of the McGregors, being, in his own person, the head of one of the branches of that family, of which the territorial appellation was Waterhead. His father took the name of McAdam, when that of McGregor was forbidden. In early youth, Mr. McAdam came to this country, as the adopted son and heir of an uncle of the same name, whose widow died within the last ten years in New.York. After residing here seventeen years, during which period he married, Mr. McAdam returned to England and established himself near Bristor. At this place he commenced, about the year 1810, those cxperiments which have since converted the roads of England into the best in the world. By this improvement he has made himself one of the great benefactors of that nation, and indeed, of our own, though his system has been but lamely imitated here. He was conacious of the extent of his services, which have nover received the reward they deserved. He was twice offered knigithood, and once a baronctcy by the British government, both of which titles he declined, preferring his confiscated but hereditary claims to "Waterhcad," with true Scottish fidelity, to the possession of those more common distinctions. "His second son has, however, recently accepted the former rank, and is the present Sir James McAdam. As this gen. tleman occupies the situation of superintend. ent of the metropolitan roads. he is commonly mistaken for his father.

Mr. McAdam was twice married, and both times to ladies of well known New.York families. His first wife was Gloriana, the daughter of William Nicoll, Esq., of Islip, the collateral descendant and heir of Col. Nicoll, the first English governor of the co. lony, and the proprictor of one of its largest manors; and his second wife was Anne Charlotte De Lancey, the eldest daughter of John Peter De Lancey, Esq., of Mamaroneck, Westehester, whose father died at the head of the government of the same colony in 1760. By his first wife, he left several childrẹ.

the

BUILDER'S MANUAL. (Conlinued from page 153.)
the methods of láying bricks.
The strength of walls and piers of brickwork depends as much on the manner in which the courses are placed, as on the quality of the materials employed in construction ; for, however good the bricks may be, if they are not so placed as to strengthen one another, and mutualty confine each other to their several situations, the work cannot have the requisite stability.

If the perpendicular joints in the several courses are too nearly over each other, the work is liable to crack in a vertical direction, and if the bricks, forming the outer and inward face of the wall do not bind together, the work will bulge, and the wall must at last fall to pieces by its own weight. It is therefore important for us to determine the best methol of laying bricks, and we shall endeavor to describe the means adopted by builders to prevent the separation of the work, and give a solid bearing to ϵ very part.

Those bricks which are so placed that their length is in the direction of the wall, are called stretchers; and those which are placed with their length across the wall, are called headers.
The two principal methods of bricklaying are severally called English and Flemish bond. English bond is generally preferred by builders as being decidedly the strongest, though it has not so neat and regular an appearance as Flemish. English bond consists of alternate courses of headers and stretchers ; thus, one course is formed with headers, that is, with bricks crossing the wall ; the next with stretchers, that is, with bricks having their length in the same direction as that of the wall: the headers scrve to bind the wall together in a longitudinal direction, and the stretchers prevent the wall from separating crossways.
Flemish bond consists in placing a header and a stretcher alternately throughout every course. This method of bricklaying is very inuch adopted, on account of the regular appearance it gives to the face of the work, but in order to have this result, a header must always be placed over the middle of the stretcher below it. The Flemish bond, though inferior in many respects to the English, is very generally used, and an inferior brick is placed in the interior of the wall, and those which form the face, are picked or chosen, that the work may have a uniform color. The greatest fault in this method of bricklaying is, that by making a putty joint on the face, the interior bricks do not range level with the exterior ones, and this prevents the builder from connecting his work by headers extending through the whole thickness of the wall.

THE CARPENTER.

A Carpenter is a workman who executes that combination of timbers which may be considered, in connexion with the bricklayer's work, as the fraine or skeleton of a building. There is, however, this difference between the objects of the one and of the other; the bricklayer has only to consider the downward pressure or force of gravity, and the forces which may be exerted, tending to destroy the perpendicular; the carpenter must also study the relative disposition of parts, so as is alleviate as much as possible the strains .which may be exerted upon the building.

Carpenter's work is distinguished from that of the joiner's; for while the one has regard to the substantial parts of an edifice, thuse which give solidity and strength, such as the construction of roots, floors, and partitions, the other consists in providing for the ornamental and convenient. A carpen-
ter should be well acquainted with the strength and character of the materials he uses, and especially as he employs them in great masses. He should also be careful aot to overload a building, or to employ harger timbers than are absulutely necessary ; for, if there were no danger in so doing, economy would dictate the necessity of this care. It is then important that the carpenter should be able to ascertain the dimensions required for the several parts of a building, so as to produce a maximum of strength, without overloading the walls or his own work. and at the same time, to avoid the danger which must result from a scanti!ess of material. There are then two things to be considered, the strength of the rraterials, and the stress to which they are subject in certain situations. A timber, or framing, may be strained in various ways, but of these we shall speak presently; our first object is to describe the materiols themselves, referring particularly to those woods which are most commonly used.

Oak.

There are many species of oak, but that known am'ng botanists, as the "Quercus robur," is most esteemed. It may, however, be necessary to remark in relation to this, as well as all other kinds of timber trees, that the character of the wood must greatly depend upon the soil in which it grew, and the degree of attention it received from the cultivator. The oak of Sussex is most esteemed by builders, but, whether the preference is dictated by experience or prejudice, we are unable to state: but we are not acquainted with any series of experiments that warrants the choice, and it is not fit that practice should be regulated by unproved stateinents.

A Norway oak, called clapboad, is frequently brought to London; and also one that is grown in Germany, called Dutch wainscot, being imported from Holland, to which country it is brought in floats down the Rhine. Both these woods have been extensively used in this country, and it is probable that the wainscot will be still employed for many purposes, for, though it is softer and the grain more open than the Euglish oak, it is also less liable to warp.

Oak is the most durable of all woods, and surpasses them in strength and stability. Vitruvius says, that it has an eternal duration, and when we see the beautiful specimens which have remained untouched by time, in our oldest buildings, though all other materials are crumbling around them, we feel an inclination to asseat to his opinion. It is, however, only the close grained varieties that deserve this character; and it is no small addition to the professional skill of the architects of past ages, that by the choice of the best materials, they gave a perpetuity to their works; which few, if any, of the present day can rationally expect.

Oak may bo used in all those places where strength is required, and its flexibility does not present an objection. For sleepers, wall-plates, ties, king-posts, and other such purposes, it should be used more frequently than it is. But its chief applica-
tion is for snip-timber, and some thousand loads are annually u'sed in our Dock-yards. This remark suggests the propricty of using it in all those places which are much exposed to the variation of weather.

Fir.

There are many apecies of fil, all of which are more or less used in building ; but thero are three sorts in particular that require our attention, being more used than any others: these are the Pinus Sylvestris, or yellow fir; the Pinus Abics, or spruce fir; and the Pinus Resinosus, or pitch pine.

The red or yellow fir is a native of ScotJand, and the Northern counties of Europe. This tree is more abumdant than all others in the boundless forests of Norway and Sweden. It grows to au immense height, very straight, and with few branches. The fir timber of Norway is brought into this country under the name of masts and spars ; those which are eighteen inches or more in diameter are called masts, and are frequently eighty feet in length; others are called spars. In sevaral parts of Scothand the yellow fir is grown, and attains a great height.

The yellow fir or deal is much used in building, and is a very darable wood; according to some authors, as much se as oak. But whether this be the case or not, it has many qualities which render it exceedingly usetul to both the carpenter and joiner. It is light and easily worked. yet stiff, and capable of bearing great weights. It is commonly employed for framing, girders, joists, and ratters; for joiner's work also it is almost universally used.

White fir is also a native of the north of Europe ; and is especially abundant in Norway and Denmark, and is sometimes called the Norway spruce. The larger quantity of that which is brought into this country, is imported from Christiana in deals and planks. Deals are formed by cutting the fir tree into thicknesses of gen erally about three inches, the wilth being about nine. As fir is exceedingly hable to shrink, it is very necessary that it should be well seasoned, and this is especially the case with white fir, which should never be used in those places which are exposed to atmospheric changes. We are informed by travellers, that the tree is first cut into three lengths of about twelve feet long, each of which are divided into three deals.

The pitch pine, which is a native of Canada, is sometimes employed by the carpenter, but not so frequently as those kinds we have already mentioned. This wood is much heavier than either of those we have already described, but it is less durable. Its name has been derived from the circumstance of its containing a large quantity of resin, which makes it very unfit for buildiag purposes, and very dithicult to work.

Larch

There are three species of Larch; one is a native of Germany and the neighboring countries, the other two are Americans. The European species (Pinus larix,) sometimes grows to a great height, and contains a large quantity of timber; one which was
cut at Blair Athall in 1S17, is said to have contained 252 cubic feet of timber; this, however, was a tree of remarinable size.

Mr. Tredgold, in his nost interesting and uscful work on Carpentry, has made some appropriate remarks upon the character of this wood. "It is extremeiy durable in all situations, failing ouly where any other li:nd would fail: for this valuable property it has been celebrated from the time of Vitruvius, who regrets that it could not be easily transported to Rome, where such a wood would have been so valuable. It appears, however, that this was sometimes done, for we are told that Tiberius caused the Naumachiarian bridge, constructed by Aurrustus, and afterwards burnt, to be rebuilt of larch planks, procured from Rhcetia. Among these was a trunk 120 feet in length, which excited the admiration of all Rome. The celcbrated Scamozzi also extols the larch fur every purpose of building, and it has not been found less valuable when grown in proper soils and situations in Britain. In posts and other situations, where it is exposed to damp and the weather, it is found to be very durable. In countries where larch abounds, it is often used to cover buildings, which, when first done, are the natural color of the wood, but in two or three years they beconce covered with resin, and as black as charcoal ; the resin forms a kind of impenerable varnish, which effectually resists the weather. Larch is not attacked by common worms, and does not inflame readily.

The larch is useful for every purpose of building, whether external or internal ; it makes excellent ship-timber, masts, boats. posts, rails, and furniture. It is peculiarly adapted for flooring-boards in situations where there is much wear, and for staircases; in the latter, its fine color, when rubbed with , il, is much preferable to that of the black oaken staircases to be seen in some old mausions? That we may not give an crroncous estimate of the value of the larch as applicable to building purposes, it is necessary to state that it is worked with more difficulty than fir, and is even more liable to warp, unless it be perfectly seasoned.

Lech.

The beech (Fagus sylvatica, is not much used in building, on aecoant of the very rapid decay it undergoes whenever it is affectec by dampress. It grows in our own, as well as in most European countries; but it prefers a dry soil, and, in England, flourishes most in chalk districts.There are two kinds of beech-wood; one is called the brown or black beech, the other the white ; it is, however, generally supposed that the difference is due to the character of the soil, and not to any specific distinction. Beech is a hard, fine-grained wood, and has been much used for the commoner kinds of household furniture.It may appear singular that it should be well adapted for piles, provided it is constantly immersed in water; but damp destroys it very readily. Nor is this the only objection to its being used in building; for even the best, which is the white, is soon
injured by worms, whether in a dry or damp situation.

Ash.

There are several species of ash, but the one which is most common in Europe, called by botanists the Fraxinus excelsior, is the most valuable. The tree sometimes grows to an inmmense size; but its mean diameter is said not to exceed twenty-three inches. The texture of the wood is alternately compact and porous, and presents a veined appearance, the veins being darker than those of the oak. On account of its great flexibility, and want of durability, it is not ever applied for framing or for tim. bers. From the experiments which have been made, it appears that it is tougher and stronger than oak, and, were it not for its great flexibility, might be, in many instances, advantageously employed by the carpenter. It is not, however, without a use in the arts, being exceedingly well adapted for many parts of machines and carriages.

E/n.

Five species of elm are found in this country; but the wych elm (Ulinus campestris,) and the smooth-barked elm (Ulmus glabra,) are most valuable. Elm decays rapidly when exposed to variations of weather; but is durable when kept constantly ary, or constantly under water. The piles upon which Old London Bridge was erected, were elm, and their soundness, after an exposure to water for some centuries, proves the truth of one of these statements. It is a porous and generally coarse crossgrained wood; and, on this account, should never be used in any piece of framing where a strain is to be supported. But, in addition to this, it is liable to shrink both in breadth and length, though it is not readily split. It is by no means an important wood to the builder; but a large quantity is used in this country. For many hydraulic works it is very useful ; some parts of ships are constructed of it; and it is generally employed for coffins, piles, and wet planks. The wood of the wych elm is preferred to all others.

Chesnut.

The chesnut (Fagus castanea,) is one of the most long-lived of all European trees. It is a native of many parts of Europe, and was at one time very common in England, yielding the principal timber at the time. The roof of King's College, Cambridge, is made of chesnut, which is one instance of its durability in a dry state. It is also well adapted for water-pipes, casks, and other vessels intended to hold fluids. When thoroughly seasoned it will neither shrink nor swell, and nay be applied for all those purposes for which oak is used, and in some instances is more useful. The wood is hard, and, when young, tough and flexible. It is not always easy to distinguish between oak and chesnut, for they much resemble each other in color and in gruin; but they may be known, says Sir Humphrey Davy, "by this circumstance, that the pores in the alburnum of the oak are much larger and more thickly set, and are easily distinguished ; while the pores in the chesnut require glasses, to
be seen distinctly." The wood of old trees is generally brittle, and should never be used in those situations where it will be subject to a considerable strain. It has also been stated, that when chesnut is shut out from the access of air, it quickly decays. It is much to be regretted that the culture of this tree, at once ornamental and useful, should be so much neglected in England. In some instances it has been known to live from eight hundred to a thousand years; and its full and beautiful foliage might induce the land proprietor to propagate it, even if he should be uninfluenced by its usefulness in the art of building.

Walnut.

The common walnut (Inglans regia,) is a native of Persia; but was once cultivated in this country as much for its wood as its fruit. It is a greyish-brown wood, with a fine grain; but, if it were not scarce, and could be obtained by the builder for the same money as the woods now employed by him, it would be very unSt, on account of its flexibility and aptness to split, for all those situations where a weight is to be sustained; thougb it was sometimes used for this purpose in former times. It is now chiefly used for gun-stocks, handles to steel instruments, and for furniture. It is less liable to be attacked by worms than perhaps any other wood, excepting cedar.For some building purposes, particularly for some joiner's work, it might be advantageously employed, could the supply be sufficient.

Mahogany.

This wood is the produce of a tree called the Swietenia mahogoni. It is much used by cabinet-makers, and frequently by joiners for doors, hand-rails, tops of counters, and other ornamental work. The tree is a native of the West India Isles, and of the Bay of Honduras in America. On account of its costliness, it cannot be extensively used in this country by the carpenter, though its qualities are such as would make it otherwise desirable. The Spanish mahogany, or that which grows in the West Indies, is most esteemed, and is imported in lengths of about ten feet, and from twenty to twenty-six feet square.

Teak Wood.

Teak wood, or Indian oak, is obtained from the Coromandel coast. It is a light and durable wood, easily worked, and equal if not superior to oak in strength and stiffness. It is chiefly used for ship.building; a purpose for which it is well adapted, being of an oily nature, and yielding good tar.
Poplar.

Several kinds of Poplar grow in England, but none of them are frequenily employed by builders. The wood has a beautifully clean grain; it is light, though not very strong ; is easily worked; and may be sometimes used for flooring in those situations where there cannot be much wear.

The woods we have described are the most important of those used by the carpenter and joiner. To distinguish the one
from the other, the reader must accustom licause, and thus to give a lengthened conhimself to examine specimens carefully; for it is impossible, by any description, to give him a capability of doing so. Our object has been to relate the characters and properties of the several kinds of timber, as deduced frem the experiments which have been made by practical and scientific men. There is one thing, we think, that will particularly strike the reader's attention, and should be constantly borne in mind : the same wood is not equally useful in different circumstances; and when we discover that it possesses durability in one situation, it by no means follows that it will have the same property in another. A wood may be admirably suited for floors, but it may be altogether unsuited for timbers, and all situations where great weights are to be sustained.

DECAY OF WOOD.

Allusion has been frequently made in the preceding remarks to the fact, that wood is, under some circumstances, susceptible of decay. Some woods decay much more rapidly than others; but they will all, in some situations, lose their fibrous texture, and, with it, their properties. But all circumstances are not equally favorable to decay; for it will be evident that there must be some arrangement of causes to produce this effect To ascertain the causes which act upon woods, and effect their destruction, is an important object both to the builder and to the public; for, untill this has been done, we cannot ever expect to ascertain any general principle that may guide us in our endeavor to avoid those circumstances which have a tendency to encourage the destruction, or to propose a remedy for the evil. The ravages which are constantly made upon all our works of art, give a character of insecurity to our labors; for the things which men accomplish with great perseverance and difficulty, in a length of time, are, in a few years, destroyed by invisible agents. In studying the decay of wood, there are three things that demand our attention, the causes, the circumstances under which those causes are most active, and the means by which they may be destroyed, or their effects in some degree neutralized.

cause of the decay of timber.

All vege:able as well as animal substances when deprived of life are subject to decay. From a very early periud attempts have been made to prevent this decomposition; and in some degree these attempts have been successful, more especially with animal bodies. The Egyptians were acquainted with so perfect a means of embalming animal substances, that the bodies of men and animals prepared by its earliest inhabitants have combated for centuries the influence of time, and have been found in a perfect staie by our contemporaries. This being effected, it is reasonable to hope that some means may yet be provided that shall arrest the destriction of vegetable substances. It is not to be expected that it will ever be possible to give a perpetuity to a particular form of substance,
tinuance to one particular constitution of elementary principles.
If the trunk or branch of a tree be cut horizontally it will be seen that it consists of a series of concentric liyers, differing from each other in color and tenacity. In distinct genera or species of trees these layers present very different appearances, but in all cases the outer rings are more porous and softer than the interior. Wood is esscutially made up of vessels and cells, and the only solid parts are those coats which form them. These vessels carry the sap which circulates through the trec, gives life and encrgy to existence, and is the cause of the formation of leaves, flowers and fruit. But when the tree is dcad, and the sap is still in the wood, it becomes the cause of vegetable decomposition by the process of fermetation. Fourcroy, the celebrated chemist, says, there are five distinct species of vegetable fermentation, the saccharine, the coloring, the vinous, the ascetous, and the putrefactive. But we are but little acquainted with the process by which the decomposition is carried on, but the effect is certain unless the albumen, one of the constituent proximate principles of vegetable matter, be disposed of, or be, made to form with some other substance a compound not subject to the same process of decay. We are, it appears, indebted to Mr. Kyan for the discovery that albumen is the cause of putrefactive fermentation, and the subsequent decomposition of vegetable matter.

Circumstances favorable to Vegetable Decomposition.

Wood is not equally liable to decay under all circumstances. When thoroughly dried it is not so quickly decomposed as when in its green state, for in the latter condition it has in itself all the elements of destruction, and it is scarcely passible to prevent the effect if it be then used in building. But supposing the timber to be perfectly seasoned, it is more liable to decay under some circunstances than others. Timber is most durable when used in very dry places. Time, however, which decays all things but the thuking principle, affeets the hardest wood even when employed in the most alvantageous circumstances.Yet timber which has been used in places where it reccives ro other moisture than that which it absorbs from the atmosphere has been known to last for seven or cight hundred years, though its elastic and cohesive powers are invariably injured.
When timber is constantly exposed to the action of water the decomposition ef. fected will depend upon the nature and chemical composition of the substance. Vegetable matter is a compound, and an ingredient may be removed without destroying the whole. A portion of wood may be soluble in water, but other parts are not ; so that atter a definite period the continued action of water upon a piece of timber ceases, and if it can sustain the influence of this cause matil that periorl, there is no termination to its enduratuce, except fiom those casualties which it might have brell able to bear in its origimal state, but camoot after the removal of that portion of its substance solluble in water. Suould a piece of timber
that has been for a long time exposed toll water be brought into the air and dried, it will become brittle and useless : this is usually the case with the timber taken from peat bogs, unless it should happen to be impregnated with some mineral substance that has stayed the action of the water.

When wood is alternately exposed to the influence of dryness and moisture it decays rapidly. It appears, from experiments that bave been made, that after all the matter usually soluble in water has been removed, that a fresh maceration and contact of the air produces a state of matter in that which is left which renders it capable of solution. A piece of timber nay then in this manner be more and more decomposed, until at last the whole mass is destroyed. The builder is sometimes compelled to use wood in places where it will be exposed to alternate dryness and moisture ; fencing, weather boarding, and other works, are thus exposed. In all these cases he may anticipate the destructive process and provide against it. The wood used in such situations should be thoroughly seasoned and then painted or tarred, but, if it be painted when not thoroughly scasoned, the destruction will be hastened, for the evaporation of the contained vegetable juices is prevented.

There is one other circumstance to be considered, the influence of moisture associated with heat. Within certain limits the decomposition resulting from moisture increases with the temperaturc. The access of the air is not absolutely necessary to the carrying on of this process, but water is; and as it :goes on, carbonic acid gas and hydrogen gas :are given off. The woody fibre itself is not free from this decomposition, for, as the caribonaceous matter is abstracted by fermentaition, it 'becomes more susceptible of this change. This statement is proved by the circumstance, that when quick lime is added to the moisture, the decomposition is accelerated, for it abstracts carbon. But the carbonate of lime produces no such effect : a practical lesson may be learnt from this fact; if timbers be bedded in mortar, decomposition must follow, for it is a long time before it can abiorbsulticient carbonic acid to neutralize the eflect, and the dampness which is collected by contact with the wet mortar ins creases the effect. When the wood and the lime are both in a dry state, no injury results, and it is well known that lime protects wood from worms.

Whea the destructive process first becomes visible it is by the swelling of the timber and the formation of a mould or fungus upon its surfacc. Thé fungus or cryptogamic plant rapidly increases, and soon covers over the whole surface of a piece of timber, having a white, greyishwhite, or brownish lue. When the seeds of destruction are thus once sown they cannot be readily eradicated; it need not therefore be a matter of surprise that many of the foreign wood; used in this country lave so little perpenity when the reader is informed, that the heat of the hold of the vessel in which tiney ure brought is sullicient of itself to cover them with mould or inildew. Heat and moisture may be cousidered the prominent catuses o: the rapid decomposition of vergetable subtunces. When wood 15 completely and constantly covered witu w.i-
ter this effect is not produced, and we have an example in the fact, that, although those parts of a vessel which are subject to an occasional moisture are liable to dry rot, yet those parts which are constantly beneath the water are not ever thus affected; and although the head of a pile, which may be now and then wetted by the casual rise of the tide, and is then dried again by the sun, may be decomposed, yet those parts which are always covered with water have been found in a solid state after centuries of emersion.

MEANS OF PREVENTING DECAY.

It cannot be thought a matter of small importance that we should have some means of preventing the decay to which wood appears to be so subject. Many experiments have been made under the hope of discovering a simple and cflective process for the accomplishment of this purpose. Whenever there is a desirable object which seems to offer a prospect of fame or wealth to him who can secure it, there will always be many persons who, impelled by a sanguine disposition, or by bad motives, will propose schemes which are not founded on scientific principles, and frequently produce more harmghan grood. This we have frequently seen, and in a time like the present, when all men seem to be speculating for an existence, rather than seeking wealth and honorable independence by the legitimate exertion of intellect or skill, the public are peculiarly exposed to the impositions of the weak and of the crafty. Scarcely a month elapses but we hear some new specifics against the dccay of timber, and yet when brought to the test of experiment they are found to be utterly useless. Some fortunate observation, some unexpected result, as the patentees in. form us, led to the discovery ; and as to the reason why this or that process should be effective, they neither know nor care. We do not, however, in these censures include the process proposed by Mr. Kyan, which we sliall presently have occasion to explain.

Felling Tiinber.

Something may be done towards the prevention of decay by felling the timber at a proper season. A tree inay be felled too soon or too late, in relation to its age, and to the period of the year. A tree may be so young that no part of it shall have the proper degrec of harduess, and even its heart-wood may be no better than sap-wood; or: a tree may be felled when it is so old that the wood, it not decayed, may have become brittle, losing all the elasticity of maturity. The timber grower is more likely to alopt from intercsted motives, the former of these errors, and fell his timber too young. His object is to obtain as much timber as possible, but a tree is not in its maturity when it ceases to grow, for after this period its tibres gain firmness and density. The time required to bring the several kinds of trees to maturity varies according to the nature $0^{\circ}{ }^{\circ}$ the tree and the situation in which it may be growing. Authors differ a century as to the age at which oak should be felled, some sily one hundred, and others two hundred ycurs; it must then be regulated according to circumstances. Although the oak of our own codatry is so valuabie to the builder,
yet it is to be feared that it is seldom allowed to attain its maturity, the grower being anxious to sell and the builder to buy; the one seeking to obtain its value himself, rather than leave it to posterity, the other to purchase at as low a price as possible, not caring for the character of the timber.

But it is also necessary that the timbertrees should be felled at a proper season of the year; that is to say, when their vessels are least loaded with those juices which are ready for the production of sap-wood and foliage. The timber of a trce felled in spring or in autumn, would be especially liable to decay ; for it would contain the element of decomposition. Mid-summer and mid-winter are the proper times for cutting, as the vergetative powers are then expended.

There are some trees, the bark of which is valuable, as well as the timber; and as the best time for felling is not the best for stripping ihe bark, it is customary to perform these labors at different periods. The oakbark, for instance, is generally taken off in carly spring. and the timber is felled as soon as the foliage is dead; and this method is found to be highly advantageous to the durability of the timber. The sap-wood is hardened, and all the available vegetable juices are expended in the production of foliagre. Could this plan be adopted with other trees, it would be desirable; but the barks are not sufficiently valuable to pay the expense of stripping.

Seasoning Timber.

Supposing all these precautions to be taken in felling timber, it is still necessary to season it ; that is, to adopt some means by which it may be dried, so as to throw off all the juices which are still associated with the fibres of the wood. As soon as the timber is felled, it should be removed to some dry place; and, being piled in such a mainer as to admit a circulation of air, remain in log for some time, as it has a tendency to prevent warping. The next process is, to cut the timber into scantlings, and to place these upright in some dry situation, where there is a good current of air, avoiding the direct rays of the sun. The more gradually the process of seasoning is carried on, the better will be the wood for all the purposes of building. Mr. Tredgold says, "lt is well known to chemists, that slow drying, will render many bodies less easy to dissolve; while rapid drying, on the contrary, renders the same bodies more soluble. Besides, all wood, in drying, loses a portion of its carbon, and the more in proportion as the temperature is higher. There is, in wood that has been properly seasoned, a toughness and elasticity which is not to be found in rapidly. dried wood. This is an eqident proof, that firm cohesion does not take place when the moisture is dissipated in a high heat. Also, scasoning by heat alone, produces a hard crust on the surface, which will scarcely ermit the moisture to evaporate from the internal part, and is very injurious to the wood.
"For the general purposes of carpentry, timber should not be used in less than two years after it is felled; and this is the least time that ought to be allowed for seasoning. For joiners' work it requires four years, unless other methods be used ; but, for carpentry, natural seasoning should have the
preference, unless the pressure of the air be removed."

Many artificial methods of seasomng timber have been proposed; and a brief notice of some of those which have been found most useful will be required.

Seasoning by a Vacuum.

All the vegetable and animal juices are kept in their particular vessels by the pressure of the atmosphere; remove that pressure, and the animal fluids could no longer be retained by the veins and arteries, and the vegetable fluids would exude and appear on the surface of the plant. Place a small piex:e of wood beneath the receiver of an airpump, and exhaust the air, and in a short time the wood will be covered with drops of the liquid which can no longer be retained, as the atmospheric pressure is removed. Mr. Langton thought that this might be applied to the extraction of those vegetable juices in timber, known to be the cause of its decay. An arrangement was therefore adopted, by which large masses of timber might be enclosed in a vessel having such machinery as would be necessary to exhaust the air, heat being at the same time employed so as to vaporize the exuded juices. The vapor is conveyed away by pipes surrounded by cold water, and is condensed into a liquid, having a sweet taste. This process is deserving of more attention than has hitherto been given to it.

Water Seasoning.

It has been stated by various writers, that wood immersed in water for about a fortnight and then dried, is better suited for all the purposes of the joiner. There can be no doabt that immersion in water tends to neutralize the effect of the saccharine matter, by dilution or an almast absolute remo. val. This process has also the effect of rendering the wood less liable to crack and warp; but, if we judge by Duhamal's experiments, it injures the strength of the material, and should not, therefore, be adopted in any instance where the timber is to be employed by the carpenter. Evelyn recom. mends boards that are to be used for flooring, to be seasoned in this way: "Lay your boards," he says, "a fortnight in water (if running, the better, as at a mill-pond head); and then setting them upright in the sun and wind, so as it may pass freely through them, turn them daily; and thus treated, even newly-sawn boards will floor far better than those of a many years' dry seasoning, as they call it." Timber iutended for ship-building may be immersed in sea-water; but that which is to be used for houses ought to be placed in fresh water; for if timber, or any other building material, be impregnated with salt, it will ever be wet, for salt attracts moisture so readily, that it may be used approximately as a hygrometer. Plaster or mortar made with salt water, will always sweat wit.? a moist atmosphere ; and timber intended for the house-carpenter, if impregnated with salt, will always be damp, or covered with a crystalized efflorescence. Much injury, however, is sometimes done by not thoroughly immersing the timber; the carpenter should therefore be carcful, when he employs this method of seasoning, that the timber is entirely covered with water,
and that it be not exposed to its adtion for too long a time.

Seasoning by Smoling and Charring.

Authors who have written upon the seasoning of timber have spoken of the effects of smoke, and the carbonization of the surface. We have adopted the same arrangement, but it will be necessary to caution the reader against a misconception of a very inaccurate expression. Timber cannot be scasoned by either smoking or charring, but seasoned timbers may be made more capable of resisting the effects of certain situations by these processes. Should a piece of timber, containing the vegetable juice, be smoked or charred, it would be a means of accelerating decomposition; for preventing all means of evaporation, the common sources of protection, would become sources of destruction. But when timber is to be used in situations where it is liable to be attacked by worms, or to produce fungi, it may be desiratle to smoke or to char it.

Seasoning by Boiling or Steaming.

Timber is sometumes seasoned by steaming or boiling, both of which means are frequently adopted by ship-builders. The strength of timber appears to be somewhat impaired by these processes, but it is generally less liable to shrink or crack. Duhamel states that he boiled a piece of wood, and then dried it upon a stove, but, in drying, it lost part of its substance, as well as the water contained; and upon a repetition, he found that it had lost still more of its weight. Four hours' exposure to steam or boiling water is sufficient for timbers of ordinary dimensions, and the drying afterwards goes on very rapidly, but it should be done as gradually as possible. The joiner frequently finds it necessary to steam or boil wood, to bend it into a particular curve, and also the ship-builder. It has been stated by writers on ship-building, that boiling increases the durability of timber, and in proof of this, they inform us that the planks in the bow of a ship, which are bent in this way, are never effected by the dry rot.

It may now be inquired whether, after the most perfect seasoning, timber is secured against the process of decay? To this question a negative answer must be given.However well the timber may be seasoned it will certainly rot if placed in a damp situ. ation, the rapidity of the decomposition depending upon the nature and state of the wood and the activity of the destroying agent. As the builder seldom attempts any other seasoning than that which depends upon drying his timbers, it is absolutely necessary that he should carefully avoid the rise of damp, and adopt every means in his power to prevent this evil. Timbers are usually placed in contact with walls, bat it must not be supposed that this is sufficient to keep them from the access of damp, for they are frequently the conducting media. Brick. workvery readly absorbs moisture, and alsı throws it upwards, so that the ends of timbers are in contact with the very source of mischief. To prevent the rise of damp upwards, it is common to use, for a fuw fe.t above the foundations, cencut, a substance impervious to water, instend of martar, or ta place between the coarses zinc or slate.-

But that these plans may be effective, the basement walls should be surrounded with an open area, for, if in contact with the earth on their sides, they can be of no value. To prevent dampness from entering in front, the brickwork should be covered with compo, or some substance impermeable to water.

Another thing to be considered, for the security of timbers, is to arrange, in every plan of a building, for a perfect circulation of air. Ventilation is a most inportant requisite in the construction of a building, although it is generally a matter of very little importance in the consideration of those who have to plan or construct buildings. The ventilation of roofs is by no means difficult, but there are often so mauy obstacles to the ventilation of flooring, that the designer will not give sufficient attention to his subject to provide against them. These things, how. ever, are not matters of speculation, to le attended to by those who have no higher em . ployment, but are absolutely necessary for the construction of a work that is intended to survive the builder.
But we must pass from this subject to a consideration of some of those plans which have been proposed to secure well seasoned wood from the effects of dampness, and the ravages of insects, though it must be confessed that but few of them have been successful.

Attempts have been made from a very early period to prevent the destruction of wood, by impregnating it with some substance capable of restraining its ravages.The muriate of soda, or common salt, has bren thought a good preservative against decay, when the wood is thoroughly impregnated with it. The wooden poots which. support the roof of a salt mine are said to. be preserved by the constant infusion of salt, and that a vessel covered with fungus will have her timbers cleaned by immersion in salt-water. Whatever may be the advantages of this process, it is quite certain that it can never be extensively employed, for the salt absorbs water so readily, that the timbers would be constantly damp.
In the year 1670, a Mr. Jackson proposed to immerse timber in a composition of muriate of soda, Epsom salts, lime, potash, salt-water, and other substances; but neither he nor any boly else could ever discover the value of this procesṣ. Tuis person was permitted to prepare so.ne timber to be used in the National yards, and it was found that vessels built with it was less durable than those in which unprejared wood was used.
Sulphate of iron, or green copperas in water has been recommended as a good mixture, in which to place wood, that is to be used for the purposes of building. It is said that timber boiled in a solution of sul. phate of iron, becomes so hard when dry, that moisture camu.t penetrate it. This may possibly be the case, but tire change must ba effected by the remuval of some prortion of woody fibre, and t.ie admission of the sul. phate in its place in the same inamer as tie wood fuund in the London clay has been fossilized by that substance.

Lime has been recommended as a preservative against the decay of timber. There is a difference of opinion among writers as to the value of this substance, for the particular purpose. It is well known tuat quich.
lime with moisture rapidly destroys vegetable matter, but Mr . Tredgold says, that a large quantity of fresh quick.lime in contact with wood, absorbs the water, hardens the sap, and thus, keeping it in a perfectly dry state, renders it very durable. This gentle man quotes the opinion of Mr. Chapman, who says, that vesse's employed in the Sunderland line trade have been forty years old without needing any repair, or showing the slightest evidence of decay in the timbers. A writer, who recommends the impregnation of wood with lime, says, that wood burjed in the earth, and surrounded by lime, is protected from the ordinary ca! ises of decay. But Dr. Birkbeck objects to the plan, for he says, assuming such principle to be correct. there is a great inconsistency as to the effects produced upon animal and vegetable matter, and there can be no doubt that the substance which destroys one, will destroy the other.

The attention of scientific men has been recently directed to the experiments made by Kyan, and from the very excellent exposition of his plan, by Dr. Birkbeck, we are induced to loope that it may be found highly advantageous. Having made a great number of experiments with a view to ascertain the primary cause of vegetable decomposition, he was at last convinced that albumen was that cause, and that to neutralize its effects would be to prevent decomposition. Some plan was required similar to that adopted in tanning. The gelatine in animal bodies is quite as liable to decomposition as the albumen of vegetables; but when tannin, the infusion of oak bark, is combined with it, the destructive properties are lost, and the animal matter becomes durable, and almost incapable of decay. Ireasoning upon this effect, Mr. Kyan imagined that it might be possible to prevent vegetable decomposition by causing the albumen to form a combina. tion with some other substance; and knowing the affinity of corrosive sublimate for the albumen, he entered upon a series of experiments, which led him to propose the use of that substance as a protection for timber.

A few extracts from the published lecture read by Dr. Birkbeck, before the Society of Arts, may put the subject more clearly before the reader.
"Mr. Kyan inferred that, as wood consists of various successive layers, in which the albumen, or juices containing albumen, circulated freely; it is quite certain that, as these juices within the wood, with the watery parts, fly off by the leaves, that the albumen remains behind, and it is probable that this albumen, which from its nature is peculiarly prone to enter into new combinations, is the thing in wood which begins the tendency to decomposition, and produces ultimate decay, whether that decomposition is attended with the formation of cryptogamic substances, or whether in the less organized form, the change occurs with the simple production of what has been called the Dry Rot. He (Mr. Kyan,) conceived, therefore, if albumen made a part of wood, the latter would be protected by converting that albumen into a compound of protochloride of mercury and ulbumen; and he proceeded to immerse pieces of wood in this solution, and obtained the same result as that which he had ascer. tained with regard to the vegetable decoctions. Having done so, it became necessary
to employ various modes of experiments as well as comparative experiments. Now it is not elear in what part of the wood the vegetable albumen may be found, though it exists more especially in that part of the tree which is denominated the alburnum or sap, and is found between the heart wood and the innermost layer of bark. The experi. ence of all practical men has confirmed the opinion that this portion of wood is the first to decay.
" It is probable that, as the alburnum be. comes sucessive layers of wood, it loses a quantity of albumen; or that, in consequence of the pressure which takes place by the addition of each successive layer, it becomes so situated, as to lose a part of its exposure to the vessels where a change may occur, and therefore becomes in some measure protected : for that which is one year alburnum or sap, may be, and indeed generally is, proper wood the next.
"The mode in which the application of the solution takes place is in tanks, which may be constructed of different aimensions, from twenty to eighty feet in length, six to ten in breadth, and three to eight in depth. The timber to be prepared is placed in the tank, and secured by a cross-beam to prevent its rising to the surface. The wood being thus secured, the solution is then admitted from the cistern above, and for a time all remains perfectly still. In the course of ten or twelve hours, the water is thrown into great agitation by the effervescence,occasion. ed bythe expulsion of the air fixed in thewood, by the force with which the fluid is drawn in by chemical uffinity, and by the escape of that portion of the chlorine, or muriatic acid gas, which is disengaged during the process. In the course of twelve hours this commotion ceases, and in the space of seven to fourteen days, varying according to the diameter of the wood, the change is complete, so that as the corrosive sublimate is not an expensive article, the albumen may be converted into an indecomposable substance at a very moderate rate, and the seasoning will take place in the course of two or three weeks."

Mr. Kyan's method of seasoning has been already tested under circumstances so severe, that they may be said to have proved its efficiency. A piece of oak was five years in the fungus pit in Woolwich yard, a place notorious for the rapid and almost instantaneous destruction of vegetable matter, and it was as sound when taken out as when put in. This was the most severe test to which the method could be subjected, and its having sustained the trial is a proof of the value of the discovery. It has, however, been objected to the process, that the impreguation of timber with corrosive sublimate must unfit it for use in ship-building ; but Mr. Kyan has furnished evidence to the contrary, and in our opinion proves that salubrity is one advantage. We strongly recommend the builder to make experiments himself upon wood prepared by Mr. Kyan, by using it in places where decay is rapid.

As the season is fast approaching when cluver and other grass seeds will be sown, we deem it advisable to bespeak for their future pastures and meadows, from our agricultural brethren, a liberal bestowal of seed. He who sows scantily must expect
to reap in a proportionate degree, or to gather more weeds than hay. In every soil there are ample supplies of the seed of every variety of wild and noxious herbage, and if these are not supplanted by a wholesome covering of artificial grasses, they will inevitably germinate, and show their pestilent fronts to the annoyance of proprietors, and the discomfort of their stock: for the earth will be busy in despite of all the maltreatment it receives at human hands.

The hollow-horn.-As this is the season of the year when we may expect this disease to make its appearance among the horned tribe, we would remind their owners that by pouring a tea-spoonful of the spirits of turpentine in the cup or cavity in the back of the head of cattle, they may save them from the effects of this always unpleasant, and often fatal disease.

Consumption of a Great City.-Paris: in 18\%2, according to Count Chalrol, consumed the following animals and articles.
931,000 Pigeons.
1,289,000 Chickens.
549,000 Turkeys.
328,000 Geese.
131,000 Patridges.
177,000 Rabbits.
174,000 Ducks.
Butter and Eggs, value $10,348,800$ francs. Fish,
Oysters, " $\quad \mathbf{5 9 9 , 4 0 0}$."
From the New-York Farmer.
No. II
general sketches.
BY H. C.
Having in a former number sketched some of the general features of the Agriculture of New-England, I shall proceed to speak in a cursory manner of some other parts of the country, which I had an opportunity of im. perfectly and hastily observing. Every al. lowance must be made for the observations of a passing traveller. He can at best give only the prominent points, which present themselves; and in regard to these, with the most honest intentions, he may convey very erroneous impressions, for his own impres. sions may themselves be erroneous. I dare say the experience of many a traveller will bear me out in saying that a country often appearṣ very differently to the sameindividual in going or returning through it, though be may in each case travel by the same road. To a person, who judges of a country only by passing over it, a clear or a cloudy, a fair or a stormy day will often make a material difference in his judgment. His own condition, his cheerful health or his indisposition wil] sometimes give unconsciously a coloring to his opinions. The company in which he travels are not always without their influence
upon him ; the condition of the taverns, the state of the roads, and the season of the year. Then the is always liable through the ignonorance, or the selfishness, or the preju:dices of those whom he meets with to be imposed on by partial or false information. These eonsiderations, and other obvious occasions of mistake in facts and opinions ought to be taken into the account before we charge a traveller either with ignorance, or misrepresentation through negligence or de sign. In truth no just account can be given either of the condition of a country or the character and manners of its inhabitants without a residence among them for some time; and this under circumstances peculiarly favorable to observation.
In the remarks made in my former number, it may be thought by some that I have hardly done justice to New-England. The truth is that the predominant occupations in New.England are not agricultural; manufactures and commerce prevail over others; and agriculture has become only a secondary interest. Yet notwithstanding this, I am satisfied that when the character of her soil and climate are taken into consideration; and the amount of land actually undericultivation are duly considered, the total amount of her productions will be found large in proportion; and creditable to the skill, the persevering enterprise, and the sprit of agricultural improvement prevailing among her in. habitants. Enough at least will be seen to show what might be accomplished by the same labor, enterprise, and spirit, applied in a manner equally judicious and, as far as soil and climate are concerned, under circumstances moré conspicuous.
New-York, an empire within itself, has all the elements of agricultural prosperity and improvement. She embraces a large amount of the most productive soil, with the means in profusion for preserving and in. creasing its fertility. She abounds even in her remote settlements with facilities of ac. cess to markets, where the demand is equal to any amount of production, which may be furnished; and with an intelligent, sharp. sighted, and active population, ready to avail themselves of any means which may be presented, for advancing the great, absorbing, overwhelming object of pursuit through. out the whole country, the attanment and increase of wealth. Her commerce, her manufactures, her crowded and busy cities, her soils, her canals, her steamboats, her railroads, her turnpike roads evince a progress in the art of civilized life almost miraculous ; place her among the fist class ot prosperous and improved communities on the earth; and disclose a destiny, to which she is rapidly approximating, rarely present. ed in any condition of social life. May her
progress in the developement of her im. mense resources still be onward; and so highly blessed with all the means and elements of social prosperity, may she be true to her higher duties and faithful to interests infinitely more valuable than wealth, the so. cial order, the intellectual cultivation, and the moral improvenent of her immense and ra. pidly increasing population.
Of the Island of New-York, little can be appropriated to cultivation, and little is capable of cultivation; and it is in this respect as ungenial as the roughest parts of NewEngland. Wealth and luxury however, have sprinkled over those parts of it upon which the dense population of the city bas not yet encroached, many beautiful embellishments ; and labor bestowed in unstinted measure upon small parcels, and stimulated by the unceasing and absolutely insatiate demands of the neighhoring capital, have made some of its unpropitious spots fertile and productive. The abundant and I may say magnificent supply of vegetables and fruits in the market of the city of New-York: and a large proportion of them grown within the immediate neighborhood, indicate an extraordinary amount of labor and skill. The farming on Long.Island, within a distance of ten miles of Brooklyn, towards Jamaica, is in many places very fine, limited mainly to the production of vegetables, fruit, and grass. Beyond this I have had no opportunity of extending my excursions; but what I saw in this distance sevred only to strengthen the desire to proceed further and see more.
The passage up the Hudson now so common and familiar loses none of its interest by repetition. In a fine day it presents an uninterrupted succession of picturesque and interesting objects. The height of the banks however renders it impossible to know much of the cultivation, though occasional views are presented indicating an intelligent and highly improved and productive husbandry. Orange, Duchess, and Colum. bia have long been celcbrated for their im. proved and successful husbandry; and for their crops, their flocks, and their dairies. The butter of Orange County known in New-York by the name of Goshen butter, has an established reputation throughout the country. It is not all of equal goodness; but the first quality of Goshen butter for ferkin butter deserves all the commendation, which it has received. The advanced price which it always commands, one would think would be a sufficient stimulus to more care, neatness, and skill among other farmers in this most important article of farm produce; but with the exception of the Philadclphia market, where this article is always prime, it must be admitted that few things come to
the market of a poorer quality or in a more miserable condition than this; and as to the quality of that which is found at the tables of steam-boats, canal-boats, and hotels, it is in gencral detestable, and fit only for the making of soap, or the greasing of cartwheels. In a journey of three thousand miles the public tables in a great majority of cases presented butter of a quality that even our recollection revolts from. Why it is so, what are the causes of failure in the manufacture and preservation of this article, we shall probably hereafter take an opportunity to consider ; but almost the whole may be comprehended under one general fault in one part of the process or another; and that is the want of cleanliness. This is one of the cardinal sins of the country. I recollect some years since staying at a lodging house at some Medicinal Springs, at that time a place of much resort, where it was ascertained that the butter from which the public table was supplied was kept in an open ferkin under the bed in the family bed room! The flavor of much of the butter which is put upon the public tables indicated its residence in some depository of broken meat, and sour bread, some musty closet, by the offensive odor of which the "whole lump is levened." I have always admired the ethical arrangement of an old frierid, in whose moral calendar cleanliness was ranked next to godliness; and I confess I am sometimes more than half disposed to regard it as important in respect to morals as to comfort.
Dutchess county is distinguished for its excellent wool and the quantity of Pork, which it sends to the New.York market. A large amount of beef likewise is stall fed in Dutchess county. Hitherto I have had an opportunity of glancing only at some of the Dutchess county farming, so much cele. brated; but I am anticipating with great in. terest the plasure of looking at it with more leisure and advantage at some future time. The farm of Mr. Holbrook at Hyde-Park, I have visited with great satisfaction. Ho is fortunate in the services and an intelligent and skilful steward. Mr. Thomas Midford whose excellent management, especially in his dairy, and particularly in the raising of young stock, I have peceuliar satisfaction in acknowledging. The calves and young cattle which I have seen reared by him, have been of a supcrior description and evinced the most skiiful and failhful attention. The churning here is done by water power, and all the dairy arrangements are admirable, as I have seen on a former visit. Mr. Mid. ford's crops of corn and of ruta baga have been large and fine, and his ploughing and sowing very superior. The condition of the premises throughout, indeed, garden and
pleasure grounds, as well as farm and its ajo. pendages, evince industry and skill on the part of the laborers, and taste and liberality on that of the proprietor.

February 1837.
H. C.

From the Farmer and Gardener.

Sowing of Grass Seeds.-Sucl farmers and planters as may not have put in their grass seeds last autumn should do so ias soon as the frost is out of the ground. For clover, there is but onc opinion as to the superiority of spring sowing, and although many give the preference to sowing timothy seed in August, still there are those, whose opinions are worthy of consideration, that advocate the practice of setting it in spring on the growing wheat or rye : so also, in. deed, with respect to almost every other of the artificial grasses.

If you intend to sow clover seed alone on your grain ficlds, you should not think of seeding less than from 12 to 16 pounds to the acre.

Timothy, if sown alone, should be in the proportion of from 2 to $2 \frac{1}{2}$ gallons of seed to the acre.

Rye Grass alone 2 bushels to the acre.
If Clover and I'imothy be sown together, from 10 to 12 lbs . of the former secd and a peck of the latter would not be found too, much.

If you purpose carrying your mixture still further, sow 10 lbs . of clover sced, 6 quarts of tmiothy, $\frac{1}{2}$ bushel of herd's grass to the acre,-or

Of clover 8 lbs , orchard grass 1 bushel, tall meadovo oat 1 bushel, and herd's grass t bushel.

In Europe the following is in many districts a popular mixture, 2 bushels of rye grass sced, and from 12 to 20 lbs. of clover seed to the acre.

It is usual to sow the orcliard and tall meadow oat in early autuinn, but there is no question that they would succeed now. The orchard grass should be moisted with water and permitted to remain so for a day before sowing.

Whatever grass sceds you sow on your winter grain, be sure to pass a light harrow, and roller over them. You need not appre. hend any injury to your grain, for although some roots may be dragged out, you will be more than remunerated by the addition you will receive from the tillering of the branches of the plants which will be imbedded in the soil during the process. That the grass seed will derive advantage from being thus securely placed bencath the soil, common sense and reason both concur in aflirming. They will be much more likely to escape destruction from birds than if left upon the surface ; they will vegetate with greater certainty, and being well fixed in the earth, their roots will be much better able to with. stand the droughts of summer and the frosts of winter. We need not say that the opera. tion of harrowing and rolling should be performed when the ground is in a state to bear the treading of the horse without injury, as it will strike the intelligent reader that if done when the ground is acel, much injury will result to the grain.

Lucerne-Those who may feel disposed to try their fortune with this valuable grass,
can do so as soon as the ground is relieved from the frost and dampness. It should be sown on a dry rich soil, which had been previously well cleaned. From 16 to 20 quarts of seed should be sown. It may be put in with the spring barley and oats. In England and Scotland it is frequently cut four times in a season.

Oats-The earlier, after the frost is out of the ground, that you get your oats in, the better, and if you can possibly spare them, from your other crops, a portion of manure, do so ; for you may rest assured, notwithstanding custom has allotted them to grow on the poorest part of the farm, unaided by nutritious substances of any kind, they would be all the better of a dressing of something calculated to urge them forward. It is to be sure in the general by no meains a profitable crop, but then it is a most necessary onc, and, therefore, should find favor. But should there be no manure to spare, do, if you can, give the soil an extra ploughing, and thus in part atone for your neglectful culture. We eften hear farmers complain. ing of the degeneracy of, and the falling off of this grain in weight, and may not this be accounted for in the fact, that they are generally grown on the very poorest spots that are to be found, and left to grope their way to maturity in the best way they can.
Two or $2 \frac{1}{2}$ bushels to the acre is the proper quantity of seed. They should be well harrowed in.
Potatoes-Should the weather admit of it, you should get in your early potatoes from the middle to the latter end of this month. But you should not dream of reaping a good crop unless you are liberal in your bestowal of labor and manure in the preparation of the soil. Your ground should have a south. ern exposure, and either be a good soil naturally, or be made so by art. It should be thoroughly and deeply ploughed and harrowed; then strike your rows about 27 or 30 inches apart, place your sets about 10 inches distant from each other, throw in your rows a goodly portion of unfermented stable manure, then cover them with the soil, either by ruming a furrow on either side, or by handhoeing. In either event, no clods should be permitted to come in contact with the sets. As soon as there is the least indication that the potatoes are coming up, run the harrow crosswise the rows; when the potatocs are up two or three inches, plough a furrow on either side from the potatoes; this must be replaced by throwing the furrow back again. This process will greatly improve the tilth of the soil, and thereby afford the young potato plants an additional chance of moving onward in their growth. After the furrow is thrown back, the rows should be gone over with a hand-hoe, cleaned of all weeds, and so regulated as neither to retain too much moisture, nor to present a surface that would casily suffer by drought. In two or three weeks more another ploughing and hocing will be necessary; for it is important to keep the ground stirred and clean. This second ploughing however should not be so near to the plants in the rows as the former; and after this, the cultivator instead of the plough must be used to complete the work in about two or three weeks, which will be detcrmined by the advance of weeds, and the wants of the potatocs.

Carrots and Parsnips.-As soon as the frost is entirely out of the ground, you may begin to sow the seeds of these roots, for field culture, and thence up to the 1st of May, the sooner they are in the larger will be their yield, and as they are alike excellent as food for man and beast, we have always been surprised that comparatively so few were raised. An acre, well prepared and cultivated, in suitable soil, will yield from 500 to 600 bushels, which would be sufficient to keep four cows fully to their milk during the winter.

Manure.-Carry out your manure to your fields in which you intend to use it. If you intend to top-dress your meadows, or growing crops of grain, the sooner that is done the better, taking the precaution never to let your wagons or carts go on either when the ground is soft.

Lime.-If you intend to use any this sea. son, it is time you had made your arrange. ments for procuring or burning it. If intended to be used on your meadows, the sooner the better it is spread thereon; if on your corn ground, you cannot get it on too early, as it should receive sufficient ploughings to thoroughly incorporate it with the soil.

Ashes.-Do not omit to provide yourself with a sufficient quantity of this delightfu. substance; to give your corn plants a dresing, however trifling the quantity applied, it will speak out most eloquently.

Fences. See to your fences and have them thoroughly repaired, and thus secure yourself against the inroads of stock of all kinds.

Tools and Implements.-These must, be examined and put in order,-and in fact at this critical period of the year, the farmer should have his eyes on the search in every direction.

From the New-England Farmer. farmers' wonk.

Cows which are expected to calve, ought to be lodged by themselves in some convenient place, under cover for a week or two before calving, as such care may be the means of saving the life of the calf, and perhaps of the dam also. In order that it may be ascertained what is the time when cows may be expected to calve, an account should be kept of the time when each cow is put to the bull. The day and night after a cow has calved, she should be put under cover, her driak should be luke warm, and she should not be exposed to the dampness of the night.

Inflamed teats should be washed with two drachms of sugar of lead in a quart of water. Should tumors appear, apply a common warm mash of bran, with a little lard.

To prevent cows from sucking their own milk, it is said that rubbing the teats frequently with old and strong smelling cheese, is effectual.

The following prescription for drying cows, which continue to give milk till too near the time of their calving; or to expedite their becoming fat enough to be good beef, is taken from Monk's Agricultural Dictionary, an English work of established reputation.
"Take an ounce of powdered alum; boil it in two quarts of milk till it turns to whey; then take a large handful of sage, and boil it in the whey, till you reduce it to one quart; rub her udder with a little of it, and give her the rest by way of drink; milk her clean before you give it to her, and as you see need, repeat it. Draw a little milk from her every second or third day, lest her udder be over-charged."

From the New-England Farmer. farmers' work.

Ewes and Lambs.-It is incumbent on every good husbandman and faithful shepherd, to feed his Ewes plentifully for a few weeks before, and for a considerable time after they produce their lambs. Good farmers have told us that they have found it very beneficial to give to each of their ewes about one half a gill of Indian corn a day, for 5 or 6 weeks before they have yeaned, and while suckling, to give them good roots, or some other juicy food. The want of milk in the ewes, is the most general cause o o_{1} death in the lambs. Keep the mothers well, and their offspring will thrive and be strong.

The Farmer's Manual says, "If you have stored more turnips than are sufficient for the use of the table, give them to any stock that will eat them, except your sheep; give to them potatoes, hut not turnips at this season, for turnips will injure the lambs."

Weak lambs should be treated in all respects as if they had been drowned, and you was endeavoring to restore them to life. Apply gentle and regular warmth ; give them warm milk, frequently, in small quantities, (the milk of the sheep is best,) and if the ewe has milk sufficient for the support of the lamb, you may generally raise it, otherwise the lamb usually dies. It requires more care and labor to nurse one feeble lamb, when its dam yields too little milk for its support than it would for an hundred, if they were healthy and well kept.

If your sheep, whether store sheep or ewes with lamb, have good hay, about a quart of potatocs a day, to each, will it is said be very beneficial, and an ample allowance. But when the object is to fatten them, (says a writer in Rees' Cyclopedia,) about a gallon of potatoes a day, with a little hay will be the proper quantity; but this is dependent in part on the size of the animals, and in part on the quality and quantity of the hay, which is allowed them. Potatoes, besides their use as food for sheep, are said to be very serviceable to those auimals as an article of diet, which usually supersedes the necessity of medicine. Thoy have, when given raw, an opening or purgative quality, which is thought to be of use, and to answer a similar purpose with sheep which is effected with swine by brimstone and antimony.
Care should be taken to place in the sta. ble, small tubs or troughs of water for the sheep to drink in. They will do very well in summer without water, as they feed when the dew is on, but they need water in winter, especially if fed mostly on dry food. Deane's N. E. Farmer states that "when sheep have colds and discharge mucus from the nose, good feeding, together with pine boughs given occasionally, will cure them ; or tar
spread on a board over which a little fine salt is strewed, will induce the sheep to lick up tar, and this will cure a cold."

The Yankee Farmer, in giving directions for raising lambs, observes that "great care should be taken when lambs are born, for it is frequently the case that their fore teeth are not cut, which makes it very difficult for them to hold the teat, so as to suck when young and weak, and it is common for lambs to get discouraged, though ever so rugged at first. To remedy this evil rub the thumb nail, or any hard substance, over the gums, sufficiently hard to cause the teeth to cut through, and the lambs will then be able to suck without any difficulty."

Clay has been recommended as useful for restoring and preserving health to sheep. A writer in the New-York Farmer gives the following remarks on this subject:-"I am told on crediable authority, that a geutleman, who was losing his sheep without apparent cause, had occasion to use some clay about his house in the winter, and observed that his sickly flock ate it with avidity; he caused a load to be placed in their yard, much of which was devoured, and his sheep speedily recovered.
"As a cure, therefore, I would recommend clay to be placed in the sheep yard, which can, at worst do no harm, as the animals will not eat it, unless prompted by instinct."

From the New-England Farmer.

Calves.-The following mode of rearing Calves, adopted by the Society, denominated Shakers, in Canterbury, N. H., was communicated in a letter from Francis Winkley, to Levi Eartlett, of Warren, N. H., and was published in the N. E. Farmer, in 1824 ; but such have been the changes since that period, in our subscription list that it would probably be new to many of our readers.
"We let calves that come in the fore part of March, suck a week or ten days, then take them from the cow, giving them a moderate allowance of new milk to drink till they have learned to drink it freely; then put in some skimred milk; and we feed them wholly with skimmed milk, taking care to give it at about the temperature of milk taken directly from the cow, by heating a part of it and mixing it with the rest. Care should be taken not to scald the milk, when heated; also, not to give them any sour milk, for this will make them scour. The trough or vessel in which they drink their milk, should likewise be kept clean, and not suffered to become sour. We let the milk stand about twelve hours bcfore it is skimmed ; giving a calf at first about four quarts, night and morning ; increasing the mess as need requires, till he is six weeks old, from which time till ten weeks old, he will require, perhaps about 12 quarts per day.
' When about ten weeks old, we begin to diminish the quantity of milk for about the space of two or three weeks, at which time we wean them. During the whole process, from two to fourteen weeks of age, calves should be well supplied with good hay, salt and provender, such as oats, wheat, bran and oil cake, ground fine.
${ }^{11}$ The particular advantages to be derived from the above method of treatment, are the following:
" 1 . It is much cheaper than to let them suck in the ordinary way; whereas it makes a great saving of cream for butter, and that without injuring the calves, if they are pros perly attended to.
"2. It prevents calves from moaning or pining, so much while weaning as they would otherwise do, when taken from the cows.
"3. It not only prevents the cows being injured in consequence of the calves biting the teats, but also prevents their holding back the milk from the milker, which often serves to diminish the quantity of milk afterwards.
"The only disadvantage to be found in the above method of treatment is, that it requires some more labor to feed them, where they thrive equally well in every respect as those do which are permitted to suck in the ordinary way.

Advertisements.

CROTON AQUEDUCT.

NOTICE.-Sealed Proposals will be received by the Water Commissioners of the city of New-York, until the $22 d$ day of April next, at 3 ${ }^{\circ}$ clock, P.'M., at their office in the cily of New-York, and until the 24 th day of April, at 90° clock, P. M.. at the office of their Engineer in the rillage of Sing sing, for constructing a Dam across the Croton River, for the Excavation, Embankment, Back Filling. Founfor the Excavation, Embankment, Back Filing. Foundation and Protection Walls; for an Aqueduct Bridge
at Sing Sing, three Tunnels, several large ond small culverts, and an Aqueduct of stone and brick masonry, with other incidental work, for that portion of the Croton Aqueduct which extends from the Dam on the Croton to Sing Sing, being between eight and nine miles in length

The prices for the work must include the expenee of materials necessary for the completion of the same, according to the plans and specilicalions that will be presented for examination, as hereinater mentioned The Work to be completed by the first day of Uctober, 1839.
ober, 1839.
Security
Security will be required for the performance of contracts-and rropositions should be accompanied by the nanses of resprossible persons, signifying their assent to become sureties. If the character and responsibilities of those proposing, and the sureties they shall offer, are not known to the Commissioners or Engincers, a certificate of good character, and the extent of tseir responsibility, signed by the first judge or clerk of the county in which they severally reside, will be required.

No transfer of contracts will be recognised.
Plan - of the several structures and specifications of the kind of materials and manner of construction. may be examined at the office of the Commissioners, in the city of J゙ew-York, from the 10th to the 14th. inclusive, of April nest• The line of Aqueduct will be lucated. f and the map and profile of the same, together with the plans and specifications above mentioned, will be ready for examination at the office of the Enginecr, at the village of sing Sing, on the 15th day of April next, and the Chicf or Resident Engineer will be in attendance to explain the plans, \&c., and to furnish blank propositions.

Persons proposing for more work than they wish to contraci for, must specify the quantity they desire to take

The full names of all persons that are parties to any proposition, must be written out in the signeture for the same.
The partics to the propnsitions which may be nccepted, will be required to enter into contracts immecepted, wiater the acceptance of the same
'The undersigned reserve to themselves the right to accept or reject proposals that may be offered for the whole or any part of the above described work, as they may consider the public interest to require.

STEPHEN ALLEN,
CHARLES DUSENBURY, \} Water
SAUL ALLEX,
Commissioners.
WILLIAM W. FOX,
JOHN B. JERVIS
Chief Eingineer, New-York Water Works.
New-York, February 28,1837.
1056

AVERY'S ROTARY STEAM EN. GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving SawMills, Girain-Mills, and otier Manufacrories of any kind.

Engines only will be furnished, or accompanied with Boilers and the necessary Machinery for putting them in operation, and an Engineer always sent to put them up.

Information will be given at all times to those who dessre it, either by letter or by exhibiting the Engines in operation in this city.

Inquiries by letter should be very explicit and the answers shall be equally so.
D. K. MINOR,

132 Nassau_st., New York.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pambour- 150 pages laige octavodone up in paper covers so as to be sent by mail-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts. for any distance exceeding 100 ms .

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts.
** On the receipt of $\$ 3$, a copy of each of the above works will be formarded by mail to any part of the United States.

1010 t
RAILW AY IRON, LOCOMOTIVES,\&c.
THE subscribers offer the following articlea for sale.
Railway lron, flat bars, with countersunk holes and mitred joints,
 280 " 2 " 1, " " " 3

with Spikes and' Splicing Plates adapted thereto. To be sold fiee of duty to State governments or incorporated companies.
Orders fur Pennsylvania Boiler Iron executed.
Rail Road Car and Locomotive Engine Tires, wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 iaches aiameter.
E. V. Patent Chain Cable Bults for Ruilway Car arles, in lengths of 12 feet 6 inches, to 13 feet $2 t, 21$ $3,31,3 t, 31$, and $3 t$ inches diameter.
Chains for Inclined Planes, short and stay links, manufactured from the E. V. Cable Bolts, and pruved at the greatest strain.
India Rubber Rope fur Inclined Planes, mada from New Zea land flax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and tone bluck of Edge Ra? way,
Every description of Railway Iron, as noll as Lo-
comotive Engines, imported at the shortest notice, by the agency of one of our partners, who resides in Fingland for this purpose.
Mr. Solomon W. Roberts, a highly respectable American Engineer, resides in Eingland for the purpose of inspecting all Locomotives, Machinery, Railway Iron \&c. ordered through us
28 tf
Philadelphia, No. 4 , South Front

ALBANY EAGLE AIR FURNACE AND

 MACHINE SHOP.WILLIAM V. MANY manufactures to order ison cabtings for Gearing Mills and Factories ol every description.
ALSO-Steam Engines and Railroad Castings o every description.
The collection of Patterns for Mechinery, is not equalled inthe United States.

TO MANUFACTURERS OF IIYDRAULIC CEMENT.
PROPOSALS will be received by the subscriber, on the part of the James River and Kanawka Companies, for the delivery on the wharf, a the city of Richmond, Va., of Fify Thousand Bush els of Hydraulic Cement. The amount called for must be furnished in quantities of about six thousand bushels per month, commencing on the first of April and ending on the first of November next.
To avoid future litigation, it is to be understood, on making the proposals, that the bushel shall weigh seventy pounds NETT, and that the Cement shall be delivered in good ordder, and packed in tight casks or barrels.
Proposala will also be received for furnishing fify thousand bushels, at any convenient point on the navigable waters of James River, or the north branch of James River, where the materials for its manufacture has been discovered.
Persons familiar with the preparation of the Cement, would do well to examine the Counties of Rockbridge and Botetourt, with a view to the establishment of works for the supply of the western ead of the line; and a contract for the above quanities will be made with them before they commence operations.
As there will be required on the line of the James Rivor and Kanawka Improvement, in the course of the present and next year, not less than half a mill on of bushels of this Cement, and some hundred thousand bushels more in the progress of the work tuwards the west, contractors will find it to their inrerest to furnish the article on terms that lead to future engagements.
Proposals to be directed to the subscriber at Rlchmond, Va. CHARLES ELL.E'T, Jr.,

Chi f Engineer of the J. R. and Ka. Co. February 20th, 1837.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridger, or vend the right to others to build, on his Patent Plas, would respectfully inform Railroad and Bridge Corporations, thar he is prepared to make contracts to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above planare to be seen at tho folowing localities, viz. On the main road leading from Baltimore to Washington, two milea from the former place. Across the Mctawaukeag river on the Military road, in Maine. On the national road in Illinois, at sundry points. Onthe Baltimore and Susquehan1s Rrailroad at three points. On the Hudsun and Patterson Railroad,in two places. On the Boston and Worcester Railroad, at seversl points. On the Bos-
ton and Providence Railroad, at sundry points. Across the Contoocook river at Henniker, N II. Across the Souhegan river, at Milford, N. H. Across the Connecticut river, at Haverlill, N. H. Across the Contoocook river, at Hancock, N. II. Across the An droscoggin river, at T'urner Centre, Maine. Across the Kennebec river, at Waterville, Maine. Across the Genesse river, at Squakiehill, Mount Morris, New-York. Across the White River, at Hartfurd Vt. Across the Connecticut River, at Lebnnon, \mathbf{N} H. Across the mouth of the Broken Strnw Creek Penn. Across the mouth of the Cataraugus Creek, N. Y. A Railroar Bridge diagonally across the E'rie Canal, in the City of Rochester, N. Y. A Ra lroad Bradge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 fect. It is probably the firmest woodes aridge ever built in America.
Notwithstanding his present engagements to build between twenty and thirty Railroad Bridges, and several common bridges, several of which are now in progress of construction, the subscriber will promptly attend to business of the kind to much greater extent and on liberal terms. Rochester, Jan. 13th, 1837.

NEW ARRANGEMENT.

ropes for inclined planes of ratlaoads.
WE the subscribers having formed a co-partncrship under the siyle and firm of Fulger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroads, and for other ust 8 , offer to supply ropes for inclined planes, of any length required without splice, at short notice, the masufacturing of cordage, heretofure carried on by S. S. Durfee \& Co., will be dune by the new firm, the same supcrintendant and machinery are employed by same supcrintendant and machinery are employed by
the new firm that were employed by S. S. Durfee \& the new firm that were employed by S. Surfee \&
Co. All urders will be promply attendell to, and ropes will be shipped to any port in the United statea.
12th month, 12th, 1836. Iludson, Culumbia County Slate of New-York.
33-tf.
ROBT. C. FOLGER.

AMES' CELEBRATED SHOVELS, SPADES, \&c.
 100 du do plated Spades
50 do do socket Shovels and Spades. Tugether with Pick Axes, Churn Drills, and Crow Bars (steel pointed, mannfactured frum Salinhury refined iron-for sale by the manufacturing agents

WITHERELL, AMES \& CO.
No. 2 Liberty street, New-York. BACKUS, AMES \& CO.

No. 8 State atreet, Albany N. B - Also furnished to order, Shapes of every description, made from Salsbury refined Iron v4-If

A SPLENDID OPPORTUNITY TO MAKE A FORTUNE.

THE Subscriher having obtained Letters Patent, from the Guvernment of Frauce, granting him the exclusive privilege of manulacturing Horse Shoes, by his newly invented machines, now offers the same for sale on terms which canuot fail to make an independent fortune to any enterprising gendemen wishing to mbark in the same.
The machinea are in constant cperation at the Troy Iron and Nail Factory, and all that is necessary to satisfy the most increduluus, that it is the most valu able Patent, ever obtained, either in this or any other country, is to witness the operation which is open for inspection to all during working hours. All let ters audressed to the subscriber (poat paid) will re. eive dueattention.
Troy Iron Works,
IIENRY BURDEN.
N. B. Horse Shues of all sizes will be kept con stantly for sale by the principal Iron and Hard-ware Merchants, in the United States, at a small advance above the price of IIorse Shoe Irgn in Bar. All persons selling the same, are authorisen to warrant every bhoe, made from the best refinid iron, and any failith to render thr most pelfect satispac ris, buth as zegards workmanship snd quality of
H. BURDEN. 47-It refunded.

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads.
No. 264 Elizabet h street, near Bleeckcr atreet, New-York.
RAILROAD COMPANIES would do well to exal mine these Cars; a specimen of which may be seen on that part of the New-York and Harlaem Rairon
nuw in operation
325t

ARCHIMEDES WORKS.

(100 North Moor street, N. Y.)
NEW-YORx, February 12th, 1836.
THE undersigned begs leave to inform the proprietors of Railroads that they are prepared ta furnish al kinds of Machinery for Railroads, Locomotive Engine: of any size, Ciar Wheels, such as are now in successful operation on the Camden and Amboy Railroad, nune of which have failed-Castings of all kinds, Wheels, Axles, and Buxes, furnished at shortest notice
4-vtf
II. R. DUNHAM \& CO.

PATENT RAILROAD, SHIP AND BOAT SPIKES.

** The Troy Iron and Nail Factory keeps constantly for saleavery extensive assorment of Wrought Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five ycars successful operation, and now aimost universal use in the United States, (as well as England where the stbscriber obtained a patent,) are found superiur to any ever offered in market.
Railroad Companies may be supplicd with Spikea having countersink heads suitable to the boles in iron rails to any amount and on short notice. Almost all the Railroads now in progress in the United States aro fastened with Spikes made at the above named fac-tory-for which purpose they are found invaluable as their adliesion is mure than double any common spilics made by the hammer.

* Allorders directed to the Agent, Troy, N. Y. will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spikes are kept for sale, at factory prices, by I. d. Townsend, Albany, and the principal Iron Mer chants in Albany and Troy ; J.I. Brower, $2<2$ Water street, New-York; A. M. Jones, Philadelphis; T Jarviers, Baltimore; Degrand \& Smith; Buston
P.S.-Railruad Companies would do well to for ward their orders us eurly as practicable, at the subacriber is desirous of extending the manufacturing so as to keep pace with the daily increasing demand fos his Spikes.
(IJ23am)
H. BURDEN.

 AND ADVOCATE OF INTERENAL IMPirdWEMENTS.

PUBLISHED WFEKLY, at no. ${ }^{\circ}$ WALL STREET, NEW-YORK, AT FIVE DOLLARS PER ANNUM, PAYABLE in AIVANGE.

	SATURDAY, MARCH 25, 1837.	FVOLUME Vi-Ni. 12.
george c. SChaEffer, \} Prorietors.]	SATUEDY, ,	MOLUME V-.N. 12.

C		
Adver isements ; Editorial Notices; Railroad and Canal Stocks.		
Transactions o: ${ }^{-1}$ te Institurion of C		
Agriculture, etc		
cericin		
ROAD JOURNAL, NEW.YORK FARMER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-street, basement story, one door from William strect, and opposite the Banli of America.		

ar For List of Subseribers that have paid see page 191:

O- For advertisement, "Rappahamock Canal, and Slack Water Navigation," sce page 185.

We are requested to publish the following card, and we very checrfully do so, as we published the report referred to-and hope ere long to lay before our readers the documents spoken of, from which it is probable the citizens of NewYork will learn why the water works have progressed so tardily.-[Eds. R. R. J.]

A CARD.

The readers of the Water Commissioners' Report, published in the last number of the Railroad Journal, (Mareh 18th) are respectfully informed that a series of Documents is in preparation, and shorily to be made public, in reply to the allega. tions contained in that and the preceding Report against the "late Chief Engineer." The community will thus be enabled to judge, by evidence the most authentic and unquestionable, of the temper, as well as the
regard, for truth and fairness, in which these allegations have been matde.
This duty would have been socner per: formed, but it was not till within the last few deys that the Report in which these charges are reiterated-hough dated as early as the 9 th oif January-met the eye of the injured party. His motives for not noticing the subject at a still earlier date, he trusts will be righly appreciated.

New-York, 24ih March, 1837.
Rallroad and Canal stociss, in New. York and Philadeiphia.
SALES Oİ STOCAI IN NEW-YORK March, 11.1.
Mohawk Railroad Patersua Lailroad Boston and Providence Boston and Prowiden
New-Jersey I'rans. Stuaington
Worecster Railrnad
Long lsland Kaiiruad
Paterson Railroad
Stonington kailroad
Harlaem lailroad
Utica and Schenectady
Delaware and Hudson Canal
Morris Canal
New Orleans Caral

79

PIILADELPIIA STOCK MARKET. March 17ils.

RAILROAD STOCKS

Nerr-Casile and Frenchtown Do loan, $5 \frac{1}{6}$ per cent Wilminglori and Susquehanna Camiten and Amboy, slares, Do luan, 6's 1836 Danville and P shares Norristown, do Do 6 per cent loan Valley Railruad
Westchester do
Minelinil do
N. L. and Penn. Tp.
Philad Iphia and Trenton do West Philadelphia Railroad
Harrisburg and Lancaster
Cumberland
Beaver and Meadow

Miscellaneous stocks

North American Coal Compan
-team Bt. Sis. Columbian Exchange Stoch
Arcade
The tres-Chestnut street $\begin{array}{rrr}25 & 12 & 14 \\ 100 & 18 & 22 \\ 100 & 70 & 80 \\ 100 & 55 & 75 \\ 600 & 625 & 673 \\ 250 & 175 & 240 \\ 500 & 325 & 375 \\ 100 & 100 & 102\end{array}$
Gas Company

11 Narigatior:, shares	50	18.	160
110 leans, 51845	100	. 93	100
1\% do 185.)	110	100	101
1: dı5! 1837	100	98	100
Leligh Conl and Nazigation	50	82	83
Du luan, 6 1533	100	97	98
120 do 6 1839	100	97	93
Do do 6 d 1844	100	99	100
Do du 5 1840	100	96	9%
Union Canal, shares	200	1.8	190
Jo loat, 1836	100	83	86
Du do 1440	100	83	90
Chesapth d Jelaware Cunal, slarek	200	20	40
Do loan, . 183\%	100	60	67
110 do . 1840	100	60	67
Delaware and Hudson,	100	83	84
Do lvan	100		301
Lonisvill : and Poriland	100	1121	117
Cunverifble 6 per cent. loans,	100	110	120
Sandy and Bever	100	60	80
Morris Camal	100	91	92

(It will not do, these hard times foi money, to be too modest. The Paper Naker must be paid, the Engraver, the Ink Maker, and the Printer must be paid; -then why not Pay the Publishers and the Editors the curvent year and all arrearages for the Journal? It must be done.Please remit by mail.
transactions of the institution of civil engineers of great britaln.
The first volume of this valuable work, has just made its appearance in this country. A few copies, say tienty-five or thirty only, have been sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In
order therefore, to place it withor the reach, and at a convenient price, we shall repriut the entire work, with all its engravings, neatly done on wool, and issue in six parts or n umbers, of about 48 pages cach, which can be sent to any part of the Uuited States by mail, as issued, or put up in a volume at the close.

The price will be to sul)seribors thice dollars, or five dollars for two copies-_always in adeance. The first nuinber will be ready for delivery carly in April-Subscriptions aressolicited.
as Missing Numbers Wanten.-If any of our subscribers have numbers 4,5,6 and 7; of Volume or five last year, which they do not desire to preserve, they will confer a special favor by sending them to us, that we may complete a few copies of the volume.
** If any of our subscribers are in wart of any other number of the same volame to complete their volume they will p!ase give early notice and they shall be selt.

The Title page and Index for last year, or volume five, will be forwarled to subscribers with our next number.
transactions of the institution of civil engineers.
I. on the changes of temperatuthe consequent on any change in the densmy of blastic fluids, consinerfd especialle with reference to steam. wh ma. thomas webster, i. a. of trinity col.jegi, cambridge. comminicated iy mh. james simpson, m. inst. c. e.
My attention hiving been for sorne time directed to the theory and constitution of fluids, it has appeared to me tian thece are some properties of which little notice !ans been taken, but which, being of considerabla practical importance, ought to receive thr attentive consideration of scientific men, and especially of those who possess the oppertunities of deciding on their value. On the present occasion I beg to offer at ferw obser vations respecting these propertics. I wisin, then, to call attention to the change of temperature which always accompamice a change in the density of an elastic fluid, and to the consequent change in the clastic force due simply to that change in temperature, as distinguished from the change which is due to the change of density according to the law of Boyle. It has loug been observed, that the sudlen compression of any quantity of air is attended with a great degrec of heat, and its sudden expansion with a great degree of cold. Thus, if a piston, having a small piece of tinder attached to it, be pressed suddenly down in a cylinder of air or gas, the heat evolved, or squeezed out, by the compression will ignite the tinder; and again, if a delicate thermometer be placed under the receiver of an air-pump, it will indicate cold produced on every stroke of the pump. These effects will not contirue long, since there will be an immediate transior of heat, according to the well known laws of
the racliation of ieat ; thus the heat evolved by the condensation will be rapidly lost among, and that absorbed by the expansion will be supplied from, the surrounding bodies, the general fact being, that the tenperature always tends rapidly to equilibrium. The beautiful and simple apparatus of GayLassac may be mentioned, since it exhibits at once both the phenomena in question. Let two spherical glass vessels communicate with each other by a stop-cock, and have n delicate thermometer suspended at their centres; then if one have the air exhausted, and the other be filled by a condenser, either with common air or with a gas, and the stop. cock be opened so that the condensed air rushes into the empty vessel, the themometer in one vessel will sink and in the other will rise ; numely, it will sink in that which is being emptied, or in which the air is ex. panding, and it will rise in that which is filling, or in which the air is being contensed; and when the experiment is made with great care, it will be seen that the cold indicated by one corresponds exactly to the heat indicated by the other. It another thermometer be suspended in tha empty vessel close by the orifice, that is, just where the air is in the act of expanding, in very great degree of cohl wi:: loe mdicated ; and this will dimin. ish rapidly as it is placed further from the orifice. These indications of leat rand cold continue but for a very short period, since the equilibrium on temperature is alnost insiantanconsly restored. No accurate measure of the heat absorbed and developed can be progured by direct observations on the thermoneter; it may, however, be calculated from the change in the chastic force, as we shall soe preschity: 'Wilis experiment of Gay-Lussac docs not appear to have been repeated on a large seile ; but 1 conceive that if a large cylinder of thin metal were placed in communication with a vessel of condensent air at a great pressure, the cold produced at the one end, withere the expansion was proceding, and the heat produced at the other, where the cundensation was taking place, would be quite sensible to the hand, and a series of air-thermometers would indicate very different states of temperature at the same distances from each end. But the important practical inquiry is the change which this developement and absorption of heat produces on the elastic ferec of the fluid; there must be increase of elastic force due to this increase of temperature, and a diminutoon of clastic forec due to the diminution of temperature, besides the increase and dimunition which is due to the change of density according to Boyle's law. In fuct, we know that Boyle's law is not true, urless the compressed air is allowerl ithe to crol, ats was distinctly ascertained in tio series of experiments made by order of the Acenteny of Paris on this subject. In the complete investigation of it by Desormes and Clements, whici I have detailed at full length in my Theory of Fluids, Article 98, the increment of temperature is calculated by a series of mathematical reasoning, from this very change in the elastic force for which I contend. The problem proposed was "to dctermine the increment of temperature for a given small gondensation.". 'They observed the sucees ve changes which the mercurial column ungerwent when air was first let into
an exhausted receiver, and after it had lost the small increase of temperature due to the small condensation. The column always surk by a small quantity, and the amount of this change enabled them to determine the amount of heat developed for a given condensation. Of the aceuracy of their results there camot be the least doubt, for two other and quite independent phenomena, in which the same causes are called into operation, namely, the production of sound and the vibration of a cylindrical column of air, give results according with very great accuracy. The preceding facts are mentioned, to give confidence in the principle for which I contend, that whenever there is a change in clastic force according to the law of Boyle due to the density, there is also an additional change in the clastic foree duc to the change of temperature, which is the necessary consequence of this change in the density: for it nust be remembered, that in all the experiments, the clastic force agrees with the law of Boyle so soon as the equilibrium of temperature is restored.

On this part of the subject it is unnecessary to insist, since the facts are well established for most of the elastic fluids, but the experiments, so far as I have become acquainted with them, do not extend to steam, and unless there be some reason for excluding steam from the general properties of all other elastic fluids, we must admit the preceding cozclusions with respect to it also. Now so far from having any reason to except steam from thesc laws, we have every reason for believing that stcam separated from its water, and maintained at a higher temperature than 212°, differs in no respect from the permanent gases. It can be readily liquified, but doubtlessly all the gases can be reduced to the same form by a proper increase of pressure and diminution of temperature.

For if we consider steam as an elastic finid owing its elastic qualities solely to the repulsive power of heat, there can be no reason a priori for excepting it from the laws of other elastic fluids, which appear to owe their energy and existence to the same cause. Now so far as experiments have been made, it appears that steam expands equally for all equal inerements of temperature ; thus following the law of other clastic fluids. 'There is a passaga in Professor Robinson's Treatise on Steam which involves the principle in question, but which appears not to have been followed out. He says, "it is well " kno:\%n that when air is suddenly expanded, "cold is produced, and heat when it is sud"denly compressed. When making expe"riments with the hopes of discovering the "connexion between the elasticity and den. "sity of the vapors of boiling water and "also of boiling spirits of turpentine, we "found the change of density accompanied - by a change of temperature vastly greater "than in the case of ineoercible gases. When the vapor of boiling water was "suddenly allowed to expand into five times "its bulk, we observed the depression of a "large and sensible thermometer to be at " least four or five times greater than in a similar expansion of common air at the " same temperaturc."
The faci of the depression being greater in the expansion of steam than of air at the
same temperature, is explicable at once from the different constitutions of the two fluids with respect to the properties of heat; but on this I cannot at present enter. The fact is invaluable as coming from such a man, and, when viewed in comexion with the general theory of elastic fluids, and the above. mentioned law of Gay-Lusiae respecting the expansion of steam for increments of temperature, en itles us to assume that, so long as steam retatins its gaseous character, it is subject to the laws of gases. These conclusions might be sustained by many well known phenomena respecting vapors and evapo ration generally, but enougid has been said to warrant our including steam in the general law of the Erench philosophers respect ing elastic fluids: "That equal voimmes o" " all elastic fluids, takon at the same tempe"rature and the same pressure, being sud"denly compressed or expanded by the "same fraction of their volume, disengage "or absurb the same absolute quantity of " heat."

Now the degree of heat or coll produced depends on the rate at which the change takes place ; and this cousile ration will lead to some important conclusions wifl respect to the expausion of high-pressure steam. The rate of expansion will obviously depend on the clastic foree of the steam ; the higher pressure therefore which we use the greater will be the cold and the greater the diminu. tion of the elastic force beyond that which the law of Buyle would give. Suppose steam of ten atmospheres suddenly to expand to four times its bulk, then the elastic force of the expanded steam ought, on these principles, to be much les3 than the elastic force of steam of five atmospheres suduenly expanded to twice its bulk; and the greater the elastic force of the st:am, the greater will be the deviation from the law of Boyle. So that, whinle Boyle's law will be ne:rrly true for steam of one or two atmospheres, it will be most untrue for stean of five,or ten atmospheres. These, I conce:ve, are results which may be readily tested by careful experiments. I know of noac in which they have been fairly examined, for' I am not willing to admit the conclusions which may be drawn from some accousts of steam worked expansively, and which would appear to milittate against these principles; but on this I shall say more immediately.

It would appear then, that the mere rate of expansion may be such, that the diminution of elastic force, consequent on the diminution of temperature, may leave scarcely any elastic force in the expanded steam; so that there may be extreme cases in which the law of Boyle will appear absolutcly falsc. These conc!usions appear to me supported and illustrated by the facts, that hight pres. sure steam does not scald, and that elastic steam is not so efficacious as gunpowder for throwing bullets or other masses.

When low pressure steam expands into the air, it preserves very nearly both its density and its temperature, but when steam of a high pressure expands, the instantaneous augmentation of volume demands that a large portion of heat should become latent, or it cannot exis! at all as ste mm . If the expansion were to stop the instant at waich the elastic force of the steam becomes equal to that of the atmosphere, its temperature would
(since the sum of the sensille and latent heat is invariable) descend only to 212°; but in consequence of the momentum which the particles have acquired from the rapidity of the expansion, it expauds far beyond this limit, so that the dimisution of temperature becomes greater, in proportion as its origi nal elastic ferce was greater than the clastic forec of the atmosphere. If this expansion takes place in a vacuum, the reduction of temperature will be greater still, since the particles of air present mechanical obstacles to the expansion. So that in some cases the elastic force may be lost almost entirely. We know, thanks to the ingenuity of Mr. Perkins, that hig!ly clastic stean will inpel bullets with considerable velocity; this velocity does not, however, appear to be equal to that which can be generated by gunpow. der. Now in order to increase the velocity, we must increase the elastic force of the stean, the consequence of which being an inereased rapidity of expansion, the addition. al reduction of temperature may more than nullify the original increase of clastic force, so that steam at a higher pressure will be less efficacious than steam of a less prossure. If this be the case, there is some temperature at which for a givea ball the effect is a maximum, that is, greater thata either at a higher or a lower temperature. Bat in the case of gunpowder the temperature of the elastic fluid is kept up by the coatinued consumption of fresh materials; the heat evolved during the combustion of these ingredieats is quite prodigious, so that we have, in fact, the repulsive power of heat itself in full agency. I have said nothing respecting the density of the steam at different temperatures, my object not being to discuss this question iully, but merely to illustrate what must, I conceive, be the necessary consequence of increasing the temperature azd elasticity of the steam beyond certain limits.

Tue application of these principles to the working of steam expansively is at once ap. parent ; there will in every case be a diminution in the pressare exerted beyond what will be given by Boyte's law, and this will be greater the inore rapidly the engine is worked. But on this subject I hardly dare venture any remarks ; practical considerationsare of much greater value than anywhich I can offer, especially as in one large class of engines, namely, in condensing engines, where the steam is worked at a iow pres. sure, the deviations from the Boylean law, due to the causc which I have mentioned, cannot be considerable ; still, however, these deviations must, I conceive, be appreciable whenever the stcam is generated at a higher temperature than 212°. But in high pressure engines the deviations due to this cause must be considerable, and I would venture to suggest that if ligher pressure steam be used than is from the circumstances of the case practically necessary, the stean generated is not applied in the most economical manuer, so far as concerns the ratio of the work done to the fuel consumed. 'The preceding remarks have referred exclusively to steam separated from its water and maintained at such a temperature that it may be considered as a permanent gas. If the steam be not separated from its water, the case is so entirely different, that the preceding reso entirely different, that the
marks do not at all apply.

If the space above the water be not saturated with vapor, that is, if the vapor which it contains have not the maximum density due to the temperature of the water, it is owing to the mechanical obstruction of the particles of air ; but since we suppose the air removed, or the space full of steam, we have to consider the nature of the changes which take place when this given space is increased or diminished, that is, when the pressure en the surface of the water is di: minished or increased. In this case the law of Boyle has no existence, for it applies only to a permanent gas, that is, it is only a steam law, when the rapor is detached from its liquid and contained in a space of such a temperature that it may be considered as a permanent gas. The pressure of the existing vapor on the surface of the water being the only limit to the formation of fresh vapor, whenever the pressure on this surface is diminished in the boiler by the withdrawal of a portion of the steam. fresh steam will instantly be formed, so that if, where steam is worked expansively, there be any water at the bottom of the cylinder, or any communication whatever with any water, the effect will be precisely the same as if the communication with the boiler were not ens tirely cut off; there will be a constant acces: sion of steam, or fresh steam will be formed as fast as the piston rises. It has sometimes been stated that where steam is work: ed expansively, the eflect is greater than the Boylean law would tead us to suppose: if such appear to be the case, it must be from some such causa as the above mentioned; either the steam is not entirely cut off, or there is some communication with water : the smallest quantity of water will be sufficient to increase very considerably the apparent effect, and cause a great deviation from the calculated elastic force. The whole theory of this subject is so intimately connected with the theory of heat, that the consequence of its known laws may be immediately traced in every application of steam; hence we may be convinced that there is a loss of elastic force, besides that which is due to the change in density, whenever steam is worked expansively, however much it may be practically overruled and modified. As a means of detecting the I would mention, that it ought to be shown by the greater supply of heat which a cylinder requires when the steam is worked more expansively, than where the same steam is worked less expan: sively. From thesc considerations we may see that there is a maximum in the useful effect of expansion working; but the complete determination of it is a purely practical question, and since it will depend on the conducting power of the metal, it must be somewhat different for every different engine.
II. on the force excited by hydratlic PRESSURE in a bramah press ; the resist: ING POWER OF THECYLINDER, AND RULES FOR computing the thickness of metal for presses of various powers and dimensioxs. by peter barlow; f. r. s. etc.; of the royal military academy.
I am not aware that any of our writers on mechanics have investigated the nature and |lamount of the circumferential strain which
is excited in an hydraulic cylinder by a given pressure on the fluid within; it will be pro. per, therefore, first to examine this question: viz.. to find the circumferential strain on a ring of any material, arising from an inter. nal pressure.

Let $a b, b c$, be any smafl clementary part of the circumference, which may be taken as right lines, and let the pressure on each of them be called p, which, being proportional to them, may be represented by the elements themselves, $a b, b c$, these being perpendicular to the direction in which ine pressure acts. Resolve these pressures or forces into two rectangular forces, $a d, d b, b e, e c$, of which, $a b$, and be, will represent forces acting perpendicular to their directio. 1 or paralled to A B, and $d b$ and ec forces parallel to DC. Confining ourselves at present to the former, if we concerve the semi-circumference D BC to be divided into its component clements, it is obvious that the sum of the forees acting parallel to AB , will be equal to the sum of all the perpendiculars, ad, be, or to the whole diameter DC. That.is, the sum of all the forces acting parallel to A B, will be to the sum of all the forces or pressure on the semi-circumference DBC , as the diameter to the semi-circiumference. But the pressure on the semi-circumerence is equal to the number of inches in the same, multiplied by the pressure per squase inch, consequently the force or pressure exerted parallel to A, B, will be equal to the inelies in the diameter, multiplied by the pressure per square inch, the ring being here supposed, for the purpose of simplification, only an inch decp. But to resist this pressure, we have the two thicknesses of the ring at D and C ; therefore the direct strains on the circumference at any one point, as D , will be equal to the pressure of the fluid per square inch, multi plied by the number of inches in the radius.
We should come to the same result more simply, but perhaps not so satisfactorily, by conceiving a section passing through thic diameter DC ; then it follows that the pressure on this section, which is directly resisted at D and C , is equal to the number of square inches in the section, multiplied by the pressure per square inch. Therelore the strain on D or C singly, is equal to the pressure per square inch mulaplied by the inches in the radius; the same as above. to investigate the nature of the resist. ance opposed by any given thickness of metal in the cylinder or ring.
It would appear at first sight, that having found the strain at D and C , it would only be necessary to ascertain the thickness of metal necessary to resist this strain when applied
directly to its length ; this, however is by no means the case, for if we imagine, as we must do, that the iron. in consequence of the internal pressure, suffirs a certain deyrce of extension, we shall find that the exterai circumference paticipates much less in this ce. tension than the interior, and as the resis. tarce is proportional to the extension dividcd by the lungth, according to the law u tensio sic ris, it follows, that the external circtanference, and every successise circular lamina, from the interior to the exterior surfiace, offers a less and less resistance to the interior stran: the law of which decrease of resistance it is our present object to investigate.

In the first place, it is obvious that whatever extension the cylinder or ring may undergo, there will be still in it the same quantity of metal, or which is the same, the area of the circular ring, forned by a section through it, will reman the same, which area is proportional to the diflerence of the squarcs of the two diameters.
Let D be the interior diameter before the pressure is exerted, and $\mathrm{D}+d$ its diameter when extended ly the pressure. Let also D^{\prime} be the extermai diameter before, and $D^{\prime}+d^{\prime}$ the diameter after the pressure is exerted; then from what is stated above it fol. lows, that we shall have

$$
\mathrm{D}^{\prime 2}-\mathrm{D}^{2}=\left(\mathrm{D}^{\prime}+d\right)^{2}-(\mathrm{D}+d)^{2}
$$

or, $2 \mathrm{D}^{\prime} d^{\prime}+d^{\prime 2}=2 \mathrm{D} d+d^{2}$
or, $2 \mathrm{D}^{\prime}+d^{\prime}: 2 \mathrm{D}+d:: d: d^{\prime}$
or since d^{\prime} and d are very small in comparison with D' and I), this analogy becomes $\mathrm{D}^{\prime}: \mathrm{D}:: d: d^{\prime}$. That is, the extension of the cesterior surface is to that of the interior as the interior diameter to the exterior.

But the resistance is as the extension divided by the length, therefore the resistance of the exterior surface is to that of the interior $\mathrm{D} \frac{\mathrm{D}}{\mathrm{D}^{\prime}}: \frac{\mathrm{D}^{\prime}}{\mathrm{D}^{\prime}}$ or as $\mathrm{D}^{2}: \mathrm{D}^{\prime 2}$. That is the resistance offered by cech successive lamina, is inversely as the square of the diameter, or inverecly as the square of its distance from the certre ; by nicars of which law the actual resistance due to any thickness is readily ascertained.

Let r be the interior radius of any cylinder, p the pressure per square inch on the fluid, t the whole thichness of the metal, and x any variable distance from the interior surface. Let also $r p=s$ represent the strain exerted at the interior surfice, according to the priuciples explained in tho preceding part of this paper. Then by the law last illustrated we shall have
$(r+x)^{2}: r^{2}:: s: \frac{r^{2} s}{(r+x)^{2}}$ tor the strain at the distance x from the interior sufface: and consequently $\int \frac{r^{2}{ }^{2} \cdot x}{(r+x)^{2}}+$ Cor. $=$ the sum of all the strains, or the sum of all the resistance. This becomes, when $x=t$, $\boldsymbol{R}=r^{2} s\left(\frac{1}{r}+\frac{1}{+r i}\right)=s \frac{r \boldsymbol{l}}{r+t}$. That is, the sum of all the variable resistances due to the whole thickness t, is cqual to the resis. tance that would be due to the thickness, $\frac{r t}{r+t}$ acting uniformly with a resistances, $\overline{r+t}$
pplication of this rule for conputing THE PROPER THICKNESS OF METAL IN A CYL. indric hydraulic press of giten power and dinensions.
Let r be the radius of the proposed cylinder, p the pressure per square inch on the luik, and x the required thickness: let also c represent the conesive streng th of a square incla rod of the metal.

Thien from what has preceded it appears, that the whole strain due to the interior pressure will be expressed by $p x$, and that the greatest resistance to which the cyliuder can be safely oprosed is $c \times \frac{r x}{r+x}$: hence when the strain and resistance are in equilibrio, we shall have

$$
\text { (1) } \quad r p=\frac{r x}{r+x} \times c
$$

$$
\text { or } p r+p x=c x
$$

viluer $\frac{m}{c-p}$ (the thicknes) sought.
Hence, the following rule in words for computing the thickness of metal in all cascs; viz, multiply the pressure per square inch by the radius of the cylinder, and divide the product by the difference between the cohesive strength of a square inch rod of the metal and the pressure per square inch, and the quotient will be the thickness required.

At present we have only considered the circumferential strain : to find the longitudinal strain, we have to multiply the area of the piston by the pressure fer inch ; while the resistance in this dircetion will be equal to the cohesive power of the metal inultiplied by the area of the transverse section of the cylinder; so that when these are equal to each other we shall have
(2) $3 \cdot 1416 r^{2} \mu=3 \cdot 1416\left(2 r x+x^{2}\right) c$
hich gives $x=r\left\{\sqrt{ }\left(\frac{p}{c}+1\right)-1\right\}$

And it is obvious that whichever of these two values of x, viz., (1) or (2,) is the greatest, is the one which must be adopted. It will appcar, however, that in all practical cases the former is the greater; for it is only when p exceeds c that the latter value of x can be ever equal to the former. Let us, for example, find the relative values of p and c, when these values of x are equal to cuch other, by making

this gives

$$
\begin{aligned}
& \qquad \frac{p^{2}}{(c-p)^{2}}+\frac{2 p}{c-p}=\frac{p}{c} \\
& \text { or } \quad p^{2} c+2 p c(c-p)=p(c-p)^{2} \\
& \text { or } \quad p^{2}-p c=c^{2} \\
& p=c\left(\frac{1}{2} \pm \frac{1}{2} \sqrt{ } 5\right)
\end{aligned}
$$

That is, these two values of x can only be equal to each other when p exceeds c in the ratio of $\left(\frac{1}{2} \pm \frac{1}{2} \sqrt{ } 5\right): 1$; which is an impracticable pressure; for it is obvious from the first value of x, that no thickness will be sufficient to resist an internal pressure which exceeds (per square inch) the cohesive fower of a square inch rod of the metal ; a result which at first sight appears to be paradoxical ; but it will be observed that, with such a pressure, the interior sur.
face will be fractured before the other parts of the metal are brought into action.
It will therefore be sufficient to attend wholly to the first expression; and leere it may be observed that x and r, with the same pressure and cohesive power, being always in the same ratio, we may reduce the rule for finding the thickness of metal to the fol. lowing tabulated form. in which it will only be necessary to mutiply the number standing against any pressure by the internal diameter of the cyliader or piston for the thick ness required.
The cohesive strength of cast iron, according to experiments made at Capt. Brown's manufactory, is $7 \cdot 26$ tons per square inch; but his machine underrates its power 8 per cent. ; (see my Essay on the Strength of Wood and Iron, page 253, 2] edition ;) this added, gives us 7.86 tons, or 17,612 lbs., per square inch.

Mr. Rennic gives two results for the cohesive power of east iron, viz.,

lst $\quad \therefore \quad$	$=18,656$
$2 \mathrm{~d} \cdot$	$=19,072$
My experiment	$=17,612$
Mcan $\quad . \quad$	$=18,685$

We may, t'herefore, without sensible error, call the colrsive power 18,000 libs. per square inch.

The cohesive power of the best gus-metal is givea by Mr. 'Tredrold, in tis edition of Buchanan's Treatise on Mill Work, 33,019 lbs. per square inet, and tont of leat, 3323 lbs. per sq. inch; and with these numhers I have computed the following taickne:s foi pipes of an inch dianster, for the varius pressures given in the Tables, and which will apply to any other case by multiplying the tabular numisers by any given diameter.
the given pressure, to the difference between the leser tabular thickuess and that required. Suppose, for example, the thickness for a cast.iron cylinder were required for a pressure of 36.59 lbs .

Pressure Uo.	$\begin{aligned} & 3700 \\ & 8600 \end{aligned}$	Thickness Do.	$\begin{aligned} & \cdot 1293 \\ & \cdot 1250 \end{aligned}$
Diffurence	10.3	Difference	.0043
100	$\cdot 0043$: 50 : 0021	
Therefase			
		the thickness	

As zinather example of the use of the Table. let the thicliness of a cast iron cylinder be required, that will bear a proof pres. sure of 3 tors per circular inch, the interior diameter being 12 inches.

$$
\text { Here } \frac{3 \text { tons }}{.7854}=3 \cdot 819 \text { tons or } 8554 \mathrm{lbs}
$$

per square inslı. Call this 8500 lbs ; then, by 'rable I., the thịckness for an inch cylinder is $\cdot 4462$, consequently $4462 \times 12=$ $5 \cdot 3544$ inches, the thickness required.

It will of course bs understood that the thicknesses given in the Table are the least that will bear the required pressure, and that, in common practice, presses ought not to be warranted to bear above one third the pressure given in the Table, unless it should appear that the estimated cohesive power of cast iron is too little; if this actually exceed $18,000 \mathrm{lb}$., a corresponding reduction may be made in the computed taicknesses.
on the hot air blast. by mr. J. b. neilson, cor. nen. inst. c. e. communicated in a letter to the late president, thonas telford, Esq.*
I feel much pleasure in beingable to comply with your request in mentioning to you what l conceive to be the nature of the advantages likely to be derived by the Iron Trade, and the country generally, from my invention of the IIot Blast, and at the same time, I shall very willingly state the circum. stances, agrecably to your request, which, in the first instance, led me to direct my atten. tion to the improvement of the process of iron-making.
About seven years ago, an iron-maker, well known in tails neigiborhood, asked me if I thought is possible to purify the air blown into blast furnuces, in a manner sinilar to that in which carbiretted hydrogen gas is purified ; and from this gentleman's couversation, I perceived that he imagined the presence of sulphur in the air to be the cause of blast furnaces working irrecgularly, and inaking bad iron is. the summer months. Subsequently to this conversation, which had in some measure directed my thoughts-to the subject of blast furnaces, I received information that one of the Muirkirk iron furnaces, situated at a considerable distance from the

[^18]engine, did not work so well as the others ; which led me to conjecture that the friction of the air, in passing along the pipe, prevented an equal volume of the air getting to the distant furnace, as to the one which was situated close by the engine. I at once came to the concusion that by heating the air at the distant furnace, I should increase its volume in the ratio of the known law, that air and gases expand as $448+$ tempe rature.
Example.-If 1000 cub:c feet, say at 50° of Fahrenheit, were pressed by the engine in a given time, and heated to 600° of Fah renheit, it would then be increased in volume to $2104 \cdot 4$, and so on for very thousand feet that would be blown into the furnace. In prosecuting the expermen's which this idea suggested, circumstances however became apparent to me, which induced the belief on my part, that heating the air introduced for supporting combustion into air farnaces, materially increased its efficiency in this respect; and with the view of putting my sus. picions on this print to the test, I instituted the following experiments.

To the nozzle of a pair of common smith's bellaws, I attached a cast iron vessel heated from beneath, in the manner of a retort for generating gas, and to this vessel, the blow-pipe by which the forge or furnace was blown, was also attached. The air from the bellows having thus to pass througil the heated vessel above mentioned, was consequently lieated to a high temperature before it entered the forge fire, and the result produced, in increasing the intensity of the heat in the furnace, was far beyond my expectatioil, and so evident as to make apparent 'o me the fallacy of the gencrally reccived opinion, that the coldness of the air of the atmosphere in the winter manths, was the cause of the best iron being then produced.

In overthrewing the old theory, I had however establishe:I new principles and facts in the pracess of iron-making, and by the advice and assistance of Charles M'Intos'l, Esq., of Crossbasket, I applied for and obtained a patent, as the reward of my discovery and impirovements.

Experiments on the large scale to reduce iron ore in a founder's cupo'a, were forthwith commenced at the Clyde Iron Works, belonging to Colin Dunlop, Esq , which experiments were completely successful, and in consequence, the invention was immediately adopted at the Calder Iron Works, the property of William Dixon, Esq.; where the blast being made to pass through two retorts placed on cach side of one of the large furnaces, before entering the furnace, eflect ed an instantancous change, both in the quantity and quality of iron produced, and a considerable saving of fuel.
'The whole of the furnaces at Calder and Clyde Iron Works were in consequence im. mediately filled up an the principle of the Hot Blast, and its use at these works continues to be attended with the utmost success; it has also been adopted at Wilsontown and Gartshirric Iron Works in Scot. land, and at several works in England and France, in which latter country 1 have also obtained a patent.

The air as at first raised to 250° of Fahrenheit, produced a saving of three-sevenths in every ton of pig-iron made, and the heating
apparatus having since been enlarged, so as to increase the temperature of the blast to 600° Fahrenheit and upwards, a proportional saving of fael is effectel; and in immense additional sawing is also acquirer by the use of raw coal instead of Coke, which may now be adopted. By thus increasing the heat of the blast, the whole waste incurred in burning the coal into coke is avoided in tho process of iron-making.
By the use of this invention, with threesevenths of the fuel which he formerly em. ployed in the cold air process, the iron-maker is now enabled to make one-third more iron of a superir quality
Were the Hot Blast generally adopted, the saving to the country in the article of coal, would be immense. In Britain, about 700,000 tons of iroa are made annually of which $.50,000$ tons only are produced in Scotland ; on these 50,000 tons, my invention would save in the process of manufacture, 200,000 tons of coal annually. In England, the saving would be in proportion to the strength and quality of the coal, and cannot be computed at less than $1,520,000$ tons annually; and taking the price of coals at the low rate of four shillings per toa, a yearly saving of $£ 206,003$ sterling would be effected.

Nor are the aivanages of this invention solely confined oo iroa-making : by its use tie founder can cast into roods an equal quanity of iron, in much less time, and with a saving of nearly half the fuel employed in the cold air mucess; and the blacksmita can protuce in the same time one-third more wo:k, wi h much less fuel than he formerly required.
In all the processes of metaliurgical seience, it will be of the utmost importance in reducing the ores to a metallic state.
V. an approximative rule for calcula. ting the velocity with which a steam vessel whif be mpelled through shlll water, by the exertion of a given amount of mechaniCal power, or forcible motion, by mabine steam engines, communicated by mr. faleey, m. inst. c. e.
Notwithstanding the great experience which has been acquired in construeting steam vessels, few engineers possess any rulc for determining a priori, what will be the speed of a new vessel, which is designed.
'The usual course is, to institute to a comparison with some former steam vessel, whe: cof the dimensions and performance is known, and by estimating alf the differeaces of dimensions between that former vessel, and the new-intended one, the difference of its erppected performance from the known performance, is inferred. When the new intended vessel is not materially different from some previously known case, this method of comparison answers the purpose; but so many cases arise in practice, which are not comparable with any known case, that a general rule is greatly wanted, and the writer of this communication has kept the subject in view, from the tirst establishment of steam vessels till the present time, omitting no opportunity of
ascertaining and recording the performance
of every steam vessel whereof the form and dimensions could be ascertained, and at intervals arranging the observations in classes , and deducing rules from them, which have been amended and improved from time to time, as more complete information was attained.
Almost all experiments which have been made, on the resistance of drawing floating bodies, along the surface of unconfined, but tranquil water show, that the resistance increases as the square of the velocity; and hence it may be inferred, that if the draft, or direct pull. (such as horses exert on the towing line of a canal boat,) which is requisite to draw a vessel along the water at a rate of five miles per hour, is one ton, then to draw it at the rate of ten miles per hour, will require a pull of four tons.
It follows as a consequence, that the exertion of mechanical power, or forcible motion, must progress according to the cubes of the velocities, because an increased force is to be exerted with an equally increased velocity; for instance, if an exertion of 25 horse power will impel a given vessel at the rate of five miles per hour, it would require an exertion of 200 horse power, to impel the same vessel at the rate of ten miles per hour.

These two propositions are to be considered as assumptions, when applied to steam vessels, hecause the experiments on which the first is founded, siz., the rate of resistance being as the square of the velocity, have been all made on very small ves. sels, nevertheless they all concur in very nearly the same result*; and again, in steamboats, the water yields very considarably to the paddles, and a loss of power is thereby occasioned, \dagger which is not con-

* A fund of valuable information on this subject is con:ained in the papers of the late Colonel Beaufoy. Since the above was written, those papers have been published by his son in a quarto volume, which has been distributed in the scientific world; a copy is preserved in the library of the Institution.
\dagger 'This loss had formerly a much greater influence than at present; because the improvements which have been made in proportioning the paddles of modern steam boats, has rendered the loss less considerable. I was formerly induced to suppose that the excrtion of power increased by a higher ratio than the cubes of the velocities attained by the exertion. This notion arose in the course ol some of my earliest deductionz, from observations on the steamboats first used in Scotland; comparing their increase of speed with the power exerted by successive engines, of greater and greater magnitude, which were substituted one after another on board the same boats, it appeared that the exertion of power required to produce diferent velocities, corresponded to some intermediate stage beiween the cubes and the biquadrates of those velocities; an arithmetical mean between the cube and the biquadrate seemed nearly to correspond to those observations, but subsequently it was found out, that tho loss eccasioned by the yielding of the water
templated in framing the second proposition, (viz. that the power exerted must be as the cube of the velocity, because the resistance of draft is as the square of the velocity.)
Notwithstanding any doubts which may be entertained of the exactituds of the last proposition, the following rule (which proceeds on the assumption, that the impelling power which must be exerted, is as the cube of the velocity) will be found to give results which approximate to the actual performance of steam vessels in common usc.
The rule contemplates the extent of surface which the bottom of the vessel exposes to contact with the water, and also the sectional area of the water which must be divided by the vessel, in advancing forwards; and numbers representing those two quantities, are combined into one sum, which is taken to represent the resistance of the vessel, compared with any other vessel of a different magnitude, but similar is form, the speed in both cases being equal.
In estimating the power exerted by the engines, the rule supposes the actual power, as shown by the indicator, with due allowance for friction, not the nominal power by which the engines are rated, which in modern engines is always very much less than the power actually exerted. For instance,
to the paddles, had been very greatly increased when larger engines had been first substituted for sinaller engines, but when larger paddle wheels, and paddles, were given to the larger engines, the speed was improved, and when so improved the power exerted came out nearly as the cubes of the velocities.
This notion would be no more worthy of being recorded than a multitude of other attempts to deduce rules from uncomparable observations, if a rumor of it had not, unknown to me, found its way into a memoire upon navigation by steam, read before the institution at Paris in 1526, by M. Seguin, who relates that he consulted me, when I resided at Leeds, and that I considered the resistance of vessels to be proportional to the fifth powers, divided by the cubes of the velocities, which Mr. Seryuin says confirmed some opinions of his own.

Now the fifth power of any number being divided by the cube thereof, is only the same as the square of the number, anl that is the proportion of force of draft, which I have always assumed to be requisite for overcoming the resistance of pulling a vessel through the water, with different velocities; but tho mechanical power, or forcible motion, which must be exerted by a stean engine, in order to overcome that resistance, I assume to be as the cubes of those velocities; I explained to Mr. Seruin, that formerly I had supposed it to be a more rapid rate of increase than the cubes, something like an arithnetical mean between the cube and the biquadrate as above stated. The fifth power divided by the cube, was a statement made to me, and to which I assented, as giving correct results for the resistance of draft; but it is a needlessly complicated mode of expressing the square of a number. J. F.

Messrs. Boulton, Wat:, and Co.'s marine engines, are calculated to excrt about $7{ }_{1}^{3}$ lbs. effective force, for each square inch of their pistons, and the motion of the pistons in their cylinders causes ant expenditure of $31_{10}^{I_{0}}$ cubic feet of steam per minute, fur every nominal horse power,* being a little different from their scale for land engines.
Méssrs. Boulton, Watt, and Co.'s 50 horse marine engines, have cylinders $39 \frac{1}{2}$ inches diameter, their pistons moring $3 \frac{1}{2}$ iect stroke, and are calcuiated to make $26 \frac{1}{2}$ stroles per minute. Their S 0 harse marine engine:, have cylinders $47 \frac{1}{2}$ inches diamster, pistons $4 \frac{1}{2}$ feet struke, and calculated at $2 \cdot \frac{1}{2}$ strokes per minute.
When a trial of any modern marine engine is made by an indicator, the effective or unbalanced pressure of steam, by which the piston is impelled, will be found much more than the assumed 7 砒 liss. per square inch, after allowing amply for friction; $11 \frac{1}{2} \mathrm{lbs}$. per square inch is probably nearer to an average of good eagines; but the very best are considerably more, even as much as $12 \frac{1}{2} \mathrm{lbs}$. per square inch. Ths actual power exerted, will be greater than the nominal horse power, in proportion as the actual force exerted by the piston is greater than the assumed standard of 7_{10}^{3} lbs. per square inch.
The approximate rule is as follows :-
I. Find tie area of the transverse sec tion of the vessel, under water, in square feet; extract the square root of that nu:nber of square fect; multijly the root by the length of the vessel at the avater's surface, and divide the product by the greatest breadth of the vessel at the water's surface; then add the quotient to the abowe number of square feet; the su:n is to be taken lor a representation of the resistance of the vessel, compared with others of different sizes, but similar in form, the comparison being made, by the above mode of computation, when they are proceeding with the same velocity.
II. Find the number of horse powers actually exerted by the engines, according to observations made by the indicator, and multiply that number by 1000 , in case of vessels of an ordinary form, such as were usually built for sea-going ressels seven years agot; divide the product by the number previously found as above; then extract the cube root of the quotient; and that root will be near to the velocity of the vessel, in miles per hour, through still water.

Example, of a large vessel, 150 fect long, 27 feet broad, drawing $9 \frac{1}{2}$ fect water, impelled by two engines rated at So horse power each; she went 9 i\% miles per hour (in 1826).

[^19]The sectional area of the part under water, was 207.6 square feet; the square root of that is 14.4 , which multiplied by 150 feet long, and the preduct divided by 27 feet broad, gives 80 for a representation of the surface of the bottom in contact with the water, and that added to 207.6 square fee:, gives 287.6 to represent resistance. The engines were found by the indicator, to exert an effective force of $11 \frac{1}{2}$ lbs. per symare inch of their pistons, (friction being allowed for,) when they made 23 strakes per minute, of $4 \frac{1}{2}$ fee: ; the pistons being $47 \frac{1}{2}$ inches diameter; that is, 128 horse power, actually exerted by each cafine, or 256 horse power by both, this being multiplied by 1000 , gives 256,000 , which product divided by 257.6 gives 890 ; and the cube root thereof is 9.62 miles per hour, instead of 3.7 miles, as ollserved.

Anothe: example, of a small vessel, 105 feet lours, $17 \frac{1}{2}$ feet broad, drawing $5 \frac{1}{4}$ feet of water, impelled by one engine, rated at 50 horse power; she went $4 \frac{2}{3}$ miles per hour (in 1829.)

The sectional area was 62 square feet : square root thereof 7.87×105 teet long \div $17 \frac{1}{2}$ feet hroad $=17.25$, to be alded to 82 , making 109.25 to reprejent resistance. The piston, according to the indicator exeried $12 \frac{1}{2}$ lbs. per square inch effective force, (after allowing for friction;) and made 30 strukes per minute of $3 \frac{1}{2}$ feet, piston $39 \frac{1}{2}$ inches dianeter, that is, an esertion of $97 \frac{1}{2}$ horse power; multiply that by 1000 , and divide by 109.25 , gives 592 , the cube root of which is 9.626 miles per hour.

The above two ressels boing the satno in speed, but very different in magnitude, the accoriance of the results given by the rule with the facts, shows that the rule makes a proper allowance for difference of magnitude.

Another example, of a small boat, $\mathbf{7 2}$ feet loner, 15 feet broad, a very full built form, impelled slowly, by one engine of the oldest construction, called 10 horse power, inade in Scolland, 1814.

Sectional area 42 square feet ; square root thercof 6.48×72 feet lour $\div 15$ feet broad $=31.1$, to be added to 42 , making 73.1 to represent resistance. The engine was very inferior to the roodern ones*, and probably did not exert above $7 \frac{1}{2} \mathrm{lbs}$. per square inch of the piston, which was 22 inches diameter, 2 feet stroke, and made 32 strokes per minute, that would be 11.1 horse power. The form of this old boat being very round at the bows, and more resisting than the modern vessels, should have io lower mu'tiplier, viz. 900 instead of 1600 ; therefore 11.1 horse power \times $900 \div 73.1$ resistance, gives 136.7 ; the cute root of which is 5.15 miles per hour, which was very near the real speid of this boat.

Another example, of an old boat, 156 feet long, 33 feet broad, in Anerica, 1816, im-

* In those older examples previous to 1819, wherein no indicator observations were made upon the engiries, the probable force exerted by the pistone, tas been inferred from indicator observations, made since, upon other engines of similar structure and proportions of their parts.
pelled by une engine, piston 40 inches diameter, 5 feet stroke, 17 strokes per minute. she went $6 \frac{1}{2}$ miles per hour. Secisonal area 150 square fect; square root $12.25 \times$ $156 \div 33=57.9$ to be adhle $10150=307.9$ for resistance; the piston probably exerted about $9 \frac{1}{2}$ ths. per square inch, which would be 61.5 harse power*. The form of this boat being very full, multiply by 900 and divide by $207.8=266.5$, the cube root of which gives 6.43 miles per hour.

A nother example, cf a small boat, 85 feet length, $18 \frac{1}{2}$ feet wide, $3 \frac{3}{4}$ feet draft of water, impelled by two engines, pistons 22 inches diameter, $2 \frac{1}{2}$ feet Elrolic, 34 strokes per ininute (in 1815). Sectional area 62 square feet; square roat thereol 787×85 feet length $-18 \frac{1}{2}$ feet wide $=36$, which, anded to 62, gives 98 to represent resist. ance. The engines were the ciarliest con struction of combined engines, and proba bly their pistons did not excrt abore 73 lbs per square inch*; which would be 30.3 horse power. The boat was sharpel than those of the older construction, bemg very simalar in form to those before callenlated with 1000 for a multiplier, which be ing used and $\div 9 \mathrm{~S}$ resistance, gives 309 the cube root of which is 6.76 miles pel hour. 'The boit actualiy went $6 \frac{9}{3}$ milee per hour.

Another cxample, of a larce vessel, 126 feet longr, 26 teet wille, $12 \frac{1}{2}$ feet druft of water. impelled by two engines saied at 60 horse power each, she went $8 \frac{1}{2}$ miles per hour, 1825. Sectional area 227 square feet; square root $15.07 \times 136 \div 26=78.8$ to be added to 227 , making 305.8 to reprevent resistance. The pistons 43 inches diameter, 4 feet stroke, 26 strokes per minute, exerting $11 \frac{3}{4} \mathrm{lbs}$. per square meh, which is $107 \frac{1}{2}$ horse power by each, of: 215 horse power exerted by both engines. 'The form of the ressel was full, suci as requires 900 for a multiplier ; and 215 horse power x $900 \div 305.8$ gives 633 ; the cube root of which is 8.59 miles per hour.

The above examples show ihat the rule applies :o cases where the difference of speed is very considerable, as weil as the difference of masrimitude.

25th April, 1833.

* Vide note, p. 115.1

YIII. on the effective roner of the high-rressure expansive condensing steam engines commonly in use in CORNISH MiNES. by Mr. T. Wicksteed, civil engineer. communicated in a letter to tije president.
At your request I beg leave to furward you some observations upon Cornish engines, which, al:hough not ertering into the detail you seem desmous of obtaning, wili pot, I trust, be quite devoid of interest.

Having received instructions from the Court of. Directors of the Last Londin Water Works to visit the mines in Cornwall, for the purpose of making inquires about the Cornisti erigines, I left London upon the 1str pi August last, and returned upon the 20th of the same month.

My friends, Mr. John Taylor and Mr. Grout, kindly gave me letters cf introduc-
tion, which ensbled ne to see any engine I was desirotes of viewing.

The first mines I visited were the Wheel Friendship copper mines, near Tavistock, Devionshire, and the Hedmoor and Holm. bush copper, and the Wheel Brothers sllwer, mines, near Callington, Cornwall. It tae Rednoor mine I saw an engine with a 50 iuch cylinder, erected by Messrs. Petherich and West. 'The mine had not been long at work; the shafit was not more than 156 feet deep; there were two shafts with pumps in, and one was about 560 yards distart from the engine; the notion was commmicated by means of horizontal bars, suspended by pendulam rods. 'Ite engine was working about two strokes per minute througliout the 24 hours; the work done was hight, probably not equal to more than five horses jower; it consumed ouly three and one-third imperial bushels of coals per 24 hours. The engine had been worked the previcus fortnight with turl cut off the neighboring noor, at a cost of eight-pence halfipenny per 24 hours; it required 18 leet square oi turl', about 2 inches thick, to kerp the steam up for that time. I mention this to show that when a large engine is erected to ciear a mine, although in the first instance the work it has to do is not proportioned to its sizc, nevertheless, the consumption of fiel is nearly in proportion to the worli done.

As regards the use of turf, it is evident, as these woilers were constructed with the intention of using coal as fucl, when the depih of the mine and the quantity of water inc: cased, that turl could not be used without an alteration in the fire-places, the bulk of turt required being much greater than that of coal. Mr. Grout has since informed me, that be has ordered an engino and boilers for one of his mines, and that the boilers are to be constructed with a view to the use of turt unly.

The next engine that I saw was one at the Fowey Consolidated mines, near Sit. Blazey. 'I'he cylinder was 80 inches, the pump stroke $9 \frac{1}{f}$ diet, the duty was, in Ausust, equal to $53,296,000 \mathrm{lbs}$, raised 1 foot high, with an imperial bushel, or 84 pounds of coals; it consumed about a bushel or 8.1 pounds of coal per hour. 'Ihis is a most splendid engine, and does greater "duty" than ary other engine in Cornwall; the construction of the valves and other parts of the cngine is so perlect, that atthough its load was equal to about 51,000 lbs., the hand-gear misht be worked by a boy of ten years of age, as far as streugrh was required; I worked it myself with perfect case; whereas, alihougli the load upon one of our engines of ex inches cylinder is only abont $12,0 c 0 \mathrm{lbs}$, it repuires not only a strong, but also a weighty man to work it.

The hand-gear is all bright work, and frished in first rate siyle. The quantity of bright work in un engine of course depends upen the taste of the person ordermgit, and I certainly saw many Cormish engrines of longer standing than the one in guestion, that displayed very hitle brigh work; but that it can be executed as well in Cornwall as in any other county in Eng-
land must appear evident to those who have seen this engine, and the founderies or engine manufactories at Hayle. At the latter piace I saw an c0 irch cylinder, 12 feet long, in the boring machine, and could not perceive a flaw in it.
I was very much struck with the ease with which the engine in question appeared to work; there was scarcely any noise, the greatest was that of the steam in its passage through the expansive valve. To one who lied been used to the noise of the pumping engines in London, it appeared remarkable.
The reason that this engine does more wolk than any other in Cornwall is, in my opinion, owing chicfly to the construction of the boilers, which are different to the gencrality, inasmuch as they have an internal tubc, of about 21 inches diameter, passing through the main the of the boiler, extending from the back part of the boiler as far as the bridge of the fire-place, dividing the flame as it passes from the fire-place, and thus where the heat is most intense the surface exposed to its action is greatest ; there is also a tube of about the same diameter, and 36 feet long, around which the flue from the boilers passes before entering the chimney; into this tuke the feed is sent before it passes into the boilers, and is previously heated to a temperature of 180° by means of the heat that might oiherwise pass into the chimney unused.

The engines that I next viewed were the following: viz.
50 inch cylinder at Charleston,
76 Ditto
\(\left.\begin{array}{l}Ditto at East Crennis,

Ditto

Ditto Polgooth,

at the Consoli-

dated Mines,

Ditto at \quad Ditto,

Ditto

at United Mines,\end{array}\right\}\)| St. |
| :---: |
| Sustel. |

Near.
St.
Day.

Alhough all of these engines were good ones, they were not equal to the Fowey Cunsols; as regards the last, viz. the 30 inch cylinder, the water that is raised out of the mine by this engine is conveyed by a pipe above ground to suppy a waterwheel ; and, although it is small and not of modern construction, it is doing nearly twice the "duty" of the London pumping engines of 4 times gicater area in the cylinder. I mention this engine particularly, because it is doing precisely the same work that a water-works engine has to do in lifting water into a reservoir.
afterwards viewed the following engines: viz.
Two 80 inch cylinders at Wheel Vor, near Helston.
Une 90 Ditto at North Roskear, near Pedruth.
60 Ditto at South Roskear, near Redruth.
80 Ditto at Wheel Darlington, near Marazion.
30 Ditto at Wheel Providence, near St. Ive's.
The 30 inch cylinder at the United Mines, the 80 inch cylinder at Wheel Darlington, and the 30 inch cylinder at Wheel Providence, were raising the water out of the shafts to the surface, and I. had there-
fore an opportunity of seeng it thrown up, and I observed that in every case there were no bubbles of air mixed with the witter, proving that the pumps were lifing "solid" water, (as it is termed in Cornwall, and not partly water, and partly air, as had been suggested by those who have no faith in the reports of the wo:k done by the Cornish engine:.

The foregoing, with the exception of the engine at Wheel Jewel Minez, near St. Day, which was not at work white I was there, were all the engines that I saw. And before I proceed to make any further reinarks upon them, I beg to call your attention to the 'Lable* that accompanies this Report, which gives further particulars of them, extracted from the "Monihly Reports."
As the accuracy of these Reports has been questioned, or to use plainer language, as it has been asserted that they are false, and that the Cornish engines do not perform the work stated, it may be as well to explain how these reports are made.
When the agents of a mine wish the "duty" of their engines to be published, an accurate measurement of the lifts is made and the diameter of the pumps, and other particulars, are recorded; a counter is fixed upon the engines by Capt. Thomas Lean, (the gentleman who had been appointed by the proprietors of the mines to take an account of the work of their engines,) and this counter has a Bramah's lock attached to it, the key of which he keeps. He visits each of the mines once per month, and takes an account of the strokes made by the engines during the preceeding month. In some instances there is affother counter attached to the engine, which is open to the inspection of the engineer, agents, and enginc-keepers.
The coals are supplied by a distinct party, who has to account to the agent of the mines forthe coals consurned permonth; the engine-keepers write orders for the coals they require, and at the end of the month the quantity of coals on hand is measured and deducted; the orders are considered as vouchers, which, after having been examined and countersigned by Capt. Thomas Lean, are passed. It is obviously the interest of the coal agent not to report a less quantity than actually is consumed, being accountable for the quantity used; he cannot therefore be supposed to combine with the engine keepers, whose object, if dishonest, would be to reporta less quantity.
But supposing, for the sake of argument, that the engineers, and the agents of mine, were so disposed, and could get these gentlemen to combine with them for the purpose of making a false report, the insanity of such a proceeding will, I think, appear evident upon a perusal of the following statement.
The engines in Cornwall are designed, the drawings made, and the construction and erection of the machinery superintended, by genilemen who are appointell as engineers to look after the machinery of the

* This "Table of the work performed, \&ic., in January, 1835," is omitted.
mines. The castings are made, and the work designed by the said engineers is exocuted, at two large "foundries," or en wine minufactories, at Hayle.

There are more than twenty engineecremployed in the mines in Cornwall, all of whom are anxious to construct the best engine, as the parties producing the engines that do the best duty; obtain, of course, the mozt employment. It is therefore a matter of jealous attention on the part of these gentlenen to take care that no entine shall have undue eredit for loing the in2st work. It happens occasionally, where a great improvement has been made, that doubts are expressed as to the accuracy of the reported duty: in such cases the enginecrs and agents of the other mincs eatl upon the parties whose engine is reported as performing extraordinary duty to allow them to prove it; this call is answered by fixing a time for the trial-the trial lasts for two or three days, during which time the engine is in the hands of the rival parties, who are on the watch to detect unfair play, if any should be atttempted. If the result of this trial is favorable, the party in question receives due credit; if otherwise, his character as an honest man is lost. If this is not as severe a test of the accuracy of the reports as can be made, and not sufficient, then indeed prejudice must have its full swing, and no farther proof can be given, as gentlemen going into Cornwall from London and elsewhere, for the purpose of proving the truth of the statement made by the Cornish engineers, may with equal justice be charged with making false reports.

The reported "duty" is not necessarily the whole performance of the engine, the amount of which camot always be obtained ; it is, in fact, merely the weight of wa. ter lifted, multiplied by the height in feet to which it is raised, reduced to the number of pounds a aroirdupoise raised one foot high, for every bushel of coals consumed, without reference to friction. Now as the friction of each engine, and the machinery worked by it, varies, -and as, although this friction has to be ovcrcome, the amount of it is not reported, so the reported duty is not the whole performance of the engine : and, consequently an engine which is reported as performing certain duty may, in fact, be doing as much work as another engine whose reported duty is greater.

The pumps in the mines in Cornwall are workcl, and the water raised, ats the engine gocs "out of doors," the force of the steam is cmployed to raise the heary pump rods; these rods are in many instances so weighty that without counterbalances, or, as they are termed in the country, "bal. ance bobs," the engine would not be sufficiently powerful to raise them, -for instance, in some cases the pump rods are 150 tons in weight, which is equal to $336: 000 \mathrm{lbs}$. Now the greatest load upon any engine reported in September last, was under $100,000 \mathrm{lbs}$. It is therefore necessary to have "balance bobs," or beans, one end of which is connected by a rud to the pump rod, and the other is weighted with iron as a counterbulance. 'fhese beams are in many instances as large as
the Lean of a 100 horee Boulton and Watt engine; it is evident that these cannot be worked without friction. In other cases he same engine not only works the pump iods that are in the shati inmediately unler the end of the engine beam, but also he punpsi in distant siafts, by means of horizontal rods extending in some instances half a mile. These rorls are supported either by fendialun rolls or work on friction wheels ; in these cazes the friction must be great. It must also be borne in mind that here is more friction in a small cylinder, in proportion to its nrea, than in a large one, and, in fact, in all the bearings and working parts of the engine, -the power inereasing as the squates of the diameters, while the friction inereases as the diameters, directly. There are other sources of friction, but the above examples will be sufficient to prove that, although there appears a discrepancy in the reported duties of the Cornish engines, as friction is not taken into the account, it does not neccssarily follow that an engine, whose reported duty is great, should be, in iact, superior to one whose reported duty is less.

In addition 10 this, the reported duty, of the same engine doing the same work, may vary 7 or 8 per cent. at different times, merely in conseguence ol the different qua. lity of the coals supplied.

> (To be continued.)

RAPPAHANNOCK CANAL \& SLACK WATER NAVIGATION.

NUTICE TO CONTRACTORS.

SEALED Proposals will be received un. til the 7th day of April next, by the subscriber, on behalf of the Rapraliannock Company, at the office of their Engineer, in the Town of Fredericksburg, for the construct:on of four new dams, raising, covering and backing several others, several short canals, 14 new lift locks, of wood and stone combined, 10 guard locks, and other incidental works, for that portion of the Slack Water Navigation extending from the town of Fredericksburg to Barnett's Mills, a dis. tance of 20 miles.

The prices for the work must include the expense of materials necessary for the completion of the same, according to plans and specifications that will be ready for examina. tion on the 1st to the 7th April, inclusive.

The works to be completed by the 15 th day of November of the present year,
It is believed that the work above offered for contract presents superior inducements, especially to such as have been accu stomed to, and prefer contracts embacing heavy dry walling and carpentry, the materials of which are at hand and in abundance.
No fears need be cutertained as to the healthfulness of the climate. 'I he usual testimoniais of claracter and responsibility will be expected to accompany the proposuls.
P. MARTINEAU, Chief Eng.

March 18, 1337.12 -3t

AN ACCOUNT OF SOME EXPERINENTS MADE in 1823 and 1824, FOR DETERMINING TIIP QUANTITY OF WATER FLOWING TIIROUGI DIFFERENT SHATED ORIFICES. BY BMYM, DONKIN, ESQ.. F. R. A. S., V. P. INSr. C. E.
[The plates of this arti le are omitted unti] a subsequent number.]
The apparatus employed in these experiments having been miade for a different purpose than that of merely ascertaining the quantity of water discharged, occasiozad the peculiar form which is here described.

A, in Fig. 1, Plate vertical copper pipe of $3 \frac{\pi}{3}$ inches interion diameter.
B, a horizontal pipe of the same diameter, joined to the lower end of \mathcal{A} by what is usually called a mitre joint.
\boldsymbol{C}, another pipe, joined to \boldsymbol{B} in a similar manner, but so contrived that it could bo turned up or down into a vertical or horizontal position.
Fig. 2 represents the outer end of the pipe C, with a cap, $\boldsymbol{D} \boldsymbol{D}$, fitting elosely upou its outer side, and capable of being put on or taken off at pleasure; upon the end of cap D the ring $d d$ was soldered, being about $\frac{1}{4}$ inch wide; this cap was employed for securing the different shaped oritices to the pipe C. For instance, where the efllux of water through an aperture in a thin plato of metal was intended to be tried, the cap was taken off, and a circular plate $e e$, of a corresponding diameter to that of the exterior of the tube C, was applied to the end on \boldsymbol{C}, and the cap $\boldsymbol{D} \boldsymbol{D}$ put over it to secure it in its place.

To guard against any leakage of water between the joinings of the cap, the pipe, and the plate, the joinings were filled with a soft cement made of tallow and bees' wax.
Upon the upper end of the pipe \boldsymbol{A}, a copper cistern, \boldsymbol{E}, was fixed. This cistern was about 2 feet diameter and 6 or 7 inches in depth; the length of the pipe B was 10 fect; of \boldsymbol{E} about 1 foot 9 inches, and of A about 25 feet, measuring from the top of E to its junction with \boldsymbol{B}.

The water was supplied from a circular cistern, \boldsymbol{F}, of 6 feet $7 \frac{1}{2}$ inches diancter, and 2 feet 10 inches in depth, by meuns of a sluice f, and the trough g.

During each experiment a man was placed to regulate the shice, so as to lieep the cistern \boldsymbol{E} always full. Aid in order to ascertain the quantity of water discharged, a float with a graduated sten was placed in the sail cistern \boldsymbol{F}.

On the 28th of November, 1823, tise fol. lowing experiments were made in the presence of Professor Barlow, of Woolwich.

To the end of the pipe \boldsymbol{C}, the conical pipe G was applied, by having a thin plate, h. soldered to it; the opening at the smaller end, which was $\frac{1}{2}$ inch in diameter, and that of the large end $2 \frac{1}{2}$ inches diameter, and its length. 12 inches; the discharge took place from the larger end of the cone, whilst the pipes C and G were in a vertical position; the height of the colum of water from its surlace in \boldsymbol{E}, to the upper chid of the cone \boldsymbol{G}, was 22 feet 9 inches In 4 minutes it discharged $12 \cdot 25$ cubic feet of water, being at the rate of $3 \cdot 0625$ cnbic feet per minute.

2d Experiment.-The conical pipe was onverted so that the discharge took place
from the smaller end; in 4 minutes the discharge was 12.5 cubic feet, or at the rate of $3 \cdot 125$ cubie feet per minute.

3l Experiment.-'The conical pipe wits removed, and a thin plate with a hole $\frac{1}{2}$ an inch in diameter in its centre was applied to the end of the pipe \boldsymbol{C}, the height of the column being 23 feet 3 inches; in 4 minutes the disehurge was $8 \cdot 2$ cubic fect, or at the rite of $9 \cdot 0 \overline{5}$ cubic feet per minute.

Nov. 29. The pipe \boldsymbol{C} and the cone \boldsymbol{G} were placed lorizontally, with the smaller en: of the cone outwards, and a column of 26 feet; in 8 minutes it discharged 26.8 cubic feet, being at the rate of $3 \cdot 35$ cubic feet per minute.

Dec. 1st. Pipe and cone horizontal, the larger end outwards, and 26 feet column; in 5 minutes discharged $15 \cdot 4$ cubic feet, or 3.08 cubsic feet per minute.

Another experiment was continued for 8 minutes, and the discharge was at the rate of $3 \cdot 09$ cubic feet per minute.
Dec. 5. Two conical pipes, $\boldsymbol{H} \boldsymbol{H}$, each of which was of the same dimensions as the one above described, were united at their smaller ends, and upplied to the pipe \boldsymbol{C}; in 10 minutes the discharge throagh the double cone was 48 cubic feet, or at the rate of $4 \cdot 8$ cubic !'eet per minute, the column of water being 24 feet 3 inches.

A second experiment on the same day was made with a thin plate, having a $\frac{1}{2}$ inch bole through it, and a column of 24 feet 3 inchos; in 10 minutes the discharge was $20 \cdot 6$ cubie feet.
In a third experiment, the donble cone was tricd again, and the discharge obtained was $47 \cdot 4$ cubic feet in 10 minutes.

Dec. 8. The 2 conical pipes last mentioned were separated, and joined together at their larger ends, as at $\boldsymbol{J} \boldsymbol{J}$; in this form it dischurge of 20.8 cubic feet of water was obtaned in 10 minutes, under a column of 24 foet 3 inches.

Dec. 12. The thit plate with a $\frac{1}{2}$ inch hole was again applied under a column of 24 feet 3 inches, and during 10 minutes discharged 20.75 cubic feet.

Same day. The single cone with the small end outwards, in 10 minutes discharged $32 \cdot 2$ cubic feet, and with the large end outwards, $29 . \%$ cubic feet in the same time, under a head of 24 feet 3 inches.

Same day. Tie double cone united at their smaller ends, produced a discharge of $46 \cdot 5$ cubic fect in 10 minutes, and in 5 minutes $23 \cdot \overline{5}$ cubic fect.

June 8tin, 1824. The discharge through the $\frac{1}{2}$ inch round hole in the thin plate during 15) minutes, was 31.75 cubic feet, under a column of water of 24 feet 4 inches high $=$ $2 \cdot 116$ cubic feet per minute.

June 9. Tirrough the sanne hole, and under the same column, the discharge was 42 cubic feet in 20 minutes $;-2 \cdot 1$ per mina'c.

Thiouch a round hole $\frac{1}{4}$ of an inch diameter, in a thin plate, the discharge was rather less then 16 cubic feet in 30 minutes, under a columb ot 25 feet $8 \frac{1}{2}$ inches.

June 10. The $\frac{1}{2}$ tinel hole through a tim phate grave a discharge of 65 cubic feet matre: a column of 25 feet $8 \frac{1}{2}$ inches in 30 misuices, at the rate of $2 \cdot 166$ cubic feet per Hin!tc.

The single cone, with the smaller enp outwards, delivered 58 cubic feet in 18 minutes, under a head of $\mathbf{2 5}$ feet $8 \frac{1}{2}$ inches $;=$ $3 \cdot 22$ cubic fect per minute.

On a subsequent day in June. The same experiment repeated, and in 20 minutes the discharge was $63 \cdot 33$ cubic feet $;=3 \cdot 166$ cubic feet per minute. In this experiment, the small end of the cone was immersed about 6 inches below the surface of the water during the discharge, consequently the column was 25 feet $2 \frac{1}{2}$ inches.

Another experiment on the same day, with the same cone, having its larger end outwards, and immersed seven inches below the surface of the water, diseharged 59 cubic feet of water in 20 minutes $;=2.95$ cubic feet per minute.

The same experiment repeated during 10 minutes, gave a discharge of 29.46 cubic feet, or $\mathbf{2} \cdot 946$ cubic feet per minute.

In another experiment, the double cone joined at the smaller ends, in 18 minutes dis. charged $84 \cdot 633$ cubic feet under a head of 25 feet 9 inches $;=4 \cdot 7$ cubic feet per minute.

Another experiment. The same double cone with its axis 7 inches under water, and a column of 25 feet 2 inches, discharged $56 \cdot 5$ cubic feet in 12 minutes $;=4 \cdot \%$ cubic feet per minute.

ASxiculture, \&e.

From the Baltinore Farmer and Gardener.

AGRICULTURAL JURISPRUDENCE.
We learn from the Silk Culturist, that at the late term of the Supreme Court of Errors in Hartford, Connecticut, a question of Agricultural Jurisprudence settled, which has often been the occasion of much controversy, and sometimes of a total interruption of that social intercourse and interchange of kind feelings and offices, without which, neighborhood ceases to be a blessing, and actually becomes a curse. The question arose in an action of trespass for taking a portion of the fruit from a peach tree. The facts in the caso were these.The trunk of the tree stood about four feet from the division line between the plaintiff and defendant, and its roots and branches extended some distance into and over the defendant's land. The defendant plucked the fruit from the branches overnanging his land, to within one foot of the line, for which the action was brought.

The defendant claimed-
1st. That he was tenant in common with the plaintiff in the tree, and consequently had a right to take from the branches on his side of the line.

2 d . That if he was not tenant in common with the plaintiff, he was owner in severalty in that part of the tree which drew its nourishment from his soil, and that he had a right to take the fruit from the branches that overhung his land.

3d. That if he was not the owner of the part of the tree which is sustained by, and overhangs his land, still he was entitled to the fruit growing on such branches.

4th. That he had a legal right to remove
the overhanging branches and projecting roots, they being a nuisance which he had a right to abate.

The court ruled the first three points against the defendant, and decided that the ownership of the tree was in the proprietor on whose land it was originally planted, and that he, of course, was entitled to all the fruit, though the roots and branches may have extended into and over the land of the adjoining proprietor. On the last point the court decided that the projecting roots and branches were nuisances which the defendant might hase abated; but that he had no right to appropriate the fruit to his own use.

Illuminated Door Plates.-A person in Philadelphia has invented a new article of the kind, which the United States Gazette describes thus:
"It is formed of very thick glass, ground on the inner surface-on the outcr surface is placed the name in metalic letters, fastened with rivets, the plate set in a handsome frame of brass or silver, to suit the other furniture of the door. By day it is a handsome door plate, of the usual appearance ; at night the entry lamp makes the name more conspicuous on the outside than it wonld appear in the sun light. Such a plate would aid the search for a physician's house at night."

Give such hogs as you have in your pen, once a week, a few shovels full of charcoal, or pieces of rotten wood.

From the Farmer and Gardener.

legislative protection to agriculture.
We insert in another part of this day's journal, a very interesting report made in the Legislature of Ohio, on the expediency of encouraging the culture of Silk and Beei. Though young in years, Oinio is a most powerful State; great in all those physical resources and local advantages, which tend to impart importance to her as a member of the union; the influence of her counscls in giving an impetus to those new branches of American husbandry, cannot, therefore, fuil to be of infinite service in putting them upon a footing of solidity, which will place then beyond the rcach of contingencies, and plad for their encouragement with a force and fitfulness, that must find its way to the favor of the other legislative bodies of the confederacy.

While Ohio, in the West, the first of the new States, is nobly championing the cause of Agriculture, we are gratufied to find that New-Jersey, one of the gallant old thirieen who so generously aided in breaking the shackles of the mother country, in the war of the Revolution-whose sons during that "period of dismay and peril, stood side by side with those of Maryland, and Delaware, in the deadly strife-is actively awake in: furthering the good cause-and most sincerely do we join our aspirations with those of the editor of the Bugle, expressed in the paragraph below, in the hope, that Maryland will not be slow to follow the lead thus auspiciously set her by her-ancient ally -nay,
we will go further, and hope, that every other State, whose councils have not alrecdy done so, will come to the rescue, with a deterimination to vie wi:h each other, in the holy rivalry, of doing their respective states the most scrvice

Culture of Silk and Sugar Beet.—In glancing over a New-Jersey paper we accidentally noticed the following among the proccedings in the Legislature of that State on the 7 th inst. It evinces an enlightened po. licy, and sets an example which we hope Maryland will not be slow to follow.-[Kent Bugle.]

Mr. .Mollesson, after an interesting report in favor of encouraging the culturs of Silk, and Beet Sugar. reported two bills in favor of the same, and 500 copics were ordered to be printed.

buckwheat straw.

In answer to a question put to us some time since, by "a young Farmer," whether "any use could be made of his buckwheat straw," we replied that it was better for his milch cows than the best timothy hay, that his cows would eat it with equal avidity; that if it had not been too long exposed to the vicissitudes of the weather, it would prove equally nutritious ; that so far as the secretion of milk was concerned, it was infinitely preferrable to any hay or fodder within our knowledge, and that if cut and boiled, it would make most excelleat slop for his cows. In a conversation with a gentleman from Virginia a few days since, we were happy to find our own opinion and experience confirmed by an anecdote which he related. At the time of thrashing out his buckwheat, he was from home, and contrary to his usual practice, which was to cast the straw into the barn-yard amongst the other litter, his hands stacked it in a fold-yard, with his other hay and fodder, where it was accessible to a portion of his cattle. On his return home, he lound that his stork had made as free use of the buckwheat straw, as with either his bay or fodder, thus establishng the fact that these animals, which should be admitted to be judges of what suits their own appetites, when left to their own choice, had by their selection of this hitherto neglected lood, pointed out a new source of economy to the farmer and plauter, which too many have not properly appreciated. Buckwheat as ercry one linows, can be grown upon almost any soil if planted from the opening of the ground in spring, till the beginning of July, and will not only yield a handsome return of grain, but a full and wholesome supply of as good hay as any agriculturist ever fed his cattle withal.
"Adversity," to use a trite adage, " is the mother of invention," so should the experience of the last few years teach every one engaged in tilling the ea:th, to husband every means within his power, and of resorting to every resourse withia the compass of his ability, to make his stock comfortable, and keep them in plentiful supply of food during the inclemath nonths of winter. It is the custom of most farmers to sow buckwheat on the poorest spot on the farm, and esen when thus treated, often
without manure, with no other culture than a plonghing and harrowing, its product is from- 20 to 30 bushels to the acre, according to the scuson. When placed under more advantagcous circumstances, on grood soil, or land properly manured, it has been known to give a produce of from 60 to 70 bushels to the acre. If then, instead ct sowing a small patch merely to afford meal enough for the winter supply of those delightfin cakes, which add so much to the lixury of the farmer's winter breakfast table he were to sow from 10 to 20 acres, how much of profit wou!d ensure to him? how much wholesome food would he secure for his cows? and how much solid comfort to all and every thing around him? Than buckwheat grain,nothing is caten more readily by the poultry and the pigs. For the former, it is the best in winter, largly contributing by the great proportion of lime of which it is composed, to make them lay; for the latter, or for breeding sows, if reduced to meal and boiled into slop, it is at once nourishing and fattening. For sows with young pigs, nothing is more conducive to the secretion of plentiful supplies of milk. And should the straw be cut and steamed, and thus given to milch cows, it would serve as a substitute for other slops, and would materially increase the quantity as well as quality of their milk.

Besides the above uses of this article, if sown earl $\sqrt{\text {, in }}$ the proportion of 2 bushels to the acre, at would bear mowing iwice during the season, and would affort most excelleut grass for soiling : and beyond all question, there is no green crops that can be turned in with the exception of a clover-ley, that makes so good a dressing for ground for wheat as does buckwheat.

When sown for the grain, from 1 to $1 \frac{1}{2}$ bushels to the acre is enongh seed.

NEW. YORK AGRICULTURAL CONVENTION.
The Albany Argus of the 20th instant, contains the proccedings of the State Ag. ricultural Convention of New.York, convened at Albuny; the capital of that State, on the 2 dinst. Anthony Vain Bergen, Esq. of Green county, was appointed President, four other gentiemrn, Vice Presidents, and the same number, S'ecretaries.

A series of resolutions were reported to the Coavention and unanimously adopted. We shall give an abstract of these with a view of showisg thoi tendency and charac. ter. They set forth :
That it is of primary importance to all, that the great branch of agricultural labor should be specially encouraged and honored, and that the agriculturist should himself receive all those mental aids, and that stimulus to industry, which are calculated to make him more prosperous in his business, and more useful to society.

That we are particularly admonished by the scarcity ant very high price of all the products oi aurricniture, to put fortio our efforts to alleviate its labors and increase its productions ;--Tuat to tive Legs slature of the State, as the constituted guardians of the public weal, particulariy appertains the duty of fostering and improving this primary sounce of wealtin and happiness :-

That from the experience of the past at \mid home and abroad, the Convention are confident, that the patronage of the government may be advantageously excrted, and with. out detriment to the financial operations of its treasury, to this great object.

1. By so raising the standard of instruction to the children of agricenture, as to chat ble them to understand, and to anply to proluctive labor, the best practices and improvements of the age ; and
2. By imitating the successful cxamples furnished to other governments, of calling forth the skill, industry and competition of our citizens, by peceniary reward and hon. orary distinction:-

That influenced by these views, the Convention respectfuliy recommend to the Legislat are, ts appropriate a permanent fund. the interesl of which shall amount to at least thirty thousand dollars a year, to enconrage the establishment, and to sustain in usefulness, a Central and County Agricullural societies, and to promote generally the interests of husbandry, under such regulations and restrictions as to them shall seem meet, and that provision be made by law for introducing into the common schools of New-York, such books of elementary science, as may be best calculated to accelerate improvements in arts of productive labor.
A memorial, embracing the oljects above specified, to the Legislature, was also adopted with equal unanimity.

Among the other resulutions adopted by the Convention, we find the following :

Resolved, That the exhibitions made to this Convention, of sill: fabrics and thread, made from the indigenous mulberry of our country, affords ample evidence that the silk culture is admirably adapted to our soil and climate, and that nature has bountifully supplied us, should foreign resources fail, with an excellont thaterinl for its prosecution.

The Convention before adjourning recomimended that another Agricultural Convention be convened in Albany on the first Thursday of February rest, and that the several counties in the State take proper measturs to be represented therein.

We notice these proceediugs with feclings of̂ umingled pleasure, fur every movement of the kind mast sorve to animate the breasts of the agriculturists of our land with the importance of attending to their own interests ; for unluss they do so, it must be obvious that no voluntary action will take place on the part of most of those who fill our legislative bgdics.
policy of destroning weeds.
There is so much truc philosophay, so much sound practical sense, in the following extract from onc of Sir Humphrey Dary's lectures, that we cannot omit copying it.
"In all lands, whether arable or pasture. wecds of every description should be rooted out before the seed is ripe; and if they are suffered to remain in hed!ge rows, they should be cut when in flower, or before, and made into herps tor marure: in this case they will furnsh more nutritive matter in their decominsition: and their increase by
dispersion of seeds will be prevented. The furmer, who suffers weeds to remain till their ripe seed are shed, and scattered by the winds, is not only hostile to his own interests, but is likewise an enemy to the public; a few thistles will stock a whole farm ; and by the light down which is attached to their seeds, they may be distributed over the whole country. Niture has provided such ample resources for the continuance of cren the meanest vegetable tribes, that is very difificult to ensure the destruction of such as are hostile to the agriculturst, even with every precaution; seeds cxeluded from the air. will remain for years inactive in the soil, and yet germinate under favorable circumstances; and the different plants, the sceds of which, like those of the thistle and dandelion, are furnished with beards or wings, may be brought from an immense distance. The fleabane of Canadia has only lately been found in Europe; and Linnæus supposes that it has bcen transported from America by the light downy plumes with which the seed is provided.

experiments of vakious manures on po-

 tatoes.The following extracts from "Dickinson's Agriculture,'' will show that in Great Britain, particular attention has been given to sall as a manure. To show its utility as a manure in a more clear point of view, the following experiments were made by the Rev. Mr. Cartwright.

A certain portion of soil (ferruginous sand brought to a due texture by a liberal covering of pond mud) was laid out in beds one yard wide and forty long : of these, 25 were manured, the first excepted, as follows :

$\begin{array}{ll} = & 7 \\ = & 0 \\ E_{0} & 0 \\ 0 \end{array}$	Kinds of Manure applied.	
1	No manure	157
	Salt, $\frac{1}{4}$ peck	198
	Lime, one bushel	150
	Sout, one peek	192
	Wood ashes, two pecks	187
	Saw dust, three bushels	155
	Malt dust, two pecks	184
	Peat, three bushels	159
	Decayed leaves, three bushels	175
10	Fresh dung, three bushels	192
11.	Caandler's graves. nine lbs.	220
12	Salt, lime	167
13	Salt, lime, sulphuric acid	175
14.	Salt, lime, peat	183
15.	Salt, lime, dung	199
16	Silt, lime, gypsum, peat	201
17	Salt, soot	240
18	Salt, wood ashes	217
30	Salt, saw dust	180
20	Salt, mult dust	189
21	Salt, peat	171
22	salt, peat, bone dust	178
23.	Salt, dowayed leaves	187
24	3ult, peat ashes	185
25	Solt, Chandler's graves	195

"'The quantity of ingredients the same as rien used singly.
Ois the same day the whole was planted with protacs a single row in each bed; and that the general experiment might be
conducted with all possible accuracy, each bed reccived the same number of sets.

On the 21st of Septemher, the potatoes were taken up, when the produce of each row was according to the annexed table.
It is observed as being remarkable, that of ten different manures, most of which are of known and acknowledged efficacy salt, a manure hitherto of an ambiguous "haracter, is superior to them all, one only excepted, and that when used in combination with other substances, it is only unsuccessfully applied in union with that one. namely, Chandler's graves, no other manure seemingly being injured by it : possibly its deteriorating effects on Chandler's graves may be owing to its antiseptic property, which retards the putrefactive process by which animal substances undergo the changes necessary to qualify them to become the food of plants. This, howerer, he cannot, from any appearances in the soil when the plants were taken up, assert to have been the case. The extraordinary effects of salt, when combined with soot, he thinks are strikingly singular: there is no reason to suppose these effects were produced by any known chemical agency of soot and salt on each other. Were he to guess at the producing cause, he should conjecture it to be that property of saline. substances by which they attract moisture from the atmosphere; for he ohserved those beds where salt had been used were visibly and palpably moister than the rest, even for weeks after the salt had been applied, and this appearance continued until rain fell, when of course, the distinction ceased. This property of attracting moisture had greater influence possibly, on the soot than on any of the other manures, as soot from its acrid and dry nature may be supposed to require a greater proportion of water to dilute it, than those substances which contain water already. It may be proper to observe, that on those beds where salt had been used, the plants were obviously of a paler green than the rest, though not less luxuriant: a circumstance which be thought worth not:cing, and which he considered, though erroneously (as appeared by the event,) to indicate a want of vigor, which would be felt by the crop. It was observable also, that where salt was applied, whether by itself or in combination, the roots were free from that scabbiness which oftentimes infects potatoes, and from which none of the other beds (and there were in the field nearly fifty nore than what made part of these experiments) were altogether exempt."

BURNING SURFACE SOIL AND CLAY.
The following simple and cheap process of burning surface soil and clay, and thus. adding to your quantity of calcareous manures and increasing your ability to improve your lands, is very stronly recommended by that eminent English agriculturist, Mr. Curwen. Those living remote from large cities, whence supplies of ashes are usually drawn, and in the neighborhood of lime regions, could in this way, at a very trifling expense obtain ample resources for topdressing their meadows, corn fields, grain fields, and
greatly multiply their ability for raising turnip; and root crop; generally.
-Mounds of seven yards inleng' h, and three and a half in breadth, are kindled with seven-ty-two bushels of line. First a layer of dry sods or parings, on which one half of the lime is sqread, mixing sods with it, then a covering of 8 inches of sods, on which tine other half of the lime is spread, and covered a foot thick; the height of the mound being about a yard.

In 24 hours it will take fire. The lime should be immediately from the kiln. It is better to suffer it to ignite itself than to effect it by the operation of water. When the fire is fairly kindled, fresh sods must be applied. It is best to obtain a considerable quantity of ashes before any quantity of clay is put upon the mounds. The fire naturally rises to the top. It takes less time, and does more work to draw down the ashes from the top, and not to suffer it to rise above six feet. The lime is supposed to add full its worth to the quality of the ashes. Where limestone can be hadait would be advisable to burn a small quantity in the mounds, as it would be a great improvement to the ashes, and at the same time help to keep the fire in.

method of burning lime without kil.ns.

The practice of lime-burners in Wales was formerly to burn their lime in kilns, made broad and shallow, but lately they have begon to manufacture that article without any kilns at all.

They place the limestone in large bodies, the stones not being broken small, and calcine these heaps in the same way used for preparing charcoal. To prevent the flame from bursting out at the tops and sides of these heaps, turfs and earth are placed against them, and the aperture partially closed; the heat is thus regulated and transferred through the whole mass, and notwithstanding the increased size of the stones, the whole becomes thoroughly calcined. As a proof of the superior advantage that lime burnt in these clumps has over lime burnt in the old method, a preference is always given to that burned in heaps. This practice also prevails in England and Scotland.

TANNERS' BARK.

There is much doubt and scepticism prevailing with respect to the relative value of this substance as an improver of the soil. While some contend that it is a cold, inert body, deprived, by the process of tanning of its nutritive properties, others object to it upon the score of its being too heating. Here are qualities ascribed to it as opposite as human opinion can make them; but as it is among the infirmities of his nature for man to err in judgment, may it not be that neither of these opinions are correct. Prejudice too, inay have its share of influence in the formation of them, and the truth may be found in the fact that their substance does not possess any one of the qualities here ascribed to it, in any injurious degree, but may in fact combine those which would render it, after being submitted to a judi-
cious chemical process, a highly valuable manure. That the tanning principle is extracted no one can question; but in undergoing that deprivation, may it not imbibe other qualities equally conducive to the growth of vegetables? In the tanner's vat, it is placed in close contact with hides, and may it iot receive certain portions of animal matter, eminently calculated to advance the healthful nurture of plants?While in the hands of the tanner, more or less of lime in some of its forms are doubtless imparted to it. This, we know, when combined with earthy matters, or hard woody, fibrous substances, promotes active decomposition, and consequently, the elimination of gaseous particles, which becoming incorporated with the soil, form a valuable part of the pabulum of living vegetables. We are told upon the highest authority that when lime, whether freshly burnt or slacked, is mixed with any moist, fibrous, vegetable matter, there is a strong action between the lime and the vegetable matter, and they fo:n a kind of compost together, of which a part is usually soluble in water; and that by this kind of operation, lime renders matter which was before comparatively inert, nutritive. Now, may it not be, that all that is wanting to render tanners' bark easy of decompesition, and to convert it into nutritive matter, is the application of a proper portion of lime, or some other substance capable of generating heat? Fermentation once excited, if permitted to go on, would soon convert it into a black vegetable mould. In that state, all soould admit its applicability for the production of the food of plants. Rotten tanners' bark mixed with silicious earth, we all know, makes one among the best preparations for the flower bed; indeed we know no mould superior to it; from many years experience we can say that we would prefer it to any other. If then, it was that inert body which some would represent it, it certainly could not gain any thing by its combination with sulica to impart to it that principle of active vegetation which it undoubtedly possesses. But let us see what is taken from it in its process of tanning.The best oak bark, cut at the most auspicious scason of the year, contains but 29 parts of the tannin principle out of 480 parts, and surely the abstraction of this minor portion of its whole constituent body, does not materially impair the capacity of the residuum for the purpeses of production. But what has been found to be the constituents of this residuum? Why, by a minute analysis of 1,000 parts of dry oak bark, it was found to contain
Of woody fibre
876
Tannin
57
Extract
Mucilage
31
Matter rendered insoluble during eva-
poration, probably a mixture of AI.
bumen and extract,
Loss-partly saline matter,
It must, therefore, be obvieus from this exhibit, that after the separation of the tannin principle, there still remains much in the tanners' bark, which may be converted into vegetable nutriment, for of a
thousand parts, only fifty-seven are found to combine with; and form a part of, tho hides in the process of tanning. The substance abstracted, amounts to less than 6 per cent. ; for as the analysis was made by incincration, the loss set down should nut enter into the account against the residuum. Every one at all conversant wih the constituent properlics of manure, and with the physiology of plants, do linow, that the substances which sustain the vitality of growing yegetables must be taken up either in a liquid or gascous form, and that the exquisitely delicate ducts of their lymphatic vessels cannot receive any thing solid into them. From these premises, it is fuirly deducible that tanuers' bark, once reduced to vegetable inoukl, would be a valuable and heallhful manure; the process then, by which it can be reduced, becomes an object of importance, and it is equally so, that by admixture with earth and lime, with unrotted horse manure or ashes, its decomposition can speedily be effected. Would it not then, in the absence of other vegetable matter be a valuable substance to spread on all fields where lime was intended to be used, whereon no clover-ley or grass sward existed? It strikes us that it would be ; and we recommend its use, from an honest conviction that the happiest meliorating effects would result from it. Derıving, as tanners' bark do, no little portion of animal matter during the period which it lies in contact with the hides, it may be said to possess both animal and vegetable salts, therefore, must be presumed to be highly forcing in its properties, and, hence, pecuiiarly adapted to tenacious soils, which may be, naturally, deficient in vegetable matter.

Fron the New.England Farraer.

Mr. Fessenden:-_If the following remarks are worthy of a place in your useful paper, you are at liberty to publish them, some vears since there was a great scarcity of hay. At that tume I had on hand a large stock of cattle. Sometime in the month of February my stock of hay was about all gone, and where to obtain more, I could not tell. It could not be had short of 20 miles, and there at the price of thirty dollars per ton.
(ne day I went to the stable, and no sooner than I entered, every eye was upon une for aid. You may imagine what my feelings were, whear I knew of no relief which I could bestow. I stood a while to reflect on what course to pursue, or what to do. At last I thought of some flax which had been lying on the beams of my stable for several years, which had not been rotted. I threw down a few bandles. and gave some of the flax to my cattle. Tiney took hold of it with such eagerness, that I was obliged to take it from them to prevent their being choked with it. I then took a block of wood and a broad ase and chopped it up short. I then gave a very little to my cattle, and con. tinued so to do, until it was all gone.

From what I then discovered of the vir tue and oily substance that the flax con tained, I an of opinion that what I could take up between my two hands and fingers, after being chopped, and given to a cow cach day through the winter, would carrs
her through the foddering season. My opinion is that the bulk of one ton of hay in flax, will be of more value to a stock of cattle than four tons of hay. I am also of opinion that oil can be obtained from flax. As I have an oil mill, I intend to try the ex perimeut the ensuing season. I would recommend to farmers to sow more seed the coming spring than usual; for flax and the seed are of more value than people are aware of.

Stepien Perley.
By the Editor.- The use of unrotted flax as food for cattle is new to us, and we have never, before we received Mr. Perley's communication, heard or read of its being applied to that purpose. We are of opinion that Mr. P. has made a valuabie discevery, and are much indebted to him for its communication.

BEET CULTURE.

INTERESTING CORRESPONDENCE.

We have been favored with the following letter to Mr. Clay, together with Mr. C's. reply.-[United States Gazette.]

Philadelphia, Dec. 19, 1836.

Sir,-Not conversant with the intended movements in regard to the proposed reduction of duties on various auticles, but having glanced over the proccedings of congress and noticed that the subject will soon be before that body, and from the remarks on the proposed repeal of duty on Sugar, my mind reverted to that subject in which I have now for a year past, been so deeply interestcí. My pursuits are mercantile, but I feel that interest for any branch of industry that will benefit the country, that I have, so far as my efforts could avail, done all in my power, and I trust not without success, to introduce and establish in the United Sintes, the culture of the Sugar Beet and the manufacture of Sugar therefrom.

I am aware it is making a great demand upon you, still I wish, most carnestly, to obtain your attention for a moment. I have receutly been in a position to meet and become acquainted with Mr. James Pedder, from England, who had for years kept his eye upon the progress of the subject of making some attempt to i., troduce the same into the United States. I declined at first, persuaded that influence far greater than mine would be needed to introduce the matter successfully to our citizens.

However, deeming "nothing impossible to a willing mind," I proceeded. I introduced Mr. Pedder to our best agriculturists and chemists, and through them to James Ronaldson, Esq. Mr. Vaughan he had already known for several years. Mr. Vaughan, Mr. Ronaldson, and myself, conferred on the subject frequently, in Dec. 1835, and January 1836. I sought and procured such information as I could from the Journals of France and .ther publica. tions, which was sufficient to aecide its practicability, and became evident that it only required a hearty effort somewhere in ovder to succeed. With a subscription of $\$ 50$ each frorn John Vaughan, James Ronaldson and Samuel Richardson, Esqrs., of this city we enabled Mr. Pedder to depart for France by agreement made on the 6th Feb. 1836, (vide his Report) which was entered into

Mr. Voughan, myself and others, and he departed from New-York on the 10th day of Feb. 1836, furnished with advances and credit on London to prosecute his object even beyoud the terms of the agrecment, if found requisite and useful. After his departure, every exertion was made to raise donations sufficient to meet the expenses of the undertaking, to introduce all requisite attainable information, without any intention on our part ever to profit by sugar making. It was thought that a society would aid the thing, and disseminate it more advantagously.

Accordingly, from among the donors, the Beet Sugar Society, was organized, but few of its members ever became sufficiently interested to take an active part. This was owing, I suppose, principally to their convic. tion that the undersigned was so actively en. gaged in it as 'o leave little to be done by them, beyond the liberal pecuniary aid which they cheerfully extended. To the active exertions, however, of my worthy colleague, Benjamin M. Hollinshead, complete success, in carrying through our first views, has been sccured.

Mr. Pedder wrote to me on the subjert, from France, and lis letters were published. He returned and made the Report I send you herewith.

About 500 lbs . of seed, from France, have beon disseminated through the country from Missouri to Maine.
I visited our State Legislature a few days before they adjourned last session, and though busincss was pressing upon them, obtaincd their very favorable notice of our efforts, by a reference (made indeed at an unseasonable time, but unanimous) to the Committee on Agricultare, and the same evening met the committce, who, satisfied, no doabt, of the propricty of the measure, reported next day and recommended an appropriation of three thousand dollars, to be placed in the hands of the Governor, to be applied to the introduction and dissemination of information relating to the manufacture of Bect Sugar and its encouragement, in the State of Pennsylvania.
From a press of business, though this recommendation unanimously passed the Senate, it failed to be noticed in the House, a circumstance, since, most deeply regretted by me, as it would have secured the active existence of the Socicty organized, and placed in their hands means to have rewarded ingenuity, by premiums, and made successful experiments in the production of sugar from our own soil. Thus left, with a heavy expenditure, and to reimburse the expenses of Mr. Pedder's mission, expense of the seed previously gratuitously distribated, publications, \&c., reliance was had upon the well known, but too often taxed liberality of a certain portion of the benevolent and patriotic citizens of Philadelphia.

In this position of things, I have certain. ly the satisfaction to know, that the exertions, which have not been without labor, have availed much; for I am persuaded that the growing of the sugar therefrom, are destined soon to become parts of the agricultural and mechanical industry of the United States.

Even should no fostering care be extended to it, (such as wisdom and prundence would dictate,) native ingenuity, industry
and perseverance, untranmelled by speculative jobbing, or joint stock beet sugar companies and land speculations, will fix it in the United States; and I think it is not going too far to predict that, in the present age, the product of sugar from our own soil, from the beet-root, will supply our own demand, and perhaps morc.

France produced last year eighty milLions of pounds of beet-root sugar ! more, by one-third, if I mistake not, than our Louisiana crop of the same period !! What does this not predict with our favorable soil and climate, where, already, this year, from the seed we have distributed, eleven per cent, of good granulated sugar is said to have been obtained from the root which in France yields but six per cent. average, and never over eight? My own observations have not positively verified this, but I am led to believe that it was cbtained in the vicinity of Albany, New.York.

From the resulo my own experiment (I have had opportunity to make but the one) though from accident my sugar did not granulate properly, I am fully satisfied that 8 per cent. of good sugar for refining, is to be obtained in the United States, from the beet-root.

The growing of Sugar Beet, and manufacture of sugar in the United States, so far as relates to this vicinity, stands thus:-In and about Philadelphia all who are interested (except indeed a few who have this season made and exhibited to me small quantitics of sugar better than any I have seen from France, are waiting to verify' the success of others-every man is looking to his neighbor. In other sections of the country the subject has lately been taken up with more spirit. In March last, I received, in an indirect manner, a communication from Mr. M. Isnard of Boston, applying to be. engaged in some branch of the manufactur. ing, by our society, under the impression that its object was the manufacture of sugar. Then, no society had yet been formed.
Informed of the real object we had in view, he turned his attention to excite an interest in Boston. Having had considerable practical experience himself, in all the departments of Beet-root sugar making, from having been engared in its manufacture in France, he has, by his efforts, contributed to give an impuise to it in the State of Massachusetts.
Joint Stock Companies, Land Speculation, and a variety of ways for making money have been proposed, but none having for its object the true purpose of those engaged in this matter.

Some, disappointed in their visionary schemes of profit from the sudden increased value of land from its introduction, and fail. ing to draw into their plans, those interested, have essayed to disparage the efforts of others whose consciousness of their own mo. tives has been their guide, and to discourage its introduction.

Their success, small as it must be, will not be envied by the well wisher of his country's prosserity.
Herewith, I beg leave to transmit to you a translation of a document published by the Royal Society of Agriculture of France on the subject, which do me the favor to perues
at your earliest convenience and hand over afterwards to my friend Dr. Thomas P. Jones of Washington.
Do not suppose for one moment, Sir, that I have any sclueme or plan in which I wish to engage you. I make this communication to you, simply because I have confi. dence in your large, honorable and patriotie spirit, and I am sure that any good work nieeds only to be known to you, to secure your approbation and enlist your efforts.
In what ways your assistance is to be rendered, I leave, respectfully and cordially, to your superior wisdom.
I am, with great regard and esteem,
Most respectfully, yours,
Jacob Snider, Jun'r.
To Hemby Clay,
Sunrtor of the United States.
W. hington, 27th Dec. 1836.

Dear Sir, -I received your fivor of the 19th inst., wihl the paper published by the Royal Agricultaral Society of France. on the subject of the manutacture of sugar from Beet. I have read those papers with much attention, and interest, attracted by what I had learnt of the progress of that manufacture in France, and by the patriotic endeavors of yourself and others in Philadelphia, to introduce it in the United States. I took pleasure in distributing some of the Silesian beet seed brought from France last spring, and for which I believe I was indebt. ed to Mr. Ronaldson, and I caused some of them to be sowed at Ashland, my residence. Although it was late in the Spring, they grew very large and were more productive than any other beets which I have ever tried. There was a similar result with all to whom I gave any of the seed. I consider, then, that this important and first step towards the introduction of the manuficture of sugar from beet sufficiently ascertained. There is reason indecd to believe that the climate and soils of our country are better adapted to the growth of beets than those of France.
What is now wanted is a knowledge of, and experience in, conducting the processes by which sugar is extracted from the root. The paper from the Fronch Society, which you have done me the favor to transmit to me, throws much valuable information upon this branch of the subject, and is, I think, worthy of publication and extensive diffusion.
In my opinion, the establishment of the manufature of Beet Sugar in the United States eminently deserves the liberal patronage of government. What, if sucessful, would so greatly redound to the conmon benefit, ought to be demonstrated by an experinent made at the common expense. For it is the apprehension, incident to all new and untried enterprises that now deter individuals from embarking in this. Owing to the diversity of opinions which exists as to the powers and duties of the general govcrnment, which otherwise would be the inost fitting to bestow the proper patronage, per. haps an appeal had better be made to the liberality of one of the State governments; and I know of none to which it can be ad. dressed with more propriety than that of Peunsylvania. Fortunately the sum neces. sary would not be large to inake a full and fair experiment.
I have no doubt of the ultimate introduc-
tion of the manufacture either with or without the aid of government, and I believe at no distant day a great pait of this necessary of human life will be derived from this new source. If we are to credit the authentic evidence obtained from the experience of France, the manufacture of sugar from beet is less costly than from cane.

Ou_ht we.not to admire, and to be profoundly penetrated with gratitude for the providential care which, at a moment when, from various causes, the supply of this necessary article is likely to prove inadequate to consumption, opens a new and boundless source, assuring the poor as well as the rich, in all times and in all countries, of an indispensable article of subsistence?
I beg you to accept my individtal thanks for your valuable agency in bringing about the naturalization among us of this new manuacture.

I am, with great respect,
Your ob't servant,
H. Clay,

Jacor Smider, Junr. Esq. Philadelphia.
List of subscribers to the Railioad
Jonirnal, that lave paid, (continued.)
S. A. Davis, City, Səpt. 1f, 1837

Gideon Lee, " Jan. 1, 1838
E. W. Casey,

Jan. 1, 1838
Thos. Meredith, Carbondale, Pa. " 15, 1838
J. L. Baldwin, Mauch Chunck, Pa. Jậ. 1, 1838
Jas. Durbin, Fort Ball, Ohio, July 1, 1838
S. Reed, Carmans, Md., June 10, 1836
A. P. Winchester, Golden, Md., Jan. 1, 1838

Wm. Dearing, Athens, Geo., . Jan. 1, 1833
U. A. Boyden, Nashua Village, N. H., Jan. 1, 1838
D. Scott, Tuscaloosa, Ala., Jan. 1, 1833
W. S. Whitwell, Boston, Mass., Jan. 1, 1838

Jas. P. Hector, Manchester, Va., Jan. 1, 1838
C. W. Bankf, West Felecina, La., Jan. 1, 1837
A. G. Thorn, Jackson, La. Jan. 1, 1838

Adyevtisements.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pambour- 150 pages laage octarodone up in paper covers so as to be sent by mail-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts . for any distance exceeding 100 ms .

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price \$1. Postage, 20 cents, or 30 cents, as above.
Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts. ** On the receipt of $\$ 3$, a copy of each of the above works will be formarded by mail to any part of the United States.
$1010 t$

AVERY'S ROTARY STEAM. EN. GINES.-AGENCY.-The subscriber offers lis services to gentemen desirpus of procuring Stean Engimes for driving SAwMills, Graln-Mills, and other Manufactoraes of any kind.

Engines only will be furnished, or accompanied with Boilers and the necessary Machinery for putting them in operation, and an Eligineer adways sent to put them up.

Information will be given at all times to those who dessre it, either by letter or by exlibiting the Engines in operation in this city.
Inquiries by letter should be very explicit and the answers shall be equally so.
D. K.MINOR,

132 Ňassau-st., New York.

TO ENGINEERS.

WE are gratified to be able to announce to those desiring Instrumenta, that Messrs L. \& G. W. BLUNT of this city, are now prepared in furnish at slort notice, LL:V ELS, from different marufacturers, among others from Troughton \& Sims, which they warrantlof the first quality. Circumferentors, Levelling Staves, Prismatic Compasses, Mathematical Instruments, Books for Engineers, etc. constantly on hand.
One of the above firm is now in England superint teuding the manufacture of Theodolites, Transit Instrumeits, etc.-a and any orders fir Insiruments, nonow on hand, will be forwarded him, and executed prompily.
*** Orders will be received and promptly attended to by the Editers of the Journal. 944
AN ELEGANT STEAM ENGINE AND BOILERS, FOR SALE.
THE Steam Engine and Builers, belonging to the STEAMBOAT MELEN, and now in the Novelty yard, N. Y. Consisting of one Morizontal high pressure Engine, (but may be made to condense with litlle additional expense) 36 inches diametcr, 10 feet struke, wih latest improved l'iston Valves, and Metalic packing throughout.
Also, four Tubular Boilers, constructed on the English Locomolive plan, containing a fire surface of over 600 feel in each, or 2500 feet in all-will be sold cheap. All communications addressed (post paid) tothe subscriber, will meet with due attention-

HENRY BURDEN.
Troy Iron Works, Nov. 15, 1836. * 7 - 11

RAILIVAY IRON, LCCOMOTIVES,\&c.
THE subscribers offer the following articles for sale.
Railway Iron, fat barz, with countersunk holes and mitred juints,
350 tons $2 \frac{1}{4}$ by 15 fin length, weighing $4 \frac{68}{170}$ per fo
 80 " $1 \frac{1}{4}$ " $\frac{1}{4}$, " \quad " \quad " $\quad 1 \frac{1250}{205}$ "
with Spikes and Splicing Plates adapted thereto. To be sold fiee of duty 10 State governments or incorporated companies.
Orders for Pennsylvania Boiler Iron executed.
Kail Road Car and Locumotive Engine Tires, wrought and turned or unturned, roady to be fitted on the whecls, viz. $30,33,36,42,44,54$, and 60 iaches aiameter.
E. V. Patent Chain Cable Bults for Railway Car axles, in lengths of 12 feet 6 inches, to 13 feet 21,2 年 $3,3 \frac{1}{3}, 3 \frac{1}{6}, 3 \frac{1}{4}$, and $3 \frac{1}{1}$ inches diameter.

Chains for Incliued Planes, short and stay links, manufactured from the E.V.Cable Bolts, and proved at the greatest strain.
India linbber Rope for Inclined Planes, made from Ncw Zealand flax.
Also Pateat Iemp Cordage for Inclined Planes, and Canal 'lowing Lines.
Patent Felt for placing between the iron chair and stone bluck of Edge Railways.
Every description of Railway Iron, as w-ll as Locomotive Engines, imported at the shortest nolice, by the agency of one of our partners, who resides in Fingland for this purpose.

Mr. Solumun W. Roberts, a highly respeciable Ameriean Enginecr, resides in England for the pur pose of inspecling all Locomotives, Machinery, Railway Iron \&cc. ordered through us
A. \& G. RALSTON.

28 if
Pbiladelphia, No. 4, South Front st.

MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Paterson, New Jersey. The undersigned reccive orders fur the fol lowing articles, manutactured by thrm,' of the must superiur description in every parsicular. Their works being extensive, and the number of hands employen] being large, thes are onabled to execute both large and small orders sith promptness and despatehRALLROAD. WOLR.
Locomotive Stean-Engines and Tenders; Uriv ing and other Lucomotive Wheeis, Axles, Sprinss and Flange Tires; Car Wheels of east iron, from a va riety of patterns, and Chills; Car Wherls of cast iron. with wronght Tires; Axles of best American refined iron; Springs ; Boxes and Bolts for Cars.
COTTON WOOL A.MD FLAX MACHHNERY,
Of all descriptions and of the must improved Pat. terns, Style, and Workmanship.
Mill Geering and Millwright work generally; Hydraulic and other Presses; Press screws; Callen. ders; Lathes and Tools of all kiads; lron and Erass Castings of all descriptions.

ROGERS, KETCHUN \& GROSVENOR
Patterson, New.Jersey, or C0 Wallstrect, N.

albany eagle alr furvace and

 MACHINE SIIOP.WILLIAM V. MANY manufactures to order. iron castings for Gearing Mills and F'actories of every description.
ALSO-Steam Engines and Railroad Castings o every description.
The collection of Patterns for Marhinery, is not equalled in the United States.

CROTON AQUEDUC'I.

NOTICE.-Scaled Proposals will be received by the Water Commissioners of the city of New-York, until the 2.d day of April next, at 3
o'clock, P. M., at their ollice in the city of New-York, o clock, P. M., at their ullice in the city of New-Yurk,
and until the 2 Ith day of A pril, at 9 oclock, I'. M., at the office of their Engineer in the village of Sing Sing, for constructing a loam across the Croton Liver, for the Excaration, Embaukment, Back Filling. Foundation and Protection Wulls; for an Aqueduci Bridge at Sing Sing, threo Tunnels, severnl large aud small culverts, and an Aquednct of stone and brick masonry, with other incidental work, for that purtion of the Croton Aqueduct which extends from the Dam on the Croton to Sing sing, being hetween cight and nine miles in length

The prices tor the work mist include the expense of materials necessary for the complotion of the same, according to the plans and specifications that will be presented for examination, as horeinafler mentioned.
The Work to be completed by the first day of Uctober, 1839.
Security will be required for the performance of contracts-and rropositions should be accompanied by the names of respmusibie persons, stgnfying their assent to become sureties. If the character and responsibilities of those proposing. and the sureties they shall offer, are not known to the Commissioners or Engineers, a certificate of good character, and the extent of their responsibility, signed by the first judge or clerk of the county in which they sererally reside, will be required.

No transfer of contracts will be recagnised.
Plan of the several structures and specifications of the hind of materials and manmer of construction, may be examined at the office of the Commissioners, in the city of New-York, frum the 10th th the 14th, inclusive, of April next ${ }^{\circ}$ The line of Aqneduct will be located, and the maj, and profile of tho same, together with the plans and specifications above men tioned, will be ready for examinaion at the office of the Engincer, at the village of Sing sing, on the 15th day of ipril next, and the Chief or Resident Engineer will be in attendance to explain tho plans, \&e., and to furnish blank propusitions.
Persons proposing for more work than they wish to contract for, must specify the quanticy they desire to take
The full names of all persons that are parties to any proposition, must be written utit in the signafol the same.
The parties to the propositions which may be accepted, will be required to enter into coutracts immediately after the acceptance of the same,

The undersigned reserve to themselves the right to accept or reject proposals that may be offeret for the whule or any part of the above described work, an they may consider the public interest to require. STEPHEN ALLEN,
CHARLES DUSENBURY, \} Water SAULALLEX,

JOHN B. JERVIS,
Chief Exgineer, New-York Water Works.
Now.York, February 28,1837.
103
'I'O MANUFAC'IURERS OF HYDRAULIC CEMENT.
PROPOSALS will be reccived by the subseriber, on the part of the James River and Kanawha Companies, tirr the delivery on the wharf, at the city of Richmond, Va., of Fifty Thousand Bush. els of Hydraulic Cement. The amount called for must be furnished in quantities of about six thousand, bustiels per month, commencing on the first of A f ril bustiels per month, commencing on the fir
'To avoid future litigation, it is to be understuod, on making the proposals, that the bushel shall weigh seveniy pounds NETT, and ahat the Cement shall be deiivered in good ordder, and packed in tight casks or barrels.
Proposals will also be received for furnishiug fifty housand bushels, at any convenient point on the navigable waters of James River, or the north branch of James River, where the materials for its manufacture lins been discovered.
Persons familiar with the preparation of the Ceinent, would do vell to examine the Counties of liockinent, would do well to examine the Counties of Rock-
bridge and botetourt, with a view to the establishmentit of works for the supply of the western end of the line; and a contract for the above quantities will be inade with them before they commence operations.
As there wiil be required on the line ot the James River and Kanawka Improvement, in the course of the present and next year, nut less than half a million of bushels of this Cement, and some hundred thousand bnshels more in the prugress of the work twwards the west, contract ors will find it to their interest to furnish the aricie on termis that lead to future lerest to furnis.
Proposals to be directed to the suhs \quad riber at Richmond, Va. CHARLES ELI.ET, Jr.,
February 20 th, 1837.
96 t

FRAME BRIDGES.

THE nadersigned, General Agent of Col. S. II. LONG, to build Bridges, or vend the right to others to build, on his Patent Plan, would respeesfully inform Railroald and Bridge Corporations, that he is preparen to make contracts to build, and furnish all materials for superstractures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above planare to be seen at the fullowing localities, viz. On the main road leading from Baltimore to Washington, two ruiles from the furmer place. Across the Metawamkeag river on the Military road, in Maine. On the national road in Illinois, at sundry points. Onthe Baltimore and Susquehanua Rrailroad at three points. On the Hudson and Patterson Railroad, in two places. On the Buston and Wureester hailroad, at several points. On the Buston and Providence Railroad, at sundry points. Across the Contoocouk river at Henniker, N II. Across the Souhegan river, at Milford, N. H. Across the Connecticut river, at Haverliill, N. II. Across the Contoocook river, at Hancock, N. IF. Across the Androscoggin tiver, at 'lurner Centre, Maine. Across the Kennebec river, at Waterville, Maine. Across tho Genesse river, at Squakiehill, Mount Morris, New-York. Across the White River, at Hartfurd Vt. Across the Conneclicut River, at Lebanun, N. II. Aeross the mouth of the broken Straw Creek, Penn. Icross the mouth of the Cataraugus Creck, N. Y. A Railroad Bridge diagonally across the ERie, Canal, in the City of Rochester, N. Y. A Ra road
Brdge at Upper Sill Water, Oruno, Maine. This Bridge is 500 peet in length; one of the spans is over tou feet. If is probably the firmest wooden bridge ever built in Ancrica.
Notwithstanding his present engagements to build between twemy and thirty lailruad Bridges, and several common bridges, several of which are now in prugress of consiruction, the subscriber will promptly attend to business of the kind to much greater extent and on libral serms.
liochester, Jan. istn. 1837.

NEW ARRANGEMENT.

ropes for inclined planes of railroads.
WE the subscribers having formed a co-partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroads, and for of or usts, offer to supply ropes for inclined planes, of any length required without splice, at short notice, the malufacturing of cordnge, heretofure carried on by S. S. Durfec \& Co., will be dune by the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \&
Co. All orders will be prompty attended to, and ropes will be shipped to any pori in the United Siates. 12th month, 12Lh, 1836. Hudson, Culumbia County State of New-York.

33-tf.
ROBT. C. FOLGER.
GEJRGE COLEMAN,

AMES' CELEBRATED SHOVELS, SPADES, \&C.
300 dozens Ames' superior back-strap Shovels $\begin{array}{lllll}150 & \text { do do do plain do } \\ 150 & \text { do } & \text { do } & \text { do caststel Shovels \& Spades } \\ 150 & \text { do } & \text { do } & \text { Gold-mining Sterels }\end{array}$ 150 do do Gold-mining shovels
100 do do plated Spades 50 do do sucket shovels and sinades. Together with Pick Axes, Čanrn Drills, and Crow Bars (steel pointed,) mannfictured from Salishury refized iron-for sale by the manufacturing agents
WITHEREIL. ANES \& CO.

No. 2 Liberty street, New-York. BACKUS, AMES \& CO.

No. 8 State strcet, Albany
N. B - Also furnished to order, shapes of every de
viption, made from Salshury refined Iron 4 -tf

A SPLENDID OPPORTUNITY TO

MAKE A FORTUNE.

THE Subscriher having obtained Letters Patent,from the Government of Frailee, granting him the exclusive privilege of manulacturing Ilorse Shoes, by his newly invented machines, now offers the same for sn!e on tirias which canuot fint to make an independent fortune to any enterprising gentlo inen wishing to etnbark in the saine.
The machinesare in constantoperation at the Troy Iron and Nail Factory, nnd all What is ueressary to salisfy the most increduleus, that it is the most valu alise Patent, ever oblained, either inthis or any other coanstry, is to witness the operation which is open fir inspection to all during working hours. All letters atidressed to the subscriber (post paid) will re. eeivo due attention.
Troy Iron W orks,
IIENRY BURDEN.
N. 13. Horse shoes of all sizes will be kept cons stantly for sale by the pincipal Iron and Haril-ware Merchants, in the United States, at a small adcance above the price of Horse Shoe Iron in Bar. All persons selling the same, are authorisen to warmant every silge, wade from the best refined lron, and
any faiting to render the most perfect satisfacotis, buth as zegards workinanstip and quality of Iron, will be received lach, and the price of the same refunded.
H. BURDEN. 47-4

Builder of a superior style of Passenger
Cars for Railroads.
No. 264 Elizabeth street, near Blecekerstrect, New-York.
RAILROAD COMPANIES would do well to exa mane these Cars; aspecimen of Which may he seen now in operation

Je5t
ARCHIMEDES WORKS
(100 North Moor street, N. Y.)
New-Yoris, February 121h, 1836.
THE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furnish all kinds of Machinery fot Railroads, Locomotive Engines of any size, Car Wheels, such as are now in successful operation on the Camden and Amboy Railroad, none of which have failed-Castings of all kinds, 4-vil
H. R. DUNHAM \& CO.

PATENT HAILROAD, SHIP AND BOAT SPIKES.

**The Troy Iron and Nail Factory keeps constantly fur sale a very extensive assurtment of Wrought Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years surcessful operation, and now aimust uni-
versal use in the United Siate, (as well as England, where the subscrinited siater, (as well as England, superior to any ever otfered in market.
Railruad Cumpanies may be supolied with Spikes having countersink heads suitable to the holes in iron rails, to any amuunt and on short notice. Almost all the Lailroads now in progress in the United States are lastened with Spikes made at the above named fac-tory-liur which plirpose they are found invaluable, as heir ndthesiun is more than double ariy common spikes made by the hammer.
*** All arders directed to the Agent, Troy, N. Y., will be punctually attended to.

MENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
*** Spikes are kinpt for sale, at factory priccs, by I. \& J. Townsend, Albany, and the principal Iron Mer: chants in Albnny and 'I'roy; J.I. Brower, gite Water street, New-York; A. M. Jones, Philadelphia; P. S.- Railruad Companies \& Smith, Buston. ward their orders us eurly as practicable, as the subscriber is desiruns of extending the manufacturing so as to keep pace with the daily increasing dewand for his Spikes. (IJ2 3 am) H. BURDEN.

and abvocate of ingeramal Improvements.

PUBLISHED WEEKLY, AT NO. 30 WALL STREET, NEW-YOKi, AT FHG DOLIARS PER ANNUM, PAYABLE IN ADVANCE.

D. K MINOR, and
GEORGE C. SCHAEFFER, \(\left\{\begin{array}{l}Editors and
Prorietory.]\end{array}\right.\)

SATULDAY, APRIL 1, 183\%.
FYOLUME VI-No 13.

Abstract

\section*{CONTENTS :}

Advertisements ; Editurial Notices Pearl-street House. Pearl-street House. 193 Kailruads and Canals ia Iillinois. . Cochran's many Chambered Gun Caanl Navigation: Wellaut Cunal, elc.......... 194 Transactions of the Instithtion of Civil Engineers 194 Railroad and Canal Stocks 206 Advertisements. .

AMERICAN RAILROAD JOUIRNAL.
NEW-YORK, APRIL 1, 1537.
REMOVAL.-Tue Office of the RAIL. ROAD JOURNAL, NEW-YORK FARMER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-street, basesnent story, one door frotn William street, and opposite the liank of America.
o- For List of Subscribers that have paid see page 207 .
$\underset{\sim}{5}$ It will not do, these hard tinies for money, to be too modest. The Paper Maker must be paid, the Engrarer, the Ink Maker, and the Printer must be paid, -then why not Pay the Publishers and the Editors the current year and all arrearages for the Journal? It must be done.Plbase remit by mail.

WABASH AND ERIE CANAL. NOTICE TO CONTRACTORS

 Sealed proposal will be received at the town of MAUMEE, in Lucas county, Ohio, on the 15th day of viay next, for the construction of so much of the line of the Wabash and Erie Ca:ial as lies between the head of the rapids of the Maumee River and the eastern termination of said canal, near the town of Mahatten, at the head of the Maumce Bay.The length of the line offered for con. tract is about thirty miles, and embraces a large amount of embankment, much heavy river bluf excavation, a riuantity of roch, a
|number of stome culvets. and 12 to 15 exat stone lack:
Thirty miles on the line, in alation to the nbove extendiag from tive hand o: whe rat ids to the town of Deflares, will :leo br prepared, and offered for contract at the same time, sloould the number of apherint. for contracts justify it.

Plans and specifications will be exibited, and necessary information gives, in relation to the work, after the tenth of My.

Bidders who are unlinow: to the acting Cummissioner, as contractors, witl be expected to accompany t.or roposals with recommendations of a substantlal and unquestionable character.

LEANDER RANSOM.
Acting Comunissioner.
Office of the Boarll of Public Works, ? Columbus, Unio, Fei. is, 1837,

13-2
Pearl-street House.- Who, of the thousands of Merchants that have been in the habit of visiting New-York for the last ten years, does not reco"ect the "Pearlstreet House ?" It was once the " .Ver chants' House;" but during the pcist year its old inhabitants could scarcely point out its site, so complete was its destruction by "the great conflagration." 'She Pearlstreet House has, however, again reared its head, far above the surrounding buildings, and presents an external appearance, at once noble and inviting; an appearance which will not lead the visitor to cissappointment, on an interior examination.This House, or Hotel, has its prineipal front on Pearl, and extends through to Water-street ; is six stories on Pearl and seven on Water-street. Its principal entrance is by an easy flight of stairs to the Exchange room, which is about 50 feet square, with marb!e fiocr, and well lighted
in front. In the rear of this, on one side, is the Dining room, which will accommodate over 350 persons, extending through to, and alsng Water-street-with broad folding. doors, opening from the Exchange oom, and several others communicating with the principal hall. There are one hondred and cighty Lodging rooms; well furnished-the beds can hardly fail to please; as gach has a feather, a straw bed, and hair mattrass.

There is not another house in this city; probably not in the Union, except the Astor Honse, with as inany conveniences as the Pearl-street House. There is one of Avery's Rotary Steam Engines and Boiler; which pumps all the water required in the establishment, and throws it from Pearl: street to the 7th story on Water-strect. It furnishes sicain to the Kitchen, to do all the boilins-and heats all the water re: quired to do the varasing of the house; and also for the Bathing rooms, of which there are a sufficient number to accommodate the guests of the house: On repeating our visit to this immense establishment; which has been completed, furnished, and occu= pied in less than nine months from its cox= mencement, we come to the conclusion, that there is more room, and far more ex= tensive accommodation, on the same space of ground, than can be found elsewhere in the United States. It is easy of access; and what is of great consequence to strangers, in case of alarm by fire, there can be no difficulty in finding the way out, as there are two principal stairways from the streets to the roof.

Those who are fond of a quiet, well furs nished, and well arranged home, while at-
tend ang to business in New-York, will thank Alderman Peters, the Propripin", for rebuilding the Peal-street Honle; and thoee who are more esperially fond ot tla, g od lling: whi haght always to t.e fow d on the tabl and in the coflar of stech an establi hment, will. he til more obigiged to the A!derman for seleciig Mesyrs. Flist aud Wuitale - gentiemen well krown, the formor as the heeper of the old Peurl-stri et House, previous to its destuctior, and the later as inaster of one of the Hiavie Pack-ets-to preside over its destinics and provide for its guests.

On the 20th ult.. the doors were opened to receive company, and thousands of our citizens paid their re-pecte, not only to t'e genilemen who guade its destinies, hut also to e gond cleer with whi h the tables wer. abundantly supplied; and we liave non only to say to those who desire all the comfonts which are to be cinjoyed at any Hutel go and see for yourselve .
railroads and casals in illinots.
We ask for the following communication, an attentive perusal. It illustrates, wit. greit force and truth, t.se pervading spirit of the age; and it must surtly satisfy those who are still incredu!ous as to the high des tinies of that young State, that Ilemois iat few years will be second, and but for hen unrivalled city-o:aly second, to the State of New York.

We are cbliged to "The Far West" fo the interest he expresses in the succes; of this Journal-and we are disposed to hoi him to his very liberal ofr r to "keep us ia formed of the prospects o: the public work in tine State." We hope to hear ofien fro , him especially in relatiou to the probab! co.rnectio. of the public works in Iilino: with other geat works in other Siates.
grand system of internal imphovement in inlinors. Tise Legislature of Illit.oi has recently adjourac 1 , after passing al act to estublish and maidtaiz a general sys tem of Interual Inproveme:at. A B ar of Commissioners of Public Works is ap pointed, w.os cre autho.ized and required t, adopt such measures as my be necessar! for co:structing and complating the following works:-

A Railroad from Cairo, at or near t', the confluence of the O.sio and Mississipp rivers, to Galena oal te Upprer Missis.sippi :o pass tiro Igh Vimdalia, Siselbyville, D. catur and B^{\prime} osuingtoa, intersect the sout ern termination of t.e Illino:s and Michigat canal, and from thence throug'a Savanna to Galena. Ringiug tarougis the centre u it the State its entire length, five hundre miles.

A cross Railroad from Alton on the Mis. is si pi in Mouct Carm: : ou the Wabas.'।

 vith a diverging fo.k fiom la hardsrill
 uci filty miles.
A crois Railrond from Lower Aion, via. Upper Ator and Hiliabo:ough, i. tersectior the certral Raihoad i.t Shelloyvills, thence via. Charl ston and Pari-, to the State liic in a directio: for Terra Hate, wo laundrei niles.
A cross Railron'l from Quincy on the Mississippi, to the State line, v:car La Forette, luciara, via. Co'umbus. Ll yto: Mount Siefling, Meredu ia, Jachso.sithe if ringfied, Devatur, Sydice and D.unsile, iwo huadred and fity mbes.
A Ralruad fiom Pcoria oa the Illirois riv or to Warsaw on tae Mississippi, tamuria Canton, Muco:nb and Cart.uage, o..e Lundre and tucaty miles.
A Railio df from B!.romington, a point o \therefore he gient contral Rallead to mect the Rail rod from Warsaw at P co. ia, and a foim ivan the smane it M. cknaw toisu wh. The no..t, to strike the Iliaws river at Dekn eventy-five miles.
A Railroad fons Believille via. Lehanoat th intersect the Ato 1 and Mouat Caranel Railoa l. twenty -five miles.
Siceifie a_{1} pro riatio ss are made for each oute, besides which, two hundred and fiit! t tousand doliars are appropriated for the in rovenent of the great westen mail route rom Viacennes on the Wibas'l to St Louis:-and six hundred thousand to im. rove t.e navigation of the Great and Little Vubas'l, the lllisos, t.se K skaskin aud Rosk rivers, including a portio: divided mong certain counties to be used at tam inn discretios.1.
It will be sec. that bevile the great cent. tral Railroud, whial toaceses t.ee Mossisippiat Galsua, and of is condacnce with tie Onso. .رese are fo :r R iiroads waic.l ruat entirely teross tho State, besides ose ucarly two atadred mile.s i.1 (xten.t whic's indersect: acentral Raihoud, strkiag t:o Illi:o $=$ - ver at two foints. 'Tuere are threct r . nimatons at the ladala liace; one veen C Fayette, which oirels a line of eomme cation with New Yo.k.by the Mumee ard Stic canal ; oue near Trers [I use, a point 1. tue Natio sal ro ad, and of i..tendel co:n unacation wita the Central camal o. I . da anal, and with Evansville, hy a Railroad lad oue at Moant Carmsl, below thes rapid: if tic Wabsith.
'Tacre are the terminations on the Oinio ; une at S.awnectorn, and one at or sea ale moath of the river.
There are four terminations on the Missis.
sirpi, beside the one at its confluence; viz. talun, the c.ntre of tie lead region oa the I, 1pre Mississippi ; it Warsiw, beluw the sower Rapirls; at Quincy, and at Alton. Besides these termmations on the Missis. ippi, t ere is now org mized, under a very beral cearice, a company who are about to 0.sistrect a R bilroul, intersecting the Quiny and La Foyctes main coos R ilroad, \therefore a. S, ringfield and Carrolion, to strike tho :ae Mississippi at Gratoo., at the co:fluance of the Illinos and Mississippi rivers, a most ${ }^{\text {ºn }}$ impo tant po i:t.
It stooulu be remarkel that less than twenty-five miles would co nect t.e great Cuatral Railroad, wit. the Ohio river at a a out albue t.ee trouth of Cumberland river anon iwence a roat: has been projected t.rruagh Princctoa and Hupkinsville in Kentucky, and Cla-ksvile Tennessee to Nashville, a dista. ce o!' o.te humdred and tiinty Hules o:ly, to effect the mo it important junc. (0.1 witi t.e Nusiville and New.Orleans ailioad. We have thus about one hunlred and fity miles of Riviroad only to povide for to open a direct Railiond com. mu.iation betreen $\boldsymbol{N}_{\text {cu }}$ Orleans and the U. per Nisisiss.ppi and lhe Great Lakes! A distance of iccarly twelve limudred mies, wruath the heart of the most ferti.e region r. the face of the glube.

Tu t.:e prudent calculators of the North, t': magniificent enterprise of the young Siati o : Illinos m :y seem premature or ex. travag.mt. Wo beg them however to renect that we have a territory equal to that of ter State of New-York. the who'e of ief c' c. is o. cxt aordinary fertility. That t.se enhanesd value of the land in the ime mediate vicinity of the projected Ruilroads, will pay ticir co st four times over. Tiat our fopplal tiont, not o.lly in numbers. but in wealta, etiterprise and intelligence, is rapid. y increasing; and, what is a more impor:a : coasideratio.s periaps than all others, sach improvements are in acecordance with Se spirit of the age, and our whole people call for them.

> The Great West.
cochain's many-chambehed gun.
We always t.ske pleasure in speating of imp irtant mentions, even though they may wet tead divce:!y to the cons:ruction of daulroads or Camals-and therefore we give he following te timonits of the value of Mr. Cuchran's improvement in fire-arms, vit', a dawing and concise description of he impruvement.

Thic chambers, or receptacles for the large, are in the periphery of a cylinder. \therefore abo::t 4 inches in hanet r, and $\frac{7}{8}$ ths of in inch thick, which revolves horizontally
nately in a line with the barrel; on the uider side, an about equilistaa firon the pesibhery, all centre of the cyiblior is, phecedasmal cole to receive the parms.
 hiviga connobication with the poder. Whea the cylinder is ch orged, -eath haviag nine charges, -the cap; are pit upon the conse, and theat ae cylinder is put in its place and secated there by a spriay. Whea in its plac", eash chamber, or cherg ${ }^{-}$, p unts in a differeat direction, and each capris perfectly procected from explosio::, except the one con namating with the chanber ia line with the barrel, aad after discharging which, no further explosion ca:a take place withat morig a spring, which pernits the cylinder to make the o.s-minith of a revolutas, therchy bring ag amotar chumber, or charge, in line wit. the barcol. A person ta.n liar with the use ot his gun. having extra cylinders ia his belt, ca a easily moke thifly s'to's ia a minute; as he woald only remove it irum his ince tinse times, to mathe 36 shets.
The great lavility with waica it ca, be dischar red, is n !, as will be perceired, oa read ug Cupt. Gurf h's Leiter, its lighe t recomandaion. 'I'ae cerlaialy of expiousion, evou ater lang expostie in danp wea her, is of the lirst insortance; a qual ity which it appears to posiess in un ein.nent degree.

The acc:mpanying drawings show the gositions of ine cy.i.der in which is represeated the chansers and the coacs for the caps.

If further cvidence, than the annexed fetters from gentleme.r every way qualitied to give a correct opinion, is required, it can be furnished, by actual demonstratuon, to those who will call on Mr. Cochrut, or Messrs. Richards \& Richardso:n, of this city, who are the Agents of the Company engaged in the manamacture of de article.

A specine: af this beoutiful artacle may be seell at this office-whe orders will be recenved for Rijles or Pisto's.

I have exmmined, and scen fired the ingenious iuventioa ol Mr. John Co hran': many-chambered gan, und, hase no hesitation in suying, it comsine.s sumplicity, ne.tness, an l-at the shine ti.n', ir reat de sp.utch; and f.r all the uses of varfare, should approve of it hi fhly.

Andrew Jackson.

Washinzton, Jan., 1817.
I chealully unite in th; above testimonial, of Mr. J. W. Cochran's gın.

Andew Jickson, \mathbf{I}_{R}.

Washingtun City, Jan., 15:37.
IVr, the II derigh d, in we witaresed the
 wath his mata, - h manered of m, and ore o!
 ta campre wat it ; at t, its simpaily, sacty, and tac ratily amd rembiny on its tiring ; it can be fi d thiry tione in a ininute, wiel gele effect; it is in our opiriim, whe of the mast furmidable weapo:s eror inveated.
D. S. Cuinch.
G. J. D.asis. U. S. Army,

Wr. P. Divar,
Wm. Cosr Jons son,
S. Wamenn iton,

Sim'l. C. Rad,
Cif. G. Ridgily.
Wasmmgton, Nov. 2', 183z:
Colonel,-Thee enchesedrep at ol Lieat.nam S sott, whech I have he homor t, submit, fis:ly contiens $:$ se high extimite I had lor:ned of Mr. C chran's gun, frome the xperim ats instituted by nce, on sitturday. a comernity when vor instracams.
U der my supervision, the gill wis liad. ed and dastangerg tive hanlue tiane; tice
 and hava i of had in and liras. My aireation wa $;$ artieniar'y called to the apporrut danger of ig nation, fron the contigut y if the charges. But, from the exjerimente treely made by Fir. Coolran, by piacm: unse powder in the cambeis over the ralls, and aroun I the caps, I an cowised tat my apprehensons were andmanded.
I din not hesitate to say, that why
 ubjections tu dir. Cochras's meneation. It wili be wall to reand, that the finm was dosharged ia al, une thousand and cigha mes, without bifing cleanel, and wathut missing tire.

The flatiened balls accompanying this. were fired through an muh i, a k awan.st a brick wa l. at a dotence of 150 yards.

I am, Sir, very respectiulv,
(Signed)
Your Obe't. sin't.
Capt. of Ordance.
Col. T. Bomford, U. S. Oidiance.
For Mr. Cochra., whth the compliments of Geo. D. Pamsay.

Washington Inseval, Nor. 22, 1836.
Sta, -Having been present at the test N the gun with revolving Cyliallers, inventd by you, and being a witness to the many xperin ots, whi h were made on SaturJat, the 19ih iat., at this place, I can hut tempt to express the great satistaction it Itionded ine, to see the following successtin aials made hy you:
Firstly, As a smooth-bered gun, in regard to the accurary weth which it shoots a atl, I must say that mothing of the kiad. that has heretofure come under my obecr inton, can be comprared with it ; for at a istance ol tilty yards, the size of a dollar vas struck three times in successton.
Sccondly, When the comparison for ather contrast) was made between your gun and Hall's Carbine, as to the depth of
:netation into piee wood, I was most astomidiol tu sca the great dar rence between the avo: At the dif-lance of tity yards,

 thirdshn, 3 molues and S-ie.ths; whilst dalls Cartuac at the ditunce of fiteen yards, oa y pencerated 2 inches and 8 tenths.
l'nirdly, As to the specd with wheh it wa: lised,- white Hat's Carbine could only be liaded onec, your Gun conapletely disdhrred it; Cymarer containing nine charre, in the spice of is seconds.

Fourthy, As to the certainty of dis-char-c, in tiriup 100 S clineres, not one cap anel, and whin double shotied, and fired; no weon was peremible.
In fie', your onn, for simplicity; accuraer, and cettany, t geth t with its othar infestimable quahties. 1s, in my opinion; beyond mprovence 1 , and may te called a host comphete lire anan.

With very grest respect,

$$
1 \text { an, Sur, \&c. }
$$

Joms M. St. John;
Sinster Armorer, \&'.. Wa-hmztm Arsenal: To Joms Cocin:as, Ei-q.,

Bruwn's Ifutel, Winhiugton City.
The pince was fired this morning 500 times, naking in al loos. It is in the sime ocder it was provions to the discharging it. Wister was pat into the chambers, and leff fir one hour and tun minutes.Amrwards, it was dischare ${ }^{\text {d }}$ d in the same manor as the uhare, with sut the lea-t dliieulty. It fires vith preat accuracy. I tracd it wita Hali's carbine, both being loided, the ti:ing wa= cominenecd, durng he chacharping of the nine chambers; the carbme could only be lodded once, not a cap misud. At he distance ol 150 yards, charge 10 grams of powder, the bail perf.rated aal i.scin pine beard, and was flattuned agai. st the brick wall. For simplicity, it surpasses aby thang of the kind I have yet selt; and as a fire-alm, its qualities can be summed up in three words: It is pertect.
J. B. Scott, 1st. Lieut. 4th Iufantry. Waslmugtom Arsenal, Nov. 20, 1836.
Mir. Cochras fired the nine chambers in ix seconds.
J. i3. Scott, 1st. Lieut. 4th Infuntry.
cochravis gen testedin abattle with the seminoles, in florida, by captaln gordon.

New-York, March 17, 1837.
Sir,-Having had very ample epportunities of te iting the very great supemority of your " s:any Chambered" gun, it affords me grat pleasure 10 -tate, for the public onfinmatio:, that I consider it litr superior to any ollier now in use. Its perculiar adiptat:on to the purposes of war, gives it just and strong claims to the pa:aonage of the General Gi:wernment. I do not hesitate to dectare it as my firm and decided opinion, that one hundred men, armed w th your gun, wiuld be equal, in point of efficacy, in battip, to one thousand armed with any other. Its superiority for hunting purposes is equally great, and cannot fal to secure for it the public favor:

The astonisluing capability of your gun to resist dampness, or injury of its charge, when loaded, I consider of the greatest importance. A very striking and satisfactory instance of this manifested itself in the late battle witi: the Seminoles, on Lake Monroe. Your gun had at the time been loaded at least two weeks-had been taken out on one or more excursions, and exposed to the dampness of the atmosphere, which in that country is very great, and such other causes as had made it necessars to discharge and re-load all or most of the other arms similarly exposed,-yet, under these circumsta:cex, without re-loading, yours went off in every instance, (the whole round of chambers, as if recently charged. The simplicity of the machinery, and the great power with which it throws its balls, will justly enhance its estimation with all who will take the trouble to examine and make trial of them.
In conclusion, I will :epeat, that I have no hesitation in giving it as my firm conviction that your's is by far the most efficient fire-arm ever offered to the public, and every way worthy of coafidence and patronage.

I am, Sir, very respectìully,
Your most ob't. humble serv't.,
W. Gordon,

Captain U. S. Dragoons.
To Mr. John Cochran, New.York.
Canal Navigation.-.The annexed notice from the Philadelphin Gazelte, of 21st March, shows the advantages possessed by Philadelphia for early navigation.

With a Railroad to Olean, on the Susquehannah River, New-York might send goods to Pittsburgh earlier than it is now done frous Philadelphia.

important to merchants.

We have been favored with the following information in relation to the opening of the Pennsylvanıa Canals and Railroads, which cannot fail to prove gratifying to that porton of the business community ergaged in the Western Trade-coming as it does trom head quarters.

$$
\left.\begin{array}{c}
\text { Canal. Room, Harrisburg, } \\
\text { March, } 17,1837 .
\end{array}\right\}
$$

C. G. Childs, Esq.

Dear Sir,-"On the Western Division they will commence letting water into the Canal on the 20th inst. The Portage Railroad is now in readiness, and in excellent order.-The Juniata Division is ready and filling.-The Susquehanna Division is in navigable condition, and the Eastern Divison is also ready and filling with water."
union canal.

Extract of a letter dated

Lebanon, March 18, 1837.

"Boatmen from the West, whose boats were left here last fall, have returned, and expect to leave bere on the 21 st inst. (Tuesday.) On Monday next they will commence loading some of the Lebanon broatr."

The Schuylkill Canal will also be navigable on Wednesday. A very large amount of goods was carried to the different forwarding houses yesterday. This looks like going ahead.

The Delaware Division of the Pennsylvania Caral, from Bristol to Easton, we understand will be opened to-day. This will give an outlet to much Wheat, Flour, and other articles greatly wanted.

The following notice is taken from the Oswego Advertiser, of 13th March. It will be gratifying to business men to learn that the channels of transportation are so sonn to be npened.

- The Welland Canal. -We have been Cavored with the following information, by letter, (which was directed to all of our Forwarding Houses,) from officers of this Canal, re-affirming that it will be in readiness for navigation on the 15th of April, which will be in season for the increased transit of merchandise and produce which this channel is likely hereafter to obtain.

Welland Canal Office,
St. Catharines, Sth March, 1837. $\}$
Messrs. Trowbridge \& Grant-Gen-tlemen,--For your information I beg leave to annex a copy of the Engineer's letter, to the President, relating to, at what period the Canal may be in readiness for navigation this Spring.
1 um respectfully, your ob't. ser't.,

> John Clark, Secretary.

To W. H. Merrett, Esquire, President W. C. Co.-Sir,—Unless rome unforeseen accident occurs upon the Canal line, I think the navigation may be stated to commence upon the 15 th day of April. This date will be as soon as Lake Erie is free of ice.

Your obedient servant,
Francis Hall, Engineer.

Railroads appear to be advancing more rapidly in Germany than in Frauce. That from Nuremberg to Furth transports weekly 18,000 travellers; that from Leipzic to Dresden will be opened immediately, and will join the Munich railroad at Augsburg, and in a few years will extend as far as Trieste. The subscription list for the railway from Magdebourg to Leipzic, the capital of which is fixed at $16,400,000 \mathrm{fr}$. was filled in two days. A company is being formed for the establishment of a railroad between Hambourg, Berlin, and Magdebourg ; it will extend 80 leagues, and will unite three towns with a population of five hundred thousand inhabitants, besides trans. porting an immense quantity of goods.

Triumph of Railways.-It was matter of some curiosity whether or not the engines could continue to work upon the Newcastle and Carlise railway during the continuance of the snow upon the road. The possibility of so working was fairly put to the test on the 26th ultimo, and the utility of railways demonstrated in a most striking manner.

In the deep cutting through the Cowan Hiils, the snow had drifted to the depth of four or five feet; and when the Hercules came down on Monday morning, great number of country people had assembled to see how she would act in such an emergency, and to render any assistance which might be necessary. On arriving at the spot the engine made no bones of the matter, but dashed right into the drift, clearing its way through, apparently without the slightest difficulty, the snow at the same time flying over the top of the engine chimney like foam from the broken waves of a violent sea; and notwithstanding this and other similar obstructions, the train came down from Greenhead (twenty miles) in an hour and a quarter. The trains have continued regularly to keep their time, while all communication by common roads has been more or less most seriously obstructed if not entirely cut off for a time.- [Carliles Patriot.]
transactions of the institution of civil ENGINEERS.
erecnt* canal-boat experiments.-Description and tabulated results of a series of experiments made to ascertain the actual tractive power exerted in drawing boats on canals, under various circumstances of load, speem, \&c. by john macneill, esq., m.lic.e., Fr.a.S., M.R.I.A.
The series of Tables which I now have the honor of presenting to the Institution, have no merit beyond that of an honest and accurate Register of Facts. That the Experiments which they record were made neither to support nor to invalidate any theory, the following account of their origin will demonstrate.
The attention of the Committee of Man. agement of the Forth and Clyde Canal Company, had frequently, in the course of their extensive and varied experience, been directed to some results, in the use of boats of different forms, on different canals, which appeared to contradict notions considered to be long established. The paradoxical cha. racter and important consequences of these results, at length determined the Committee, that a careful examination of the circum. stances under which they had been observed should be made, and that upon a scale which should be free from the usual objections attending experiments made with models. I had the honor of receiving their commands to design and conduct this inquiry. In July, last year, I carried the examination into effect, with the boats, and on the cauals, which had apparently presented the anomalous facts. The object aimed at, and which was supposed would satisfactorily settle every question, was to ascertain the tractive power exerted in drawing these boats on the canals in question, under very various circumstances of load, speed, \&c. At least, one beneficial result seemed certain to be attained by the parties who had the spirit to undertake the inquiry, in consequence of their being interested in the navigation of

[^20]the canals, viz.-it would determine which of the boats in use was best adapted for the purpose for which it was intended.

Though thus somewhat restricted by the very object of the inquiry, I could not help hoping, that a vigilant attention to all the circumstances attending the numerous and varied experiments which :would be necessa ry to solve the problem, and a faithful regis ter of every influential fact, might add some authentic data to the very small stock, hitherto collected from actual experiment, on this most important and interesting, but intricate, subject of physical science.

It is in this way that, I conceive, the practical engineer may frequently assist the physico-mathematician, and enable the latter to investigate and reduce to simple laws many of those apparent anomalies which often puzzle, and sometimes disappoint, the former. As neither my professional engagements, nor my acquirements, will permit me in any case to attempt mathematical discussions of this high and important character, I have aimed at 110 other distinction than that of a careful observer, and a faithfil reporter of facts. This is the utmöst of my preten. sions in the present Paper, and so far as this, I must acknowledge, I am ambitious to establish a claim.

Canals.-The canals on which the experiments, which it is the object of this Paper to record, were made, are, viz.-the Forth and Clyde Canal, the Monkland Canal, and the Paisley (Glasgow and Paisley) Canal. These were incasured in several places. Sections made out from these measurements are given in Plate 28, and they show, that each canal differs very materially from either of the others. These peculiarties should constantly be borne in mind in comparing and reasoning upon the experiments.

Courses.-The portions of the canals selected for the sites of the experiments in Tables I.-X. were straight, and as nearly uniform in breadth and depth as could bo obtained. These sites are designated, for distinction, the courses. On the Forth and Clyde Canal, there was no difficulty in the choice of a proper course ol any desirable length. On the Monkland and on the Paisley Canals, no long line, free from objection, could be obtained ; and, therefore, the courses on them were necessarily shorter.
Courses on the Forth and Clyde Canal. Six stakes, marked a, b, c, d, e, f, were driven into the bank of the canal at intervals of 110 yards $=\frac{1}{16}$ of a mile. The first stakeinterval $a . b$ was used for getting the horses into the proper speed, and the boat into a uniform velocity, it is therefore not regarded in the Tables. The instants of the boat's passage of the stakes b, c, d, e, f, were accurately observed. These are given exactly as they stand in the minute-books of the recorders, in column C of the Tables. From these epochs the times of the passage of the boat through the stake-intervals, or runs, b.c, c-d, d.e and e.f, were obtained by simple substraction. These times are given in column E. The velocity in milss per hour and feet per second were then calculated from the preceding data, and the results are given in the columns F and H . In the experiment given in Tahle XII., the run exendod about eight miles, bat in this the tracve power only was observed.

Courses on the Monkland and Paisley Canals._From reasons alrealy stated, the courses on these canals were necessarily short. They had but three stake-intervals, and consequently only two runs In every other respect they were the same as the course on the Forth and Clyde Canal. In the experiment given in Table XI., the run extended along the whole canal, and was about eight miles in length; but in this, as in the similar long run on the Forth and Clyde, the tractive power only was observed.

Boats.-All the boats had been, or were, in actual use on the canals in question, except one which had never been tried before, which is called "New Boat," to distinguish it. Plans, \&c. of the most remarkable boats are given in Plate 27. Their weights will be found in column P of the Tables.
The loads and speeds of the boats were varied so as to include every case that had occurred, or was likely to occur, in practice. The speedsor velocities are given in columns F and H , and the loads in column J. The effects of the various loads, and of the different distributions of them, upon the draught of the boats, are given in columns L and M.

Instruments, and Manner of using them. -The Dynamometer, or instrument for ascertaining the tractive power exerted, was made a part of the connexion of the towingline with the boat, so that all efforts to draw tine boat by pulling the towing-line acted upon the instrument, and were indicated by it. Efforts from 1lb. up to nearly 600 lbs . were clearly indicated on a large dial-plate, and could be satisfactorily read off.*
The times of the runs were observed with chronometers in the following manner:An assistant was so placed on the outside of the boat, that he could accurately observe

* This instrument was similar to one I had previously designed and caused to be constructed, for ascertaining the amount of the draught of carriages drawn by horses on turnpike-roads. The principle is the same as that used in the spring-weighing machine, but the index of tilis instrument in its simple form, whin applied to measure horsedraught, vibrates too frequently, and over too large an arc, for correct observation. Tuis is a coasequence of the peculiar nature of horse.draught, which is not a uniform pull, as is popularly supposed, but a succes. sion of impulses or strokes of the animal's shoulder against the collar. I added an ap. paratus, which indicated the mean force of the pulls, and not only reduced the vibrations of the index, but, like the fusee of a watch, compensated for the increasing resistance of the spring in high efforts. A detailed description of this Road-Dynamometer, and its application on the whole length of road from London to Holyhead, is given in the Seventh Report of the Parliamentary Commissioners for Maintaining the Road from London to Holyhead. The instrument is also described in the Further Report made by the Commissioners appointed to Inquire into the Post-Office Department, on the Subject of the Mail Coaches, dated 13th Aug., 1835. The instrument used on the canals was made from my designs, by Messrs. Bramah, of Pimlico, and was most carefully and beautifully finished.
the moment of passing a stake. When this happened, he called out, and the instant was observed and registered by two assistants, each with a separate chronometer. These time-observers were found, on comparing their registers, never to have differed more than half a second from each other, and that in a very few instances ouly. The tractive power was obtained by three assistants : one gave a signal every two seconds; another, on this sigaal, read off aloud the figures at which the index pointed; and a third regis. tered. By this arrangement all hurry and confusion were avoided; each assistant had ample time to do the work allotted to himp; and it is believed, that few errors, and none of any magnitude, occurred in making or noting the observations. The numbers represcuting the tractive power were written down in columns, each column corresponding to a run, or stake-interval. The sum of a column divided by the number of observations, gave a number which was considered to be the mean tractive power in lbs. exerted during each run. These caiculations were afterwards checked by two other persons.

In many of the experiments the level of a theodolite, steadily fixed in the boat, was ob. served under the following circumstances: -The boat, with its load distributed for the experiment, being at rest, the bubble was brought to the middle of the tube, and the index set at zero. The bubble being preserved in the same place during the experiment, the angle read off on the limb gave the angle of variation, which the keel of the boat made with its position before starting, or the difference, if any, between a state of rest and one of motion. Many of the angles observed are given in column O.

For the purpose of ascertaining if the boat was raised in the water, a fine wire was stretched across the canal, over two pullies placed in posts erected on the banks, by heavy weights attached to the end of it, so that it was very nearly level across the canal, and about eight inchos higher than the boat. A bit of paper upon-it marked the middle of the canal. On the top of the boat four slips of thin wood were placed,-one near the bow, one near the stern, and the other two at equal distances between them. These slips of wood were suspended vertically on fine wire pivots a little above their centre, so that they hung upright, except when they came in contact with the wire stretched across the canal ; the moment they did so they gave way, inclined backwards, and allowed the boat to pass freely under the wire : the edges of these slips were hollowed out, and the groove filled with tallow, projecting a little before the edge of the slip. The slips were divided into inches and tenths. When the boat was prepared and ready for an experiment, it was brought under the wire, and, being steadied near the papermark, the division cut by the wirc on each slip was noted down. When the boat in mation passed under the same point, the wire struck the slips in succession, and stripped off all the tallow above a certain point with a sharp and clean cut, so that it was perfectly easy to determine the height to which the boat rose when in motion, by examining the slips, and comparing the divisions at which the tallaw terminated with those previously noted.

Weather.-Che weather was, almo with. out exception, exterendy furoablo for the purpose. 'Tue directiva of the wind, it force. \&c., are totel it calmak.

Trdes.-Such parts oi the experiments as woull aulmit oi it, are clowsed togethe:
 parisol. Moit of the columas hate beur discribed in t.e preceting parazmponsthe others require no explanation. Tue Table: I.-X. costain the experiment. malle on the courses. Tables XI. and XII. are tile two eight-mile runs. In these the tractive power, indicatel by the dymamoneter, was read off as quick as it couli be writter down.

observitions.

1. 'That in the wide and deep canal, t'x tractive power was obervel to increase wit. the velocity, but not in any unifom ratio.
2. That in the shalluw ad harruw en nals, the inerease of tructive power had: limit at a certain velocity; und, under cor tain circumstanees, even decreased with thr increase of velocity; so tuat it ajpears pro bable, that if the size ol the cunal bear a cer
tain proportion to that of the boat, there is : ertain velozity at wiic.a a hoat hav L Hawa oa a caial witia a mininum tractiv mower. Tas velocity, a the dhaklm an Pals'ov C.mals, wit bo to like te Za
 miles fee homr. And I taink it pooball risit a simitar eficer wo dd be wherexd o fe Forthand Clydu C:aml. it in boat simila: Iy proportioned to that camal were used though the relocitv and the minimum trac tive power in such a case might be differen from those on the other camals.
3. Tant, in the long ruan on the Foit and Clyde Cana, t':e surbice of the wat regarded out.re side of the boat, waten it motion, was concare or hollow aboat the midelle of the lengt: of the bent, rising a: the bow and quareer, as is stown by the line abc. in Fig. 1.
4. 'Tint, in the loing run on the Paisle: Canal, preciecly the opposite effect too , lace, the surface nf the water aboat tie mid Hle of the lengins of the boat being coavex and higher there than at the bow and quar cr, as d e f, in Fig. 2.

Fig 1.

Fig. 2.

5. That there appeurs a relation betweet the tractive power ald the lorizo tal pori tion wif the kect, the tractive power, it will br observed. dimarishing and i. creasing in so,n ratio o: otace, as the augle of valiation is smaller or larger.
6. Tuat the boat ubsolutely rises during its motion. This bact wats moor su'jefactors ly demorstrated by t.ie apparatus desigio.e for the purjose. In some of the ex; cin ments, the moun of t. e eseremal rise's indical ted by the four slips, was abuat fiou: incace. the bow being, in cvery cabe, mo elevate tian the niddle and sitem. As tais premo menon is or recent obscrvation, and is the persons who bave ojserved and amm:oance. it have been held up to tamerated riticule, beg leave to coarlude wit.r an extrut f on a paper sead before tue Palosopnical socie ty of Cambridge, and publinded in their Transactions. Thu article is by wee oft ec most profoud physico-m.thenaticians i. Great Britain, probaby in the woill, t e Rev. Jame, Cual.s, I te F low ot Trimity Cu.lege,* Camirr:dg': I' e a thelc is cat.thed, Resenches in the Theary of the Motron of Fiuids. Mr. Chathas putuces has Puper thus:-
" 1'..e subjects treated of in thins com:nu. nication are of a misectas.cous character,

[^21]eferring to st veral pointa of the treary o hid motion, respecting waich tire autho asceived he lad somet. iing new to adrance. In illastration of tae prociples he has at ompitud to establish, solutions are given ot wo froblems of romsider ble interest :-the 'esistance to 510 mot on of a ball-pend: lam wit. the resntence of the mut:o: of a bo:l .artly immensed i.s water and drawn alon! it the surlace in the horiznatal direction. Fue principal o'ject in the solution of the wite: problem ns, to account for the risime sf the boty in t.e entical direction on in. crasing the velocity of dwaght, which, is soma recent cxperiments oa Calual Navigo t oil, has been o Joterved to take place."
After an claborac investigation of t^{\prime} w law of this phecioncloan and showing that it anast fullaw tion the priaciples establishee hy t se Auther in tise preceding part of t... Paper. he cuncludes by abserving, that,
-.'To obtain a nunerical result respectim? Ittice rise of the body corresponding to a gi ve.t velocity, we wit suppose, for the ss k a. simphicity of calculation, that w.en tid
vessel is at rest, t.ee centres of the spheren in lis. and conserquetaly the axis of the cyit real pat, ure fin tue plane of the hor:zon tal surface o. the water. Th.is circumstune may be f rsueel by loadiner the upper pas at tue boly w.taont a te.mis ts specific gra vity. Lat $b=$ the length of "the axis of ta" :yhadrical poution; thentacarea of the ho szatal section of the vessel, at the leve ae water surface,s of it $+\mathrm{D} \frac{\pi 1)^{2}}{4}-\frac{\mathrm{D}}{2}$
its breadth being D. Now W - 10 must © equal to tice difference of the quartiies of guid diy luced m the states of rest and noction, und is licrefore eçual to $\operatorname{mg}\left(\mathrm{ID}+\frac{-1,^{2}}{4}-\frac{\Gamma}{\ddot{2}}\right)$, y beirg small.-
Therefore neglecting rowers of $\frac{y}{a}$ atove ise first,
$\left(\mathrm{lD}+\frac{\pi \mathrm{D}^{2}}{4}-\frac{\mathrm{L}^{2}}{2}\right) \cdot g=\frac{\mathrm{V}^{2} \Gamma^{2}}{8}\left(2-\frac{\pi}{4}\right)$.
Leet $\frac{l}{11}=3$. It will then be found that $\mathrm{V}^{2}=696 \mathrm{ft} . \times \gamma$. And if $\gamma=$ or \mathbf{e} irch. \because is, this equation gives $V=5 \cdot 19$ miles ser bour; consequently, if $\mathrm{V}=10.4$ miles ,er hour, $\gamma=4$ incl.cs.
In general neglecting $\frac{\gamma^{2}}{a^{2}}$, \&c.
$$
\mathrm{W}-w=\frac{\mathrm{V}^{\vee} a^{3}}{2}
$$
$\left(\sin \theta \cos \theta\left(2 \sin ^{2} \theta+1\right)-\frac{\theta}{2}\right)$,

$\left\{\begin{array}{l}\text { Also, } \mathrm{W}-v= \\ \gamma_{s}^{\sigma}\left\{2 \mathrm{D}+\frac{\mathrm{D}^{3}}{2 \sin ^{-\theta}}(\theta-\sin \theta \cos \theta)\right.\end{array}\right.$
nearly ; thercfore, as $\mathrm{D}=2 a \sin \theta$, it will be from that
$\gamma=\frac{V^{2}}{4 g} \cdot \frac{\sin 29\left(2 \sin ^{2} \theta+1\right)-\theta}{4 m \sin ^{2} \theta-\sin } \frac{d}{2 j}, m$ being put for $\frac{l}{D}$.

If o be nssumed ecrual to 155°, and $m=3$, this equation gives $V^{\prime \prime}=\mathbf{7 . 3 5}$ miles per l.our when $\gamma=4$ inches."
"These resalts, which probably are but very rough approximators to matters of fict, may yet suffice to slow, that when vessols and boats of the usual forms sall in the ouch sea, they may be expected to rise in some degice ujon an increase of their velocity, and so much the more as they are le:ss adapited to clecre tlie water. Our theory st ows that the rise is the same for bodies of tie same slape aril proportions, necving with the same velocity, whatever be their .bso ute nagnitudes; also, thit tis effect is eqpally cuc to the pressures on the from and tern of the erssel. The the ory, in fact, dete mites these pressures to be in every refeet alike; so that if we proceeded to in. restigate thic totul pressure in th.c l.orizontal lirection, we should fild it to be tiotiing when the motion is uiform. Tis may erve to s!ow, tuat, if friction be left out of -onsideration, a fion.t ill ader.ted to cleave the water is tot unfarorible to speedy noo. tion, if the st rn be of the same siare ; and c.at the resistelace to the no ion of vessels a the opon seat is promipaly onsing to the rection of the water aghat thar subtace. Tuis cars: orerates to podice ulec, bal acons on t.ee fios.t nu.d stern, maling the diextors of the motions of the part cles in ab.tuct wit.ı t.ec surfi.ce: of tiee former less ..clined to t.e ho izon than they would be I the case of tay firtiva, and of those in ontact with the surface of the latter more nelined. To counteract tais neequality, prorably the stern should be less cuived than the front."
$\boldsymbol{a}^{\text {ecember, 1835. }}$

TABLE I. THE RAPID (Firit Set. - 89 Experiments).

TABLE 1. continued.-THE RAPID (Fihst Set).

TABLE I. continuer.--THE RAPID (Finst Set).

27	$\mathrm{R}_{\text {APID }}$	$\left\|\begin{array}{ll}13 & 23 \\ 13 & 46 \\ 14 & 09_{2}^{1} \\ 14 & 34_{2}^{1} \\ 15 & 01_{2}^{1}\end{array}\right\|$	b c d e e f	23 23_{2}^{t} 25 27	$\begin{aligned} & 9 \cdot 78 \\ & 9 \cdot 57 \\ & 9 \cdot 0 \\ & 8 \cdot 33 \end{aligned}$	574? 369 ? 366? 365 ?	$\left\lvert\, \begin{aligned} & 14 \cdot 35 \\ & 14 \cdot 04 \\ & 13 \cdot 20 \\ & 12 \cdot 22 \end{aligned}\right.$	Two Horses.		none	$\begin{aligned} & \text { in. } \\ & 17 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 17 \end{aligned}$	not. obs.	not. obs.	Tractive Power doubtful. See Remark, Experiment, No. 44.
28	Rapid.	$\left\|\begin{array}{ccc} 27 & 51 \\ 28 & 14_{2}^{1} \\ 28 & 39_{2}^{1} \\ 29 & 06 \\ 29 & 34_{2}^{1} \end{array}\right\|$	b c d e e f	$\begin{aligned} & 23_{2}^{1} \\ & \mathbf{2 5} \\ & \mathbf{2} \mathbf{6}_{2}^{1} \\ & \mathbf{2} 8_{2}^{1} \end{aligned}$	$9 \cdot 57$ $9 \cdot 00$ 8.49 $7 \cdot 90$	$364 ?$ 345 ? 354 ? 355?	$\begin{aligned} & 14 \cdot 04 \\ & 13 \cdot 20 \\ & 12 \cdot 45 \\ & 11.58 \end{aligned}$	do.	do.	do.	do.	do.	do.	do.	do.
29	Raplo	$\begin{array}{cc} 56 & 500_{2}^{1} \\ 57 & 16_{2}^{1} \\ 57 & 42 \\ 58 & 100_{2}^{1} \\ 58 & 38_{2}^{1} \end{array}$	b c d e e f	$\begin{array}{\|l\|} \hline 26 \\ 26 \\ 28_{2}^{1} \\ 28 \end{array}$	$\begin{aligned} & 8 \cdot 65 \\ & 8 \cdot 653 \\ & 7 \cdot 90 \\ & 8 \cdot 03 \end{aligned}$	$\begin{aligned} & 354 ? \\ & 356 ? \\ & 363 ? \\ & 366 \cdot 4 \end{aligned}$	$\begin{array}{r} 12 \cdot 69 \\ 12 \cdot 69 \\ 11 \cdot 58 \\ 41179 \end{array}$	do.	do.	do.	do.	do.	do.	do.	do.
30	Rapid	6 192 6 48 7 17_{2}^{1} 7 46 8 14_{2}^{1}	b c d d e f	$\begin{aligned} & \mathbf{2} 8_{2}^{1} \\ & 29_{2}^{1} \\ & \mathbf{2 8} \\ & \mathbf{2 8} \\ & \mathbf{2 8} \end{aligned}$	$7 \cdot 90$ $7 \cdot 59$ $7 \cdot 90$ $7 \cdot 90$	316 324 340 341	$\begin{aligned} & 11 \cdot 58 \\ & 11 \cdot 19 \\ & 11 \cdot 58 \\ & 11 \cdot 58 \end{aligned}$	do.	do.	unf. light	do.	do.	do.	do.	
31	$\mathrm{R}_{\mathbf{A P}}$	23 31 24 58 26 $13{ }_{2}^{1}$ 27 41 29 00	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 87 \\ & 75_{2}^{1} \\ & 78_{2}^{1} \\ & 79 \end{aligned}$	2.59 2.98 2.57 2.85	$\begin{aligned} & 31 \\ & 34 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 3 \cdot 79 \\ & 4 \cdot 37 \\ & 3 \cdot 77 \\ & 4 \cdot 18 \end{aligned}$	One Man.	do.	fav. light	do.	do.	do.	do.	-
32	Rapid	$\begin{array}{ll} 37 & 09 \\ 38 & 36 \\ 40 & 04 \\ 41 & 32 \\ 43 & 00 \end{array}$	$\begin{gathered} \hline b \\ c \\ d \\ e \\ f \\ \hline \end{gathered}$	$\begin{aligned} & 87 \\ & 88 \\ & 85 \\ & 88 \end{aligned}$	$2 \cdot 59$ $2 \cdot 56$ $2 \cdot 56$ $2 \cdot 56$	$\begin{aligned} & 27 \\ & 25 \\ & 26 \\ & 25 \end{aligned}$	$\begin{aligned} & 3.79 \\ & 3.75 \\ & 3.75 \\ & 3.75 \end{aligned}$	do.	do.	do.	do,	do.	do.	do.	
33	Rapid	$\begin{array}{ll}13 & 21 \\ 13 & 43 \\ 14 & 05\end{array}$	$\begin{gathered} \hline b \\ c \\ d \\ e \\ f \\ \hline \end{gathered}$	$\begin{aligned} & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 10 \cdot 233 \\ & 10 \cdot 233 \end{aligned}$		$\begin{aligned} & 15 \cdot 00 \\ & 15 \cdot 00 \end{aligned}$	Two Horses.	$\begin{aligned} & 7 \text { passen- } \\ & \text { gers, and } \\ & 3 \frac{1}{3} \text { ton, } \\ & c . \\ & 7 . \\ & 79 \\ & 79 \\ & \hline \end{aligned}$	do.	16	16	do.	do.	Tractive Power doubtful. See Remark, Experiment, No. 44.
34	Rapid.	$\|$19 59 20 22^{1} 20 45 21 $09 \frac{1}{2}$ 21 33	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \frac{1}{2} \\ & 24 \\ & 24 \frac{1}{2} \\ & \mathbf{2 3} \\ & 23 \end{aligned}$	$\begin{array}{r} 9.573 \\ 10.003 \\ 9.183 \\ 9.573 \end{array}$	358? 353? 334 334	$\left.\begin{array}{\|l\|} 14 \cdot 04 \\ 14 \cdot 67 \\ 13 \cdot 47 \\ 14 \cdot 04 \end{array} \right\rvert\,$	do.	$\begin{aligned} & 6 \\ & \text { ceassen- } \\ & \text { gers, and } \\ & 3 \frac{1}{1} \\ & \text { ton } \\ & c . \\ & \text { 7. } \\ & 7 . \\ & \hline \end{aligned}$	do.	not obs.	not obs.	do.	do.	do.
35	Rapid	$\left\|\begin{array}{ll}31 & 27 \\ 31 & 55 \\ 32 & 22 \\ 32 & 21 \\ 32 & 51 \\ 33 & 19\end{array}\right\|$	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 27_{1}^{1} \\ & 27_{\frac{1}{2}}^{2} \\ & 25_{\frac{1}{2}}^{28} \\ & 28 \end{aligned}$	$\begin{aligned} & 8 \cdot 183 \\ & 8 \cdot 183 \\ & 7 \cdot 90 \\ & 8 \cdot 03 \end{aligned}$	$\begin{aligned} & 328 \\ & 337 \\ & 351 ? \\ & 367 ? \end{aligned}$	$\begin{aligned} & 12 \cdot 00 \\ & 12 \cdot 00 \\ & 11 \cdot 58 \\ & 11 \cdot 79 \end{aligned}$	do.	$\begin{aligned} & 7 \text { passen- } \\ & \text { gers, and } \\ & 3 \frac{1}{2} \text { ton, }= \\ & c . \\ & c . \\ & 79 \\ & 79 \\ & \hline \end{aligned} \frac{1 b .}{}$	do.	16	16	do.	do.	do.
36	Rapid.	38 14 38 41 39 09 39 37 40 06	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 27 \\ & 28 \frac{1}{2} \\ & 28 \frac{1}{2} \\ & 29 \end{aligned}$	$\begin{aligned} & 8 \cdot 33 \\ & 7.90 . \\ & 7 \cdot 90 \\ & 7.763 \end{aligned}$	$\begin{aligned} & 326 \\ & 333 \\ & 341 \\ & 348 \end{aligned}$	$\begin{aligned} & 12 \cdot 22 \\ & 11 \cdot 58 \\ & 11 \cdot 58 \\ & 11 \cdot 38 \end{aligned}$	Two Horses.	7 passengers, and $3 \frac{1}{2}$ ton, $=$ c. q. lb. 7921	fas. light	in_{16}	in_{16}	not obs.	not obs.	
37	Rapid.	46 01 46 $30 \frac{1}{2}$ 47 00 47 $32^{\frac{1}{2}}$ 48 $03 \frac{1}{2}$	$\begin{gathered} \hline b \\ c \\ d \\ d \\ e \\ f \end{gathered}$	$\begin{aligned} & 291_{2}^{1} \\ & 29 \\ & 32 \\ & 31 \\ & \hline \end{aligned}$	$7 \cdot 59$ 7.76 7.03 7.26	$\begin{aligned} & 238 \\ & 249 \\ & 245 \\ & 238 \end{aligned}$	$\begin{aligned} & 11 \cdot 19 \\ & 11 \cdot 38 \\ & 10 \cdot 31 \\ & 20 \cdot 65 \end{aligned}$	do.	do.	do.	do.	do.	do.	do.	
38	RApId.	$\overline{55}$ 41 56 121 56 44 57 15 57 46	$\begin{aligned} & \hline b \\ & c \\ & d \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 31 \frac{1}{2} \\ & 312 \\ & 31 \\ & 31 \\ & \hline \end{aligned}$	$\begin{gathered} 7 \cdot 14 \\ 7 \cdot 14 \\ 7 \cdot 26 \\ 7 \cdot 26 \end{gathered}$	$\begin{aligned} & 274 \\ & 247 \\ & 256 \\ & 243 \end{aligned}$	$\begin{aligned} & 10 \cdot 48 \\ & 10 \cdot 48 \\ & 10 \cdot 65 \\ & 10 \cdot 65 \end{aligned}$	do.	do.	unf. light	do.	do.	do.	do.	Heavy rain.
39	Rapid.	7 03 7 51 8. 42 9 35 10 98	b c d d e f	$\begin{aligned} & 48 \frac{1}{2} \\ & 50 \frac{2}{2} \\ & 53 \\ & 53 \end{aligned}$	$\begin{aligned} & 4 \cdot 64 \\ & 4 \cdot 46 \\ & 4 \cdot 25 \\ & 4 \cdot 25 \end{aligned}$	$\begin{array}{\|l} 65 \\ 67 \\ 59 \\ 62 \end{array}$	$\begin{aligned} & 6 \cdot 80 \\ & 6 \cdot 53 \\ & 6 \cdot 23 \\ & 6 \cdot 23 \end{aligned}$	do.	do.	flight	do.	do.	do.	do.	Light rain.
40	$\mathrm{Rapid}^{\text {a }}$	$\left\lvert\, \begin{array}{ll}17 & 21 \\ 18 & 27 \\ 19 & 35 \\ 20 & 41 \\ 21 & 45\end{array}\right.$	b c c d e f	66 68 66 64	3.41 $3 \cdot 31$ $3 \cdot 41$ 3.52	$46 \cdot 4$ 44 45 46	$5 \cdot 00$ 4.85 $5 \cdot 09$ $5 \cdot 16$	do.		nore	do.	do.	do.	do.	

TABLE 1. cont need. - THE RAPID (Firet Set).

41	Rapid.		$\left.\begin{array}{l\|l\|} 24 \\ \because 2 & 1 \\ 2 & 1 \\ 2 & 2 \\ 21 & 2 \end{array} \right\rvert\,$	$\begin{aligned} & 9 \cdot 3 y^{\prime}: 366 ? \\ & 160.370 ? \\ & 11 \cdot 47376! \\ & 10 \cdot 47 \\ & \hline \end{aligned}$	$\left.\begin{array}{\|l\|} 12 \cdot-75 \\ 14.68 \\ 15.30 \\ 15 \\ 150 \end{array} \right\rvert\,$	$\xrightarrow{\text { Tund }}$		$\begin{aligned} & f y \\ & \text { ngint } \end{aligned}$	$\begin{aligned} & i 1 ; \\ & i^{\prime} ; \end{aligned}$	$\begin{aligned} & \text { in. } \\ & \hline \end{aligned}$	$\left\|\begin{array}{ll} 1 & 0 \\ u l \\ u \end{array}\right\|$	$\left\|\begin{array}{l} 01 \\ 0 . x_{0} \end{array}\right\|$	Tiacive jower doultful. See Remank, Experinicit, Nu. 44. Boat grazed.
42	Rapid.	$2 \cdot 2$ 57 0 23 23 $\frac{1}{2}$ c 23 48 d 24 $1: 3 \frac{1}{2}$ e 24 $3!\frac{1}{2}$ f	$\begin{aligned} & 2.5 \\ & 24 \\ & 24 \\ & 201 \\ & 201 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 3 \cdot+2: 33 . \\ & 9 \cdot 18: 357 ? \\ & 8 \cdot 6.3667 ? \\ & 0 \cdot 653>5! \end{aligned}$	$\begin{gathered} 12994 \\ 1.3 \cdot 47 \\ 12 \cdot 64 \\ 12.1,10 \end{gathered}$	do.	do.	$\begin{gathered} \text { uif. } \\ \text { strig. } \\ \text { bize. } \end{gathered}$	co.	do.	cio.	co.	Tractive fower do ibfful. See Remark, Experiment, No. 44.
43	Rapid.	28 30 29 10 c 20 29 30 d 29 59 e 10 29 1	28 33.1 29 29	$\begin{aligned} & x \cdot 3: 337 \\ & 7 \cdot 5, .338 \\ & 7 \cdot 76: 387 \\ & 7 \cdot 763: 8 \end{aligned}$	$\left\|\begin{array}{ccc} 1 & 1 & 79 \\ 1 & 1 & 00 \\ 11 & : 38 \\ 1 & 1 & 38 \end{array}\right\|$	c'o.	do.	far.	do.	io.	do.	do.	Ubrince bat lae piston ot the dyiamometer had rot range elough, therrfore all pipceding experiments
44	Rapid.		$\begin{aligned} & 30 \\ & 3 \cdot \\ & 3 \cdot 1 \\ & 3 v_{1}^{1} \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 75.1317 \\ & 738314 \\ & 7 \cdot 35316 \\ & 7 \cdot 5.367 \end{aligned}$	$\left\|\begin{array}{ccc} 11 & 00 \\ 10 \cdot 82 \\ 10 \cdot 82 \\ 1 & 1 \cdot 00 \end{array}\right\|$	do.	do.	ur.f.	do.	do.	do.	do.	i., winch the tractive pow. cr cxceeds 350 lb , are doubttul. Gave stfficient range to the i iston.
45	Rapid.	41 $25 \frac{1}{2}$ 0 49 57 c 50 26 $\frac{1}{2}$ 51 d 51 11 e 51 38 f	$\begin{aligned} & 29 \frac{1}{2} \\ & 2921 \\ & 27 \\ & 27 \end{aligned}$	$\begin{aligned} & 7 \cdot 54316 \\ & 7 \cdot 54 \\ & 8 \cdot 33324 \end{aligned}$	$\begin{gathered} 11 \cdot 1 \varepsilon \\ 1 \cdot 1! \\ 12 \cdot 22 \end{gathered}$	Two Horse:.		fuv.	${ }_{16}$	$\begin{aligned} & \mathrm{inn.} \\ & 16 \end{aligned}$	$\begin{aligned} & \text { not } \\ & \text { obs. } \end{aligned}$	$\left\|\begin{array}{c\|} \text { not } \\ \text { ubs. } \end{array}\right\|$	Bad Experiment. Horse
46	Rapid.	513 00 c 57 26 c 57 57 d 58 29 c 50 $59!$ f 	$\begin{gathered} 32 \\ 29 \\ 329 \\ 3202 \\ 30_{2}^{2} \end{gathered}$	$\begin{aligned} & 7 \cdot 03 \cdot 274 \\ & 7 \cdot 5 y^{\prime}<78 \\ & 6 \cdot 91^{\prime} 279 \\ & 7 \cdot 30291 \end{aligned}$	$\left\lvert\, \begin{aligned} & 10 \cdot 31 \\ & 11 \cdot 19 \\ & 10 \cdot 1.5 \\ & 10 \cdot 52 \end{aligned}\right.$	co.	co.	unf.	do:	do.	do.	do.	
47	Rapid.		$\begin{aligned} & 21! \\ & 20 \frac{1}{2} \\ & 20 \\ & 20 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 10 \cdot 47 \mid 497 \\ & 16 \cdot 43,4.8 \\ & 11 \cdot 2,486 \\ & 10 \cdot 43 \\ & 469 \end{aligned}$	$\left\|\begin{array}{l} 15 \cdot 35 \\ 16 \cdot 09 \\ 16 \cdot 5 t \\ 16 \cdot 05 \end{array}\right\|$	do.	do.	fav.	do.	do.	do.	do.	
48	Rapid.	12 30 0 12 53 c 13 20 d 13 42 e 14 104 f	$\begin{aligned} & 23 \\ & 23 \\ & 22 \\ & 2: 3 \\ & 22 \\ & 20 \end{aligned}$	$\left\lvert\, \begin{array}{c\|c} 9 \cdot 70 & +66 \\ 10 \cdot 20 & 426 \\ 10 \cdot 0 . & 466 \\ 16 \cdot 20 & 417 \end{array}\right.$	$\begin{aligned} & 14 \cdot 3: 9 \\ & 15 \cdot 00 \\ & 14 \cdot 67 \\ & 15 \cdot 00 \end{aligned}$	do.	c'o.	unf.	co.	do.	do.	c'o.	
49	Rapid.	39 37 c 40 01 e 40 24 d 49 46 e 41 $c 8$ 1 4 1	$\begin{aligned} & 24 \\ & 24 \\ & 22 \\ & 2: \\ & 22 \end{aligned}$	$\begin{gathered} 9 \cdot 36437 \\ 10 \cdot 66401 \\ 10 \cdot 23426 \\ 10 \cdot 6427 \end{gathered}$	$\left\lvert\, \begin{aligned} & 13.75 \\ & 14.67 \\ & 15 \\ & 14 \\ & 14.67 \end{aligned}\right.$	do.		f:v.	16	17	do.	du.	
50	Rafid.	416 53 c 47 17 c 47 42 d 48 06 c 48 32 t	$\begin{aligned} & 24 \\ & 24 \\ & 24 \\ & 26 \end{aligned}$	S.184:5 $9 \cdot 18433$ 9-104:6 $8 \cdot 6 u 428$	$\left\lvert\, \begin{aligned} & 13 \cdot 47 \\ & 13 \cdot 47 \\ & 1: \cdot 47 \\ & 12 \cdot 69 \end{aligned}\right.$	dc.	do.	un!.	do.	do.	do.	do.	
51	Rapid.		$\left\lvert\, \begin{aligned} & 28 \\ & 2: 9! \\ & 30 \\ & 30 \end{aligned}\right.$	0.00343 $7 \cdot 5 \div 344$ $7 \cdot 54350$ $7 \cdot 5: 332$	$\begin{aligned} & 11.79 \\ & 11.19 \\ & 11 \cdot c 0 \\ & 11.0 \end{aligned}$	do.	do.	$\begin{aligned} & \text { tav. } \\ & \text { l.ght } \end{aligned}$	dw.	do.	do.	do.	Warm sunshine.
52	Rapid.	16 16 b 16 47 c 17 18 d 17 47 t 18 18 f f	$\begin{array}{\|l\|} 31 \\ 31 \\ 28! \\ 3: 1 \\ \hline \end{array}$	$\begin{array}{l\|l\|} 7 \cdot 20 & 291 \\ 7 \cdot 20 & \because 66 \\ 790 & 369 \\ 7 \cdot 2 . & 31445 \end{array}$	$\begin{aligned} & 1065 \\ & 16 \cdot 65 \\ & 11 \cdot 5 \\ & 10 \cdot 65 \end{aligned}$	do.	do.	unf.	do.	do	do.	do.	
53	Rapid.	21 22 u 21 53 c 22 25 d 22 54 e 23 25 f 	$\begin{array}{\|l} 31 \\ \div 2 \\ 29 \frac{1}{2} \\ 29 \end{array}$	$\begin{array}{l\|l} 7 \cdot 24 & 321 \\ 7 \cdot 0 \cdot \\ 7 \cdot 5! \\ 7 \cdot 76 \\ 7 \cdot 6 & 310 \end{array}$	$\begin{aligned} & 10.65 \\ & 16.31 \\ & 11.19 \\ & 11.28 \end{aligned}$	do.	do.	lav.	do.	do.	do.	do.	
54	R ${ }_{\text {apid }}$	35 4 b 35 4. c 366 12 d 66 42 e 37 14 f	33 32 30 32	$6 \cdot 6$ 269 $7 \cdot 6: 237$ $7 \cdot 54$ $=33$ $7 \cdot 60$ -86	$\left\lvert\, \begin{aligned} & 16 \cdot 00 \\ & 10 \cdot 31 \\ & 11 \cdot 00 \\ & 10 \cdot 31 \end{aligned}\right.$	Twc Horses.		fav. !ight	$\begin{aligned} & \text { it: } \\ & 17 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 17 \end{aligned}$	not	not obs.	

Table 1. continued.-THE Rapid (First Set).

55	Ripid.	$\left\|\begin{array}{cc\|c}43 & 37 & b \\ 44 & 29 & c \\ 45 & 20 & \frac{3}{2} \\ 46 & 12 & e \\ 47 & 02 & f\end{array}\right\|$	52 512 512 10 10	$4 \cdot 8366$ 6 $4.376)$ 6 $4 \cdot 3767$ 6 $4 \cdot 5662$ 6	$\begin{aligned} & 6 \cdot 35 \\ & 6.4 i \\ & 6.41 \\ & 6 \cdot 60 \end{aligned}$	Cne 1 orse. Iios Heding			$\begin{aligned} & \text { in. } \\ & 17 \end{aligned}$	${ }^{\text {ir }} 17$	s.ct	nor	
56	Rapid.		66 64 66 63 1	3.4154 3.4949 3.3846 3.5756	$5 \cdot 00$ $5 \cdot 12$ 4.96 5.24	du.	ds.	do.	do.	ds.	do.	do.	\cdots
57	Rapid.	9 37 b 9 59 c 10 22 d 10 45 e 11 07 l	$\begin{aligned} & 22_{2}^{0} \\ & 23 \\ & 22! \\ & 22! \\ & 22! \end{aligned}$	$10 \cdot 00487$ 1 9.70457 1 10.08446 1 10.00421 1	$\begin{aligned} & 14 \cdot 67 \\ & 14 \cdot 35 \\ & 14 \cdot 67 \\ & 14 \cdot 67 \end{aligned}$	Two Horse.	do.	$\begin{aligned} & \text { ar } \\ & \text { very } \\ & \text { ligh } \end{aligned}$	do.	do.	do.	du.	
68	Rapid.	16 $u 4$ b 16 27 c 16 51 d 17 16 e 17 43 f	$23!$ 24 25 $26!$ 26 	$9 \cdot 57445$ $9 \cdot 38419$ 9.00421 8.49417	$\begin{aligned} & 14 \cdot C 4 \\ & 13 \cdot 75 \\ & 13 \cdot 20 \\ & 12 \cdot 45 \end{aligned}$	do.	do.	$\begin{aligned} & \text { unf. } \\ & \text { rer. } \\ & \text { agli. } \end{aligned}$	cio.	do.	do.	do.	
59	Rapid.	37 46 b 38 14 c 38 41 d 39 10 e 39 39 f	$\begin{aligned} & 27! \\ & 26{ }_{1}^{1} \\ & 25 \\ & 2 y^{2} \end{aligned}$	$\begin{aligned} & 8 \cdot 8391 \\ & 8 \cdot 49383 \\ & 7 \cdot 90405 \\ & 7 \cdot 76402 \end{aligned}$	$\begin{aligned} & 12.00 \\ & 12.45 \\ & 11.58 \\ & 11.38 \end{aligned}$	co.	do.	do.	19!	151	do.	do.	Weight shifted forward.
60	Rapid.	44 28 b 44 55 c 45 25 d 45 54 e 46 23 f	$\begin{aligned} & 27 \\ & 30 \\ & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 8 \cdot 33 \cdot 388 \\ & 7 \cdot 5(404 \\ & 7 \cdot 76416 \\ & 7 \cdot 59409 \end{aligned}$	$\begin{aligned} & 1222 \\ & 11 \cdot 00 \\ & 11 \cdot 38 \\ & 11 \cdot 19 \end{aligned}$	do.	do.	$\begin{aligned} & d o . \\ & h=h t \end{aligned}$	do.	do.	do.	do.	
61	Rapid.	9 34 b 10 02 c 10 31 d 11 00 e 11 29 $\frac{1}{2}$ 10 f	$\begin{aligned} & 29 \\ & 29 \\ & 29 \\ & 29! \end{aligned}$	$\begin{aligned} & \varepsilon \cdot 03412 \\ & 7 \cdot 76410 \\ & 7 \cdot 76437 \\ & \mathbf{7 . 5 9 4} 430 \end{aligned}$	$\left\|\begin{array}{l} 11 \cdot 79 \\ 11 \cdot 38 \\ 11 \cdot 38 \\ 11 \cdot 19 \end{array}\right\|$	do.	do.	fav. vely light	do.	de.	do.	do.	
62	Rapid.	16 37 17 06 c 17 36 d 18 05 e 18 35 f	$\begin{aligned} & 28^{\prime} \\ & 30^{2} \\ & 29^{\circ} \\ & 30^{\prime} \end{aligned}$	$\begin{aligned} & \mathbf{7} \cdot 96,356 \\ & \mathbf{7} \cdot 50,364 \\ & \mathbf{7} \cdot 59378 \cdot 9 \\ & \mathbf{7} \cdot 50,353 \end{aligned}$	$\begin{aligned} & 11.58 \\ & 11 \cdot 00 \\ & 011.19 \\ & 11 \cdot \mathrm{CO} \end{aligned}$	do.	do.	uni. uely light	do.	do.	do.	do.	
63	Rapid.	33 u2 b 33 $3 J$ c 33 59 d 34 27 e 34 56 f	$\begin{aligned} & 28 \\ & 29 \\ & 28 \\ & 25 \end{aligned}$	$\begin{aligned} & 8 \cdot C 34 C 3 \\ & 7 \cdot 76384 \\ & 7 \cdot 9 \cup 419 \\ & 7 \cdot 9 \cup 43 u \end{aligned}$	$\left\lvert\, \begin{gathered} 11 \cdot 79 \\ 11 \cdot 39 \\ 11 \cdot 58 \\ 11 \cdot 58 \end{gathered}\right.$	Two Iiorses.	$\begin{aligned} & \text { prosel } \\ & \text { gers, asd } \\ & 4 \frac{1}{4} \text { the, }= \\ & \text { c. q. } 16 . \\ & 944 \\ & 94 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{d} \text { unf. } \\ \text { very } \\ \text { highin } \end{gathered}$	$\begin{aligned} & \text { in } \\ & 19! \end{aligned}$	$\begin{aligned} & \text { in } \\ & 15_{2}^{1} \end{aligned}$	$\begin{aligned} & \text { nct } \\ & \text { obs. } \end{aligned}$	$\begin{aligned} & \text { not } \\ & \text { uts. } \end{aligned}$	T'cwing-line attached $5 \frac{1}{2} \mathrm{ft}$. fium buw.
64	Rapid.	49 41 0 51 10 c 50 40 d 51 10 d 51 49 e f	$\begin{aligned} & 29 \\ & 29 \\ & 29 \\ & 30 \\ & 29 \\ & 29 \end{aligned}$	$\begin{aligned} & 7 \cdot 59.3 \varepsilon 6 \cdot 8 \\ & 7 \cdot 5 y 4!3 \\ & 7 \cdot 36414 \cdot 6 \\ & 7 \cdot 59428 \end{aligned}$	$\begin{gathered} 11 \cdot 19 \\ 11 \cdot 10 \\ 616 \cdot 82 \\ 11 \cdot 19 \end{gathered}$	do.	dc.	do.	dc.	do.	do.	do.	Towner-line tuken H rourch one pully unl!, and 4 ft . 1 in . frem the Low.
65	Rapid.	28 54 b 29 21 c 29 49 d 30 18 e 30 46	27 28 29 28 28	$\begin{aligned} & 8 \cdot 333.6 \\ & 8 \cdot 03323 \\ & 7 \cdot 76: 360 \cdot 6 \\ & 7 \cdot 90: 678 \end{aligned}$	$\begin{array}{r} 12.22 \\ 11.79 \\ 61128 \\ 8 \mid 11.58 \end{array}$	cio.	do.	do.	do.	do.	do.	co.	Ontrigger used 6 ft .4 in. from tle gunwaic, and 5 1t. Iram the buw.
65	Rapid.	42 51 6 53 21 c 43 50 44 20 d 44 50 f	$\begin{aligned} & 30 \\ & 29 \\ & 20 \\ & 30 \end{aligned}$	$\begin{aligned} & 7 \cdot 50295 \cdot 6 \\ & 7 \cdot 59 \cdot 292 \cdot 3 \\ & 7 \cdot 59 \cdot 315 \cdot 2 \\ & 7 \cdot 38311 \cdot 4 \end{aligned}$	$\begin{array}{l:l} 6 & 11 \cdot c 0 \\ 3 & 1 \\ \hline & 11 \cdot 19 \\ \hline 4 & 11 \cdot 19 \\ 4: & 0.82 \end{array}$	co.	do.	du.	do.	do.	do.	do.	No outrigger.
67	Rapid.	18 31 6 19 01 c 19 32 d 23 02 e 29 33 f 15	30 31 30 31	$\begin{aligned} & 7 \cdot 50363 \\ & 7 \cdot \pm 6 \cdot: 7 \cdot 2 \cdot 5 \\ & 750281 \\ & 7 \cdot 26261 \end{aligned}$	$5\left(\begin{array}{l} 11 \cdot c 0 \\ 10.65 \\ 11 \cdot 00 \\ 10.65 \end{array}\right.$	do.	do.	do.	do.	do.	do.	do.	Cutrigecer, 3 left 8 in . from glu.wale, 5 it. 6 it. from bew.
68		\cdots31 55 b 32 21 32 c 32 33 17 d 33 45 e	26 26 29 28	$\left\lvert\, \begin{aligned} & 8.49366 \\ & 8.49378 \\ & 7.76352 \cdot 6 \\ & 8.03419 \end{aligned}\right.$	$\begin{array}{r} 12.45 \\ 12.45 \\ 611.28 \\ 11.79 \end{array}$	do.	do.	do.	dc.	dic.	dc.	co.	

TABLE I. continued.-The Rapid (First Set).														
69	Rapid.	$\left\|\begin{array}{ll} 53 & 20 \\ 53 & 48 \\ 54 & 17 \\ 54 & 45 \\ 54 & 13 \frac{1}{2} \end{array}\right\|$	$\begin{gathered} b \\ c \\ d \\ e \\ f \\ \hline \end{gathered}$	$\begin{aligned} & 28 \\ & 29 \\ & 28 \\ & 28 \end{aligned}$	$\begin{array}{l\|l\|l\|} 8 \cdot 03 \mid 468 \\ 7 \cdot 76 & 438 \cdot 5 \\ 8 \cdot 03 & 473 \cdot 5 \\ 7 \cdot 90 & 477 \cdot 7 \end{array}$	$\left\{\begin{array}{l} 11 \cdot 79 \\ 11 \cdot 38 \\ 11 \cdot 79 \\ 11.58 \end{array}\right.$	Two Holses.	7 passen. gers, anc 41^{1} tons $=$ c. q. lb. 9421	fav. light	$\begin{aligned} & \text { in. } \\ & 19_{2}^{1} \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 15_{2}^{1} \end{aligned}$	$\begin{gathered} \text { not } \\ \text { obs. } \end{gathered}$	$\begin{aligned} & \text { not } \\ & \text { obs. } \end{aligned}$	Towing-line from the bow.
70	Rapid.	18 442 1 13 1 131 41 2 09	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 26 \\ & 29 \\ & 27 \frac{1}{8} \\ & 28 \end{aligned}$	$\begin{aligned} & 8 \cdot 49328 \cdot 4 \\ & 7 \cdot 76314 \cdot 2 \\ & 8 \cdot 18386 \cdot 4 \\ & 8 \cdot 03365 \end{aligned}$	$\begin{aligned} & 12 \cdot 45 \\ & 11.38 \\ & 12 \cdot 00 \\ & 11.79 \end{aligned}$	do.	7 passengers, and 3 ton, $=$ c. q. lb. 69 2, 1	none	$15 \frac{3}{6}$		do.	do.	A barge passed at 1 m .12 s .
71	Rapid.	$\|$8 10 8 37 9 05 9 33 10 10 $01 \frac{1}{2}$	b c d e e f	$\begin{aligned} & 27 \frac{1}{1} \\ & 28 \frac{1}{\frac{1}{1}} \\ & 27 \frac{1}{1} \\ & 27_{\frac{1}{2}}^{2} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline 8 \cdot 18 & 326 \cdot 6 \\ 7 \cdot 90 & 351 \cdot 1 \\ 8 \cdot 18 & 362 \cdot 6 \\ 8 \cdot 18 & 364 \cdot 7 \\ \hline \end{array}$	$\begin{aligned} & 12.00 \\ & 11.58 \\ & 12.00 \\ & 712.00 \end{aligned}$	do.	do.	unf. lignt	do.	do.	do.	do.	
72	Rapid.	$\left\|\begin{array}{ll} 13 & 54^{\frac{1}{2}} \\ 14 & 21 \\ 14 & 48 \\ 15 & 16 \\ 15 & 44 \end{array}\right\|$	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 26 \frac{1}{2} \\ & 27 \\ & 28 \\ & 28 \end{aligned}$	$\begin{aligned} & 8 \cdot 49337 \\ & 8 \cdot 33339 \\ & 8 \cdot 033.38 \\ & 8 \cdot 03365 \end{aligned}$	$\left\|\begin{array}{l} 12 \cdot 45 \\ 12 \cdot 22 \\ 11.79 \\ 11.79 \end{array}\right\|$	Two Horses.	$\begin{array}{\|ccc} 7 & \text { passen } \\ \text { gers, } & \text { and } \\ 3 & \text { ton, } \\ c . & = \\ c . & q . & l d . \\ 69 & 2 & 1 \\ \hline \end{array}$	unf. light	$\begin{aligned} & \text { in. } \\ & 15 \frac{3}{3} \end{aligned}$	in. $15 \frac{3}{8}$	do.	do.	
73	Rapid.	26 03 27 11 27 39 28 $07 \frac{1}{2}$ 29 $36 \frac{1}{2}$	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 28 \\ & 28 \\ & 28 \frac{1}{2} \\ & 29 \end{aligned}$	$\begin{gathered} 8 \cdot 03289 \cdot 3 \\ 8 \cdot 03301 \cdot 5 \\ 7 \cdot 90318 \cdot 3 \\ 7 \cdot 76312 \cdot 4 \end{gathered}$	$\begin{aligned} & 11.79 \\ & 11.79 \\ & 11.58 \\ & 11.38 \end{aligned}$	do.	do.	do.	do.	do.	do.	do.	
74	Rapid.	$\begin{array}{rr} 57 & 51 \\ 58 & 18 \\ 58 & 46 \\ 59 & 15 \\ 59 & 43 \\ \hline \end{array}$	b c d d e f	$\begin{aligned} & 27 \\ & 28 \\ & 29 \\ & 28 \end{aligned}$	$\begin{aligned} & 8 \cdot 33: 335 \cdot 7 \\ & 8 \cdot 03335 \cdot 5 \\ & 7 \cdot 76351 \cdot 4 \\ & 8 \cdot 03382 \cdot 6 \end{aligned}$	$\begin{aligned} & 12 \cdot 22 \\ & 11 \cdot 79 \\ & 11 \cdot 38 \\ & 11 \cdot 79 \end{aligned}$	do.	do.	do.	do.	do.	do.	do.	
75	Rapid.	10 19 10 43 11 09 11 34 11 59	b c d d e f	$\begin{aligned} & 24 \\ & 26 \\ & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 9 \cdot 38396 \cdot 3 \\ & 8 \cdot 65363 \\ & 9 \cdot 00406 \cdot 4 \\ & 9 \cdot 00410 \end{aligned}$	$\begin{aligned} & 13 \cdot 75 \\ & 12 \cdot 69 \\ & 13 \cdot 20 \\ & 13 \cdot 20 \end{aligned}$	do.	do.	do.	do.	do.	do.	do.	
76	Rapid.	$\left\|\begin{array}{ll}25 & 29 \\ 25 & 55 \\ 26 & 22 \\ 26 & 50 \\ 27 & 18\end{array}\right\|$	b c d e e f	$26 \frac{1}{2}$ $26 \frac{1}{2}$ 28 28	$\begin{aligned} & 8 \cdot 49386 \cdot 5 \\ & 8 \cdot 49384 \cdot 5 \\ & 8 \cdot 03393.5 \\ & 8 \cdot 03405 \cdot 5 \end{aligned}$	$\left.\begin{aligned} & 12 \cdot 45 \\ & 12 \cdot 45 \\ & 11.79 \\ & 11.79 \end{aligned} \right\rvert\,$	do.	do.	do.	do.	do.	do.	do.	

VII. on the effective power of the $\|$ in the Cornish engines completely cased $\|$ er, and the number of strokes per minute
high-pressure expansive condensing steam engines commonly in use in CORNISH MINES. bYMR. T. WICKSteed, civil engineer. communicated in a letter to the president.
Particulars of the Cornish engines, showing that they are not inapplicable for waterworks purposes:-
First-The steam is raised to about 40 los. pressure upon the square inch, and the admission of it into the cylinder is cut off when the piston has travelled one-lhiril, one tourth, one-eighth, or even one-tenth of the length of the stroke, according to the work to be done, and during the remainder of the stroke the expansive power of the steam is exerted.

Second-The boilers are tubular, in some instances having an internal tube, $b b$, and a feed tube, $c c$, as represented in the accompanying drawing; in other instances these tubes are not introduced. I conside their introduction an improvement; the quantity of surface of the boiler exposed to the action of the fire, or heat of the flues, in proportion to its cubic contents of water, as compared with the Boulton and Watt boiler, is as 60 to 37, or as 3 to 2 nearly.

Third-All those parts of the boilers, cylinder, and pipes containing stean which are exposed to the air in most engines, are with a non-conducting material, which, in fewer, than in other engines.
fact, renders the engine and boiler houses, where this system is carried to its full extent, as cool as the inside of a dwellinghouse where there are only ordinary fires Very little heat is lost when the engine stands still for twelve hours, and if it is necessary to start it during the night, or in. case of emergency, scarcely any time is lost in raising the steam, and one-fourth the fuel only is required after the engine has been standing all night; whereas, in the common engrines and boilers, where every vessel containing steam is much exposed, it takes from twenty minutes to half an hour, firing hard, to raise the steam.

Fourth-The steam and exhausting valves are (what are termed in the county) -double beat valves;" they may be said to combine the advantages of the circular and slide valves, although not constructed like either: the effect is, however, that a man, who would not have strength to raise he valves of a 36 inch cylinder made according to the ordinary construction, may with perfect ease work the valves of an 80 inch cylinder, as mado in Cornwall; the exhansting ralves and the pipes leading to the condenser are made of much greater area than ordinarily.
Filth-'The length of the stroke is great-

Sixth-The water is raised by a golid plunger working through a stuffing box, instead of a packed piston or bucket, so that, the packing being external, any leakage is detected immediately, without the delay attendant upon examining and fresh packing the ordinary packed pistons; and the pump may thus be made always to do its full duty, instead of, as is frequently the case, the water escaping by the piston when the packing becomes imperfect, or through bad valves when a bucket is used, and which cannot be detected until it in. creases to such an extent that the irregular working of the engine denotes it.

Seventh-The valves of the pump, instead of having their hinges in the centre, obliging the water to pass through a confined space between the valve and the side of the valve box, and lying almost flat upon their seats, making it necessary for them to rise much higher than would otherwise be required to deliver the quantity of water, and causing upon its descent so forcible a blow as to render it necessary to admit air under the valves, partially destroying the vacuum in preference to shaking the engine to pieces, and with openings through them of one-half or two-thirds the area of the pump barrel, rendering
much greater power requisite to overcome the friction of the water in its passage through them,-instead of this arrangement, the valves are hung at the circumference of the circle and open in the centre, and the lower ones are fixed directly under the pump barrel ;-they lie at a considerable angle to the horizon, so that a less rise of the valves is sufficient for the passage of the water, and the openings are made equal in area to the pump barrel. The effect is, that, without the admission of air, as is absolutely necessary in the ordinary pumping engines, and which diminishes the quantity of water raised per stroke, although working under more than three times greater column of water, they make no blow of any consequence upon the return stroke.

Eighth-The cataract is used by which the engine may be made to work from 1 to 12 strokes per minute, as may be required, consuming coals nearly in proportion to the number of strokes; the best rate however is about 5 or 6 strokes per minute. The cataract is peculiarly applicable to engines used in draining mines; where the work to be dune increases in proportion as the working of the mine progresses: and also to engines for water-works where the demand increases every year, and the power must increase in proportion. To illustrate this, when one of the London waterworks was first established, there were two enginee of 30 horses' power, afterwards one of 20 horses' power, and afterwards one of 80 horses' power erected; the number of engines increasing as the demand for increased supply. Now if an engine upon the Cornish plan had been erected which at 8 strokes per minute had been equal to 160 horses' power, then by working it 3 strokes per minute it would have been equivalent to the two 30 horse engines only, at 4 strokes to the two 30 horse and the 20 horse engines, and at 8 strokes equal to all of them. In this case one engine would have answered the purpose and the saving that would have been made in engines, boilers, buildings, \&c., wear and tear of mnchinery, labor, and current expenses, is evident.

Ninth-As the extent of pipes in a water works district increases, the amount of friction must also increase, and the engine must work under a greater pressure ; there must consequently be a greater load upon the pump. The ordinary engines would not be able to work under this increased lond, and a smaller pump must be used but as this would not give a sufficient quantity of water a new engine must be erect ed, and this has been the case hitherto whereas, in a Cornish engine, by increasing the pressure of steam, or by working a less proportion of the stroke by the expansive force of the steam, this increase of expense may be much longer deferred.
Tenth-The Cornish engines, in which the before named arrangements have been adopted, do about three times more work with the same quantity of fuel, than the common water-works pumping engines. As this has, however, been declared impossible, I will endeavor to prove the contrary by a comparison of the two engines.

The common water-works engine is worked with steam at a pressure generally of two and a half or three pounds above the pressure of the atmosphere; the admissiou of steam is not cut off until the piston has made three-fourths or seven-eighths of its stroke, and the principle object in view in cutting it off at all is to make the danger of the piston travelling too far, and the chance of breaking the bottom of the cylinder, beam, or parallel motion, less.

On the 18th of February last, I tried the power of an engine upon this construction; the experiment lasted one hour, and 469 lbs. of good Holywell Main large coals were used. The diameter of the cylinder was 60 inches, lengih of stroke 7 feet 9 inches; the engine made 669 strokes in the hour, or 14.4 S strokes per minute; the pressure of steam was $2 \frac{1}{2}$ lbs. per square inch above the pressure of the atmosphere, which was $14 \frac{3}{4}$ lbs.; the vacuum in the condenser equal to $13 \frac{1}{4} \mathrm{lbs}$; the diameter of the pump was 27 inches, the length of the stroke 7 feet 9 inches, the pressure upon the pump piston equal to a column of water of 115 feet in height, load upon pump piston $28,577 \mathrm{lbs}$., equal to 10.1 lbs . pressure per square inch of the steam pis ton; as the pressure of the steam, minus $1 \frac{1}{2} \mathrm{lb}$. for imperfect vacuum in the condenser, was $15 \frac{3}{4} \mathrm{lbs}$., the friction of the engine must have amounted to 5.65 lbs . per square inch.

The steam used in the hour may be found thus:-the area of cylinder was 19.63 square feet, and the steam was cut off at 1 foot 3 inches from the end of stroke, making length of the stroke for the dense steam 6 feet 6 inches, which, multiplied by the area, gives 127.6 cubic feet per stroke, add $\frac{1}{10}$ for loss of steam per stroke in the vacancies of the cylinder, making a total of about 140 cubic feet of steam per stroke, which, multiplied by the number of strokes per hour, $(869 \times 140$,$) is$ equal to 121,640 cubic feet of stean, generated under a pressure of 352 inches of mercury, at a temperature of about 222° Fahrenheit.
The "duty" p rformed was $34,467,05$ 2 lbs. raised 1 foot high with a bushel, or 84 lbs. of coals.
The power of the engine during the tiine of trial was $(28,577 \times 7.75+14.48 \times 33$, 000) equal to 97.2 horses' power.

The steam used was equal to 1251 cubic feet per hour per horses' power, to produce which, at a temperature of 222° Fahrenheit, would require about 0.856 cubic foot of water, and 10 convert this quantity of water into steam at 222°, it required, 4.82 lbs of coals.

Now supposing the admission of steam was cut off when the piston had travelled one-sixth of its stroke, the operation of its expansion, and the pressure at different stagez, and mean pressure of the whole, will be seen by the following Table.
bs. presenre per
square inch.
During $\frac{1}{6}$ th of the stroke dense steam was admitted at a pressure of
At $\frac{2}{6}$ of the stroke the steam had expanded to twice its volume, and the
pressure was reduced 8.62 At $\frac{3}{6}$ dito ditio three times $\mathbf{5 . 7 5}$
At $\frac{4}{6}$ ditto ditto four times 4.31
At $\frac{5}{6}$ ditto ditto five times $\mathbf{3 . 4 5}$
At $\frac{6}{6}$ ditto ditto six times $\mathbf{2 . 8 7}$

6) 42.25

Mean pressure per square inch $7.04 \mathrm{lbs}^{\text {: }}$
If the steam had worked dense through out, the pressure would have been 17.25 lbs. throughout, but 6 times the quantity of steam would have been required; whereas, with one-sixth the quantity of steam. the mean pressure is 7.04 los. per square inch, showing that as the quantity of fued required is in proportion to the steam generated, by working the engine thus expansively the effect is as 2.4 to 1.

If, however, the steam was to be generated under no higher pressure than $\mathbf{1 7 . 2 5}$ lbs per square inch, it would be necessary to have the area of the steam cylinder 2.4 times greater than the one hereinbefore mentioned, to raise the load; that is to say, a cylinder of nearly 93 inches in diameter, with 7.04 lbs . pressure per square inch, instead of a cylinder 60 inches with $17 \frac{1}{4}$ lbs. pressure per square inch. As this would obviously be disadvantageous, inasmuch as there would be a great increase of friction, the practice of using steam of higher temperature, say from 35 lbs . to 40 lbs. above the pressure of the atmosphere, has been adoptet in Cornwall. In fact, the general dimensions for a Cornish engine to do the work hereinbefore stated, would probably have been as follows, viz.
Diameter of cylinder $\quad 57$ inches.
Length of stroke $\quad 10$ feet.

Length of stroke
Number of strokes per min-

$$
\text { ute } \quad \mathbf{7}
$$

Diameter of purnp piston 34 inches.
Length of stroke $\quad 10$ inches.
Load on pump piston $\quad 45.805 \mathrm{lbs}$.
Load per square inch on
steam piston
18 lbs.
In aldition to the foregoing, which only shows the advantage to be 2.4 instead of 3 , as I have before stated it to be, there is a very considerable saving in fuel in consequence of the casing, which saring is of course greater in proportion in engines where steam of a high temperature is used; and there is also less friction, in consequence of the slow motion of the engine, and from the other causes already stated, which, in my opinion, are fally equal to make up the difference. It is hardly necessary to observe here, that the more the steam is worked expansively the greater is the proportional advantage.

The principle of expansion is not new; it is lhe extent to which it has been carried, especially of late years, by the succesaful adoption of steaun at a higher temperature than is used in the common condensing engine, which is new.
The late Mr. Watt took out a patent in 1782 for working steam expansively, and in his specification, dated March 12 th, 1788, he says, "My new improvement in steam or fire engines, consists in admitting steam into the cylinder of the engine only
during some certan port or partios of the descen! a ascent of the pishos, inn l mairtr

 the leng h of the s rolic of the pisten'"

H : theil sh w, that if siecm ot $1!$ ibs.
 Oif at one fourth of the lenail of ihe stioke, that at hatf the siruke the pressure is re* duced to 7 thes.; at tinee-fumiths of the s:ro'se $104 \frac{2}{3}$ lbs. ; and at the emd of the struke the sie.in would be relluceil in $3 \frac{1}{2}$ lbs., or one-fonith of its original purnir. He then slows that the sum ol all these powers is greacer than $57 \mathrm{~h}: \mathrm{m}$ Ire.l h pt:t of the oririnal power maliplical ly fle leny h of the strokz, an I consequently, thai o:nefourth the stritu. thas neel, proulices. more thin bialf the effact thit lour hues the quantity would hate prolicel if wo.k. ed dense thronsh the whole strul:

H: then saty, "consequen!ly, the suil new or expmisure eagime is c tpible of eat i. ly raisn colnmms of wa er, whose weights are equal to 5 lis. on eve y sq̧ute insh of the ured of its pision, by the expen liture of only are-furth the contents of the cyluder of stean it each stro ie."

He hut previon-ly shown that the engine working dense s!eain miont be l,a leil to 10 lbs. per square inch of the areat ol the piston.

And lastly, he says, "un:l thours, for example, I have mentional the ad whise1on of ons- ourih of the cyluiler; fill oi siedin, as b . in f the m st convenient, ye: any oulser proportion of the content of the c.blin tes will proluce similor effects, aul in pracince I actuatly do vary the proporituns its th. case requires."

The casing of the cyliaders, boilors, and stean pipes is not new either, but I have never se..n it carrie:l to the same extent as it is at present in Cornwall.

Great and deserved cre.lit is due to the parzeverance, energy, on! in sen lity of the Cornish enginears for brinring thé expansive engine 10 the siate that th now i, an for the disily inprovenents which, aluh marh taken separia'ely may appean tatial, are in the aggregate of great hmpurtance.

I will conclude this portion of my ob ervation: by peferring you to the pronted Rsport of the public tri.d to which the Fusiry C.msols engme befure m-ntione I h.s lieen exposel, on which it is statel, that tive en. gine ralel abse 125 million, uf 1 ss . 011 .: foot higi, with 94 Ibs. wi colls, or neurly 112 nilliuns with ot lh.i., or an impenil bushel. This is the greatest pufo mance of any er.gine; and the eng neers, Mes.srs. Pelherick ant West, cimnll ful io receme the creilit they so richly ment.

Alihough it is aliniteil by s me nogineers in Lomilon, that the repais fru.a Cornwall may be ture, anl that water inay be raisel out o the mines at tire exp nse of power repuried, neveriheles, they asser that it is not applicable to water work : p \| p ses, on account of the vmiation in the pressule.

That there is a variation in the pressulte where the water is forced into the pips: direelly from the engine is certain, and i_{1}
must be deppnilent upon the quantity n
 112:3, and its lhas varits, so the pros:atis nus: vary- h • ramatam isai h or hat ver

 wh daring stmaner arre er that on whto
 foon the carcums'athes of th grater flan i
 salue pipes in a given time: conse? gen ly 1h. below v innst be gratur, and as at mat ter of cuurse the friction, which increase o friction mist be overemme liy intreaserl power. It tha only variseion was a paroblic.al one, and at each period ihe pres sure was sealy, :hen re miones at hiffer ent altutudeas, to sunt the lifferent puessuris, woul:l supply the dis!rict as weil iti a stean engrane; (even has position ins been das. puledi) but as al erpery stroke ol ilse engure there is a slight variation, n at athoun:man, however, forng any of the prombs before naund to more han 5 or 6 f.et, hen, is the :nein lufference is $2 \frac{1}{2} \mathrm{f}$ ent ins: in case of a reservour it wonld be necessaly to have its al athle eghad to the greatest pressure, threre wotili lie a loss amounting to the difference be:wren thas nientl allit the greatest alinde. It sho :lll be observ. ed that the greatest por inn of the metopodis anpily is fom samman resorroirs.

Suppasing that a Comish englue could not be worked in the same matrer as a London w.a ei-work; enginr, whath, howt.ver, is not the ca - e. and trat it wers neeessary t', wook it uler a tixed pressure, v.tryins, honever, at griven periorls, the loss, a + bef. re sh swr, is triflog. Suppose it tu he 2 en per ce t; or 'aking the variation at 20 teet, instend if 5 teet, the 10 s would th on be 10 per cent ; the gaill, how ver, by adopt.ng the Comish e.frine, is 3 JJ per cent.

There would, however, be an advantage in working etther a Curnish or a Londo : pumping engine u ver a lixed pressure instead of a variab!e one, and uuc:1 Ies: dagger; for in ill single er.gnes, warking under a pressure that vaibes, inl where from the great extent of mains and services there is great linin ity to accodent trom the burstilys of pipes, or sud len shmiting off an importint main by accilent or design. the duget of the piston triveling too firp, a id th ieny breaking the beam, or the cyluder botom, is very grab, and the only sulie guad is the vigilance of the rogine-zeeper. who, it he is coll tat aty watchins, may the" the cngine "in hand," in case of a sidden variati in in itis spee !, anl thus privent the accodent which migh. o herwi-e have dian ble: I the engioe. This is not by any means a hymoheticil case.

It wou'd therefire be the sa'est plan t/ w.ork the engine unjer a lixed lo d, evon a be lons ot a little power, it a: the sume tim the libility to acident was re.dured init nitely lesis.

In mo-t cases, therefore, where the pres wie inder which the ougin: wirks ! snown, ant it ought to be know, I shous. a cumbiled t.e ad athon ol a stindpip, the v.ter rising lro.n the engine in one pipe. and fluwing over enther at the top, o.
'3ro:gh commmicating pipes, at any level
 ircultore with the mans ialtue distact. The ngi:ne mi ht ib 11 when under a reguar भII; nay ir celuro ol He jpes in the dse rie! womid wot alfict tiue en rinc: its ondy i. ility t a acerdent being trom the tracture A" olie leg wit the stand uipe, which of comreo coalld be promided against by extra strength of materials.

Althergh I have shown how (upon the supposition of the ririnion in pressure beiug a:t o:jection to lis application of the Cornish engine to water-works purposes) the supposeil difficully inay be overcoaie, I ty no means in and to allow that the enyimes in Cornwall are not subjecl to chances of as irrat and even greatcr varation; for if :any vat! breaks, which is very likely to happen where thero are on many pumps at work, il the water at any lime fi.ils, and air is sudilen'y admitted through the suctionipipes., Sev., \&c., in all such cases, the re, siot unce t, the prower of the engine is re: duccol, and i_{i} the parts of the angine were but manie shonir enough to resist the furce oltit stidiben blow, frateture would tithe place; lant they are generally, and ought alwaye, to he strong en ugh.

In conciusion. I beg to obscrve, that if the Cur!lish engines do the work that it is stated they dio, and if they are app icatile to watel-works purposes, of both of whieh I have no don'l, then the saving is most impariant ; for supposing instemd of thrre engines. consuming 3000 10:s of couls ber arnu:n, me could be erected doing the work of the thre, and only consuming 1000 lons, a suming the prics of coals delivered to be 1 S s. per lom, the siving in coals flore, withont recerence to the savin !s in the rednced number of engine-lse ep. ers and st ker.. the current expenses of one rngine instead of three, the wear and teir of machinery and building:, would be £180) per iunumn.

Nov. 4, 183.

M. Degousse has succeeded in piercing a fourth Arterian Well, at M:aux. The depth; ol tholurres of these wrills are from 161 to 295 feet Entrlish, and the water rises ta from $3 \frac{1}{4}$ feet to 16 liet 4 inches English. l'se quintity obtained at the Ful ing Mils is 65 Englith gallois a in nute, and that at the Sommary 37 gillors. 'I'he water is ver: sult, amiltas beron poored by an analysi, t, be lit lor every purpose.

R.IILIOOD ANI C゙AVAL STOCK : in New. lork and I'hilatolphia. S.ILES UF STUCK in NEW-YORK Marche $20 . \mathrm{h}$.

Whhawk Railoud
:'at romblail mal
bellitl and Providence
iell.Jersey "tians
Enningl.011
Cule aier Baitrond
bong lol.und wan riad
'a ee sull liat comil

- mingevie -alloviad
farl urim lail ouad
ii.zt unid o hemenals
hanware ulld Hudoun Canal
Jo. ri. Cand
Now Orteans Canal

cash	70
	65
"	25
"	9.2
"	69
"	91
4	64
"	65
"	55
	64.
rash	114
"	734
"	79
${ }^{\prime}$	35.

RJL゙ルID sTOCKS

New Casale an I Firen hasis

[ho luall, $54 \mathrm{p} \cdot \mathrm{r}$ ceat
Witming o.l mill sumplu ha'ml
Ca.s.ren ami dmbus; shares,
in han 6.
Danville anil P shired
Nurr shw in,
ilu
W. 6 pr cent luan?

Vial es Ha:lrual
Hes.rhencer tho
Mi-celii I
N. Ia atil l'enti Tp. dn l'hilad Iplua and 'r'rentan do Weat Plikadelphis Rnil.oad Ilaraisturg mid Lumaner Slanoisthurg riand
(Uninber riand
MaECHLLANFOUS STOCKS
Nurth Ameri-an I'inl Ciompany Eteam th. Sta Columbian
Exchange Sluch
Arcade
Thie tren-(hoptnus street --H'ulnus stret t Gus Cumpany CANAL STUCKS

Schuylkill Navigntion, the loalis, 3	shires
	1515
lut do	135
1. d. 51	1 137
Lehigh Corl and Narigation	
L.) le III, 6	1533
Dn do 6	133)
Ihe due 6	1844
D. d, J	1510

Union Canal, shares lks bus
lo
do 120 dold Cheas'k \& I lelaware C hal, shares 1\% ds 1810
Delaware and Il:sdson, Ito liva.
Lonisvill. ami Poaland
Sinverible 6 per cent. loans,
Sanily and Bever
Nurns Canal

President ol. T. I) \& C R. R. Co., Janua ry 1. 1383
P. KithwooJ, J maica, L. I. J ır. 1, 1®3
 1. $14: 38$

davertiscments.

:APPAHANNOCK CANAL. \& SLACK Wat'ER NAVIGATION.

N TMC: TO ©ONTiKACIORS.

SEALED Pronosals will be received un
 ser, oa beha ff o. tere Rappa!aniod Compaiy, it to office of t 'eir Engincer. in li.e lown of Fiecerricksburg, for tic coastruc tion ot four new dams, husi: g, coveria:g and backi.ıg several othere, severailshon canal. 14 new lift locese, oi woud and store combbined, 10 guard locks, at.d otser incilestated works, for that portioa of tace Slack Water Navisato: extenda.g fiom t.e town of Fic!eri. ksburg to Barnett's Mills, a distance oi 20 nules.
'I'ue prices for the work must include t:e xpense of materials necessary for t.ec completio of tae same, acco:dang to pians and jpec.ficatio.ss t.at will be ready for cxamiaudow on tae 1st to tae 7h April, inclusive.
Trie works to be complited by t.se 15th lay of November of: we present year.
It is believed that tase wo: $k a b$ we offered or co.tact presents superior ialuccments, s.pec:ally to suca as inave b. en ceceastoned 0 , and preter constracts embracing heavy ry walling and carpentry, the materials on suicn a e at hand and in abundasce.
No fiars need be entertaine.l as to the reat.tiluess of the climate. 'I le usual tes. timoniais o. character and responsbbilty wiil be expected to accompany lore prososali.
P. MARilNEAU, CLnet Eng.

March 18. 1:337.
12_3
UT MASDENG NUMOERS WANAED.- I UHy of our subseribers have numbers 4,5. 6 and 7, of Volume or five last year, which taey do not desire to pressrve, tacy will conter a special favor by sending tiem to us, that we mav complete a few conies of the volume.
** It any of our subscribers are in want of any otaer number of tae same volume to complete tatir volume they wil! please give carly too:ice and they shall bees int.

The Tale page and Index for last year, or so'ume five, wall be forwarded to subscil bers wita our next number.
AVERY'S ROTAKY STEAM EN GINES.-AGLNCY.--The st b criber or. ers his services to gentemen destious of nocuriag Stcan Eugines for driving Saw Mills, Girain-Mills, and other Manufac ruries o any kind.

Eing, nes only will be furnished, or accom anied wit. Boilers and tinenecessary Ma chmery for putiong tiem in operatos, atic an Engineer :ilways sent to put tiem up. latiomatioa wat be given at all tames 1 sose who desare it, citam by 1 ter or b. sinbitiug the Eugines in operatoa in that ty.
Iaquiries by letter shoald be very explic .nd the answers shall bee equally $=0$.
D. K.MINOR,

30 Wall-st., New York.
thansactions of the m:t fution of civil engix:ens of gincat lbitain.
T.e fiss vocme o this valurble work, "s ius" nade its anf f er rar ce in tans country. I ther o_{i} it s. st y feenily-fiec or thirly only,
 nite ali lecell di-yosed of at ten dillars e.c!-a | rice, altt ough of the ralue of the sumk, yet one, which wis | revent maly of mur vau: g E. ginceres from os essing it. In ruber there ois, to place it witni . their nach, and at a coaven.ient price, we shall reprint tee entice work, with all its engravings, neailly d ne oa vood, and issue in six parts or nu..bers, o." about 48 pages eaci, which caus be sellt to olly part of tie Unite. States by mail. is isslecu, or f ut upin a volume at l. ee close.
T.u price will be to subseribors three dol. lars, or five d.llars for two cophes-aluays i.t adrai:ce. 'I'.ee tirst number will be ready ior delavery carly in Apri-Subscrputions ire sol.cited.

FOR SALE AT THIS OFFICE,

A Pracical Treatise on Locomotire En. gines. wilh Engravit ge, hy the Chevalier je Pambonn- 150 pages la:ze octavodone up in paper covers $=0$ as to be sent by mal-l'rice $\$ 150$. Postage for any - istance under 100 miles, 40 cents, and 60 cts. lior any d.stance eaceeding 100 ms .

Alsc-F'an de Grailf on Railroad Carres, done up as above, to be sent by man!-Pr ce $\$ 1$. Postage, 20 cents, ur 30 cems, as above.

Also-Introducion to a view of the Wurss oi the Taumes T'unnel-Price fifly cents. Pustage as above. 8 ce. t, or 12 cts.
*** Ou the rec eipt of $\$ 3$, a copy of each of the abrive works will be furniarded by mail to any part of the United States.
$1010 t$
RAII, WAYIRUN, LOCOMU'IVES,\&C. 'TIIE subscribers offer the fulluwing artick for sale.
Kailway Iron, flat bare, wilh counterannk holes and haidred jomits,

 wih Suikes and Sphing Plates adapted thereto. To he suld li.en of dity io slate goverablemts or incorporatod compums.
Orders lior L'enisisjivania Builer Irom exerutid.
sinil Road Car mad Lencumbtive Elugine Tirea
 h. : huels, viz $30,33,36,42,44,5 i$, and 60 ischee .i.inueles.
E. V. I'atent Chein Cahle Bults ior Railway Car
 3, 35. 54.36. nid 32 inclleses chameter.
Chunx for lurfhopll l'la um, short and stay linkz. แaminctirnd Irom he E. V. Cable Eolis, and prosed "1 Hie greminal mall.
India tanblier liope fur Inclined Plines, made from - w \% alams thax

Aloo Puu il Ilemp Cordage for Inclined Hanes, and (anall lawing lines
Haceal F. It hing pactug hetween the iron chair and OII Hheth of rige Rn: Inay\%.

 1. agency ut one of our partseis, itho reades an all hat tor the jurpane
Mr. Sul muil W. Kuluerts, a highly rerpe sable
 sose on i: promg all lan onsuliscs, dathimis, Rap vay Irun \&c. ordered Hircugh ns

28 t 5
Fhiladelphia, No.4, Eouth Ereqt Et,

ARCHIMEDES WORKS

(100 North Moor street, N. Y.)
New-York, Februnry 12th, 1836.
THE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furnish all kinds of Machinery fut Railroads, Locomotive Engines of any size, Car Wheels, such as are now in successful operation on the Camden and Amboy Railroad. none of which have failed-Castings of all kinds, Whoels, Axles, and Boxes, furnizited at shortest nutice $4-\mathrm{vt}$!
H. R. DUNHAM \& CO.

NEW ARRANGEMENT.

ropes por inclined planes of rallionds.
WE the subscribers having formed co-partnership under the stylo and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of ruitroads, and for of her usis, offer to supply ropes fur inclined planes, of nny length required wihout splice, at short notice, the matufacturing of cordage, heretofure carried on by S. S. Durfee \& Co., will be dune by the new firm, the same superintendant and maclinery are employed by sthenenf firm that were employed by S. S. Durfee \& Co. All orders will be promptly altendel to, and Copes will be shipped to any port in the United States. 12 h month, $12 \mathrm{ith}, 1836$. Mudson, Columbia County State of New-York.

ROBT. C. FOLGER,
33-1f.
(:EORGE COLEMAN

MACHINE WORKS OF ROGERS

 KETCHUM and GROSVENOR, Paterson, New Jersey. The undersigned receive orders fur the fol lowing articles, manufactured by thrin, of the most superior description in every particalar. 'Iheir work bcing extensive, and the number of hands employerl being large, tiney are pnahled to execute both farge and small orders with promptness and despatch.RAILROAD WORK
Locomotive Steam-Kingines and Tenders; Dris. ing and other Locomutive Wheels, Axles, Sprin:s and Flange Tires; Car Wheels of east iron, frum a va riety of patterns, and Chills; Car Wheels of cast iron with wrought T'ires; Axles of best American refined iron; Springs; Boxes and Bolts for Cars.
COTTON WOOL AND FLAX MACIIINERY,
Of all descriptions and of the most improved PatOrna, Style, and Workmanship.
Mill Geering and Millwright work generally ; Hy draulic and other Presses; Press Screws; Callen. ders; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.

KOGERS, KETCIIUM \& GROSVENOR
Patterson, New-Jcrsey, or 60 Wall strett, N

ALBANY EAGLE AIR FURNACE ANU MACIIINE SIIOP.

WILLIAM V. MANY manufactures to order, eron castings for Gearing Mills and Factories o every description.
ALSO-Steam Engines and Railroad Castings o

every description.

The collection of Patterns for Marhinery, is no equalled in the United States.

TO EN GINEERS*

WE are gratified to be able to announce to those desiring Instruments, that Messrs E. \& G. W. BLUN'L' of this city, ore now preparcd to furnish at short notice, LEVELS, frum different manu facturers, among others from Troughton \& Sims, which they warrant of the first quality. Circuinferentors, Levelling Staves, Prismatic Compasses, Mathematical Instruments, Buoks lor Enginecrs, etc. constantly on hand.
One of the above firm is now in England superint tending the manufacture of 'Theodolites, Iransil Intending the manulactire etc-a any orders fir Instruments, nonow on hand, will be forwarded lin, and executed promptly.
***Orders will be received and promptly attended
to by the Editers of this Journal.

AN ELEGAN'I STEAM ENGINE AND BOILERS, FOR SALE.
 THE Stcam Fingine and Builers, belonging to the

 STEAMBOAT HELEN, and now in the Novelty yard, N. Y. Consisting of one Horizontal high pressure Engine, (but may be made to condense with litthe additional expense) 36 inches diametcr, 10 feet struke, with latest improved Piston Va Nes , and Meta-lic packing throughout. lic packing throughout.
Also, four 'l'ubular Boilers, constructed on th
English Locomotive plan, containing a fire surface English Locomotive plan, containing a fire surface
of over 600 feet in each, or 2500 feet in all-will be sold cheap. All communications addressed (post paid) to the subscriber, will meet with due attention.

HENRY BURDEN.

TO MANUFACTURERS OF HY-

DRAULIC CEMENT.

PROPOSALS will be received by the subscriber, on the part of the James River and Kanawha Conipanies, \&or the delivery on the wharf, at the city of Richmond, Va., of Fifty Thuusand Bush. els of Hydrnulic Cement. The amount called for must be furni-hed in quantities of about six thousand, hashels per momth, commencing on the first of A pril and ending on the first of November next.
To avoid future litigation, it is to be understood, on enaking the p:opozali, that the hushel shall weigh seventy pounds NETT, and that the Cement shall be deiivered in good ordder, and packed in tight casks or barrels. :
Proposnls fuill also be received for furnishing fifty housand bushels, at any convenicnt joint on the navthousand bushels, at any convenient joint on the nav-
igable waters of James River, or the north branch of James River, where the materials for its manulacture has been discuvered.
Persons familiar with the preparation of the Cement, would do well to examine the Counties of Rockbridge and Botctourt, with a view to the establishment of works fur the supply of the western end of the line; and a contract for the above quantities will be made with them before they commence operations.
As there wiit be requirell on the line of the James River and Knnawka Improvement, in the conrse of the present and next year, nut less than half a million of bushels of this Cement, and some hundred thousand bushels more in the progress of the work to wards the west, contracturs will fiud it to their in terest to furnish the aricie on terms that lead to future engagements.
Proposanls to be directed to the sobs: riber at Richmond, Va CHARLES ELI.ET,

February $201 \mathrm{~h}, 1837$.

Chi f Enginecr of the J. R. and Ka. ('o.

CROTON AQUEDUCT.

NOTICE.--Sealed Proposals will be received by the Water Commissioners of the city of New-York, until the $22 d$ day of April next, nt 3 oclock, P. M., at their uffice in the city of New-York, and until the 2 lth day of April, at 9 oclock, 1. at the office of their Engineer in the vilage of Sing for the Excavation, Embankment, Back Filling, Foundation and Protection Walls; for an Aqueduct Bridge at Sing Sing, three 'Tunnels, several large and small culverts, nud an Aqueduet of sione and brick ma sonry, with other incidental work, fur that portion ef the Croton Aqueduct which extends from the Dam on the Croton to Sing Sing, being between cight and nine miles in length
The prices for the work must include the expense of materials nectssary for the completion of the same, according to the plans and specilications that will be presented for examination, as hereinafter mentioned. The Work to be completed by the first day of Ucwber, 1839.
Security will be required for the performance of contracts-and rupasitions should be accompatice by the names of responsibie persons, signifying their assent to become sureties. If the character and responsibilities of those proposing, and the sureties they shall offer, are not known to the Commisswhers or Lingincers, a certificate of good character, and th:e extent of their responsibility, signed by the first judge or clerk of the county in which they severally reside, will be required.
No rransfer of contracts will be reergnised.
Plan of the several structures and specifications of the kind of materials and manner of construction, may be rxamined at the offico of the Commissioners, in the city of New-York, from the l0th to the L-4th, inclusive, of April next ${ }^{-}$The line of Aqueduct will be located, and the map and profile of the same, logether with the plans and specifications nhove men roned, will be ready for examination at the oflice of the Englucer, at the village of Sing Sing, on the 15th day of April next, and the Chief or Resident Engineer will be in attendance to explain the plans, \&e., and to farnish blank propositions.
Persons proposing for mure work than they wish to contract for, must specify the quantity they desire o take
'The full names of all persons that are parties to any proposition, must be writen out in the signature for the aame.
The parties, to the propositions which may be acerpted, will he required to enter into contracts immediately after the acceptance of the same.
The undersigned reserve to themselves the right wancept or reject proposals that may be offered for the whole or any part of the abuve described work. as they may consider the public intirest to require.

CHPPAEN ALLEN,
CHARLES DUSENBURY, \} Water
SIUL ALLEY,
JOIIN B. JERVIS,
Chief Engineer, New-Yurk Water Works.
ew. York, Febraary 28, 15\%\%.

AMES' CELEBRATED SHOVELS, SPADES, \& c.
300 dozens Ames' superior back-strap Shovels
150 do do $\begin{array}{llll}150 & \text { do do do plain do } \\ 150 & \text { do do do caststeel Shovels }\end{array}$ 150 do do Gold-mining Shovels 100 do do plated Spades
Tugether with piek Axer Cls and Spades. Bars (steel pointel) mannfacturn Drils, ond Crow ined irotWJTHEREI.L, AMES \& CO.

No. 2 Liberty street, New-York. BACKÚS, AMES \& CO.

No. 8 State street, Albany. N. B - Also furnished to order, Shapes of every de-

S'LEHENSON,
Builder of a superior style of Passenger Cars for Railroads.

No. 204 Elizabeth street, near Bleecker street

 New-York.RAILROAD COMPANIES would do well to exa mine thesc cars; a specimen of which may be seen on that part of the New-1'urk and Harlaem Railroad mw in operations

25t1

PATENT RALLROAD, SHIP AND
 BOAT SPIKES.

**The Troy Iron and Nail Factory keeps constantly for sale a very extensive assurtment of Wrought Spikes and Naids, from 3 to 10 iuches, manufactured by the subscriber's Patent Machinery, which after five years surcessful operation, and now aimost universal use in the United Statex, (as well as Enghand, whre the suhscriber obtained a patent,) are found superior to any ever offered in market.
Railrond Cumpanies mny be supplied with Spikes having countersink heads suitable to the holea in iron prils to any smount nad on short notice. Almost all the Railruads now in progress in the United States are lastened with Spikes inade at the above named face tory-for which purpose they are found invaluable as their ndliesion is more than double any common spikes made by the hammer
** All orders directed to the Agent, Troy, N. Y.,
will be punctually attended to.
HENRY BURDEN, Agent.
Truy, N. Y., July, 1831.
** Spikes are kept for sale, at factory prices, by I. chat innsend, Abany, and the principal Iron Merstreit, New-York; A. M. Jones, Philadelphia; T Jarviers, Baltimore; Degrand \& Emith, Buston
P.S.- Rexilruad Companiss would do well to forward their orders as early as pructicable, as the subscriber is desircus of extending the n:anufacturing so as to krep prace with the daily increasing demand fo
this Spikes. (IJき3am)
H. BURUEN.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build, on his Patent Plat, would respecifully inform Lailroad and Bridge. Corporations, thar he is prepared to make cuntracts to build, and furnish all materials for supersiructures of the kind, in any pari of the tirited states, (Maryland excepted.)
Bridges on the abote planare to be seen at the followisg localities, viz. On the main road leading from Baltinure to w ashington, two miles from the furmer place. Across the Metawamkeag river on she Military road, in Maine. On the national road in Illinois, na Rrait-rond at three points. On the Hudsun and Palcessul lanilroad, in two places. On the Boston and Worcester Kailroad, at several points. On the Boston and I'ruvidence kidroad, at snndry points. Across the Conturcook river at 1 enriker, \mathbf{N} H. Aeross the Sunhegan river, at Milford, N. H. Across the Connecticut river, at IInverl.ill, N. M. Across the Condivecoy gin liver, at Turner Centre, Maine. Across ho Kennebee river, at Waierville, Maine. Across New-York. Across the White River, at Hartford
Wiver Vt. Across the Connecticut River, at Lebmanon, N. 11. Across the mouth of the. Broken Straw Creek, Penn. A cruss the mouth of the Cataraugua Creek, Canal, in the City Bridge diagonally across the Erie. Hralge at Upper Still Water, Orono, Maine. This Bridge is 500 leet in length; one of the spans is over 200 feet. It is prubably the Finmest woonen 3R1Dge: ever built in Aincrica.
Notwilistanding his present engagements to build betweel twenty and thirty Railroad Bridges, and several rommun bridges, several of which are now in progrces of construction, the subacriber kill promptly atteind to basiness of the kind ω much greator ortent and on liberal terms.
Focluester, Jan i2tn, 1837.

OOUTNA置,

PUBLISHED WEEKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVANCE.

D. K MiNOR, and

GEORGE C. SCLIAEFFER, $\}$ Prorietors.]
SATUILDAY, APRIL 8, 1837.
IVOLUNE VI-Nr. 14.

Advertisements; Cununicitur frum : Ni ris 00 Communicution Iroun H.N.Munson; Clintoa Ne. 6.2 i 0 On the retarda ion olthe velocty of Sicamboats
On ascerding Rapids; Winter'Traveiling.....919
Railroad and Canal Items....................... 21 2
Transactions of the Institution of Civil Einginecrs el4
Items.. . .
Advertisements... \qquad
AMERICAN RGIITBOND JOURYAL
NEW-YOR?, APRIL 8, 183\%.
REMOVAL.- Tre Office of the RAIL. ROAD JOURNAL, NEW.YORK FARMER, and MHCHANIC: $:$ MAGAZINE, is removed to No. 30 Wall-street, base ment story, one door from Wiiliam street, and opposite the Bank of americu.
0 It will not do, these hard times. fur tnoney, to be too modest. The $I^{\text {Paper }}$ Naker must be paid, the Engraver, the Ink Maker, and the Printer must be paid, -then why not Pay the Publishers and the Editors the current year and all arrabages for the Journal? It must be done. Please remit by misl.

NOTICE TO CONTRAC'TORS.
WESTERN RAILROAD.
PROPOSALS will be received at the onice of the Western Railrond Cosporation, in Springlied, uatil the 10ith May, for the grading and masorry of the second and third divisions of the ruad, estending from East Brovifield to Connecticut river, at \&pingfislda distance ol 35 miles.
Plans, Prufiles, dec. will be ready for examination Plans, Profites, dec. will be ready IS SWIIrr,
afier the first of May. Worcester; Mass., A;nil 1, R337. $\begin{array}{r}\text { Resident Engineef, } \\ \text { 11-Gi }\end{array}$

ROACH \& WARNER,
Manufacturers of OPTICAL, MA'I HEMATICAL AND PIIILOSOPHICAL LSSTRUMENI'心, 293 Broadway. New Yoik, will keep constantly on hand a large and general assoriment oi lusiruments in their ine.
Wholesale Dealers and Cunnlry Me reharts supplied with SURVEYING COMPASSES, BARUM1:TERS, THFKMOMETERS, \&c. \&c. of Hici: own manufacture, warranted accurate, and at lower prices
than can he had at any other establisliment.
snstrnmenta made iv order and repaired. 14 ly
New-York and Albany RailroadWe are pleased to find that the friends o: this work are still resolved to push the work on-and we ask the attention of our
readers to the folluwine noife for dening the Buoks for nite puape do outamer sub cribine to de b.lance uf tixe stocis. The city of New loik has a deep interest in the early comple:ion dif this road-mat in on the citizens of New Yonk we call fon prompt and eficient aid to build the Road. NEWVYORK AND ALBANYY RAlL. ROAD.
NOTICE.-The books will be open for subscribers to the capital stock of the New York and Albany Railroad Company, on the $25 \mathrm{~h}, 26 \mathrm{~h}$ and 27 lh days of A pil, from 10 A. M. tu 2 P. M. on each day, at the following places:

At the oifice of ihe New-York and Harlem Ratiload, No. is Wall street, NewYork.

At the Mechanics' and Farmers' Bank, Albany.

At the Farmerte: Rank, Troy.
Also, at such plares as the Corrmissioners, residing in the countics of W estchester, Putram and Dutcleses, may appoint at the times herein specibed.
On Monday, Sth Mity,
Tuestay, the 3th,
Wednesday, 10th,
'Ihursday, 11 h , Friday, 12th, Saturday, 13th, Monday, 15th, 'Tuesiday, 16:h, Weinesday, 1 न̈th,
'Ihursday, 18 th ,
in Eisichester,
in White Plains, in Bedford, in New Casile, in South Eist,
in Paterson,
in Rawlings,
in Dsver,
on Duver Plains, in Armenia.
CONMISEIONERS.

Gideon Lee,
Lewis Morriz, T'aber Belden, John Harris, Albro Atkin, Francis Ficket, Isaac Adrianse,

Benson McGown, Sammel Chewer, Charles Henry Hall, Thomas W. Olcott, Ebenezer Fosler, J. Van Schoonhuven, Stephen Warsen, Jeremiah Anderson.
Shares $\$ 100$ each, $\$ 5$ to be paid at the time of subscrining.
14.3 t

The fotlowing letter from William Nor ris, Esq., of Philadelphia, will be read with
anisch matigest by those who thave read the acconit of the :- fformance of his Eagrines. For the Rai'road Jumrnal.
Philadel.phis; April Bd, 1837.
Messry. Minon \& Schaerper-
Gentemen,-l received in due time your Railroad Juurnal, of March 11; containing a letter from A: G. Steere, Esq.; of the New-Yolk and Firle Railroxd-and until this moment, press of business and unavoidable absence from home for the last week, have prevented my raplying to the same.

To Mr. Steere's remarks, I reply; thal; however wonderful such performances máy seem to him, they are nevertheless all sub= stantually true, and cin be authenticated by the ufidavits of scientific men, of the first emizence for talents and integrity.

Mr. Steere has based his calculations on previous theories, and seems determined to adhere to them, without admitting a probability of a change as science advatcets: He must then believe that Pambour has firmly established a Theorem forever, and that all the resul s of scientific experiments, from this date, us regards traction; friction; \&ic. \&c., must be (to be true) in accordance with the formuia so laid dow:l. This is preposterous.

I am well aware; that the perforinanees of my Engines, in giving results 60 per cent. better than aryy other, have created surprise, and in somo instances doubt, but I can prove by disinterested persons of weil knoien integrity, the facts of every performance, as detailed in my Circular, and I ca:l appeal to yourselves, (Messrs, Minor \& Schaefter, and also to 51 other gentle. men, as witnesses of the experiment of 19 h July last. There was no mistake, no do. ception there.

In the courie of this communication,
shall record some experiments still more wonderful, that are also facts, and which will stagger Mr. Steere's belief still more, in the possibility, or perbaps propriety, of abolishing old Theories.

During the last summer, when the Stationary Engine was out of order and under repair, the George Washingtun Enginc, for about 27 days, performed all the duties required on the Plane-and in one instance, for 5 days in succession, the mode of operation was thus, viz: $-\boldsymbol{\Lambda t}$ the foot of the Plane, two cars would be attached to the Engine, which, with the Tender, seldom weighed less than $26,000 \mathrm{lbs}$. This load was then dragged to the summit in from 2 to 3 minutes. The cars were then detached, and the Engine secured to the rope, while at the foot and on the cther track, 5 or 6 cars were likewise attached to the rope-the Engine would then be put in operation, descending the Plane, and dragging up by the rope, the cars sc attached. The greatest weight dragged up in this way was $47,450 \mathrm{lbs}$.

Another of my Engines, the "Benjamin Franklin," has been, during the winter and spring, also performing the duties required of the Stationary Engine.

On the 16th ultimo, I put on the road two new Locomotives, built for the State of Pennsylvanla, viz :-The "James Madison" and "La Fayette," both these Engines ascended the Plane with loads. On the afternoon of the same day, the La Fayette dragged up the Plane $38,000 \mathrm{lbs}$.When about half way up, from 50 to 60 persons, from the crowd that had stationed themselves at that point to witness the experiment, jumped on the cars, and for a moment impeded her progres $\%$, (the wheels slipping,) but as soon as she was relieved of this extra load, she ascended to the top, and immediately descended with the two cars, stopping at pleasure in the descent. In consequence of the late hour, no further trial was made that afternoon. This performance was witnessed by 200 gentlemen, many of Science, amongst whom was Capt. Tallcot, of the New-York and Erie Railroad.
(in the 18th another trial was contemplated, and for this purpose, two cars were loaded with Pig Metal and weighed, but on arrival at the foot of the Plane, a drizzling rain enmmenced, and soon formed a slimy coat on the rails-which were then in the worst possible condition. The two loaded cars were detached and the Engine sent up the Plane with the Tender, the weight of which loaded, was upwards of 10,000 lbs., and notwithstanding the bad condition
of the rails, the Engiue drew up this load in the very short space of 1 min .40 seconds. This performance was also witnessed by Capt. Talleot.

A third trial was deferred (in consequence of the derangement oi the regular business on the Plane during the experiments) until the arrrival of Judge Wright, of New-York, at whese request the foregoing experiments were projected, he having been detained from them unexpectedly. A letter was received from the Judge last week, during my absence, intorming of his arrival at, and departure from Philadelphia, but stating his intention of remaining in Philadelphia on his return, for the purpose of witnessing the experiments-and it would give me great pleasure to have Mr. Steere's company at the same time, to prove to him that old Theories may he abolished. When this trial takes place, Judge Wright shall superintend the weighing of the Engine, Tender, and load-shall take the measurements of the safety valve and lever, to ascertain the pressure-shall leave the whole matter under his absolute control, and when the result is published, I hope Mr. Steere will then admit that there is something new undes the sun.

The La Fayeite is performing daily on the Columbia Railway, and any persons can, at any time, see for themseiver, the immense powers of this Engine. She drags with ease 25 loaded cars, over abrupt curves and high grades, and on a rise of 52 feet per mile, with the actual weight of 241,275 lbs. (taken from the Weigh Masters' Books) attached to her, she has come to a dead stand, und started again without the least difficulty from a state of rest. On Friday last, March 31st, this Engine brought in attached to her, the unprecedented and enormous load of 45 cars, 25 of which were loaded, and this load she carried over the grade of 52 feet rise per mile, without any difficulty, not a single instant's delay, but steadily at the rate of nearly nine miles per hour. Let unbelievers come and see for themselves.
The dinensions of La Fayette are as follows :-
Whole Including water weight $18,725 \mathrm{lbs}$. 1 and fuel while in Weight on operation on the drivers 11,375 " J road.
Diam. of Cylinders, $10 \frac{1}{2}$ inches,
Length of Stroke, 18 inches.
I am, Gentlemen, very respectfully,
Your obedient servant,
William Norris. postschipt.
Philadelphia, April 4, 1837.
Gentleracn,-Will you please add to the
performances of the La Fayette Engine, the following :-

On Saturday last, (1st instant,) she took out the enormous load of $332,330 \mathrm{lbs}$. behind her, exclusive of weight of Engine and Tender-the weight is given me by the Weigh Master.

Yours very respectfully,
Whiliam Norris.
We give the following extract from a letter written by a gentleman in Michigan, in relation to an article published in a recent number of the Journal, as we give many other communicatiens, on the authority of those frem whom we receive themour object is always to give correct inform-ation.-[Editor Railroad Jourrnal.]

To the Editors of the Railrond Journal.
"In the last number of your Journal received here (St. Clair, Michigan,) is a statement relative to the Western Railroad through Canada, and the Northern Railroad through, or across the peninsula of Michigan, that is not exactly correct. I will therefore give you a brief statement of the exac. present situation of the two Roads in question. The Great Western Railroad (as it is called) commences at Hamilton, (head of Lake Ontario, runs to London and thence to Chatham, on the Thames, the point of termination on the River St. Clair, has been left open for three objects, firstly, for a survey, secondly, that it may be carried to that point which will connect it with the Michigan Northern Road, and lastly, that it possilly may be carried from Chatham to Sandwich, opposite Detroit lefore it shall be carried farther West. The Senate of Michigan Legislature have just passed a bill (which no doult will receive the sanction of the lower house, providing for the construction of the St. Clair and Romeo Railroad, and for its final eatension across the peninsula to Lake Michigan. You therefore will perceive at a glance that the communication from Albany to Lake Micbigan via the Western Railrcad, (when that shall be carried west to the St. Clair River) will be by this road without reference to Lake Huron or Fort Gratiot, as indeed it should be, thas being decidedly the best route, whilst the Fort Gratiot Road never had an existance at all, except in the train of its projectors."

Respectfully, your obt. servt.
H. N. Monson,

Secretary and Treasurer.
We welcome Cunton to our columns again; and trust he will not again forget that the subject on which he writes is one of vast importance to this city-and that
the columns of the Journal are open to its discussion.
The facility of opening an easy communication between this city and Wyoming Valley, and coal region, is not properly un-derstood-although one in which every inhabitants is deeply interested. If "Clinton" will aid us it shall not be our fault ifit is not better understood hereafter.-[Editors Railroad Journal.]

For the Railroad Journal.
clinton. no. vi.
The Susquehanna River running a south east course from the New-York State line, breaks through the monntains, and enters the Valley of Wyoming. Within 80 rods after its debouch into the Valley, it receives from the east, the Lackawanna River; then turning to the south west, the Susquehanna flows in a placid sheet of water, but once slightly entangled, twenty miles to Nanticoke. In this distance of twenty miles, the mountains recede; so that, in the centre, from the top of one mountain to the top of the other, on the opposite side of the river, it is about six miles. At Nanticoke they approach each other quite near, are precipitous and high; here too are the Nanticoke Falls. The water, compressed between these giant, and rugged hills, tumbling and dancing over the dam now erected at the Falls renders the scene strikingly grand, the Valley on both sides the river, has a large extent of bottom land, or river flats, on the west side, about the middle of the valley, the flats extend two miles back. These lands are extremely rich, easy to work, and almost inexhaustible in their productiveness. The uplands in the Valley, though not naturally so fertile, or easy of tillage, yet, under gnod management, are made to ploduce wheat, corn, oats, and grass, in abundance. Many are of opinios, that Wyoming Valley was once a lake, and the hypothesis is not without numerous facts and cojent reasons to sustain it. About half way down the Valley, on the easterly bank of the river, stands Wilkesbarre, the county town of Luzerne. It is beautifully situated, laid out into bandsome squares, has besides the country buildings, a Methodist, and a Presbyterian Meeting House; an Episcopal Church, and an Academy. That the Church and Presbyterian Meeting Houses, has each an organ, speaks well for the spirit and taste of the inhabitants. There are tbree or four points of view from which the Vailey may be seen to advantage. From the top of Inman's hill, half way from Willkesbarre to Nantiroke, from the top of Ross' hill, half way from Kingston to Plymouth, from Prospect-rock on the moun.
tains south east of the Porough of WilkesBarre. The summer view frem the first, presents below, the lirge sheet of water, ormed by the Nanticoke dam ; the hills and dales of Hanover and Newport ; farm houses and orchards; highlands covered with sheep, mendows alive with cattle, the flats waving with grass. On the opposite side of the river the rich Shawney flats and the thriving village of Plymouth. To the north east, you behold the Susquehanna like a beautiful ribbon, checked with islands wending slowly through the charming vale, as if it lingered, loath to leave a spot never equalled in loveliness. The spires and white houses of the Borongh-the long bridge sp"nning with its noble arches, the wile river. How tame are words! How inadequate all power of expression! to give even a faint idea of the loveliness of this summer prospect ! Camplell's painting from the bright region of Fame, with a rainbow for his pallet, could convey no just impression of its surpassing beauty. Governer Mckean, then a Judge of the Supreme Court, near hall a century ago, on coming to the mountains that overlooked Wyoming, referring to the contest then raging between the New-England men and the Pennsylvanians for the Canal, said, "beautiful inderd! and yet it is no wonder such a spot should be the object of eager contention."

Rich and beautiful as is the prospect on the surface, it is cold, dead and lifeless, compared either with the riches or beauty of what lies beneath the soil. Visit the Plymouth nines. Visit Bennett's great mine at Pittston. Drive your carriage between the pillars of Anthracite in the great Baltimore mine ; see the glittering coal reflecting ail hues of the rain-bow, consider how necessary to human happiness, to prosperity; even to existence. See the inexhaustuble stores, the boundless deposites, and say if another spot so rich and beautiful exist on earth. Wyoming Valley is about twenty miles in length, and may average four miles in width. At a greater or less depth all this has layers of coal beneath the surface; that would be eighty square miles, or 51,200 acres; but that which lies beneath the River or River flats will not le worked for two centurics; this takes up half from present use or present value, leaving about 26,000 acres. But experience has shown that, generally, on the east side of the River, mines near the mountains, say a strip $1 \frac{1}{z}$ miles wide from the lower to the upper part of the Valley, the coal lies much more accessible, level, free and easy to be raised. Why, gentic-
men, a year ago, J. J. Λ stor might with his single purse, have monopolized the coal in Wyoming that will be worked for the next hundred years. It is tno late now: Nu: merous capitalists have been purchasing; and lands have risen an hundred per cent. Hundreds are lots that could have been bought for 15 or 20 dollars an acre, now sell for from 30 to 40 ; and in particular in: stances have run up to 80 or 100 an acre. But a great deal is yet in market, and prices are not yet up to one fourth the intrinsic value of the land. Take these facts; the veins of coal most accessible are from 12 to 24 feet in thickness, the average 18 feet. Now a culic yard is estimated to weigh a ton. An acre then may be fairly calculated to yield $30, C 00$ tons of coal. How much decper, veins would add it is haraly necessary 10 inquire. Many persons in Schuylkill, who own weins rent them out, receiring as rent 50 cents a ton for the coal taken. At that rate an acre of coal land would be worth 15,000 dollars. Where is the ermrin this. Yet coal lands are selling in Wyoming for from 15 to 20 dollars an acre, richly worth 500 taking all chauces; and a most adrantageous investment of capital at 100 dollers per acre.

The Canal to tide from Columbia is push: irg on to completion. Coal then may be tuken by that route to New-York or Boston, at a price not to exceed five dollars a ton, estimating coal in the mine at 40 cents a ton. The bill on its passage in Pennsyl-vania,-already appropriates six hundred thousand dollars to the north branch Canal: Presently the way to the little and great lakes, to Seneca, Cayuga, Erie and Ontario, will be open to Wyoming Anthracite, and without a competitor. The Morris and Lehi Canal are now jusi completing too, within sisteen miles of the seat of Wyoming, and a law has just passed authorising the Lehi Company to make a Railroad to the Valley, which will, probably, forthwith be donc. Coal can then, by that route, be dea livered in New-York at $\$ 4.80$ cents. Bear in mind that Pittston, at the junction of the Lackawanna with the Susquehanna, not surpassed in deposites of coai, is only 106 miles from the Park-only 106 miles on a straight line from: your City Hall! A Rail. road from Newburgh and a Railroad from Elizabethtown point, are projected to meet at Stroudsburgh, and thence to extend to Pittston. By these, cars of coal could go from the mine either to Newburgh or your city in a day. -

Oow comes the main object of this communication ; why is not your city awakened to the importance of this matter? why is not a bold and decisive effort made to parti-
cipate in the coal trade? Behold how Western Philadelphia has grown up uncer the wholesome stimulus and nutriment of her coal business.
New-England capital and enterprise would find in Wyoming sources of great public usefulness, and individual wealth. Wyoming is just opening to the world. Notibing can retard its prosperity. Bu: those who mean to share in the exci:ing scenes of speculation that are about to take place this summer, while thousands and tens of thousands will be won, should come with long purses and cool heads. This matter of wild speculation is to be regretted, but inevitable-the prize is too rich, not to be struggied fo:.

To the Editors of the R. R. Journal:
on the retardation of the velocity OF STEAMBOATS IN ASCENDING RAEIDS. by m. R. stealey, cif. eng., franisFORT, KY.
It is a well ascertained fact, that a steamboat having a given power, capable of propelling at a certain maximum relocity on still water, cannot ascend a ropid where the velocity of the current is mearly equal to the speed attained on still water, and that the progress of the boat in ascending a rapid added to the velocity of the current, is not as great as the velocity of the boat on an expanse of water void of motion; and consequently, that the speed of the boat in stemming a current, is retarded in a greater ratio than the opposing velocity of the current would seem to indicatethere is then evidently some new opposing or retarding force to be encommtered in ascending a rapid, in addition to that of the current; and it is believed, that the greater part, if not the whole of this force, is attributable to gravity.

In elucidation of this position, it may be observed, that when there is motion in the water occupying the channel of a river, there is also a proportionate descent in its surface in the direction of that motion, or current; one is a necessary consequer.ce of the other, each being to some extent modified by local causes. It will then be perceived, that the surface of water running in an open channel assumes the form of an inclined plane, upon which, when a boat ascends, it not only encounters the resistance of an opposing current, but also that which gravity opposes to the ascent of bodies on inclined planes.

Having ull the necessary data given, it would be easy to calculate the amount of power, necessary to overcome the gravitating force of a body on an inclined plane, by the ordinary formula, applicable to tive motion of bodies on stationary planes.The surface of a rapid, however, is not al
stationary, but a moveable, plane; and it bucomes necessary from this cause, to adop an essentially different method of calcula tion from the forms, in order to arrive at the true result. And it may be ohserved, that the omission to draw this distinction between stationary and moveable planes, has hereiofore been the catuse of underrating the resisting furce under consideration. If a body moving on a fixed plane, possesses sufficient power within itself, to propel it along the plane, at a given velocity, the amount of power expended by the body, is precisely the same as would be expended, when the plane moves with the same relocity in an opposite direction, and the powers of the borly is exerted in maintaining a fixed position in reference to any stationary object bayond the plane. And generally, the re sistance to the motion of a body traversing a plane, and the power expended. in order o orercome that resistance, should be estimated by the resistanco which the body raverses on the plane, whether the latter is moveable or stationary.

It will be readily perceired from the precelling remarks, that in the case of a steamboat ascending a rapid, an instance presents itself when the plane is moveable, and the body by its inherent power exerts a force to pass along that place. For the sake of illustration, we will assume a ra pid, the ratio of inclination of which is 1 foot in 500 , with an uniform velocity of 500 fect per minute. On such a current, a body left to itself, woull be carried down 1 foot of perpendicular height, in each minute of time. Now, if this body can exert a force capable of moving itself up this plane, at a relative velocity equal to the velocity of the plane or current,-the body will then be stationary in reference to any fixed object on the shore; but it is evident, that at the end of each minute, it will be in a position on the plane one foot ligher, than the posi tion it occupied on the plane at the beginning of the minute, because by the hypothesis, the current would have descended through that perpendicular height in this space of time. Here then are two forces acting in opposition to each oiher. One, the current exerting a force equal to taking the toty downward throngl one foot in one minute, and that exerted by the body in maintaining a stationary position; the latter counteracting the former they are in equilibrio, and consequently equal-and, therefore, although the floating body or boat has actually remained stationary, it has virtually expended power sufficient to have raised itself through one foot of perpendicular space in one minute of time.

I'he powfer expended therein, overcom.
ing the force of gravity on moveable planes or currents, should be estimated, not by the actual height to which the floating body of boat is elevated, as ascertained by reference to some fixed object beyond the plane, or on the shore; but by the virtial height measured on the piane itself; and this, for any given time, will be estimated by the relative distance traversed, and the perpendicular elevation due to that distance by the ratio of the inclination of the plane.
Let $\mathrm{W}=$ weight of the boat in tons.
$\mathbf{V}=$ virtual velocity of the boat per minutes.
$\mathrm{H}=$ Height of the plane.
$\mathrm{L}=$ Length.
$\mathrm{T}=$ Time of ascent.
($15=\mathbf{N}$ o. of tons raised 1 foot high in 1 minute equal to 1 horse power) and $\mathrm{N}=$ No. of horse power necessarily exerted at each instant of time, to overcome the graviting force, and $\mathbf{A}=$ the aggregate mechanical force expen !ed in the time \mathbf{T} expressed in horse power acting for 1 minute.

$$
-\frac{W V^{2}}{15 \mathrm{~L}}=\mathrm{N}
$$

or making J the inclination of the plane, we have
$\frac{\mathrm{WV}(\sin . J)}{15}=\mathrm{N}$. and $\mathrm{N} \mathrm{T}=\mathbf{A}$. In the foregoing inrestigation, the current is assumed to have uniform velocity; when the rapid is long and deep, however, the velocity of the current will be accelerated. The greater the depth of water on the rapid, and the more direct its course, the searer the accelerated motion will approxiinate to the velocity assigned by theory to the inotion of a body rolling down an itaclined plane-and the less the depth of water, and the more sinurus the channel, the more closely the current will approach to an uniform velocity. In fine, the accelerating force is so much dependent on, and modified by local circumstances, that no fromula admitting of general application; can be giren, from which the accelerated velocity can be deduced, and it can therefore on!y be ascertained by observation. When the motion is accelerated, the formula above given ean be applied, by dividing the rapid into sections, considering each separately, and thence deducing a general result.

The following statement from the New. York Evening Star will give a good idea of the unocertainty of Railroad travelling in Winter. We shail be greatly obliged to those in charge of other Railroads if they will write and give us a statement of the number of days delay caused by the severity of the weather, on the roads under their charge. [Editors Railroad Journal.]

From the New-York Evening Sur.
Winter travelling-Railroads.-The
facilities of winter travelling, and the skill and energy in using them have so much in. creased, that fewer interruptions have taken place on many of our public roads this winter than has heretofore existed during the same season of the year. A short notice of some of the facts may be interesting.
The improvements in snow ploughs and scrapers have demonstrated that travelling over railroads can be continued in winter with nearly the same certainty as in the mild season of the year. The snow and ice during the last winter, though less than the preceding season, was about the same which is usual on our winters-still the impediments to travelling over. railroads was overcome in a great degree, and they were very little interrupted between the commencement of the winter and the opening of the spring.
The transportation of goods and passengers over the
Lowell Railroad was stopped only twn days. Boston and Worcester Railroad do. Boston and Providence do. one day. Camden and Amboy do. part of a day. New-Jersey Utica and Schenectady do. one day. Mohawk
How much the Pennsylvania and South. ern roads were interrrupted is hot at present known to us, but it nay fairly be inferred that the general improvements alluded to, have produced similar results thera.

From the Long-Istand Star.

Williamsburgh Branch of the L. I. Railroad. Why not let the Locomotive come into Brooklyn? -We understand that the work on this branch bas been commenced. It is intended that the locomotive, without any delay, shall take the passengers from Bedford to the ferry. The Corporation of Williamsburgh have been wisely regardful of the interest of their city, in granting this permission.

With care in managing the engine, and proper precautions to give timely notice of its approach, we know not why all the expense and delay of the horse establishment at Bedtord my not be avoided, and the current of country travel be continued in its accustomed channel.

The subject of permitting the engine to come into Brooklyn, is one of most pressing importance. It should immediately receive the attention of the Corporation of Brcoklyn and of the citizen 3 .

If public opinion were tested on the subject, we have no doubt that the engine would be parmitted to come into the city so as to give passengers ready and rapid access to the ferries. Different circumstances exist now from those attending the commencement of the Company's operations, and these circumstinces require prompt action and a ready adaptation of means to the preservation of the interests of the city.
Several routes have been proposed in additiun to the present track upon Atlanticstreet, by which a safe and convenient elltrance could be made into the city. It has been suggested that the Redford road as Iately laid out, continued to any point within the city, would secure all the adiantages required.

Let ready means be taken by the Common Council for securing a full examination of this subject in as short a time as possible. There is no subject at present agitated which so much demands attention!

Commerce ant Navigation of the United States.-The statements of the Commerce and Navigation of the United States, annually prepared at the Treasury Department, have just bsen completed for the year ending the 30th of September, 1835. 'Tne following is a summary of the whole, report. ed to the Secretary by the Register of the Treasury :

The imports during the year enting on the 30th September, 1836, have amounted to $\$ 189,980,035$, of which there was imported in American vessels $\$ 171,656,442$, and in foreign vessels $\$ 18,323,593$. The exports during the year ending on the 30th September, 1836, have amounted to \$123, 663,040 ; of which $\$ 106,916,680$ were of domestics, and $\$ 21,746,360$ of foreign articles. Of the domestic articles, $\$ 30,845$, 443 were exported in American vessels, and $\$ 26,071,237$ in foreign vessels. Of the foreign articles, $\$ 16,232,306$ were exported in American vessels, and $\$ 5,463,994$ in foreign vessels.

1,2055,234 tons of American shipping entered, and $1,315,523$ cleared, from the ports of the United States. 630,218 tons of foreign saipping entered, and 674,721 cleared, during the same period.

The registered tonnage, as corrected at the office, for the year ending oa the 30th September, 1838, amounted to 897,774 The enrolled and licensed tonnage amounted to
And the fishing vessels to
Tons
872,023
111,304
$\overline{1,882,102}$
Oithe registered tonnage, amount. ing, as before stated, to

897,774
There were employed in the whale fishery

144,630
The total tonnage, of shipping built in the United States, during the year ending 3ith Sep. tember, 1833, amounted to -
Registered vessel;
43,645
Enroiled do
66,982

Tons

113,6:7

From the Osweno Advertiser.

the gratit western railroad coipany.
This is the style of the new company formed in Upper Canada under the sanction of the Provincial Parliament, from the London and Gore Railroad Company.The Parliament has also passed an act, grantiug, by way of loan to the company, the sum of $\$ 500,000$. The work is to be commenced with the opening of the Spring. The line of road is from Hamilton, (on Burlington Bay,) at the head of Lake Ontario to Point Edward, at the foot of Lake Huron, and opposite to Fort Gratiot. The distance is 132 rniles. From London we understand a Southern branch, along the Thames, is to be extended to Chatham, the head of Steam!roat navigation on that
river. Thence is every facility for Steamboat communication with Detroit.

There is no Railroad on the continent of more value or likely to be productive of greater results than this. It will effect a communication between New-York and tho reinote West, with which no other route can contend. A reference to the map will satisfy any one, that by this route a passage can be accomplished from New-York to Fort Gratiot, in Michigan, in 40 hours ! and in 42 hours to Detroit!! When the Michigan Railroad, across the Peninsula, is completed, the distance between NewYork and Chicago will be only fiom 55 to 60 hours! This may be casily shown:
From New-Yerk to Albany, by
steamboat, 10 hours.
" Albany to Oswego, by railroads,

10 •
" Oswego to Hamilton, by steamboat,
Hamilton to Detroit, railroad,

10 *
42 "
" Detroit to Chicago, by R. R. and S. B., about

15 " 57 .

From the Patsburgh Working Mens' Advocate. trade of the central parts of the UNited states.
Few persons, ceen unongst those most interested, unles3 they have very carefully attended to the ranges of the river vallies on each side of the Appalachian system of mountains, can have formed an adequate idea of the peculiarly advantageous position of Pittsburgh. But from some recent evidence we are inclined to believe that more correct views have been taken of the commercial value of this city, in New-York, than has been taken in Philadelphia.

trade of the west.

The favorable position of Baltimore, in reference to the trade ald intercourse with the West, is strikingly exemplified in the following paragraph from the New-York Express:
"I'here is a plan on foot for organizing a Steam Freighting Company, the object of which is to transport goods from this city to Baltimore. It is stated that goods could be shipped by this route and reach Pittsburgh in one hundred hours. This would be an immense thing for the West. The plan is already befice the Legislature of this State for a charter."

The preceding was cut from a Baltimore paper, we now place it before those most concerne.t. The Baltimore editor says"This will be an immense thing for the West." So it would, bui it would be a much more vast thing for the East. By a calculation on data, we boldly say of the sourdest kind, there will ia 1850 exist with. in that part of the United States westward of the great Appalachian system of mountains upwards of thirteen million of inhabitants. It will, of course be a boon of no small value for any city to be the principal Atlantic depot or emporium for the trade
of such regions. This is a subject we shall take care not lose sight of, tut at present we confine curselves to Pittsburgh.

Few who have heard the name of this city, but who know that it occupies the ground around the junction of the Monongahela and Allegheny rivers, but comparatively few are acquainted with the remarkable features of these two stieams. The Allegheny has ita remote soarces in NewYork at N. lat. $42^{\circ} 20^{\prime}$, and with large inflections but with a general course a very little west of south, and receiving most of its tributary waters from the eastward and from the mountains.

The Monongahela has its highest sources in Virginia, at about N. lat. $3 S^{\circ}$ and 40^{\prime}, and pursuing so nearly a due northern general course, that a meridian line passing through Pittsburgh. passes also very nearly over the extreme fountains of this river.

From the preceding elements it is seen that the two constituent streams which form the Ohio river at littshurgh, flow almost directly towards each other. It may be here remarked, that the mountain structure by no incans terminates with those most prominent rilges or chains to which by pre-eminence has been given the title of mountains: and again, that the streams, particularly in Pemsylvania, Maryland and Virginia, which rise in the $A p$ palachian yalleys, as soon as they assume the size to deserve the name of rivers, flow either along those valleys or almost at right angles to them. Any person may satisfy themselves of the correctness of these remarks by examining on a map the gencral course of the Delaware, Susquehama, Potomac, and James rivers. In none, however, of those Atlantic streams are these features in physical geography more striking than in the general courses of the Allegheny river. At their junction the united streams under the name ol' Ohio apparently continues the general course of the Monongahela, which is not by any means the casc. 'The general course of the latter river from its source to the mouth of 'Turtle Cteek, eight miles above Pittsburgh is maintained, but here ia obedience to the natural laws of the rivers of this region it inflects to North-West, at right angles to the general range of the mountains, and pursuing that course joins the main branch find the now combined volume piereing a real chain of the Appalachian continues a northwestern direction to the in.flax of Beaver river, below which it gradually curves until assuming the general course of the principal constituent stream, the Allegheny, flows upwards of one hundred miles very nearly parallel to the Monongahelo, but in a directly opposite course.
From the sources of the Monongahela to within eight miles of its motith, the dis tance between it and Ohio is about a mean of fifty miles, and the intermediate space traversed nearly centrically by a ridge, which though not usually regarded as such. is in fact an Appalachian spine, which is again continued between the corfluents of Allegheny and Beaver. The city of Pittsburgh therefore, occupies a position in one of the river passes, and the only deep gorge
in existence from the mountain into the interior of the continent between the sources of the Allegheny to those of the rivers which contributed to form the Mobile and Appalachicola.

In fine, examining the combined fentures of this projection, with the relative geography of the whole region in which it is situated, it may at once be pronounced as unequalled. It is remarkable, that in the struggle between Pbilitdelphia and Bal timore for the western conmerce, Pitts burgh may remain tranquil as regards the contest. Let the Atlantic emporium be on the Delaware, or on the Chesapeake, or Putomac, or let emporias be formed on all these, which must indeed be the case, still the Ohio at Pittsburgh must receive the largest share of the transit commerce.
Again, the advantages of this remarkable position, are not to be bounded by the Ohio trade, as it is just as completely secured by nature to form a point on the great line ol lake trade, as it is for that of the Mississippi basim. Let this line be completed by whom it may, and let its Atlantic termination be where it may, the line will fullow the great gorge of the Chio from Pittsburgh to Beaver, and thence by the latter, and thence to Cleaveland. Those who are most ready to follow the suggestions of nature will profit most, and let it be known to all whom it may concern -that the laws of uature are like those of the Medes and Persians.

Frum the Owego Adveriser.

W The Provincial Parliament of Upper Canada was prorogued on Saturday, the 4th March, instant. 152 bills were pazsed this session in the Lower House, and 107 in the Legislative Council. This looks tike doing business. The Lieut. Governor, in his speech, on elosing the session, highly compliments both brancnes of the Legislature, on the harmony and mutual good leeling which has prevailed between them. On the subject of Internal Improvement, he says:
"'lhe next measures of this session to which I deem it proper particularly to advert, are those which relate to the Internal Improvement of the Poovince, such as the completion of titat n, ble uderi:aking, the Welland Canal:
'I'he formation of the Great Western, and also of a Nurthern Railooad:
The opening of the Navigation of the River 'Trent:

The survey of the Ottawa:
'The general inprovements of the roads, (a portion of which are to be MacAdamized, and various grants for the formation of harbors, \&c."

From the S_{p} ingfiel. (Mass.) Juurnal. balleoads.
The annual reports from the difierent Railroad Corporations in this State, have been submitted to the Legislature and printed. The Western Railroad has been sur veyed and located nearly to Connecticut River, and double the experimental surveys originally deemed necessary, west of the River, have been made. The distance
from the freight depot of the Boston and Worcester Railroad in Worecster, to the Connecticut River is 54 miles-thence to the State line, West, 63 miles, making the entire length of the road 117 miles. There is no grade between Worcester and Connecticut River exceecing 50 feet per mile, and the entire line is free from short corners. The line from East Brookfield to Stony Hill in the west part of Wilbraham, is about 27 miles, and pursues the general course of the Chicopee River. The first section, from Worcester to Brookfield, is under contract and the work commenced, and the other portion will be ready for grading on the opening of the spring. Although the route from Stony Hill to Connecticut River, (about 7 miles) is not yet officially located, it is generally understood that the "Garden Brook rqute" is approved of as the best, and that the road will strike the river just above Springfield Bridge. Locomotive power will be sufficient for any part of the road, west as well as east, of the River. Receipts of two installments, $\$ 300, \mathrm{C00}$; interest on do. $\$ 2,899$. Expenses to January 14, Engineer Department, including survey, $\$ 30,319$ 36-incidental expenses, $\$ 9,75797$-paid for land damages, $\$ 220$.

TRANSACTIONS OF THE INSTITUTION OF CIVIL ENGINEERS.
III. an account of some experiments on the exparsion of water by heat. by the late t. tredgold, m. inst. c. e.
The expansion of water, by increase of temperature, is one of those experimental subjects that has not received the degree of attention its amportance would lead us to expect; but; as even the smallest addition to any part of knowledge contributes towards its increase, I have ventured to send this nite for the consideration of the members of the Institution.
I began by a series of trials with a thermometer, containiug water instead of mercury, to find the point at which the volume of water is a minimum, by cooling successively down to 32° with snow and water, and observing the decrease of bulk, which continued till the temperature was 40°; the rise again was then sensible. In like manner by cooling, the decrease continued till the temperature was about 39^{c}, when the rise became sensible. So small and uncertain, however, was the rate of increase or decrease, that we may practically estimate 40° as the temperature corresponding to the maximum density of water.

Having marked the tube at the point when the temperature was 40°, and also another point within the range of the tube, I divided the distance between these, into four equal parts. With this precaution I immersed the water themometer, and a mercurial one, in a vessel of hot water, and as it cooled compared the temperatures as the water contracted to each division on the tube. The nean of several trials was as follows :

Temp. 112°	4th or upper division,	
-	104°	3 d.
-	90°	2d.
$=$	$\mathbf{7 4} 4^{\circ}$	1st division.
$-\quad 40^{\circ}$	maximum density,	

I intended to repeat the trials and to correct these numbers; but the cold weather commenced, and instead of attending to the higher degrees of heat, my attention was directed to the lower ones. The bulb of the thermometer was immorsed in a mixture of snow and salt, and a mercurial one placed beside it, but I found the two were not alike affected by the mixture ; the water thermometer rose rapidly till it arrived at, or very near to the third division on the tube, when it exploded. At the moment of explosion, the central part of the mass of water, and that in the tube were both perfectly fluid, and the fragments of the bulb were lined with a thin coat of ice, beautifully crystallized. The fractured bulb presented a singular appearance, the whole being cracked into very fine gores, somewhat less than one-twentieth of an inch in breadth at the middle, and exceedingly regular.

The temperature of a mixture of snow and salt is - 5°, or 5 degrees below zero; hence, if the expansion below 40° had been the same as far above 40° the thermometer ought not to have risen quite to the second division; but, as it rose very nearly to the third division, it seems that the expansion below 40° is much greater than at a corresponding number of degrees above 40°; and that the common opinion is not quite correct in this respect.

I have not had leisure to follow up these trials, for they consume an iminense quantity of time ; but from those made by others, and checked by my own, I have deduced a formula for calculating the expansion at any temperatnre.
If we consider the force with which matter resists the entrance of heat to be inversely as the square of the distance of its elementary atoms; then, the bulk being as the cube of the distance, the resistance to heat will be inversely as the square of the cube root of the volume, and the increments of expansion by heat directly as the $\frac{2}{3}$ power of the volume. The sum of the increments will, therefore, be as the $\frac{5}{3}$ power of the volume, and the equation must give zero at 40°; hence it will be A $\left(t-40^{\circ}\right) \frac{5}{3}=$ the expansion, where d is a coefficient to be found by experiment, and t denotes the tem. perature.

The calculation is easy enough by logarithms, for, $\log A+\frac{5}{3} \log (t-40)=\log$ of the expansion;

$$
\text { or } 3\left(\frac{\log \text { expansion }-\log A}{5}\right)
$$

$=\log \left(t-40^{\circ}\right)$.
The formula in the last form applies to my experiment, and becomes
$3\left(\frac{\log \text { expansion }+3.09555}{5}\right)=$ the \log
($t \sim 40$), the expansion at 112° being considered unity; hence the comparison is easy, and is as under.

The coincidence is as near as we could expect, considering how difficult it is to insure perfect accuracy in the observaticis:
but, before we proceed further in experiment, it is natural to ask how it will agree with others aiready made.
The expansion of water from 49° to 212° has been found to be $0 \cdot 04333$, its bulk at 40° being unity. By substitutiug this value in the formula, we find the coefficient A, and have the rule $\frac{5}{3} \log (t-40)+(-5$. $910909)$, or its equivalent $\frac{5}{3} \log (t-40)$ $-5 \cdot 089091=$ the log of the expansion.
The formula being in this case derived from a probable hypothesis, it is more likely to express the true expansion, than one made oat merely to fit a short range of erperiments. The absurd conclusions which may follow from an experimental rule are avoided; and that such conclusions do arise

Temperature.	The expansion.		Bulk by formuli.	Temperature.	Expansion by formula.	Bulk.
	By experiment.	By formula.				
40°	0	0	$1 \cdot 0000$	$40 \%^{\circ}$	$0 \cdot 1484$	1484
64°	$0 \cdot 00133$	$0 \cdot 00162$	$1 \cdot 00159$	$830{ }^{\circ}$	0.5155	1.5155
102°	0.00760	$0 \cdot 00791$	$1 \cdot 0079$ i	$1030{ }^{\circ}$	0.7610	$1 \cdot 7610$
212°	0.04333	$0 \cdot 04333$	1.04333	1171°	$1 \cdot 0000$	$2 \cdot 0003$

In my own experiments, the formula was in defect in the temperatures between 40° and 112°; here it is in excess; the diffe. rence may arise from the expansion of the glass in my trials. According to this formula, water will expand to doubis its bulk at 40° by a temperature of 1171 degrees. What would be the forec of the steam to confine it to the liquid state at that temperature? There is abundant scope for curious research in tinis matter: it is one where speculative opinion feels the want of experience.
I am no: aware of there being any experiments on the expansion of water above
out of formulæ made to fit a particular set of experiments, we have an evidence in the case under consideration; for Dr. Young* has given a formula for calculating the expansion of water, which becomes negative w.len the temperrature is 540°; indicating that water would decrease in bulk, by increasing its temperature above that point; this is a cirumstunce too improbable to guide us in any practical application of the fromula.

The annesed Table shows the bulk and expransion for a fuw temperatures.

* Lectures on Natural Piilosopny, Vol. II. p. 3 . 2 .

the boiling point. When I find an opportunity, I intend continuing the series as I can, asiny something to color the distilled water, for facility of observing; and I trust soon to be able to communicate some account of my progr sis.*

Abstract

* It is not cestrinly knowa whether Mr. Tredgold ever followed out the considera. tion of this interesting subject ; but, as he made no further communication thereon to the fustitution, and his premature death took place soon after the date of this paper, it seems probable that his experiments were never resumed.

IV. particulars of the cunstruction of the lary bridge, near plymouth. by mr. J. m. rendel, corr. m. inst. C. E.

As this bridge is founded on a shifting sand, in a rapid tideway, and presents some novelties in the design, it is hoped that an account of the methods successtully adopted for laying and securing the foundations, and some particulars of the superstructure, will be acceptable to the members of the Institution.

The Lary, over which this bridge is built, and from which it derives its name, is the estuary of the river Plym, and connected with Plymouth Sound by Catwater. The general width of the estuary is half a mile, but at the site of the bridge the shores abruptly approach each other, and form a strait between 500 and 600 feet wide.The tide rushes through this strait with a velocity of 3 feet 6 inches a second, und flows on an average 16 Ceet perpendicular. The depth at low water is from 5 to 6 feet.
By boring it appeared that the bod of the river was sand to the depth of 60 feetthe lofty lime rock on each shore dipping abruptly from high water, and forming a substratum nearly horizontal acress the strait. The sund in the wide parts of the
estuary above and below the bridge is fine; at the site of the bridge the current leaves only the coarser kind ; but this is not sufficient to resist the heavy land floods, to which the Plym is liable, and it frequently happens that the bed of the river is scoured away several feet in depth ir winter and refilled in the summer.

When called on by the Earl of Morley, who built this bridge at his sole expense, to prepare a design, I furnished one on the principle of suspension, spanning the whole width of the strait, and having the towers on its rocky shores. Our president* was consulted by his lordship, and the plan being approved of by him, an act was obtained in the session of 1823 authorising its erection; but on the commencement of the works, difficulties arose which led to the aband nment of the suspension bridge and the ultimate adoption of the present one of cast iron.

The drawings (see Plates I. and II.) which accompany this paper, will, I trust, give a general idea of the finished structure. The arrangement of the design differs materially from oher works of a siluilar nature : first, in the masonry of the piers finishing at the springing course of

[^22]the arches; secondly, ia the curvilinear form of the piers tind abutments; and thirdly, in the employment of elliptical arches. The adoption of these forms for the piers and arches in unison with the plan of finishing the piers above the springing course with cast iron instead of masonry, has, as I had hoped, siven a degrec of uniform lightness, cornbined wih strength, to the general effect, unobtainable by the usual form of straight sided piers carricd to the height of the roadway, with flat segments of a circle for the arches.

Haviug given these particulars of the situation and design of the work, I will now add some information as to the proportions of the several parts of the structure.

The centre arch is 100° feet span, and rises 14 feet 6 inches; the thickness of the piers, where smallest, heing 10 fect. The arches adjoining the centre are 95 fect span each, with a rise of 13 feet 3 iuches. The piers taken, as before, are cach 9 feet 6 inches thick. The extreme arches are each sifeet span, and rise 10 feet 6 inches. The abutments are in their smallest dimensions 13 feet thick, forming at the back a strong arch abutting against the return walls to resist the horizontal thrust. The northern abutment forms a considerable projection, which was deemed advisable in consequence of the obliquity of the adjoining wharf below the bridge; as well as to afford the noble proprietor an opportunity of building a toll-house on extra-parochial ground. The ends of the piers are semicircular, having a curvilinear batter on the sides and ends formed with a radius of 35 feet, and extending upwards from the level of high water to the springing course, and downwards to the level of the water at the lowest ebb. The front of the abutments have a corresponding batter.

The parts of the piers and abutments which he under water at the lowest ebbs, are composed of 2 feet courses of masonry with ofistets, as will be better unlerstood by reference to the drawing. (Sce plates)

The roadway between the abutments is 24 feet wide, supported by 5 cast iron equidistant ribs. Each rib is 2 feet 6 inches in depth at the springing, and 2 feet at the apex by 2 inches thick, with a top and bottom flange of 6 inches wide by 2 inches thick, and is cast in 5 pieces; their joints, (which are flanged for the parpose, are convected by screw pins with tie plates equal in length to the widh of the roadway, and in depth and thickness to the ribs; between these mecting plates the ribs are connected by strong feathered crosses, or diagonal braces with screw pins passing through their flangez and the inain ribs.The springing plates are 3 inches thick, with raised grooves to receive the ends of the ribs, which have double shoulders, thus:

These plates are sunk flush into the springing course of the piers and abutments,
which, with the cordon and springing course, are of granite. The pier stand. ards and spandril fillings are feathered castings, connected transversely by clagonal bances and wrought iron bars passing through cast iron pipes, with bearing shoulders for the several parts to abut against. The roadway bearers are 7 inches in depth by $1 \frac{1}{2}$ thick, with a proportional top and bottom flange; they are lastened to the pier standards by serew pins through sliding mortices, whereby a due provision is made for either expansion or contraction of the metal-the roadway plate , are $\frac{7}{8}$ of an inch thick by 3 feet wide, connected by flanges and screw piaz, and project 1 fost over the outer readway bearers, thus forming a cornice the whole lenoth of the bridge.

Atter what has been stated of the character of the river and nature of its bed, it is unnecessary to remark that extreme calltion was indispensable in preparing and secaring the fcundations.

We conmenced by driving sheeting piles to a deptin of 15 feet around the whole area of the base of the piers and nisutments. These piles are of beech plank, 4 inches thick, having their edge grooved to fit thus :

and were driven in double !eading frames fixed to temporary guid : piles:-great attention was paid t, have them perfectly close. When pitched they were from 16 to 18 feet long, properly hooped and shod with plate iron shoes, weighing on an average 2 lbs , each. These piles were diven with a east iron weight of 450 lbs . worked by seven or eight inen in what is termed a ringing engine. They were driven several fect below low water by means of runches.

As these pilings were carried on, the sand was exervated from the space they erclosed to n depth of 5 or 6 feet helow the general level of the river, and from 9 to 10 feet below the level of low water of ordinary tides. 'íhese excavations were effected by means of sand spoons of the follow ing construction. Strong canvas bags, capable of containing about 2 cubic feet of sand, were firmly secured to elliptical rings of wrought iron, cach ring having a socket to receive a long wooden handle in the di rection of its transverse axis, and a swivel handle through its conjugate axis: Stages were fixed on the leading frames in which the sheeting piles were dnven, at about 2 feet above low water, and each spoon was worked by three men in the following man-ner:-a rone was fastened to the loop in the swivel hande of the spoon frame, one end of which was passed over a single block fixed a few fee: abore the level of the stage, and the other cud was held by one of the workinen, whose business it was to pull the spoon when at the bottom towards him, while a second pressed it downwards and guided it, by means of the long wooden handle, till it was thought to be filled; the third man, who was stationed at the rope which worked through the single block, then hoisted the spoon to the stage and discharged its contents into a shont, which
drained into the river. Afer the laborers had become used to the work, these operatims were carricd on with considerable despatch, favorable ides generally affording from 3 to 4 hours' work per day.

As these excavations 'proceeded, the ground was piled with whole timbers of Farge Norway and small sized Memel, and as many of beech as could be procured of the desired length; these piles, being properly shod and hooped, were driven from temporary stazes, fixed above high-water level, by weights varying, according to the size of the pile, from 10 to 15 hundred weight : they were disposed in five rows, in the widh of the foundations, from 4 feet to 4 feet 6 inches from centre to centre, and were driven till they did not sink more than one inch with cight blows of the 15 hundred weight driver falling from a height of 25 feet, and then received twenty additional strokes with the same weight and fal'.

These piles, none of which were less than 35 feet long, were driven to the level of the stage, and then punched to their proper depth. The punches used for this purpose were made of sotnd and well seasoned elm. hooped throughout their length, and having at their lower ends a strong cast iron ring, about 18 inches wide; this ring had a thick partition plate, cast in the middie of it; width, which separated the head of the pile from the end of the punch; the lower end of the ring was cast a little conical, and the pile heads were made to fit it accurately thus,

By this means the pile heads were but little injured, and the loss of momentum occasioned by the intervention of a punch was reduced to a mere tifle.

The next operation was to cut off the bearing piles to their proper depth, nnd to pave and grout the spaces between them. The usual mode of cofferdams was maniCestly inapplicable to such a bed of sand; I therefore, in an carly stage of the works, proposed to the contractors that the pile heads should be leveiled, and the spaces between them paved ly means of a diving bell. T'o save expense, this bell was made of wood, and with the necessary machinery was finished and put to work within six weeks from the time it was determined on. With it.s assistance the works were carried on with expedition and success. When in operation it esntained two men, who, being provided with the necessary instruments for cutting off the piles, paving the spaces between them, $\& \mathrm{c}$., continued at work for four hours, when thoy were relieved by two oners.

As much depsanded on the regularity with which the pile heads were levelled, great care was bestowed on this part of the work. It was accomplished in the following manner:- the four angular piles of each foundation being cut as low as the water would $p e r m i t$, were accurately levelled from a plug on the shore, to ascertain how much each had to be reduced to bring it to its proper level; on each of these piles
was marked the portion remaining to be cut by the bell men, which being done, all the remaining piles were levelled from them, by means of a spirit-level, accurately ad. justed in a piece of wood, sufficiently long to be applied to three piles at a time. The paving between the pile heads was performed in an equally simple and satisfactory manner.
As this econominal bell answered evary required purpase, a general description of the whole apparatus may prove acceptable.

The internal dimensions of the bell were 5 feet .6 inches in length, 4 feet 6 inches in width, and 5 feet in height; the sides, ends, and top were made of two thicknesses of $1 \frac{1}{2}$ inch well seasoned clm board; the inner case was constructed with its joints parallel to the top and bottom or mouth of the bell, whilst those of the outer one were vertical, or at right angles to the inner joints; the top joints were crossed in the same manner as the sides; all the joints had a slip of flannel, saturated in a composition of bees' wax, laid between them, and were dowelled together and set as close as possible by means of screw clamps, \&c., the sides were rabbeted to the end, and the internal angles were strengthened with brackets. The whole surface between the inner and outer case was covered with double flannal, saturated as just described, and was then connected together by a number of wooden pins, dipped in tar and tightly driven; the top was perforated with six holes of 6 inches diameter each, in which was firmly fixed a corresponding number of strong lenses set in white lead; a hole of 3 inches diameter was made in the centre, in which was fixed a brass pipe with a selew to attach the air tube; four hoops of wrought iron, two internal and two external, were screw-bolted together through the sides and ends of the bell : internal and external cross lacings were also screw-bolted to those hoops, and to the sides and top of the bell. In these lacings, the chains by which the bell was suspended, were fixed in strong iron cyes, which passed through the top of the bell, and were riveted to the inner lacings. All the screw-bolts were driven with tarred oakum, and every precaution was taken to render the whole airtight. The bell thus finished weighed about 1 ton 10 hundred weight, but it required from 5 to $6 \frac{1}{2}$ tons to sink it, and overhaul the ropes by which it was suspended ; cast iron plates, from $1 \frac{3}{4}$ to 2 inches in the thickness, wore therefore hung externally round its sides and ends, till it was sufficiently loaded to sink with steadiness in about 25 feet of water.

The bell was provided with two movable seats and a foot-board for the divers, und at top long boxes were fixed, in which their tools were kept; it was supplied with air by a double acting force-pump, the cylin. ders of which were 7 inchee diameter in the clear, the pistons making a 14 inch strokc. This pump was generally worked by fur men, and made, on an average, according to the depth of water and run of the tide, about eight double strokes per minute.

Around the foundations on which the bell was to be employed, temporary piles were
driven, and cut off level about 15 feet above high water, and cross braced ; on the top of these piles whole hicmel tembers were firnly fixed, care being taken to have the side beams parallet to each other. A strong frame, equal in length to the dis. tance betwcen the parallel beams of the above stage, and about 4 fect wide, mount ed on four small cast iron flanged wheels, traversed on an iron railway lad on the beams; this frame was moved on the railway by means of a rope connected to the sides, and worked by two common winches, one fixed at each end of the stage; on the beans of this traverse frame a railway was also •laid, on which worked a carriage, mounted in a similar manner, and sufficiently large and strong to carry a purchase machine capable of raising the bell by the labor of four men; the bell was suspended to this carriage by two treble blocks, the upper ilook being lashed to one of the cross beams of the frame, and the lower connected to the sling chains of the bell by a strong shackle. This traverse frame was easily moved by winches affixed to the ends of the long frame, over which ropes worked, having their ends made fast to the purchase machine frame.

By these traverse frames the bell was moved with great eelerity to any part of the foundations. The machinery required the attendance of six active men, viz. one t) each of the four winches, and two to the purchase machine. It was the sole business of a carciul man to attend to the sig. nals of the divers, and to direct the men at the machinery and air-pumps accordingly. The sigials werc communicated by a line, one end of which was fixed in the bell, and the other held by the signal-man, whose place was on the stage. To avoid confusion in the signals, any thing requiring great precision was communicated to eilher the divers or signal-mian by ineans of a board attached to the line en which either party wrote with chalk, and by these means a regular correspondence could be carricd on.
By means of the bell and apparatis, the works proceeded with safety and expedition, and I feel confident that diving-beils may be employed by the bridge builder in a variety of cases with much greater advantage ard economy than coffer-dams.

The foundations being prepared, and guides fixed to the plank piles, caissons were floated off from the shore with one, and in some instances $t w$, comres of masonry, and sunk. The greates: sucecss attended these opcrations from the care that was taken to get the foundations per'cectly level : of course, the heads of the planic piles were not cut off until the caissons were suck.
The bottoms of the caissons were made of beech plank and beams; the botom plank was 4 inches thick and laid in the transverse dircction of the pier, acros: which the beams 12 inches by S ineloc: were placed so as to correspond with the rows of piles in the foundation. The spaces: between the beams were filled with mason ry set in Pozzuolana mortar, zand grouted; and a floring of 3 inch plank, closely jont-
ed and well caulked, so as to be perfectly water tight, covered the masonry and beams. The top and bottom planks were trenailed to the beams, and the whole siengthened by a strong frame of beech, a foot square, surrounding the bottom and fastened to it by strong screw bolts and trenails.

The upper suffaces oct the beams of this fiame were grooved to receive a strong longue, fitting n corresponding groove in the bottom beams of the sides and ends of the caissons, which were made in the usual way, and connected to the bottom by strong lewes irons fitted to cast iron boxes, firmly fixi d in the bottom planking. The lewes irons were fixed about 8 feet apart, and were easily removed when the masonry was brought up to the height of the caisson: The introduction of the tongue in the bottom beams of the caisson proved of the greatest utility, as it prevented leaks from the slight sinkage of the bottom between the lewes irons, which it is impossible to prevent when the caisson grounds.

The caissons were furnished with sluices, and made 15 feet high, which gave the rrasons an opportunity of working about five hours cach tide on an average of neaps and springs.

The masonry of the piers and abutments is composed of solid compact limestone, raised in the quarries of the noble propriotor of the bridge* in the adjoining cliffs, and Dartmoor granite, the latter used only, however, in the springing courses and cornices. The limestone is quarried in masses, varying from two to six tons weight, and these were taken to the work on a railroad, centinued from the quarries scross the river on a stage or temporary bridge, passing close to the piers and abutments, ard under the stages on which the diving bell was worked as before described, and the machinery used in working the bell was applied to taking the stone from the wagons, and in setting it. This machirery was found of incalculable advantage in building with such heavy blocks of stone. mowing them with ease and the minutest accuracy from over head, and, consequently, witnout obstructing or incommoding the builders in the caissolis.

Experience having taught me that the mortar used in the coustruction of these works is of an excellent quality, I shall, I liope, be cescused if I a dd to this already long paper a few words ou this suipect.

The wiue lyas stone got from the coast of Dorseishire was burnt at the bridge as the works procecdet, and, whilst hot from the kiln, was ground in a mill to a fine powder. It was then taken to another mill, and in its powdered state, mixed with prepared Pozzuoluna and sand, and ground until it formed a tough paste, 10 more water being. used than was absol tely necessary. The best mortar, or that used in the botom courecs of the piers and abutmonts, and for the front woik, was coinposed of one measure of powdered line, one measure of Pozzuolana, and iwo incas-

[^23]ures of sand. The backing mortar was prepared with one measure of lime, half a measure of Pozzuolana, and two measures and a half of sand: the sand was of an excellent quality, got from the site of the bridge.
The following circumstance will suff ciently prove the goodness of this mortar Some masonry, which had been done in one of the foundations about twelve months, had to be removed, when the stones were found so firmly united, that gunpowder was necessary to separate them.
I have before described the bed of the river to be a loose sand movel by the slightest increase of current, and that this circumstance, together with the difficulty of formding piers and abutnients, induced me to propose a suspension bridge spanning the whole width of the river. It was however hoped, when a change of plan became necessary, that the plank piles, with the aid of some stone thrown round them would be sufficient to ineet the increased current occasioned by the bridge; but as the erection of the piers and abuments pro-
ceeded, the necessity of a more extended security for the foundations became mani fest, as the bed of the river, for its whole width, and to an extent of from 50 to 60 feet above and below the bridge, was gradually scouring away. I therefore proposed to form an artificial bel, to the full extent to which the natural one was removed, with clay from 18 inches to 2 feet thick, and to cover the clay with rubble stone of all sizes firon 200 lbs . each downwards. This plan of operation was suggested by observing these materials in vast abundance in the adjoining linestone quarry spoil hills, and after I had submitted the clay to experiment, and found it capable of resist. ing a curtent acting immediately upon it at a velocity of 7 feet per second. The clay and stone were deposited with great regularity, giving to the channels under each arch a slight concavity in the middle the combined thickness of the clay and stone is from 2 feet to 2 feet 6 inches, and ust replaces the loss of the natural bed.
By this union of materials an indestructible bed has been produced. The clay
shields the natural bed from the current, whilst at the same time it forms a tenacious cement in which the stone buries itself, and which is hardened by the volume of water constantly pressing on it. In six months after this work was finished, I ascertained that sea weeds were growing over its surface, and that it was sufficiently firm to resist an oyster dredge.*
Messrs. Johnson of Grosvenor Wharf, London, were contractors for the masonry, \&c., and Mr.. William Hazledine, of Shrewsbury, for the iron work.
The contract amount for the masonry, \&c., was
£13,365 0
The contract amount for the iron

13,761 0
Making the total cost
£27,126 0
The work commenced in August, 1824, and the Bridge was opened in July, 1827.

* At the present time (1836) the surface is so hard, that heavily laden wagons would not sink in it.

CAST IRON BRIDGE OVER THE LARY, NEAR PIAYMOUTH.
By JAMES M. RENDEL, Civil Engineer.

ELE-

V.ATION.

> A, High water Spring Tides.

B, Low water Spring Tides.

Plan of the Foundation.

Plale 2.

Longitudinat Scction of one of the Side Arches.

> З, Low water Spring Tides.

an account of some exprriments made wis 1823 and 1824, for determinivg the quantity of water flowng througin different shated ozifices. by bryan donkin, esq., f. R. A. S., v. p. 1NST. C.E. The apparatus employed in these experiments having beea made for a different purpose than that of merely ascertaining the quantity of water discharged, occasioned the peculiar form which is here described.

A, in Fig. 1, Plate -_, represents a vertical copper jine of 3 ? inches interios diameter.
\boldsymbol{B}, a horizontal pipe of the same diame. ter, joined to the lower cud of A by what is usually called a mirse joint.
\boldsymbol{C}, anoticer pipe, joined to \boldsymbol{B} in a similar manacr, but $=0$ contrived tinat it could be turned up or ciown into a vertical or hori\%ontal pos:tion.

Fig. 2 represents the outer end of the pipe C, with a cap, $D D$, fitting closely upon its outer side, and capable of being put on or taken off at pleasure; upor the end of cap D the ring $d d$ was soldered, leing about $\frac{1}{2}$ inch wide; this $\mathrm{cap}_{\text {p }}$ was employed for securing the different shaped orifices to the pipe \boldsymbol{C}. For instance, where the efflux of water through an aperture in a thin plate of metal was intended to he tried, the cap was taken off, and a circular plate e e, of a corresponding diameter to that of the exterior of the tube C, was applied to the end of \boldsymbol{C}, and the cap $D \boldsymbol{D}$ put over it to secure it iis its place.

To guard asainst any leakage of water between the joisings of the cap, the pipe, and the plate, the joinings were filled with a soft ceinent made of tailo:s and bees' wax.

Upon the upper ead of the pipe A, a copper cistern, E, was fixed. Tris cistern was about 2 feet diametrr and 6 or 8 inches in
depth; the length of the pipe B was 10 feet ; of C about 1 foot 9 inches, and of A about 25 feet, measuring from the top of E to its junction with B.
The water was supplied from a circular cistern, F, of 6 feet $7 \frac{1}{2}$ inches diameter, and 2 fect 10 inehes in depth, by means of a sluice f, and the trough g.
During each experiment a man was placed to regulate the sluice, so as to keep the cisiern \boldsymbol{E} always full. And in order to ascertain the quantity of water discharged, a float with a graduated stem was placed in the said cistern \boldsymbol{F}.
On the 23th of November, 1823, the folowing experiments werc made in the presence of Professor Barlow, of Woolwich.
To the end of the pipe \boldsymbol{C}, the conical pipe G was applied, by having a thin plate, h. soldered to it; the opening at the smaller end, which was $\frac{1}{2}$ inch in diameier, and that of the large end $2 \frac{1}{2}$ inches diameter, and its length 12 inches; the discharge took place rom the larger end of the cone, whilst the pipes C and G were in a vertical position; the height of the column of water from its strface in E, to the upier end of the cone G, was 22 feet 9 inches In 4 mirsutes it discharged $12 \cdot 25$ cuhic feet of water, being at the rate of 3.0625 cubic feet per minute.
2d Experiment.-The conical pipe was inverted so that the disclarge took place from the smaller end; in 4 minutes the dis. sharge was 12.5 cubic feet, or at the rate of $3 \cdot 125$ cubic feet par minute.

3d Experiment.-Tne conical pipe was removed, and a thin plate with a hole $\frac{1}{2}$ an inch in diameter in its centre was applied to the end of the pipe C, the height of the column baing 23 feet 3 inches; in 4 minutes the discharge was 8.2 cubic feet, or at the rate of 2.05 cubic feet per minute.
Nor. 29. Tise pipe C and the cone \boldsymbol{G}
were placed horizontally, with the smaller end of the cone outwards, and a column of 26 fect; in 8 minutes it discharged 26.8 cubic feet, being at the rate of 3.35 cubic fret per minute.

Dec. 1st. Pipe and cone horizontal, the larger end outwards, and 26 feet column; in 5 minutes discharged $15 \cdot 4$ cubic feet, or 3.08 cubic feet per minute.

Another experiment was continued for 8 minutes, and the discharge was at the rate of 3.09 cubic fect per minute.

Dec. 5. Two conical pipes, $\boldsymbol{H} \boldsymbol{H}$, each of which was of the same dimensions as the one above described, were united at theirsmaller ends, and applied to the pipe C; in 10 minutes the discharge through the.double cone was 48 cubic feet, or at the rate of 4.8 cubic feet per minute, the column of water being 24 feet 3 inches.

A second experiment on the same day was made with a thin plate, having a $\frac{1}{2}$ inch hole through it, and a column of 24 feet 3 inches; in 10 minutes the discharge was 20.6 cubic feet.

In a third experiment, the double cone was tried again, and the discharge obtained was 47.4 cubic feet in 10 minutes.

Dec. 8 . The 2 conical pipes last mentioned were separated, and joined together at their larger ends, as at $\boldsymbol{J} \boldsymbol{J}$; in this form a discharge of $20 \cdot 8$ cubic feet of water was obtained in 10 mintes, under a column of 24 feet 3 inchos.

Dec. 12. The thin plate with a $\frac{1}{2}$ inch hole was again applied under a column of 24 feet 3 inches, and during 10 minutes discharged 20.75 cubic feet.
Same day. The single cone with the small end out wards, in 10 minutes discharged $32 \cdot 2$ cubic feet, and with the large end outwards, 29.7 cubic feet in the same time, under a head of 24 feet 3 inches.
Same day. The double cone united at their smaller ends, produced a discharge of 46.5 cubic feet in 10 minutes, and in 5 minutes 23.5 cubic fect.
June 8th, 1824. The discharge through the $\frac{1}{2}$ inch round hole in the thin plate during 15 minutes, was 31.75 cubic feet, under a column of water of 24 feet 4 inches high $=$ $2 \cdot 116$ cubic fect per minutc.
June 9. Through the same hole, and under the same column, the discharge was 42 cubic feet in 20 minutes $;=2 \cdot 1$ per min. ute.
Through a round hole $\frac{1}{3}$ of an inch diameter, in a thin plaie, the discharge was rather less than 16 cubic feet in 30 minutes, under a column of 25 feet $8 \frac{1}{2}$ inches.

June 10. The $\frac{1}{2}$ inch hole through a thin plate gave a discharge of 65 cubic feet under a column of 25 feet $8 \frac{1}{2}$ inches in 30 minutes, at the rate of $2 \cdot 166$ cubic feet per minute.

The single cone, with the smaller enp outwards, dolivered 58 cubic feet in 18 minutes, under a head of 25 feet $8 \frac{1}{2}$ inches $;=$ $3 \cdot 22$ cubic feet per minute.

On a subscquent day in June. The same experiment repeated, and in 20 minutes the discharge was $63 \cdot 33$ cubic feet $;=3 \cdot 166$ cubic feet per minute. In this experiment, the small end of the cone was immersed about 6 inches below the surface of the water during the discharge, consequently the column was 25 feet $2 \frac{1}{2}$ inches.

A nother experiment on the same day,
with the same cone, having its larger end joined at the smaller ends, in 18 minutes disoutwards, and immersed seven inches below charged $84 \cdot 633$ cubic feet under a head of the surface of the water, discharged 59 cubic 25 feet 9 inches $;=4 \cdot 7$ cubic fect per min. feet of water in 20 minutes $;=\mathbf{2} .95$ cubic ute. feet per minute.
The same experiment repeated during 10 minutes, gave a discharge of $29 \cdot 46$ cubic feet, or 2.946 cubic feet per minute.

In another experiment, the double cone|feet per minute.

on ventilating and lighting tunaels,
particularly in reference to the one
on the leeds and selby rallway. by jo
walker, esq., F. r. S. l. and e., presi-
dent inst. c. E.
The want of ventilation and light seems the greatest objection to tunnels on railways and canals. An attempt is making to remedy both these evils in the tunnel now (1832) forming on the Leeds and Selby Railway, near Leeds, by a plan weich is simple, not attended with much expense,
and likely to be at least partially successiul. A short cescription will suffice to make it understood.

The tunnel is nearly half a mile long: the greatest depth from the surface abou So feet. As three shafts were required tor raising the excavation during the progress of the work, it occurred to me, that by placing them at nearly equal distances, and walling them in a permanent manner, they might be left open to the surface afterwards. A strong elliptical casting, abeut 8. feet long and 5 feet wide, has therefore
been built in the arch of the tunnel, and ner this a circular shaft or well, 10 feet dinmeter, mased in streng brickwork. If it be found expedent to cover the well as a protection from the rain, it may be done "ith nlase, raised on culumns of such height as to admit a free circulation of air between the surface of the ground and the rool.

So much for vecilation. But as the light afforded by the shafts is confined to the space immediately below them, the desileratum is to throw it along the tunnel, and I think this may be done so as to give a useful light by means of plane reflectors of tinned iron placed on the ground between the two lines of railway, at such an angle as to reflect the light where it will be most uselul. The idea was suggested by the rum vaults in the West India Docks where the manks on the casks are ascertained by catching the laint light from the windows upon a small piece of tin plate, and throwing it on the casks. Those who have seen this done have generally been surprised at the usetul effect produced; but in the case of the tunnel, the light coming directly down the shaft is more powerful, and the effect of the experiments I have made has much exceeded $n: y$ expectations. I shall take care that the results of any future observations be communicated to the Institution.
P. S.-In compliance with the promise given in the preceding paper, I bave procured from Mr. George Smith, the resident engineer on the Leeds and Selby Railway, the amnexed observations on the subject containing the result of his recent experience. 'I hough they do not in all respects realize the expectations I had formed from the t.rst experiments which were made befure the tunn 1 was completed, or the railway formed, I may remark, that while the shalis scem to be very serviccable for venthation, the light they suppiy is useful to those whose duttes require them to pass through the tunnel on fout or unaccompauied wilh an engine. Mr. Smith's remaks are dated December 1835, and are as follows :-
"At the present period when there are " so many railways in progress and in con" templation, many of them with tunnels of "considerable lenthth, the following obser"rations on the effects of the Locomotive "Engines, working in the tunnel of the "Leeds and Selby Railway, may be inter" esting to thoze who have not the oppor"t tunity of witnessing thoze effects daily " and under all circumstances.
"The tumel of the Leeds and Selby " Railway is nearly half a mile in length, "situated at the commencement of that rail"way at the Leeds end, and has a slight " ascending inclination in going from Leeds. "The situation and inclination cause a con"siderable difference in the quantity of "steam disclarged from the chimneys of "two engines travelling in opposite direc"tions.
"The ascending engine laboring at a - first start against the inclination, to get " into specd, (wisich is scarcely done be-- fore leaving the tunnel,) causes a great " expenditure of steam, \&c., while an en.
"gine coming in the opposite direction,
" having a clear fire, and every means taken
"to preyent the generation of steam, by "opening the fire-door and pumping water "into the boiler, expends very little, and
"that through the safety valvc, the smoke
" from the chimney not being perceptible.
" It will therefore be necessary to detail the
" effect of an engine passing through the
"tunnel from the Leeds end only.
"The fires of the engines are made up, "previous to starting, with coke mixed
"with coal, to hasten the ignition of the
"former; the smoke from the coal is of
"course mixed with that of the coke and
" steam, adding to the denisty of what es-
" capes from the chisnney, and continues
"to do so for some time, frequently through
" the whole length of the tunnel : but not-
" withstanding this, the tunnel is generally
" clear in less than five minutes after; in
" many cases nearly as soon as the engine
"has left it. This of course is governed,
" in a great measure, by the force and di-
" rection of the wind. In foggy weather
"there being little or no wind, the smoke
"from the coal is left after the steam is
" condensed, and forms itself into a cloud
" which sails slowly along the roof, travel-
" ling at the rate of from two to three miles
" per hour; a great part of it ascends the
" shafts, but from the heavy state of the
" atmosphere, a considerable portion passes
" them and discharges itself at one end of
" the tunnel. It should here be mentioned,
" that the entrances into the shaft from the
"tunnel are much contracted, having not
" more than 5 feet in the longitudinal, and
" 8 feet in the transverse direction of the
"tunnel, and much of the smoke, \&c..
" passes on each side of the shafts; and in
" consequence of the sluggishness of the
"draught on those days, the lower part of
" the cloud has not sufficient time to alter
"its course up the shafts.*
"The engines, having coal mixed with
"the coke in their fire-boxes, left the Leeds
" depot during a very heavy morning, and

* followed each other quickly through the
" tunnel : each left a cloud behind, the one
" keeping at a considerable distance from
"the other. The smoke (the steam ap" pearing to have been condensed) seemed
" to have lost its usual sulphurous smell, "and resembled a dense fog-the dense"ness appearing greater from the darkness * of the tunnel; and such is the freedom " of those clouds from any thing unpleasant,
- that passengers in close carripges are not
"aware of having passed through them, * which they do almost instantaneously.
" Passengers are never annoyed with the
"steam, \&c., from the chinneys of the
"engines, as it does not descend low
" enough, except on heavy days, and even
"then, the progress of the engines carries
" them forward before it is so low as to "affect them.
"From the effects described` above, it " appears evident, that in tunnels situated
* This naturally suggests the propriety of having the shatts much larger, probably the same diameter as the width of the tunnel.
only a short distance from the startingplace, it is extremely probable little or no "inconvenience will be felt by the passengers passing through them.
"Previous to the opening of the Leeds "and Selby Railway, great doubts were "entertained by many, and among others " a celebrated lecturer, as to the fitness of " The atmosphere for respiration, in a tun' nel worked by locomotive engines; now " that the incorrectness of that idea is fuily "proved, as far as regards a tunnel half a " mile long, those doubts are still enter" tained by many individuals, as to tunnel; " of inuch greater lengths. These doubts " will probably prove as groundless as the "former ones, for the following reasons:-
" A considerable quantity of the steam " from the engines ascends the shafts at " all times, but there is no doubt a large portion is also condensed in the tunnel; " and were there no shafts at all, the steam "could not remain long uncondensed, sur" rounded, as it will ever be, by walls always at an even temperature, a short distance from the ends of the tunnel, saturated with moisture, and the surface in many parts covered with water.
"The coke, particularly when in a high state of combustion, gives out little smoke, " and, from its having passed through the " steam, loses, like the coal, the greater "part, if not all its offensiveness; and "mixing with the air that has been used ' for combustion, will, from its boyancy, 'readily find its way along the top of the "tumel to the first shaft, and rake its " escape up it.
"Two great inconveniences in tunnels, "are noise and want of light; the former "it will be difficult to ressedy, the latter " may be easily so, by carrying oil or porta"ble gas lamps with the carriages. O:I "lamps are used with the evening trains, "during the winter months, on the Leeds ' and Selby Railway, and give sufficient " light in their passage through the tunnel. 'Some experiments were made with tin "reflectors at the bottom of the slafts, and ' although the light reflected was sufficient " to read the lerger print in a newspaper ' advertisement at all parts of the tunnel, " (there being three shalts,) it is very doubt' ful whether lighting tunnels by reflection " will be of use for passengers. The rays of light are thrown on the walls so very "obliquely, that, from the rough and dirty "state of their surface, few are again re"flected from them, and these are too " feeble for the eye to accommodate itself " to so great a transition during the time a " train would be passirg through a tunnel " of moderate length. A passenger sitting - in a close carriage, having only the walls " to look at, would, under such circum"stances, fancy himself" in total darkness, "although the tunnel generally might be " moderately light. The difficulty of keep"ing reflectors clean from the effects of "diunp, steam, \&c., would be a considera"ble expense in a long tunnel ; and it must "also be borne in mind, that the moment 'an engine has passed a reflector, it be" comes of no use to the train attached to "that engine, as it is immediately sur-
rounded with steam, \&c., forcing its way up the shaft, and the next reflector, in a " long tunnel, would probably be a quarter of a mile from the one thus thrown into darkness."

Aeronautic Observations.-Mr. Green, who recently ascerded in a balloon with Lord Clanricarde, observed that surveyors and architects could with greater facility take plans of noblemen's estates by ascending in a balloon, as they could have a bird's-eye view of every locality, and if they only once adopted that method they would never relinquish it. Since the suggestion, an artist named Burton called on Mr. Green to obtain from him the plan of a balloon constructed so as to act in the above way, it being connected to the car by a swivel. The inventor proposes to build a wagon: for the purpose of fastening a balloon to it, which, when filled with gas, which can be done in various parts of the country at gas company's gasometers, may be conveyed to any place a surveyor requires, where, on a calm day, he can take plans, carrying with him the proper instru. ments. The balloon will then be fastened by ropes to the spot most favorable for observations, and raised to an elevation of 300 or 400 feet, as necessary. In this way a bird's-eye view can be taken of any town or city. Mr. Green is willing at any time that his balloon, by way of experiment, may be made use of in that way.-[Lond. Mech. Mag.]

Steam Carriages on Common Roads. -A commituee of the British House of Lords have, by their report to the House, objected to the reduction of prohibitory tolls on such carriages; on the ground of the danger in frightening horses, of setting fire to buildings, \&c., of the greater skill required to manage such locomotives than those on railways; and roore especially frorn the opinion that such enterprises cannot becone profitable to those who engage in them, and that, therefore, any encourageinent on the part of the Legislature would only give rise to wild speculations, ruinous to those who pursue them.

G

New Surveying Instruments.-M. Lalanne, Engineer of the Ponts et Chaussees, in France, has laid before the Academie des Sciences three instruments for typographical surveying, which, if they accomplish all that. the inventor promises, correctly and with facility, will be eagerly sought after. To the unmense number of surveyors, who are about to commence operations in every part of the United Kingdom, under the numerous Railroad Acts which have passed this session, such instruments would be invaluable. They are, 1st, a Levelling Instrument, or Carriage, which it is only necessary to run over the gronnd, the levels of which are desired, and the section is at once obtained; 2nd, a Drawing Instrument, which lays lown the plan of the ground; and can be mounted on the carriage of the Jevelling Instrument ; 3rd, a Power-measuring In.
strument, or Dynamometer, which exhibits the effort exerted on every point of the line passed over.-[Mag. Pop. Science.]

Copper Ore raised in Cornvall.The quantity of copper ore raised at about eighty mines in the county of Cornwall, during the past twelve months, was 140 , 981 tons of 21 cwts., the average produce of which was $8 \frac{1}{4}$, giving 11,639 tons 11 cwt . of copper ; the average price for the ore was $£ 6,17$ per ton, amounting to $£ 957$ 752,86. With three or four exceptions not one of these mines belong to a public company.

Mining in Corniwall.-The steam en gines now at work in the mines of Cornwall, are equal in power to at least 44,000 horses. One bushel of coal does as much work as sixteen bushels did in the earlicr stages of the employment of steam power. - [Newton's Jour.]

List of subscribers to the Railroad Journal. that have paid, (continued.)
J. U. Coles, city of New-York, Jan. 1, 1838 S. Gregory. "
H. H. Farnham, Honosdale, P'a., Jan. 1, 1838
J. Jessup, York, Pa.,

Jan. 1, 1838
H. M. Walker, Philadelphia, Pa., 2d copy, Jan. 1, 1838
Col. J. G. Totten, Newport, R. I., July 1, 1837
D. Livermore, Hopkinsville, 'Ky., Jan. 1, 1838
G. Dutton, Columbus, Ohio, Jan. 1, 1838
S. Appleton, Boston, Mass., April 1, 1837

Bacon \& Kibby, Brownstown, Mich., Jan. 1, 1838
J. M, Bucklin, Terre Haute I:』d., Jan. 1, 1838
Jas. Collins, Brooklyn. L. I., Oct. 1, 1837

Advertisements.

$0 \leftharpoonup$ Missing Numbers Wanted.-If any of our subscribers have numbers $4,5,6$ and 7, of Volume or five last year, which they do not desire to preserve, they will confer a special favor by sending them to us, that we may complete a few copies of the volume.
*** If any of our subscribers are in want of any other number of the same volume to complete their volume they will please give early notice and they shall be sent.

The Title page and Index for last year, or volume five, will be forwarded to subscribers with our next number.

AVERY'S ROTARY STEAM EN GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving SawMills, Grain-Mills, and other Manufactories of any kind.

Engines only will be furnished, or accompanied with Boilers and the necessary Na chinery for putting them in operation, and an Engineer always sent to put them up.

Information will be given at ali times to those who desire it, either by letter or by exhibiting the engines in operation in this city.

Inquiries by letter shou d be very explicit and the answers shall be equally so.
D. K.MINOR,

30 Wall-st., New York.

RAPPAHANNOCK CANAL \& SLACK WATER NAVIGATION.
NOTICE TO CONTRACTORS.
SEALED Proposals will be received un til the 7 th day of April next, by the subscriber, on behalf of the Rappahannock Company, at the office of their Engineer, in the Town of Fredericksburg, for the construct:on of four new dams, raising, covering and backing several others, several short canals, 14 new lift locks, of wood and stone com bined, 10 guard locks, and other incidental works, for that portion of the Slack Water Navigation extending from the town of Fredericksburg to Barnett's Mills, a distance of 20 miles.
The prices for the work must melude the expense of materials necessary for the completion of the same, according to pians and specifications that will be ready for examination on the 1st to the 7th April, inclusive.

The works to be completed by the 15 tl day of November of the present year.
It is believed that the work above offered for contract presents superior inducements, especially to such as have been accustomed to, and prefer contracts embracing heavy dry walling and carpentry, the materials of which are at hand and in abundance.

No fears need be entertained as to the healthfulness of the climate. The usual testimonials of character and responsibility will be expected to accompany the proposals.
P. MARTINEAU, Chiet Eng.

March 18, 1337.
12-3t

WABASH AND ERIE CANAL.

NOTICE TO CONTRACTORS.

Sealed proposal will be received at the town of MAUMEE, in Lucas county, Onio, on the 15th day of Niay next, for the construction of so much of the line of the Wabash and Eric Canal as lies between the head of the rapids of the Maumee River and the eastern termination of said canal, near the town of Mabatten, at the head of the Maumee Bay.

The length of the line offered for contract is about thirty miles, and embraces a large amount of enbankment, much heary river bluff excavation, a quantity of rock, a number of stone culverts, and i2 to 15 cut stone locks.

Thirty miles of the line, in addition to the above extending from the head of the rapids to the town of Defiance, will also be prepared, and offered for contract at the same time, should the number of applicants for contracts justify it.

Plans and specifications will be exhibited, and necessary information given, in relation to the work, after the tenth of May.

Bidders who are unknown to the acting Commissioner, as contractors, will be expected to accompany ther proposals with recommendations of a substantlal and unquastionable character.

LEANDER RANSOM.
Acting Commissioner
Office of the Board of Public Works, $\}$ Colambus, Ohio, Feb. 28, 1837,

TRANSACTIONS OF THE institution of civil engineers of great britann.
The first voiume of this valuable work, has just made its appearance in this country. A few copies, say twenty-five or thirty only, have been sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one. which will prevent many of our young Engineers from possessing it. In order therefore, to place it withis their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to any part of the United States by mail, as issucd, or put up in a volume at the close.
The price will be to subseribors three dollars, or five dollars for two copies-alueays in adrance. The first number will be ready for delivery early in April-Subscriptions are solicited.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pampour-150 pages lage octavodone up in praper covers so as to be sent by mall-Price $\$ 1$ 50. Postage for any distance $u ? d e r \quad 100$ miles, 40 cents, and 60 cts . for any distance es:ceeding 100 ms .

Also-Vain de Graaff on Railròad Curves, done up as above, to be sent by mail-Price \$1. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts.
*** On the receipt of $\$ 3$, a copy of each of the above works will be formarded by mail to any part of the United States.
$1010 t$
RAILIWAYIRON, LOCOMOTIVES,\&C.
THE subscribers offer the following articles for sale.
Railway Iron, flat bars, with countersnnk holes and rairel joints,
350 tons $2 \frac{1}{2}$ by $6,15 \mathrm{fin}$ leneth, woighing 468

with Spikes and Splicing Plates adapted thereto. Tu be sold fice of duty to State governments or incorporated companies.
Orders for Pennsylvania Boiler Iron exceuted.
Kail Road Car and Locomotive Engine Tires, wrought and turned or unfurned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 inchen aiameler.
E. V. Patent Chnin Cable Bolts for Railway Car arles, in lengths of 12 fi ct 6 inclies, to 13 feet $21,2 t$ $3,35,3 \frac{1}{4}, 31$, and $3 \frac{1}{2}$ inches diameter.
Chains for Inclined Planes, short and stay linke, manufactured from the E. V. Cable Bolts, and proved at Ife greatest strain.
India R1sober Rope for Inclined Plones, made from Vew Zealand fiax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
J'atent Felt for placing between the iron chair and son bluck of Edge Railways.
Every description of Railway Iron, as w-ll as Lecomotive Engines, imported at the shortest notice, by the agency of one of our partners, who resides in Fingland for this purpose.

A highly respectable American Enginecr, resides in Einglaud for the purpose of inspecting all Locomoaives, Machinery, Railway Iron dec. ordered through us
23 15
A. \& (i. RALSTON, \& CO.

Philadelphia, No. 4, South Front a

TO MANUFACTURERS OF HYDRAULIC CEMENT.
PROPOSALS will be recrived by the subscriber, wn the part of the James Biver and Kanawha Coupan es, fir the delivery on the wharf, at the city of Richmund, Va., ol" 'rifiy 'Thussaud Bushels of Hydrauljc Cement. The amount called tor must be furni-hed in quanities of about six thousand, bushels per month, cummencing on the first ol A pril and ending on the first of November next.
'I'o avoid future litigation, $i t$ is to be understuot, on making the p:upxsals, that the bushel shall weigh seveniy pounds NETT, and that the Cement shall be deiivered in good ordder, and packed in tiglts casks or barrels.
Propusals will also be rcceived for furnishing fifty thonsand bushels, at any convcuient point un the nav: igable waters of James River, or the nurth branch of James River, where the materials for its manulacture has been discuyered.
Persons familiar with the preparation of the Ce ment, would do well to examine the Counties of linck bridge and Botctourt, wiils a vilw to the establishment of works fur the Eupply ol the western end of the line; and a contract tur the above quanulies will be made with them boturw they cummence operations.
As there wit. be required on the line of the James
As there wii. be required on the line of the James River and Kanawka lmprovement, in the course of the present and next year, not hess than half a mill. ion of bushels of inis Cement, and some hanulred thousand bushels more in the prugross of the work
tuwards the west, contract frs will fint it to their interest to furnish the aricle on terms that lead to future engagements.

Propusals to be directed to tha subs.iniber at Rich. mond, Va.

CllA!LLL's l:LI.t'i', Jr
February 20 ih, 1897.
CROTON AQURDUC'
NOTICE.-.Sealed Proposals wall be received by the Water Commissioners of the cily of New-Yurk, mantil the 22_{d} day of tpril next, at 3 and until the 24 th day of April, at 90° cloek, 1 . M., and until the of their Engineet in the village of Sing Sing, for constructing a Dam across he Croton litiver, for He Excasaliun, Eimbankment, Bark Filling, Foundation and Protection Wulls; for an Aqueduct Bridge at Sing Sing, three 'l'untels, several large and small culverts, and an Aquedurt of stome and brick masonry, with other incidental work, for that porion of the Crown Aqueduct which extends fcom the Dam on the Croton to Sing sing, being between cight and nine miles in leagth
The prices for the wo:k must include the expense of materials necessary for the cumpletion of the same, according to the plans and specitications that will bo presented lor examination, as lareinafine mentiuned.
The Work to be completed by the lirst day ol Uctober, 1839.
Security will be required for the performance ol contracts-and r rupusitions should be accumpanicd by the namea of respurasibie persons, signifying their assent w become sureties. If tho character and responsitilities of those proposing, an:l the sureties they shall offer, are not known to the Counissioucrs ur Engineers, a certificate of guod character, and the extent of their responsibility, signed by the first juigo or clerk of the county in which they screrally reside, will be required.

No transier of contracts will be recoeniscel.
Plath of the several strmetures and spucifications of the kind of materials and mamner of construction, may be examined at the office n! the Counnissioners, in the city uf New-York, frum the 10 th to the 1 tha, inclusive, of April next- The line of Aqueduct will be lucated, and the majr and pioile of the same,
together with the plans and specitications above men tioned, will be ready for examinaisin at ihs oflice of the Engincer, at the village of Ning Sing, on the 15th day of April next, and ilhe Chicf or liesident Engineer will be in antendance to explain the plans, \&c., and to furnish blank propositions.
Persens propusing fur mure work than they wish to contract for, must specify the Iuanity they desire to take
The full names of all persons that are parties tu any proposition, must be written out in tha signasare for the same.
The parties to the propositions which may be necepted, will be required to enter intu contracto immodistely after the acceptance of the same.
The undersigned reserve to
The undersigned reserve to themselves the right to azcept or reject proposals that may be offered for the whole or any part of tho above described wurk. as they may consider the public interest to require. STEPHEN ALLEN,
CHARLES DUSENBURY, \} Water
SAUL ALLEE,
JOIIN B. JERVIS,
Chief Engineer, New-York Watet Works.
. York, February 29, 1837. 1056

ARCIIIMEDES WORKS.
(100 North Monr street, N. Y.)
NEw-Y'onk, Febriary 12h, 1536.
TJIE undersigne. begs leave to infurm the proprie tors of Railronds that the y are prepared to furnish all kinds of Machinery for Railroads, Luconotive Engines of any slze. Car Wheels, such as are now in sncuessfial uperation on the Canden and Amboy Railroad nume of which havo faided-Castings of all kinuls, 4-y14
11. 12. DUNHAM \& CO.

NEW ARRANGEMENT.

ropes for inclined planes of raildoads.
WE the subscribers having formed a o-partnership under the style and firm of Futger \& Culensun, for the manufacturing and selling of
Ropes fir inclined planes ot raitruads, and for oilher uses, offer to supply ropes for inclized planes, of any lengild required without splice, at short notide, the matufuchiring uf cordage, herctofure carried on by S. S Durfee dico., will lie tlone by the new firm, the same steprintentant and maclinery are empluyed by the new lirm that were empluyed by S. S. Durfee \mathcal{E} Co. All urders will be promptly attended to, and pes will be shipped lo any purt in the United States. 12 th momh, 1 ith, 1836 . Iladsun, Culumbia County Siate of New-York.

ROBT C. FOLGUR,
(HOHGF COLEMAN,
33-1f.
MACHINE WORKLS OL ROGERS, KHTCHUM aND GROSVENOiR, Paterson, New Jersey. The undersiguel rective urders fur the folluwing articles, manufaeturch by hrm, uf hle muss superior descriptian in every particn'ar. 'Their works beigig large, thes are enabled to exceute both large and small orders wih promptness nnil despateh-

IAHLROAD WORL.
Loromotive Steam-Lingines and Tenders; Driv ing and wher Lucommive Wheeis, Axles, Sprint;s and Hlange Tires; Car Wheels of east iron, from a va riety of pallerns, and Ciuils; Car Whecls of cast iron. riety of pallerns, and Cuills; Car Whecls of castiront.
with wionght lifres; Ales of best American refincd With, wought lires; Axles of best Americ
iron, Springs; Boxes and Bolts for Cars.
COTMON WOOL A, D FLAX MACHINERY,
Of all descriptions and of the most improved Pat. terns, siyle and Workmanship.
Mill Gecring and Millwright wark generally; IlyIraulic and uther Presses; Press Screws; Callendurs; Lathes nand 'I'ouls of all hinds; Iron and Brass Castings of all descriptions.
liUGERS, KETCILGM \& GROSVENOR
l'atterson, Nell-Jersey, or 60 Wall strert, N.

dldBANY EAGLE AIR FURNACE AND

 MACHINE SHOP.WILLIAM V. MANY manufactures to order. iron castinss for Gearing Mills and Factories ol very deseription.
ALSO-Stenan Engines and lRailroal Castings o very description.
'Ihe collection of Patterns for Marlinery, is not equalled inthe tinited states.

4-15

LO EVNGINEL:RS.

WL are gratifiel to de able lo announce to those desifing Instruments, that Messrs E. \& G W. BLUNI' of 1 is city, are now prepared to furnish at short notice, LEVVLLS, frum different matrinficturers, amung others from Trongliton \& Sims, which they warrant of the first quelity. Circunterenturs, Levelling Staves, Prisunatic Compazses, Mathematical Instruments, Books for Engineers, etc cuasitantly on hand.
One of the above firm is now in England superint tending the manufacture of " 1 'heodolite, 'Transi: Instrumel ts, etc-a ad any orders fir lnstruments, nunuw on hand, will be forwarded him, and exccuted promptls.
${ }^{*}{ }^{+}$Orders will be received and promply attended ${ }^{4}{ }^{*}$ bs the Editers of this Journal.

AN ELEGAN'I STEAM ENGINE: AND BOILERS, FOR SALE.

TLIE Steam Engize and Builers, belonging to the S'LEAMBUA'I HELEN, and now in he Novely yard, N. Y. Cutisisting of ong Ilorizuntal high pres
sure Engine, (but may be made to cordense will litsure Eingine, (but inay be mate to cornlense with lit-
The nuluitionat expense) 36 inches diametcr, 10 feet struke, "inh latest inproved 1'iston Valves, and Metalic pracking tiroughout.
Also, für 'T'ubular Boilers, construeted on th English Lueumotive plan, containing a fire surface of over 600 feet in each, or 2.500 ivel in all-will be sold cheap. All communications addressed (post pard) to the subscriber, will mee: with due attention.
'Trove Iron W'orks, Nov, 15, 1536.

AMES' CELEBRATED SHOVELS, SPADES, \&C.

Together Wilh Pitk Axes, Churn Drills, and Crow Bars (stcel pounted,? mannthetured frum Salishury ra-
li:red iron-for sale byilie manufacturinge lized iron-for sale by lie manufacturing agents,
WI'THLREIL, AMES \& CO.

No. 2 Liberty street, New-York.
BACKUS, ANES \& CO.
No. 8 State strcet, Albany
N. B - Also furnished to order, Shapes of every de
serintion, made frum Sulshury refined lron v4-1f

Builder of

SIEPH\&NSUN,
Cars for Railroads.
No. 264 Edizabeth street, near Bleckerstreet,
New- Iork.
RAILROAD COMPANIEE would do well to exa mine these Cars; "specimen of which may the seen on lhat part of the New-Y'urk and Harlaem Railroad mow in operation.

J25!
PATENT RALLRUAD, SHIP AND BOAT SPIKES.
** The Troy Iron and Nail Factory kecps constantly for sale a very extensive assurtment of Wrought spikgs and Nails, from 3 to 10 inches, manufactured
by fte subscriber's Patent Machinery, which after by flu subscriber's P'atent Machinery, which after five years successful operntion, and now aimust uniwhere the subscriner obtained a patent, are fuund superior to rany ever offered in markiel.
Lailroal Companics may be supolied with Spikes having cotntersink heads suitable tw the holes in iron rails to any amuunt and on short notice. Almost all the Lhailruads now in progress in the United Siates are lastened with Spikes made at the above named fac-tory-for which purpuse they are found invaluable, as iheir adiesion is mure than double any common spikes made by the hammer.
${ }_{*}^{* * *}$ All urders directed to the Λ gent, Troy, N. Y. be puactually attenced to.

HENHY BURDEN, Agent.
Tıoy, N. Y., July, 1831.
\& J. Tuikes are kept for sale, at factory prices, by I. \& J. Tuwnsend, Abany, and the principal Iron Mier-
chants in Albany ana'frny ; J.I. Brower, 222 Water street, New-York; A. M. Jones, Philadelphia; T. Jariviers, Baltimore; Degrand \& Emith, Buston.
P. S.- Railrund Companies would co well to forwnrd their orders as early as practicable, as the sub scriber is desirnus of extending the manufacturing so

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. II. LONG, tu build Bridges, or vend the right to others to build, un his Pitent Flan, would respecifully inform Railroad and bridge Curporaituns, thar he is prepared to make comracts to build, and furnish all materials for supersiructures of the hind, in any part
of the Urited States, (Maryland excepted) of the United States, (Maryland excepted.)
Bridges on the ubois planare to be seen at thic follousi:g localitics, viz. On the main road leadirg from Baltinure to Washingson, two miles from the former place. Across che Detawaukeag river un :he Military mad, in Maine. Un the national ruad in llinuis, at sundry points. Onthe Ba!tinnore and Susquehanna Rrailrond at three points. On ilse Hudsun and Hatterson Railroad, in two places. On the Bustor: and Wurcester Hailroad, at several points. On the Bostun and l'rovidence Kailroad, at simdry points. Acruss the Conluocooli river at Henmker, N II. Across the Subhegar river, at Milford, N. H. Arross the Conneclicut river, at Havertill, N. M. Across the Con-
twocooh river, at Hancch, N. II. Across the Androsiongin liver, at 'Iurner Cenire, Maine. Across the Kennebec river, at Waterville, Maine. Across the Genesse river, at Equakithill, Mount Morris, New-York, Across the Whale liver, et llartford Vt. Across the Connealicut liver, at Lebanon, N. 1I. Acruss the anouth of the Broken Straw Creek, Penn. Across the muouth of the Cataraugns Creek, Can A Railroart Biadge diagonally across the Érie, Canal, in the Cily of Rochester, N. Y. A Ra lroad
 Bridge is 500 ieet in lengll; one of the spans is over
200 feet. It is probably the Framest woone. andoge ever builh in America.
Notwithstanding his preseft engugements to build betweentwenty and thirty Lailruad Bridges, and several common bridges, several of which are now in progress ol constriction, the subscriber will promptly and on liberal terms: MiAd whes grester exte.

AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF TNTERNAK HMEPEOVEPECNTA.

PUBLISHED WFEKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DOLLARS PCR ANiNUM, PAYABLE IN ADVANCE.

\(\left.\begin{array}{c}D. K MINOR, and

GUORGE C. SCHAEFFER,\end{array}\right\}\)| EDitors and |
| :--- |
| Pronietora.] |

CONTENTS:

Advertisements ; Lditurial Nutires
Ma;netic. Veedle of the Surveyors Compass...

Mariwn Cily and Miss uri Kuilruad | 225 |
| :--- |
| 225 |
| 24 |
| 15 |

Einlargenent of ths Erie Canal. .. 2:6
leıns... ... 227
I rantacholls of the Iastituiun of Civil Engineers se? Adveriorments..
я4 mucwer" AMERICAN EAILIRO.ID JUUREAL. NEW-YORK, APRIL 15. 1537.
REMOVAL.-The Office of the RAIL. ROAD JOURNAL, NEW.YORK FAR. MER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-street, basement story, one door from William strect, and opposits the Bank of America.

TO RAILROAD CONTRACTORS.

SEALED proposals will be received at the office of the Sielma and Tennessee River Raitroad Company, in the town of Selma, Alabama, fur the graduation of the first forty miles of the Selma and Tenressee Railroad. Pruposala fur the first six miles from Selma, will be received after the first of May, and acted on by the Board on the 15th May. Pruposals fur the ensuing 34 miles, will be received after the 10th May, out will nut be examined unti] the lat of Augast next, when the work will be ready fur contract.

The line, after the first few miles, pursuing the flat of the Mulberry Creck, occupies a region of country, having the repute of being highty healthful. It is free frum ponds and swamps, and is well wntered.The soil is generatly in culcivation, and is dry, light and sandy, and uncommonly easy of excavation.The entire length of the line of the Sel .a and Teanessee Railroats, will be about 170 miles, passing generaliy through a region as favorable for heatth as any in the Southern Couniry. .

Owing to the great 'interest at stake in the success of this enterprise, and the amouth of capital already embarked in it, this wurk must necessarily pruceed with vigor, and 1 invite the atteation of men of indus1ry and epterpiise, buth at the Nurth and elsewhere to this undertaking, as offering in tho ptospect ot continued empluyment, and the character of the suil and climate, a wide and desirable. field to the curstrector.
Proposals may be addrasell nithe: to the subser
ber, or to Gencal Giibert Siparer, Presiden: of hive Company.
ANDREW A!.rink: H1:XT:R, Claief Engineer.

Great western rabluay thbovgit cas AbA AND MUCHIGAN.
We have been furmished with docurbent. in relation to these roads, from which we shall make several extracts for our next number. They go to establish the route as laid down in the Report, published ia No 7, or 18th Febriary, of this Juurnai.

Canal Boat Expiciments.-In this number of the Journal will be found a coutinuation of the artcle on Canal Boat Experiments, which was commenced is our last.

These experments were made by John Mac Niell, Esq., and published in the 1st Volume of the "'fransactions of the Instition of Civil Engineers" of Greai Britain, a work of great value, which we are now republishing in the Journal, and also in Numbers, with all the engravings neatly done on wood.

This article will be found highly interesting and valuable to many of our readers at the present period, when the enlargement of the Erie, and the construction of numerous other canals occupies so much attention: and we therefore ask for it particular attention; and also at the same time request those, who may appreciate its value to give us their add i.t extending the circu. lation of the Journal. The additional cest of publishing the Journal this year, in consequence of republishing the "Transac. lions", will te several hundred dollars, anc we look to its lriends, in different parts ol the country for an irereased circulation.

Wre are inciebted is Mi. Stevins m_{n} of Edinburgh, for several Railuaty jamphiers. This gentenam, the son of David Stevenson, Eisq., C. B., of : dinbarth, is about alahiag a pruiessional luar ihrough the United Siates.
We commend him to the courtesy of the profession, to which he berars in his sua ners a sufficient pasapost, imiependent of the high testimontals trou ma $\cdot y$ disting lahed gentlemen.
We are also indebted to A. A. Denten; Esq., C. E., tor his Report of the Mongromery ILailroad Company, - 10 David Scott, Esq., C. E., firr his Report to the board ot ${ }^{\circ}$ public works of Ohio, relative to the Zanesville and Maysville Railroad, and the Chilli cothe and Cincinnati Ralroad; and to other friends for the annual report of the Peters: burgh Railroad Comprany, the Lagiange and Memphis Failroad Company, and the Texas Railroad Narigation and Barking Cumpany, all of which will receive attention in due ume

Magnetic needle of the surveror's compass

Though the principle of the direction power of the needle is well known, we believe that the foilowing case may not be of rare occurrence, and state it for the benefit of the makeis and users of instruments.
A Surveyor's Compass had been ordered which we procured and forwarded in com. plete order. It was returned, because when tevelled by the bubbles, the needic was so :nuch incl.ned as to touch the limb of the cumpass box
When we receired the instrunient, no such fault waz found to exist the needle
was again found to be perfectly free and horizontal when the compass was leveled.

This is easily explained. Fur every degree that we approach the North pole, the dip of the needle is increased by one degree nearly. The latitude of the place in question was more than two degrees to the north of this city. On examining the limb and ascertaining the space occupied by $2^{\circ} 20^{\prime}$, we were not zurprised to find that this amount of deviation from horizontality, should cause the needle to touch.

The remedy was to place a counterpiece of brass or copper wire upon the needle, the adjustment being made here. On reaching the place of destination, the north pole will again be found to dip, and this is to be prevented by moving the counterpieca until the needie is exactly balanced.
These counterpoises in one shape or other were formerly quite common, but we have recently seen a vast number of instruments without any thing of the kind.Such a Compass, though preperly adjusted while in the shop, no sooner reaches a distance of 60 miles or more, to the North or South. than the respective pole will be found to have a tendency to dip by a very considerable and unpleasant amount.
We would recommend Instrument Makers to supply this counterpoise in all in-stances-for we are well convinced that they are often blamed for bad workmanship, when the very power that renders the needle useful is the true cause of the difficulty.
The dip not being constant in the same place, renders this adjustment still more necessary.

It need hardly bo mentioned, that the construction of an extemporaneous counterpoise, can be accomplished by any one who uses an instrument.

Marion City and Missouri Railroad. _Until very recently we have heard nothing in relation to "Internal Improvements in Missouri," but present indications are highly favorable to the commencement and progress of such works, as must develope the resources of that State. We give the following a place in our columns, and solicit others on the same subject :-
internal improvearents in missouri.
Messrs. Editors:-As a portion of your readers may be interested in the improvements of the "Far West," I take the liberty of sending for insertion in the Journal, (should you deem it of sufficient importance,) the following brief account of the operations of the Marion City and Missouri Railroad Company :

This Company, during the last session of the Legislature of Missouri, obtained a charter to construct a railroad from Marion City, on the Mississippi river, about a hundred and thirty miles above St. Louis, to a point on the Missouri river, opposite to Brownville. The distance betwcen these two points along the railroad route is about a hundred and fifty miles.
The Company, kowever, did not wait for a charter to commence their operations. Last summer a survey was made from Marion City to the town of New-York, i: Shelby county, a distance of fifty-one miles, since which time a portion of the road has been prepared for the superstructure, and the cross sleepers delivered for seven miles of the route, from Marion City to Palmyra, and this part of the road will be completed and in operation in the course of the following summer.
Taking the whole distance of the road from Marion City to the Missouri river, the route is one of the most remarkable that has ever been survcyed. Nine-tenths of the distance may be said to require neither clearing, grubbing, nor grading. The route runs along a connected chain of prairies, from a half mile, to two, three and four miles in breadth, and the average quality of the lands adjacent to the route is not surpassed by any in Missouri.

Marion City, the terminating point of this railroad on the Mississippi, is situated on the west bauk of the river, on an extensive prairic, cmbracing a snrface of from five to six square miles. A portion of this prairie is subject occasionally to overflow during very bigh floods. Last spring, when the flood was at its highest mark, since 1828, the high water mark was about 18 inches below the average level of the river bank, in front of the town, a portion of the interior was overflown. In order, however, to remove the whole from danger, a levee is to be thrown up surrounding the town. The whole of the levee is now uader contract, nearly one half is already thrown up, and the whole is to be completed according to the conditions of the contract by the middle of April.
Two steam saw mills are already in operation at this place, and two others, together with a steam flour mill, will be put in operation in the course of the spring and summer following. These, together with other works of a public nature, now in progress, prove that the Company have taken hold of their original plan of improvements with a gigantic hand. Attempts were made through private interests to throw the dead weight of detraction on the character of these improvements; but it has recovcred
by its own elasticy from the momentary pressure. The Marion City railroad is the first that has been started in the State of Missouri ; and, according to the extensive arrangements already made, its progress and completion must be certain and successiul.

A project is now in agitation, to bave a survey made of a railroad route from Cincinnati through Indianapolis, to connect with the Marion City and Missouri railroad. Should this plan of a railroad succeed, and there is no doubt of its practicability, it would form a continuation of the Charleston and Cincinnati railroad. There would then be a continuous line of railroad from Charleston to Brownville on the Missouri river ; besicies there is now in contemplation the project of a railroad from Boonville, westward to some convenient point on the western boundary of Missouri, for the purpose of embracing the Santa Fe trade. A more splendid system of railroad communication, could not be devised through any portion of the United States. Such is the rapid progress of internal improvements, that in ten years this project may be realized:
T.

March 10, 1837.
We commend the following article from the Courier and Enquirer to the attention of all who feel an interest in the progress of internal improvement in this State or Union.

Enlargement of the Erie Canal._We are pleased to perceive that this subject is exciting the attention of this ctty and elsewhere, which its intrinsic importance so imperiously demands. But more especially is this a measure in which the city: of NewYork is directly interested to a greater extent than even the western counties of this State. All who are familiar with the growth and prosperity of our city during the last thirty years, are well aware tha: its greatest advancement has taken place since the opening of the Erie canal in 1824, and that in point of fact we may date our extraordinary and rapid increase in wealth and population from that period. The completion of the great work, opened a new world for enterprise and industry, the product of which was emptied into this city and gave new life and vigor to every branch of business. It not only enabled us to commund the resources of the wesiern part of this State, but it gave a new value to all the country bordering on the Lakes, and induced hundred of thousands to resort to that region under the conviction that through the medium of our Erie Canal they could always reach the market and avail themselves of its advantages. In short its value to us is abosolutcly incalculable, at the same time that it has actually caused a whole empire laying on our north-western waters, to spring into existence with a degree of rapidity that is almost incomprehensible, and which appears to have been the work of enchantment.

In consequence of this wonderful increase in the population of the north-west, and the inexhaustable agricultural wealth of that region, the great object of the Eric canal is about to be in a measure frustrated by its want of capacity to do the business, which the fertility of soil and untiring industry and enterprise of the west already presents. In point of fact, the canal at this moment cannot transport to mariet the produce of the country which depends upon it as the only permanent avenue to the ocean; and if such be the case now, when the western emigrant is in a measure consuming what is raised in that country,-what will it be in five years from this time, when the whole of that region will be under cultivation, and its annual product for exportation be equal to the whole produce of the grain growing States of the Union at this day? We need not answer. The produce must and will find a market somewhere and when it cannot reach the best, it must of necessity, be diverted to some other. From our position, the immense amount of our exports, the activity, energy, and enterprise of our people, New-York must ever be the great commercial emporium of the United States, unless facilities are afforded for getting to another market in less time and at less expense. If we will not take the necessary measures to being the produce of the country where nature designed it should come, but compel it to go to Philadelphia or Baltimore, it follows of course, that the merchants must send that produce abroad, and bring back the avails in imports. 'Thus it is possible, that by neglecting to do our duty, we may to a certain extent, counteract the benificent designs of Nature in our behalf; and it is to this bearing of the snbiect, that we would call the attention of every member of the Legislature, atid every thinking man in this community.

It is the solemn and the sacred duty of our Legislature to act promptly and definitively on this question. Of course they should not waste the people's money; but at any and every cost, they should enlarge the Erie canal within the shortest practicable period, even if it should cost double the sum to accomplish it in three that it would in six years. The whole cost of such enlargement, be it what it may, is a mere drop in the bucket, compared with the certan and irreparable consequences of suffering the Western trade to be diverted from this city for a single season. It must not, if we can avoid it, ever be permitted to find any other avenue to the ocean than through our port, and in all our legislation, this great object should never be lost sight of, by those to wham the people entrust the guardian. ship of their best interests.

A friend handed us a few days since, a memorandum, setting forth the necessity of enlarging the Eric Conal, which he intended as a kind of text book for ourselves in alluding to this subject; but it is so well con. densed that we give it to our readers as exhibiting in very few word, the whole merits of the contemplated improvement.
"The Erie Canal is too small for the present business in the most busy times of the year."

Its business has rapidly increased, and will increase more rapidly.

1st. From the jucreve amonat of peor duce raised by tise miliduas who brtwe within the last three years, ennigrated to Indianit, Illinois, Michigan and Missourj.

2d. From the numerous chamels of communication now opening with Lalie Erie, viz:

The Wabash and Erie canal, connecting the navigable waters of Wabash with Lalie Erie. It runs througha rich and well settled country, and will bring an immense amount of property into Lake Erie, which now goes to New-Orleans or to Baltimore; (wil! be done in less than three years.)
2. Mad River and Lake Erie Railroad; (almost completed.)
3. I!linvis and Michignn Canal, from the steamboat navigation on the lllinois river, to Lake Michigan, at Chicago.
4. Improved navigation of the Fox and Wisconsin rivers.

「5. Eric and Kialamezoo Railroad, and a great number of Railroxds to the interior of Michigan, Indiana, IHinois, \&c.

The natural increase of business aribout the opening of these new channcls, will choke up the canal in four years-ivhen they are opened, the cuan cuas do litte more than halt the basiness offering unless enlarged. Winen tire busimess becomes so large as to impede the progress of boats in the canal, a part, (and not a small pari) will find its way to Pailadelphia. Pennsylvania, in anticipution of this is opening numerous channels of communication between the Lake and Pailadelphia-as follows:

1st. Tile Mahoming canal, connecting the Ohio and Pennsylvania canals, from- A 1 kansas to New Castle. Through this canal in nine months a canc!-boat cane go from Cleveland on Lalic Eric lo Piltsburg. From Cieveland to Piniludelpina, the distance by this route, is 160 miles less than to New-York by the Eric canal.
2. The Western section of the Penasylvania Canal to Eric, will be completed in two years.
3. The Eric and Philudelphia Railroad through Northumberland. The most wealthy men in Piniladelphia, with Nicholas Biddle at their head, are interested in this work, and it will be made as last as money can make it. It will be 100 miles nearer than the New-York and Erie Railroad.
4. The Conneaut and Beaver Railroad, from Lake Eric to Beaver and Pittsburg, will be done in two years.
5. The Cleveland and Pittsburg road ; in thrce or four years.

These will all be completed before the canal can be enlarged. As soon as the business of the canal is obstructed, it will go off to Philadelphia in these channelsand when once diverted, it may be difficult to get it back again."

Novel Experiments on Rallways-
Since the opening of the Durham and Sunderland Railway, a novel experiment has been tried upon the line, which proves the practicability of railroad vehicles being propelled by wind. A temporary mast and sail were erected on a vehicle, which was set going at an easy rate. On the
sail being trimmed to the wind, the speed increased to the rate of ten miles an hour. \therefore traid of five coibl wrirons was afterwards atiteched, but no adfitional sail hoisted. 'The rmin was set groing as easy as possible to give it motion, when the speed in: creased to the rate above inentioned. The experiment was repeated for several days between Sunterland and Hendon, each way, with the same success, and was witnessed by numbers of spectators, who were much delighted with the novelty of the scene._Mining Jour.]

The New Vehicle Retarder.-Much curiosity hats beer excited in Oxford by repeated trials of a new invention intended to regulate the speed of carriages when descending it hill, by means of which the coachman can instantly or progressively lock both the hind wheels. The apparatus was applied to a four-frorse stage, which was loatlerl with passengerz, and, on as ${ }^{3}$ cending or descending a hill, was found to answer all the purposes intendel. The inventor then proposed that the coach should be taken down the hill without horses, and it was frequently stopped while proceeding at the rate of twelve miles an hour. Nany practical gentlenen had am. ple proofs of the principle of the invention by having the coach lifted up, and the two hind wheels allowed to turn free on the axle, when it was found that a two-pound weight, placed on the extremity of the wheel, would gently bring it round; but When the first degree of retarding power was applied, it took a weight, so placed, of fifteen pounds to bring it gently round ; the second degree, thirty-six pounds; the third degree, fifty-six pounds; and the fourth degree, three quarters of a hundred; but with this weight no one person was capa: ble of moving cither wheel on its axle. Mr. B. Pearson, organist of thecity church; is the inventor.--[Oxford paper.]

To prevent Milk from turning Sour. _Add to cach quart of milk about 16 grains of bi carbonate of soda. It does not imjure the taste of the milk, and aids remarkably the digestion of it. One of the large milk establishments of Paris has no other means of keeping the milk which res mains, an advantage which is highly ap= preciated in large concerns of the kind.--[Jour. de Connais, Usuelles.]

Irradiation of Ligit.-It is a curious fact, that if the same letters of the same size precisely are painted on two boards, the one white on a black ground, and the other black on a white ground, that the white letters will appear larter, and be read at a greater distance, than the black. This is owing to what is called the irradiation of light. It depends on this, that the impression made on the hottom of the eye by bright objects extends a little wider than the actual portion of the organ struck by the light, and invading the space occupied by the darker objects, makes the brighter appear larger than they really are. -[Railway Mag.]

TRANSACTIONS OF THE INSTITUTION OF CIVIL ENGIFEERS.
Piate 1.
Plans.-1, Eagle; 1, Hawk; 2, Velocity ; 3, Rapid ; 4, Zephyr; 5, Lark. Sections.-2, Velocity ; 3, Rapid; 1, Eagle; 1, Hawk. Elevation.-1, Eagle; 1, Hawk. a, towing linc.

8.-A, seat ; B, cabin ; C, steerage ; D, luggage ; e, table. 4.—A, scat ; B, steerage ; C, cabin. 5.-A, seat ; B cabin ; C, steerage.

TABLE I．continued．－THE RAPID（First Set．）

TABLE II．－THE ZEPHYR（First Set．－36 Experiments）．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A \& B \& C \& D \& E \& F \& G \& H \& I \& J \& K \& L \& M \& N \& 0 \& P \\
\hline \& \& \& \& 容䓂 \& \& \& \& \& تِّ \& 菏 \& \[
\frac{\text { Drau }}{\text { Buw }}
\] \& \begin{tabular}{l}
ught． \\
St＇rn
\end{tabular} \& \[
\begin{aligned}
\& \text { 0. } \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \& REMARES．
TLACE OF EXPERIMENT
FORTH AND CLYDE CANAL． \\
\hline 90 \& Zephyr． \& m．
5
5 031 \& \[
\begin{aligned}
\& \\
\& b \\
\& c \\
\& d \\
\& e \\
\& e \\
\& f
\end{aligned}
\] \& \(|\)\begin{tabular}{c}
sec． \\
\\
49 \\
50 \\
51 \\
54 \\
\hline
\end{tabular} \& miles \& lbs．

$35 \cdot 5$
38.4
41.6

39.1 \& \begin{tabular}{|c}
feet．

6.73

6.60

6.47

6.11

 \& Two Horses． \&

7 passen． gers，$=$

c．q．lb．

$\begin{array}{lll}9 & 2 & 1\end{array}$

\end{tabular} \& fav． light \& \[

i_{7}

\] \& \[

\underset{5}{in.}
\] \& not obs． \& not obs， \& Weight of Zephyr，when empty， 2 ton， 2 cwt． 2 qr． 5 lb ．Towing－line， 11 ft ． from bow．

\hline 91 \& Zephyr． \& $\left|\begin{array}{ll}16 & 35 \\ 17 & 00 \\ 17 & 26 \\ 17 \\ 17 & 54 \\ 18 & 20 \frac{1}{2}\end{array}\right|$ \& \[
$$
\begin{aligned}
& \hline b \\
& c \\
& d \\
& e \\
& f \\
& f
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 25 \frac{1}{2} \\
& 26 \\
& 27 \frac{1}{2} \\
& 26 \frac{1}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 8.82 \\
& 8.65 \\
& 8 \cdot 18 \\
& 8 \cdot 49
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 175 \cdot 5 \\
& 169 \\
& 164 \cdot 6 \\
& 155 \cdot 6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12 \cdot 94 \\
& 12 \cdot 69 \\
& 12.00 \\
& 12 \cdot 45
\end{aligned}
$$
\] \& do． \& do． \& do． \& do． \& do． \& do． \& do． \&

\hline 92 \& Zephyr． \& | 28 | 501 |
| :--- | :--- |
| 29 | 15 |
| 29 | 39 |
| 30 | 03 |
| 30 | 27 |$|$ \& \[

$$
\begin{aligned}
& b \\
& c \\
& d \\
& d \\
& e \\
& f
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 24 \frac{1}{2} \\
& 24 \\
& 24 \\
& 24
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 9 \cdot 18 \\
& 9 \cdot 38 \\
& 9 \cdot 38 \\
& 9 \cdot 38
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 202 \\
& 188 \cdot 71 \\
& 181.21 \\
& 175.6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13.47 \\
& 13.75 \\
& 13.75 \\
& 13.75
\end{aligned}
$$
\] \& do． \& do． \& do． \& do． \& do． \& ＇do． \& do． \& 。

\hline 93 \& Zephye． \& \& \[
$$
\begin{aligned}
& \hline b \\
& c \\
& d \\
& e \\
& f
\end{aligned}
$$

\] \&	17	
17	1	
17	13	
17	1	
		\& \[

$$
\begin{aligned}
& 12 \cdot 86 \\
& 13 \cdot 24 \\
& 13 \cdot 24 \\
& 13 \cdot 24
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 347 \\
& 343 \cdot 8 \\
& 349 \\
& 349 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 18 \cdot 86 \\
& 19 \cdot 41 \\
& 19 \cdot 41 \\
& 19 \cdot 41
\end{aligned}
$$
\] \& do． \& do． \& do． \& do． \& do． \& do． \& do． \& ．

\hline
\end{tabular}

TAbLE II. continued.-THE ZEPHYR (Finst SEt.)

94	Zephyr.	$\begin{array}{r} 3920 \\ 3939 \\ 39 \\ 39 \\ 19 \\ 15 \\ 10 \\ 10 \\ \hline 103 \\ \hline \end{array}$	l c d d e f	$\begin{aligned} & 19 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\left[\begin{array}{l} 11 \cdot 84 \\ 12 \cdot 50 \\ 12 \cdot 50 \\ 12 \cdot 503 \\ 12 \cdot 50 \cdot 3 \end{array}\right.$	$\begin{aligned} & 357 \cdot 5 \\ & 360 \\ & 372.8 \\ & 3961 \end{aligned}$	$\left\|\begin{array}{c} 17.37 \\ 18 \cdot 33 \\ 18 \cdot 33 \\ 1833 \end{array}\right\|$	do.	$\left\|\begin{array}{ccc} 7 & \text { passen- } \\ \text { yers, } & \text { andi } \\ 1 & \text { ton, } & = \\ c . & q . & l . \\ 29 & 2 & 1 \end{array}\right\|$	do.	84	$7 \frac{1}{4}$	do.	do.	
95	Zephyr.	$\left\|\begin{array}{cc}47 & 4 \\ 17 & 28 \\ 47 & 52 \\ 48 \\ 28 & 17 \\ 48 & 40\end{array}\right\|$	b c c d e f	$\begin{aligned} & 24! \\ & 333 \\ & 25 \\ & 25! \\ & 23! \end{aligned}$	9.18.	$\left\{\begin{array}{l} 237.4 \\ 230.5 \\ 211 \\ 222.7 \end{array}\right.$	$\left\lvert\, \begin{aligned} & 13 \cdot 47 \\ & 14 \cdot 04 \\ & 13.20 \\ & 14 \cdot 04 \end{aligned}\right.$	de.	do.	do.	do.	do.	do.	do.	
96	Zephyr.	1 $15 \frac{1}{2}$ 2 17 3 14 4 14 4 10 5 18	b c d e j	$\begin{aligned} & 617_{1}^{1} \\ & 572 \\ & 59 \\ & 6 \cdot 4 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 3 \cdot 66 \\ & 3.91 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\left\{\begin{array}{l} 36 \cdot 5 \\ 42 \cdot 5 \\ 34 \cdot 0 \\ 31 \cdot 0 \\ 31 \cdot 5 \end{array}\right.$	$\left\lvert\, \begin{gathered} 5.37 \\ 5.74 \\ 5.59 \\ 5.12 \end{gathered}\right.$	One Horse. Boy leading.	do.	do.	do.	do.	do.	do.	
97	7sprys.	(13 51591	b c d d e f	$\begin{aligned} & 53 \\ & 53 \\ & 53 \\ & 54 \end{aligned}$	$\left[\begin{array}{l} 4.25 \\ 4.25 \\ 4 \\ 4.21 \\ 4.17 \end{array}\right.$	$\begin{array}{\|l\|l} 47 \\ 46 \\ 38 \\ 38 \\ 39 \end{array}$	$\left\|\begin{array}{l} 6 \cdot 23 \\ 60.23 \\ 6 \cdot 17 \\ 6 \cdot 11 \end{array}\right\|$	One Horşe. Boy riding.	do.	do.	do.	do.	do.	do.	
98	Zephyr.	$\|$47 23 47 42 18 00 48 $19 \frac{1}{2}$ 45 38 4 3	$\begin{aligned} & b \\ & c \\ & d \\ & c \\ & f \end{aligned}$	$\begin{aligned} & 18 \\ & 18 \\ & 19 \\ & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 12163 \\ & 1216 \\ & 11.943 \\ & 12 \cdot 16 \end{aligned}$	$\begin{aligned} & 6370 \\ & 6370 \cdot \mathrm{~s} \\ & 4360 \\ & 6369 \cdot 2 \end{aligned}$	$\begin{aligned} & 17 \cdot 84 \\ & .1784 \\ & 17.37 \\ & 17.84 \\ & 18 \end{aligned}$	$\begin{gathered} \text { Two } \\ \text { Hosses. } \end{gathered}$	$\begin{array}{\|c} \hline 7 \\ \text { passen } \\ \text { reps, \& } 1 \mathrm{t} \\ 3 \\ 3 \\ \text { cwt. } \\ 0 \\ 0 \\ 3 . \\ \hline 3 \\ \hline \end{array}$	do.	9	$7{ }^{3}$	do.	do.	Zephyr, with 1 ton, 6 cwt . and 7 passengers, nearly equal to the weight of the Rapid and $\mathbf{7}$ passengers.
93 100	Zepripr.	55 14 57 37 56 31 56 01 56 26 56 51 2 01 2 01 2 32 3 04 3 332 4 03 4	$\begin{aligned} & b \\ & c \\ & d \\ & d \\ & e \\ & b \\ & b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 23 \frac{1}{2} \\ & 24 \\ & 24 \\ & 25 \\ & 31 \\ & 31 \\ & 29 \\ & 30 \end{aligned}$	$\begin{aligned} & 9.572 \\ & 9.38, \\ & 9.18 \\ & 9.002 \\ & 7 \cdot 14 \\ & 7 \cdot 14 \\ & 7.59 \\ & 7.50 \end{aligned}$	$254 \cdot 8$ 227.4 223 $224 \cdot 7$ 1 $138 \cdot 5$ 152.5 167.2 156.9	$\begin{aligned} & 14 \cdot 04 \\ & 13.75 \\ & 13 \cdot 47 \\ & 13.20 \\ & \left\{\begin{array}{l} 10 \cdot 45 \\ 10.48 \\ 10 \\ 11.19 \\ 11.04 \end{array}\right. \end{aligned}$	Two Horses. do.		$\begin{gathered} t=\begin{array}{c} \text { fiv. } \\ \text { fiv. } \\ \text { ight. } \\ \text { do. } \end{array} \\ \end{gathered}$	do.	in. do.	not obs. do.	not nbs.	A barge passed, 56 m .40 s .
10	Zephyr.		b c d e e f	$\begin{aligned} & 53 \\ & 55 \\ & 55 \\ & 55 \end{aligned}$	$\begin{aligned} & 4 \cdot 21 \\ & 4 \cdot 09 \\ & 4 \cdot 9 \\ & 4 \cdot 09 \end{aligned}$	$\begin{array}{l\|l\|} \hline & 45 \cdot 5 \\ 9 & 45 \cdot 2 \\ 9 & 40 \\ 9 & 41 \cdot 1 \end{array}$	$\left\lvert\, \begin{array}{c\|c\|} 6.17 \\ 6.00 \\ 60.00 \\ 6.10 \end{array}\right.$	do.	do.	do.	do.	do.	do.	do.	
102	Z.piyr.	3.1 22 34 412 3 41_{2} 35 00 35 19_{2}^{1} 35 39$\|$	$\begin{aligned} & f \\ & \hline b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \frac{1}{2} \frac{1}{2} \\ & 199 \\ & 199_{\frac{1}{i}}^{i} \end{aligned}$		$\begin{aligned} & 41041 \\ & 6391.51 \\ & 4596+1 \\ & 4345 \cdot 2 \end{aligned}$	$\begin{aligned} & 16.92 \\ & 17.94 \\ & 16.92 \\ & 16.92 \end{aligned}$	do.		do.	10	9	do.	do.	
103	Zephyr.	$\begin{array}{rl} 57 & 49 \\ 5 . & 14 \\ 58 & 39 \\ 59 & 05 \\ 59 & 31 \\ \hline \end{array}$	$\begin{aligned} & \hline b \\ & c \\ & d \\ & d \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 20 \\ & 26 \end{aligned}$	$\begin{aligned} & 9.002 \\ & 9.002 \\ & 8.652 \\ & 8652 \end{aligned}$	$\begin{aligned} & 0272 \\ & 0.2436 \\ & 5240 . \\ & 52050 \end{aligned}$	$\begin{aligned} & 13 \cdot 20 \\ & 13 \cdot 20 \\ & 12 \cdot 69 \\ & 12 \cdot 69 \end{aligned}$	do.	do.	$\begin{aligned} & \text { fav. } \\ & \text { very } \\ & \text { lighan } \end{aligned}$	do.	do.	do.	do.	
104	Zephyr.		b c c d e f	$\begin{aligned} & 23 \\ & 23 \\ & 23 \\ & 221 \\ & 221 \end{aligned}$			$\begin{aligned} & 14 \cdot 35 \\ & 14.35 \\ & 14.67 \\ & 14.67 \end{aligned}$	do.	do.	do.	do.	do.	do.	do.	
105	Zephyr.	$\left\|\begin{array}{lll}13 & 31 \frac{1}{2} \\ 14 & 232 \\ 15 & 12 \frac{1}{2} \\ 16 & 05 \\ 16 & 58\end{array}\right\|$	c b c d e e f	$\begin{aligned} & 52 \\ & 49 \\ & 52 \\ & 53 \end{aligned}$	$\left[\left.\begin{array}{l} 4 \cdot 33 \\ 4 \cdot 59 \\ 4 \cdot 29 \\ 4 \cdot 25 \end{array} \right\rvert\,\right.$	$\begin{aligned} & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.35 \\ & 6.73 \\ & 6.29 \\ & 6.23 \end{aligned}$	do.	cio.	do.	do.	do.	do.	do.	
106	Zepurb.	$\left\|\begin{array}{lll}19 & 49 \\ 19 & 44 \\ 50 & 40 \\ 51 & 36 \\ 52 & 31 \\ 2 & 3 & 3\end{array}\right\|$	b c d e e f b	$\left\|\begin{array}{l} 55 \\ 56 \\ 56 \\ 55 \frac{1}{2} \end{array}\right\|$	$\left\|\begin{array}{l\|} 4 \cdot 09 \\ 4 \cdot 02 \\ 4 \cdot 0.2 \\ 4 \cdot 02 \end{array}\right\|$	$\left\lvert\, \begin{array}{c\|} 54 \cdot 9 \\ 50.9 \\ 47.8 \\ 48.8 \end{array}\right.$	$\left\|\begin{array}{c} 6.00 \\ 5.89 \\ 5.89 \\ 5.89 \end{array}\right\|$	Two Horses.		do.	do.	do.	do.	do.	-
107	Zepayr.		b c d d e j	61 603 60 .60	($\begin{aligned} & 3.6! \\ & 3.72 \\ & 3.75 \\ & 3.75 \\ & \text { a }\end{aligned}$	$92 \cdot 3$ 76.4 69.7 65.8	(5.41 $5 \cdot 4$	do.	$1^{\text {do. }}$	do.	12	11	do.	do.	Stern drawn foremost.

TABLE II. CONTINUED.-THE ZEPHYR (First SET).

108	Zephyr.	10 11 10 30 10 49 11 11 09 11 23 1	b c d e e	$\begin{aligned} & 19 \\ & 19 \\ & 19 \\ & 19 \\ & 19 \end{aligned}$		$\begin{aligned} & 498 \\ & 434 \cdot 2 \\ & 418 \cdot 4 \\ & 418 \\ & 407 \cdot 4 \end{aligned}$	$\begin{aligned} & 17.37 \\ & 16 \cdot 92 \\ & 16 \cdot 92 \\ & 17.37 \end{aligned}$	Two .	$\left\|\begin{array}{lll} 7 & \text { passen } \\ \text { gers, } \\ 3 & \text { ton } & = \\ c . & = \\ c . & q & l \\ 69 & 2 & 1 \\ 69 & 1 \end{array}\right\|$	fav.	$\begin{aligned} & \text { in } \\ & 12 \end{aligned}$	$\mathrm{in.}_{11}$	$\begin{array}{\|c\|c} \text { not } \\ \text { obs. } \end{array}$	$\begin{gathered} \text { not } \\ \text { obs. } \end{gathered}$	
109	Zephyr.	30 58 21 25 21 51 22 18 22 45	b c d e e f	27 26 27 27	8.332 865 833 8.332 8.32	$\begin{aligned} & 272 \cdot 3 \\ & 262 \cdot 7 \\ & 299-5 \\ & 291 \cdot 3 \end{aligned}$	12.22 12.69 12.22 12.22	do.	do.	do.	do.	do.	do.	do.	
110	Zephyr.	$\begin{array}{ll} 29 & 41 \\ 30 & 08 \\ 30 & 33 \\ 30 & 59 \\ 31 & 25 \end{array}$	b c d d e f	$\begin{aligned} & 27 \\ & 25 \\ & 26 \\ & 26 \end{aligned}$	$\begin{aligned} & 8.332 \\ & 9.00 \\ & 8.65 \\ & 865 \end{aligned}$	$\begin{aligned} & 29301 \\ & 2957 \\ & 2835 \\ & 2065 \\ & 306 \end{aligned}$	12.22 13.20 1269 12.69	do.	do.	dc.	do.	do.	do.	do.	
111	Zephyr.	$\left.\begin{array}{ll} 20 & 12 \frac{1}{2} \\ 20 & 34 \\ 20 & 55 \\ 21 & 16 \\ 21 & 36 \frac{1}{2} \end{array} \right\rvert\,$	b c c d e f	$\begin{aligned} & 21 \frac{1}{2} \\ & 21 \\ & 21 \\ & 20 \\ & 20 \frac{1}{2} \end{aligned}$	$\begin{array}{r\|l\|l} \frac{1}{2} & 10.47 \\ 10.71 \\ 10.71 \\ 10.71 & 4 \\ \frac{1}{2} & 10.97 & 4 \end{array}$	$\begin{array}{\|l\|l} 441 \cdot 1 \\ 418 \cdot 2 & 1 \\ 406 \cdot 4 & 1 \\ 423 \cdot \Lambda \end{array}$	$\left\lvert\, \begin{aligned} & 15 \cdot 35 \\ & 15 \cdot 71 \\ & 15 \cdot 71 \\ & 16 \cdot 09 \end{aligned}\right.$	do.		do.	133	$12 \frac{3}{4}$	do.	do.	1
112	Zephyr.	$\left\|\begin{array}{ll} 33 & 36 \\ 34 & 04 \frac{1}{2} \\ 34 & 32 \\ 34 & 59 \\ 33 & 27 \end{array}\right\|$	b c d e e f	28 22_{2}^{1} 27 27 27 28 28	7 7.902	275.0	$\begin{array}{\|} 11 \cdot 5 \mathrm{~s} \\ 12 \cdot 00 \\ 12 \cdot 22 \\ 11.79 \end{array}$	do.	do.	do.	do.	do.	do.	dc*	-
113	Zepilyr.	12 43 43 44 44 45 45 40 43 24	0 c d e f	$\begin{aligned} & 55 \\ & 53 \\ & 51 \\ & 51 \end{aligned}$	4.09 4.25 4.41 4.41	59.8 59.8 62.7 $57 \cdot 6$	6.00 6.23 6.47 6.47	do.	do.	do.	do.	do.	do.	do.	
114	Zephyr.	34 34 34 35 35 35 35 35 35	c d e e f	18 1 19 19 1 18	$\begin{array}{c\|c\|c} 12 \cdot 50 & 1 \\ 11 & 5 & 3 \\ 11.84 & 3 \\ 12.54 & 3 \end{array}$	$\begin{aligned} & 401.018 \\ & 3840 \\ & 375.61 \\ & 3727 \end{aligned}$	$\begin{aligned} & 18 \cdot 33 \\ & 17 \cdot 37 \\ & 17 \cdot 37 \\ & 18 \cdot 33 \end{aligned}$	do.		do.	97	S	do.	do.	1 ton 13 cut t made the Ze phyr and 7 passengers nearly equal to the Velocity, with 7 passen gers.
110	Zeruyr.	$\left\|\begin{array}{ll}17 & 63 \\ 17 & 26 \\ 17 & 48 \frac{1}{2} \\ 18 & 11 \frac{1}{2} \\ 12 & 33\end{array}\right\|$	u c d e f f	$\begin{aligned} & 23 \\ & 22 \frac{1}{2} \\ & 23 \\ & 22 \end{aligned}$	$=\begin{gathered} 9.75 \\ 0.04 \\ 19.7 \varepsilon \\ 10.23 \\ 102 \end{gathered}$	$\begin{aligned} & 29151 \\ & 271 \cdot 01 \\ & 2670 \\ & 269 \cdot 4 \end{aligned}$	14.35 14.67 1438 15.00	do.	do.	do.	do.	do.	do.	dur. run. bow elev. 11^{\prime}	- -
116	Zerayr.	$\left\lvert\, \begin{array}{cc}00 & 10 \\ 59 & 05 \\ 39 & 52 \\ 0 & 40 \\ 1 & 282\end{array}\right.$	u c d e f	47 47 48 48 1	4.79 4.79 4.79 4.64		7.02 702 638 630	do.	do.	do.	do.	do.	do.		Eubble vibrating a litule.
117	Zepayr.		b l c d e f	$\begin{aligned} & 63 \\ & 60 \\ & 57 \\ & 55 \end{aligned}$	$3.5 i$ 3.75 3.95 4.09	$\begin{aligned} & 37 \cdot 8 \\ & 39 \cdot 9 \\ & 50 \cdot 2 \\ & 42 \cdot 0 \end{aligned}$	$5 \cdot 24$ $5 \cdot 50$ $5 \cdot 78$ 6.00			$\binom{\text { fav. }}{\text { light }}$	$\left\|\begin{array}{\|c\|} \hline \text { in. } \\ 93 \end{array}\right\|$	$\text { in. }_{8 \frac{1}{2}}$	$\begin{aligned} & \text { not } \\ & \text { obs. } \end{aligned}$		
118	Zephyr.	19 20 20 20 20 20 20 21 21 1	f c d e e f	18 $18 \frac{1}{2}$ $18 \frac{1}{2}$ 19	$\left\{\begin{array}{l} 12 \cdot 50 \\ 12 \cdot 16 \\ 12 \\ 12 \cdot 16 ; 3 \\ 11 \cdot 84 \end{array}\right.$	$\begin{aligned} & 414 \cdot 5 \\ & 386 \cdot 3 \\ & 372 \cdot 0 \\ & 372 \cdot 0 \end{aligned}$	$\begin{array}{r} 18 \cdot 33 \\ 17.84 \\ 17.84 \\ 17.37 \end{array}$	do.	do.	do.	do.	do.	do.	dur. run. bon e.ev. 27^{\prime}	-.
119	Zephyr.	$\begin{aligned} & 38 \\ & 39 \\ & 39 \\ & 39 \\ & 39 \\ & 40 \\ & 40 \\ & 10 \end{aligned}$	b c c d e f	23 $22 \frac{1}{2}$ 224 23	$\begin{gathered} 9.78 \\ 10.002 \\ 10 \cdot 00^{2} \\ 9 \cdot 782 \end{gathered}$	$\left\{\begin{array}{l} 3.926 \\ 270 \cdot 81 \\ 528 \cdot 31 \\ 258 \cdot 61 \end{array}\right.$	$\begin{aligned} & 14.35 \\ & 14.67 \\ & 14.67 \\ & 14.35 \end{aligned}$	do.	do.	do.	111	73	do.	do. do. elev 7 7	Weight shifted forward.
120	Zephyr.	10 20 51 44 52 $07 \frac{1}{2}$ 52 30 52 53	b c d d e f	24 23 23 23 23 23 23 1		$\begin{gathered} 230 \cdot 6 \\ 259 \cdot 2 \\ 266.7 \\ 250 \cdot 6 \end{gathered}$	13.75 14.04 14.67 14.35	do.	do.	do.	8	10	do.	$\begin{array}{r} \text { do. } \\ \text { do. } \\ \text { elev. } \\ 15 \frac{1}{2} \end{array}$	do. af.
121	Zephyb.	$\left\|\begin{array}{ll} 10 & 25 \\ 10 & 47 \\ 11 & 08 \\ 11 & 29 \\ 11 & 50 \end{array}\right\|$	f c d e f	22 $21 \frac{1}{2}$ $20 \frac{1}{2}$ 21 21		$\begin{aligned} & 328 \cdot 6 \\ & 311 \cdot 2 \\ & 317 \cdot 3 \\ & 283 \cdot 0 \end{aligned}$	$15 \cdot 00$ $16 \cdot 35$ $16 \cdot 09$ $15 \cdot 35$	do.	do:	do.	$0!$	$8{ }_{2}^{\prime}$	do.	$\begin{aligned} & \text { do. } \\ & \text { do. } \\ & \text { dcp. } \\ & 20^{\prime} \end{aligned}$	Weigh: distributed equally.

TABLE II．continued．－THE ZEPHYR（First Set）．

122	Zephyr．	$\left\|\begin{array}{ll} 12 & 06 \frac{1}{2} \\ 12 & 32 \\ 12 & 57 \\ 13 & 54 \\ 13 & 24 \\ 13 & 50 \end{array}\right\|$	$\begin{aligned} & c \\ & d \\ & c \\ & c \end{aligned}$	$\begin{aligned} & 25 \frac{1}{2} \\ & 25 \\ & 27 \\ & 27 \\ & 26 \end{aligned}$	$\begin{aligned} & \left.8 \cdot 82\right\|^{2} \\ & 9 \cdot 0.2 \\ & 8 \cdot 33 \\ & 8 \cdot 65 \end{aligned}$	$\left\|\begin{array}{l\|} 230 \cdot 2 \\ 24 \cdot 8 \\ 237 \cdot 1 \\ 233 \cdot 6 \end{array}\right\|$	$\left\|\begin{array}{l} 12 \cdot 94 \\ 13 \cdot 20 \\ 12 \cdot 22 \\ 12 \cdot 69 \end{array}\right\|$	do．	do．	do．	do．	do．	do．	$\left\|\begin{array}{c} \text { do. } \\ \text { do. } \\ \text { elev. } \\ 22^{\prime} \end{array}\right\|$	
123	Zephyr．	21 18 21 41 22 41 22 06 22 30 22 53	$\begin{aligned} & \hline b \\ & c \\ & d \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 233_{2}^{2} \\ & 24 \frac{1}{2} \\ & 24 \\ & 24 \\ & 23 \end{aligned}$	$\begin{aligned} & 9.512 \\ & 9.18 .2 \\ & 9.31_{2}^{2} \\ & 9.782^{2} \end{aligned}$	$\begin{aligned} & 233 \cdot 0 \cdot \\ & 256 \cdot 7 \\ & 245 \cdot 2 \end{aligned}$	$\begin{aligned} & 14 \cdot 04 \\ & 13 \cdot 47 \\ & 13 \cdot 75 \\ & 14 \cdot 35 \end{aligned}$	do．	do．	do．	do．	do．	do．	$\left\|\begin{array}{c} \text { do. } \\ \text { do. } \\ \text { clere. } \\ 22: 2 \end{array}\right\|$	
124	Zephyr．	$\left\|\begin{array}{cc}7 & 17 \\ 8 & 15 \\ 9 & 10 \frac{1}{2} \\ 10 & 04 \\ 11 & 01\end{array}\right\|$	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \\ & 24 \\ & 23 \end{aligned}$	$\begin{aligned} & 9.38 \mid \\ & 9.00 \mid \\ & \left.9.38\right\|_{2} ^{2} \\ & 9.78{ }_{2}^{2} \end{aligned}$	$\begin{aligned} & 246 \cdot 0 \\ & 253 \cdot 6 \\ & 259 \cdot 2 \\ & 249 \cdot 0 \end{aligned}$	$\begin{aligned} & 13 \cdot 75 \\ & 13 \cdot 20 \\ & 13 \cdot 75 \\ & 14 \cdot 35 \end{aligned}$	do．	do．	do．	8	10	do．	$\begin{array}{\|} \text { do. } \\ \begin{array}{c} \text { co. } \\ \text { dev. } \\ 26^{\prime} \end{array} \\ \hline \end{array}$	Weight shifted aft．
125	Zephyr．	$\left\|\begin{array}{ll}36 & 013 \\ 36 & 23 \\ 36 & 44 \frac{1}{2} \\ 37 \\ 37 & 06 \\ 37 & 27\end{array}\right\|$	b c c d e f f	$\begin{aligned} & 23, \\ & 25_{1}^{2} \\ & 205 t_{1}^{2} \\ & 25 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 9.57 \mid 2 \\ & 8.822^{2} \\ & 8.822 \\ & 8.822^{2} \end{aligned}$	$\begin{aligned} & 254 \cdot 5 \\ & 2430 \\ & 253 \cdot 2 \\ & 259 \cdot 2 \end{aligned}$	$\left\|\begin{array}{l} 14 \cdot 04 \\ 12 \cdot 94 \\ 12 \cdot 94 \\ 12 \cdot 94 \end{array}\right\|$	do．	do．	16	112	$7 \frac{1}{4}$	do．	do． do． cever cen 32^{\prime}	Weight shifted forward．

TABLE III．－THE LARK（31 Experiments．）

A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P
									淢	\dot{B}	Dra	St＇rn		＂ 들 －	Remarks． place of experiment， forth and clyde canal．
126	Lark．		$\begin{aligned} & b \\ & c \\ & d \\ & d \\ & e \\ & f \end{aligned}$	$\begin{gathered} -1 \\ 17 \frac{1}{2} \\ 21 \\ 20_{2}^{2} \\ 20 \frac{1}{2} \end{gathered}$	\mid miles． $12 \cdot 86$ 10.71 10.97 $10 \cdot 97$$\|$	$1 \mathrm{lbs} . \mid$ $336.0 \mid$ 35.0 $337.0 \mid$ 317.7	\mid feet． $18.86 \mid$ 15.71 16.09 16.09	Two Horses.		flav.	$\operatorname{in}_{10 \frac{1}{4}}$	in_{10}	$\begin{aligned} & \text { not } \\ & \text { obs. } \end{aligned}$	$\begin{aligned} & \text { dur. } \\ & \text { run. } \\ & \text { bow } \\ & \text { elev. } \\ & 25 \frac{1}{2} \\ & \hline \end{aligned}$	Weight of Lark，when emp－ ty， 3 ton $3 \mathrm{cwt}$.1 q r ． 4 lb ．
127	Lark．	27 05 27 30 27 54 28 $18 \frac{1}{2}$ 28 42	b c c d e f f		$9 \cdot 00$ $9 \cdot 38$ 9.1 9.58 9	$\begin{aligned} & 0.256 \cdot 5 \\ & 8.253 .6 \\ & 8.256 .1 \\ & 7264 \cdot 8 \end{aligned}$	$\begin{array}{l\|l\|l\|} \hline & 13 \cdot 20 \\ 6 & 13 \cdot 75 \\ 1 & 13 \cdot 47 \\ 8 & 14 \cdot 04 \\ \hline \end{array}$	do．	do．	do．	do．	do．	do．	$\begin{gathered} \text { do } \\ \text { do } \\ \text { dever. } \\ 15^{\prime} \end{gathered}$	
128	Lark．	41 04 41 53 42 45 43 35 44 $30 \frac{1}{2}$ 28 4	$\begin{aligned} & c \\ & b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 52 \\ & 50 \\ & 54 \frac{1}{2} \end{aligned}$	4.59 $4 \cdot 33$ 4.50 $4 \cdot 13$	9 $64: \%$ $55 \cdot 9$ $56 \cdot 5$ $46 \cdot 5$		do．	do．		do．	do．	do．	$\begin{gathered} \text { do. } \\ \text { do. } \\ \text { level } \end{gathered}$	
129	Lark．	59 44 53 53 55 02 50 56 12 57 25 25	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 69 \\ & 69 \\ & 70 \\ & 73 \end{aligned}$	3.26 3.26 3.261 3.108 3	$\begin{aligned} & 26 \cdot 0 \\ & 23 \cdot 3 \\ & 20 \cdot 8 \\ & 20 \cdot 6 \end{aligned}$	$\begin{array}{l\|l\|l\|} \hline & 4.78 \\ 3 & 4.78 \\ 8 & 4.71 \\ \hline & 4.52 \end{array}$	do．	do．	家宫宫	do．	do．	do．	do	
130	Lark．	18 18 18 19 19 19 19 19 19 17 7 12$\|$	$\begin{aligned} & b \\ & c \\ & d \\ & d \\ & c \\ & f \end{aligned}$	$\begin{aligned} & 18 \\ & 20 \\ & 191 \\ & 20, \\ & 20, \end{aligned}$	$\begin{aligned} & 12 \cdot 50 \\ & 11 \cdot 2.5 \\ & 1 \cdot 5 \cdot 4 \\ & 10 \cdot 97 \\ & \mid \end{aligned}$	$\begin{aligned} & 0396 \cdot 0 \\ & 5368 \cdot 7 \\ & 4370.7 \\ & 7364 \cdot 5 \\ & 7 \end{aligned}$	$\begin{array}{c\|c} 18 \cdot 33 \\ 6 & 16.50 \\ 6 & 16.92 \\ 5 & 16 \cdot 09 \end{array}$	do．	7 passen． gers，and 0 cwt．$=$ c．q．l ． 142	$\begin{aligned} & \text { fav. } \\ & \text { light } \end{aligned}$	10늘	1012	do．	do． do． elev． 27^{\prime}	5 cwt．made the Lark and 7 passengers nearly equal to the Rapid，and 7 pas－ sengers．
131	Lark．	$\left\|\begin{array}{l\|l\|}\hline 27 & 02 \frac{1}{2} \\ 27 & 260^{2} \\ 27 & 50 \\ 28 \\ 28 & 13 \frac{1}{2} \\ 28 & 36\end{array}\right\|$	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 24 \\ & 23 \frac{1}{2} \\ & 23 \frac{1}{2} \\ & 22 \\ & 20 \end{aligned}$			$\begin{aligned} & 7 \\ & \hline 13 \cdot 75 \\ & 8 \\ & \hline 14.04 \\ & 14.04 \\ & 6 \\ & 14 \cdot 67 \end{aligned}$	do．	do．	do．	do．	do．	do．	do． do． elev． 17^{\prime}	
132	Lafk．	36 51 b 37 47 38 43 39 39 35 40 33$\|$ 1	b c d e e f	$\begin{aligned} & 561 \\ & 666_{2}^{1} \\ & 52 \\ & 48 \end{aligned}$	$\begin{aligned} & 3 \cdot 98 \\ & 4 \cdot 02 \\ & 4 \cdot 33 \\ & 4 \cdot 69 \end{aligned}$	$43 \cdot 8$ $40 \cdot 1$ $43 \cdot 4$ $39 \cdot 1$	$\begin{aligned} & 5 \cdot 84 \\ & 5 \cdot 89 \\ & 6 \cdot 50 \\ & 6 \cdot 88 \\ & 6 \cdot 88 \end{aligned}$	do．${ }^{2}$ ，	do．		do．	do．	do．	｜riordo do． dever 3^{\prime}	
133	Lark．		$\|$$b$ c d e f	$\begin{aligned} & 19 \\ & 19 \\ & 20, \\ & 20 \\ & 20 \end{aligned}$	$\left\{\begin{array}{c} 11 \cdot 84 \\ 11 \cdot 54 \\ 10 \cdot 97 \\ 11 \cdot 25 \end{array}\right.$	$\begin{aligned} & 4393 \cdot 41 \\ & 4372 \cdot 3 \\ & 7363 \cdot 6 \\ & 5366 \cdot 8 \end{aligned}$	$\begin{aligned} & 417.37 \\ & 316.92 \\ & 616.09 \\ & 816.04 \end{aligned}$	do．	$\begin{aligned} & 7 \text { passen- } \\ & \text { gers, and } \\ & 12 \text { cwt. } \\ & c \cdot \\ & c . \\ & 21 \\ & 21 \\ & \hline \end{aligned}$	do．	$11 \frac{1}{2}$	111	do．	$\left\|\begin{array}{l} \text { do. } \\ \text { do. } \\ \text { deve. } \\ \text { ele } \end{array}\right\|$	12cwt．made the Lark，and 7 passengers nearly equal to the Velocity，and 7 passengers．

TABLE III. continted.-THE LARK.

134	Lark.	$\|$8 46 b 9 $09 \frac{1}{2}$ c 9 $33 \frac{1}{2}$ d 9 57 c 10 $20 \frac{1}{2}$ f	$23 \frac{1}{2}$ 24 $23 \frac{1}{2}$ $23 \frac{1}{2}$	$\begin{aligned} & 9 \cdot 57{ }_{2} \\ & 9 \cdot 3 S^{2} \\ & 9 \cdot 562 \\ & 9 \cdot 572 \end{aligned}$	$\left\lvert\, \begin{aligned} & 286 \cdot 2 \\ & 280 \cdot 2 \\ & 278 \\ & 265 \cdot 6 \end{aligned}\right.$	$\begin{aligned} & 14 \cdot 04 \\ & 13 \cdot 75 \\ & 14 \cdot 04 \\ & 14 \cdot 04 \end{aligned}$	do.	do.	fav.	do.	do.	do.	$\left\lvert\, \begin{gathered}\text { do. } \\ \text { do. } \\ \text { clev. } \\ 19^{\prime}\end{gathered}\right.$	
135	Lark.	22 35 b 23 33 c 24 30 d 25 27 e 26 24 1 2 f	58 57 57 57 1	$3 \cdot 88$ $3 \cdot 95$ $3 \cdot 95$ $3 \cdot 91$	3.1 $35 \cdot 6$ $45 \cdot 5$ $39 \cdot 2$	$5 \cdot 69$ $5 \cdot 78$ $5 \cdot 78$ $5 \cdot 74$	Two Horses.	$\begin{aligned} & 7 \\ & \text { y passcn- } \\ & \text { gers, and } \\ & 12 \text { cwt. }= \\ & c . \\ & 2 . \\ & 21 \\ & 2 \end{aligned}$		$\begin{aligned} & \text { in. } \\ & 11_{\frac{1}{2}} \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 11 \end{aligned}$	not	dur. rul. bow elev. $1{ }^{\frac{1}{2}}{ }^{\prime}$	
136	Lark.	52 34 b 52 53 $\frac{1}{2}$ 53 12 5 53 32 53 51 f	$19 \frac{1}{2}$ 19 $19 \frac{1}{2}$ $19 \frac{1}{2}$	$\begin{array}{l\|} 11.53 \\ 11.84 \\ 11.54 \\ 11.54 \\ 11.54 \end{array}$	$\begin{aligned} & 404 \cdot 8 \\ & 398 \cdot 3 \\ & 382 \cdot 3 \\ & 388 \cdot 0 \end{aligned}$	$\left\{\begin{array}{l} 16 \cdot 92 \\ 17 \cdot 37 \\ 16 \cdot 92 \\ 16 \cdot 92 \end{array}\right.$	do.	$\begin{aligned} & 7 \text { passen- } \\ & \text { gers, and } \\ & 1 \text { ton, }= \\ & c . q . \\ & 29 . \\ & 29 \\ & \hline \end{aligned}$	do.	$11 \frac{3}{4}$	114	do.	do. do. elev. 24^{\prime}	,
137	Lark.	$\mathbf{2}$ 18 2 43 b 3 07 d 3 31 e 3 53 f	$24 \frac{1}{2}$ 24 24 22	$\begin{array}{\|c\|c} \frac{1}{2} & 9 \cdot 18 \\ 9 \cdot 38 & 2 \\ 9 \cdot 38 & 2 \vdots \\ 10 \cdot 23 & 2 \end{array}$	$\left\{\begin{array}{l} 295 \cdot 0 \\ 295 \cdot 2 \\ 293 \cdot 1 \\ 293 \cdot 5 \end{array}\right.$	$\begin{aligned} & 13 \cdot 47 \\ & 13 \cdot 75 \\ & 13 \cdot 75 \\ & 15 \cdot 00 \end{aligned}$	do.	do.	do.	do.	do.	do.	do. do. elev. 13^{\prime}	
138	Lath.	14 45 b 15 40 c 16 39 d 17 37 e 18 34 f	55 59 53 57	$4 \cdot 09$ $3 \cdot 81$ $3 \cdot 88$ $3 \cdot 95$	$37 \cdot 0$ $36 \cdot 5$ $35 \cdot 6$ $36 \cdot 0$	$\begin{aligned} & 6 \cdot 00 \\ & 5 \cdot 59 \\ & 5 \cdot 69 \\ & 5 \cdot 78 \end{aligned}$	do.	do.	do.	do.	do.	do.	do. do. level.	
139	Lark.	27 52 b 30 30 c 32 55 d 34 10 e 36 03 f	-				do.	do.	do.	do.	do.	do.		Boat drifted with the wind.
140	Lark.	44 45 b 45 05 c 45 26 d 45 47 e 46 $07 \frac{1}{2}$ f	20 21 21 20	$\begin{aligned} & 11 \cdot 25 \\ & 10 \cdot 71 \\ & 10 \cdot 71 \\ & 10 \\ & 10 \cdot 97 \\ & 18 \end{aligned}$	$\begin{aligned} & 435 \cdot 0 \\ & 415 \cdot 0 \\ & 393 \cdot 0 \\ & 387 \cdot 0 \end{aligned}$	$\begin{aligned} & 16 \cdot 50 \\ & 15 \cdot 71 \\ & 15 \cdot 71 \\ & 16 \cdot 09 \end{aligned}$	do.	$\begin{aligned} & 7 \\ & \hline \end{aligned} \text { passen- }$	do.	$13{ }^{1}$	13_{2}^{1}	do.	do. do. elev. 29'	, -
141	Lark.	57 35_{2}^{1} b 58 01 c 58 26 d 58 $51 \frac{1}{2}$ e 59 17 f	$\begin{aligned} & 25 \frac{1}{2} \\ & 25 \\ & 25_{2}^{\mathrm{i}} \\ & 25_{2}^{\mathrm{L}} \end{aligned}$	$\begin{aligned} & 8 \cdot 8238 \\ & 9 \cdot 0033 \\ & 8 \cdot 8232 \\ & 8 \cdot 8233 \end{aligned}$	$\begin{array}{l\|l} 385 \cdot 7 & 1 \\ 334 \cdot 0 & 1 \\ 329 \cdot 0 & 1 \\ 334 \cdot 7 & 1 \end{array}$	$\begin{aligned} & 12 \cdot 94 \\ & 13 \cdot 20 \\ & 12 \cdot 94 \\ & 12 \cdot 94 \end{aligned}$	do.	do.	do.	do.	do.	do.	clo. do. elev. 26^{\prime}	
142	Lark.	$\|$7 17 b 8 15 c 9 $10 \frac{1}{2}$ d 10 04 e 11 01 f	58 55. 53_{2}^{1} 57	$\begin{aligned} & 3 \cdot 88 \\ & 4 \cdot 05 \\ & 4 \cdot 21 \\ & 3 \cdot 95 \end{aligned}$	$\begin{aligned} & 46 \cdot 2 \\ & 48 \cdot 2 \\ & 46 \cdot 6 \\ & 36 \cdot 1 \end{aligned}$	$\begin{aligned} & \hline 5 \cdot 69 \\ & 5 \cdot 95 \\ & 6 \cdot 17 \\ & 5 \cdot 78 \end{aligned}$	do.	do.	do.	do.	do.	do.	do. do. level.	
143	Lark.	36 0 $1 \frac{1}{2}$ b 36 23 c 36 $44^{\frac{1}{2}}$ c 37 06 e 37 27 f 27	212 10 211 10 21 1 21 1	$\begin{aligned} & 104744 \\ & 10 \cdot 4742 \\ & 10 \cdot 4740 \\ & 10 \cdot 7140 \end{aligned}$	$\begin{array}{l\|l} 448 \cdot 7 & 1 \\ 422 \cdot 6 & 1 \\ 400 \cdot 0 \\ 401 \cdot 0 & 1 \end{array}$	$\begin{aligned} & 15 \cdot 35 \\ & 15 \cdot 35 \\ & 15 \cdot 35 \\ & 15 \cdot 71 \end{aligned}$	do. ${ }^{3}$	7 passengers, and 3 ton, $=$ c. q. lb. 6921	do.	14 ${ }^{\frac{3}{4}}$	$14 \frac{3}{4}$	do.	do. do. elav.	
144	Lark.	46 3 3 47 32 b 48 29 d 49 28 e 50 26 f 	59 57 59 58	$\begin{aligned} & 3 \cdot 81 \\ & 3 \cdot 95 \\ & 3 \cdot 81 \\ & 3 \cdot 55 \end{aligned}$	$\begin{aligned} & 41 \cdot 3 \\ & 56 \cdot 6 \\ & 49 \cdot 3 \\ & 34 \cdot 0 \end{aligned}$	$\begin{aligned} & 3 \cdot 59 \\ & 5 \cdot 78 \\ & 5 \cdot 59 \\ & 5 \cdot 69 \end{aligned}$	Two Horses.	do.	fav. fresh brze.	in. 14 娄	$\begin{aligned} & \text { in. } \\ & 14 \frac{3}{4} \end{aligned}$	not obs.	dur. run. bow clev. $3_{2}^{1 \prime}$	The towing-line dragged along the water a short distance.
145	Lark.	$\|$58 29 b 58 55 c 59 $21 \frac{1}{2}$ d 59 48 e 14 f	26 $26 \frac{1}{2}$ $26 \frac{1}{2}$ 26	$\begin{aligned} & 8.653 \\ & 8.493 \\ & 8.49 \mid 3 \\ & 8.65 \mid 3 \end{aligned}$	$\begin{aligned} & 359.21 \\ & 369.31 \\ & 354.4 \\ & 359.0 \end{aligned}$	$\begin{aligned} & 12.69 \\ & 12.45 \\ & 12.45 \\ & 12.69 \end{aligned}$	do.	do.	do.	do.	do.	do.	do. do. clev. 28^{\prime}	
146	Lark.	41 46 b 42 11 c 42 $36 \frac{1}{2}$ d 4.3 05 e 43 $36 \frac{1}{2}$ f		$\begin{aligned} & 9 \cdot 0048 \\ & 8 \cdot 824 \\ & 7 \cdot 9038 \\ & 7 \cdot 143 \end{aligned}$	$\begin{aligned} & 432.3 \\ & 408.0 \\ & 380.6 \\ & 372.1 \\ & \hline \end{aligned}$	13.20 12.94 11.58 10.48	do.		fav. very light	$16 \frac{1}{2}$	$16 \frac{1}{2}$	do.	do. do. elev. 30^{\prime}	
147	Lark.	56 05 b 57 07 c 53 10 d 59 13 e 14 f	62 63 63 61	$3 \cdot 63$ $3 \cdot 57$ $3 \cdot 57$ $3 \cdot 69$	47.3 43.2 56.8 45.8	$\begin{aligned} & 5.32 \\ & 5.24 \\ & 5.24 \\ & 5.41 \end{aligned}$		do.	to.	ro.	do.	do.	do. do. level	

TABLE III. cortinved.-THE LARK.

148	Lark.	$\left\|\begin{array}{cc} 9 & 29_{2}^{2} \\ 10 & 01 \\ 10 & 35^{\frac{1}{2}} \\ 11 & 09_{\frac{1}{2}} \\ 11 & 41 \end{array}\right\|$	b c d d e f	31 312 34 32_{2}^{2} 33 3	$\|$7.14 6.52 6.82 6.72	$\begin{aligned} & 248.5 \\ & 181.6 \\ & 195.2 \\ & 176.7 \end{aligned}$	$\left\{\begin{array}{c} 10.48 \\ 9.57 \\ 10.00 \\ 9.85 \end{array}\right.$	co.	do.	do.	do.	do.	do.	$\left\|\begin{array}{c} \text { do. } \\ \text { do. } \\ \text { elev. } \\ 5 \end{array}\right\|$	。
149	Lark.	24 36 25 02 25 28 25 54 26 24	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \\ & 26 \\ & 30 \end{aligned}$	$\begin{aligned} & 8 \cdot 65 \\ & 8.65 \\ & 8.65 \\ & 7 \cdot 50 \end{aligned}$	$\left\{\begin{array}{c} 421 \cdot 2 \\ 413 \cdot 4 \\ 432 \cdot 1 \\ 419 \cdot 51 \end{array}\right.$	$\overline{12 \cdot 69}$ $12 \cdot 69$ $12 \cdot 3!$ $11 \cdot 31$	do.	do.	do.	do.	do.	do.	not obs.	\bigcirc -
150	Lare.	$\left.\begin{array}{ll} 12 & 051 \\ 12 & 29 \\ 12 & 52 \\ 13 & 14 \\ 13 & 37 \\ 13 & 3 \end{array} \right\rvert\,$	b c d e f	$\begin{aligned} & 24 \\ & 23 \frac{1}{2} \\ & 22 \\ & 22 \vdots \end{aligned}$	$\begin{gathered} 9 \cdot 38 \\ 9 \cdot 57 \\ 10 \cdot 00 \\ 10 \cdot 00 \end{gathered}$	$\begin{aligned} & 463 \cdot 71 \\ & 456 \cdot 21 \\ & 43 \mathrm{~J} \cdot 7 \\ & 412 \cdot 9 \end{aligned}$	$\begin{aligned} & 13 \cdot 7 \% \\ & 14 \cdot 04 \\ & 14 \cdot 6 i \\ & 14 \cdot 67 \end{aligned}$	do.	do ${ }^{\text {- }}$	do.	co.	do.	do.	do. do clev; 45	*
151	Lark.	$\left\|\begin{array}{ll} 28 & 1.7 \\ 22 & 34 \\ 23 & 01 \\ 23 & 01 \\ 23 & 29 \\ 23 & 57 \end{array}\right\|$	b c d e e	$\begin{aligned} & 27 \\ & 27 \\ & 27! \\ & 28 \end{aligned}$	$\begin{aligned} & 8 \cdot 33 \\ & 8 \cdot 33 \\ & 8 \cdot 18 \\ & 8 \cdot 03 \end{aligned}$	$\begin{aligned} & 377.8 \\ & 377.5 \\ & 402 \cdot 6 \\ & 422 \cdot 0 \end{aligned}$	$\begin{gathered} 12 \cdot 2 \cdot 2 \\ 12 \cdot 22 \\ 12 \cdot 06 \\ 11 \cdot 76 \end{gathered}$	do.	do.	do.	do.	do ${ }^{-}$	do.	do. do. elev. 37	
152	Lark.	$\left\|\begin{array}{cc} 39 & 20 \\ 39 & 51 \\ 40 & 1: 3! \\ 40 & 36 \\ 40 & 57 \end{array}\right\|$	f b c d e f	$\begin{aligned} & 23 \\ & 22 \\ & 23 \\ & 21 \end{aligned}$	$=\begin{gathered} 9 \cdot 73 \\ 10 \cdot 00 \\ 10 \cdot 00 \\ 10.71 \end{gathered}$	$\begin{aligned} & 474 \cdot 6 \\ & 4532 \\ & 431 \cdot 1 \\ & 424 \cdot 6 \end{aligned}$	$\left\lvert\, \begin{gathered} 14 \cdot 36 \\ 14 \cdot 6 i \\ 14 \cdot 6 \% \\ \vdots 5 \cdot 7 \end{gathered}\right.$	c'o.	do.	do.	18	15	do.	do. do. elev. 34	Weight shifted forward.
153	Lark.	5 33 53 32 53 02 73 30 73 58 34 26	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 27 \frac{1}{2} \\ & 28 \\ & 28 \\ & 2 \times \frac{1}{2} \\ & 27 \end{aligned}$	$\begin{aligned} & 8 \cdot 18: \\ & 8.03 \\ & 7 \cdot 904 \\ & 8.03 \end{aligned}$	$\begin{aligned} & 398 \cdot \\ & 332 \cdot \\ & 413 . \\ & 426 . \end{aligned}$	$\left\|\begin{array}{c} 2 \cdot 01 \\ 1 \cdot 76 \\ 1 \cdot 50 \\ 1 \cdot 7! \end{array}\right\|$	Tivo llorse:s.	7 passen. rer, and $4!$ ton, c. 9. 94 94	$\begin{array}{\|l\|} \text { fav. } \\ \text { lig'.t. } \end{array}$	$\begin{aligned} & \text { in- } \\ & 18 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { not } \\ & \text { obs. } \end{aligned}$	$\begin{gathered} \hline \text { cur. } \\ \text { run. } \\ \text { son } \\ \text { clev. } \\ 35^{\circ} \end{gathered}$	
154	Lark.	66 1812 7 10 8 03 9 08 10 11 8 58	b c d e f	$\begin{aligned} & 56_{4}^{1} \\ & 5 y \\ & 60 \\ & 63 \end{aligned}$	$\begin{aligned} & 3.93 \\ & 3.85 \\ & 3.75 \\ & 3.58 \end{aligned}$	$\left\|\begin{array}{l} 5 \\ 51.9 \\ 55.6 \\ 44.6 \\ 40.6 \end{array}\right\|$	$5 \cdot 84$ $5 \cdot 69$ 5.51 $5 \cdot 24$	do.	do.	do.	do.	do.	do.	do. do. dovel.	
155	Lark.	$\begin{array}{ll} 37 & 5: 3 \\ 33 & 17_{2}^{1} \\ 33 & 40_{2}^{1} \\ 39 & 03_{2}^{1} \\ 39 & 2 f_{2}^{1} \\ \hline \end{array}$	f b c d e f	$\begin{aligned} & 24 \frac{1}{2} \\ & 23 \\ & 23 \\ & 23 \end{aligned}$	$\begin{aligned} & 9.18 \\ & 3.78 \\ & 9.78 \\ & 9.78 \end{aligned}$	$\begin{aligned} & 444 \cdot 4 \\ & 449 \cdot 3 \\ & 436 \cdot 0 \\ & 422 \cdot 2 \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 14.35 \\ & 14 \cdot 35 \\ & 14 \cdot 35 \end{aligned}$	do.	do.	do.	14\%	17\%	do.	do. do. elev. 32'	Weight shifted aft.
156	Larts.	$\left\|\begin{array}{\|cc\|}\hline 99 & 03 \\ 29 & 26 \\ 99 & 50 \\ & 12\end{array}\right\|$	b b c d e f	$\begin{array}{\|l} 23 \\ 24 \\ 22 \\ 23 \end{array}$	$\left\|\begin{array}{c} 9 \cdot 78 \\ 9 \cdot 38 \\ 10 \cdot 2: \\ 9 \cdot 7 \varepsilon \\ \end{array}\right\|$	$179 \cdot 0$ $160 \cdot 5$ $149 \cdot 2$ $133 \cdot 7$	$\left\|\begin{array}{c} 14 \cdot 35 \\ 13 \cdot 75 \\ 15 \cdot 00 \\ 14 \cdot 35 \end{array}\right\|$	do.	do.	$\begin{aligned} & \text { fav. } \\ & \text { very } \\ & \text { light } \end{aligned}$	1931	13	do.	$\left\|\begin{array}{c}\overline{\text { do }} \\ \text { do. } \\ \text { elev. } \\ a^{\prime} . \mathrm{At} \\ \text { rest. } \\ \text { depd } \\ 4^{\prime}\end{array}\right\|$	Weight shifted forward: Towing - line 5 ft . from the Stern. Dynamometer 5 ft. 6 in. from the bow.

- From the Saratoga Sentinel.
highly important invention.-ELECtro Magnetic engive.

In company with Dr. Steel and several other gentlemen, we called upon Messirs. Davenport and Cook, of thas village on Saturday, with a view of examining the Elec. tro Magnetic Engire invented by the seniol partner.

The ingenuity, yet simplicity of its con. struction, the rapidity of its motion, togethe with the grandeur of the thought that we are witnessing the operations of machiaery pro pelled by that subtle and all pervading prin. ciple electricity, combine to render it the most interesting exhibition we have ever witnessed.

Although we shall sily somathing on the subject, it is perhajs impossible to describe t is machine by viurls alone, so as to give more than a faint idea of it to the reader.

It consists of a stationary magnetic circle, furmed of discomected segments. These

Segments are permanentry charged magnets|ning this machine will not amount to ore the repeliing poles of which are placed con iiguous to each other. Within the circle tunds the motive wheel, having the project iug galvanic magnets, which revolve as near the circle as they can be brought without actual contact. Tue galvanic magnets are charged by a battery, and when so charged. :naguetic attraction and repulsion are brought into requisition, in giving motion to the whee -the poles of the galvanic magnets being changed more than a thousand times, per minute.
Having in its construction but one wheel, revolving with no friction except from its own shaft, and fom the wires connecting it with the galvanic battery, the latter of wimch can scarcely bo said to impede the motion in any degree, the durability of this engine must be alinost witnout limit.

There'is no danger to be apprehended from fire or explosion: and we understand it is the opiniou of scientific gentlemen who
ning this machine win not amount to ore
Courth as much as that of a steam engine of the same power.
From the time when the Greck philoso. pher supposed the magnet possessed a soul, its mysterious power has been regarded with increasing interest and attention to the present day. In addition to its utility in the zompass, thousands have labored in vain atempts to obtain through its agency a rotay motion. So intense has been the application of some to this subject, that in the attempt they have even lost that elevating attribute of our species, reason. It was reserved for Mr. Lavenport to succeed where o many had failed.
He commenced his labors more than three years ago, and prosicuted them under the most discouraging and unfavorable circum-stances-sustained by a constitutional perseverance and a clear conviction of ultimato success. He obtained the first rotary motion in July, 1834, ; - since which time he has
in his machine. During this period it has passed through five different modifications, and is now brought to such a state of simplicity and perfection (having apparently the fewest possible number of parts) that the proprietors consider no turther important alterations desirable, except in the due propor tions of the different magnets, in which they are daily improving.
We were shown a model in which the motive wheel was $5 \frac{1}{2}$ inches diameter, which elevated a weight of twelve pounds. And to illustrate the facilities for increasing the power of this engine, another model was exhibited to us with a motive whecl of eleven inches in diameter, which elevated a weight of eighty-eight pounds. Although thes models have been for some time in progress, and we have occasionally been permitted to examine them, we have waited till the present period when the practicability of obtaining a rapid and unlimited increase of power seems to be placed beyond a doubt. before expressing an opinion, or calling the public attention to the subject.
If this engine answers the expectations of the inventor, (and we believe no one can assign a reason why it should not, it is destined to produce the greatest revolution in the commercial and mechanical interests which the world has ever witnessed. We may consider the period as commencing when machinery in general will be propeiled by power concentrated upon the plan of this engine; when the vessels of all commercial nations will be guided to their point of destination and urged forward in their course by the same agent triumphantly contending against winds and tides, with the silent sub. limity of unseen but irresistible power.

The prophetic ken of science is happily exhibited by Dr. Lardner, in his treatise on the Stean Enginc. His far seeing geuits seems to have anticipated the iavention of which we are speaking. "Philosophy," said he, "already directs her finger at sources of inexhaustible power in the phenomena of electricity and maguetism, and many causes combine to justify the expectation that iwe are on the eve of mechanical discoveries stil greater than any which have yet appeared : and that the steam engine itself, with the gigantic powers conferred upon it by the imımortal Waft, will dwindle into insignificance in comparison with the hidden powers of nature still to be revealed, and that the day will come when that machine, which is now extending the blessing of civilization to th:e most remote skirts of the globe, will cease to have existence except in the page of his. tory."

From the integrity, perseverance, and mechanical skill of Ransom Coos, Esq., who has himself made an important invention in this engine, and has undertaken to bring the same into use, we anticipate a speedy introduction of its merits to the public. It is hoped that he may prove a second Livingston to another Fulton. He is about to de. part for our large cities, in some of which he contemplates the erection of powers for mechanical purposes.

Several individuals, agents of Messre. Davenrort and Cooz, are also departing with models to secure pletters patent in the different countries in Europe and South America.

Plate 3.

E, Vertical Scale 2CO feet to 1 inch, Lase 30 fect, Slope $1 \frac{1}{2}$ to 1 . F, Straight edge.

Fig. 2.

A, Vertical Scale 100 feet to 1 inch, Base 30 feet, Slope $1 \frac{1}{2}$ to 1. P, Quantities given in cubic yards for lengtlis of 1 chain. C, Middle and Slopes together. D, Slopes without Middle. E, Niddle without Slopes.
a Method of representivg by diagras: and estimating the earthwork in EXCAVATIONS AND EMBANKMESTS. BY john james waterston, a. inst. c. e
The object of this paper is to describe the construction of two sets of scales, b! the use of one of which a section may be plotted, representing the actual amount of material contained in any cuting or embankment, of the relation of which to each o her a mere profile of the country, foml not showing the contents of the side slepes, gives, but an imperfect idea, even to professional men, particularly if the heights and depths be at all considerable, or if the slopes be not uniform; and by the other a computation of the quantitics may be made, almost by the arithmetical process of addition only.

The principle on which the first operation is effected, is to accumulate the contents of the slopes x, x, into the rectangle y, over the middle part z in cutting, and under it in embanking, which is done by

the formula $h==\frac{r}{B} I^{2}$, wherein B denotes the base or width of the excavation or embankment, as the case may be, \boldsymbol{H} its depth, r the ratio of the slope, or of S to \boldsymbol{H}, and h the height of the rectangle y, substituted in lieu of the slopes x, x. From this theorem, the scale shown on the drawing (plate No. III, fig. 1.) is constructed, the heights \boldsymbol{H} being marked on the vertical line m, and the supplemental heights h on the lines n, n, at right angles to it ; and if
a curve be drawn through the extremities of the latter ines, it will, as is evident from the equation, be a true parabola.

The scale thus constructed is used as follows. The axis being laid over the line of the railway, one leg of the dividers is placed at the point where the perpendicular line m is intersec'ed by the surface of the ground, and the horizontal distance to the curve being taken in the compasses, is set off vertically over the peint of intersection. The scale is then moved along, the axis coinciding with the surface of the railway,* which is easily done in practice by running it on a straight edge, as shown on the plan, and the operation is repeated until a sufficient number of offsets being obtained, the line of section $a b c d$ is drawn through them, and may be considered supplemental to the actual section of the ground $A B C D$, the superficies included between them representing what is due to the slopes, and that between the latter and the line of the railway what is due to the middle, while the product of the whole area, multiphied by the base or width of roadway, gives the total cubical content of the cutting or embankment. But the scale to be described presently, is better adapted for reducing the quantities to figures, the above being intended more to exhibit to the cye the true amounts of excavation and embankment, which, it is conceived, may be useful, especially in parliamentary investigations, in which the engineering evidence so frequently turns on such points.
In applying the scale to the case of canals, the process will be the same as in the foregoing, which has been described as for railways and roads, except that the line of supplimentary profile, instead of being referred to the line denoting the surface of the banks, must be plotted from a parallel line drawn below it, at a distance equal to the transverse area of the water channel divided by the width or base at that surface ; and, indeed, in the cuttings for railways this will also have to be done to an extent, to allow for the ballasting. And with respect to an objection that may be taken to the number of the proposed scales it will be necessary to possess, in consequence of every combination of criginal vertical scales with wicth of base requiring one of them peculiar to itself, I would remark that though no doubt this is the case, \dagger

[^24]of the formula $H=H \sqrt{\frac{l r}{B}}$, in which \dot{H}, r and B, are the name as in the text, l is the latus-rectum of the parabola, and H^{\prime} the point in the new graduation to be stis)stituted for H in the original division; and practically there is no very great variety in the scales commonly used by engineers and surveyors, or at all events the same individual gencrally adopts the same scales for the same purposes.

The scale shown on fig. 2 was suggested by my ingenious friend, Mr. Henry E. Scott, to whom it occurred as a modification of the above, which I had described to him. It is exceedingly simple, and the mode of using it almost self-evident. The ordinary section has only to be divided into equal lengths of say a chain, and the scale being applied to it at each point of division, with zero on the base line, the cubic quantity contained in that length on the given width and slopes is read off at the intersection with the surface of the ground; after which the content of the whole cutting or embankment is cbtained by simply adding those figures together. The degree of accuracy that will be afforded inust of course depend on the minuteness of the graduation, as all measurements with scales
$\left\lvert\, \begin{aligned} & \text { do ; and if it appears impossible to go to } \\ & \text { feet and inches by this one, unless the sec- }\end{aligned}\right.$ tion be very large, it should be borne in mind that the rosult given is final, and that (to say nothing of she liability to error in casting) any portion of maccuracy that may be in it is not subject to increase by multiplication, which, if considered, may be found to affect to as great an extent quantities calculated from the primary dimensions.

The construction of the scale is deriv. ed from the casily investigated formula $H=\sqrt{\frac{B^{2}}{4 r^{2}}+\frac{9}{r} A}-\frac{B}{2 r}$, in which A is the transverse area in square yards, the other letters expressing the same clements as be. fore; or if \boldsymbol{Q} denote the cubic content in yards, the equation
$H=\sqrt{\frac{B^{2}}{4 r^{2}}+\frac{9 Q}{22 r}}-\frac{B}{2 r}$ is adapted for calculating the quantities in lengths of a chain each. This will give the total content, but as, when estimates are in progress, the angle the ground will stand at may not have been precisely ascertained, and perhaps have to be corrected afterwards, it is sometimes de|sirable to keep the slopes separate for a time ||from the middle or rectangular part, in which

	1. Middle and Slopes together.$H=\sqrt{\frac{B^{2}}{4 r^{2}}+\frac{9 \bar{Q}}{22 r}}-\frac{B}{2 r}$				$\left\|\begin{array}{c} \text { Ll. Middle } \\ \text { without } \\ \text { Slopes. } \\ H=Q \frac{9}{22} \bar{B} \end{array}\right\|$	III. Slopes without Middle.$H=\sqrt{\frac{9 Q}{22 r}}$			
		1	$1^{\frac{1}{2}}$	2		$\overbrace{\frac{1}{2}}$	$-$		2
	$\begin{gathered} H \\ \text { Fect. } \\ 3.2 \end{gathered}$	H Fect. 3.1	$\begin{array}{\|c} \boldsymbol{H} \\ \text { Fect. } \\ 3.0 \end{array}$	$\begin{gathered} H \\ \text { Fect. } \end{gathered}$	Fect.	$\underset{\text { Fect. }}{H}$	H Feet. 10.1	$\underset{\text { Feet. }}{\boldsymbol{H}}$ 8.2	H Feet. 7.1
250 500	3.2 6.2	3.1 5.7	3.0 5.4	4.8	6.8	20.2	14.3	11.6	10.1
750	9.0	8.1	7.5	6.8	10.2	24.8	17.5	14.3	12.4
1000	11.4	10.2	9.3	8.6	13.6	28.6	20.2	16.5	14.3
1500	16.1	13.9	12.5	11.5	20.4	35.0	24.8	20.2	17.5
2000	20.4	17.3	15.4	14.1	27.3	40.5	28.6	23.3	20.2
2500	243	20.3	15.0	16.3	34.1	45.2	32.0	26.1	22.7
3000	27.9	23.1	20.3	18.4	40.9	49.6	35.0	28.6	24.8
4000	34.6	28.1	24.5	22.1	54.5	57.2	40.5	33.0	28.6
5000	40.7	32.6	28.2	25.3	68.2	64.0	45.2	36.9	32.0
6000	46.2	36.8	31.7	28.3			49.6	40.4	35.0
7000	51,4	40.3	34.8	31.1			53.5	43.7	37.9
8000	56.3	44.1	37.8	33.6			57.2	46.7	40.5
9000	60.9	47.5	40.5	36.1			60.6	49.6	42.9
10,000	65.3	50.7	43.2	38.3			64.0	52.2	45.2
11,000		53.7	45.6	40.5				54.8	47.3
12,000		56.6	47.9	42.6				57.2	49.6
13,000		59.3	50.3	44.6				59.7	51.4
14,000		62.0	52.5	46.5				61.9	53.5
15,000		64.7	54.7	48.4				64.0	55.4
16,000			56.7	50.2					57.3
17,000			58.7	52.0					59.1
18,000			60.7	53.7					60.8
19,000			62.6	55.3					62.4
20,000			64.5	56.9					64.0
21,000				58.5					
$22,000$				60.1					
23,000				61.6					
24,000				63.0					
'25,000				64.4					

case the scale may be conveniently graduated on the one edge for the middlc portion by $H=Q \frac{9}{22} \dot{B}^{\prime}$, and on the other, for the slopes, by $H=\boldsymbol{V}^{/ \overline{g Q}} \frac{\text { The above }}{22 r}$, The table has been constructed by way of specimen from these formulæ, and shows the heights which, measured on the scales, give the points corresponding with the cubic quantities in the first column, the length in all cases being taken as one chain, the width or base as thirty feet, and the slopes as stated; but the quantities for other lengths, widths, and slopes are, as I need hardly say, in the simple proportion of the variation in any ne of the dimensions.

List of subscribers to the Railroad Journal. that have paid, (continued.) Alva Kimball, city New York, Jan. 1, 1838 General Fleming, " " " 1,18:38
D. Rogers, Newburgh, "" Sept. 1, 1837
A. Falls \& Co., "

Aaron Burt, Syracuse, April 1, 1837
C. J. Blouvett, Blawettville Jan. 1, 1838
C. J. Bláuvett, Blauvettville, N. Y., July 1, 1837
H. C. Seymour, Deposit, N. Y. Jan. 1, 1838 John Brooks, Bridgeport, Con., Jan. 1, $18: 38$ A. G. Ralston \& Co., Philadeiphia, Pa., Jan. 1, 1838
A Subscriber in Baltimore, Md., Aug. 1, 1838
C. A. Hagner, Washington, D. C., Jan. 1, 1838
Geo. McLeod, Washington, D. C., Jan. 1, 1837
John Steele, Raleigh, N. C., Jan. 1, 1838
A. J. Comstock, Adrian, Mich., " 1,1838
E. R. Blackwell, Mt. Clemens, Mich., Jan. 1, 1838
D. Scott, Columbus, Ohio, Jan. 1, 1838

University of Georgia, Athens, Geo., June 10, 1836

Philadelphia stock market. April 7ib

RAILROAD STOCKS
cu-Castle and Frenchlown
Wilmington and Susquehanna
Camden and Amboy, shares, D_{0} loan, $6^{1} s \mathrm{~s}, 1836$
Danville and \mathbf{P}. shares Dorristown, 6 per cent loan
Valley Kailruad
Westchester do
Minehill
N. L. and Penn. Tp. do

Philadelphia and Trenton do
West Philadelphia Railroad
Harrisburg and Lancaster
Cumberland
Beaver Meadow
MIsCELLANEOUS STOCKS
North American Cual Company
Nteam Bt. Sts. Columbien,
Exchange Stock
Arcade
Theatres-Chestnut street Walnut street
Gan Arch sireet
Gas Company
CANAL STOCKS.
Schuylkill Narigation, ehares Do
Do $\begin{array}{llll}00 & 131 & 131\end{array}$ 100 50 50
100
7011
70 $\begin{array}{ll}50 & 1 \\ 50 & 50 \\ 50 & 37\end{array}$ $\begin{array}{ll}50 & 57 \\ 40 & 34\end{array}$ $100 \quad 34+35$ $\begin{array}{rrrr}100 & 121 & 1 \because 3 \\ 50 & 20 & 30\end{array}$ $\begin{array}{lll}50 & 20 & 30 \\ 50 & 46 & 48 \\ 25 & 15 & 20\end{array}$25
100 $\begin{array}{lll}100 & 18 & 14 \\ 22\end{array}$ $10070 \cdot \frac{20}{80}$ 100 600625 600625
280175 280175
50032 J 500325375 $100: 95$
50154.156 $100 \quad 98 \quad 100$ $\begin{array}{rrr}100 & 98 & 100 \\ 100 & 100 & 10]\end{array}$

Do do 5t 1837	100	98	100
ehigh Coal and Na-rigation	50	76	77
Do loan, 61833	100	97	98
Do do 6 1833	100	97	15
Do do 61844	100	99	100
Do du 5. 1840	100	96	97
Union Canal, shares	200	150	190
1.) loan, 1836	100	83	86
Do do 1340	100	83	90
Chesap'k \& Delaware Canal, shares	200	20	40
Do luan, 1837 :	100	60	67
Do do 1840	100	60	67
Delau are and Hudson,	100	69	00
1) ${ }^{\text {d }}$ loan	100	95	100
Louisvilla and Portland	100	1121	117
Converible 6 per cent. loans,	100	110	120
Sandy and Bever	100	60	80
Morris Canal	100	75	

NEW-YORK AND ALBANY RAIL ROAD.
NOTICE.-The books will be open for subscribers to the capital slock of the NewYork and Albany Railroad Comprany, on the 25 th, 26 th and 27 th days of A pril, from 10 A. M. to 2 P. M. on each day, at the following places:

At the office of the New-York and Harlem Railroad, No. 18 Wall street, NewYork.
At the Mechanics' and Farmers' Bank, Albany.
At the Farmers' Bank, Troy.
Also, at such places as the Commission ers, residing in the counties of Westchester, Punam and Dutchess; may appoint at the times herein specified.
On Monday, Sth May,
Tuesday, the 9 th ,
Wednesday, 10 h ,
Thursiday, 11th,
Friday, 12th,
Saturday, 13th,
Monday, 15th,
Tuesday, 16 h ,
Wednesday, 17 th,
Thursday, 18th,
in Eastchester, in White Plains, in Belforl, in New Castle, in South East, in Paterson, in Rawlings, in Dover,
on Dover Plains, in Armenia.

COMMISSIONERS.

Gideon Lee,
Lewis Morris,
Taber Belden, John Harris, Albro Ackin, Francis Ficket, Isaar, Adriance,

Benson McGown, Samuel Chewer, Charles Henry Hall, Thomas W. Olcott, Ebenezer Foster, J. Van Schoonhoven, Stephen Warren, Jeremiah Anderson.
Shares $\$ 100$ each, $\$ 5$ to be paiłđ at the tine of subscribing.
14.3t

TRANSACTIONS OF THE INSTITUTION OF CIVIL
ENGINEERS OF GREAT BRITAIN.
The first volume of this valuable work, has just made its appearance in this country. A few copies; say tuenty-fixc or thirty only, have been sent out, and those have ncarly or quite all been disposed of at tein dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Eugineers from possessing it. In order thercfore, to place it withis their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages cach, which can be sent to any part of the United States by mail, as issued, of put up in a volume at the close.
The price will be to subseribors three dollars, or five dollars for two copies-alucays in advance. The first number will be ready or delivery early in April-Subscriptions

AVERY'S ROTARY STEAM EN. GINES.-AGENCY.-The subscriber offors his services to gentlemen desirous of procuriug Stean Engines for driving SawMills. (irani-Miles, and other Manufactories oí any kind.

Engines only will be furnished, or accompanied with Boilers and the necessary Juachinery for putting them in operation, and an Engineer always sent to put them up.

Information will be given at all times to those who destre it, either by letter or by exlibiting the engines in operation in thiscity.

Inquiries by letter shou d be very explicit and the answers shall be ejually so.
D. K.MINOR,

30 Wall-st., New York.

FOR SALE A'T THIS OFFICE,

A Practical Treatise on Locomotive En. rincs, with Engravings, by the Chevalier De Pambour- 150 pages la:ge octavodone up in paper covers so as to be sent by mail-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts . for any distance e:ceeding 100 ms .

Also-Van de Graaff on Railroad Curces, done up as above, to be sent by mail-Price \$1. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as alove, 8 cents, or 12 cts.
. * On the receipt of $\$ 3$, a copy of each of the above works will be formarded by mail to any part of the United States.
$1010 t$

ROACH \& WARNER,

Manufacturers of OPTICAL, MATHEMATICAI. ANB HH1LOSOPHCAL INSTRUMENTS, 293 lroadway. New lusk, will keep constanly on hand a large and general assoriment of Instruments in their lu.e.
Wiholesale Dealers and Cumntry Merchants supplied Wih StMVEINNG COMPASSES, BARUNE: TERE, THFLHOMETERS, \&c. \&c. of thei: own manufachre, warsanted accurate, and at lower price mannfachire, war:anted accurate, and at low
than can he had atany other estabhishment.
instrmments made io order and repaired. 14 ly
RAMAWAITRON,LOCOMOTMVEN,\&C.
TIIE subscribers offer the following articles for sale.
Railway lron, flat bara, with countersunk holes and. mitrell joints,
350 tons 2! by 4,15 flin length, weighing 488

with Spikes and Splieing Plates adapted thereto. To be sold fiee of duty to State governinents or incor. prorated companies.
Orders fur I'ennsylvania Builer Iron executed.
Hail Road Car and Locomolive Engine Tiress wrought and turned or unturned, roady to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 iaches diameter.
E. V. Patent Chein Cable Bolts for Railway Car axles, in lengths of 12 fcet 6 inches, to 13 feet $2 t$, 21 $3,3 \frac{1}{6}, 3 \frac{1}{4}, 3 \frac{1}{2}$, and $\frac{3}{4}$ inches diameter.
Chains for Inelised Planes, short and stay links, manufactured from the E. V. Cable Eolts, and proved at the greatesl strain.
India linsber Rope for Inclined Planes, made from Now Zealand flax.
Also Patent Hemp Cordage for Inclined Planes. and Canal Towing Lines.
Jatent Felt for placing between the iron chair and slone bluck of Edge Ra:I waye.
Every description of Railway Iron, as nell as Lee cumotive Engines, imported at the shortest notice, by the agency of one of our partners, who resides in Fingland for this purpose.

- A highly respectable American Engineer, resides in Eingland for the phrpose of inspecting all Locomotives, Machinery, Railway Iron dec. ordered through us.

ARCHIMEDES WORKS.

 (100 North Monr street, N. Y.iNew-York, liehruary 12th, 1836. THE undersigned thegs leave to infurm the proprietors of Railroads that th.y ure prepared to furnixh all kinds of Machinery for Railroads, Lwcomotive Eugin's of any size. Car Wheels, such as are now in successful operation on the Camden and Ambuy Railroal. none of which have failed-Castings of all kinds, Whaele, Axles, and Buxes, furnished atshortesi nutica 4 vil
H. R. DUNHAM \& CO.

NEW ARRANGEMENT.

ROPES FOR INCLINED PLANES OF RAILROADS.
WE the subscribers having formed a co-partnership under the style and firm of Folger \& Colemin, for the mandfacturing and selting of lupes for inclined planes of railruads, and for ofher ust 8 , offer tosupply ropes fur inelined plancs, of any lengit required without splice, at short notise, the matsufacturing of cordnge, heretofure carried on by
S. S Durfee \& ${ }^{\text {Co }}$., will he done by the new firm, the same supprintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be promptly attended to, and ropes witl be shipped to any port in lle United States. 12 h inanth, 12.h, 1836. Iludson, Culumbia Comuy S.ate of New-York.

33-1f.
RORT. C. FOLGER.

MACHINE WORKS OF ROGERS, KETCIIUM and GROSVENUR, Paterson, New Jersey. The underaignell receive orders for the follouing articles, manufactured by thrm, of the musi superior description in every partienlar. Their works
bung extensive, and the number of hands puployed bing exiensive, aud the number of lands employed
being larige, they are onabled to execute buth large being larige, tiey are onabled to execute both large and small orders with promptness and despatch-

RAILROAD WORK.

Locomotive Steam-Engines and Tenders; Driv ing and wher Laromunive Wheeis, Axles, Sprinis: and Flange Tiros; Car Wheels of east iron, frum a va riety of pallerns, and Chilla; Car Whets of cast irn!!,
with wionght lires; Axles of best American refined with wiolight Cires; Axles of best American
iron, Springs ; Boxes and Bolts for Cars.
COTPTON WOOL AND FLAX MACHINERY,
Of all descriptions and of the nust improv d Patterns, Style and Workmanslip.
Mill (Ferring and Millwright work generally; IIydraulic nnd wher Presses; Press screws; Cinllen dors; Lathes and Tools of all hinds, Iron and Brass Castings of all descriptions.

KOGERS, KETCHLIM \& GROSVENOR
Patterson, Nen-Jersey, or 60 W all strect, N. 1

ALBANY FAGLE AIR FURNACE AND MACHINE SHOP.

WILLIAM V. MANY manufactures to order iron custings for Gearing Mills and Factories of evory dascription

LLsU-Sienm Engines and Railroad Castings o every descriphion.
I'lie collection of Patterns for Marhincry, is nu equalled in the Uinited States.
$y-1 y$

AN ELEGANT STEAM ENGINE: AND BOILERS, FOR SALE.

THE Steam Engine and Boilors, belonging to the S'I'EAMBUA'I' HELEN, and now in the Nuveliy Yard, N Y. Currsisting of one Horizuntal higly pres sure tingine, (but moy be made to coutsenso with litIle addititonal expense) 36 inelies diametcr, 10 feel strukr, with latest inproved Piston Valcis, and Melalic taseking throughout.
Also, four 'T'ubilar Boilers, constructed on the English Lecumoiive plan, eantaining a fire surface of over 600 leet in each, or 2500 feet in all-will be suld cheap. All communications addressed (post p Troy Iron Worke, Nov. 15, 1836. BUR BUREN.

NOTICE TO CONTRACTORS. WESTERN RAILROAD.

PROPOSALS will be received at the office of the Western Railroad Curporation, in Springtield, until the 10th May, for the grading and masorry of the second and third divisions of the ruad, estending frum a distances of 35 miles.
Plans, Profiles, \&ce. will be ready for examination
afer the first of May. W. H. SWIFT,
Warcester, Mass , Ącil I, 1837.
$14-6$ i

AMES' CELEBRATED SHOVELS, SPADES, \&c.
300 duzens Ames' supetior bark-strapShorels

 $\begin{array}{rll}100 & \text { do do platrd spardes } \\ 50 & \text { do }\end{array}$
50 do do suckel Shouvels and Spades.
Tugether with Pick Axce, Cluarn Drills. nid Crou fars sicel puinted, mamianturd from salithury fur silf - y the mannfncinring agenls,
WITIIEREI.L, AMES \& COO.

No. 2 Liberty street, Ner- Vork BACKÉs, ANES \& CO.

No. 8 State strcet, Alhany
N. B - Also furnished tourder. Shapes of every de nrinifn. made from Snlshury refined Irun v4-if

S'LEPHENSUN,
Builder of a supcrior style of Passenger Cars for Railroads.

No. 264 Elizabeth street, near Bleecheratrect,

New: lork.

RAILROAD COMPANIES would do well to exa mine these Cars; a sperimett of which may he seen: ont themt part of the Now-Yurk and Harlaem Kailroat

PATENT RAILROAD, SHIP AND BOAT SPIKES.

**The Troy Iron and Nail Factory keeps constantly for snle a very extensive assurtment of Wrought Spises and Naiss, from 3 to 10 inches, manufactured
by the subscriber's Patent Machinery, whiel/ after by the subscribers Patent Machinery, which after versal use in the United Statea, (as well ax Englaid, where the subscriber obtained a patent,) are Suund superior to sliy ever offered in market.
Railroal Cumpanis s may be suppolied with Spikes rails tu any amusint heads suintable to the hules in irol the Railruads now in prugress in the l'hited States are listerned will Spikes made at the nbove numed faretory — lior which purpose they are fuated invaluablio as their ndhesion is ınore thun duable any commen spikes made by the hammer.
*** All urders dircsted to tho Agent, Troy, N. Y. Tros, N. Y., July, 1831 .
** Spikes nre k"pt for sale, at fartory priers, hy 1 \& J. Tuwnsenul, Albaly, and the principal Irea, Mer. chants in Albany ans I'roy ; J.1. Brower, $2: 2$ Wat slreet, New-Yurk; A. M. Johins, Philadelphia; © Jarviers, Baltimore; Degrand \& Emith, Buston.
P. S.- Rairnod Compranies woulh cio well to for
vard their orders us early as pructicable, na the sub ward their orders us early as pructicable, no the sub
srriber is desir the of externiing ghe manafarturnig so as to krep pace with the datly increasing demand tor

FRAME HRIDGES.

THE undersigned, Gencral Agert of Col
S. H. LUNG, to build Bridger, or vend the right to uthers tu buidd, on lus Patt it I lian, would respiee finlly intiorm Railroal and tridge Curpuraions, flial he is prepareat to make contuarts to build, and furmish all materinis for superstructures of the kind, in any part of the I rited Siates, (Marylaral excepted.)
Bralges on the abote plunare to be seen at the folTowitg localities, viz. On the main road leading from Baltinucre to Wanhtugton, two miles from the liormer place. Across the Metawamkehg river on :he Military mad, in Maine. Un the natomal road in Iltinuis, at sundry points. Onthe Ba'tianore and susqueliartna 1 Rrailrond at three points. On he Hudsun and Paternum Railroad, in two places. On the Bustun and Wurcester lailroad, at several points. Un the BosIon and l'rovidener. Railroad, at smedry points. Acruss the Conteocook river at lienmher, N 11. Acruss the soultegan river, at Milford, N. H. Arruss the Connecticut river, at Haverliill, N. II. Across the Conurocork river, at Ilancock, N. II. Across the An-
Iruscoggin liver, at 'lurner Cicule, Jruscoggin iver, at 'Iurner Cenlre, Maine. Across the Kennebec river, at Waierville, Maine. Across the Genesse river, at Squakiehill, Mount Morris, New-York. Across the Whate River, at Hartfurd Vt. Across the Connecrlicut Piser, at Lebaum H , N.
H. Across the mouth of the biroken Siraw Creek H. Across the mouth of the Broken Siraw Creek, Penn. Across the mouth uf the Cataraugus Creck, Canal, in the City of Rocliester, N. Y. A Ra lroad Bradge at Upper still Water, Urunu, Maine. This Bridge is 500 leet in lenglh; one of the spans is uver 200 feet. It is probably the fiamest wuodra
sRidge ever built in Aucrica. BRidee ever built in Aunerica.
Nut withstanding hat
Nutwithstanding hus present engngements to build betweell twenty and thirty Railruad Bridges, whd sevaral commou bridges, several of wbich are now in progress of construcuon, the subscriber will promptiy atteud to business of the kind to much greater extelit and on liberal terma.
Rochemer, Jan. I3tin, 1eas.

TO MANUFACTURERS OF HYDRAULIC CEMENT.

PROPOSALS will be recoived by the

 sulssciber, on the part of the James River afid lina-nawkn Companes, lirr the delivery on the whir nawkn Companes, lirt the delivery on the whari, n:
the city of Kichmond, Va., ol Fify 'Thumand the cily of Kichmond, Va., ol' Fifiy 'Thomand Busho

 bu-licts per month, commiencing ton the first of a pril
and confing on the first ul Nuvember ne and emping on the first of Nuvember nexi.
 making the p ofsrals, that the hushel shali weigh
sespany pounds NETT, and ilutt the Cement shal! deinvered in goid onder, anc pached in tight casks or ba rel.
I'ropusals will also be rceeivel for furnishing fify Housand bushe.s, at any convenient point ofl the narjable waters of James liver, of the north branch of james River, where the materials fur its mana. acture
has been discuvered. has been discuyered.
Persons finmiliar with the preparation of the C in"nt, would da well to exanishe the Counties of liank. bridge ainl Butetourt, with a virw to the establesh. menit ot works for ith'supply of the western end aff the lins; and a contrant for ihe above quanilities will be made with th mo bure they commuence operations. As there wii. be raquird on the line of the James River and Kanawka Improvement, in the collrse of
the present and next year, nut liss than half a millthe present and next ycar, nit liss than hali a mill-
ion of bushels of this Cement, and some hundred ihousand bushels nore in the prugress of the woik te wards the west, contract irs will finc it to their inierest to furnish the aricie on terms that lead to future ingagements.
Propusnls to be directed to tha suhs itiber at Rich mold, Va Cllaishes fll Lil', Jr,

Chi f Enyineer of the J. K. and Ka. Co. rebruary 20ih, 1837. 9 it

CROTON AQUEDUCT.

NOTICE.--Senled Proposals will be - eceived by the Water commissioners of the rity of
vew-lurk, unil the sed diay of
 anil unill the 2lth day of A pril, at 90° cluek, P. Mo, nt the office of thir tuginet in the stlage of Sing Sing, Jur coustructing n lom across the Croton liver, orr the Fixcavallen, Eubaukment, Bact Filling, I omer. datimand l'rolection Wank; for an Aquedurt Bridgo

 he Crobsh Agpiedurt whoch exto nds from the Daia sut the Crotun to Sing : ing, being between eight nud ume miles in length
The piices tur the work must include the expense of unat pials nect ssa y for the completion of the same, necording to the j lans and mperitications that will bo p.evented for examination, as horeinafter mentioned. 'The Wurk to be completed ly the dirat day of Ucluber, 1839.
sururity will be requirad fir the performance of contracis-anil iruprsilions shumbld be areompanied by the names of respunsihie persons, s'gufying their assent to be comes suretics. If the character and te-
 Engi:uers, a certifieate of to the Coramissiouers or extent of iheir respunsibility, signed by the first judgo or clesk of the county in which they sererally reside, will be requirad
Nio trasster of contracts will be recognised.
Hall of the several strnctures and specifications of the hind of materials and marriser of consiruetion, Inay be examined ut the office nf the Conmmissioners, i. Ithe rity of News-liork, frum the 10th th the 14ih, inclusive, of April next-' The line of Aqneduct will he lucated. and the tnal: and profile of the same, together with the plans and specifications nbove menlioned, will be ready fur examinaijun at ilse office of the Eingincer. at the village iss Sing Sung, on the 15th day of April next, and the Chief or Resident Fingineer will be in nitendance to explain the plans, dee, and to furnish blank propositions.
Persolls propusing fur mure work than they wish to contract for, mist apecify the quantity they desire to take
The full names of all persons that are parties to any proposition, must be written out in the signslure for the same.
The parties to the propositions which may be accepted, will be required to enier into contracts inmediately after the acceplance of the same.
The untiersigned reserve to themselves the right to ascept or reject propusals that may he uffered fur she whule or any part of the abuve described work as they mny consinter the public interest to require.

CHARLES AUSA.
CHARLES IUUSENBUISY, $\} \begin{gathered}\text { Water } \\ \text { SAUL ALLHY, }\end{gathered}$
WILLIAM W. FOX,
JOIIN B. JERVIS,
Chief Engineer, New-York Weter Warks.
York, Febrnary 29,1337 .

AMETRICAN RAKH AND ADVOCATE OF RNTERALL HMPROVEMENTS.

pUblisiled weekly, at no. 20 wall stheet, new-york, at five dollars per annum, payadie in advance.
$\left.\begin{array}{l}\text { D. K MINOR, and } \\ \text { GEURGE C. SCHAEFFER, }\end{array}\right\} \begin{aligned} & \text { Editors and } \\ & \text { Promietorx.j }\end{aligned}$
D. K MINOR, and

CONTENTS :

Advortisements ; Railrucd Items.
Artsian Wells.
Mude of supporing the P our in Belgium ; Algerine Muriar

Transactions of the Instituion uf Civil Engireers 24
Itemai.i
Agriculture. \qquad
Adrertisements. \qquad
\qquad
\qquad

AMERICAN RAILROAD JOURNAL.
NEW-YORKK, APRIL 22, 1337.
REMOVAL. -The Office of the RAIL ROAD JOURNAL, NEW.YORK FAR MER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-street, basement story, one door from William street, and opposite the Bank of Anerica.

TO CONTRAC'CORS:

JAMES RIVER AND KANAWHA CANAL. THERE is still a large amount of mecharical work to let on the line of the James River and Kanawha Improvement, consisting of t wenty locks, about uthe hundred culverts and several large aqueducts, which will be offered to respunsible cintracturs at fair prices.
The lucks and aqueducts are to be built of cut stone.
The work contracted for mnst be finished by the Ist day of July, 1838
Persons desirous of obtaining work are requested toapply at the office of the undersigned. in the enty of Richmond, before the fifteenih of May, or between the fifth and the fifteenth of July.

CHARLES ELLET, Jn.
P. 8. Chief Engineer Jas. Riv. \& Ka. Co. mond is healthyy valiey of Jame liver above lich

16-102

TO RAIİROAD CONTRACTORS.

PROPOSALS will be received, nt the offire of the Hiwassse lajlmad Com., in the town of Athens, Te.nessere, until sunset, of Mondny, June 12th. 1337 ; for the grading, masonry and bridgos, on that purtion of the Hiwasare Railioad, which liea between the Rirer Tennessee und Hiwassee. A distance of 40 miles.
lionequantity of excavation will be abont one maillionof cubic yards.
Thy line will ba staked out; and, togetser with draininge and specifications of the work, will be ready for the inspocion of contractors, on and aftes the let day of June.

JOHN C. TRAUTWINE,
>
Engin:eer in Chief Hiwesiteo Railroad. 15-6t

NOTICE TO CANAL CONTRAC. TORS.

SEALED priposals will be recrived at the uffice u he Commissioners of the Illincls and M clignan Cawal at Chicay, from this day to she 20:1 Mag next for Tho constraction of abrat tight miles of that part of he summit division of the satd Canal, lying between the Chicago and desplaines liver.
Alse ab.ut three and a half miles of the same divisivo, Iying between the Sagauaskee Swamp, and the western termination of the said division. Alid also about iwelve miles of the Western division. Iying between the Grand Rapids of the Illinuis and the western termination of tho Canal.
The two lirst porlions offered fur contract, aie heavy work, the first deep turth escavation, divided iuto half mile Sections, the second mus.ly rochs, and divided into lhity chain sections; the lhird consimting of light earth exravation, a litile rock and embankment, and is clivided into forts-t wo v:hair: sertions.
No bond with securily will he reguired of the Cor tracturs, but the Commissioners will avail themselves of the powers granted thim of awarding the cont acts to the lowest respunsible bidder, and it is expected that the bids of al! those who are nut jeisumally that the bids of al! those whu are not p.e:sulaly
known tu the corami-sioners will be aicompanied will known th the cotimissioners will be ascompanied with
the proper testinuonials. And upon the award of work, it is cxperted that the pariies will immediately entre into written agreements, or the coniracts will be furfeited.
Plans, profiles, and specifications, giving all the necessary information, may be examined at the office of the Canal Commissioners, at Chicago, and thuse wishing to oblain contracts on this work, are requeeted to make a niuute personal examination of the work previous to seuding in their proposals.

A:test, J. MANNING, Secretary.
Chicago, March 2th, 1837.16
Enlargement of the Erie Caval.The cointry on the Upper Lakes, whose trade is chiefly with the city of New.York, is but beginning to be settled, yet the Erie Canal is so crowded as to retard the progress of boats. The exports and imports of Michigan, for example, have probably more than doubled within the last eighteen months, and are still, in all human probability, less than one-third of what they will be tliree or four years hence. The same is true of the contiguous portions of Indiana, Illinois and Wisconsin. The commerce of the northern part of Ohio is still rapidly increasing, and and that of Western Now York is far, very ar from the ultimate limit of its expansion. By what means of conveyarice is the producc of these immense regions to reach New. York, and how are the manufactures
of the Eustern Siates and Europe to be rought to us? Have the great importing nerehanis of New-York reflected, that the consumption in this North Western country of the products of Europe, of Asia, of the West Indies, will give employment to twice their present amount of shipping? Through what channel are we to receive these pro. ducts, and which of the Atlantic cities will supply us? It is very certain that NewYork cannot without either enlarging the Erie Canal, or building anuther, or both.
Those who ask for the enlargement of the Eric Canal, do not ask the State of NewYork to spend one cent in the accomplis!ment of that object. The tolls will pay the interest on the requisite loans, and in 20 years, create a sinking fund sufficient to pay the principal. Michigan and Wisconsin, Illinois and Indiana will pay all the expenses, in the tolls out our merchandise. The Le. gislature of New-York has but to weill the accomplishment of tlie work, and it will go on without expense. Loans to any requisite amount can be madc on the credit of the tolls--endorsed by the State-which endorsement would subject the State to no manner of risk. The commerce of an immense and weaithy region, and the inevitable course of events, are pledged to pay for the improvement.

When the Pittsburgh and Erie, and Pittsburgh and Cleaveland Ralroads connecting us with Pinladelphia and Baltimore, aro completed, a considerable portion of our trade will be with those cities. Four years hence, the country of the Upper Lakes can trade, to the amount of a good many millons, with Baltimore and Philadelphia, and ${ }^{*}$ at the same time double its present business with New.York.
We are sceptical as to railroads being the best vehicles for the transportation of heavy produce-though they may do well, still, we selieve, canals will do better. We thereore think that if the Erie Canal is enlarged, New. York will still heve the advantage in the compettion witia Pniladelphia and Baltimore, ior the trade of the North West; otherwise, not.-[Detroit Jour. and Cour.]

At a meeting of the Stockholders of the Paterson and Hudson River Railroad Company, on the 30th March ult., the following persons were elected Directo s for the ensuing year:-James L. Morris, Ph. Dickerson. E. B. D. Ogden, Peter Crary, J. D. Beers, Wm. Carnes, Jr., John Colt.
E. B. D. Ogden having declined a reelection as President, James L. Morris was clected President of the Company ; E. B. D. Ogden, Treasurer, and A. S. Pennington, Secretary.-[Paterson Intel.]

The Legislature of Michigan adjourned on the 21 st inst. Among the most important acts passed are the following:
The General Banking Law.
An act to provide for the appointment of a board of Commissioners of Interual improvement.
An act to authorise the cons'ruction or certain works of Internal Iuprovement.
An act authorising a loan of five million dollars for the construction of works of In ternal Improvement.
The act for the organizat on and support of Primary Schools.

The act to organize the University of the State of Michigan.

The act providing for a geological Survey. -[Buffalo Daily Com. Adv.]
We find the following, among other toasts, which were drank at the late celebration of St. Patrick's Day, at Pittsburgh :

By H. H. Van Amringe.-Education. The great Railroad of internal improvement; may the main line and the branches be extended and continued, until it pervades all the ends of the earth, and brings the Nations as one Family, to the greut Author and universal Centre of truth, liberty, peace and happiness.

Seizere of a Rainway.-Yesterday, at 2 o'clock, Mr. Macintosh, the contractor fo: this and many other public works, who claims a large sum as duc to him fiom the London and Greenwieh Railway Company, for the excavations and buildings exccuted by him thereon, took possession, by virtue of an execution, of the whole work, from London-bridge to Deptford, including the buildings, iron-rails, and steam-carriages, with every fixture, moveable, and other appurtenance. The clerks, money-takers, gate-heepers, engineers, conductors, conatables, and other officers belonging to the establishment, were not a little astonished when they were informed by the officers of the sheriff that "their occupation was gone." Remonstrance, however, was vain; their respective departments were speedily filled up by persons in the employ of the new possessor. The claim of Mr. Macintosh is reported to amount to $£ 300,000$.-[LLon. don l'ost•]

Experiment an 1he Lowifl Railroad. -The Boston Post states that on Saturday, March 25th, an experiment was tried on the Boston and Lowell Railroad, with a new engine built at Lowell, for the Stonington road. The weight of the engine is about 10 tons.

A train of 49 burden cars was drawr from Boston, to the turnout in Woburn, : distance of 10 miles, in $51 \frac{1}{2}$ minutes. The load exchrive of engine wns as fullows:-

25 cars- 373 bales pressed cotton and wool,
195 " groceries, \&c.
19 " coal- 6,000 lbs.
49 cars weighing
Tender to locomotive
177,364 lbs.
26,142
114,000
191,000
14,400
522,906 lbs
or 261 tons.
The load, which occupied a length of 820 feet, was started on the bridge at loston without assistance, was taken up planes of 10 feet to a mile, and stopped and started again on a plane of that inclination.
On the 15th of January, the small engine ' Patrick' of nine tons weight, also built at Lowell, took a load of 35 cars, weighing in all 201 tons in 2 hours 14 minutes, from Boston to Loweil, 26 miles.
In both eases the experiment was made without any previous preparation, the engines, cars and rails, being in their usual working state.

Among recent scientific works, few have attracted so much attention, as Buckland's Bridgewater Treatise on Geology. Whether for the originality and forcible nature of the reasoning for the clear and neat diction, or for the elegant manner in which the work is published.
An edition has already appeared in this country, and from the fame of Prof. Buckland as a geologist, there is no doubt as to the rapid sale of the successive editions in this country and in Europe.

We have extracted the very clear and distinet description of the operation of Artesian Wells, for the benefit of our readers. artesian wells.
from buckland's bridgewater treatisegeology and mineralogy.
The name of Artesian Wells is applied to perpetually flowing artificial fountains, obtained by boring a small hole, through strata that are destitute of waters, into lower strata loaded with subterraneous sheets of this im. portant fluid, which ascends by hydrostatic pressure, through pipes let down to conduct it to the surface. The is name derived from Arto:s (the ancient Artesium) where the practice of making such wells has for a long time extensively prevailed.*
Artesian Wells are most available, and of the greatest use, in low and level districts

* In common cases of Artesian Wells: where a single pipe alone is used, if the boring penctrates a bed containing impure water; it is continued deeper until it arrives at another stratum containing pure water ; the bottom of the pipe being plunged into this pure water, it ascends within it, and is jonducted to the surface through whateves mpuritics may exist in the superior strata. The impure water, through which the boring may pass in its descent, being excluded by the pipe from mixing with the pure watel ascending from below.
where water cannot be obtained from super. ficial springs, or by ordinary wells of mode. rato depth. Fountains of this kind are known by the name of Blow Wells, on the eastern coast of Lincolnshire, in the low district covered by clay, between the Wolds of Chalk near Louth, and the sea shore. 'These districts were without any springs, until it was discovered that by boring through this clay to the subjacent chalk, a fountain might be obtained, which would flow inces. santly to the height of several feet above the surface.
In the Kings weil at Sheerness, sunk in 1781 through the London clay, into sandy strata of the Plastic clay formation, to the denth of 330 feet, the water rushed up violently from the bottom, and rose within eight feet of the surface. (Phil. Trans. 1784.) In the years 1828 and 1829 two more perfect Artesian Wells were sunk nearly to the same depth in the dock yards at Portsmouth and Gosport.
Wells of this kind have now become frequent in the neighborhood of London, where perpetual Fountains are in some places ob. tained by deep perforations through the Lon. don clay, into poroas beds of the Plastic clay formation, or into the Chalk.*

Important treatises upon the subject of Artesian Wells have lately been published by M. Hericart de Thury and M. Arago in France, and by M. Von Bruckmann in Germany. It appears that there are extensive districts in various parts of Europe, where, under certain conditions of geological struc. ture, and at certain levels, artificial fountains will rise to the surface of strata which throw

* One of the first Artesian Wells near London was that of Morland House on the north-west of Holland House, made in 1794, and descrbed in Phil. Trans London 1797. The water of this well was derived from sandy strata of the plastic clay formation, but so much obstruction by sand attends the admission of water to the pipes from this for. mation, that it is now gencrally found more convenient to pass lower through these sandy strata, and obtain water from the subjacent Chalk. Examples of wells that rise to the surface of the lowest tract of land on theWest of London may be seen in the artesian fountain in front of the Episcopal palace at Fulham, and in the garden of the Horticultural Socie. ty. Many stech fountains have been made in the town of Brentford, from which the water riscs to the height of a few feet above the surface.
This height is found to diminish as the number of perpetually flowing fountains increases; and a general application of them would discharge the subjacent water so much . more rapidly than it arrives through the interstices of the chalk, that fountains of this land when numerous would cease to overHow, although the water within them would rise and maintain its level nearly at the sur|f fece of the land.
out no natural springs, and will afford abundant supplies of water for agricultural and domestic purposes, and sometimes even for moving machinery. The quantity of water thus obtained in Artois is often sufficient to turn the wheels of corn mills.
In the Tertiary basin of Perpignanf and the Chalk of Tours, there are almost subterranean rivers having enormous upward pressure. The water of our. Artesian Well in Roussillon, rises from 30 to 50 feet above the surface at Perpignan and Tours. M. Arago states that the water rushes up with so much force, that a Cannon Ball placed in the pipe of an Artesian Well is violently ejected by the ascending stream.
In some places application has been made to economical purposes, of the higher temperature of the water rising from great depths. In Wurtemburg Von Bruckmann has applied the warm water of Artesian Wells to heat a paper m::nufactory al Heilbrown, and to prevent the freezing of common water around his mill wheels. The same practice is also adopted in Alsace, and at Constadt near the Stutgardt. It has even been proposed to apply the heat of ascending springs to the warming of green houses. Artesian Wells have lang been used in Italy, in the duchy of Modena; they have also been successfully applied in Holland, Cbina,* and North America - By
* An economical and easy noode of siaking Artesian Wells and boring for coal, \&c. has recently been practised near Saarbirch, by M. Sellow. Instead of the tardy and costly process of boring with a number of iron rods screwed to each other, one heavy bar of cast iron about six feet long and four inches in diameter, armed at its lower end with a cutting chisel, and surrounded by a hollow chamber, to receive through valves, and bring up the chips of the perforated stratum, is suspended from the end of a strong rope, which passes over a wheel or pully fixed above the spot in which the hole is made. As the rope is raised up and down over the wheel its action gives to the bar of iron, a circular motion, sufficient to vary the place of the cutting chis ϵ) at each descent.

When the chamber is fuil, the whole ap. paratus is raised quickly to the surface to be unloaded, and is again let down by the action of the same wheel. This process has been long practised in China, from whence the report of its use has been brought to Europe. The Chinese are said to have bored in this manner to the depth of 1000 feet-M. Sellow has with this instrument lately made perforation 18 inches in diameter and several hundred feet deep, for the purpose of ventilating coal mines at Saar. birch. The general substitution of this method for the costly process of boring witt. rods of iron, may be of much public impor. tauce, especially when water can only be obtained from great depths.
means of similar Wells, it is prollahec that || water may be raised to then stritice: of mun: parts of the sandy deserts of itrica and Asia, and it has been in contemplation to construct a series of these Wells along the main road which crosses the Isthmus of Surz.

I felt it important thus to cinter into the theory of Artesian Wells, because their more frequent adoption will add to the facilities of supplying fresh water in many re. gions of the earth, particularly in low and level districts, where this prime necessary of life is inaccessible by any other means; and because the theory of their mode of operation explain one of the most important and most common contrivances in the sub terraneous economy of the Globe, for the production of natural springs.

Mode of supporting the Poor in Bel-gium.-Viscount Vilain XIII, who has been long appointed Minister at •Rome, has resigned his office as Governor of East Flanders. Before quitting Ghent, Viscount Vilain addrcssed is circuiar to the different iunctionaries under his government, in which are some interesting details relating to the operations of the charitable workshops (alelers de charite), established in different parts of Flanders. He states that the number of these institutions amounts to forty-three; that the total prime cost of material and salary paid to the poor anounts to 176.378 francs, and the same of manufactured articles to 162.583 francs, leaving a loss upon the whole ol only 13,804 francs. Thus, at the expense of 13,804 franes, provision and employment have been given to 2265 poor people during the whole of the winter and part of the spring; and thus, at the trifling expense of six franes per person, forty-three parishes have been rescued from the evils $n!$ mendicity, and a large body of poor crea tures, who must otherwise have begged or starved, have been artively and usefully employed, and have had the means of supporting their families without other parochial relicf. The letter adds, that the average loss of six francs only arises from defective administration in some of the parishes, since it results that, in twenty-five out of forty-three, the loss has not exceeded two francs, and indeed in some of these has not been more than eighty centimes per person. In seven parishes the receipts nearly balance the expense, so that the poor have cost little or noihing ; and in four parishes the returns have excceded the expense, so as to leave a balance in the hands of the directors after supporting all the poor. These are remarkable results, and are well worthy the atten. tion of the philanthropists in England and Ireland; for wha: can be more praisewor. thy, more advantageous or honorable to the community, than the establishment of insti. tutions by which pauperism, idleness, and immorality are neutrulized without expense, and by which a number of persons who would be otherwise tlirown upon the public workhouse, or bccome burdens to the parish, are actively employed, and encouraged in aabits of industry and economy? Viscount Vilain earnestly recommends tho establish-
ment of similar worshops thronghout the wiol. ronsir:. Were he able to effect his belecviest utjucet, he would obtain one of the most important and must beneficial re: sults ever effected in a civilized nation; and Belgium would present the phenomenon of a whole population purged, as it were, of idleness and pauperisni. Whilst upon the subject, it may be observed, according to official statistical cocuments. published by order of the minister of the interior, that the total gross anount of the revenue of hospitals, charitable establishuncists, and of the divers sums expended upon the poor, amounted, in 1833, to $11,647,000$ francs, or about 255 franes per individual. The num: ber of the poor in the provincial workhouses has bcen reduced from 3454 in 1527, to 2662 in 1533 , a reinarkitble diminution, sceing that the population has increased in an inverse ratio, having augmented from $3,500,00$) in 1827 , to $4,061,000$ in 1833 . Tre same document states, that the iotal number of persons receiving instruction at the various collemes, schools, aud places of education of all denominations, amounted al: together to 353,342 in 1826, whereas in 1883 the number of children atterding the 5229 primary schoo's alone exceeded 370 ,000. If the progress of education had been great, the diminution of immorality is not less striking, for one finds the number of ioundlings (enfans trouves) to have amounted to 11.023 in 1823, whilst in 1833 they did not exceed 7997. This is not a place to develope subjects of this kind, but the above eximples will suffice to show, that Belgium is making considerable progress in those branches of administration and general morality which are the most essential to the well-bjing of a nation. It must not be omitted to state, that the tables in question give the population to the 1st of January 1835 at $4,165,953$ souls; the superfices of the soil at $3,420,570$ hectares (each $2 \frac{1}{2}$ acres,) of which 381,470 hectares, or about onetenth, are uncultivated, not including more than 100,000 hectares or $\mathbf{1 - 3 4 t h}$ of roads and canals. In France, the uncultivated land, out of a superfices of $52,570,000$ hec. tarcs, amounts to $9,000,000$, or one-sixth; and the roads, canals, streets, \&c. to $1,216,-$ 746 , or one-fifth ; both of which show a remarkable balance in favor of Belgium.-

Algerine Mortar.- The mortar used by the ancients in their buildings has always been highly praised as much superior to that of the moderns. Pananti, a recent Italian. writer on Algiers, paid a good deal of atten. tion to the subject when residing in Africa, supposing it probable, from the well-known stationary character of Oriental habits, that the ancient method of preparing it might be preserved there, though los: in Europe. He informs us, that the inoltar used at Algiers is made of two parts wood-ashes, three parts lime, and one part sanf-to this composition they give the name Tabbi. After mixing these ingredients together, they throw in a quantity of oil, and beat the whole together for three days and nights without intermis. sion, by which tirse it has attained the proper consistence. After being used in build. ing, it becomes harder than marble, is im. permeable to water, and resists the operation of Time and the elements.
transactions of tile institution of civil engineers.
TABLE IV.-THE VELOCITY (23 Experiments).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline A \& B \& \& \& \& \& \& \& 1 \& \& \& L \& M \& \& 0 \& P \\
\hline \& \& \& \& \& \& \& \& Kind of tractive
power. \& 흒 \& \[
\dot{B}
\] \& Draug \& \(\frac{\text { ght. }}{\text { St'n }}\) \& \& \& \begin{tabular}{l}
Remaris. \\
place of experiment, FORTH AND Clyde canal.
\end{tabular} \\
\hline 157 \& Velocity \(\left\lvert\, \begin{aligned} \& \text { m } \\ \& 1 \\ \& 1 \\ \& 1 \\ \& 1 \\ \& 1 \\ \& 1\end{aligned}\right.\) \& \begin{tabular}{ll}
14 \& s. \\
14 \& 16 \\
14 \& 36 \\
14 \& 55 \\
15 \& 15 \\
15 \& 35 \\
2 \& 2
\end{tabular} \& \[
\begin{aligned}
\& b \\
\& c \\
\& d \\
\& e \\
\& f
\end{aligned}
\] \& \[
\begin{array}{|c|}
\hline \text { sec. } \\
20 \\
19! \\
191_{2}^{1} \\
201_{2}^{1} \\
1
\end{array}
\] \& \[
\begin{aligned}
\& \text { miles. } \\
\& 11.25 \\
\& 11.54 \\
\& 11.54 \\
\& 10.97
\end{aligned}
\] \& \[
\begin{array}{|}
\hline \text { lbs. } \\
407 \cdot 8 \\
396 \cdot 7 \\
382 \cdot 31 \\
375 \cdot 1
\end{array}
\] \& Iect.
16.50
16.92
16.92
16.09 \& \begin{tabular}{l}
Two \\
Horses.
\end{tabular} \& \[
\left\lvert\, \begin{aligned}
\& 7 \text { passen- } \\
\& \text { gers, }= \\
\& \text { c. } q . l l . \\
\& 9 \text { 2. } \\
\& \hline
\end{aligned}\right.
\] \& \[
=\begin{gathered}
\text { not } \\
\text { obs. }
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { in. } \\
\& 11
\end{aligned}
\] \& in. \& not obs. \& dur. run. bow elcv. 43 \& Weight of Velocity, when empty, 3 ton. 15 cwt .2 qr. 9 lb . \\
\hline 158 \& Velocity. \({ }_{\text {a }}\) 2 \(\begin{aligned} \& \text { a } \\ \& 3 \\ \& 3 \\ \& 3 \\ \& 3 \\ \& 3\end{aligned}\) \& \begin{tabular}{ll}
29 \& 38 \\
30 \& 04 \\
30 \& 29 \\
30 \& 53 \\
31 \& 19 \\
\hline
\end{tabular} \& \begin{tabular}{|l|l}
\hline\(b\) \\
\(c\) \\
\(d\) \\
\& \\
\hline
\end{tabular} \& 26
25
24
\(26!\)
26 \& \[
\begin{aligned}
\& 8 \cdot 65{ }_{2}^{2} \\
\& 9 \cdot 00 \\
\& 9 \cdot 382 \\
\& 8 \cdot 492
\end{aligned}
\] \& \[
\begin{aligned}
\& 283 \cdot 0 \\
\& 267 \cdot 2 \\
\& 259 \cdot 6 \\
\& 261 \cdot 4
\end{aligned}
\] \& \[
\begin{aligned}
\& 12 \cdot 69 \\
\& 13.20 \\
\& 13 \cdot 75 \\
\& 12 \cdot 45
\end{aligned}
\] \& do. \& do. \& do. \& do. \& do. \& do. \& \begin{tabular}{l}
do. \\
do. \\
elev. \\
29
\end{tabular} \& \\
\hline 159 \& Velocity. \& \begin{tabular}{|cc|}
\hline 59.13 \\
59 \& \(31 \frac{1}{2}\) \\
59 \& 51 \\
11 \\
\& \(29 \frac{1}{2}\) \\
\hline
\end{tabular} \& \& \[
\begin{aligned}
\& 18 \frac{1}{2} \\
\& 19 \frac{1}{2} \\
\& 20 \\
\& 18 \frac{1}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& 12 \cdot 16 \\
\& 11 \cdot 54 \\
\& 11 \cdot 25 \\
\& 12 \cdot 16
\end{aligned}
\] \& \[
\begin{array}{r}
4405 \\
415 \cdot 2 \\
383 \cdot 4 \\
382 \cdot 4
\end{array}
\] \& \[
\begin{aligned}
\& 17 \cdot 84 \\
\& 16 \cdot 92 \\
\& 16.50 \\
\& 17.84
\end{aligned}
\] \& do. \& do. \& do. \& do. \& do. \& do. \& \begin{tabular}{l}
do. \\
do. \\
elev. \\
86
\end{tabular} \& \\
\hline 160 \& Velocity. \({ }_{\text {a }}\) \& \(\left\lvert\, \begin{array}{ll}25 \& 40 \\ 26 \& 06 \\ 26 \& 311 \\ 26 \& 55 \\ 27 \& 21\end{array}\right.\) \& \begin{tabular}{|l}
a \\
\hline\(c\) \\
\(c\) \\
\(d\) \\
\(e\) \\
\(f\)
\end{tabular} \& 26
251
23
26
26
2 \& \[
\begin{aligned}
\& 8 \cdot 65 \\
\& 8 \cdot 82 \\
\& 9 \cdot 57 \\
\& 8 \cdot 65
\end{aligned}
\] \& \[
\begin{array}{r}
314 \cdot 1 \\
327 \cdot 0 \\
3606 \\
6477 \cdot 2
\end{array}
\] \& \[
\begin{aligned}
\& 12 \cdot 69 \\
\& 12 \cdot 94 \\
\& 14 \cdot 04 \\
\& 12 \cdot 69
\end{aligned}
\] \& do. \& \[
\begin{array}{|cc|}
\hline 7 \& \text { passen- } \\
\text { gers, and } \\
1 \& \text { ton, } \\
c . \& = \\
c . \& q \cdot \\
29 \& 2
\end{array}
\] \& do. \& 11 \& 11 \& do. \& \(\left|\begin{array}{c}\text { at } r \text { rst } \\ \text { bur } \\ \text { dep } \\ \text { 1. } \\ \text { dur. } \\ \text { durn. } \\ \text { clev. } \\ \text { clev. } \\ \text { 33 }\end{array}\right|\) \& \\
\hline 161 \& Velocity. \(\left\lvert\, \begin{aligned} \& 3 \\ \& 3 \\ \& 3 \\ \& 3 \\ \& 3 \\ \& 36\end{aligned}\right.\) \& \(|\)\begin{tabular}{ll}
35 \& \(21 \frac{1}{2}\) \\
35 \& 41 \\
36 \& 01 \\
36 \& 21 \\
36 \& 41 \\
\hline 1
\end{tabular} \& \(1{ }^{\frac{1}{2}} 1 \begin{aligned} \& \text { b } \\ \& c \\ \& c \\ \& d \\ \& \\ \& d\end{aligned}\) \& \[
\begin{aligned}
\& 19 \frac{1}{2} \\
\& 20 \\
\& 20 \\
\& 20 \frac{1}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& 111 \cdot 54 \\
\& 11 \cdot 25 \\
\& 11 \cdot 25 \\
\& 10 \cdot 97
\end{aligned}
\] \& \[
\left\{\begin{array}{c}
467 \cdot 7 \\
444 \cdot 7 \\
426 \cdot 7 \\
423 \cdot 8
\end{array}\right.
\] \& \[
\begin{aligned}
\& 716.92 \\
\& 716.50 \\
\& 716.50 \\
\& 816.09
\end{aligned}
\] \& do. \& do. \& do. \& do. \& do. \& do. \& \(\left|\begin{array}{r}\text { do. } \\ \text { do. } \\ \text { elev. } \\ 43^{\prime}\end{array}\right|\) \& \\
\hline 162 \& Velocity. \& \begin{tabular}{|ll|}
\hline 44 \& 56 \\
45 \& 51 \\
46 \& 46 \\
47 \& \(44 \frac{1}{2}\) \\
48 \& 43 \\
\hline 1
\end{tabular} \& \begin{tabular}{|l|l|}
\hline\(\frac{1}{2}\) \\
\hline\(c\) \\
\(d\) \\
\(e\) \\
\\
\hline
\end{tabular} \& \begin{tabular}{l}
55 \\
55 \\
58 \\
58 \\
58 \\
\hline 1
\end{tabular} \& \(4 \cdot 69\)
4.09
3.84
\(3 \cdot 84\) \& \[
\begin{aligned}
\& 47 \cdot 0 \\
\& 42 \cdot 1 \\
\& 38 \cdot 4 \\
\& 37 \cdot 5
\end{aligned}
\] \& \[
\begin{array}{l|l}
0 \& 6.00 \\
1 \& 6.00 \\
4 \& 5 \cdot 64 \\
5 \& 5.64
\end{array}
\] \& do. \& \& \[
\left\lvert\, \begin{aligned}
\& \text { very } \\
\& \text { light }
\end{aligned}\right.
\] \& do. \& do. \& do. \& (\(\begin{gathered}\text { do. } \\ \text { do. } \\ \text { level }\end{gathered}\) \& \\
\hline 163 \& Velocity: \({ }^{2}\) 21 \& \begin{tabular}{|ll|}
\hline 21 \& 12 \\
21 \& \(33^{\frac{1}{2}}\) \\
21 \& 55 \\
22 \& 17 \\
22 \& 38 \\
\hline 2 \& \\
\hline
\end{tabular} \& \({ }_{\frac{1}{2}}^{1}\) \& \begin{tabular}{l}
21 \\
21 \\
22 \\
22 \\
21 \\
\hline 1
\end{tabular} \& \[
\begin{gathered}
10 \cdot 71 \\
10 \cdot 47 \\
10 \cdot 23 \\
10 \cdot 71
\end{gathered}
\] \& \[
\begin{aligned}
\& 474 \cdot 6 \\
\& 442 \cdot 4 \\
\& 425 \cdot 4 \\
\& 429 \cdot 0
\end{aligned}
\] \& \[
\begin{array}{l|l}
6 \& 15 \cdot 71 \\
4 \& 15 \cdot 35 \\
4 \& 15 \cdot 00 \\
0 \& 15 \\
\hline 10
\end{array}
\] \& do. \& \[
\begin{aligned}
\& 7 \text { passen- } \\
\& \text { gers, and } \\
\& 2 \\
\& \text { tons } \\
\& c . \\
\& c . \\
\& 49 \\
\& 49 \\
\& \hline
\end{aligned}
\] \& do. \& \(12 \frac{1}{4}\) \& 12 \({ }^{\frac{1}{4}}\) \& do. \& \[
\left|\begin{array}{c}
\text { do. } \\
\text { de. } \\
\text { e ev. } \\
30^{\prime}
\end{array}\right|
\] \& - \\
\hline 164 \& Velocity. \({ }^{\text {a }}\) - \({ }^{3}\) \& \begin{tabular}{|ll}
32 \& 43 \\
33 \& 10 \\
33 \& 36 \\
34 \& 03 \\
34 \\
34 \& 30 \\
\hline \& 30 \\
\hline
\end{tabular} \& \begin{tabular}{|c|c}
\hline\(b\) \\
\hline
\end{tabular} \& 27
27
26
27
\(26 \frac{1}{2}\)
26 \& \(8 \cdot 33\)
8.49
8.33
8.49 \& \[
\begin{aligned}
\& 362 \cdot 6 \\
\& 9358 \cdot 4 \\
\& 3381 \cdot 0 \\
\& 9386 \cdot 7
\end{aligned}
\] \& \[
\begin{array}{r|r}
6 \& 12.22 \\
4 \& 12 \cdot 45 \\
0 \& 12.22 \\
7 \& 12 \cdot 45
\end{array}
\] \& do. \& do. \& do. \& do. \& do. \& do. \& do. do. elev. 43' \& \\
\hline 165 \& Velocity. \& \begin{tabular}{|l|}
\hline 43 \\
44 \\
44 \\
44 \\
45 \\
46 \\
46 \\
47 \\
47 \\
\hline 182 \\
\hline
\end{tabular} \& \& 50
53
53
52

1 \& 4.50
$4 \cdot 25$
4.25

4.29 \& \[
$$
\begin{array}{|c|c}
63 \cdot 2 \\
57 \cdot 3 \\
51 \cdot 5 \\
55 \cdot 5
\end{array}
$$

\] \&	$6 \cdot 60$
6.23	
$6 \cdot 23$	
6.29	\& do. \& do. \& do. \& do. \& do. \& do. \& do. do. level. \&

\hline 166 \& Velocity. $\left.\right|_{1} ^{19}$ \& | 18 | 22 |
| :--- | :--- |
| 18 | 46 |
| 19 | 09 |
| 19 | $31{ }_{2}^{1}$ |
| 19 | 54 | \& | | |
| :--- | :--- |
| b | |
| c | |
| d | |
| d | |
| e | |
| | |
| | |
| | | \& \[

$$
\begin{aligned}
& 24 \\
& 23 \\
& 22 \\
& 22! \\
& 22 \\
& 22
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
9 \cdot 38 \\
978 \\
10 \cdot 00 \\
10.00
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 484 \cdot 5 \\
& 467 \cdot 3 \\
& 451 \cdot 0 \\
& 424 \cdot 5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 13 \cdot 75 \\
& 14 \cdot 35 \\
& 0 \\
& 14 \cdot 67 \\
& 5 \\
& 14 \cdot 67
\end{aligned}
$$

\] \& Two Horses. \& \[

\left.$$
\begin{aligned}
& 7 \text { passen. } \\
& \text { gers, and } \\
& 3 \text { ton, }= \\
& c . \\
& c 9 . \\
& 69 .
\end{aligned}
$$ \right\rvert\,

\] \& | very |
| :--- |
| light | \& \[

$$
\begin{aligned}
& \mathrm{in} \cdot \\
& 13_{2}^{1}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { in. } \\
& 13!
\end{aligned}
$$
\] \& not. \& dur.

run.
bow
elev.
36^{\prime} \& .

\hline
\end{tabular}

TABLE IV. continufd.-THE VELOCITY.

167	Veloc	Y. ${ }_{2}^{28} 0808$	$\left\lvert\, \begin{aligned} & b \\ & c \\ & d \\ & d \\ & e \\ & \\ & e \\ & f\end{aligned}\right.$	$\begin{aligned} & 28 \\ & 27 \frac{1}{2} \\ & 28)^{1} \frac{1}{2} \\ & 28! \end{aligned}$				do.		do.		do. do.	do.	do.	($\left\lvert\, \begin{aligned} & \text { do. } \\ & \text { do. } \\ & \text { zelev. } \\ & 40^{\prime}\end{aligned}\right.$	
168	Veloc	$+$39 17 40 11 $\frac{1}{2}$ 40 05 $\frac{1}{2}$ 41 00 41 54 2	$\begin{aligned} & \hline b \\ & \hline \end{aligned}$	$\begin{aligned} & 541_{2}^{2} \\ & 54 \\ & 54^{2} \\ & 54 \end{aligned}$	4.1 4.1 4.1 4.1	$\begin{array}{l\|l} 13 & 53 . \\ 17 & 50 \\ 13 & 57 . \\ 17 & 54 . \end{array}$		do.		do.	do.	o. do.	do.	do.	(do. $\begin{gathered}\text { do. } \\ \text { lovel }\end{gathered}$	
169	Veloc	6 29 652 7 142 7 37 8 58	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 22 \frac{1}{2} \\ & 22 \frac{1}{2} \\ & 21 \end{aligned}$	$\begin{array}{\|c} 9.78 \\ \frac{1}{2}\left[\begin{array}{c} 9 \cdot 00 \\ 10.00 \\ 10.00 \\ 10.71 \end{array}\right. \end{array}$	$\begin{array}{l\|l} 78 & 462 \\ 00 & 455 . \\ 00 & 447 . \\ 71 & 438 . \end{array}$	$\begin{array}{l\|l} 2 \cdot 8 \cdot 14 \cdot 35 \\ 5 \cdot 0 & 14 \cdot 67 \\ 7.514 \cdot 67 \\ 8 \cdot 2 & 15 \cdot 71 \end{array}$	do.		do.	do.	-. $17 \frac{1}{2}$	10	do.		Weight shifted forward.
170	Velocit	25 55 26 21 26 47 27 13 27 41	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{array}{r} 26 \\ 26 \\ 26 \\ 28 \end{array}$	$\begin{aligned} & 8.65 \\ & 8.65 \\ & 8.65 \\ & 8.03 \end{aligned}$			do.		do.	none	ne 15:	12	do.	1 lur. cun. ouv slev. 52 52	do.
171	Veloci		$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \frac{1}{2} \\ & 22 \\ & 22 \\ & 22_{1}^{\prime} \end{aligned}$	$\left\{\begin{array}{c} 9.57 \\ 10.23 \\ 10.23 \\ 10.00 \end{array}\right.$	$\begin{aligned} & 7 \left\lvert\, \begin{array}{l} 488 \\ 3 \\ 471 \cdot 2 \\ 0 \end{array}\right. \end{aligned}$	$\begin{array}{l\|l\|l} 8 & 14 \cdot 04 \\ 1 \cdot 2 & 15 \cdot 00 \\ & 15 \cdot 00 \\ 3 \cdot 6 & 14 \cdot 67 \end{array}$	do.		do.	do.	do.	do.	do.	(erdo. do. dieve. 29	
172	Velocit	(1)32	b c c d e e	$\begin{aligned} & 23! \\ & 23 \\ & 23! \\ & 222 \\ & 22! \end{aligned}$	$\begin{gathered} 9.57 \\ 9.57 \\ 10.00 \\ 10.00 \end{gathered}$		$\begin{array}{c\|c\|c\|} \hline \cdot 5 & 14 \cdot 04 \\ \cdot 5 & 14 \cdot 04 \\ \cdot 3 & 14 \cdot 67 \\ \cdot 7 & 14 \cdot 67 \end{array}$	do.		do.	do.	. $16 \frac{1}{2}$	$11{ }^{\frac{5}{8}}$	do.		Weigat sinftel af.
173	Velocit		$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 24 \frac{1}{2} \\ & 24 \\ & 26 \\ & 29 \end{aligned}$	$\begin{aligned} & 9.18 \\ & 9.38 \\ & 8.65 \\ & 7.76 \end{aligned}$	$\begin{aligned} & 8504.5 \\ & 8489.2 \\ & 5431.3 \\ & 6435.7 \end{aligned}$		do.		passe: ers, and ton, $=$ 9. 10. 21		${ }^{\text {do. }}$	$15 \frac{1}{2}$		$\begin{array}{\|} \text { do. } \\ \text { do. } \\ \text { dotev. } \\ 544^{\prime} \end{array}$	Heavy swell.
174	Velocity	$\cdot\left[\begin{array}{ll} 41 & 31 \\ 42 & 26 \\ 43 & 20 \\ 44 & 15 \\ 45 & 14 \end{array}\right.$	b c d d e f	$\begin{aligned} & 55 \\ & 54 \\ & 55 \\ & 59 \end{aligned}$	$\left.\begin{array}{\|l\|} 4 \cdot 09 \\ 4 \cdot 17 \\ 4 \cdot 09 \\ 3.81 \end{array} \right\rvert\,$	$\begin{gathered} 51 \cdot 3 \cdot 3 \\ 53 \cdot 2 \\ 558 \\ 46 \cdot 1 \end{gathered}$	$\begin{array}{c\|c\|c} -3 & 6.00 \\ -2 & 6.11 \\ 8 & 6.00 \\ 1 & 5.59 \\ \hline \end{array}$	do.		do.	do.	do.	do.	do.	$\begin{array}{\|c} \text { do. } \\ \text { do. } \\ \text { love } \end{array}$	
175	Velocit	$\left\|\begin{array}{ll}54 & 164 \\ 54 & 44 \\ 55 & 12 \\ 55 & 42 \\ 56 & 12\end{array}\right\|$	b c d d e f	$\begin{aligned} & 277_{1}^{1} \\ & 2888_{1}^{2} \\ & 29{ }_{2}^{1} \\ & 30 \end{aligned}$	$\begin{aligned} & 8 \cdot 18 \\ & \mathbf{7} \cdot 90 \\ & \mathbf{7} \cdot 59 \\ & \mathbf{7} \cdot 50 \end{aligned}$			Two Horses.	$\left[\begin{array}{c} 7 \\ \text { get } \\ 4! \\ 4 \\ c . \\ 94 \\ 94 \end{array}\right.$	pussen rs, and ton, $=$ q. 16. 21			$\begin{gathered} \text { watr. } \\ \text { in. } \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { not } \\ & \text { obs. } \end{aligned}$	$\begin{aligned} & \text { dur. } \\ & \text { run. } \\ & \text { bow } \\ & \text { elev. } \\ & 4^{5} \end{aligned}$	
176	Velocity	$\begin{array}{ll} 15 & 15 \\ 15 & 40 \\ 16 & 08 \\ 16 & 26 \\ 17 & 06 \end{array}$	b c d d e f	$\begin{aligned} & 25 \\ & 28 \\ & 23 \\ & 30 \end{aligned}$	$\begin{aligned} & 9 \cdot 004 \\ & 8 \cdot 034 \\ & 8 \cdot 034 \\ & 7 \cdot 504 \end{aligned}$			do.		do.	do.	20_{2}^{1}	10		$\begin{gathered} \text { at } \\ \text { rest, } \\ \text { dep. } \\ 45 \end{gathered}$	Weight shifted forward.
177	Velogity	$\|$6 10 6 35 7 35 7 00 7 27 7 54	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e . \\ & f \\ & \hline \end{aligned}$	$\left.\begin{aligned} & 241 \\ & 25 \\ & 27 \\ & 27 \end{aligned} \right\rvert\,$	$\begin{aligned} & 9 \cdot 18 \\ & 9 \cdot 0 \\ & 8 \cdot 33 \\ & 8 \cdot 33 \end{aligned}$		$\begin{aligned} & 413 \cdot 47 \\ & 613.20 \\ & 012.69 \\ & 012.22 \end{aligned}$	do.		do.	do.	do.	do.		$\begin{aligned} & \text { arcerst } \\ & \text { ctes. } \\ & \text { dus. } \\ & \text { dun. } \\ & \text { bun. } \\ & \text { efev. } \\ & \hline \end{aligned}$	
178	Velocity	$\left\lvert\, \begin{array}{ll} 22 & 49 \\ 23 & 14 \\ 23 & 39 \\ 24 & 05 \\ 24 & 32 \end{array}\right.$	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \\ & 25 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 9 \cdot 00 \\ & 9 \cdot 00 \\ & 8 \cdot 65 \\ & 8 \cdot 33 \end{aligned}$	$\begin{aligned} & 489 \cdot 5 \\ & 492 \cdot 8 \\ & 504 \cdot 2 \\ & 512 \cdot 1 \end{aligned}$	$\begin{aligned} & 513.20 \\ & 513.20 \\ & 812.69 \\ & 112.22 \end{aligned}$	do.		do.	do.	18	13		do. do. bow elev. 52'	Weight shifted aft
179	Velocity	$\cdot\left[\begin{array}{ll} 10 & 56 \\ 41 & 20 \\ 41 & 25 \\ 42 & 45 \\ 42 & 11 \frac{1}{2} \\ 42 & 388^{2} \end{array}\right]$	b c d d e j	$\begin{aligned} & 26 \\ & 25 \\ & 26^{2} \\ & 27^{2} \end{aligned}$	$\begin{aligned} & 8 \cdot 65_{4}^{4} \\ & \left.9 \cdot 00\right\|_{5} ^{5} \\ & 8 \cdot 49 \\ & 8 \cdot 33 \end{aligned}$	$\begin{array}{\|l\|} \mid 459 \cdot 2 \\ 502.0 \\ 450.0 \\ 450 \cdot 0 \end{array}$	$\|$$12 \cdot 69$ 13.20 $12 \cdot 45$ $12 \cdot 22$	do.		do.			18	do.		do.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|l|}{TABLE V.-THE EAGLE (28 Experiments.)} \\
\hline \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& , \& K \& \multicolumn{2}{|l|}{L M} \& \& \& \multicolumn{2}{|r|}{P} \\
\hline \& \& \& \& \& \& \& \& ت゙ \& 号 \& \begin{tabular}{l}
Dra \\
Bow
\end{tabular} \& \[
\left.\right|_{w \mid \mathrm{St}^{\prime} \mathrm{rn}} ^{\text {raught. }}
\] \& \[
\begin{gathered}
0 \\
0 . \\
0 \\
0 \\
0 \\
0 \\
0.0 \\
0.0 \\
0
\end{gathered}
\] \& \& \& \begin{tabular}{l}
REMARES. \\
PLACE OF EXPERIMENT. \\
ORTH AND CLYDE CANAL.
\end{tabular} \\
\hline 180 \& Eagle. \& \begin{tabular}{cc}
\(\bar{m}\). \& \(\mathbf{s}\) \\
10 \& 10 \\
10 \& 31 \\
10 \& 49 \\
11 \& 08 \\
11 \& 28 \\
1 \& \(e\) \\
\hline
\end{tabular} \& \begin{tabular}{|c|}
\hline sec. \\
21 \\
18 \\
192 \\
20 \\
\hline
\end{tabular} \& \[
\begin{aligned}
\& \text { miles } \\
\& 10.71 \\
\& 12.50 \\
\& 11.54 \\
\& 11.25
\end{aligned}
\] \& \[
\begin{aligned}
\& 5 . \\
\& 5 \\
\& \hline \\
\& \hline
\end{aligned}
\] \& - feet.
\(615 \cdot 71\)
\(518 \cdot 33\)
616.92
\(16 \cdot 50\) \& 'Two Horses. \& \[
\left|\begin{array}{lll}
7 \& \text { passen } \\
\text { gers. } \& = \\
\text { c. } q \& l b . \\
9 \& 2 \& 1
\end{array}\right|
\] \& none \& \begin{tabular}{l}
watr. \\
in. \\
18 \\
from \\
mrk.
\end{tabular} \& \begin{tabular}{|c}
r. \\
watr. \\
in. \\
from \\
from \\
rerk.
\end{tabular} \& \[
\begin{gathered}
\text { not } \\
\text { obs. }
\end{gathered}
\] \& \begin{tabular}{l}
dur. \\
run. \\
bow \\
elev. \\
\(13^{\prime}\) \\
\hline
\end{tabular} \& \& Weight of Eagle, 3 ton. 14 cwt .0 qr . 15lb. Tow-ing-line fixed \(15 \frac{1}{2} \mathrm{ft}\). from Low. The lines of draught not being marked on this boat; the boats were \\
\hline 181 \& Eagle. \& \begin{tabular}{|ll|l|}
\hline 22 \& 51 \& \(b\) \\
23 \& 16 \& \(c\) \\
23 \& 40 \\
24 \& 0 \& \(d\) \\
24 \& 05 \& \(e\) \\
24 \& 29 \& \(f\) \\
\hline
\end{tabular} \& 251
24
24
24
24 \& 8.82
9.38
9.00
9.38 \& \[
\begin{gathered}
2292 \cdot 1 \\
8295 \cdot 4 \\
0303 \cdot 0 \\
8300 \cdot 8
\end{gathered}
\] \& \[
\begin{array}{l|l|}
1 \& 12.94 \\
4 \& 13.75 \\
0 \& 13 \cdot 20 \\
\mathrm{~S} \& 13.75
\end{array}
\] \& do. \& do. \& do. \& do. \& do. \& do. \& \[
\left|\begin{array}{r}
\text { do. } \\
\text { do. } \\
\text { elev. } \\
15^{\prime}
\end{array}\right|
\] \& \& therefore taken fiom two marks placed above the water at stem and stern. \\
\hline 182 \& Eagle. \& \begin{tabular}{|ll|l|l|}
\hline 34 \& \(15 \frac{1}{2}\) \& \(b\) \\
35 \& 10 \& \(c\) \\
36 \& 05 \& \(d\) \\
36 \& \(59 \frac{1}{2}\) \& \(c\) \\
37 \& 54 \& \(f\) \\
\hline
\end{tabular} \& 54
55
54
54
54
54

1 \& $4 \cdot 13$
$4 \cdot 09$
$4 \cdot 13$

$4 \cdot 13$ \& \& \[
$$
\begin{array}{l|l|}
\hline 6 & 6.06 \\
5 & 6.00 \\
7 & 6.06 \\
9 & 6.06
\end{array}
$$

\] \& do. \& do. \& do. \& do. \& do. \& do. \& | do. |
| :---: |
| do. |
| level | \& \&

\hline 183 \& Eagi \& | 48 | 59 | b |
| :--- | :--- | :--- |
| 49 | 22 | 1 |
| 49 | 44 | c |
| 50 | $07 \frac{1}{2}$ | e |
| 50 | | | \& \[

$$
\begin{aligned}
& 23 \frac{1}{2} \\
& 21 \frac{1}{2} \\
& 23 \frac{1}{2} \\
& 23{ }_{2}^{2}
\end{aligned}
$$

\] \& | 9.57 |
| ---: |
| 10.47 |
| 9.57 |
| 9.57 | \& \[

$$
\begin{array}{l|l|}
7 & 336 \cdot 3 \\
7322 \cdot 8 \\
7 & 310 \cdot 4 \\
7 & 289 \cdot 3
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l|}
3 & 14 \cdot 04 \\
8 & 15 \\
4 & 35 \\
4 & 14 \cdot 04 \\
3 & 14 \cdot 04
\end{array}
$$

\] \& do. \& do. \& do. \& do. \& do. \& do. \& \[

\left|$$
\begin{array}{r}
\text { do. } \\
\text { do. } \\
\text { elev. } \\
10^{\prime}
\end{array}
$$\right|
\] \& \&

\hline 184 \& Eagle. \& | 4 | 000 | |
| :--- | :--- | :--- |
| 14 | 21 | c |
| 14 | $40 \frac{1}{2}$ | d |
| 15 | 00 | e |
| 15 | $20 \frac{1}{2}$ | f | \& \[

$$
\begin{aligned}
& 20{ }_{2}^{1} \\
& 19 \\
& 19 \\
& 19 \\
& 20_{2}^{1} \\
& 1
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 10.97 \\
& 11.54 \\
& 11.54 \\
& 10.97
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 418 \cdot 8 \\
& 417 \cdot 1 \\
& 407 \cdot 0 \\
& 395 \cdot 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 816 \cdot 09 \\
& 16.92 \\
& 16.92 \\
& 116.09
\end{aligned}
$$

\] \& do. \& \[

$$
\begin{aligned}
& 7 \text { passen- } \\
& \text { gers, and } \\
& 1 \text { ton, } \\
& \text { c. q. }= \\
& 29 \\
& 29 \\
& 2
\end{aligned}
$$

\] \& do. \& \[

$$
\begin{array}{|c|}
\hline 16 \frac{1}{8} \\
\text { from } \\
\text { mrk. }
\end{array}
$$

\] \& \& do. \& \[

\left|$$
\begin{array}{c}
\text { do. } \\
\text { do. } \\
\text { elev. } \\
16^{\prime}
\end{array}
$$\right|
\] \& \&

\hline 185 \& Eagle. \&	$\overline{24}$	566	
25	21	b	
25	c		
25	46	d	
26	11	e	
26	37	f	\& \[

$$
\begin{aligned}
& 21 \\
& 25_{2} \\
& 25 \\
& 26
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
10 \cdot 47 \\
9 \cdot 00 \\
9 \cdot 00 \\
8 \cdot 65
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 334 \cdot 6 \\
& 322 \cdot 8 \\
& 316 \cdot 4 \\
& 300 \cdot 6
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15 \cdot 35 \\
& 13 \cdot 20 \\
& 13 \cdot 20 \\
& 12 \cdot 69 \\
& 13 \cdot
\end{aligned}
$$

\] \& Two Horses. \& do. \& do. \& do. \& do. \& do. \& \[

\left|$$
\begin{array}{c}
\text { do. } \\
\text { do. } \\
\text { elev. } \\
16^{\prime}
\end{array}
$$\right|
\] \& \&

\hline 186 \& Eagle. \& | 36 | 02 | b |
| :--- | :--- | :--- |
| 36 | 54 | c |
| 37 | 34 | d |
| 38 | 39 | |
| 39 | e | |
| 39 | 33 | f | \& 52

52
53
53
53

2 \& $4 \cdot 33$
$4 \cdot 33$
$4: 21$

$4 \cdot 21$ \& \[
$$
\begin{aligned}
& 69 \cdot 8 \\
& 60 \cdot 4 \\
& 55 \cdot 2 \\
& 59 \cdot 4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 6 \cdot 23 \\
& 6 \cdot 35 \\
& 6 \cdot 17 \\
& 6 \cdot 17
\end{aligned}
$$
\] \& do. \& do. \& do. \& do. \& do. \& do. \& do. do. leve! \& \&

\hline 187 \& Eagle. \&	2	16	b
2	37	c	
2	57	d	
3	17		
3	e		
3	38	f	\& \[

$$
\begin{array}{l|l}
21 & 1 \\
20 & 1 \\
20_{2}^{2} & 1 \\
21_{2}^{2} & 1
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 10 \cdot 71 \\
& 11 \cdot 25 \\
& 1097 \\
& 10 \cdot 47
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& 404 \cdot 3 \\
& 416 \cdot 6 \\
& 395 \cdot 5 \\
& 378 \cdot 3
\end{aligned}
$$\right.

\] \& \[

$$
\begin{aligned}
& 15 \cdot 71 \\
& 16 \cdot 50 \\
& 16 \cdot 09 \\
& 15 \cdot 35
\end{aligned}
$$

\] \& do. \& do. \& do. \& \[

$$
\begin{gathered}
14 \\
\text { from } \\
\text { mrk. }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
17 \frac{1}{2} \\
\text { n } \\
\text { from } \\
\text { mrk. }
\end{gathered}
$$
\] \& do. \& do. do. elev. 1^{\prime} \& \& eight shifted forward.

\hline 188 \& Eagle. \& | 21 | 34 | b |
| :--- | :--- | :--- |
| 21 | 56 | c |
| 22 | $15 \frac{1}{2}$ | d |
| 23 | 35 | d |
| 23 | $56 \frac{1}{2}$ | f | \& \[

$$
\begin{array}{l|l}
22 & 1 \\
19 \frac{1}{2} & 1 \\
20 & 1 \\
21 & 1
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 10 \cdot 23 \\
& 11.54 \\
& 11.253 \\
& 10.713
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{array}{ll}
396 \cdot 2 \\
404 \cdot 1 \\
375 \cdot 2 \\
369 \cdot 5
\end{array}
$$ 1\right.

\] \& \[

$$
\begin{aligned}
& 15 \cdot 00 \\
& 16 \cdot 92 \\
& 16 \cdot 50 \\
& 15 \cdot 71
\end{aligned}
$$

\] \& do. \& do. \& do. \& \[

$$
\begin{gathered}
17! \\
\text { from } \\
\text { mrk. }
\end{gathered}
$$

\] \& \& do. \& \[

\left|$$
\begin{array}{r}
\text { do. } \\
\text { do. } \\
\text { elev. } \\
38^{\prime}
\end{array}
$$\right|
\] \& \& do. aft. Little swell.

\hline 189 \& Eigle. \& | 50 | 50 | b |
| :--- | :--- | :--- |
| 51 | 12 | c |
| 51 | 32 | d |
| 51 | 53 | e |
| 52 | $14 \frac{1}{2}$ | f | \& \[

$$
\begin{array}{l|l}
22 & 1 \\
20 & 1 \\
21 & 1 \\
21 & 1
\end{array}
$$

\] \& \[

$$
\begin{array}{l|l|}
10 \cdot 23 \\
11 \cdot 25 & 4 \\
10.71 & 4 \\
10.47 & 4
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 415 \cdot 8 \\
& 425 \cdot 8 \\
& 414 \cdot 51 \\
& 402 \cdot 01
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.00 \\
& 16 \cdot 50 \\
& 15 \cdot 71 \\
& 15 \cdot 35
\end{aligned}
$$

\] \& Two Hurses. \qquad \& | 7 |
| :---: |
| passen- |
| gers, and |
| er tons, $=$ |
| c. q. |
| 49 |
| 49 | \& no ne \& watr.

in.
14_{2}^{1}
from
mrk. \& \& \& $\overline{\text { U }}$ ur.
run.
bow
elev.
z_{2}^{\prime} \& \& Very little swell.

\hline 190 \& Eagle. \&	2	45	b
3	11	c	
3	36	d	
4	01	e	
4	27	f	\& 26

25
25

26 \& $$
\begin{array}{l|l}
8.65 \\
6.003 \\
9.003 \\
8.653
\end{array}
$$ \& \[

$$
\begin{aligned}
& 363 \cdot 0 \\
& 354 \cdot 5 \\
& 336 \cdot 5 \\
& 341 \cdot 8
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{gathered}
1269 \\
13 \cdot 2 \mathrm{c} \\
13 \cdot 20 \\
12 \cdot 69
\end{gathered}
$$\right.

\] \& do. \& do. \& do. \& do. \& do. \& near bow \& | do. |
| :--- |
| do. |
| elev. |
| 16^{\prime} | \& \&

\hline 191 \& Eagle. \& | 13 | 07 | b |
| :--- | :--- | :--- |
| 17 | $46 \frac{1}{2}$ | c |
| 19 | 25 | d |
| 20 | 06 | e |
| 20 | 46 | f | \& 39

$38 \frac{1}{2}$
41
41
40

4
$\frac{1}{2}$ \& $5 \cdot 69$
$5 \cdot 84$
$5 \cdot 49$

$5 \cdot 56$ \& \[
$$
\begin{aligned}
& 122 \cdot 1 \\
& 119 \cdot 8 \\
& 105 \cdot 1 \\
& 102 \cdot 2
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{gathered}
8 \cdot 35 \\
8 \cdot 57 \\
8 \cdot 05 \\
8 \cdot 15
\end{gathered}
$$\right.

\] \& do. \& do. \& do. \& do. \& do. \& \[

$$
\begin{aligned}
& \text { not } \\
& \text { obs. }
\end{aligned}
$$
\] \& do.

do.
level. \& \&

\hline 192 \& Eagle. \& | 42 | 38 | b | 2 |
| :--- | :--- | :--- | :--- |
| 43 | 00 | | |
| 43 | 21 | c | 2 |
| 43 | d | 2 | |
| 43 | 42 | e | 2 |
| 44 | 04 | f | 2 | \& | 221 | |
| :--- | :--- | :--- |
| 21 | 10 |
| 21 | 10 |
| 22 | 10 | \& 10.08

10.71
10.71

10.23 \& $$
\begin{array}{l|l}
404 \cdot 2 & 1 \\
4042 \\
374 \cdot 0 & 18 \\
367 \cdot 1 & 16
\end{array}
$$ \& \[

$$
\begin{array}{|c|}
14.67 \\
15.71 \\
15.71 \\
15.00
\end{array}
$$

\] \& do. \& do. \& do. \& | $14!$ |
| :--- |
| mrk. | \& 16.

from
mrk. \& \& \& \& Weight shifted forward.

\hline
\end{tabular}

TABLE V. continued.-THE EAGLE: (28 Experiments).

193	Eagle.	$\left\|\begin{array}{ll} 22 & 05 \\ 22 & 27 \\ 22 & 49 \\ 23 & 10 \frac{1}{2} \\ 23 & 32 \end{array}\right\|$	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{array}{l\|l} 22 & 1 \\ 22 & 1 \\ 21 & 1 \\ 21 & 1 \\ 21 & 1 \end{array}$	$\begin{aligned} & 10 \cdot 234 \\ & 10.23 \\ & 10.47 \\ & 10.47 \\ & 4 \end{aligned}$	$\left\lvert\, \begin{gathered} 419 \cdot 7 \\ 400 \cdot 0 \\ 421.8 \\ 388 \cdot 0 \end{gathered}\right.$	$\begin{aligned} & 15 \cdot 00 \\ & 15 \cdot 00 \\ & 15 \cdot 35 \\ & 15 \cdot 35 \end{aligned}$	do.	do.	do.	$\begin{gathered} 16.3 \\ \text { from } \\ \text { mrk. } \end{gathered}$	$13!$ from mrk.	do.		do. aft.
194	Eagle.	51 28 51 50^{\prime} 52 13 52 35 52 56	$\begin{aligned} & b b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 221 \\ & 222_{2}^{1} \\ & 22 \\ & 21 \end{aligned}$	$\begin{array}{l\|l} 10 \cdot 00 & 4 \\ 10 & 4 \\ 10.23 & 4 \\ 10.71 & 4 \end{array}$	$\left\lvert\, \begin{array}{l\|l} 426 \cdot 4 \\ 417 \cdot 8 \\ 416 \cdot 7 \\ 4169 \\ 399 \cdot 7 \end{array}\right.$	$\begin{aligned} & 14 \cdot 67 \\ & 14.67 \\ & 15 \cdot 00 \end{aligned}$	do.	$\begin{aligned} & 7 \text { passen- } \\ & \text { gers, and } \\ & 3 \text { ton, }= \\ & c . ~ q . ~ \\ & \text { c. } \\ & 69 . \\ & 69 \\ & \hline \end{aligned}$	do.	$\begin{aligned} & 13 \frac{5}{8} \\ & \text { froin } \\ & \text { mrk. } \end{aligned}$	13 $\frac{5}{8}$ from inrk.	20 ft from the bow.	$\begin{array}{\|c\|c} \text { do. } \\ \text { do. } \\ \text { do } \\ \text { elev. } \\ 14^{\prime} \end{array}$	
195	Eagle.	$\left\|\begin{array}{cc}8 & 31 \frac{1}{2} \\ 8 & 57 \\ 9 & 22 \\ 9 & 4 \\ 9 & 48 \\ 10 & 16\end{array}\right\|$	$\begin{aligned} & b \\ & c \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{2 5} \\ & 25_{\frac{1}{2}}^{2} \\ & 26^{2} \\ & 27 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8.82 \\ & 8482 \\ & 8.65 \\ & 8.18 \end{aligned}$	$\left.\begin{array}{l} 363 \cdot 1 \\ 357 \cdot 4 \\ 372 \cdot 4 \\ 372 \cdot 0 \end{array}\right]$	$\left(\begin{array}{l} 12.94 \\ 12.94 \\ 12.69 \\ 12.00 \end{array}\right.$	do.	do.	do.	do.	do.	10 ft from the b Jw.	do. do. elev. 23^{\prime} 1	
196	Eagle.	24 24 24 25 25 26 26 26 26 12	$\begin{array}{l\|} \hline b \\ c \\ d \\ e \\ f \\ \hline \end{array}$	$\begin{aligned} & \mathbf{3 9} \\ & \mathbf{3 8} \\ & \mathbf{3 9} \\ & \mathbf{3 9} \end{aligned}$	$\begin{aligned} & 5 \cdot 781 \\ & 5 \cdot 841 \\ & 5 \cdot 691 \\ & 5 \cdot 781 \end{aligned}$	$\begin{aligned} & 133 \cdot 3 \\ & 127 \cdot 5 \\ & 121 \cdot 0 \\ & 113 \cdot 5 \end{aligned}$	$\begin{aligned} & 8.46 \\ & 8.57 \\ & 8.35 \\ & 8.46 \end{aligned}$	do.	do.	do.	do.	do.	none	do. level.	
197	Eagle.	$\|$50 31 50 54_{2}^{1} 51 16_{2}^{1} 51 38_{2}^{1} 52 00	$\begin{aligned} & \hline b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 23_{1} \\ & 22 \\ & 22 \\ & 21 \end{aligned}$	$\begin{array}{r} 9 \cdot 574 \\ 10 \cdot 23_{4} \\ 10 \cdot 234 \\ 10 \cdot 47 \end{array}$	$\begin{gathered} 414 \cdot 1 \\ 423.5 \\ 418 \cdot 0 \\ 391 \cdot 61 \\ 391 \end{gathered}$	$\begin{aligned} & 14 \cdot 04 \\ & 15 \cdot 00 \\ & 15 \cdot 00 \\ & 15 \cdot 35 \end{aligned}$	do.	do.	do.	$\begin{array}{r} 12 \mathrm{~b} \\ \text { from } \\ \text { urk. } \end{array}$	15! from mrk.	not.		Weight shifted forward.
198	Eagle.	12 57 13 21 13 44 14 06 14 $27 \frac{1}{2}$	$\begin{gathered} \hline b \\ c \\ d \\ e \\ f \\ \hline \end{gathered}$	$\begin{aligned} & 24 \\ & 23 \\ & 22 \\ & 212 \\ & \\ & \hline 1 \end{aligned}$	$\begin{array}{r} 9 \cdot 3844 \\ 9 \cdot 784 \\ 10 \cdot 234 \\ 10 \cdot 474 \end{array}$	$\begin{array}{l\|l} 415 \cdot 7 & 1 \\ 411 \cdot 7 & 1 \\ 413 \cdot 0 \\ 400 \cdot 8 & 1 \end{array}$	$\begin{aligned} & 13 \cdot 75 \\ & 14 \cdot 35 \\ & 15 \cdot 00 \\ & 15 \cdot 35 \end{aligned}$	Two Horses.		none		watr. in. 12! from mrk.	do.	not. obs.	Weight shifted aft.
1991	Eagle.	$\left\|\begin{array}{ll}36 & 59 \\ 37 & 23 \\ 37 & 45 \\ 38 & 09 \\ 38 & 32\end{array}\right\|$	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & e \\ & f \end{aligned}$	$\left\|\begin{array}{l} 24 \\ 22_{1}^{1} \\ 24 \\ 23 \end{array}\right\|$	$\begin{array}{\|c\|c\|} 9 \cdot 38 & 4 \\ 10 \cdot 04_{4} \\ 9 \cdot 38 & 4 \\ 9 \cdot 78 & 4 \end{array}$	$\left.\begin{aligned} & 441 \cdot 5 \\ & 446 \cdot 1 \\ & 423 \cdot 5 \\ & 424 \cdot 5 \\ & 4 \end{aligned} \right\rvert\,$	$\begin{array}{\|} 13 \cdot 75 \\ 14 \cdot 67 \\ 13 \cdot 75 \\ 14 \cdot 35 \end{array}$	do.		do.	$\begin{array}{r} 12_{2}^{2} \\ \text { from } \\ \text { mrk. } \\ \text { n } \\ n \end{array}$		$35 n$. from the bow.	dur. run. bow elev. 21^{\prime}	Towing-line at 15π. from bow
200	Eagle.	$\|$50 012 50 $27 \frac{1}{2}$ 50 54 51 21 51 49 1 40	$\begin{aligned} & b \\ & c \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \\ & 27 \\ & 28 \end{aligned}$	$\begin{aligned} & 8 \cdot 65 \mid 4 \\ & 8 \cdot 33, \\ & 8.33 \mid \\ & 8 \cdot 03 \mid 4 \end{aligned}$	$\left\lvert\, \begin{array}{c\|} 452 \cdot 6 \\ 385 \cdot 7 \\ 106 \cdot 8 \\ 413 \cdot 0 \end{array} 1\right.$	$\left\lvert\, \begin{aligned} & 12 \cdot 69 \\ & 12 \cdot 22 \\ & 12 \cdot 22 \\ & 11 \cdot 79 \end{aligned}\right.$	do.	do.	do.	do.	do.	15ft. from the bow.	$\begin{gathered} \text { do. } \\ \text { do. } \\ \text { elev. } \\ 23^{\prime} \end{gathered}$	
201	Eagle.	1 40 2 177_{2} 2 54 3 $29 \frac{1}{2}$ 4 06	$\begin{aligned} & b \\ & c \\ & c \\ & d \\ & e \\ & f \end{aligned}$	$\left.\begin{aligned} & 377_{2}^{1} \\ & 36{ }_{1}^{1} \\ & 35^{2} \\ & 36 \end{aligned} \right\rvert\,$	$\begin{array}{l\|l} 6 \cdot 00 \\ 6 \cdot 16 & 1 \\ 6 \cdot 34 & 1 \\ 6 \cdot 16 \end{array}$	$\left\|\begin{array}{c} 170 \cdot 5 \\ 151 \cdot 4 \\ 147 \cdot 4 \\ 150 \cdot 5 \end{array}\right\|$	$\begin{aligned} & 8 \cdot 80 \\ & 9 \cdot 04 \\ & 9 \cdot 30 \\ & 9 \cdot 04 \end{aligned}$	do.	do.	do.	do.	do.	not. obs.	$\begin{gathered} \text { do. } \\ \text { do. } \\ \text { level. } \end{gathered}$	
202	Eagle.	$\|$20 23 20 47 21 $12!$ 21 36 22 212 2	b c d d e f	$\begin{aligned} & \mathbf{2 4} \\ & \mathbf{2 5}{ }_{2}^{2} \\ & \mathbf{2 3} 3_{1}^{2} \\ & \mathbf{2 5}{ }_{2}^{2} \end{aligned}$	$\begin{array}{l\|l} 9 \cdot 38 & 4 \\ 8.82 & 4 \\ 9 \cdot 57 & 4 \\ 8.82 & 4 \end{array}$	$\left\|\begin{array}{l} 422 \cdot 8 \\ 413 \cdot 3 \\ 439 \cdot 3 \\ 427 \cdot 3 \end{array}\right\|$	$\left.\begin{array}{\|} 13.75 \\ 12.94 \\ 14.04 \\ 12.94 \end{array} \right\rvert\,$	do.	do.	do.	$\begin{gathered} 103 \\ \text { from } \\ \text { mark. } \end{gathered}$	from	15 ft . from the bow.	do. do. elev. 27'	Weight shifted forward.
203	Eagie.	$\|$36 $39 \frac{1}{2}$ 37 05 37 29 37 53 38 $18 \frac{1}{2}$	b c d d e f	$\begin{aligned} & 26 \frac{1}{2} \\ & 24 \\ & 24 \\ & 25 \frac{1}{2} \end{aligned}$	$\begin{array}{l\|l} 8.49 & 4 \\ 9.38 & 4 \\ 9.384 \\ 8.82 \end{array}$	$\begin{array}{l\|l} 429 \cdot 4 \\ 439 \cdot 0 & 1 \\ 442 \cdot 8 & 1 \\ 432 \cdot 3 \end{array}$	$\begin{array}{\|} 12.45 \\ 13.75 \\ 13.75 \\ 12.94 \end{array}$	do.	do.	do.	$\begin{gathered} 14 \\ \text { from } \\ \text { mark. } \end{gathered}$	$\begin{gathered} 11 \\ \text { from } \\ \text { mork. } \end{gathered}$	$\begin{aligned} & \text { not } \\ & \text { obs. } \end{aligned}$	$\begin{gathered} \text { do. } \\ \text { do } \\ \text { elev. } \\ 37^{\prime} \end{gathered}$	do. aft.
204	Eagle.	5 25 5 47 6 09 6 31 6 53 2 53	b c d e f f	22 22 22 22	10.23	$\begin{array}{\|} 438 \cdot 4 \\ 119.7 \\ 100 \cdot 0 \\ 372 \cdot 4 \end{array}$	$\begin{aligned} & 15.00 \\ & 15 \cdot 00 \\ & 15.00 \\ & 15.00 \end{aligned}$	do.	$\begin{aligned} & 7 \text { passen } \\ & \text { gers, and } \\ & 2.13 \mathrm{ct}= \\ & \text { c } 9 . \\ & 62 \\ & 62 \\ & \hline 2 \end{aligned}$	do.	$\begin{aligned} & 14 \\ & \text { from } \\ & \text { frok } \end{aligned}$		do.	$\left.\begin{array}{r} \text { do. } \\ \text { do. } \\ \text { elev. } \\ \mathbf{1 7}^{\prime} \end{array} \right\rvert\,$	2 ton. 13cwt. made the EA. gle, and 7 passengers, nearly equal to Zephyr, with 4 ton. 4 cwt 2 qr . and 7 passengers.
205	Eagle.	$\begin{array}{ll} 22 & 53 \\ 23 & 20 \\ 23 & 46 \\ 24 & 12 \\ 24 & 39 \\ \hline \end{array}$	b c d d e f	$\begin{aligned} & 27 \\ & 26 \\ & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 833 \\ & 8 \cdot 65 \\ & 8 \cdot 65 \\ & 8 \cdot 65 \\ & 8 \cdot 33 \end{aligned}$	$\begin{aligned} & 357 \cdot 5 \\ & 351 \cdot 0 \\ & 367 \cdot 6 \\ & 375 \cdot 2 \end{aligned}$	$5 \begin{aligned} & 12 \cdot 22 \\ & 12.69 \\ & 12.69 \\ & 12.22 \end{aligned}$	do.	do.	do.	do.	do.	do.	$\begin{array}{r} \text { do. } \\ \text { do. } \\ \text { clev. } \\ \mathbf{1 7}^{\prime} \end{array}$	
206	Eagle.	39 53 40 17 40 40 41 $02 \frac{1}{2}$ 41 26$\|$	b c d e e f	$\begin{aligned} & 24 \frac{1}{2} \\ & 23 \\ & 22 \frac{1}{2} \\ & 23 \frac{1}{2} \end{aligned}$	$\begin{gathered} 9 \cdot 18 \\ 9.78 \\ 10.00 \\ 9.57 \end{gathered}$	$\|$$395 \cdot 1$ $407 \cdot 0$ $411 \cdot 2$ 485.6	$\begin{array}{\|c\|} 13 \cdot 47 \\ 14 \cdot 35 \\ 14.67 \\ 14 \cdot 04 \end{array}$	do.	do.	do.	do.	do.	do.	$\left\lvert\, \begin{array}{r} \text { do } \\ \text { do. } \\ \text { elev. } \\ 31^{\prime} \end{array}\right.$	Towing-line altered from $15 \frac{1}{\mathrm{ft}}$. 10 within 3 ft 9 in. of the bow.

Plate 6.
RESTORING ARCHSTONES AT BLACKFRIARS BRIDGE.

ofscription of the plan of restoring the ARCHSTONES OF BLACKFRIARS ERIDGE. BY JANES COOPER, A. INST. C. E. COMMUNIcated in a letter to the secretary. From the perishable nature of the mate. rial with which even the largest bridges were built, before the use of granite became so common as it has of late years in the more important structures of this kind, the best plan of repairing parts falling to decay, is a point of some consequence. With a view to contribute towards the stock of in. formation on the subject, I beg to offer to the Institution the accompanying drawing (plate No. V), showing the mode that has been adopted by Messrs. Walker and Burges, of restoring the archstones of Black. friars Bridge, with the following observations in explanation of it.

The decayed part is first cut out for the whole height of the course, to the depth of 15 inches generally, but in faulty places sometimes as much as 2 feet, and never in shorter lengths than a foot; and the beds and sides of the opening being dressed fair, moulds or templates are fitted into it to get the correct shape for the new work.

The stone is inserted in two thicknesses,
the lower of which a, is dovetailed or radiated rather more than the original archstone, and the upper, b, slightly tapered like a wedge, to enable it to be driven: the dimensions of the two when put together making up the size of the cavity. Circular holes are sunk opposite cach other in the adjoining beds of the two pieces to receive the dowel c, that in the lower part, a, being half the length of the dowel deep, while the corresponding hole in the part b, is deep enough to reccive the dowel completely, so that when deposited in the hole, the dowel may offer no obstruction to getting the stone in; and from the bottom of these holes, openings, d, e, of about $\frac{3}{4}$ inch diameter are drilled to the chamfers on the fuce of the joints.

The dovatailed stone, a, is first set in mortar, and brought to a bearing on its bed, by wedging applied in the place afterwards to be occupied by the o:her half, b; which is next covered with mortar on the beds and joints, and driven in by wooden beetles until the circular holes in the beds come opposite each other, when, the cord d having been disengaged, the dowel e (held by it in the hole in the bed of the upperstone b) is drawn or pushed half its length into the stone a.

Should the new stone be sufficiently in contact with the old work, which the sound from the beetic readily denotes, and be otherwise properly driven, mortar is rammed down the hole d, so as to surround the dowel and keep it in its proper place. The cord e for draw. ing the dowel home runs in a groove in the bed of the stone a from the dowel hole to the face of the archstone, and sometimes when it is not brought into action the dowel is pushed with a jointed piece of iron wire inserted tlrough the opening d in the upper stone.

The wedge-formed stones, b, are usually 12 incles thick on the face, tapering off half an inch at the depth of 15 inches, and run from a foot to 2 feet 6 inches long, which they seldom exceed, as when thicker or longer they are found unwieldy to drive. These limitations are not, however, required in the dovetailed stone a, which is put in in as long lengths as are supplied, and its thick. ness is regulated by the cavity to be filled, the other stonc, b, being, as has just been stated, generally uniform in this dimension. The dowels, which are of Craigleith stone, are. 5 inches long and 3 inches diameter in the middle, diminishing to $2 \frac{1}{2}$ inches at the ends.

When the now stone is inserted, as has been described, and the dowel secured in its place, it is evident that neither half can drop out, and that on the hardening of the inor. tar, though two pieces, they become for prac tical purposes one archstone. But while the work is in progress, and before the stone b is put in, the dovetailed stone a has a ten. dency to slide out, which is sometimes met by strutting from the scaffolding, or by leav. a small tenon on the under side of the new stone fitting into a mortise in the masonry bencath; but within six or eight course s on either side of the crown of the arch, and in other places, when a ccnsiderable length has been taken out, a joggle $f, 4$ inches long by $2 \frac{1}{2}$ inches square, is inserted at each end of the new work, or in the case of a very short stone at one end only, being let from the upper bed of the stone a diagonally into the vertical joint between the new and the old work, so that half is in one and half in the other:

So far as I am aware, the above scheme is new, and it seems fully to meet the difficulties of the case; the new stones filling completcly the hollows left by the old ones cut out, which from the radiation of the jeints in an arch they could not if put in as one piece, and so giving a perft ct bearing between the original and the restored work, while the whole is secured without injury to the adjoin. ing masonry by external wedging or other. wisc.

ON THE RELATION between the temperature and elastic force of steam, when confined in a boiler containING WATER. BY MR. FAREY, M, INST. C.E.
Tbis subject has occupied the attention of many able experimenters, and the condence of the results which they hare attained separately, leaves no doubt of the facts hereinafter stated.

Mr. Watt made experiments in 1764, and repeated them in 1774 . Mr. Southern
went over them again in 1797 with great accuracy, and formed a theorem for calculating the results; Dr. Robinson and M. Bettancourt also mede similar experiments; likewise Mr. Dalton, Mr. Woolf, and Mr. Philip Taylor ; also Dr. Ure.
The writer of this communication undertook, several years ago to compare all the different experiments which had then been made, in order to obtain a standard, and was induced, after a careful examination*, to adopt Mr. Southern's theorem as the most authentic, being found very consistent with itself, and being confirmed, at several points of the scale, by the actual experiments of others, although the complete scales promulgated by some of those others were very discordant, from having been interpolated between the actual experiments by incorrect theorems; and particularly some scales which had been ex. tended by such theorems beyond the range of their actual experiments, were fcund to be very far from the truth. In consequence, Mr. Southern's scale was made the foun. dation of all the Writer's computations and statements respecting steam ; many of which have since been publisned.

The principal object of the present communication is, to show the coincidence between Mr. Southern's scale, and that of a new series of experiments made in Paris, in 1829, by a Committee of the Academy of Sciences, which confirms the standard so completely, as to leave no doubt of its truth.

Another object of the communication is to put on record, in the papers of the Institution, a memorial of the fair claim ol our countryman, Mr. Southern, to the merit of priority in accurate determination of this law, in opposition to the unfounded assertion of the French author, who has published the new experiments, that the academicians had first established the trutb in 1829, and that the previous determinations in England were erroneous \dagger. Mr. South-

[^25] er erroneous; and then, that "Germany
ern's determination is not mentioned in this sweeping condemnation, although it had been republished by Mr. Watt, Dr. Brewster, Dr. Thonson, and in the Writer's Treatise on the Steam Engine, also in that of Mr. Tredgold, and is well known, and very generally adopted, in fact, by the French academicians themselves.
The French experiments were continued up to twerty-four atmospheres ; Mr. Southern's went only as far as eight atmospheres; he found the corresponding temperature to be $343 \cdot 8$ degrees of Fahrenheit's thermometer, and the academicians found it to be 341.8 degrees, or just two degrees less. At four atmospheres, Mr. Southern found the temperature 293.9 degrees, and the academicians 293.7. 'This last is not an accidental coincidence, but an adoption of Mr. Southern s scale, through Mr. Tredgold, though not acknowledged as such.

The French academicians have formed a heorem for calculating the temperatures corresponding to the elasticities, and by means thereof have extended their scale from twents-four atmospheres upwards; nevertheless, they did not use their own theorem for the most useful part of the scale below four atmospheres, but they adopted a theorem from Mr. Tredgold in lieu of their own.

That theorem was made by Mr. Tredgold, from Mr. Southern's experiments, in lieu of Mr. Southern's own theorem, mereIy because Mr. Tredgold did not think that a power with a fractional index, viz., $5 \cdot 13$, is likely to represent the law of nature. This induced him to employ a higher power, with 6 for an index; and in consequence, his formulæ did not correspond at all with Mr. Southern's experiment at eight atmospheres, although it did correspond at four atimospheres. The academicians use an index of 5 in their theorem, rendering it very nearly the same in effect as Mr. Southern's.
In adopting this formula from Mr. Tredgold, (who quates Mr. Southern's experiments, and takes them as his basis,) the French academicians could not have been ignorant of Mr. Southern's determinations, nor of their accuracy; for at eight atmos pheres, his experiments and theore:n is nearer to their own experiments than Mr. Tredgold's theorem, which they have adopted for that part of their scale which is below four atmospheres, and which theorem gives a result identical with Mr. Southren's theorem and experiments, at two and a nalf atmospheres, although Mr. Tredgold's becomes very incorrect below boiling, and also above four atmospheres.
Under these circurnstances, it was not candid that all mention of Mr. Suathern's determinations should have been suppre:sed, when in fact they are adopted at second hand, and through a less correct version than his own; and when i: was found requisite to amend that version, and
was more advanced than England, fur the results in question, Mr. Arzjer cer, at F_{1} enna, having made experiments," but the y are also shown to be inexict.
put it back very near to its original value, the author of that originul should have been cited.

In a former report by the Academy in 1S25, a Table was given, which is exactly Mr. Southern's numbers, and it would have been only fair, that his standard should have been acknowledged when adopted*. The merit of extending it, by further experiments, up to twenty-four atmospheres, in 1829, and thereby proving Mr. Southern's exactitude, is willingly acknowledged by the Writer of this communication, to be due to the French academicians.

When the temperature due to an elasticity of twenty-four atmospheres is calculated by Mr. Southern's theorem, it gives $438 \cdot 2$ degrees of Fahrenheit's thermometer, whilst the French experiment is $435 \cdot 6$, or only 2.6 degrees less; of this difference, some part is occasiored by the difference in the French and English mode of reckoning what an atmosphere is \dagger. Again, for sixteen atmospheres, Mr. Southern's theorem gives $401 \cdot 0$ degrees, and the French experiment $368: 5$, or $2 \frac{1}{2}$ degrees less. At eight atmospheres, 2 degrees less, as be fore stated.

These small differences are less than the inevitable uncertainties of observation in such experiments, and it is to be remarked, that the elasticities were measured by the French academicians by the compression of air included in a manometer, and not by a direct measure of a column of mercury, or a loaded safety valve; whereas Mr. Southern used both those ineans, and employed very correct thermometers, and therefore his scale is of as much authenticity as that of the French; and the Writer of this communication does not think it requisite to make any alteration in the standard which he adopted long ago for all his calculations on this subjects, and of which many are published in his Treatise on the Steam Engine, where the subject is fully explained; and it is only necessary to give an extract therefrom, in urder to state Mr. Southern's determization of a correct scale.
" From the comparison of a great number of his experiments, Mr. Southern invented a method of calculating the elasti-

* In the account of the experiments of 1823, the former Table of eighteen huadred and twenty-five, is mentioned as "having "been only presented temporarily, and as " having been only deduced from interpola"tion of all the experiments which scemed " to merit the most confidence, from the "ability of the observers, and from the na"ture of the methods of observation;" but no mention is made of Mr. Southern, although the numbers are his.
\dagger The Freach reckon an atmosphere to be equal to a column of mercury $1^{20} 0^{3}$ of a netre in height, which is ouly 29.92 inches, and the boiling point of their thermometer is adapted thereto, whereas, since about the commencement of the present century, the Engli ib have reckoned it to be 30 inches. This cirumstance accounts in some degre for their scale of temperatures diflering rom Mr. Southerr's.
city of steam at different temperatures, when saturated with water; bis method is embodied in the following rule, which will give results very nearly corresponding with the experiments.
"To find the elasticity of steam of any given temperiture, that temperaturo being expressed in degrees of Fahrenheit's thermometer, and the elasticity being expressed by the height, in inches, of the column of mercury that the steam will support.
"Rule. - To the given temperature in degrees of Fahrenheit, add the consiant temperature 51.3 degrees, and take out the logariten of the augmented temperature from a table of logaritlems; multiply that logarithm by the constant number $5 \cdot 13$, and from the product (which is a logarithm) deduct the constant logarithin 10.94123 ; then by the table of :ogarithms find the number corresponding to the remainder, (which is alsoa logarithm,) and that number is one-tenth of an inch less than the height required; therefore, by adding one-tenth of an inch to the said number, we have the proper height, in inches, of the column of mercury that the steam will suppurt*:
"Example.-What is the elasticity of steam at 212 degrees of temperalure? 212 $\operatorname{deg}+51 \cdot 3$ deg $=2633$ deg; the lega. rith of that number is 2.42045 , which $\times 5 \cdot 13=12.4169$; from this logarithm deduct the constant logarithm $10 \cdot 94123$. and the remainder is 1.47567 ; the number corresponding to this logarithm is 29.9 inches, and, adding ore-tenth of an inch thereto, we have thirty inches of mercury for the required elasticity.
"The rule may be used conversely to find the temperature of steam of any given elasticity thus. Deduct one:tenth of an inch from the height in inches of the column of mercury; take out the logarithm of the diminished height, and add to it the constat logarithm 10.94123 ; then divide the sum of these logarithms by the constant number $5 \cdot 13$; and find the by Tabie of logarithms, the number which coiresponds to the quotient : that number is 51.3 degrees more than the required temperature; the eiore deduct $51 \cdot 3$ from the said number, and the remainder is the proper temperature in degrees of Fahrenheit.
* "The effect of multiplying ile logarithm by $5 \cdot 13$, is to raise the $5 \cdot 13$ th power of the temperature, when angmented as above, and then the effect of deducting the constant logarithmi 10.94123 , is to divide the high power previously raised, by a very large number, viz., (87344000 003) eightyseven thousand three hundred and fortyfour millions. The quotient resulting from this division of the high power, with the constant addition of one.t nth of an inch, is the required elasticity in inches of mercury."
"Example: What is the lemperature of steam of $a n$ elasticity of 120 inches of mercury ? 120 inc. $-1=119 \cdot 9$ inc. The logarithm of that number is 2.07882 , to which add the constant logarithm 10.94123 $=13 \cdot 02005$, fur the suin of the logarithms, which being livided by $5 \cdot 13$ constant num-
ber, gives 2.53802 quotient. The numher corresponding to that logarithm is $\mathbf{3 4 5} 2$ degrees, from which deduct the constant temperature 51.3 degrees, and we have
$293 \cdot 9$ degrees for the required temperature.
"The following Table has been calculat. ed by Mr. Southern's theorem.

Treatise on the Steam Engine, Vol. I. p. 72. responding to elasticities, excecding 8 at. mospheres, may be correctly represented, notwithstanding assertions to the contrary. The complete scale laid down by the French Academicians is as follows.

It is presumed that it has now been shown that English engiacers have, for more than 30 years past, been in possession of a standord scale, which is very accurate, and also of a theorem whereby the temperatcres cor-

Note. At 4 aimospheres this complete scale changes its law of progression all at once, from the 6 h power to the 5 th power, which cannot be correct in principle. Neith. er the 6 tb power vor the 5 th will give coricet results in the lower part of the scale, between boiling and freezing, nor in the aigher part of the scale. But Mr. Southern's fractional power $5 \cdot 13$, applies without thange throughout the whole range, from ireczing up to the temperature of melting tin.
By examing the French scale, it appears to craliespond with Mr. Southern's at 4 atmos. pheres within is of a degree, but in advancing orly to $4 \frac{1}{2}$ atmospheres, it falls short $1 \frac{6}{10}$
degrees therefrom, and yet, up at 24 atmospheres, the deficiency is but 2_{10}^{6} degrees.

The French theorem is virtually to the same effect as that of Mr. Southern, for the logarithm of the elasticity in atmospheres is divided by 5 (instead of $5 \cdot 13$) in order to extract the 5th root, from which root unity, or 1 , is to be deducted, and the remainder divided by the constant decimal -7153, the quotient expresses the increase of temperature above boiling, in terms of the interval between freezing and boiling, that is, the said quotient expresses what fractional por.
tion of 180 degrees of Fahrenheit, the temperature is above the boiling point.

This is by no means a convenient rule. and does not apply without modification to temperatures below boiling, which Mr . Southern's does most accurately. The French rule, if modified, becomes inaccurate.
The only question as to the law of pro. gression in the Frencli rule being better than that of Mr. Southern's, is w'aether the $5 \cdot 13$ power is more authentic than the 5 th power. Now the Academicians found Mr. Tredgold's rule, which proceeds by the 6 th poiv. er, did better than their own, between one and four atmospheres, but it will not corres. pond either at lower or higher parts of the scale, whilst Mr. Southern's corresponds accurately below, and very nearly thronghout.

Mr. Southern's theorem is prefarable to any other for calculations concerning the heights of mountains, according to observations of the temperatures at which water is found to boil at their summits and at their bases.

On considering all these circumstances, we shall find good reasons for adhering to Mr. Southern's theorem, because it is un. questionably accurate in all the lower part of the scale below boiling, and also above the same, as far as experiments can be made with certainty; and the new experiments of the academicians prove, that at very high parts of the scale, it cannot be far from the truth; but as there is no certainty in the exactitude of either temperatures or elasticities, when so great as 438 degrees and 24 atmospheres, it is not advisable to adopt a new law of progiession for the sake of reconciling differences of $2 \frac{1}{2}$ degrees from uncertain observations, when that new law will not correspond so well as the estab lished law, with very certain and anques. tionable observations.
67, Guildford St eet, Russell Square,
1 May, 1833.
P. S. It would be useful informatioa, if some of the junior meinbers, who have leisure, would undertake to calculate the temperatures according to Mr. Southern's rule, for every half atmosphere between 8 atnos pheres and 24 atmospheres, now that the French experiments have shown that his rule will apply to such an extent with very probable uccuracy.

Items.

Expeditious Calcolation.-The aciuary of a savings' bank in the neighborliood of Fuzroy square, has invented a machine for expeditiously and accurate'y calculating the interest due to depositors, the value of which may be deduced from the following particulars:-The accounts open on the 20ih November, 1835, were 2,421, and occupied the late actuary four weeks.The accounts open on the 20th November, 1836, were 2,734, and occupied the present actuary only 74 hours. An opinion may be formed of the assistance given by the niachine from the following detail of the miutiæ necessary to arrive at the materials for the annual return required from savings s^{2} banks by the Commissioners for the reduction of the National Debt. The time taken

10 calculate the interest on 2,734 accounts, to enter it on the ledgers, to make the ad. ditions, to tule the lines, 10 take out each account under its proper classification, and to take out the folies of 4,292 closed ac. courts, amounted to 74 hours, making an average of $9 \frac{1}{4}$ hours for each of the eight ledgers, or 91 baccounts per hour.

Wear of Carriage Wheels.-It has been calculated, hy an engineer of emi nence, that every four horse coach deposites 12 lb . of iron in every 100 miles of its journey, and that consequentiy, assuming the number of such coaches passing daily butween London and Birminghan alone to be 20 , the weight of iron deposited during every transit exceeds 240 lbs . These results, it is stated, are not conjec:ural, but derived from investigations applied to the horse-shoe and the tire of the wheel-in the first instance, previously to use; and in the second, after the wear and tear of ihe road had rendered them useless; and they have been found, it is adiled, asto every ton weight of iron so treed, nearly uniform.

Busts and Portraits.-A new instrument tias been invented in Paris, colled the Phisiognotyps, for the inoulding of busts, on a principle which renders the likeness to the original a mechanical certainty. Busts in plaster are thas produced for five francs each. Another machine, entitled the Portrait-mirror, has also been constructed, by which a portrait may be taken in twenty minutes, from the reflecsion of the face of the original in a looking. glass.-[Athenæum.]
MOBUS MULTICAULIS NOT PRODUCED FROM ITS OWN SEEDS.
The following statement agrees with what we were first to infurm our country men of, in this journal, more than two year: ago, on the authority of an experiment reported in the Annales de l'Agriculturc Francaise, that the morus multicaulis had been found to be merely a variety of white mulberry, and did not reproluce its own kind by seeds. This very important fact (if true) we have again and agrain endeavored to inpress on the agricultural public-but apparently to no purpose. The anxiety to obtain seeds of the morus multicaulis hats been so great, that encouragement has been thereby afforded to extensive fiturts, by the seller substituting sceds of a.other kind. But even if the seeds had been what they were supposed to be, if from trees of the true multicaulis, the failure and disappointment would probably have been us great.

But though believing that the sceds of this plant are not to be relied on for reproducing their own kind, we are not inclined in any case to trust to reported opinions. or authority that is the least coub: fal, when the facts can be tesied by accurate expuriment. We have the means of malsmy such an experiment, in seals of the morus multicandis taken last summer fiom tree which grew within the cuclusure of the high walls which surround he Pentertiary of Virgimia, and near which no other kind of roulberyy grow, to affoce the seede
by a mixture of the fecundating farina. If these seeds will not produce the morus mulficaulis, it may be thereafter safely prorounced, that seeds are not only not to be iclied on to produce this kind, but that the result of reproduction of the like kind rarely, if ever, occurs.
"This mulberry, it is now well ascer. tainerl, is a hybrid varicty, and not a true species-the seed will not produce its like. We have been informed by a gentleman who purchased a plant, three or four years ince, oi some nurserymen of our vicinity, that with considerable care he raised quite a number of seeds. The plant was taken up upon the appearance of severe weather ${ }_{3}$ and placed in a cellar where the frost did not penetrate-the rools were slightly covered with earth. Pursuing this course two succeeding winters, it attained the size of a large shrub with numerons ramifying branches-the third season it produced seeds. No other species or variety grew in the vicinuty of the plant, and the blos:oms consequently could not have been fertilized but by its own pollen. These seeds were carefully sown, and the result was a number of seedling plants, with foliage of all sizes and textures from the common white, to that of the parent. No better proof is needed to confirm what we now state, and hare heretofore stated."

[American Gurdener's Magazine.]

Succory Coffee.-Succory root, eut, oot, dried, torrefied, and ground to powrer, is most extensively employed is a sub. ditute for coffee, or rather, I ought to say, st adulterate coffec. A full account of the preparation of it will be found in the Annalcs des Chemic, lix. p. 307. Its consumption is so great, that some fear has been expressed of its seriously injuring trade in, and cultivation of, coffee; and the Chancellor af the Exchequer has prepared to lay a tax on it. I am told that it is employed very largely by grocers to adulterate their coffee, by coffee-house keepers, and by economicil house-kecpers. It yields a perfectly wholezome and agreca. ble beverage, but wants that fine aromatic flaver peculiar to cofier, and for which the latter is celebrated.- [Mr. Perira's Lectures in the Medical Gazetle.]

A veiv Method af Plafing the Vio lin.-A Monsicur Isoard has constructed a violin to be played by a pair of bellows. The performer holds tise instrument after the manner of the violincellu; his feet work the bellows, and his right hamei directs the stream of air to the siring requiring it.[Musical World.]
or the inner barti of the linden tree. For the upper part any kind of cioih may bo used, and the shoes lined with !inen or cot. ton. The soles are then varnished or covered with the following commosition:One quart of flaz-sed oil, two ounces of rozin, half an ouncer of whie vitriol, which inast be boiled torether sor hait an hour After which tako four nunces of apirits of thrpen'ine, and two sunces of while oak saw dast, whicil hamen exposod weuty. four huurs to the smi ; smax these Ingere diente weil ingether, cumi put them on the soles of the sho:s i. ith a brash or in any
other way, which, when dried, will render then impervious to water."

A Machine on a new principle, for raising Water, Coals, \&c.-The construction of this power is very simple, and its steady operation is quite assured. Its chief agent is a pair of wheels; or, if neces. sary, a series, moving with their diameters in the direction of the weight to be raised,say the shaft of a mine. Taking the onc pair of wheels, moving on the same axis, we find that, from the end of a radius or arm in each, a chain descends, so as to hang on opposite sides of a square passage. To each chain are suspended.at different but regulated distances, quadrangular frames, to the upper sides of which strong projecting iron rims, moving on the principle of the hinge, are attached. 'The boxes, or receptacles for the weight to be raised, have corresponding edges on each side. When the wheel above is turned, and a single box below is placed in connexion with the lowest frame, it is caught by its rim, and, with one revolution of the wheel, is sent up as high as the frame on the opposite side to t'rat on which it is borne; here it is again caught and sent up to the apparatus on the opposite side again, and so on, by alternate transmission, it is brought to the top of the shaft. Tine machine being kept corstantly laden below, and its wheel constantly turned above, it follows, that, at each revolution of the wised, a box is delivered; and thus, in an exceedingly short space of time, a vast boly of matter can bc carried up through any depth of shaft. 'The raising of water is performed by means of the same machinery, only buckets with valves in the bottom are used instead of boxes. The machine could be most humanely employed, in jarge mines, in quickly sending the workmen up or down, to save them from their present tedious and tiresome expedients for that purpose.-[Mining Journal.]

Interesting to Blacksmiths.-Permit me to describe a machine which 1 have just seen, and which, for utility and simplicity, is truly admirable. The article I allude to is a substituse for a smith's bellows, and is far mose foweriul than the kind in common use. It is constructed in the way of fanners, and stands immediately behind the forge. The box of the imp!ement is only eighteen inchos diameter, and the fans which till the box are only five inches broad, and are fastened upon a horizontal shait of a-inels iron. On the end of the shaft is a pulley two inches diameter, and right above which is a larger puiley twenty-inches diameter, with a crank in the centre, winch the man at the fire drives with one hand, while he guides the iron in the fire with the oilher. Around the large pulley and down to the small one is a leathern belt, by which this mochine is driven, and with suc.! case that a c!uld myy drive it. Tie blast is so constant and so efficient, that tis contriver prefers it for houvy work to tie best ballows, which cost him Cl., w'rite the has the b'ast-bellows for about 30 s ; and he add ; that, for a few more stil ings, he could have it driven by wind. Althongh hellows on the same plan have $\mathrm{b}: \cdot \mathrm{n}$ used and driven by sieam and by water at our large irss.wa:ks, yet the merit o"con.
struciing one to work with the hand, belongs to Mr. William Bowle, blacksmith, Lower Bridge-strect, Stirling. Wha' adds mucls to the value of this contrivance is, its being easily purchased, that it requires little room, and is in many respects superior to the kind in common use. I hope, therefore, the sons of Vulcan will duly appreciate the contrivance.- [Correspondent of the Stirling Journal.]

Instrument applicable to various dis. eases of the Lunis.-A. M. Maissiat has subinitsed to the French Academy of Sciences an instrument, by which he proposes to convey liquids into the cavities of the luags, or exrract from it any gias, or liquid, to hold it in a state of dilatation, \&c., as circumistances inay require. He has also invented and laid before the same body another instrument, which is an improvernent upon cupping glasses, and may entirely supersede the use of leeches.

Discovery of Roman Remains.- great many Roman remains have been recently discovered at Exeter; consisting, it is said, of a complete Roman city below the western market, which has been lately excavated and rebuilt on a grand scale. The relics prove the existence of the ancient Isca of Ptolemy and Antonius on this spot. They consist of more than 400 Rom in Coins, of copper and silver, from Claudins to Valens; a very great quantity of the ancient red Samian pottery, sepulchral urns, amphoræ, pateræ, simpula, two curious lamps, lachrymatories, terracottas of great beauty, relating to mythological subjects, two sepulchral vaults, \&c. 'I'he excarations are superin:ended by Captain Short, of Heavirree, who is considered an able and excellent antiquary.- [Mining Journal.]

Effect of thf velocity of air uton its use in smei.ting Iron.-Mr. Teploff, one of the Russian mining corps, in an article on the improvements recently introduced into the smelting of iron in Russia, inakes the following statement. In the smelting furnaces of the Ural, where the quantity and velocity of the blast are properly regulated, 1.4 of pig iron is obtained by 1 of charcoal fuel, while in other furnaces they obtain but .4 and .6 by the same consumption of fuel.

The velocity of the blast being increas. ed, the heat within is increased, without a corresponding consumption of fiel. In an experiment inade by order of the government, it was found that one hundreu cubic feet of air, under a pressure of t wo inches of mercury, produced the same effect as two hundred cubic feet, under a pressure of one incll, with this difference, that in the latter case, twice the fuel was consumed which was required in the former case.

In one furnace which is mentioned, 22,003 lbs. of iron were obrained in twentyfour hours, by $16,000 \mathrm{lbs}$. of charcoal. Previous (1) the due regulation of the Irautht, they consumed twice this amount of fuel for the same yiell. of iron.

This economy is obsained by duly proprorionirg to each other the size of the olast-pips, and the pressure of the draught.!

The relation of these to each other varies with the furnace.
M. Teploff asserts that the results thus obtained exceed those with the hot-air blast; but it does not appear that any comparisons have been made under his examinacion, and with the charcoal fuel.

To regulate the draught, it is recommended to place two mercury or watergauges, one near the blast pipe, the other near the governor of the blowing-machine. By varying the pressure, and the diameter of the nozcle of the blast-pipe, making the latter smaller as the former is increased, and vice versa, the best proportion is to be ascertained. - [Annales des Mines, vol. vii. 7
G.

NEW CODE OF NIGHT SIGNALS ON STEAMBOATs.
A new plan of signal lights for steamboats, to enable them to pass each other with safety at night, the invention of Captain W. D. Evens, of H. M. Packet Vixen, has recently been adopted in the Milford post office packets. Nautical men say, that it is the most efficacious of any of the many sohemes hithe: to proposed to prevent, or at least, to diminish the number of fatal nccidents which occua by steamboats at night. It consists in placing a red light on the starboard bow, and a blue light on the larboard bow, with a common light on the fore-mast head. The effect of these lights, so placed, is to indicate immediately, to an observer, in the darkest night, the direction in which the vessel exhibiting them may be steering-which we understand, is all that is required generally to ensure safety; for it appears that most of the unfortunate accidents, which have occurred by steamhoats running foul of each cther in the night, were caused by each being ignorant of the others course. And, therefore, it is much to be regretted, that so simple and excellent a plan as this, has not long since been in operation ;-by which many of those collissions so fatal to life and property might have been averted.
[Cork Standard.]
St. Petersburg.-Within the three last yoars, this capital has extended itself greatly. New streets have been erected in various directions, in parts which were formerly quite beyond the boundaries of the city; and numerous other improvements are in the course of taking place; one of which is to convey an abundant supply of water from the Neva :o all parts of the town. The works of the St: Isaac's Church are now proceeding with great rapidity, no fewer than three thousand men being employed on them daily during the prezent summer. Of the tweaty-four granite columns (cach of a single piece, 42 feet high) which are to adorn the exterior of the dome, fifieen are already erected, and the remaining nine have been prepared at the quarries. At present, the forest of scaffolding which surrounds the edifice renders it impossible to judge precisely what the effect will be; yet there is little risk in predicting that, when completed, it will prore the most stupendous architectural monument of modern times; not, indeed, altogether the rival of St. Peter's at Rome, as far as
depends upon actual dimensions alone, but eclipsing it both in splendor of rnaterials and in grandeur of style.- [Archit. Mag.]

The General Architectural Im provement of London.- We are happy to see that this subject is attracting the attention of Parliament ; Mr. Alderman Wood has obtained a select committee to consider the propriety of a new street from Southwark Bridge to the Bank of England; another from Waterloo Bridge to the New Road; a third, frcm Lothbury to the Post Office; a fourth, from the Post Office to Smithfield; a fifil, from Holborn to the Strand; a sixth, through Southwark; a seventh, from St. Paul's to Blackfriars Bridge; an eigth, from Oxford Street southwards; and a ninth, from Westminster Abbey to Belgrave Square. Sir Robert Peel hoped that an enlarged view would be taken of the subject, and that the house would not fall into the error it had committed with respect to railroads. Perhaps the best mode of proceeding with railroads would have been to appoint competent per sons to survey the whole country, and to report upon the most eligible lines; but, though it was now too late to take that course, something of the same kind might be done, with a view to the contemplated improvements of the metropolis; and, before money of any kind were expended, some foresight ought to be used as to the future extension of Londnn. If commissioners could be found, in whom the public would have confidence, for a rational and comprehensive plan, it would be a sub ject of much congratulation.- [Ibid.]

In Russia, during 1834, there were published 844 works, 728 of which were originals, and 116 transiations. These last form about one-cighth of the whole, whereas, in 1833, the translations amounted to a sixth, and in 1831 to a fifth. The number of scientific works was 430 , of which 359 wera originals. Works purely literary wcre 271, and of these 226 were original. Of the whole amount 544 were in the Russian language, 91 in the German, 54 Hebrew, 46 Latin, 37 Polish, 36 French, 26 Lithuanian, Ethonian, Finlandish, and Swedish, 3 Italian, 3 Greek, 3 Samogitian, 1 Dutch, 1 English, 1 Arabic, and 1 Persian. At no period was the press of Russia more actively employed than it is at this moment.

Strong Metaphor.-Two brothers recently from the old country, via Halifax, were lately walking up the Worcester Ral. road, and their curiosity was some what astonished by the iron tracks, but soon the cars hove in sight, and the following dialogue took place:

Michael.-Och brither; d'ye see that quare cr-crachure a coming?

Patrick.-Troth an' I do. What, in the divil and his grandmother does it mane?
Michae'.-Faith, an' it's not me that is to tell ye, but dont an'ye stand out of the way, ye'll learn quite satisfactorily, I'm thinking. Don't ye min' how hard he brathes he must have been running right tightly for a long space.- [The car whizz'd by.].

Patrick.-Och, Mike, we're completely lost ; for by my mother's milk, it is Hell in harness, and just the sort of coach I once dreamt the guld divil took the morning air in!

Agriculture, \&c.

hay from scotland.
An English paper says-"It forms a curious item of the agricultural commerce of this country, that we are now exporting hay to America. A vessel i, about to sail with a cargo of 10,000 store of hay from Aberdeen. and a larger will follow from Clyde. "The hay is pressed by the hydraulic press, and the bulk has been thus reduced [sufficiently] for transportation."
The hay thus spoken of has reached this country and finds a quick sale at from 22 to 25 dollars a ton, principally at Boston. If Great Britain, with nearly three times as many horses, cattle and sheep, in proportion to its population, as are owned in the United States, is not only able to provide for their wants, but furnish large supplies of hey for exportation, it proves that England is far ahead of us in productive farming, and that we ought to mend our agriculture at once. It is the cultivation of roots, that enables English farmers to keep so many cattle, and spare us their surplus hay; and American farmers must follow the example, or fail of their profits and success. It is surprising with what tenacity our farmers cling to old usages; and persist in mowing ten acres of land to get fifteen or twenty tops of hay, when two acres of roots will furnisk more and far superior food. There is hardly a crop produced, more certain than the ruta baga, unless attempted on suils decidedly unfavorable, and their excellence has been fully tested for feeding and fattening cattle and sheep; yet not one half our farmers can be induced to attempt the culture of the rout. It is satisfactory to know, however, that the root culture is gaining ground.

skinless oate.

Extract of a letter to the Editor of the Genesce Farmer at Drummondville, U. C. :-I am glad to have the opportunity of requesting you to call upon such of your subscribers as have cultivated the skinless oats, siace 1834, to communicate through your publication what has been the result. In the Genesce Farmer for July and October, 1834, very encouraging accounts are given of the culture of this grain; but I regret to state that my experience has not been so favorable. I sowed last spring upon about a quarter of an acre, seed which had been carefully picked by hand, and in which, consequently, there was no mixture. The growth was vigorous, and as stated by Mr Thorp, (Oct.) the oats ripened earlier than the common oat; but on thrashing, the return was not above half a bushel; though the land had been well manured the preceding spring for corn and potatoes, and the rest of the field yielded at the rate of 34 bushels per acre of barley, of the first quality produced in this neighborhood.
"I have seen somewhere in the Genesee Farmer, a statement of one thousand bushels [of what ?*] produced from one acre. Is this well authenticated? Few people will believe it. I had, in 1835, a produce of 300 bushels per acre; last yeur only 200, under the same favorable circumstances as to manure and cyltivation."

* If the writer alludes to Ruta Baga, we have no
doubc but lcou bushels, and mure, hase been reived doubt but 1000 bushels, and mure, have been raised on an acre.

From Ioudon's Gardener's Magazine.
vitality of seeds.
It will be in the recollection of our read. ers, that, in October, 1834, we published some interesting details of the opening of a British tumu!us, near Maiden Castle, by Mr. Maclean, who found therein a human skeleton, and a portion of the contents of the stomach, containing a mass of emall seeds, which neither the operation of the gastric juices, nor the lapse of probably twenty centuries, had sufficed to destroy. Many of these seeds have been subjected to various careful experiments, to ascertain whether the vital principle was extinct ; and we have the satisfaction of announcing that Professor Lindley has happily succeeded in producing plants from several of these seeds. These plants have confirmed the opinion expressed by the learned professor, on a first inspection of the seells, that they were those of the rubus idæus, he common raspbery. The plants are now very vigorous, have produced much fine iruit this season, and form an object of ine greatest curiosity and attraction to horticulturists. This highly interesting circumstance proves the raspberry to be an indigenous plant in this country, growing at a very early period, and then constitu. ting an article of foorl. (Dorset Chronicle, as quoted in the Bath Journal, of Sept. 12, 1836.) We have seen the raspberry plant alluded to in the Horticultural Soc.ety's garden The facts are extremely interesting ; and we hope Dr. Lindiey will compare this,case with others of the kind upon record and favor the world with a memoir on the subject.

> For the New. York Farmer.

Black Fly.-Sow a bushel of dry ashes to the acre on your turnip field as well as all other vegetables of the same class while the dew is on (or are moist) when they are two or three days old, and it will preservo them against the small black fly, should thete come rain to wash it off immediately, repeat $i t$, the ashes also is highly beneficial to promote the growth of the young plant. Oftentimes the black fly will take every vestage from the fields and lead a person who did not see his field during the first few days to believe the field bad, and attribute the evil to that cause. Many farmers are well acquainted with the above facts, but they are not generally known-and thi may be of service.

A New-England Farmer.

From tho New-England Farmer.
tilird annual report of the managers OF THE BOSTON ASYLUM AND FARM SEHOOL.
The managers of the above institution respectfully submit to the corporation the following report :-

The present board of managers was elected in the month of June last, and this report commences with that period.

The objects of the institution are presumed to be well understood. To rescue from the ills and the temptations of poverty and neglect, those who have been left without a parent's care; to reclaim from moral exposure those who are treading the paths of danger; to "place the solitary in families;" to give to those who krow nothing of the ties or influence of home, some taste and fondness for a local habitation, at the least; and to offer to those, whose only training would otherwise have been in the walks of vice, if not of erime, the greatest blessing which New-England can bestow upon her inost favored sons, a good education, are some of the purposes for which the Asylum and Farm School was endowed. Under the blessing of God, success has thus far attended the exertons which have been made to accomplish these objects. From the inonthly reports of the superintendent, and from the personal examination of the establishenent on Thom,son's Island, the board of managers are satisfied that there has been much improvement in the character of the boys who have been committed to the charge of the institution. In the last report of the superintendent, 62 boys are placed in the highest or first grade, 40 in the second, 4 in the third, and 1 in the fourth.

The number of boys on the island at the time of the last report, was 92 ; since that time 18 boys have been admitted, and three withdrawn. The number on the 1 st of January, 1837, was 107; all of whom, as well as all other persois connected with the establishment on the island, were in good health, and there has been no death at the institution since the last report was made. The occupations and employment of the boys vary with the scason. In spring, summer and autumn, the larger boys, in classes, work upon the g.arden and farm, of whose labor they perform a large part. The younger boys have small gardens of their own, which afferd them recreation when released from school. In the winter season most of them attend school, where they are instructed in the learning usually taught in our common schools, and some of them assist in making clothes and mending sioes. The winter evenings are occupied with the study o! geography, and the use of globes; botany, and practical agriculture ; lecturing on different subjects, singing and reading.The superintendent states that "every boy in the institution is required to be present during the evening exercises, if he is able, which are very pleasing to them, and which we all enjoy very much."

A large number of mulberry trees have been planted upon the island, and there are
many silk worms at t.e establishment. I
is contemplated to improve the advantages if the location in the production of raw silk ior manuficture.

As to the success of the boys in the firming operations, Capt. Chandler, the superinieadent, says, " they have succeeded far beyond iny expectations; I thir.k they have done more work, and done i: better, than the boys of ticir age who have been regularly brought up t :' the business n the country geverally do." And as to the com!ort and c ntentedness of the boys. h : says, "they are all comfo tably clad with woollen clothes, slioes, stockirgs nud caps, and appear to be as happy in their presen: situatirn as boys generally are under the paternal roof. They nppreciate their advantiges, and most of thein aru grateful to the benefactors of the institution and their frie ds for placing them here. The boys ure well supplied with books, and keep them in excellent order ; our library corstains between 4 and 500 volumns of well selected books. I have also an aurncultu:al lihrary contain ng about 30 volumns, to which the boys have access."

Opporiunities are occasionally offered to the friends of the boys at the institution, of visiting them on the island is the summer montis.

The school is under the immediate charge of Mr. George B. Hyde, and he as well as the superintendent and all engaged in the establishmert, are believed to merit the conti uance of the confidence whi:h h.s hitherto been reposed in them.

During the past summer, several parties of ladies and gentlemen, at the request of Ihe board of managers, visited Thompson's Island. At these visits there have been many persons present, and an examination of the boys in their different studies has been accompanied by some remarks on the objects and prospects of the institution.Auong these who have thus visited the island, have been many strangers, who have always exprisised their interest and pleasure in its oljects and conditıon.

And how should it be o'herwise than an object of interest ; an institu ion designed to rescue the destitute orphan boys of our city from vice and ruin ; to withdraw them from scenes and associates, whose contaminating influence would quickly destroy the perceptions of conscience, and leave them, deprived of that monitor, t" pursue the impulses of passions which inevitably destroy their victions. Many are the worthy ubjects of the charitable institutions among us; our hospitals relieve the sufferings of the sick, and restore $t \mathrm{em}$ to health ard usefulness; they are a blessing which may be required by all of us, and we would not detract from their deserts. But we cunceive that an iustitution which is to rescue immortal beings from the stain of sin, which could hardly otherwise be avoided, which is intended to have an influence or the youthful mind, and lead it to an urderstanding of its own capacities, responsibilities and hopes, deserves the fostering care of an enlightened, benevolent cemmunity, as much as those rissociations whose aim is to cure the diseases of the body, or to re-
store the wanderings of intellect. Such an institution as the Asylum and Farm School, is in true nccordance with the spirit of the pilgrims ; it carr:es into effect the first objects of their solicitude, the education of the young-of that young whose talents would otherwise be employed to violate the pace and virtue of society.

It will be seen by the report of the finance committee, that the expenses of the institution for the year ending January 1, 1837, have amounted to $\$ 6,100$, while the receipis for the same tine have amounted to 3,500 , leaving a deficiency of $\$ 2,600$. To meet this excess of expenditure over incume, and to prevent its recurrence, if will be necessary to appeal to the liberality of the public. The bourd of managers had intended to have made that appeal in the autumn of the past year; but the condition of the financial affairs of this community induced them to defer it. 'I hey would recommend the subject to their successors as one requiring their attention when a suitable time shall have arrived for its execution, with the confidence that the appeal will be cheerfully and promptly answered.

For the managers.
William Gray.

COMMERGE OF OSWEGO.
The following statement shows the amount of Merchandize transported on the Eric and Oswego canals, for lake Ontario and the Upper Lakes through the Port of Uswego, by the forwarders of this village, during the gear 1836 :

Forwariters.		$\begin{gathered} \text { Un } n= \\ \text { foi Up. } \\ \text { per } \\ \text { Lakes. } \end{gathered}$	Teial.
Bronson \& Crock. er, Henry Fitzhugh,	2,556 ${ }^{3}$	935 $\frac{1}{2}$	3,492
	1,9391	940	2,879 ${ }^{1}$
$\begin{gathered} \text { Trowbridge \& } \\ \text { Grant, } \end{gathered}$	1,324	1,834!	3,208!
Charles Smith, Jr.	683!	3,32 $1 \frac{1}{2}$	4.004 ${ }^{3}$
Tous,	10,50:3	7,080 ${ }^{\frac{1}{2}}$	13,5843

82,339 barrels of Salt were shipped by the three first named houses above, to ports on lake Ontario and the Upper Lakes.

In relation to the trade of the Upper Lakes, it should be borne in mind that of the 183 days from the opening to the close of navigation on the IVelland Canal, it was only in condition for use 92 days. Our forwarders are generally refused goods in New York in Scptember and October, and large amounts of merchandise destined for this route went to Buffalo, with the principal part of the tonnage of Lake Onturio, to transport them, owing to the uncertain state of the Welland Canal. The Canadian government have now taken this canal, and it is announced that it will be navigable on the 15th April next.

Statement of articles shipped from Oswego, by the Oswego canal to the Erie canal, during the season of 1836 .
Wheat, bushels,
112,224
Flour, barrels,
84,667
26,005

Other grain,	51,726
Bran and ship stu	74.002
Pork (principally from Ohio,) 5,864
Beef, barrels,	390
Ashes, casks,	7,467
Domestic spirits, casks,	2,063
Boards and Scantling, feet,	8,390,998
Square timber, cubic feet,	132,122
Shingles, bunches,	489
Staves, pieces,	541.823
Weod, cords,	1.412
Clover and Grass seed, lbs,	46,040
Flax seed,	1,200
Cheese,	1,456,640
Butter and Lard,	644,256
Tobacco, (from Ohio,	242,160
Wonl,	62,996
Domestic cottons manufactured	ed, 60,099
Ditto Woollens, "	8,926
Merchandise,	805,378
Leather, lbs,	19,035
Furs,	10,000
Peltrie,	49,300
Furniture,"	354,366

Lead ore, (from St. Lawrence,)650,112
Pig Iron, lbs,
1,274.135
Iron Ware, "
52.226

Stone, lard. and articles)
without designation,
Tallow, Bacon, \&c. \&ec.
Statement of sundry articles coming from places out of the State and shipped by the
Erie canal in the year 1836, taken from the collector's books :

Staves, pieces,	530,823
Flour, barrels,	9,441
Wheat, bushels,	60,384
Corn,	17,286
Barley,	35,424
Other grain,	11,950
Pork, barrels,	831
Beef, "	390
Ashes, "	189
Grind stones, lbs,	78,985
Tallow, "	30,023
Bacon,	151,462
Tobacco, "	188,2 ${ }^{\text {a }}$ 6
Clover and Grass seed,	29,505
Flax seed,	1,200
Butter and lard,	37,266
Furs,	4,060
Peltrie,	13,972
Merchandise,	18,893
Furniture,	7,832

List of subscribers to the Railroad Journal, that have paid, (continued.)
Dr. McNeven, city New.York, 1st Jan. 1838
M. Delano, Camillus, N. Y. 1st Jan. 1838
D. Hurd, Royalton, N. Y. 1st Aug. 1838 W. D. Wallack, Portsmouth, Va. 1st Jan, 1838
S. Bowman, Bowmans Mills, Va. 1st Jan. 1838
J. D. Steele, Baltimort, Md. 1st Sept. 1837
G. F. De La Roche, Baltimore, Md. 1st Dec. 1837
Col. Jas. G. Totten, Newport, R. I. 1st Jan. 1838
Beaver Meadow R. R. and Coal Company. Beaver Meadow, Penn. 1st Jan. 183S

Lt. J. M. Berrian, Detroit, Michi. 10th Feb. 1838

PHILAUELPIIIA STOCK MARKET.
April 7th

RAILROAD STOCKS
New-Castle and Frenchown Do luan, 51 per cent
Wilmington uud Susqu hanna
Camden and Ambos; shares,
Du loan, 6's 1836
Danville and P shares
${ }^{0}{ }^{\text {Dorristcwn, }}$ do cent loan
Valley Kalruad
Hestchester do
Minehill
do
do
N. L. nnd Penn. Tp. do

Philad Iphia and Trenton do
West Philadelphta Railroad
IIarrishurg and Lancaster
Ciumberland
Beaver Meadow
MISCELLANEOUS STOCKS
North American Cual Company
steam BL. Sis. Columbian
Excliange Sluch
Arcado
Theatres-Chesinut stree
————Walnut strce
Gas Company
CANAL STOCKS
Schuylkill Navigation, shares

Advertisements.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomolive Engincs, with Engravings, by the Chevalier De Pambour-150 pages la:ge octavodone up in paper covers so as to be sent by mail-Price $\$ 1$ 50. Postage for any distance under 100 miles, 40 cents, and 60 cts . for any distance excecding 100 ms .

Also-Van de Graaff on Railroad Curres, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as abore.
Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts.
${ }^{*} *^{*}$ On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.

NEW-YORK AND ALBANY RAIL ROAD.

NOTICE.-The books will be open for subscribers to the capital slock of the NewYork and Albany Railroad Company, on the $25 \mathrm{th}, 26 \mathrm{th}$ and 27 th days of A pril, from 10 A. M. 102 P. M. on each day, at the following places:

At the office of the New-York and Harlem Railioad, No. is Wall street, NewYork.

At the Mechanics' and Farmers' Bank, Albany.

At the Farmers' Bank, Troy.
Also, at such places as the Commissioners, residing in the counties o: W estchester, Putnam and Dutchess, may appoint at the times herein specified.
On Monday, sth Muy, in Eastchester,
Tuesday, the 9ith, in White Plains,
Wednesday, 10 th ,
Thursday, 111h,
Friday, 12ih,
Saturday, 13 th,
Monday, 15th,
Tuesday, 16 h ,
Wednesday, 17th, in Bedford, in New Castle, in South East, in Patesson, in Rawlings, in Dover, on Dover Plains, Thursday, 18th, in Armenia.

COMMISSIUNERS.

Gideon Lee,
Lew is Morris, Taber Belden,
John Harris,
Albro Alkin,
Francis Ficket,
Isatac Adriance,
Benson McGown, Sannel Chewer, Charles Henry Hall, Thomas W. Olcott, Ebenezer Foster, J. Vau Schoonhoven, Jeremiah Anderson.
Shares $\$ 100$ each, $\$ 5$ to be paid at the tine of subscrihing.
14.3t
transactions of the institution of civil
engineers of great britain.
Tinc first vo'ume of this valuable work, as just made its appearance in this country. A few copies, say tuenty-fire or thirty only, bave been sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one. which will prevent many of our young Engineers from possessing it. In order the refore, to place it withi their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the close.
The price will be to subseribors three dollars, or five dollars for two copies-alecays in adrance. Tine first number will be ready for delivery early in April-Subscriptions are solicited.

ROACH \& WARNER,

Nanufacturers of UPTICAL, MATHEMATICAL. ANI PHILUSOPHICAL IASTRUMENTS, 293 Bruadway, New York, wilh keep constantly on hand a large and general assoriment of Instruments in their line.
Wholesale Dealers and Country Merchants supplied wil! SI KVEYING COMPASSES, BARUMEIERS, THELKMOMETHRS, \&c. \&c. of Thei: own mannfacturc, warranted accurate, and at luwer prices than cau ise had at any other estabhshment. instrnmenie made 10 order and repaired. 14 Jy

AVERY'S ROTARY STEAM EN-GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Steam Engines for triving SawMills, Grain-Mills, and other Manufac. rories of any kind.

Engines only will be furnished, or accompanied with Boilers and the necessary Na. chinery for putting them in operation, and an Engineer always sent to put them up.

Information will be given at all times to those who desire it, either by letter or by exhibiting the engines in operation in this city.

Inquiries by letter shou d be very explicit and the answers shall be equally so.
D. K.MINOR,

30 Wall-st., New York.

TO RAILROAD CONTRACTORS.

SEALED proposals will be received at the office of the Selma and Tennessee River linilroad Company, in the town of Selma, Alabama, fur the graduation of the first forty miles of the Selma and Tennessce Railroid. Proposals fur the first six milea frum Selma, will be received after the first of
May, and acted on by the Board on tho 15il May. May, and acted on by the Board on the 15il May.
Proposals for the ensuing 34 miles, will be reccived after the 10 th May, ${ }^{\text {but }}$ will nut be oxamined until the lat of August nex ${ }^{\text {t }}$, when the work will be ready fur contract.
The line, after the first few miles, pursuing the flat of the Mulberry Creek, occupies a region of country, liaving the repute of being highly heallhfit. It $i s$ free frum punds and swampe, and is well wntered The soil is generally in cultivation, nnd is dry, light The entire length of the line of the Sel a and TenThe enlire length of the line of the Se a and Tennessee Raitruads, will be about 170 miles, passing gen-
eraliy through a region as favorable for health as any eraliy through a region as
in the Southern Couniry.
Owing to the great interest at stako in the success of this enterprise, and the nmount of capital already embarked in it, this work must necessarily pruceed with vigor, and I iavite the attention of men of industry and enterpise, buth at the Nurth and elsevhere to this undertaking, as offering in tho prospeet of continued empluyment, and the charactrr of he scil and climate, a wide and desirable field to the contractur.
tractur. ber, or to General Gilbert Shearer, Presiden: of the Company.
ANDREW ALFRED UEXTER, Chiaf Enginecr. Selma, Ala., March 201h, 1827.
RAILWAYIRON, LOCOMOTIVES,\&c.
THE subscribers offer the following articles for sale.
Railway Iron, flat bars, with countersink holes and raltreal joints,
 280

with Spikes and' Splicing Plates adapted thereto. "Tu be aold fien of duts to State goveruments or incor. poralad companies.

Orders for Pennsylvania Boiler Iron executed.
Rail Rnad Car and Locumotive Engine Tires,
wronght and turned or unturned, ruady to be fitted on Wrought and turned or unturned, ruady to be fitted on
the wheels, viz. $30,33,36,42,44,54$, and 60 iaches aiameter.
E. V. Patent Choin Cable Bults for Railway Car axles, in lengthy of 12 fiet 6 inches, to 13 feet 4,21 3, 3t, 3k, 31, and $3 t$ inches diameter.
Chains for Inclised Planea, short and stay links, manufactured from the E. V. Cable Bolts, and proved at the greateat strain.
India Rubber Rope for Inclined Planes, made from Ncw Zealand flax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron shair aud tont bluck of Edge Ra! Iways.
Evary description of Railway Iron, as $11 \cdot l l$ as Locomotive Engines, imported at the shortest notice, by the agency of one of our partners, who resides in Fingland for this purpose.
A bighly respecrable American Enginecr, resides in Eugland for the purpose of inspecting all Locomutives, Machinery, Railway Iron \&c. ordered thrungh \pm.

28 if
A. \& G. RALSTON, \& CO.

Philsdelphia, No. 4, Sonth Front st.

AMES' CELEBRATED SHOVELS, SPADES, \&c.

300 dozens Ames
superior back-strap Shovels . $\begin{array}{ll}150 \\ 100 & \text { do } \\ \text { do }\end{array}$
do
do plain do
do Guld-mining Shevols
do plated Spades
50 to do socket Shovels and Spades. Together with Pirk Axcs, Clurin Drills, and Crow Bars (stcel pointed,) mannfactured frum Salishury re fized iron-for snle by the manufacturing agenis,
WITHEREI.L, AMES \& CO. WITHEREIL, AMES \& CO. BACKÜS, AMES \& CO.

No. 8 State strcet, Albany
N. B -Also furnished to order, Shapes of every de srrintion. made from Salshnry refined lron v4-if

Builder of a superior style of Passenger Cars for Railroads.

No. 264 Elizabet h street, near Bleeckeratreet,
New-York.
RAILROAD COMPANIES would do well to exa mine these Curs; a specimen of which may he seen ort dhat part of the New-Yurk and Harlaem Railroad now in operation

J25!
PATENT RAILKOAD, SHIP AND BOAT SPIKES.
** The Troy Iron and Ninil Factory keeps conatantly for snle a very extensive assortment of Wrought Spikes and Nais, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years surcessful uperntion, and now aimust universal use in the United Sinten, (as well as England, where the subscriber obtained a patent,) are found superior to any ever offored in market.
Railruad Cimpanies mny be supplied with Spikes having cocntersink heads suitable to the holes in irull rails tu any amuint and on short nutice. Almost all fastenel with Spikes made at the above naraed fac-tory-fur which purpuse they are found invaluath; as their ndllesion is more than duuble any commui spikes made by the hammer.
*** All urders directed to the Agent, Troy, N. Y. will be punctually attended to.

HENHY BURDEN; Agent.
Troy, N. Y., July, 1831.
** Spikes are kיpt for sale, at favtory prices, hy 1 . \& J. Townsend, Alball, and the principal Iren Mer chants in Albany abs 'I'roy ; J.1. Brower, 2e2 Wate! gtreet, New-York; A. M. Jones, Philadelphia;
Jarviers, Baltimore; Degrand \& Emith, Bustun.
P. S.- Railruad Cumpanies woult con well to for ward their orders us early as pructicable, as the sub scriber is desifrut of extending the manufacturing so
as to krep pace with the daily increasing demand tior as to krep pace with the daily increasing lemand tior
his Spikes. (IJ23an) II. BURUEN.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. II. LONG, to build Bridges, or vend the right to others to build, on his Patent flats, would respecifully inform Railroad and Bridge Curpura.ivus, thar he is preparett to make cuntracts to build, and furnish all materials for supersiructures of the kind, in any part of the United Siater, (Mary land excepted.)
Bridges on the above planare to be seen at the fullowilig localinies, viz. On the main road leading from Baltimure to Washington, two miles from the liormer place. Across the Metawatakeag river on :he Mui-
tary ruad, in Maine. Un the national road in fllinuis, tary ruad, in Maine. On the national ruad in Illinuis,
at sundry points. Onthe Ba!imure and Susquelariat sundry points. Onthe Ba!timore and Susquehari-
na Rrailrond at three points. On the Hudsun and Patersun lailroad, in two places. On the Bostun and Wurcester kailroad, at several points. On the Buston and l'rovidener lailroad, at sundry points. Acruss the Contoocrok river at Henumer, N II. Across the Suuhegan river, nt Millord, N. H. Arruss the Connecticut river, at Haverliil, N. II. Across the Conuocouh river, at Iancock, N. AI. Across the All-
droscoggin biver, at I urner Cenire, Maine. Across dhe Kennebec river, at Waierville, Maine. Across the Genesse river, at Equakiehill, Mount Morris,
Vew-Yurk. Across the New-York. Across the White Itiver, at Hariford Vt. Across the Connecaricut River, as Lebnnun, N. H. Across the inouth of the Broken Sirnw Creek, Penn. Across the mouth of the Cataraugus Creek, N. Y. A Railroar Bridge diagonally acioss the E'rie,
Canal, in the City of Rochester, N. Y. A Ra road Canal, in the City of Rochester, N. Y. A Ra lroad Bridge is 500 lieet in length; one of the spans is over 200 feet. It is prubably the firmest wuout.N bridge ever built in Atncrica.
Notwithatanding his present engagements to boild between twenty and thirty Railroad Bridges, und several commun bridges, several nf which ars now in varal commoll bridges, se veral if which ars now in
progress of construction, the sabscriber witl promptly attend to business of tha kind to much greater exten and on liberal terms:
Rochester, Jan. 18th, 1887.
MOSES LONG.

ARCHIMEDES WORKS.

(100 North Monr street, N. Y.)
NEW-Y'oars, Febpunry 12th, 1836.
THE underaigned bega leave to infurm the proprietors of Railroads that they ure prepared to furninh all kinds of Machinery fot Ruilruads, Lucomotive Engines of any size, Car Wheels, such as are now in successful operation on the Camden and Amboy Railroad, nona of which have fuiled-Castings of all kinds, Wheels, A xles, and Buxes, furnished at shurtest nutice.
4-vif
H. R. DUNHAM CO.

NEW ARRANGEMENT.

ropes for fnclined planes of ratlmonds.

WE the subscribers having formed a co-partnership under the style and firm of Fulger
\& Coleman, for the manufacturing and selling of \& Coleman, for the manufacturing and selling of
Ropes for inclinfd planes oi spilruads, and for oller Ropes for inclined planes ol roilruads, and for ollher
usis, offer tusupply ropes fur inclined planes, of any length required without splice, at shurt notie e, tho malufacturing of cordnge, heretofure carried on by S. S. Durfee \& Co., will be dune by the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee Co. All urders will be promptly attendeit to, and ropes will be shipped to any port in the United Sjates. 12th munth, lizih, 1836. Hudsun, Columbia Cyunty State of New. York.

ROBT. C. FOLGER.
33-tf.
(iLURGE COLEMAN,
MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Pnerson, New Jersey. The undersigned recfive orders fur lise fullowing articles, mannliactured hy thrm, of the most superior deac:ription in every paricu'ar.. 'J heir worke
buing extensive, and the nunber of hands rmployed bring extensive, and the number of hands rmployed and amall ordera with piomptntss and despatcli-
railroav work.
Locomotive Stenm-Enginps and Tenders; Driv. ing and wher Licomotise Wheela, Axles, Sprinfs and Flange Tires; Car Wheels uf east irun, frim a variet) of patterns, and Cinills; Car Wherls of cast iron with wionght 'lires; Asles of best American refinc iron, Springz; Boxes and Eulis fur Cars.
COTTTON WOOL A.VD FLAX MACHINERY,
Of all descriptinns and of the nust impruv d Patterns, Style and Workmanklip.
Mill (ierring and Millwright work generally; ; IHy draulic anl uther Presses; Preas Screws; Callen ders; Lathes and Tools of all hirds, Iron and Brass Caatinga of ull desrriptions.

Patterson, Nen.Jersey, or co Wallstient, N. 5 itf

ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.

WILLIAM V. MANY manufacturee to order. iron castings fur Gearing Mills and Factoriea of every description.
ALSO-Stenm Engines and Railroad Castings os every description.
Tue collection of Pntterns for Marhinery, is not equalled in the United States.

AN ELEGAN'T STEAM ENGINE AND BOILERS, FOR SAIE.

THE Steam Engine and Ruilers, belonging to the S'TEAMBOAT HELEN, and now in the Noveliy yard, N Y. Cornsisting of one IIorizuntal bigh pres sure Engine, (but may be mate to cordense with litlle ndditional expense) 36 Inches diametcr, 10 feet struke, wihh latest innproved Piston Valuce, and Metad ic macking throughout.
Also, fuir 'Fubular Builers, constructed on th English Lacumotive plan, containing a fire surface of over 600 fect in each, or 2.500 feet in ell-will be suld chenp. All communications addressed (post pand) whthe subscriber, will mee: with due atlemtion

HENRY BLRDEN
Troy Iron Works, Nov. 15, 1836.

NOTICE TO CONTRACTORS.

WESTERN RAILROAD.

PROPOSALS will be received at the uffice of the Western Pailroad Corporation, in Springrield, until the loth May, for the grading and masorry of the sceond and third divisions of ihe ruad, extending from East Browkfie'd to Cornecticat river, at Epringfielda distance of 35 miles.
Plans, Prufiles, \&cc. will be ready for examination after the first of May:
Worcester, Dube, A pnl 1, 1837.

american railroad Journal, AND ADVDCATE OF INTEREAL IMPROVEMENTE。

PUBLISHED WFEKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVANCB.
D. K MINOR, and

GEORGE C. SCILA EFFER, $\} \begin{aligned} & \text { Editors AND } \\ & \text { Prozietorn.] }\end{aligned}$
CONTENIS:
Advertisementu
Communication of the Institulion of Civil Engineers 258
Transactions of the Institution of Civil Engineers 253 Epecificalion of a Patent granted to W. G Scarth
and Jobert Scarth for preparing a certain substance for Bluv Dyers........................... 27
Salk Hay for Manure : Manual Labor :Schoois and Colleges.
..... 270
New-Yotk und Brie Railroad; Cheap Manure,etc 271
Adrertizements6............................. 27

AMERICAN RAILROAD JOURNAL.

 NEW-YORK, APRIL 29, 1837,REMOVAL.- The Office of the RAIL. ROAD JOURNAL, NEW-YORK FAR. MER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-strieet, base ment story, one door from William street, and opposite the Bank of America.
$\omega_{\text {SUBSCRIBERS in this City, }}$ who change their residence on the 1st of May, will please give notice at the office, 30 Wall-street, Basement Story. It is desirable that the notice should specify their late and future residence.
We ask atiention to the following notice of Professor Hackley.

A COURSE OFINSTRUCTION IN CIVIL ENGINEERING, by informal lectures, to occupy two months, commencing the lst week of May.-Comprising
The use of the theodolite, level, Compass plain table, cross, and sextant explained upon the instruments themselves: iopographical drawing executed under supervision ; survey of routes; problems of excavation and embankment ; railroad curves ; all the usual details of construction upon common roads, railroads, and canals; including bridges, culverts, tunnels, and the various kinds of motive power; nature, strength and stress of matetials; masonry, carpentry and constructions in iron; alluvial deposites, guaging of streams, \&c.The whole purely elementary. Terms o! admission to the course, $\$ 20$.
Apply to C. W. Hackley, Professor o: Mathematics in the University, 32 Waver
Iy tlace.

DRAWING INSTRUMENTS.-E. \& G. W. Blunt, 154 Water-strect, NewYork, have received, and offer for sale, Drawing Instrunents o: superiớr qūality, English, French, and German Manufacture.
They have also on hand Levels of sups rior quality at low prices.
0-) Orders received at this office for the above Instruments.

To the Euitors of the R. R. Journal.
New-York, April 22d, 1837.
Gentlemen-Being a reader of your very useful Journal, I have observed that much has been said respecting the performance of the Locomotives of Mr. Norris, and their superiority in ascending inclined planes. I do not doubt the statements of Mr . Norris as regarls the power of his Engines, and presume that his experiments have been correctly made; buit they wore all mide when the road was dry and in the best possible condition: if the rails had been wet the result would have been much less, owing to the decrease of the a lhesion in wet weather.

The cominunications which have beent published in the Journal; between Mr. Norris and Mr. A. G. Steere, of N: Y. and Erie Railroad, have probably been caused by the miscalculation of the gravity of loads upon inclined planes, by Mr. Eteere; he using the rule given by Pambour, the fallacy of which is very apparent, at lenst it appears not to give the result we wish to find, as it would give all the gravity on an angle of 45°; which is impossible ; α weighi stispended with all its gravily will hold or retuin at a state of rest one of twicd as heavy on an angle of 45° :
1 admit that the rule given is perfectiy applicalle, as it respects the velocities of falling bodies upon inclinations; bui what is necessary in the case under considera= tion, is, to find what weight suspended with all its gravity, or what a anount of power applied to the crank of the Loco: inotive, will hold or retain at a slate of resi, any given load, on any given inclination; then if a sufficient quantity of weight or power be appled to overcome the friction, the doad will commence moving up the the plane.
I will submit the following tible to those inierested in the subject, and one of great importance in the construction of railways:
I have not been very precise in my cal-

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Level. \& \(\left\lvert\, \begin{gathered}5 \frac{1}{4} \text { th } \\ \text { per } \\ \text { mile } \\ 10^{\frac{1}{2}}{ }^{\text {a }}\end{gathered}\right.\) \& \(|\)\begin{tabular}{c}
7 \\
ft. per \\
milc. \\
\hline\(\frac{1}{5} 4\)
\end{tabular} \& \(\left\lvert\, \begin{gathered}12 \\ 06 \\ 4 \frac{1}{4} 0\end{gathered}\right.\) \& \(\left|\begin{array}{c}16 \\ 6 \\ 13 \frac{1}{3} 0\end{array}\right|\) \& \(\left|\begin{array}{c}21 \\ 0 \\ 2 \frac{1}{50}\end{array}\right|\) \& \(\left\lvert\, \begin{gathered}50 \\ 6 \\ 1 t_{6}\end{gathered}\right.\) \& \(\left|\begin{array}{l}66 \\ 66 \\ 8\end{array}\right|\) \& 106
6

50 \& 360
6

${ }_{15}^{1}$ \& $$
\left|\begin{array}{c}
1056 \\
6 \\
1 \\
8
\end{array}\right|
$$ \& $\left\lvert\, \begin{gathered}5280 \\ 6 \\ 7\end{gathered}\right.$

\hline Angles of

inclination \& 0 \& $$
\begin{aligned}
& \mathrm{m} . \\
& 3.5
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \mathrm{m} \\
& 4.6
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c}
\mathrm{m} . \mathrm{s} \\
7.8
\end{array}
$$

\] \& \[

\left|$$
\begin{array}{c}
1 \mathrm{n} . \\
10.3
\end{array}
$$\right|

\] \& \[

$$
\begin{aligned}
& m . \\
& 14
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& \text { nir. s. } \\
& 33.3
\end{aligned}
$$\right.

\] \& \[

$$
\begin{gathered}
\mathrm{m} . \\
43.8
\end{gathered}
$$

\] \& \[

\left|$$
\begin{array}{r}
\mathrm{dg} . \mathrm{m} \\
1.12
\end{array}
$$\right|

\] \& \[

$$
\begin{array}{|r}
\mathrm{dg} \cdot \mathrm{~m} \\
3.40
\end{array}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& \mathrm{dg} \cdot \mathrm{~m} \\
& 11.30
\end{aligned}
$$\right.

\] \& \[

\left\lvert\, $$
\begin{aligned}
& \mathrm{dg} . \\
& 45
\end{aligned}
$$\right.
\]

\hline Gravity of a ton in lbs. \& ton.

0 \& $\left\lvert\, \begin{array}{r}\text { lbs. } \\ 1.6\end{array}\right.$ \& | lbs. |
| :---: |
| 2 | \& lbs.

3.3 \& $\left\lvert\, \begin{gathered}4 \\ 4.4\end{gathered}\right.$ \& 5.7 \& 13.8 \& $\left\lvert\, \begin{gathered}66 \\ 17.8\end{gathered}\right.$ \& " \& | 92 \& 286 \& $\left\lvert\, \begin{gathered}6 \\ 1120\end{gathered}\right.$

\hline
\end{tabular}

culations and experiments in forming the fangle of 4° is 7 feet rise in the 100 or 369 above table, but it will be found to vary much from the result of the rule used by Mr. Steere, in his calculations; by the tbove table, the gravity of a ton (2240) on an angle of 4°, would be 100 lbs .; but by rules girell, it would be 156.8, as an
per inile. I will leave this subject to be settled by those more irterested and better qualified for the task than myself.

Very respacifully,
Your ob't servit,
E. F. Alpmeit.

TABLE V. continved.-THE EAGLE.

TABLE VI.-THE HAWK.-(34 Experiments.)

TABLE VI. comtived.-Thie hawik.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline -217 \& Hawr. \& \[
\left|\begin{array}{cc}
24 \& 3 \frac{1}{2} \\
24 \& 57 \\
25 \& 23 \frac{1}{2} \\
25 \& d \\
25 \& 51 \\
26 \& 20_{2}^{1}
\end{array}\right| \begin{gathered}
e \\
f
\end{gathered}
\] \& \(25!\)
264
27
29
29 \& \[
\begin{aligned}
\& 5 . \varepsilon 2 \mid 4 \\
\& 8.49 \\
\& 8.18 \\
\& 7.59
\end{aligned}
\] \& \[
\left|\begin{array}{c}
412 \cdot c \\
401 \cdot 6 \\
+25 \cdot 6 \\
417 \cdot 5
\end{array}\right|
\] \& \[
\left|\begin{array}{l}
12 \cdot 94 \\
12 \cdot 45 \\
12.00 \\
11 \cdot 19
\end{array}\right|
\] \& \begin{tabular}{|l}
Thro \\
Horses.
\end{tabular} \& \& \& \[
\left.\begin{gathered}
\text { wat: } \\
\text { in. } \\
14 \\
\text { ficm } \\
\text { irve. }
\end{gathered} \right\rvert\,
\] \& \[
\left|\begin{array}{c}
\text { ranit } \\
i .1 \\
11 \\
i n e n
\end{array}\right|
\] \& r.ot \& \[
\begin{aligned}
\& \text { ar. } \\
\& \text { un. } \\
\& \text { yow } \\
\& \text { oder. } \\
\& \hline 55 \\
\& \hline
\end{aligned}
\] \& Weight shifted aft. \\
\hline 218 \& Hawn. \& \begin{tabular}{ll|l|l|}
\hline 17 \& 23 \& 0 \\
17 \& 45 \& \(c\) \\
13 \& 06 \& \(d\) \\
18 \& 27 \& \(e\) \\
19 \& 49 \& \(f\) \\
\hline 8 \& 44 \&
\end{tabular} \& 22
21
21
21
21 \& 10.234 \& \[
\begin{aligned}
\& 471-2 \\
\& 451.4 \\
\& 4: 357 \\
\& 404 \cdot 7
\end{aligned}
\] \& \[
\begin{aligned}
\& 15 . C l \\
\& 1.5 \% 1 \\
\& 15.22 \\
\& 15.32
\end{aligned}
\] \& do. \& \& do. \& \[
\begin{gathered}
13 \\
\text { nicin } \\
\text { nak. }
\end{gathered}
\] \& \[
\begin{gathered}
13 \\
1 i n \\
\hline
\end{gathered}
\] \& c.0. \& do. itu. \(\therefore \mathrm{c} v\) \(26^{\prime}\) \& द lun 17 cobl made utc Hawk and 7 passcongers̃ 1.e arly cçurl to the RAPID winh \(4 \frac{1}{4}\) ion arall 7 passen. fels. \\
\hline 219 \& Hawx. \& \& 26
27
26
26
26 \& \[
\begin{aligned}
\& \mathrm{S} \cdot 65 \\
\& 8.43 \\
\& 8 \cdot 65 \\
\& 8 \cdot 49
\end{aligned}
\] \& \[
\left\{\left.\begin{array}{c}
4 C 9 \cdot: \\
\div 92 \cdot 1 \\
420 \cdot 6 \\
447 \cdot \because
\end{array} \right\rvert\,\right.
\] \& \[
\begin{aligned}
\& 12 \cdot 6! \\
\& 1 \Sigma \cdot 2 \\
\& 12 \cdot 6! \\
\& 12 \cdot 4 k
\end{aligned}
\] \& co. \& c'c. \& co. \& co. \& du. \& do. \& \begin{tabular}{l}
co. \\
du \\
cles. \\
25'
\end{tabular} \& Hawk ard 7 pesecngers I anly cqual to the LaKK with 4 ! ton and 71 assen. grrs. \\
\hline 220 \& Hawk. \& \begin{tabular}{ll|l}
34 \& 50 \& \(f\) \\
35 \& \(10 \frac{1}{2}\) \& \(c\) \\
35 \& 31 \& \(d\) \\
35 \& \(52 \frac{1}{2}\) \& \(e\) \\
36 \& \(\mathbf{1 4}\) \& \(f\)
\end{tabular} \& \begin{tabular}{l}
201 \\
20 \\
21 \\
21 \\
21 \\
\hline 1
\end{tabular} \& \[
\begin{gathered}
10.97 \\
10.97 \\
10.47 \\
10.47 \\
4
\end{gathered}
\] \& \[
\left\lvert\, \begin{aligned}
\& 510 \cdot 9 \\
\& 453 \cdot 2 \\
\& 415 \cdot 6 \\
\& 407 \cdot 2
\end{aligned}\right.
\] \& \[
\left|\begin{array}{cc}
c \& 0! \\
16 \cdot c! \\
15 \& 0 . \\
1 \& 3 \\
1 \& \cdot 3 t
\end{array}\right|
\] \& do. \& \& do. \& \[
\begin{gathered}
138 \\
10 \mathrm{i} \\
\text { mis. }
\end{gathered}
\] \& \& do. \& \[
\begin{gathered}
10 \\
\text { co } \\
\text { cus } \\
1 \div
\end{gathered}
\] \& \\
\hline 221 \& Hawe. \& \begin{tabular}{|l|l|l}
\hline 48 \& 45 \& \(b\) \\
49 \& 11 \& \(c\) \\
49 \& 37 \& \(d\) \\
50 \& 03 \& \(e\) \\
50 \& 31 \& \(f\)
\end{tabular} \& 26
26
26
-28 \& \[
\begin{aligned}
\& 8 \cdot 654 \\
\& 8654 \\
\& 8.654 \\
\& 8.034
\end{aligned}
\] \& \[
\begin{aligned}
\& 411 \cdot 31 \\
\& 404 \cdot 3 \\
\& 408 \cdot 3 \\
\& 4: 461
\end{aligned}
\] \& \[
\begin{aligned}
\& 12.69 \\
\& 1269 \\
\& 1269 \\
\& 11.79
\end{aligned}
\] \& do. \& do. \& dc. \& do. \& do. \& cin. \& \begin{tabular}{l}
do. \\
dis. \\
reve. \\
37'
\end{tabular} \& \\
\hline 222 \& Hawe. \& \begin{tabular}{ll|l|l}
14 \& 29 \& \\
14 \& 50 \\
15 \& 11 \& \(c\) \\
15 \& 32 \& \(d\) \\
5 \& 52 \& \(e\) \\
\hline
\end{tabular} \& \(21!\)
21
\(21!\)
\(22!\) \& 10.474
10.714
10.473
\(1006 \mid 3\) \& \[
\begin{aligned}
\& 465 \cdot 6 \\
\& 420 \cdot 5 \\
\& 397 \cdot 6 \\
\& 369 \cdot 6
\end{aligned}
\] \& \[
\left|\begin{array}{l}
15 \cdot 35 \\
15 \cdot 71 \\
15 \cdot 35 \\
14 \cdot 67
\end{array}\right|
\] \& dre. \& \& do. \& \& \[
\begin{gathered}
14 \\
\text { firem } \\
\text { ne. }
\end{gathered}
\] \& 'co. \& \begin{tabular}{l}
do. \\
d:. \\
c!e. \\
15.'
\end{tabular} \& \\
\hline 223 \& Hawie. \& \(|\)\begin{tabular}{ll}
25 \& 19 \\
25 \& 43 \\
26 \& 08 \\
26 \& \(c\) \\
27 \& \(c\) \\
27 \& 00 \\
\hline \& \(d\) \\
\hline
\end{tabular} \& 26
25
25
26
26
2 \& \[
\begin{aligned}
\& 8.654 \\
\& 9 \cdot 603 \\
\& 8.82 \\
\& 8 \cdot 49.3
\end{aligned}
\] \& \[
\begin{aligned}
\& 402 \cdot 61 \\
\& 38 c \cdot 6,1 \\
\& 28801 \\
\& 3 \varepsilon 0 \cdot 11
\end{aligned}
\] \& \[
\begin{aligned}
\& 12.69 \\
\& 13.20 \\
\& 12.94 \\
\& 12.45
\end{aligned}
\] \& do. \& d. \& do. \& do. \& do. \& dc. \& \[
\begin{gathered}
\text { du. } \\
\mathrm{c}_{1} 1 \cdot \\
1 ' \mathrm{cr} \\
31^{\prime}
\end{gathered}
\] \& - - \\
\hline 224 \& HAwK. \& \begin{tabular}{lll}
42 \& 15 \& \(d\) \\
42 \& 59 \& \(\frac{1}{2}\) \\
43 \& 48 \& \(d\) \\
44 \& \(3 s^{2}\) \& \(e\) \\
45 \& \(26^{\prime}\) \& \(f\)
\end{tabular} \& \begin{tabular}{l}
44 \\
48 \\
50 \\
48 \\
48 \\
\hline
\end{tabular} \& \(5 \cdot 11\)
\(4 \cdot 64\)
\(4 \cdot 50\)
464 \& \[
\begin{aligned}
\& 897 \\
\& 69 \cdot 0 \\
\& 67 \cdot 1 \\
\& 80 \cdot 0
\end{aligned}
\] \& \[
\begin{aligned}
\& 7 \cdot 5 \\
\& 6 \cdot 84 \\
\& 6 \\
\& 6: 84 \\
\& 6: 8 i
\end{aligned}
\] \& co. \& do. \& do. \& do. \& du. \& do. \& \[
\begin{gathered}
\text { do. } \\
\text { du. } \\
\text { dep } \nu^{\prime} \\
2^{\prime}
\end{gathered}
\] \& \\
\hline 225 \& Hawk. \& \begin{tabular}{cc|c}
18 \& \(16 \frac{1}{7}\) \& \(b\) \\
18 \& 36 \& \(c\) \\
18 \& 57 \& \(d\) \\
19 \& \(19!\) \& \(e\) \\
19 \& 41 \& \(f\)
\end{tabular} \& \(20 \frac{1}{2}\)
21
221
\(21 \frac{1}{2}\)

1 \& $$
\left|\begin{array}{l}
10.97 \\
10.71 \\
10.00 \\
10.47
\end{array}\right|
$$ \& \[

$$
\begin{array}{r}
1 \\
427 \cdot 0 \\
402 \\
390 \cdot 61
\end{array}
$$

\] \& \[

$$
\begin{gathered}
16 \\
15 \cdot 7 \\
14 \cdot 61 \\
15 \cdot 35
\end{gathered}
$$

\] \& do. \& \& de. \& \[

\left|$$
\begin{array}{c}
14 \frac{1}{2} \\
\text { ran } \\
\text { mrk. }
\end{array}
$$\right|

\] \& \[

$$
\begin{gathered}
14 \frac{1}{2} \\
\text { nol1 } \\
\text { n: } k .
\end{gathered}
$$

\] \& do. \& | do. |
| :--- |
| do. |
| lev |
| 15^{\prime} | \& 2. ton 12 chl. Hitice the Hawe and 7 passengers beary ef al ur the RaPID with 3 ton and 7 pasa cugers.

\hline 226 \& Hiwi. \& | 28 | 58 | b |
| :--- | :--- | :--- |
| 29 | 23 | c |
| 29 | 49 | d |
| 30 | $14 \frac{1}{2}$ | e |
| 30 | $40 \frac{1}{2}$ | f. |
| | | f | \& \[

$$
\begin{aligned}
& 25 \\
& 26 \\
& 25 \\
& 26
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \cdot 00 \\
& 8 \cdot 65 \\
& 8 \cdot 38 \\
& \therefore .8238 \\
& 8 \cdot 6539
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline 4055 \\
& 384.7 \\
& 386 C_{1} \\
& 390 \cdot 61
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \overline{13.26} \\
& 1264 \\
& 1294 \\
& 1265
\end{aligned}
$$

\] \& Two Horses \& | 7 | $p 1 s s e n t$ | |
| :--- | :--- | :--- |
| yors | $\&$ | 21. |
| $12 c w t$. | $=$ | |
| c. | $9 \cdot$ | 16. |
| 61 | 2 | 1 | \& \[

$$
\begin{gathered}
\text { Gav. } \\
\text { l:g } 1 \\
n \\
n \\
n
\end{gathered}
$$
\] \& nitl!

in.
14
rem

mrk. \& | $\overline{s a n t r}$ |
| :---: |
| 111. |
| $14!$ |
| $i o n i$ |
| $m k$ | \& not. obs. \& \[

$$
\begin{aligned}
& \text { dur. } \\
& \text { run. } \\
& \text { bow } \\
& 0 \text { ? } 3 \text { er. } \\
& 30^{\prime}
\end{aligned}
$$
\] \& - - - - - - -

\hline 227 \& Hawe. \& | 42 | $11 \frac{1}{2}$ | b |
| :--- | :--- | :--- |
| 42 | $32 \frac{1}{2}$ | c |
| 42 | $54 \frac{1}{2}$ | d |
| 43 | 16 | e |
| 43 | 37 | f |
| | 23 | | \& \[

$$
\begin{aligned}
& 21 \\
& 22 \\
& 211_{2}^{1} \\
& 21
\end{aligned}
$$

\] \& \[

\left\lvert\, $$
\begin{aligned}
& 10.71 \mid 4 \\
& 10.23,4 \\
& 10 \cdot 474 \\
& 10.714
\end{aligned}
$$\right.

\] \& \[

$$
\begin{aligned}
& 457 \cdot 7 \\
& 406 \cdot 1 \\
& 412 \cdot 51 \\
& 49 \cdot 2
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15.71 \\
& 15 \cdot 00 \\
& 15 \cdot 35 \\
& 15.71
\end{aligned}
$$
\] \& do. \& do. \& do. \& do. \& do. \& c'o. \& co. \&

\hline 228 \& Hawr. \& | 1 | 2 | 3 | b |
| :--- | :--- | :--- | :--- |
| 1 | 45 | c | |
| 2 | 06 | d | |
| 2 | 27 | d | |
| 3 | 18 | e | | \& | 22 | 1 |
| :--- | :--- |
| 21 | |
| 212 | |
| 21 | 1 |
| | | \& \[

\left\lvert\, $$
\begin{aligned}
& 10.234 \\
& 10.713 \\
& 10.474 \\
& 10.713
\end{aligned}
$$\right.

\] \& \[

$$
\begin{aligned}
& 461 \cdot 61 \\
& 397.51 \\
& 403 \cdot 31 \\
& 390 \cdot 31
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 15 \cdot n c \\
& 15 \cdot 71 \\
& 15.3 .3 \\
& 15 \cdot 71
\end{aligned}
$$

\] \& do. \& \& fav. \& \[

\left\lvert\, $$
\begin{gathered}
143 \\
\text { rom } \\
\text { mak. }
\end{gathered}
$$\right.

\] \& \[

\left.$$
\begin{gathered}
142 \\
\text { from } \\
\text { m!k. }
\end{gathered}
$$ \right\rvert\,

\] \& o. \& \[

\left|$$
\begin{array}{c}
10 \\
10 \\
10 \cdots \\
100 \\
13^{\prime}
\end{array}
$$\right|
\] \& 1 10117 ewt made tice Hawn and 7 paisengers really equal to the LARK, with 3 tom and 7 passengers.

\hline
\end{tabular}

TABLE VI. continued-THE HAWK.

TABLE VI. continued. -THE HAWK.

TABLE VII.-THE RAPID (Second Set-43 Experiments).

A	B	C	D	E	F	G	H	I	J	K	L	M	N	0	P
									تِّ		Dra	St'rn .		$\begin{aligned} & \equiv \\ & \underline{0}-0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Remarks. flace of experiment, forth and clyde canai.
242	Rapid.	min. 41 41 41 42 42 42 42 42 43 43 43 28	$\begin{gathered} \frac{1}{2} \\ b \\ c \\ d \\ d \\ e \\ f \end{gathered}$	$\begin{gathered} \text { sec. } \\ 31 \frac{1}{2} \\ 311_{2}^{2} \\ 32 \\ 33 \end{gathered}$	$\begin{gathered} 7 \cdot 14 \\ 7 \cdot 14 \\ 7 \cdot 03 \\ 6 \cdot 82 \end{gathered}$	$\begin{aligned} & \hline \text { lbs. } \\ & 338 \cdot 7 \\ & 322 \cdot 1 \\ & 328 \cdot 1 \\ & 273 \cdot 7 \end{aligned}$	$\begin{array}{\|l} \text { feet. } \\ 10.48 \\ 10.48 \\ 10.31 \\ 10.00 \end{array}$	Two Horses.	7 passengers, and $4 \frac{1}{4}$ ton, $=$ c. q. ll. 9421	unf. strng	$\begin{aligned} & \text { in. } \\ & 16 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 16 \end{aligned}$	not obs.	dur. run. bow elev. 17^{\prime}	Rapid weighed when empty, 3 ton, Scwt. 2qr. 20lb.
243	Rapid.	53 19 53 45 54 13 54 43 55 15	b c d d e f	$\begin{aligned} & 26 \\ & 28 \\ & 30 \\ & 32 \end{aligned}$	$\begin{aligned} & 8 \cdot 65 \\ & 8 \cdot 03 \\ & 7 \cdot 50 \\ & 7 \cdot 03 \end{aligned}$	$\begin{aligned} & 496 \cdot 4 \\ & 483 \cdot 5 \\ & 4!2 \\ & 412 \cdot 7 \end{aligned}$	$\begin{gathered} 12 \cdot 69 \\ 11 \cdot 79 \\ 11 \cdot 00 \\ 10.31 \end{gathered}$	do.	do.	do.	do.	do.	do.	do. do. elev. 40'	A Passage-boat passed at 5 sec.
244	Rapid.	5 54 6 20 648 7 17 7 7 47	b c d d e	$\begin{aligned} & 26 \\ & 28 \\ & 29 \frac{1}{\frac{1}{2}} \\ & 29 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8 \cdot 654_{4}^{4} \\ & 8 \cdot 03 \\ & 7 \cdot 594_{4}^{4} \\ & 7 \cdot 57 \end{aligned}$	$\begin{aligned} & 499 \cdot 5 \\ & 477 \cdot 8 \\ & 477 \cdot 5 \\ & 473 \cdot 5 \end{aligned}$	$\begin{aligned} & 12 \cdot 69 \\ & 11 \cdot 79 \\ & 11 \cdot 19 \\ & 11 \cdot 19 \\ & \hline \end{aligned}$	do.	do.	do.	do.	do.	do.	do. do. elev. 48^{\prime}	
245	Rapid.	$\left\lvert\, \begin{array}{ll} 37 & 51 \\ 38 & 18 \\ 38 & 46 \\ 39 & 15 \\ 39 & 45 \\ \hline \end{array}\right.$	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 27 \\ & 28 \\ & 29 \frac{1}{2} \\ & 29 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8.33 \\ & 8.034 \\ & 7.595 \\ & \mathbf{7 . 5 9} \end{aligned}$	$\left\lvert\, \begin{array}{l\|} 483.8 \\ 477 \cdot 5 \\ 547 \cdot 8 \\ 477 \cdot 2 \end{array}\right.$	$\begin{aligned} & 12 \cdot 22 \\ & 11 \cdot 79 \\ & 11 \cdot 19 \\ & 11 \cdot 19 \end{aligned}$	do. ${ }^{4}$	$\left\|\begin{array}{ccc} 7 & \text { passen- } \\ \text { gers, } & \text { and } \\ 4 & \text { ton } & = \\ c . & q . & l b . \\ 89 & 2 & 1 \end{array}\right\|$	do.	16	do.	do.	$\left\|\begin{array}{r} \text { do. } \\ \text { do. } \\ \text { elev. } \\ 40^{\prime} \end{array}\right\|$	Rapid, with 7 passengers 4 ton, ncarly equal to the Lark, with $4 \frac{1}{4}$ ton and 7 passengers.
246	Rapid.	35 $133^{\frac{1}{2}}$ 35 47 36 09 36 40 37 11 1 51	b c d e f	$\begin{aligned} & 33_{2}^{1} \\ & 32 \\ & 31 \\ & 31 \end{aligned}$	$\begin{array}{l\|l\|} 6 \cdot 72 \\ 7 \cdot 03 & 4 \\ 7 \cdot 26 \\ 7 \cdot 26 \end{array}$	$488 \cdot 8$ 470 466 428	$\begin{gathered} 9 \cdot 85 \\ 10 \cdot 31 \\ 10 \cdot 65 \\ 10 \cdot 65 \end{gathered}$	do.	do.	do.	do.	do.	do.	do. do. elev. 25	
247	Rapid.	$\begin{array}{ll} 11 & 51 \\ 12 & 16_{2}^{1} \\ 12 & 42_{2}^{1} \\ 13 & 10 \\ 13 & 38 \end{array}$	b c d e f	$\begin{gathered} 25_{2}^{1} \\ 26 \\ 27_{1}^{1} \\ 28^{1} \end{gathered}$	$\begin{aligned} & 8 \cdot 824 \\ & 8 \cdot 654 \\ & 8 \cdot 184 \\ & 8 \cdot 03 \end{aligned}$	456 442.8 455 467.2	$\begin{aligned} & 12 \cdot 94 \\ & 12 \cdot 69 \\ & 12.00 \\ & 11.79 \end{aligned}$	do.	do.	fav.	do.	do.	do.	do. do. elev. $1^{\circ} 6^{\prime}$	
248	Rapid.		$\begin{gathered} b \\ c \\ c \\ d \\ e \\ f \end{gathered}$	$\begin{aligned} & 24 \\ & 25 \\ & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 9 \cdot 38 \\ & 9 \cdot 00 \\ & 9 \cdot 38 \\ & 9 \cdot 00 \end{aligned}$	$\begin{aligned} & 447 \cdot 1 \\ & 447 \cdot 5 \\ & 329 \cdot 6 \\ & 360 \cdot 6 \end{aligned}$	$\left\{\begin{array}{l} 13 \cdot 75 \\ 13 \cdot 20 \\ 13 \cdot 75 \\ 13 \cdot 20 \end{array}\right.$	do.	do.	do.	$15 \frac{1}{8}$	151 $\frac{1}{8}$	do.	do. do. elev. 50^{\prime}	RAPID, with 7 passengers 3 ton, and 7 cwt . nearly equal to the Velocity, Hawe, and Eagle, with 3 ton and 7 passengers.
249	Rapid.	4 07 4 $34 \frac{1}{2}$ 5 02 5 29 5 57	b c d e f f	$\begin{aligned} & 27 \frac{1}{2} \\ & 27 \frac{1}{2} \\ & 27 \\ & 28 \end{aligned}$	$\begin{aligned} & 5 \cdot 18 \\ & 8 \cdot 18 \\ & 8 \cdot 33 \\ & 8 \cdot 03 \end{aligned}$	$\begin{aligned} & 419 \cdot 3 \\ & 411 \cdot 4 \\ & 452 \cdot 8 \\ & 453 \end{aligned}$	$\begin{aligned} & 12 \cdot 00 \\ & 12 \cdot 00 \\ & 12 \cdot 22 \\ & 11 \cdot 79 \end{aligned}$	'do.	do.	light	do.	do.	do.	do. do. elcu. $5>^{\prime}$	
250	Rapid.	$\left\|\begin{array}{ll} 21 & 58 \\ 22 & 22 \\ 22 & 44 \\ 23 & 07_{1}^{2} \\ 23 & 31 \end{array}\right\|$	b c d e f	24 221 23 23 23	$\begin{array}{r} \mathbf{9 . 3 8} \\ 10.00 \\ 9.78 \\ \mathbf{9 . 5 7} \end{array}$	$480 \cdot 5$ 436.4 413.5 370	$\left\|\begin{array}{l} 13 \cdot 75 \\ 14 \cdot 67 \\ 14 \cdot 35 \\ \mathbf{1 4 \cdot 0 4} \end{array}\right\|$		$\left\|\begin{array}{ccc} 7 & \text { passen. } \\ \text { gers, \& } & 2 t \\ 15 c w t . \\ c . & 9 . & = \\ 64 & 2 & 1 \end{array}\right\|$		$14 \frac{1}{\frac{1}{8}}$	$14{ }^{1}$	do.	do. do. elev 10^{\prime}	Rapid, with 7 passengers and 2 ton 15 cwt . nearly equal to the Lark, with 3 ton and 7 passengers.

table vil. continued.-THE RAPID (Second Set.)

251	Rapid.	$\|$33 $14 \frac{1}{2}$ b 3.3 41 c 14 188 d 34 36 e 3.3 0.4 f	26 27 27 27 28 28	$\begin{array}{l\|l} 5 \cdot 55 \\ 8 \cdot 12 \\ 5 \cdot 12 \\ 7 \cdot 0 & -1 \end{array}$	$\begin{gathered} 106 \cdot 9 \\ 290 \\ 100 \\ 417 \cdot 5 \end{gathered}$	$\left\|\begin{array}{c} 2 \cdot 1.1 \\ 1: 2 \cdot 31 \\ 12 \cdot 06 \\ 11 \cdot 58 \end{array}\right\|$			fav.	14 !	in.	$\begin{aligned} & \text { rot } \\ & \text { obs. } \end{aligned}$	$\left\{\left.\begin{array}{l} \text { dur. } \\ \text { run. } \\ \text { fow } \\ \text { clev. } \\ 355^{\prime} \end{array} \right\rvert\,\right.$	
${ }_{2} 52$	Rapid.	57 11 - 58 14 c 58 26 d 58 47 c 59 09 f	$\left\|\begin{array}{l\|} 23 \\ 22 \\ 21 \frac{1}{2} \\ 22 \end{array}\right\|$	$\begin{gathered} 9.78-8 \\ 10.2 \\ 10.47 \\ 10.20 \end{gathered}$	$\begin{aligned} & -: 50 \\ & -120 \\ & 11!9 \\ & 146 \end{aligned}$	$\left\|\begin{array}{c} 4 \cdot 3 \\ 15 \cdot 0 \\ 1.5 \cdot 3 i \\ 15 \cdot 60 \end{array}\right\|$	110.		sone	13^{5}	133		do. do. elev. 38^{\prime}	RAPID. with 7 passengers \& 2t. 7cwt. nearly equal to the Eagle, VeloctTr, and Hawk, with 2t: and 7 passengers each.
253	Rapid.	6 5 7 23 0 7 50 c 8 151 8 c 8 95 f	$\begin{aligned} & 25 \\ & 20 \\ & 25 \\ & 25 \\ & 20 \end{aligned}$	$\begin{aligned} & 8.8 \dot{z} \\ & 8.49 \\ & 8.32 \\ & 8.49 \\ & 8.49 \end{aligned}$	$\begin{aligned} & 401 \\ & 372 \\ & 107 \\ & 337 \end{aligned}$	$\left\|\begin{array}{l} 12 \cdot 9 \\ 12 \cdot 45 \\ 12 \cdot 9 t \\ 12.15 \end{array}\right\|$	do.	do.	d.	do.	do.	do.		
254	Rapid.		$\begin{aligned} & 23 \\ & 23 \\ & 21^{1} \\ & 23 \end{aligned}$	$\left[\begin{array}{l} 0.234 \\ 10 \cdot 23 \mid \\ 10 \cdot 47.1 \\ 10 \cdot 2 \div 3 \end{array}\right.$	$\begin{gathered} 4: 0 \\ 4100 \\ 4: 10 \\ 332 \cdot: \end{gathered}$	$\left[\begin{array}{l} 15 \cdot 11 \\ 15 \cdot 0 \\ 15 \cdot 3 \\ 15 \cdot 3 \\ 1 \end{array}\right.$	ds.		do.	123	12.	do.	$\left\lvert\, \begin{gathered} \text { do. } \\ \text { do. } \\ \text { elev. } \\ 8^{\prime} \end{gathered}\right.$	$\bar{R} \overline{A P I D}$, win 7 pessengers, $1 t$ 15cwi. nearly equal to the Lark, with $2 t$ and 7 pas. sengers, and Zephyr, with 3t. and 7 passengers.
255	Rafid.	30 40 0 31 12 c 31 33 d 32 05 c 32 321 1	26 26 26 27 27	$\begin{aligned} & 8.673 \\ & 8.493 \\ & 83: 3 \\ & 8 \cdot: 33 \end{aligned}$	35.) $361 \cdot 6$ $358 \cdot 6$	$\left\{\begin{array}{l} 12 \cdot 6 \\ : 2 \cdot 1 t \\ 2 \cdot 2 \cdot \\ 12 \cdot 2: \end{array}\right.$	do.	do	do.	do.	do.	do.	do. do. clev $3{ }^{\prime}$	
256	Rapid		$\begin{aligned} & 21 \\ & 21 \\ & 21 \\ & 20 \\ & 92 \\ & 92 \end{aligned}$	19.714 10.71 10.23 10.9	$\begin{aligned} & 461 \\ & 112 \cdot 5 \\ & 77 j \\ & 353 \end{aligned}$	$s\left\|\begin{array}{l} 15.71 \\ 15.7 \\ 15 \cdot 1 \\ 14.67 \end{array}\right\|$	- co.	$\begin{array}{lll} \hline 7 & \text { pasient } \\ \text { yers, } & \& & 11 \\ 70 w t & = \\ c & 9 . & 16 \\ 36 & 2 & 1 \end{array}$	do.	12	117	do.	do. do. elev. 18'	$\overline{\text { RapII, with } 7 \text { passengers, }}$ and 1 t .7 cwt . nearly equal to the Velocity, Eagle, and Hawk, with 1t. and 7 passengers each.
257	Rapid	$\|$8 1.6 b 13 35 c 19 0.2 d 19 23 c 19 57 f	$\begin{aligned} & 29 \\ & 27 \\ & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 7 \cdot 7! \\ & 8: 3: \\ & 8 \cdot 65 \\ & 7 \cdot 76 \end{aligned}$	$\left[\begin{array}{l} 89 \\ 30-1 \\ 346 \\ 3: 23 \cdot 7 \end{array}\right.$	$\left.\begin{array}{r} 11 \cdot 38 \\ 12 \cdot 22 \\ 12 \cdot 69 \\ 711 \cdot 35 \end{array} \right\rvert\,$	cio.	c.c.	c'o.	co.	do.	do.	do. do. clev. 42	
258	Rapir.	23 05 b 26 27 c 23 5 27 d 27 12 c 27 34 f	21 23 22 22 22	$\left\|\begin{array}{c} 10 \cdot 4: \\ 9 \\ 10 \cdot 2: \\ 10 \cdot 2: \end{array}\right\|$	$\begin{aligned} & \because 4 \\ & \therefore 51 \\ & 3 ; 5 \\ & 3 \geqslant 3 \end{aligned}$	$\left\|\begin{array}{l} 1 \cdot \cdot \cdot 3 \cdot \\ 1 \cdot 4 \cdot 30 \\ 15 \cdot 06 \\ 15 \cdot 30 \end{array}\right\|$	co.	$\left\|\begin{array}{ccc} 7 & \text { passen } \\ \text { rects } & \text { and } \\ 15.5 & =1 \\ c . & q . & 16 . \\ 34 & 2 & 1 \end{array}\right\|$	do.	do.	do.	do.	$\begin{aligned} & \text { not } \\ & \text { obs. } \end{aligned}$	Kapid, will 7 passengers and 15 cwt . nearly erfual to the l/arke, with 1 ton and 7 passengers, and to the Zephyr, with 2 ton and 7 passengers.
25.9	Rapin		23 23 27 28	$\begin{aligned} & 7 \cdot 7 \\ & 8 \cdot 6 \cdot \\ & 8 \cdot 3 \cdot \\ & 8 \cdot(0.2 \end{aligned}$	$\begin{aligned} & 3328 \\ & 3: 18 \cdot 5 \\ & 300 \cdot 2 \\ & 30 \div 2 \end{aligned}$	8 $11 \cdot 3$ 5 $12 \cdot 69$ 2 $12 \cdot 22$ 2 11.78	do.	cio.	do.	do.	do.	do.	not	
260	Rapid	$\left[\begin{array}{\|cc\|c}11 & 4 \bar{z} & b \\ 12 & 14 & c \\ 12 & 49 & d\end{array}\right.$	$\begin{aligned} & 32 \\ & 35 \end{aligned}$	$\begin{aligned} & 7 \cdot 0: 3 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 320 \\ & 323 \end{aligned}$	$\left\|\begin{array}{c} 10 \cdot 3 \\ 0 \cdot 43 \end{array}\right\|$	Turo Itorses		none	$\begin{aligned} & \text { in. } \\ & 11 \frac{1}{2} \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 11! \end{aligned}$	$\begin{gathered} 20 \text { yender } \\ \text { betrie } \\ \text { bute } \\ \text { bit. } \end{gathered}$	$\begin{aligned} & \text { dur. } \\ & \text { dur } \\ & \text { dun. } \\ & \text { bow } \\ & \text { elev, } \\ & 1^{\circ} 0^{\prime} \end{aligned}$	
261	Rapid	18 39 b 18 53 c 19 20 d	20	$11: 25$ 1071	425	$\left\lvert\, \begin{gathered}16 \cdot 50 \\ 15.71\end{gathered}\right.$	1 do.	do. -	do.	do.	do.	Suer	do. do. clev. 10	
262			201 201	$\left\lvert\, \begin{aligned} & 10.97 \\ & 10.97\end{aligned}\right.$	391 875	$\left(\begin{array}{l}16.01 \\ 16.09\end{array}\right.$	9 dc.		do.	do.	do.	do.	$\left\lvert\, \begin{array}{r}\text { do. } \\ \text { do. } \\ \text { elev. } \\ 10\end{array}\right.$	\square

TABLE Vil. continued._THE RAPID (Sacond Set.)

Table vil. continued.-THE Rapid (Slcond Set).

275	Rapid.	$\left\lvert\, \begin{array}{cc}23 & 20 \\ 23 & 44 \\ 24 & 7\end{array}\right.$	b c d	24 23	$\begin{aligned} & 9.383 \\ & 9.572 \end{aligned}$	322 1 271 1	$\left\|\begin{array}{l} 13 \cdot 75 \\ 14 \cdot 04 \end{array}\right\|$	do.	do.	do.	do.	do.	about 18ft. from the bow.	$\left\|\begin{array}{c} \text { do. } \\ \text { do. } \\ \text { elev. } \\ 22^{2} \end{array}\right\|$	
27	Rapid.	$\left\|\begin{array}{ll} 45 & 20 \\ 45 & 48 \\ 46 & 14 \end{array}\right\|$	b c d	$\begin{aligned} & 28 \\ & 26 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8.03 \\ & 8.493 \end{aligned}$	$\begin{array}{ll} 373 \\ 389 \cdot 61 \end{array}$	$\begin{aligned} & 11.79 \\ & 12.45 \end{aligned}$	do.	do.	do.	9	14	at the bow.	do. do. elev. $1^{\circ} 17$	Weight shifted to stern; swell very high, rose 3 feet.
277	Rapid.	$\left\|\begin{array}{ll} 54 & 10 \\ 54 & 30 \frac{1}{2} \\ 54 & 51 \end{array}\right\|$	b c c	$\begin{aligned} & 20_{2}^{1} \\ & 200_{2}^{1} \end{aligned}$	$1 \begin{aligned} & 10.973 \\ & 10.973 \end{aligned}$	${ }_{370 \cdot 6}^{1}$	$\begin{aligned} & 16.09 \\ & 16.09 \end{aligned}$	do.	do.	do.	do.	do.	$\begin{gathered} \text { at } \\ \text { mid- } \\ \text { ships } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { do. } \\ \text { do } \\ \text { elev. } \\ 27^{\prime} \end{gathered}\right.$	Not so high.
278	Rapid.	$\begin{array}{r} 353 \\ 426 \\ 459 \\ \hline \end{array}$	b c d	$\begin{aligned} & 33 \\ & 33 \end{aligned}$	$\begin{aligned} & 6.82 \\ & 6.82 \end{aligned}$	$\begin{aligned} & 324 \cdot 6 \\ & 350 \end{aligned}$	$\begin{aligned} & 10.00 \\ & 10.00 \end{aligned}$	Two Horses. \qquad			$\begin{gathered} \text { in. } \\ 9 \end{gathered}$	$\begin{aligned} & \mathrm{in} . \\ & 14 \end{aligned}$		dur. run. bow elev. $1^{\circ} 18^{\prime}$	\cdots
279	Rapid.	$\begin{array}{ll} 12 & 58 \\ 13 & 52 \\ 14 & 43 \end{array}$	b c c d	$\begin{aligned} & 54 \\ & 51 \end{aligned}$	$\begin{aligned} & 4 \cdot 17 \\ & 4 \cdot 41 \end{aligned}$	$\begin{aligned} & 60 \\ & 58 \cdot 7 \end{aligned}$	$\begin{aligned} & 6 \cdot 11 \\ & 6 \cdot 47 \end{aligned}$	do.	do.	do.	do.	do.		$\left\|\begin{array}{r} \text { do. } \\ \text { do. } \\ \text { elev. } \\ \mathbf{1 7} \end{array}\right\|$	Very little swell.
2 SO	Rapid.	$\begin{array}{cc} 301 \\ 56 \\ 1 & 22 \end{array}$	b c d	$\begin{aligned} & 25 \frac{1}{3} \\ & 26 \end{aligned}$	$\begin{aligned} & 8 \cdot 823 \\ & 8 \cdot 65 \end{aligned}$	368	$\left\lvert\, \begin{aligned} & 12 \cdot 94 \\ & 12 \cdot 69 \end{aligned}\right.$	do.	do.	do.	do.	do.	at mid. ships	do. do. delev. 42^{\prime}	
281	Rapld.	$\left\lvert\, \begin{array}{cc} 16 & 52 \\ 17 & 15! \\ 17 & 38 \end{array}\right.$	b	$\left\lvert\, \begin{aligned} & 23 \frac{1}{2} \\ & 22 \frac{1}{2} \end{aligned}\right.$	$\left.\right\|_{2} ^{1} \left\lvert\, \begin{gathered} 9 \cdot 57 \\ 10 \cdot 00 \end{gathered}\right.$	$\begin{aligned} & 383 \cdot 5 \\ & 328 \end{aligned}$	$14 \cdot 04$	do.	$\begin{aligned} & 8 \text { passen- } \\ & \text { gers, and } \\ & 1 \text { ton, } \\ & c . ~ \\ & \text { c. } \\ & 11 \\ & 11 \end{aligned}$	do.	not obs.	not. obs.		not. obs.	.
282	Rapid.	$\begin{array}{ll} 31 & 55 \\ 32 & 15 \\ 32 & 35 \end{array}$	b c d	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 11.25 \\ & 11.25 \end{aligned}$	366	$\left\{\begin{array}{l} 16 \cdot 50 \\ 16 \cdot 50 \end{array}\right.$	do.	$\begin{aligned} & 8 \text { passen. } \\ & \text { gers, } \\ & \text { c. } \\ & \text { c. } \\ & 10 \end{aligned} \mathbf{3} .$	do.	11	$8 \frac{3}{4}$		dur. run. bow. level	
283	Rapid.	$\left\lvert\, \begin{array}{ll} 40 & 38 \\ 41 & 03 \\ 41 & 30 \end{array}\right.$	b c d	$\begin{aligned} & 25 \frac{1}{2} \\ & 26 \frac{1}{2} \end{aligned}$	$\begin{array}{l\|l\|} \frac{1}{2} & 8 \cdot 82 \\ \frac{1}{2} & 8 \cdot 49 \end{array}$	$\begin{aligned} & 319 \cdot 7 \\ & 366 \cdot 5 \end{aligned}$	5	do.	do.	do.	do.	do.		do. do, e!cv. 45^{\prime}	
284	Rapid.	$\begin{array}{r} 00 \\ \quad 22 \frac{1}{2} \\ 145 \end{array}$	b c d	22 22 21	$\frac{1}{10 \cdot 00} 10$	0	${ }_{6}^{14 \cdot 67} 14 \cdot 67$	do.	do.	do.	do.	do.		$\begin{aligned} & \text { do. } \\ & \text { do. } \\ & \text { olev. } \\ & 2^{\prime} \end{aligned}$. Very little swell.
285	Rapid.	$\left\lvert\, \begin{array}{cc}9 & 24 \\ 10 & 15 \\ 11 & 06!\end{array}\right.$	b c d	$50 \frac{1}{2}$ $51 \frac{1}{2}$	$\left\lvert\, \begin{aligned} & 4 \cdot 46 \\ & 4 \cdot 37\end{aligned}\right.$	$\|$61 67	6.53 6.41	do.	do.	do.	do.	do.			

TABLE VIII．－NEW BOAT（14 Experiments）．

A	B	C													P
	Boat's Name.								ب゙̈	品	Drau	$\xrightarrow{\text { ught．}}$			REMARKS． PLACE OF EXPERIMENT： FORTH AND CLYDE CANAL．
236	New Boat．	m．s． 4 28 4 53 5 18 5 41 6 05	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	sec． 25 25 23 29	miles． 9.002 $9 \cdot 001$ 9.782 9.382	lbs． 206.5 185 202.8 223.5	$\begin{aligned} & \overline{\text { feet. }} \\ & 13 \cdot 20 \\ & 13 \cdot 20 \\ & 14 \cdot 35 \\ & 13 \cdot 75 \end{aligned}$	Two Horses．	$\left[\begin{array}{c} 6 \\ \text { gers, } \\ \text { gersen- } \\ 1: \text { and } \\ c . \\ c . \\ 28 \\ 28 \\ \hline \end{array}\right.$	none	not	not obs．	not obs．	$\begin{array}{\|c\|} \hline \text { not } \\ \text { obs. } \end{array}$	Experiments on Keels of different forms． Keel 30f．long，6in．deep， tapered off to a point at 4tt．from the ends．Boat 61 ft .6 in ．long．
287 N	New Boat． $\begin{aligned} & \text { 2 } \\ & 2 \\ & 26 \\ & 2 \\ & 2 \\ & 2 \\ & 2\end{aligned}$	26 28 26 47 27 27 06 27 27 25 27 44	b c d d e f	19 18 19 19 19	$\begin{aligned} & 11 \cdot 843 \\ & 12 \cdot 162 \\ & 11 \cdot 842 \\ & 11 \cdot 842 \end{aligned}$	307 299 290.8 267.8	$\left.\begin{array}{\|l\|} 17 \cdot 37 \\ 17 \cdot 84 \\ 17 \cdot 37 \\ 17 \cdot 37 \end{array} \right\rvert\,$	do．	do．	do．	do．	do．	do．	do．	Heavy rain．
288	New Boat．$\|$3 3 3 3 3 3	35 40 36 15 36 51 37 27 38 $03 \frac{1}{2}$ 8	b c d e e	35 36 36 36 1	$6 \cdot 43$ 6.25 6.25 6.16	$96 \cdot 8$ 86.6 84 81.7	$\begin{aligned} & 9 \cdot 43 \\ & 9 \cdot 17 \\ & 9 \cdot 17 \\ & 9 \cdot 04 \end{aligned}$	do．	do．	$\begin{aligned} & \text { unf. } \\ & \text { strng } \end{aligned}$	do．	do．	do．	do．	
289	New Boat．${ }_{\text {a }} \left\lvert\, \begin{aligned} & 48 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 4 \\ & 50\end{aligned}\right.$	48 $32 \frac{1}{2}$ 48 58 49 $23 \frac{1}{2}$ 49 $47 \frac{1}{2}$ 50 $12 \frac{1}{2}$	b c d e f	$25 \frac{1}{2}$ 25 24 24 25 25	$\begin{aligned} & 8 \cdot 821 \\ & 8 \cdot 82 \\ & 9 \cdot 38 \\ & 9 \cdot 00 \end{aligned}$	$\left\{\begin{array}{l} 193 \cdot 8 \\ 202 \cdot 5 \\ 190 \cdot 7 \\ 186 \cdot 6 \\ 1 \end{array}\right.$	$\begin{aligned} & 12 \cdot 94 \\ & 12 \cdot 94 \\ & 13 \cdot 75 \\ & 13 \cdot 20 \end{aligned}$	do．	do．	do．	do．	do．	do．	do．	
290	New Boat．$\left.\right\|^{4} 4$	$\left\|\begin{array}{lll}46 & 2 & 5 \\ 46 & 54 \\ 47 & 22 \\ 4 \\ 47 & 50 \\ 48 & 191 \\ \hline 5 & \end{array}\right\|$	b c d e f	29 281 271 281 281 1		$\begin{aligned} & 164 \cdot 5 \\ & 178 \cdot 8 \\ & 151 \cdot 6 \\ & 1 \end{aligned}$	$\left\{\begin{array}{l} 11 \cdot 38 \\ 11 \cdot 58 \\ 12 \cdot 00 \\ 11.58 \end{array}\right.$	do．	do．	do．	$\begin{aligned} & \text { in. } \\ & 24 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 21_{8}^{1} \end{aligned}$	do．	do．	Triangular Kecl 20ft．long， 7 in ．deep．
291	New Boat． $\left\lvert\, \begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \\ & 5\end{aligned}\right.$	55 45 56 10 56 33 57 ${ }^{1}$ 57 57 58 21 2 38	b c d e e	25 231 231 24 24	｜l｜l｜l｜l｜	$\begin{aligned} & 180 \cdot 6 \\ & 203 \cdot 7 \\ & 209 \\ & 8 \\ & 191 \end{aligned}$	$\begin{aligned} & 13 \cdot 20 \\ & 14 \cdot 04 \\ & 14 \cdot 04 \\ & 13.75 \end{aligned}$	do．	do．	do．	do．	do．	do．	do．	
292	New Boat．	2 38 2 54 3 11 3 284 3 $46 \frac{1}{4}$	b c d e e f	16 17 17 18 18	$\begin{aligned} & 14 \cdot 06 \\ & 13 \cdot 24 \\ & 12 \cdot 86 \\ & 12 \cdot 50 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 6399 \\ 4 & 346 \\ 6 & 318 \\ 0 & 318 \\ 0 & \\ \hline \end{array}$	$6\left\|\begin{array}{l} 20 \cdot 63 \\ 19 \cdot 41 \\ 18 \cdot 86 \\ 17 \cdot 33 \end{array}\right\|$	do．	do．	do．	do．	do．	do．	do．	
293	New Boit．	$\|$17 18 17 37 17 57 18 17 18 37 18	b c d e e	18 20 20 20 20	$\begin{aligned} & 12 \cdot 16 \\ & 11 \cdot 25 \\ & \left\lvert\, \begin{array}{l} 11 \cdot 25 \\ 11 \cdot 25 \end{array}\right. \end{aligned}$	$316 \cdot 6$ 288 273 27.5	$\begin{aligned} & 6\left\|\begin{array}{l} 17 \cdot 84 \\ 16 \cdot 50 \\ 16 \cdot 50 \\ 16 \cdot 50 \end{array}\right\| \end{aligned}$	（ do．	do．	$\left[\begin{array}{c} \text { not } \\ \text { so } \\ \text { strng } \end{array}\right.$	do．	do．	do．	do．	Keel 20ft．long． 10 in ．deep in the middle，curved to both ends．
294	New Boat．	29 30 30 30 30 30 30 31 31 18	b c c d e e f	25 24 25 24	$\begin{aligned} & 9 \cdot 00 \\ & 9 \cdot 38 \\ & 9 \cdot 00 \\ & 9 \cdot 38 \end{aligned}$	0 203.5 $192 \cdot 8$ 0 $192 \cdot 5$ 8 $196 \cdot 8$	$513 \cdot 20$ 813.75 $13 \cdot 23$ 813.75	－do．	do．	do．	do．	do．	do．	do．	
L295	New Boat．	$\left\|\begin{array}{ll}39 & 15 \\ 40 & 05 \\ 41 & 01 \\ 41 & 55 \\ 42 & 49\end{array}\right\|$	i	521 53 54 54	年｜c｜c｜	9 50 7 49 7 $47 \cdot 7$ 7 48	（ $\begin{aligned} & 6.29 \\ & 6.24 \\ & 6 \cdot 11 \\ & 6 \cdot 11\end{aligned}$	$\begin{array}{l\|l} 4 & \text { Two } \\ 1 & \text { Horses } \end{array}$	$\begin{gathered} \hline 6 \text { passcn- } \\ \text { gers, and } \\ 1 \text { ton, }= \\ \text { c. } q . l b . \\ 28 \\ 28 \end{gathered}$	$\begin{gathered} c \\ = \\ =\begin{array}{c} \text { unf. } \\ \text { not } \\ \text { so } \\ \text { strng } \end{array} \end{gathered}$	$\begin{aligned} & \mathrm{in} \\ & 24 \end{aligned}$	in． $21 \frac{1}{8}$	not	not	Very little swell．

TABILE VHII. continurd.-NEW BOAT.

296	New Bo.it. $\left\|\begin{array}{ll}20 & 49 \\ 21 & 07 \\ 21 & 27 \\ 21 & 46 \\ 22 & 06\end{array}\right\|$	$\begin{aligned} & b \\ & c \\ & d \\ & e \\ & f \end{aligned}$	19 25 19 19	11.54 11.21 11.542 11.542		$\left\{\begin{array}{l} 17 \cdot 37 \\ 16 \cdot .50 \\ 16 \cdot 32 \\ 16 \cdot 92 \end{array}\right.$	do.	d).	d:.	23	$21 \frac{3}{8}$	do.	do.	Keel 10 feet long, 14 in. deep in the midule, being the segment of a circle, the middle of which was 27 feer fiom the middle of boat forward.
297	New Bost. $\left\|\begin{array}{ll}27 & 3 \\ 27 & 57 \\ 23 & 21 \\ 23 & 41 \\ 23 & 07\end{array}\right\|$	$\begin{aligned} & 0 \\ & r \\ & d \\ & e \\ & f \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 2! \\ & 23 \\ & 23 \end{aligned}$	9572 9.882 9.732 9.732	$\begin{aligned} & 237 \\ & 214 \\ & 221 \\ & 250.7 \end{aligned}$	$14 \cdot 31$ 1.373 14.35 14.33	d.	d.	do.	du.	do.	do.	dc.	
298	New Boat. $\left\|\begin{array}{lll}37 & 11 \\ 37 & 51 \\ 38 & 28 \\ 33 & 06 \\ 33 & 45\end{array}\right\|$	o c d e f	4) ${ }_{3} \mathbf{3}$	5.53 6.16 5.8 5.8	73 83 $71 \cdot 5$ 73.5	$8 \cdot 15$ $9 \cdot 04$ $8 \cdot 57$ 857	do.	dJ.	do.				do.	

TABLE IX.-TiE SiVIFT (First SET-11 Exieriments).

Tae numerous and extensive navigable canals by whic.a this king dom is intersected have tenled in a great degrec to cxiaust every natual ssurce fron which water for their suppiy can be obtained; tiais readers the furtier extension of these important channels of commarec diffivalt, and in many cases impracticable. Some canals are altogether supplied by artificial manns at an enormus expense, others oaly in part, whi'st the greater number, depending upon natural sources alone, are monc o: less in want of water, and cunsequantly the navization is interrupted during the driest scason of the year.

To lessen the great want of water by the conmon canal locks has loag been a standing desideratum amoagst enginecr:, and perbaps no subject has engaged more taleat and ingenuity tian the so.ution o. this hy drostatic probiem. Numeroas coitrivances have been resorted to, soms to sava the waole and others part of th, lockage water : many of these are beautiful i.a taeory, and p-rfectly successful upo in simall scale, but when they have bsen tried upoa tice full magnitude they have uniform'y faile.l, c.aiefly fion the circumstance of the scinene invoiving some prodigious moving pluager or caisson, floated or suspended; and in most cases this vessel has been required to ba perfectly water or air tight, and poisel with the utmost precision,-coaditions hardly to be outained in practice, and if attained, the ex. pense alo e would defeat the object.

When the roug' usage to which canal locks are subject is considered, and the ig no. rance of the persoas necessarily employed in the management of them, it dous not seem probable that any conservative lock will succeed until the w.ole upparatus s'all be redused to fixed maso:ry, and no other machinery employed tian common gates and paddles, or sluices; for of all tiat have been invented, and for which upwards of twenty patents have been granted, nonc have been brought into practice for any length of time, except those of the side-pord cla s which save half the water, and waich, tiough less simple than the common lock, consist of the same parts, and are found completely manageable by the persons usially e:nployed on canals. Having been cugaged in the execution of the largest cunservative lock that has been constructed, my mind has becu long engaged in the pursuit of some more simple means of effecting the samz object. for very little reasoning on the subject will be sufficient to show that every common lock full of water, let down from the upiver to the lower level, possesses in itself a physical power or force sufficient to raise an equal quantity of water from the lower level to the height from which it has descended,-action and reaction, cause and effect, beng equal.

The method by which I propose to render the descending lock of water avai able for raising an equal quantity is, in its simplest form, as follows: at a suitable distance from any common lock, in any direction I have a side pond or basin, of an area and depth equai to the lock and communicating with it by a large and long culvert, rather under the
lower level; the diameter and length of this
ailvert must ba such tha: it will contain as nuch water as the losk. each eal of the cul rert is to be provided witi a sluice, showa in 're diagram, Fig. 1, at A and B. (Plate| TI.)
The losk bsiar full or equ:al to the upper revel, and the sile pool emty. ot equil to tie lo ver level, the o, eration will b: as ful-lows:-wici the sluics or valve at A is pened. tise liead of water in the lock will very gradsally put the water contained in the culvert in mosion, tho velosity acceler.1ing by the laws w sich govera the motion of haids. until the levels of the water in the look and side poad coincile; at this time thecoluma of water in the culvert will have ac quired a velocity due to the height fallen, it will then coatinus to move forward with a momentum that will noi bo destroyed, until the water has risen in the side poad to tae reigit from which it descended in the lock, a'bating so newnat for tio las of efect from tace fr.ctios of the water agaiast the sides of the tunnel, \& 5. , the water graduilly coming t) rest, when the slaice \boldsymbol{B} in the side poad mast ba suut to retain it, -the convarse operation is performs l by opening tine stuice B, waen tac lock will fill and tha side poad be. cэmə empty.

The principle of this loak mav be well illas:rated by tae vibrations of a pendulun, w.ith ia like manner, actuated by the force of gravity, falls to the luwest point with an aceelerating velosit γ, when it requires a mo. maxtum suffivient to raise it up the otwer side of the are, nearly to the height from waic.' it fell, the lois being oaly that arising iron the friction of the suspeading point and the resistance ofered by tic air.
It is from tac c.ose analogy it bears to the peadulum that I julge thes culvert shouid oo.tain as mach w ig.at of water as the lozk shat it muy açuire suffivient momentum : it may co.ntain more, but I thiiak it s'ouald not coatain less; thus the quantity of water raised will be equal to the quantity fallen, less the loss by friction in its trausit ;--the friction against the sides of a tube or culvert is simply as the diamster of the tubs, waile the area is as the square of the diameter, therefore the larger tae tubs the less in proportion will be the friction, hence the lirger the lock the more complete will be the effect, and the operation of a mojel canuot be, like most other models of con servative loaks, so perfect as a full-sized lock.

Although a lock upon this principle has not been exccuted upon the full scale, I have tried it in a model of sufficient magnitude to justify the greatest coafidence of its per. lect success.

Tue model consisted of two cisterns five feet long by twe:ty incies wide, having a communcating pipe of eigat inchos in dianetcr aad forty-five feet long; a door valve, having a lever to open it, was fitted to each end of the pipe opening into the cisterns; a graduated scale was accurately placed in cach cistern, and a ready means provided or adding to or taking from the water of eithecistern as oscasion might require-experif ments were then made witi varivus differences of levels, from twelve inches dowawards, the results of which are here stated.

Difference of level 12 inchos-the water rose in the opposito cistern Do.

6
Do.
Wher lried at less differences it apparently rose to the same height, and when both the doars or valves were left open, it continued vibrating uearly an lonurbefose it came quite to rest ; and it is remarkable that the vibra. tions, whether twelve irches or oae-cight of an inc.l, were performed in equal times, namely 10 seconds. Tuis experiment was tried in 1816, and I have annexed a sketch of tice apparatus used for the purpose. Fig.2.
Having described the principle in its simplest form, and given the results of the experimants made with the model, I shall now point out soveral modifications that have oc. curred to me in applying it to the purpose proposed.
I'se column of communication in the model and so far as spoken of hitherto, is straight; bat this would remove the side pond to an iiscoverenient distance from the lock, and ozcapy mac.'. ground. Tais objection is removed by the plan proposed in Fig. 3, wherein the column forms a volute round the side poad or basin, by which means very litle groand is required. and the suices or pad lles at eaci extremity of the culvert are brought very near together.

Fig. 4 siows its application to a double lock; -here the culvert is carried in a large circle, under the bed of the upper level,uns lock forming the side pond for the oher.

The nest and last modfication I shall notice is described in Fig. 5. Tine object here is to dispense with the side pond altogether. A; this is not so obvious as the former methods, it my ba necessary to refer to the letters in the sketci.. Let A be a long culvert, leading from the lock up into the upper level, at B, having a sluice at each end, as before', there is a branch near B leading into C, whic.: is an open cut from the fower level. Now wien a lock fall of water is to be dis. c.larged, the sluice at D is to bs opened, the water will taen run along \boldsymbol{A}, and out at \boldsymbol{C}, into the open eut ; when half the water has run out, a swinging valve, situated at \boldsymbol{E}, must be moved so as to shat the passage into C, and open it into the upper level B; the water having acquired its greatest momen. tam, will continue to run up into the upper level untll the lock is empty, when B must be s!ut. The converse operation is thus per-formed:-opea \boldsymbol{B}, and the water will flow freely into the lock; when that is half full shut B, and the swinging valve E will open, and the column in motion will draw up water from the open cut, until tiac lock is full.Tnis modification, I admit, is open to many objections, and is one I shou'd certainly not adopt ;-:he methods described in Figs. 3 and 4, arc I conceive best adapted for practice.

The principle upon which this lock de. pends is the sam as that of the bydraulic ram of Montgolfir, much used in France for raising water a coasiderable height, by a small fail. Tho exporiments made by him, and those who have followed him, show that the loss by friction is not great, even in his pipes, which soldom exceed two inches in diameter ; this, with the result of my expes ments with much larger pipes, leads me to expect the loss in a culvert of four or five reat diameter will bs very inconsiderakle. A

Plate 6.
Fig. 1.
Side Pond with Straight Culvert.

C, Upper Level. D, Lower Level. E, Side Pond. F, Culvert.

Fig. 2.

Fig. 3.

Fig. 4.
Double Locks with Circular Culvert under Upper Level.

A, Upper Level. B, Lower Level.

Fig. 5.
Without a Side Pond.

P, Upper Level. G, Lower Level. H, Long Culvert. I, Open Cut to the Lower Level.
calculation made also from the table given by Smeaton, of the head of water necessary to overcome the friction of pipes up to twelve inches' bore, at various altitudes, leads to the same result.
The time it would take to pass a barge, or to change the level of a lock upon this prin. ciple, would certainly not be longer than is required at present, and perhaps not so long.

I should imagine that a lock, well constructed upon this principle, having the culvert very smooth, would save nine-tenths of the water, and that the change would be effected in less than one minute. On an attentive consideration of this subject, several methods have occurred to me of making the large sluices, or paddles, so as to be quickly and easily opened and shut, and of various securities in the management of so large a
column in motion, with some necessary compensations, \&c., which would be obvious to any one about to adopt it.
I beg to present the foregoing remarks to the Institution of Civil Engineers, in the hope that the idea therein suggested being generally known may lead to the practical oppe. ration of the plan.

Frum the Reper"o,y of Pareas Inventions specification of rhe patent granted to william gilyard scartil and robert scarth; of leeds, in the countY OF YORK, DYERS, FOR THE MANUFACturing or preparing of a certain BUBSTANCE FOR BLUE DYERS FROM MAterials not hitherto used for that PURPOSE, APPLICABLE FOR DY!NG BJ.UES and other colors. - Sealed February 26, 1836.
To all to whom these presents shall come, \&c. \&c.-Now know ye, that in compliance with the said provi=0, we, the said William Gilyard Scarth and Robert Scarth, do hereby declare the nature of our invention, and the manner in which the same is to be performed, are fully described and ascertained in and by the following statement thereof (that is to say) :
Our invention relates to that fat of the process of dying wherein the substance called woad is used for dying b'ue and oiher colors, and our invention consists in the manufacture or preparation of that substance by the application of shumac peat, oak bark, and the stalks, stems, and other parts of the hop plant, in place of the plant heretofore cultivated and used for that purpose, and which is well known, and called woad.

Having thus explained the object of our invention, we will descritie the manner of carrying the same into effect.

Take any quantity of the shumac of com merce, the same is to be springled with wioter and placed in a heap, in order to produce fermentation, in like manner to the course pursued with the prepraration of the plant heretofore used, commencing with that part of its process at which it is set to ferment, and the result of such fermentation, when shumac is the material operated on, will be so similar to the like process of fermentation of the prodect of the plant heretofore employed, that n workman acquainted with the preparation of the substance called woad by dyers, as heretotore practise, will, when he is applying the material called shuma:, readily judge of the maturity of the process, and when it is re:1dy for the purposes of the dycr. whether li.r dying blue or other color. The great o. ject of the workmin is to see that the heap of shumac is equally fermented in all parts. The product thus obtained will then be suitable, and is to be used in the same manner as woad obtained from the ma:crial or plant heretofore used.

In using peat as a substitute for the pr, duct of the plant heretofore employ.d in the manufacture of the substance used by dyers called wond, peat will in some instances be found to be in such a condition as to be suitable at once to be used by the dyer, and this will rund ly be judged of by taking a sample and testing it; but should the peat not be found suitable tor proceeding at once to the preparation of the woad rat, then the peat is to be pulverized, and submitted to the process of fermentation, by placing it in heaps and applying water, till it becomes of that state or condition to be suitable, and this will readily be judged of hy a workman acquainted with the pro-
duction of the substa ce ns heretofore prac-1 tised in obtaining it from the plant now in usc.

In applying, caid-bark, or the stalks, stems, and other parts of the hop plant in the mannlacturing or producing the sisbstance used by dycrs called woad, aurh oak-bark, and the stems or staliks nad other parts of the hop-plant, are, when dry, to be ground into a powder, and which is to be ir ated in a similar maniner to the porder or balls piepared fiom the plant heretotore conpleyed in order to produce ternuenmation; ind the maturity ot the process. of lertientat:on is to be jutged of in like inanner as if the prepared material from the ordinary plant was being fermented, an! having completed the proress of fermentation, the ria:crial thus produced will then be ready to be prepared or manafictured into the wood-vat in precisely the same manner as heretulore pursued when using the lermented product of this plant called woad, or the plant now cultivated lior the purpose of making or preparing what is by dyers called woad.

Having thus described the nature of car invention, and the manner of currying the same into effect, we would rem.uk that what we claim as our invention is the manutacturing or preparing of the substance callenl woad for blue-dyers by the application of shumac, peat, oak-bark, and the stalks, stems, or other parts of the hopplant, as a substitute ir r the plant called woad, that is, the plant now cultivated, which, being preparell by grind.ng nud tiermentation, is, when applied by dyers for dying blue and other culors, called woad, as above described.-In witness whereot; \&c.

Sait Hay for Manure.-Mr. E. B, of Lynn, Mass., is of opinion that Salt Hay is worth five dollars per ton, for manure, to 1,0 spread oa mowing land. IIe says he oace sircad is quantity of salt lhay in the spring of the year on some fow grass land, and the yield of grass was as great as ever had been under any circumstances. It is very valu. able as litter under cattle and forms a most valuable ingredient in compost. Tac above authority is that of a most careful and honest farmer ; and deserves catire coafidence. Salt hay is generally cstimated at two.tiard. the value of Enghsh. Taere are several hin's o." it ; some of it too coarse for any purpose biat that of litter. We speak of the tinest quality; when well curell it is ca:en with great avidity by tice catt e, and is substantial and nutritous. It will not answel foi milch cows, as it very soon diminishes the secretions of milk. Of course it cannot be often afforded to use it for manure: In cases of extraordinary abundance, however, or low price of English hay; or of damage to the salt hay in curing from the tide o1 rains, it may sometimes be profitably ap. plied as manure. The fact of its successful
application in this way is at least worth re. cording. H. C.

Manual Laeur Schools and Colleges. We are su satisfied of tice importance of the:e American innovations upon the old warn-out system of education in Europe, and of their congeniality with the spirit of our republican institutions, that we take great pleasure in urging upon the community the necessity of eugrating them deeply n:o the structure of all our se:aols and col. L.ges-public or private. As an example of t.eer great uil.ty we refer to an oration re. cenaly delivered by a pupil of the Manual Labor Higis Sctoojl of Elyria, Oaio, as in. serted in tue Advertiner of that place. Tue vigor of thoug.t shown in this dozument, is itself a proof of the invigorating influence of wastesome hinaual labor in uselul ars conjointly with tae exercise of the mind, on more speculative and absiruse studies.Many oi the students, we learn, of this school entirely suppo.t themselves by their manual labor. 'T.心 orator, referring to the olden systems, says truly :
"They ale destructive to human life; though they culivate the tree of science, they sow the seeds of death. Now what is to be done? Shall the c.luse of educati n be,abandoned? Shall the woild liall back intu barbarism? Ur shall science contince to be watered with human blood, and college bowers become the graves of the studen.s?"

Again:

" Docs manual labor have a goed effect upon the body? Evident.y it dues; it enIvens the circulation of the blood, strengthens the digestive powers, and kceps in healdhliul action the whole system; and the most selijus effects olien result Irom continement; the limbs become weak, the operations of the system sloggish, the whole bidy debihated, and some fatal disease soon fullows. Now, if it has theze effects upon the body, it unst have a very strong e.fict "pon the mind, by means of the sympathy which exists b tween the two,-so that, when the body is diseased, the mind is incapable of discharging its functions. Can a fine lady pursue the business of a milliner in a hsuse daubed with fith and cover.d with cubivebs? just as possible for the mind to pursuc its employment in a body made aluggish by maction and tilinted with disease. Apwiher great benefit arising from the manual hator system, is, the pecu: iary .id it renders to the student; and, indeed, withou this aid, the benefits of education would be denied to a great pait of communit."
[Our common echcouls afford abuindant ed cation gintuitously; but they do not give iood and rairrent.]
"Some oppose this systcin ü 3uncis for the very reason which makes the republican and the philanthropist love it ; becauso it unlocks the temple of science, throws open the iron gates, and bids the indigent youth enter and cat of the banquet hitherto provio ded only for the rich."-[Sundey Mornidg News.]

We republish the foliowing extract fron: the Dunkirk Beacon, of April 19th, with the single remark, that the work is only suspended, in consequence of the depressed state of the business of the country.[Editors R. R. Journal.]
new-yori and erie railioad.
We learn with regret, that a rumor has obtained circulation, that the New-York and Erie Railroad Company have euspended their operations, and will abandon the work This rumor has undoubtedly arisen from the late prudential deternination of t:c Directors of that Company, to dismiss a portion of their Engineers, and thereby dimunish a large daily expenditure of money. Tho deep interest filt by the who'e community in the successful prosecution of this work, has very naturally excited fears that it will not go on, and the judicious act, under present circumstances, of curlailing the operations of the Company, has given cur rency to the report, that that work wi.I be relinquished. It gives us pleasure to say, that there is no loundation for the repont that the work will be abandoned. We understand that the surveys in Chautauque and the Cattaraugus, wil! be coatinued, though with a dimnished rumber of Engineete, and that the line of road will be prepared for let ing to contractars, whenever the present general pecuniary alar!?: shall have subsided. It is confidently believid, that the lapse of a few weeks wi.l produce this desirable change in the condition of the country. This great work cannoi be abandoned. The feelongs-the interests, the necessities of the wh.le Scminern section of the Siate, City an / County, requie and will enforce its constructicn.

From the Puaghlicepsic Telegraph.

Mr. Cornelius Husted, of Pinc Plains, in this county,fattened this fall, a "lady pig" and cleven "blooming res; pasibilitics," t.ac weight of which was twenty-four hun lred and thirty-seven pou ads.

DUCTHESS OUTDONE BY TOMPKINS.
We are authorised to state, that Mr. C. H. Morrell, of Lansing. has fattence n sow and her litter of twelve pigs, the aggregate weight of which, in a dressed condition, was 3550 pounds. The pigs were 9 months and 10 duys old.

Tais is the largest product from a single family, of the age, whic.' we have any account of.-[Ithaca C.ironicle.]

Cheap Manure. - "Raise a plafifirm of earth on the headland of a field, eizht feet wide, one foot high, and of any length according to the quantity wanted. On the first stratum of earth lay a thin stratum of lime fresh from the kiln; dissolve or slake this with salt brine from the nose of a watering pot; add immediate'y another layer of earth, then lime and brine as before ; carrying it to any convenient height. In a week it should be turned over, carefully broken, and mixed, so that the mass may be thoroughly incorporated. This com-
posi has been used in Ireland; has doubled the crup of potaties and cabbare; and is said to be fir superior to stable ding."."
I have tried the above manure with some success; but not with siccess equal to the above statement. Something must depend on the kind ot soil to which it is applied.
H. C.

From the Springficld Journal.

Boston Piggery.-About six miles from the city, in West Cambridge, is the Beston Piggery. At least for 700 hogs are here con stintly kept in pork roadition, entirely on the offal from the dwelling honses in Boston. every one of which is visited in turn by the city cait:. The ofid incrrases, and the contractor calculat:s that it will be sufficic hereafter to fatten 1.000 hn ,gs. He nuw recrives for cart loads a day, and pays the city $\$ 3.500$ a year, or about $\$ 2,75$ a lond. He receives three dollars a day for what the hogs leave. The city Treasury loses $\$ 1010$ a year by the operation, and it is suid the man makes three times that sum. The pig pen is an enclosure of fitteen acres, wilh places of shelter from the storm. As the logs aftain their size they are slanghtered on the spot-the fat barielled up, and the lean sold in the city. Accorling to the rule in the country, the contractor should furnish each family in the city once, a vear with a spare-rib, for the food furnished the piggery:

Adyertisements.

FOR SALE AT'THJS OFFICE,

A Practical Treatise on Locmolive Engings. with Engraving:, by the Chevatier De. Pamboult-150 piges la:ge nctavodone up in paper covers 80 as to be sellt thy mail-Price $\$ 150$. Postage for any di-tance under 100 niles, 40 cents, and 60 cts . for inty distance excecding 100 ms .

Also-Vair cie Granff on Railroad Curres, done up as above, to be sent hy mail-Price $\$ 1$. Postige, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thumes Tunnel-Price fifty cents. Pustage as above, 8 cents, or 12 cts.
*** On ihz receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.

10 Ct
AVERY'S ROTARY STEAM EN GINES.-AGENCI.-The subseriber o!ers his services to gentlemen desirins o? procuring Steam Eugines for driving S.ıw. Mills, Grain-Mills, and other Manufactories of any kind.

Engines only will be furnished, or accom. panied with Boilers and the necessary Jaa. chinery for putting them in operation, and an Engineer always sent to put thern up.

Information will be given at ali times to those who desire it, either by letter-or by exhibiting the engines in operation in thiscity.

Inquiries by letter shou d be very explicit and the answers shall be equally so.
D. K.MLNOR,

30 Wall-st.; New York.
transactions of ghe inst:tuticn of civil engineers of great eritain.
The first vo'ume o? this valuable work, has just madt its appearance in this country. A few copies, say trenty-fire or thirty only, have leen sent out, and t.ose have nealy or quite all been disposed of at ten dollars eacll-a price, although not the value of the work, yet one, which will prevent many of our young Engincers from possessing it. In order therefore, to place it withi s their rach, and at a convenient price, we shall reprint the entire work, with all its engravings, neally done on wool, and issue in six parts or n umbers, of about 49 pages each, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the close.

Tae price will be to subseribors three dollars, or fire dollars for two copies-alucays in adrance. Tue first number will be ready for delivery carly in April-Subscriptions are solicited.

ROACH \& WARNER,

Manufanminersm' OPIICAL, MA IIFMMTICAL. and Philonopilical iastruntintis, 293 Bron 'way. New Jowk, wilh kerp ronsinn!ly on hinnd a large and geucral assurimem oi Instruments in their li: e.
Who'rsale Domporand Cunntry Mremanta mpplird will si lVEYING COMPPASSES, BARUMF:TEIRE, THERMOMET:RS, \&e. Eer. of Ihei: own manaficenre, warsanted arcurntr, and a. luwer pricea than cat he had at any other extabitishomen. hlolmanenas made "u urtier aul repaired.

1415

NOTICE TO CANAL CONTRAC.
 TORS.

SEAILED proposals will the recriurd at the office of the Cinumisalo ers of the lllinuis and Mirhigan Cianal al Chilag.o, from this day to the 20th May next for the const "ll'ivill of abrumt eight miles of that part of the constum. duvisuon of the satil Canal. lying between the: Shumber and despla $n \mathrm{~m}$ River.
the

Alse ub-m three and a half miles of the same divi--joro. Ifing bitwectl lie Sagauarke Swamp, and the "raste in crmination of the sa:d division. And also ntrout 'wclue in les of the Western division. lying be.ween the Grand llapids of the, Hlinvis and the wextern bermination of ihe Canal.
The iwn lirst foolinils wffered for contract, ale heavy work. ihe firat deep carli "xcavai.on, fivided iuth hat! mile Sections, the sercond mos ly rucks, and divi.fed imes lhinty chain st clions; the third cansmating ut lyght carth exravation, a li:tle ruck and embandomenil, and is slivided into furty-two chains sert ons
An houd with secminy withe, riquired of he Cor-
 on lic numers g antell in min awarding the cunt acts an the puwers ganted in min awarding the cont acts
in life lowest resp.nsitule bidder, and it is experted It Hie lowest responsitole bidder, and it is experted
that lie I id: of al! those whom are mot 1 e sumblly
 Hie proper i simminials. And upus" the aword of works it in expertid that the parines will inumediathly churimlo wrille ag et ments, or the contracte will be forfilled
Platw, profiles, and ep-rifications, giving all the nercssn y mitirmation, may be ex:mined at the office of the Canal Commasioners, a Clicagu, and thuse wisting to oblaill sultuncts on this wotk, ure requegt--d tu hake a mi- ute perzoual examination of the wurk previuus to senti. g in their prupanals.

A sesi, J NiANiNiNG, Secrrfary.
Chirago, Math 24th, 1837.
1C-3t
TO RAILIROAD CONTRACTORS.
PROPis.uls will be rereivel, at the office of the
 Tr nessec, amil sinset, in Monday, June 12h. 1837 ; lur the grading, maxoury and bridgee, on that purtuen of hie Hiwassee liallruad, which live betweell the River 'T'́nnessee und Hiwassee. A distaice of 40 miles.
The quantily of excavation will be about one milion of cubic sards.
Ths line will be staked out; and, logether with Jrainings and sp-cifications of the work, will be raly fur the inspection of cointractors, on and after the list day of June.

JOIHN C. TRALTWINE,
Engiseer in Chief Hiwawe Railiosd;

TO CONTRACTORS:

James river and kanawha canai.
THERE is still a large amount of mechanical work to let on the line of the James River and Kanawha Improvement, consisting of twenty locks, about one hundred culverts and several large aqueducts, which will be offered to responsible contracturs at fsir prices. The locks and aqueducts are to be built of cut stone.
The work contracted for mnst be finished by the Ist day of July, 1838
Persons desirous of obtaining work are requested toapply at the office of the undersigned, in the city of Richmoad, before the fifteenth of May, or between the fifth and the fifteenth of July.

CHARLES ELLET, J_{r}.
Chief Engineer Jas. Riv. \& Ka. Co.
P. S.-The valiey of James River above Rich mond is healthy.

16-10t

TO RAILROAD CONTRACTORS.

SEALED proposals will be received at the office of the Selma and Tennessee River Railroad Company, in the town of Selma, Alabama, for the graduation of the first forty miles of the Selma and Tennessee Railroad. Proposals for the first six miles from Selma, will be received after the first of May, and acted on by the loard on the 15th May. Proposals for the ensuing 34 miles, will be received after the 10 th May, but will not be cxamined until the lst of August nex ${ }^{\text {b }}$, when the work will be ready for contract.
The line, after the first few miles, pursuing the flat of the Mulberry Creek, occupies a region of country, having the repute of being highly healalifil. It is having the repute of being highly heall watered free from ponds and s wanips, and is well watered -
The soil is generally in cultivation, and is dry, light The soil is generally in cuntivation, and is dry, ight The entire length of the line of the Sel :a and Tennessee Railroails, will be about 170 miles, passing generaliy through a region as favorable for health as any in the Southern Couniry.
Owing to the great interest at stake in the success of this enterprise, and the amount of capital already embarked in it, this work must necessarily proceed with vigor, and I invite the attention of men of indus$1 r y$ and enterprise, both at the North and elsewhere to this undertaking, as offering in the ptospect of continned employment, and the character of the sui! and climate, a wide and desirable field to the conractur.
Proposals may be aldressed eilher to the subseriber, or to Gencral Gilbert Shearer, President of the Company.
ANDREW ALFRED DEXTER, Chief Engineer
Selma, Ala., March 20th, 1827.

RAILWAY IRON, LOCOMOTIVES,\&c.

THE eubscribers offer the following articles for sale.
Railway Iron, flat bars, with countersurk holes and mitrell joints,

 80 " with Spikes and'Splicing Plates adapted the reto. To be sold fiee of duty to state goverunents or incorporated companies.
Orders for Pennsylvania Builer Iron executcd.
Rail Road Car and Locomotivo Engine Tires wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 iaches E. V P.
E. V. Patent Chain Cable Bults for Railway Car arles, in lengths of 12 feet 6 inches, to 13 fect $2 t, 2 \frac{1}{3}$ $3,3 f, 3 t, 3 t$, and $3 \frac{3}{3}$ inches diameter.
Chains for Incliued Plaues, short and stay links, manufactured from the E. V. Cable Bolts, and proved at the greatest strain.
India Rısober Rope for Inclined Planes, made from New Zea land flax.
Also Patent Hamp Cordage fur Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and Evene bluck of Edge Ra: lwsys.
Every description of Railway Iron, as woll as Locomotive Engines, imported at the shortest notice, by the agency of one of our partners, who resides in Fingland for this purpose.
A highly respectablo American Engineor, resides n England for the purpose of inspecting all Locomoives, Machinery, Rai way Iron \&cc. ordered thruugh ts.

28 tr
A. \& G. RA1.STON \& CO.,

AMES' CELEBRATED SHOVELS, SPADES, \&c.
300
150
150
150
100
50
Toge
Bars
ined
50 do
50 do
50
00
do
du
50

50 do do socket Shovels and Spades.
Bars (steel pointed,) mannflactured from Salishury fined iron-for sale by the manufacturing agents,

WITHERELL. AMES \& CO.
No. 2 Liberty street, New-York. BACKUS, AMES \& CO.

No. 8 State strcet, Albany
N. B -Also furnished to order, Shapes of every description, made from Salsbury refined Iron v4-If
S'T EPHENSON,
Builder of a superior style of Passenger Car's for Railroads.

No. 264 Elizabeth street, near Bleecker street,
 New. York.

RAILROAD COMPANIES would do well to exa mine these Curs; a specimen of which may he seen on that part of the New.York and Harlaem Rsilroad
now in operation
J25tt

PATENT RAILROAD, SHIP AND BOAT SPIKES.

* * The Troy Iron and Nail Factory keeps constantly for sale a very extensive assortmentof Wrought Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years successful operation, and now aimost universul use in the United States, (as well as England, where the suhscriber obtained a patent,) are found superior to any ever offered in market.
Rcilroad Companies mny be supplied with Spikes having countersink heads suitable to the holes in irou rails, to any amount and on short notice. Almost all the Railroads now in progress in the United States are
fastened with Spikes made at the above named fac-tory-for which purpose they are found invaluable, as their adhesion is more than double any common spikes made by the hammer.
will ${ }^{*}$ All orders directed to the Agent, Troy, N. Y., will be punctually attended to.

HENRX BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spikes are kept for sale, at factory prices, by I. chants in Asend, Albany, and the principal Iron Merchants in Albany and 1 roy; J.I. Brower, 222 Water street, Neiv.York; A. M. Jones, Pluiladelphia; Janviers, Baltimore; Uegrand \& Smith, Boston.
P. S.-Railruad Companies would co well to furward their orders as eurly as practicable, as the subscriber is desirous of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes. (1J23am) H. BURDEN.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build, on his Patent Plasi, would respectfuliy infurm Railroad and liridge Corporatiuns, that he is prepared to make cuntracts to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above planare to be seen at the following localitics, viz. On the main road lesding from Baltimore to Washington, iwo miles front the furmer place. Across the Metawamkeag river on the Military road, in Maine. Un the national rond in Illinois, at sundry points. Onthe Baltimore and Susquehanna Rrailroad at three points. On the Hudsun and Patterson Railroad, in two places. On the Bustonand Worcester Kailroad, at reveral points. On the Buston and Providence Railroad, at sundry points. Acruss the Contoocook river at Henniker, N II. Across the Suulegan river, at Milford, N. H. Arross the Connecticut river, at Haverliil, N. II. Across the Contoocook river, at Mancock, N. II. Across the $\mathbf{\Lambda} \mathrm{n}$ droscoggin tiver, at Turner Centre, Maine. Across the Kennebec river, at Waierville, Maine. Across the Genesse river, at Equakichill, Mount Morris, Vt. Across the Connecticut River, at Lebnnon, N. II. Across the mouth of the Broken Straw Creek, Penn. Across the mouth of the Catarangus Creek, N. Y. A lailroasl Bridge diagonally across the Eirie, Canal, in the City of Rochester, N. Y. A Ralroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 leet in length; one of the spans is over 200 feet. It is probably the firmest wooden bridge ever built in Arncrica.

Notwithstanding his present engagements to build between twenty and tbirty lailroad Bridger, and sevoral common bridges, several of which are now in prugress of construction, the subscriber will promptly attend to business of the kind to much greater extent and on liberal terms.
Rohester, dan. 18 ̈n, 183%.
MOSER LONG.

ARCHIMEDES WORKS. (100 North Moor atreet, N. Y.)

NEw-Yore, February 12th, 1836. THE undersigned begs leave to inform the proprie-
ors of lailroads that they are prepared to furnish all tors of liailroads that they are prepored to furnish al kinds of Machinery for Railroads, Locomotiye Enginey of any size, Car Wheels, such as are now in sugceas-
ful operation on the Camden and Amboy Railroand ful operation on the Camden and Amboy Railroad, none of which have failed-Castings of all kinds, Whoels, A xles, and Buxes, furnished at shorteat notice. 4-vtf
H. R. DUNHAM \& CO.

NEW ARRANGEMENT.

ropes for inclined planes of railroads.

WE the subscribers having formed co-partnership under the style and firm of Folger \& Coleman, for the manufacturing and aelling of Ropes for inclined planes of railroads, and for other usc s, offer to supply ropes for inclined planes, of sny length required without splice, at short notice, the matufacturing of cordage, heretofore carried on by S.S. Durfee \& Co., will be done by the new firm, the ame superintendant and machinery are employed by the newf firm that were employed by S. S. Durfee-d Co. All orders will be promptly attended to, and ropes will be shipped to any port in the United Ststes. 12th month, $12 \mathrm{ih}, 1836$. Hudson, Columbia County State of New-York.

ROBT. C. FOLGER GEORGE COLENIAS,

33-tif.
MACHINE WORKS OF ROGERS, KETCIIUM and GROSVENOR, Paterson, New. Jersey. The undersigned receive ordera for the following articles, manufactured by thirm, of the most superior description in every particular. Their works being extensive, and the number of hands employed being large, they are onahled to execute both large and small orders with promptness and despatch-

RAILROAD WORK.

Locomotive Steam-Engincs and Tenders; Driving anil other Locomotive Wheels, Axles, Springs atrd Flange Tircs; Car Wheels of east iron, from a vsriety of patierns, and Chills; Car Wheels of cast iroa; with wrought Tires; Axles of best Americah refined iron ; Springs ; Boxes and Bolts for Cars.
COTTON WOOL AND FLAX MACHINERY,
Of all deacriptions and of the most improved Patterns, Style. and Worknesnship.
Mill Geering and Millwright work generally; Hydraulic and other Presses; Press screws; Callen ders; Lathes and Touls of all kinds; Iron and Brass Castings of all deacriptions.

ROGERS, KETCHUM \& GROSVENOR
Patterson, New.Jersey, or 60 Will strer
Patterson, New-Jersey, or 60 Wallstrert, N.

ALBANY FAGLE AIR FURNACE AND MACHINE SHOP.

WILLIAN V. MANY manufactures to order, iron castings for Gearing Mills and Factorica of every description.
MLSO-Steam Engines and Kailroad Castinge on every description.
The collectiun of Patterns for Marhinery, is nof equalled in the United States.

AN ELEGANT STEAM ENGINE AND BOILERS, FOR SALE.

THE Steam Engine and Boilers, belonging to the STEAMBOAT HELEN, and now in the Novely yard, N. Y. Curisisting of one Ilorizontal high preseure Eingine, (but may be made to cordense with little additional expense) 36 inches diameter, 10 feet struke, with latest improved Piston Valvee, and Metalic packing throughout.
Also, four Tubular Builers, constructed on th English Locomotive plan, containing a fire surface of over 600 feet in each, or 2500 feet in all-will be suld cheap. Alt communications addressed (post paid) tothe subscriber, will meet with due attention.

HENRY BURDEN.
'I'rus Iron Works, Nov. 15, 1836.

NOTICE TO CONTRACTORS.
 WESTERN RAILROAD.

PROPOSALS will be received at the uffice of the Western Railroad Corporation, in Springtield, until the loilh May, for the grading and masorry of the second and third divisions of the road, extending from East Broukfield to Cornecticut river; at Springfielda distsnce of 35 miles
Plans, Profiles, \&cc. will be ready for examination
af er the first of Nay.
W. H. SWilt N. Recident Engincer.

PUBLISHED WFEKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DOLLARS PER ANYUM, PAYABLE IN ADVANCE.

SATURDAY, MAY 6, 1837.
IVOLUME VI -No 18.

AMERICAN IKAILROAD JOURNAL.

 NEW-YORK, MAY 6, 1837.REMOVAL.-The Office of the RAILROAD JOURNAL, NEW.YORK FARMER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-street, basement slory, one door from William-street, and opposite the Bank of America.
\mathcal{W} SUBSCRIBERS in this City, who change their residence on the 1 st of May, will please give notice at the office, 30 Wall-street, Basement Story. It is desirable that the notice should specify their late and future residence:

The following notice has been accidentally overlooked by us, until this time, therefore, ask for it particular attention:

NORWICH AND WORCESTER RAILROAD.
NOTICE to Contractors.-Sealed propoants wilt be received at the Office ot the Nurwich and Worceater Railroed Company, in Wurcester, from the lat to the 10 hh of May nexi, for the Grading and Masonry of the road from Worcester throngh the towne of Auburn, Oxford and Webster to the Conneeticut State line-a distance of 18 miles.
The line will be ready for examination on the Ist of May, when Plans, Profiles, \&c. may be seen al the Offre in Worcester.

No ardent spisits to be used on the work.
Contractors are requested to present along with their proposals the usual certifioates of characier and ibiity.
Worwich, Conn. April 14, 1\&J才.
machinery for pretaring railroad TIMBER:

We give publicity to the following communication, as the best mode of answering the desire of the writer.

> Pembroone, Genesee Co., April $27,1837$.

Messrs. Minor \& Schaeffer.
Gentlemen-On perusing the Journal of 24th December last, I found some remarks of William Dewey, Esq., in his Report up on the Watertown and Cape Vincent Railroad, which drew my attention to the subject of Machinery for preparing timber for the foundation of Railroads.

Having some knowledge of Mechanics' as also of Engineering, I :urned my attention to the subject during the past winter, and have constructed a model. The design of which is to be attached to a Locomotive, and placed on a section of the road finished for that purpose. A travel of 55 rods will transport; cut and prepare two sills, and four ties to be delivered to the workmen at the end of the track. And as the track is extended will prepare a large load of timber. The sills are straitened on one side, or split in the centre. Ties split or quartered as may be desired and rails and ribing sawed of any size required.
The machine is extremely simple not likely to get out of repair. Requires but two hands to manage it, and may prepare a load of timber without s :oping to shift the Logs. The cost of Machine will probably fall below $\$ 500$.
I take the liberty of addressing you, gen leman, for the reason that I suppose i: something likely that Mr. Bewey may not be in the city. You will oblize ras there.

Gore by communicating these lines to hiin, and as I am about to construct a full size machine under the patronage of the Buffalo and Eatavia Railroad association. Mr. Dewey would oblige me much by giving it a personal examination when finished.

A communication from M: Dewey; would also be very acceptable.

Very respectfully,
Your obedient servant,
Amos TyRell, JR:
Frocts the Athens, (Tenn.) Joutnal. HIWASSEE RAIL ROAD.
It will be seen by the subjoined letter; from the President of the Wetumpka and Coosa railroad, that that Company is anxious to connect their road with the Hiwasse road, which we have not a doubt will be effected in if few years: While on the one hand we are rejoiced to see a spirit of enterpriso prevailing amongst our citizens; on the other we cannot help being astonish: ed at finding some amongst us who yet remain so blind to their own interest, and the prosperity of East Tennessee, as to be guil: ty of throwing all the difficulties in the way of the improvement of their country that they are capable of.

In our view, the Hiwassee railroad will be the most grand and impotant link in all the railroads of the United States. In Virginia and North Carolina a number of railroad ${ }^{2}$ are constructing and in contems plation, which will be extended to the Ten. nessee line; and, finally, ceanected the great Charleston and Cicinnnati railroad; and in Georgia and Alabama a number are constructing, all converging to a point, or nearly so, near the line of our State, and all these roads; on the north, south, east and west will be connectod together by the Hiwassee road. The Charleston snd Cin. nati road will ultimately be extended to the northern lakes, and numorous other roads northern lakes, and numorous other roads
from the intorios of the whole north-wo
will be constructed and connocted with ${ }^{-} \bar{t}_{\text {; }}$ the New-Orleans road will also be extended to and connected with tho Charleston and Cincinnati road; and thus the whole Atlantic sea-board and the northern lakes will bo connected together by the Hiwassee road.

Wetumpka; Feb. 6, 1837.

Gen. S. D. Jacobs, -
Dear Sir: Your letter of the 10th of last month, addressed to John D. Williarss, Esq. was 'aid before the Board of Directors for the Wetumpka and Coosa railroad company, and by them I have been instructed to communicate with you as to our views and intentions, and to give you such information as would probably be interesting to your company. 'Ihe Wetumpka and Coosa railroad company was chartered in 1835, with power to run a railroad from Wetumpka to the mouth of Beaver creek, on the Coosa river, being at the head of the shoals in said river. During the last session of our Legislature, our charter was amended, and the right given to run the road on to Gunter's landing, or to the Genrgia line, or both, if the company should deem it proper. The object of our company is to build the road to one of said points as early as practicable. We have alreally had the road surveyed upwards of one hundred miles, and our engineer, Capt. D. H. Bingham, and corps, are now lucating the first thirty miles, ready for contract, as advertised. upon the first of next month. You speak of a connection with our company. Upon that point we should be pleased to hear from you more defin.tely as to the nature and terms of the connexion you wish. Your propositions have been received with pleasure by our Board, as opening to our view the accomolishment of an olject to which we bave looked with great anxicty and solicitude. We are well a ware of the benefit to be hoped for from the completion of the railroads now in progress and contemplation in our country, and to none do we look forward with more pleasure or more hope of advantage to our immediate section of the country, than the Hiwassce railroad, and to show you the feelings and wishes of our Board, by their order I herewith transmit you the following resolutions adopted on the subject ol your communication :

Whereas, the Wetumpka and Coosa railroad company have it in view to extend their road so as ultimately to form a conjunction with the Charleston, Cincinnati and Louisville railroad, near Knoxville, in Tennessee: And whereas, a communication has been received trom the President of the Hiwassee railroad company, asking for the ultimate views and determination of this company in relation to such extension -Therefore,

Res lved, That this company deem it expedient to extend our road to the Tennessee line, and that we will heartily co-operate with the Hiwassee railroad company, in opening a communication from Knoxville. Tennesse, to Wetumpka, Alabama:-

Resolved, That this company appoint an agent to visit that part of Georgia and Tenneesee through which our road will run,
with authority to make such arrangernents with any company in Georgia, whose road shall bs in the direction of the proposed extension of our road, and with the Hiwassee railroad company, as may be necessary to effect the objects of this company.

Resolved,' That the President of this company transmit a copy of these resolutions, with such remarks as he may deem necessary to accompany them, to the President of the Hiwassee railroad company.

The agent alluded to in the above resolutions, will probably not visit you befure we hear from you a again.

Very respectfully,

Your obedient servant, ALWIN A. McWHARTER,
President of tho Welumpka railruad company -

OCEAN BTEAM NAVIGATION,

An article in the London Nautical Magazine, for March, furnishes the following notice of preparations which are making in England, in reference to the establishment of regular steam packet communications between :hat country and the United States. Tho boats, it will be seen, are to be of extraordinary dimensions, with machinery of corresponding power.

There are two vessels at present building to run direct from Bristol and London to New-York. The great Western Saip Company's vessel is building at Bristol, and is of the following dimensions and power:

Length between Perpendiculars, 316 fl
Beam,
Depth in hold,
$35{ }^{\prime \prime}$
$22^{\prime \prime}$

The engines are 400 horse power, having cylinders 73 inches diameter, and 7 feel s:roke.

This noble ressel is expected to be ready in the course of the approaching summer, and will most probably make her first voyage in August next. She is intended to carry twenty-five days' fuel-a quanity guite sufficient to ensure the regular pertormance of the voyage in all weathers.

The British and American steam navigation company, whose head quarters are in London, have contracted with Messrs. Curlung, Young \& Co. of Limehouse, for a vessel of 1,795 tons, builders' measurement, and of the fullowing dimensions and power:

Length between Perpendiculars, 335 ff . Bzam,
Depth:
27."
to have engines of 460 horse power, having cylinders 76 inches in diameter, and 7 feet stroke. The engines are fitted to work either with or without Hali's con !enser, at the option of the engine ar. This magnificent vessel, the largest steam vessel ever yet propelied, will have capacity for twen' y-five days' fuel, 800 tous of measurement roods, and 500 passengers.

We sincerely wish both the Eristol ves sel and the London one all manner of success ; and when we reflect on the immense intercourse between this country, the United Statez and Canada-sixty thousand people having landed at New. York from ihe 1si January to 1st September, and twen ty-seven in Quebec last year-the increase that will naturally take place when the
passage is shortened at 15 days, instead of 37, the present outward average passage of the New-York packet ships, we do not think that any, out of the numerous plans before the public, hold out stronger induceinent to the capitalist than such undertakings.

It is difficult to estima:e the national benefit that will accrue to both countries by the establishment of steam communication between them - the one with an overlowing population, the other with inexhaustible reserves of fertile lands-the one the greatest manufacturing, the other the most extensive producing country, in the world-both talking the same language, and allied by blood, religion, and feeling, with one another. Thus much, we may affrm, that it will greatly improve both countries, and render perpetual the peace that now so liappily exists between them.

New.Jersey Rallrobd.-We find in the Newark Daily Advertiser the following account of the business of this road.

We extract the subjoined sta'ement of the business of the N. J. Railroad trom the forthcoming Directory of this city :
Statement of the number of passengers carried on the $\mathbf{N e w}$-Jersey Railroad, from its opening, Sept. 15th, 1834, to April 9th, 1837, furnished from the Books of the Company.
During the first șeven and a half months there were carried.

60,064
During the year ending lst of May, 1836,
During the year ending 9th April, 1837,

339,351
The Railroad opened for use from Rahway and Elizabethtown to New. York on the 1st January, 1836, and from East Brunswick (oppsite New-Brunswick) July 10th, 18:36. The whole of the present line of Railroad lhas not been in use a full year, and as the viaduct over the Raritan is not yet finished, the business arising from the extended part is but partially developed. The number of passengers which have been carried to and from Newark and E. Brunswick and the in. termediate places, exclusive of the passengers between Newark and N. York, during the year ending April 9th, 1837, is 102,931 The number carried between New-
ark and N. York in the same line, 236,420
Whole number during the year as above stated,

339,351
The increase of passengers for the first quarter of the present year, over the first quarter of the last year, is as follows :-
In January, Febuary, and March,
1836,
41,741
In January, February, and March, 1837,

69,228
The increase would have been greater if the business of the cities of New-York and Newark and the country generally, had not jeen so depressed, bat the vast number of passengers compared with what were carri3 d before the construction of the Railroad, fully proves that the travelling facilities-now unjoyed by Newark has greatly increased the intercourse of Newark with New.York, and the different places on the line of the

Railroad. A furthcr increase may be anticipated from the construction of the continuous line of Railroad across the State, for the completion of which an Act was passed at the last session of the Legislature of this State, and accepted by the Joint Companies, who are required to finish this cornes:ing link of Railroad as soon as the New.Jersey Railroad is in use to New-Brunswick. Tuis work will not only be highly advantagcous to this city in its scuthern intercourse, but beneficial to the Sta ${ }^{\circ}$ e and to the whole connmunity, and will greatly augment the revenue of the New.Jersey Raitroad and Trans. portation Company.

The Calais and Milltown Railroad was commenced upon last week, and it is expected the road will be ready for cars in Octoher next.-[Portland Advertiser.]

The Canals.-The nimber of boats cleared and toll received by the collector of tolls at Albany, on the three first days of canal navigation in the years 1834, '35, '36 and ' 37 , are as follows :

1834	boa	80		5,097 23
1835	"	83	"	7,056 44
36	"	62	"	5,800 40
837		140		14,988

This result is certainly calculated to excite some surprise, when the prevailing depression in money matters is considered.
[Albany Argus.]

From the Rushville Illinois Journal.

The Rughille Rallroad.-The Engineer W. Pollock has commenced examination and survey of the route for this road, to the Illinois River. We are much pleased with being able to announce this fact to our readers. There cannot now renain a doubt but it will be prosecuted with vigor to its final completion, and which will be a llink in the great internal improvement which is about being commenced to connect the trade of this section of the State with those of Lake Erie and of the eastern cities, by the means of the Maume Canal

The Railroad from Beardstown, to Springfied, the future seat of Government, and thore to insect the State Railroad from the Wabasb. This means of communication, will cut off at least one thousand miles of difficult navigation, and will give to our merchants and others, a near and safe communication to the Lakes and the cities of New-York and Philadelphia. By this means the distance and expense of transportation will be reduced. This enterprise speaks much in favor of the knowledge and forecast of our enterprising fellow citizens-as they are unaided by any enactments of our Legislature. 'That the stock will be profitable, there cannot now remain a shadow of doubt. It will be the great thorough fare from the Wabash to Mississippi, and passing the seat of Government of this State. And again it is on the Route laid down for a Railroad foom Alton via Carlion, Jacksonville and Beardstown to Rushrille, Monmouth, on to Galena. Thus we will have the wealth of the mines, soil \&e., passing on our Easilroad.

This is not ideal or inamegnary idea?-they are self erident.
When it is known that for six or seven months in the year that all the miving region are shut out from market, by ice or low water-which cannot much longer be the case. Then we eay that the stock must and will be profitable.
bailroads and improvements in micifgan.
We copy the following letter to the Editors of the Daily Express, to show the spirit of the people of Michigan, in these hard times. It is highly iuteresting to all kinds of mechanics.

From the New York Daiiy Express.
Detroit, April 10, 1837.
The Spring has come forth here with all its " melfing influences," and our river,
with the exception of an occasional flo with the exception of an occasional floa ' ing mass, from the upper lakes, is entirely free from ice. The navigation is open as far as Cleveland, and we are looking daily for a water conmunication with Buffalo.Business has already made a lrisk move, and we have a grodly promise of a busy summer. The contracts and projects for building during the coning season, are very numerous, and not a few buildings are already being erected. This has created a great demand fur mechanics and laborers. They ask, and receive their own prices.This demand is not like to be supplied, as I understand the contractors upon the railroad between this pl:ce and Ann Arbor require a very large number of workmen, for the construction of that road, and are offering the bighest prices. Lat Eastern mechanics and laborers look this way., There is no place where "working mein" will meet with a warmer reception than in Detroit.
Some adequate idea may be formed of the growth of our city, from a Directory lately published, from which I extract a few Statistics. In March, 1834, there were but 1973 inhabitants, and 541 dwelling, and stores. By the sensus taken early in the winter, it was ascertained that there are 9763 inhabitants, and exceeding 1300 stores and dwellings. Thus the population in two years and a hatt, has nearly doubled, and the number of buildings more than doubled!
The railroads-one running north-west, to Pontiac, another west to Ann Arbor, being a portion of the Detroit and St.Joseph's route, are under contract as far as the places above mentioned. It is believed that they will both be in operation, a part of the way, during the Summer. The Puntiac road, early in the seasun. A turnpike company was chartered by the last Legislature to construct a timbered road, between this city and Pontiac.' One of the company informs me that so soon as the weather permits, the turnpike will be commenced, and ir laborers can be had, finished by the middle of the Summer. The roads leading in every direction from Detroit, have hitherto been culpably neglected. They have been left in a condition both disgraceful to oar public spirit and deeply injurious to the interests of the city. The attention of the
citizens has been called to the subject during the past winter, and meetings held to devise the best means of remedying the evil. It is hoped that the public feeling will not sleep again until all of our great highways are at least in a passable condition. I extract further from the Directory. "There are seven churches in Detroittwo Catholics-one Episcopalian-one Presbyterian-one Methodist-Gne Baptist, and one German Lutheran. Four of the edifices for worship are built with tasto and magnificence. Among the public buildings are the State House, City Hall, Theatre, Museum, Circus, Michigan Garden, and three Markels." There are two daily and one semi-weekly newspapers-a college (St. Philips') under the direction of the Catholic Bishop-two or three femalo seminaries-a number of literary, scientific, and charitable institutions-and three banks, - all possessing in an eminent degree tho confidence of the people in regard to soundness and stability.'"
I have given you in a former letter some statistics showing the increased trade of Detroit during the past year. 1 cannot, however, refrain from ayain alluding to tho astonishing increase of commerce and na. vigation upon our Lakes. It is an unanswerable argument to thase cavilers who conteud that the wbole prosperity and business of the West is but excitement and speculation, having nothing permanent or valuable.
In 1819, there was but one steamboat on the lakes, and this one sufficient for tho trade at that period. There was last summer thirty steamboats of the largest size in navigation of the lakes between this port and Buffalo. Seventeen of these, forming an aggregnte of 2080 tons, are owned in this city. These thirty boats, with one hundred and fifty vessels of other denominations, did not suffice for the trade of tho last summer. Of the one hundred and fifty vessels, eighty-four,amounting to 5147 tons, belong to this port. Very justly does the author of the Dircetery conclule-" This affords a flattering and unequivocal proof of the prosperity of the capital of Michigan, and gives a glumpse of what it will be ten years hence."
I ought.t perhaps to add that a large number of vessels and steamboats have been built during the past winter, or are now building. There is now constructing in one of our yards a steamboat larger, I believe, than any at present floating upon the takes. I intended whea I commenced this letter, to say something of the interior of this State, whence I have just returned from an excursion of two weeks. I inust, however, defer what I have to say to a future letter, as I find myself at the end of the sheet. I will barely add, that I have been delighted with the beauty of the country the fertility of the soll-the thiving and bustling aspect of the villages-and the universal air of enterprise, inteiligence, and contentment through the whole country that I have visited. I have come back more than ever convinced of the abuadant resources and wealth of Michigan.

Yours, \&e.
W.
transactions of the institution of civil enginezis.
TABLE IX. continged.-THE SWIFT (First Set).

A	B	C	D	E	F	G	H	I	J	K	L	M		0	P
									帯	B	Drau	St'.			Remaris. place of experment, GLASGOW ANDPAISLETCANAY
306	Swirt.	$\left\|\begin{array}{ll} 29 & 56 \\ 30 & 37 \\ 31 & 17 \end{array}\right\|$	${ }^{\text {b }}$	41	$\begin{array}{c\|c} \dot{5} \cdot 49 \\ 5 \cdot 42 \\ 5 \cdot 2 \end{array}$	$268 \cdot 8$	$\begin{array}{\|} 8.05 \\ 7.95 \end{array}$	do.	do.	do.	do.	do.	do.	$\left.\begin{array}{r} \text { do. } \\ \text { do. } \\ \text { elev. } \\ 58^{\prime} \end{array} \right\rvert\,$	
$\begin{gathered} 307 \\ \vdots \\ \hdashline \end{gathered}$	Swirf.	$\begin{array}{ll} 38 & 50_{2}^{2} \\ 39 & 37 \frac{1}{2} \\ 40 & 25 \end{array}$		$\begin{aligned} & 47 \\ & 47 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 4 \cdot 79 \\ & 4 \cdot 76 \end{aligned}$	$\begin{array}{l\|l\|} \hline 91 \cdot 2 \\ 5 & 76 \cdot 6 \end{array}$	$\begin{aligned} & 7.02 \\ & 6.95 \end{aligned}$	do.	do.	do.	do.	do.	do.	do. do. dever $\mathbf{3}^{\prime}$,
308	Swift.	443 1422 139		$\begin{aligned} & 28 \\ & 26 \frac{1}{2} \end{aligned}$	$\begin{aligned} & 8.03 \\ & 8.49 \end{aligned}$	$\left.\begin{array}{r\|c\|c\|} 306.6 \\ 9 & 358.8 \end{array}\right\|_{1}$	$\left\{\begin{array}{l} 11 \cdot 79 \\ 12 \cdot 45 \end{array}\right.$	do.	do.	light	do.	do.		$\left\|\begin{array}{c} \text { do. } \\ \text { do } \\ \text { elev. } \\ 1 \circ 20 \end{array}\right\|$	-
309	Swift.	52 52 52 52 59 58	$\left\lvert\, \begin{aligned} & \text { b } \\ & c \\ & d\end{aligned}\right.$	34 34	6.62	$\begin{aligned} & 2341 \cdot 8 \\ & 2335 \cdot 5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 9.71 \\ & 9.71\end{aligned}\right.$		passeners,\& 2 t . $5 \mathrm{cwt}_{0}=$ 9. $1 b$ 25						

TABLE X.-ZEPHYR and RAPID lashed together.-(2 Experiments.)

A	B	C 1 D	E	F	G	H	I	J	K	L	M	N	0	\mathbf{P}
							Tractive power.		$\begin{aligned} & \text { 를 } \\ & \hline \end{aligned}$	Drau	St.			Remaris. place of explriment, forth and clyde canal.
310	$\begin{aligned} & \text { Zephyr } \\ & \text { and } \\ & \text { Rapid } \\ & \text { lashed } \\ & \text { together. } \end{aligned}$	$\min . \sec$ 53 20 b 53 5 c 54 28 d 55 $03 \frac{1}{2}$ e 55 40 f	$\begin{gathered} \text { sec. } \\ \mathbf{3 4} \\ 34 \\ 35 \frac{1}{2} \\ 36 \frac{1}{2} \end{gathered}$	miles. 6.62 6.62 6.34 6.16	Ibs. $297 \cdot 5$ 264.4 231 501.5	$\begin{array}{\|c\|} \hline \text { feet. } \\ 9.71 \\ 9.71 \\ 9 \cdot 30 \\ 9.04 \\ \hline \end{array}$	Two Horses.	$\left\lvert\, \begin{array}{lll} 7 & \text { passen. } \\ \text { gers, } & = \\ c . & q \cdot & l b \\ 9 & 2 & 1 \end{array}\right.$	not obs.	in. 7	6	not do.	not obs.	
811	do.	21 46 b 22 07 c 22 28 d 22 $52 \frac{1}{2}$ c 23 17 f	$\left\lvert\, \begin{aligned} & 21 \\ & 21 \\ & 24 \\ & 24 \frac{1}{2} \\ & \end{aligned}\right.$	$\begin{array}{r} 10.71 \\ 10.71 \\ 9.18 \\ 9.18 \end{array}$	472 $521-8$	$\left\|\begin{array}{l} 15 \cdot 71 \\ 15.71 \\ 13 \cdot 47 \\ 13.47 \end{array}\right\|$	Three Horses.	do.	do.	do.	do.	do.	do.	In this experiment the pu'l went above the range of the Dynamometer in the first two stake-intervals.

Table XI.-THE SWIFT (Second Ser.)

actual tractive power obberved in working the bwift eight miles along the glasgow and paisley canal, at the ordinary passenger-speed, or nine miles per hour.

	Remaris.		Remares.		Remares.			Remaris.
170	Load-Eleven passengers	225		350		240		pass Bridge.
400	and 2 ton. 15 cwt ., equal	215		240		310		pass Bridge.
400	: to 69 cwt 3 qr .20 lb .	210		300		260		
280	from Half-way House to	225	-	305		235		
260	Glasgow, and one pas-	195		270		245		
265	senger additional from	220		235		240	pass	Course-Place
240	the Culvert to Glasgow.	285	pass Bridge.	230	.	230		here the Experi-
230	pass Mile-stone.	270		235		215		ments were made.
240		230	-	240		215		
230		220		235		240		
220		235	pass Mile-stone.	225		210		
210		230		225		200		
205		235		240	:	235		
210		245		230		200		
215		270		260	Barge passes.	120		pass Aqueduct.
215		260		250	Barge	120		
210	.	230		275	turn.	150		
220		205		250		150		
245	turn corner.	215		230	pass Mile-stone.	130		
235		235		230		120		
265		235		210		100		;
245		300	pass Narrow Bridge.	215		110		
205		360		235		110		
220		350		235		110		
200		300		225		1001		
200		240		215		90		
195		290	;	215		100		Port Eglinton.
190		320	A Boat passed	215				
890	$\begin{gathered} \text { L. on } \\ \text { ewt. } \end{gathered}$	300 270	A Boat passed.	230				-
880	. bo on agin.	320		235	:			
230	:	250		270				
220	-	340	pass Bridge. Bad turn.	260		I		

TABLE XII,-THE ZEPHYR (Second Sxt).
actoll tractive powir observed in working the zephyr Eight miles along the forth and clyde oanal, at the ORDINARY PASSENGRR-SPEED, OR NINE MLIER PER HOUR.

ON the hoces commonly used for aiver and canal navigation. by mr. w. a PROVIS, M. INST. C. E.

1st. Simple dam locks.

The earliest approximation to what is now known by the name of lock, consisted of a simple dam firmed across the bed of a river, so as to raise the water to such a height as to allow vessels to float along it. Where the river had a considerable fall with a strong current, it was necessary to have these dams at short distances from each other, otherwise the requisite depth of water could not be obtained. As the whole space between two of these dams was in fact the lock, it was necessary in passing from one level to another, to run down the water for the whole of that distance, thereby causing considerable delay, and a waste of water that would now be considered a serious evil. In China these dams are very common; they have also been used on the continent of Europe, and what is not a little extraordinary, are at this very day in use in our own country. My brother having given me a description of one of these whicla he saw on the river Ouse, near Tempsford, in Bedfordshire, I here insert it. The river is somewhat contracted in its breadth by a wall on each bank, between these two a third, or middle wall, is built, with cutwater ends. At the middle of each of the passages formed by these walls a sill is extended across the bottom of the channel, and pile planks are driven along its upper side, with the necessary sheeting to prevent the water getting under it. On one of the side walls a deam similar to the balance of a common canal lock gate is placed, which turning horizontally upon an axis, Qae end is made to abut against a
projecting piece of timber which is fixed in the middlo wall; this beam and the before mentioned sill form the top and bottom of a frame, on the upper side of which a row ot vertical planks is placed, one at a time, so as to f . rm the working dam ; the other space has a piece of timber fixed at the top of its two side walls, corresponding with the sill below, and vertical planks are placed between these in the same manner as at the ather opening, but as vessels are not intended to pass through more than one of the open. ings, the upper beam in the other is fixed. The use of this second space or opening is to allow the water to be run off more ex. peditiously, particularly during sfloods. In going up the stream, a vessel passes the place where the temporary dam is to be formed, and then the moveable or balance beam is swung round, the vertical planks put down, and tho water thereby completely stopped till it rises to such a height as to run over the top of tue dam; before this takes placel the vessel has sufficient water, and she proceeds on her voyage to the next dam above; these dams are kept open when there is no vessel near, and at all other times when there is sufficient water for navigation without penning it up. It may appear, at first, that it would be more advisable to have a complete gate similar to those now gene rally used on canal locks, but a gate would be attended with those inconveniences, that the water could not be run out in so short a time by its paddles as it can when the whole space which the gate would occupy is available, and also the difficulty of opening against a rapid stream a gate of the required size. Though this principle of damming up the water was a valuable improvoment in our river navigation at the time it was introduc-
ed, yet as it is only applicable when water is a bundant, and must at this time be considered a very rude mode of passing from one level to another, it requires no argument to show that it must soon give way to the adoption of our modern locks.

2d. Lock with a double set of gates, but no

 chamber vealls.The evils attendant on the dams just described were in a great measure removed by the introduction of double sets of gates or sluices; the upper set being constructed so near to the lower, as only to leave room enough for the vessel or vessels to float between them. Framed gates were also used insteud of separate beains and planks, because the space to be emptied or filled was so sma!l, that a very short time was required to pass the water; and there was no stream of sufficient strength to prevent their being easily opened. Where these locks are intended for rivers, it is usual to make a side cut or artificial canal for the purposes of the navigation, and to leave the river course for the passage of the surplus water. A quick bund of the river is generally chosen for one of these cuts, and to keep the water in the upper part of the river to a sufficient height for navigation, a dam or weir is made across the old river course at or below the point where the artificial cut quitsit. The lock is then built at the most convenient part of the cut, and its fall made equal to the differ. ence in the levels of the water at the top and at the bottom of the dam or weir. When a vessel is going up the river, she loats along the cut, and passes between the lower gates into the lock, the lower gates are then closed, and the valves or paddles of the upper gates being! opened, the water
flows into the lock, and rises to the level of the upper part of the river ; the upper gates are then opened, and the vessel floats out of the lock. Of course the reverse of this operation would conduct a vessel down the river.
It will be obvious to every one, that the sides of these locks must rise above the level of the higher part of the river, otherwise the water would flow over and injure them. The gates should also rise above the highest water's surface, or the water would flow over their tops and probably into the passing vessel, so as to endanger its safety or damage its cargo. It has been common to make the gates no higher than the water's surface, but the before mentioned inconvenierces show the necessity of making them higher, and of constructing the dam or weir of sufficient breadth to take off with facility all the surplus water.
The abutments for the gates have been made of timber, brickwork and masonry, but when the double set of gates was first introduced, it was usual to leave the space between the upper and lower gates unprotected by either timber or any kind of building. Of course the agitation of the water in the lock was constantly washing away the earthen banks, thereby causing a risk of their being broken down by such continued weakening; and by enlarging the space between the two sets of gates, it occasioned a loss of time in emptying and filling, as well as a waste of water.
3d. Locks voith a double set of gates, and the sides of the chamber secured by timber.
To check the mischievous tendency of leaving the chamber unprotected, the side banks of many old locks have been in part secured by driving a row of piles along the base of each slope, and fixing planks at the back of them, so as to form a wooden wall for about half the height of the lock; but there is sometimes a risk in trying this experiment, for the space between the two sets of gates being frequently lined or covered with puddle, resting on a porous substratum, the water often escapes by the sides of the piles, and causes not only leakage but a danger of blowing up the lock.Examples of this sort of lock may be seen on the river Lea navigation.

4th. Common modern canal lock:.
It is not until the construction of artificial canals became very general that locks wore brought to any thing like perfection, for the difficulty of procuring sufficient supplies of water had been but partially felt when our inland navigation was confined to a few of the principal rivers.
When canals had spread themselves in various directions over the country, and water became so scarce and valuable as to be the cause of much litigation and expense, it was necessary to be careful of every resource, and to use it with the strictest economy. For this purpose, the space bstween the upper and lower gates was contracted to such a breadth as only to leave room enough for the vessel, and the buttom ard sides were constructed of brickwork or masonry, instead of sloping banks of earth. By these means the superficial area of the lock was reduced to very little more than
that of the vessel, and consequently was as small as it could be made.
The difference of alatude between the upper and lower levels, where the locks are constructed, varies according to local circumstances. Where the ground is longitudinaliy steep and water plentiful, the locks are generally made of greater lift or fall than where the ground is comparatively flat and water scarce. It is evident that, where the superf ial area of locks is the s:me, one having a rise of 12 feet would require twice the quantity of water to fill it that would be requisite for one of 6 feet. Having many locks, however, of small lifts instead of a few of greater, increases the expense as well as the time for passing them.
For narrow canals these locks are generally made about 80 feet long, and $7 \frac{1}{2}$ to 8 feet wide in the chamber. On the Caledonian canal they are 180 feet long, 40 feet wide, and 30 feet deep. Locks are also constructed of every intermediate size.

Lock gates have till lately been made of timber; but in consequence of the difficulty of procuring it of sufficient size for those on the Caledonian canal, cast iron was partially adopted for the heads, heels, and ribs. Iron gates, cast in one piece, have been used on the Ellesmere canal, as well as others with cast-iron framing and timber planking.

Whether constructed in a single leaf, or a pair of leaves, the gates of locks are usually made to turn horizontally upon a pivot at the bottom of the heel; but there is a singular exception at the locks on the Shrewsbucy canal, where, at each end of the lock, a single gate is made to rise and fall vertically, in grooves in the side walls. A pulley is fixed on its axis about 12 feet above the lock, over this a chain is passed, one end of which is sixed to the top of the gate, and the other to a weight, by which the gate is so nearly balanced as to allow of its being worked up and down by one man. On entering or quitting the lock, the boats pass under these gates.

I am not aware of any lock in England of greater rise than 18 feet, but Tatham in his work on canais, (p. 164,) mentions one of 20 feet rise, built in 1643, by Dubie, between Ypres and Furnes, to connect the canals which bear those names. There are two pair of upper gates to this lock to guard against accidents.
On the Languedoc canal there is a celebrated circular lock, which has had more credit bestowed upon it than it deserves. The fact is, it is nothing more than a circu. lar basin, into which three canals of different levels descend by common locks.
Various modifications of this principle have from time to time been adopted, either to save water, time, or expense.

5th. Locks with side ponds.

When water is scarce, it is common to construct side ponds, by which a considerible portion (in general one half) is saved. The usual number of these ponds is two, for it has been determined by experience, that when a greater number have been made use of, the loss occasioned by leakage and evaporation has sometimes been more than
equal to the additional quantity of water re. tained.

In the accompanying sketch, a is a com. mon lock, b and c two side ponds, (each equal to the area of the lock,) $d d$ two cul. verts with paddles, each communicating with the lock and one of the side ponds. Supposing the lock to fall 8 feet, the bottom of the pond b will be 4 feet, and that of $c 6$ feet below the surface of the lock when full. If a vessel is to descend, it enters the lock when full, and the gates being closed, the paddles of the side pond b are opened, and the water flows into it till the level of the water in the lock is lowered, and that in the side pond raised, till they are the same, which will be when the water in the lock has sunk 2 feet; the paddles of the side pond b are then closed, and those of c opened; a similar operation then goes on till the water in the lock has sunk 2 feet more, when the paddles of c are also closed, and the remaining 4 feet of waer in the lock is-run into the lower level of the canal, through the paddles in the lock gates. When the lock is to be filled the water in c is first run into the lock, which raises its surface 2 feet, the water in b is next run into it, which raises the su:face another 2 feet, making together half a lock full, the upper half is then run down frem the higher level of the canal.
6th. Lockis for the transit of vessels of dif. ferent sizes.
Where vessels of different sizes have to pass the same locks, three pairs of gates are sometimes placed instead of two,-the distance betweea the upper and lower pairs being sufficient to admit the largest vessels, and that between the upper and middle pairs being adapted to the smaller class. By this
contrivance, when a small vessel is to be passed through, the lowest pair of gates is not used, and when a large vessel goes through, the middle pair of gates is not worked. Thus, it is evident, that the quantity of water contained between the middle and lower pair of gates is saved when a small vessel passes, compared with what would be required were the middle set of gates omitdd.

Th. Parallel double transil locks.

But where the transit is great, much time and water may be saved by a doubie transit lock, which is, two locks place close to and parallel with each other, with a communica tion between them, which can be opened or cut off at pleasure by valves or paddles.
As one of these locks is kept full and the other empty, a vessel in descending floats into the full one, the upper gates are then closed, and the water is run, by means of the connecting culvert, int) the empty lock, (the gates of which were previously closed, , till the water in the two locks is on the same level, which wil be when each is half full; the connecting paddles are then closed, and the remaining half of the water in the descending lock is run into the lower canal. The next descendirg vessel has to be floated into the lock which remains half filled, and which consequently requires only half a lock of water to be run from the upper pond to raise it to the proper level, and then that half is transferred to the lock previously used, to serve the next descending vessel; but sup. posing a vessel to be ascapding after the first descent, it will enter the empty lock, and receive a quarter lock of water from that which remained half filled : of course three-quarters of a lock of water is now required from the upper canal to complete the filling. If a descending vessel next follows, it enters the full lock, and its water is run into the lock which was previously left a quarter full. and when both have arrived at the same level, it is evident they will be ench five.eighths full; and the succeeding descending vessel will require only three-eighths of a lock of water from the upper pond or canal. From these observations it will be seen that the double transit lock saves nearly one-half the water which a common single lock would require.
Sometimes the two parallel locks are made of different sizes, to suit the various descrip. tion of vessels that may have to pass.

8th. Locks connected longitudinally, com.

 monly called a chain of locks.When loss of water is of no consequence, a considerable expense is sometimes saved, by placing the locks close together without any intermediate pond, for by passing from one immediately into the other, there is only required one pair of gates more than the number of locks so connected, besides a proportionate saving of masonry.-Thus, 8 connected locks would only require 9 pairs of gates, whilst, if they were detached, they would require 16 pairs; but to show that these cannot be adopted with propriety, excepting when water is abundant, it is neces. sary to observe that every two alternate as. cendiog and descending vessels will require as many locks full of water as there are bocks ; for instance, if a vossel has just as.
cended, it has left all the locks full, a descending vessel then enters the upper lock, and when its gates are closed, the water is run down, but all the locks below being previously filled, they cannot contain it, and it consequently passes over the gates or weirs of all of them into the lower canal : the vessel has by this means descended to theleyel of the second lock, the water in which must also be run into the lower canal, for the same reason as already sta!ed. When the water of all the locks has thus been run down, an ascending vessel will require all these locks to be filled from the upper canal, which, however, will be retained in the locks ready for the succeeding vessel to pass down. From this it will be evident that where 8 locks are connected, a descending vessel draws no water from the upper canal, because the locks are previously all filled, but it empties 8 locks of water into the lower canal; an ascending vessel on the contrary empties no water into the lower canal, because all the locks were pre viously empticd, but it draws 8 locks ful from the uppes canal in order to fill them consequently the passing of one ascending vessel, and one descending, requires 8 locks full of water.
9th. Other modes for passing vessels from one level to another.
By substituting machinery, either wholly or in part, have been adopted; but these have either failed entirely, or not been brought into general uso.
an account of the new or grostenor baidge over the river ; dee at chester.
[The drawings from which the engravings of this bridge (plates Nos. VII. and VIII.) have been made were furnished by Mr. John B. Hartley, son of the engineer under whose direction the edifice was built, and the following account has been derived from a let:er from him to the President, accompanying the plans, and other original communications in the possession of the Institution, and partly from the minutes of conversation at several meetings when Mr . Trubshaw, the contractor for the work, was present*, while such other trustworthy sources of information as were accessible have also been referred to. The statements, so far as they go, rest therefore on good authority, but the Council cannot help regretting that they are unable on this occasion to present a connected account of the work worthy of its magnitude, directly from the pen of some one of the genilemen engaged in is construction.
Though the site of the new bridge is quite apart from that of the old one, and the latter exists as before with the exception of being no longer the leading thoroughfare, a short notice of the ancient structure, as supplied by antiquarian writers, has not been considered allogether out of place.]
The old bridge over the Dee at Chester extends from the city to a suburb on the opposite side of theriver named Handbridge.

* Orig. Commun. Vol. IV. No. 9, and Vol. V. No. 16 ; Min. of Convers, Vol. V. Nos. 8, 9, and 13.

The first notice of a bridge in this place occurs in the thirteenth century, during which it is recorded to have fallen down or been carried away twice. Those structures were most probably of timber, but on the second accident alluded to a stone erection seems to have been substituted at the cost of the citizens: this was in 1280, and it does not appear that the bridge has been entirely rebuilt since, though it is mentioned that part next Handbridge was "made $n \div w "$ in the year 1500. The two arches on this side are plainly of later build than the rest; one of them is in form a segment of a circle, the other is very slightly pointed, while the remaining arches áre pointed Gothic. The whole bas been repaired and widened within the last few years.

As usual in former days, Chester Bridge was provided with its gates, which remained until towards the end of last century. Each extremity of the oridge was guarded in this manner, and over the gate next the city stood a tower, named "Tyrer's Tower," for raising water from the wheels under some of the arches for the supply of the town : the tower no longer exists, and there is now only one gate, a modern edifice, on the English side of the river, but the water works and the weir still remain.

Plate 7.
Cross Section throguh the line A. B.

Cross Section through the Crown.

Half Section showing the centre.

The bridge, thus irregular alike in workmanship, form and dimension, consists of seven arches supported on huge piers or but:resses, and has been aptly and pithily described as "a long fabric of red stone, extremely dangerous and unsightly, and approached by avenues on the Chester as well as the Handbridge side, to which the same epithet may be safely applied."* The inconvenience of a steep and twisting passage of this kind on the main communication between Wales and the centre and north of England, became more felt every day amid the rapidly growing intercourse arising from the improvement of the roads in the principality, particularly that to Bangor and Holyhead, and at length brought about a conviction of the necessity of a new bridge. It was many years, however, before any active measures were taken to carry so desirable an object into effect, nearly a quarter of a century having

[^26]elapsed between the period when the late Mr. Harrison of Chester projected the structure on the site it now occupies, ard the beginning of the work; and by this time, from adranced age and declining health, the superintendence of its execution required too much exertion for the strength of that most respectable practitioner, whose works have added so much to the architectural embellishment of his picturesque native city. Under these circumstances Mr. Hartley of Liverpool was applied to by the commissioners to undertake the management, which he consented to do on the condition that no alteration should be made from Mr. Harrison's external design, but that the interior and all practical points should be left entirely to him. It may be proper to add that Mr Harrison had given two elevations, one having the abutments ornamented with Grecian Doric columns, the other having a plain niche with a pannel orer it, and that the latter was adopted by Mr. Hartley's advice.

The new bridge is situated about a quar. ter of a mile to the west of or lower down the river than the old one, stretching from the rock below Chester Castle towards the village of Overlegh, with a boldness that appears still more striking if the view be from the low ancient bridge. The valley of the Dee here skirts close round the city, the ground next which rises rapidly, and the road is carried with a slight fall from the castle gate on an embankment, which, after ascending gently pver the bridge, is continued across the broader plan on the other side of the river, until it falls into the Flintshire road from the old bridge. The harbor is below the site, but vessels occe. sionally pass above the bridge, which from its great height offers no obstruction to na. vigation. The flow of the tide so far up the river is not more than twelve feet in ordinary springs.

The abutinents are founded on the solid rock, except the back part of that on the north or city side, where, a fault occurring from the rock dipping down almost vertically as shown on the section, piling became necessary; and so soft was the material with which the fissure was filled, (a kind of quagmire or quicksand,) that the piles went down five or six feet at a blow for a considerable part of their depth. On the head of the piling a floor of stone was laid and the abutment built upon it. In consequence of the defect in the fonndation just mentioned it was considered prudent, with a view to keep the lateral thrust of the arch within the limit of the rock, to make the springing a foot lower and the crown as much higher than was at firit intended, and this was the only deviation from the original design that took place in the work.

The arch is a segment of a circle of 140 feet radius, the span or chord being 200 feet, and the rise or versed sine 42 feet. The archstones are 4 feet deep ai the crown, and increase to 6 feet at the springing, but from the mode followed in laying the masonry, it will be seen that the principle of the arch is carricd through the abutments, even down to the foundations, the radiating joints giving place to borizontal ones only in whit is comparatively superstructure.

To prevent flushing near the haunches and rectify any tendericy to change of form in the arch on the removal of the centre, tha fist course above the springers was laid upon a wedge of lead $1 \frac{1}{2}$ inch thick on the face and running out to nothing at the extremity of the bell, and strips of shect lead eight or nine inches wide were also introduced in the joints on each side, up to where the point of pressure was considered $t o$ change its position from the front to the back of the archstones, or in fact in the present case over abnut two-thirds of the whole soffit. This disposition remained unaltered until the easing of the centre let the whole of the arch settle on the lead, which from its yielding nature then caused the pressure to be spread evenly over the whole of the bed of each course, and thereby prevented drafts or openings at the back of the archstone joints; the wedge-piece at the springing also acting by way of ad-
justment, and counteracting the inclination of the arch in coming to its bearing when the centre is struck to throw an undue weight on the intrados of the springing course. Judging from the soundness of the archstones throughout, this plan seems to have answered fully the end sought, the weight having been received so uniformly and gradually on all points, that not the slightest appearance of spaulching or cracking is perceptible in the work of the great arch.
In ${ }^{*}$ setting the keystones three thin strips of lead were first hung down on each of the stones between which they were to be in serted, and the keystone being then besmrared with a thin greasy putty made of white lead and oil, was driven down with a small pile-engine, the lead acting as a slide and preventing grating until the stone was quite home.
The mode in which the spandrils were made up internally, by tiers of pointed arches with flag-stones or landings at top to carry the road material, will be seen by a glance at the cross section on plate No. VIII; and indeed beyond what has been already stated; and the materials used which are now to be described, with the mode of dressing them, there does not seem much of importance as regards the construction of the permanent part of the work which an inspection of the plans will not readily supply.
The river face of the abutments up to the springing, and the first two courses of archstones above, are of granite ; the key-course with one on each side of it and the quoins all through the arch are of the limestone known as Anglesea marble, and the rest of the work, including all the other archstones, almost entirely of the sandstone of the coun. try. The granite was brought from Craig. nair near Castle-Douglas in Kirkcudbrightshire, the limestone partly from Anglesea and partly from the similar quarries of Wagbur near Burton in Kendale, and the other stone for the outside works from Manley near Northwich and Peckforton near Nantwich in Cheshire, the quarries of both which places produce a superior kind of the eew red sandstones. The principal part of the banking is of a similar sandstone, found adjacent to the site of the bridge. The mortar used was made from the lime found in the neighborhood, mixed with twice its bulk of sand.
The external faces of the bridge and abutments, with the cornices, parapets and dressings, are nea:ly tooled; the land-arches and wings slightly chamfered in the joints and then scappled off, so as to have a rougher and more rustic appearance. The archstones of the main arch are also chamfered in the soffit joints, two inches on each arris.

The centre on which the stupendous arch of Chester new bridge was raised, and which is stated by Mr. Hartley to have been cx. clusively designed by Mr. Trubshaw, claims a detailed notice, from the novelty of the principle it was formed on, the efficiency with which it did its work, and the economy that attended its use. The centre consisted of six ribs in width, and the span of the arch twas divided into four spaces by means of tbree nearly equidistant piers of stone built in the siver, from which the timbers spread
fan-like towards the soffit, so as to take their load endwoise. The lower extremities of these radiating beams rested in cast iron shoe-plates on the tops of the piers, and the upper ends were bound together by two thicknesses of 4 inch planking bending round, as nearly as they could be made, in the true curve of the arch. On the rim thus formed the lagging or covering, which was $4 \frac{1}{2}$ inches thick, was supported over each rib 'y a pair of folding wedges, 15 or 16 incles ong by 10 or 12 inches broad and tapering about $1 \frac{1}{2}$ inch;-for every course of archstones in the bridge there were thercfore six pairs of striking wedges. The horizontal timber of the centre was only 13 inches deep, and the six ribs were tied together transversely near the top by thorough bolts of inch iron, but with a view not to weaken and injure the timber more than was absolutely necessary, the least possible of iron was used.
From this description and an examination of the drawing it will be observed, that the centre differs essentially from those that have been used elsewhere. At first sight it reminds one of that employed by Smeaton in building Banff bridge, but the likeness is only apparent. Each rib of the latter is a complete connected frame from pier to pier, though supported intermediately, and is capable of being eased only as one mass by the folding wedges which are placed under and carry it; whereas in the Chester centre each rib is composed of four distinct and independent parts, and carries the wedges on its outer rim instead of being borne by them, so that it ean be struck gradually, being made tight at one place and slackened at another, according to the symp. loms shown by the arch as its support is removed and the stonework counes to its bearing. Mr. Trubshaw's principle is, therefore, in a few words, to arrange the timber so as to have the strain all in a vertical direction, doing away with the necessity of inuch horizontal tying, which from its sink. ing he considers apt to derange the framing, and to ease immediately under the covering instead of under the sill of the centre; and with this construction he would strike a cen. tre soon after the arch was finished, while the mortar was yet as it were a paste, easing a little at first and then giving some time for the joints to accommodate themselves, and so proceeding. His method of striking is to keep up the crown and let the haunches down, and though this has a tendency to press the keystone up, he states that he has iound a greater and more usual difficulty to be in managing an arch after the key was lowered, as it must be at once and beyond recall with centres of the usual makc.
The centre was of fir, and with the excep. tion of the parts already mentioned as otherwise, was composed entirely of whole and nalf tinibers; -pieces from 2.2 to 36 feet long were not bored with more than one hole, and it of small size, so that, the material being sound when teken out, the whole cost to the contractor was only about $£ 500$, an amount which, even allowing for the advantage derived from the accidental circum. stance of a quantity of seasoned wood being opportunely required for a public work in the neighborhood, must still be considered a very low price for a structu:e requiring

10,000 cubic feet of timber. That the expectations of the projector were fulfilled in other respects also, is proved by the circumstance of half the archa being turned. before the centre was finished, whilile the fact that on its removal the crowa suak w.aly fiom $2 \frac{1}{2}$ to $2 \frac{5}{8}$ inches, the joints remaining perfectly close and no derangement of form being perceptible, attests the skill and care at once of the carpenter and the mason.
In reference to the temporary works, it seems necessary only further to mention that the archstones were carried to their places by the traversing machine now usually adopted for such purposes, which, though old in principle, it is believed assumed its present form in the hands of the late Mr. Rennie, as a means of workiog the diving bell in his operations at Plymouth. Of the contrivance, though it scarcely requires description in the present day, it may be shortly said, that it consists in suspending the body to be moved to a carriage travelling on a railway fixed on a frame of timber, which frame is itself moved in like manner on a similar railway under and at right angles to it, so that the carriage has a double motion and can be brought over any point within the range of the frames to deposit its load. In the present case the inferior railway extended from abuitment to abutinent, resting on the intermediate piers, and on it travelled two transverse frames of from 45 to 50 fees span, so as to embrace the whole width of the arch; and there being thus a carriage at each end of the bridge, the setting of the archstones did not consume much time.

Tu be continued.

Agriculture, \&c.

-From the New-York Farmer.

PLOUGHING MATCH.

"The ploughing match, for the purpose of testing the comparative merits of several ploughs which were exhibited at the Fair of the American Institute last fall, was witnessed by a numerous assemblage of gentlemen, on the farm of General Johnson, near the Wallabout, Long Island, on Friday 28th of April The arrangements of the committee for this trial were well made; the ground selected unsurpassed by any other field in the country, for such a purpose, having been cultivated by its present venerable, and highly respectable proprietor, and his immediate ancestors, for more than turo centuries, and. now in a high state of cultivation; the teams gnod, and the day as bright and as fine as could be desired; and of course the exhibition was interesting, and highly gratifying to those who witnessed it.
There were five ploughs on the ground which were used, ouly four of them how. ever, came from the Institute; the fifth belonged to Mr. Wyckoff and was tried with the others for his satisfaction.
The ploughs used were arranged in the field and tried as follows-viz:

1st. "Dutcher's Patenteastiron Plough."
2d. Mr. Wyckoffs plough, alse cast iron, Steven's Patent."
3d. "Weaver's Patent cast iron Plough," rom Baltimore.

4th. "Dysdale's Iron," or rather as it is ușually called, "Scotch Plough"-being entirely of iron; and

5th. "Miner and Horton's cast iron Plough," from Peekskill, N. Y.

These ploughs were all held by the judges and many other gentlemen, both practical and unpracticed farmers; and most of them performed quite as well as could have been expected, considering their condition, which was by no means suitable for the objects of the trial. No plough, however good it may be when used sufficiently to become smooth and bright, can be properly appreciated and judged of from a first trial; and any plough muker who risks the character of his work in that condition, with a view of lesting its comparative merits with other ploughs, deserves, at least disappointment, if not defeat.
The gentlemen who acted as judges were every way competent to decide upon the relative merits of the ploughs. They tested them fairly, and decided justly, according to their performance ; and no one interested in the decision, if disappointed, has, in our opinion, cause to complain of any thing except his own want of preparation.
The award of the judges, after mature consideration, was as follows :
"The undersigned committee, appointed be the American Institute, critically to examing the several Ploughs exhibited, and put into operation on the farm of General Jeremiah Johnson, at the Wallabout, report-
That on such examination they do unanimously agree, and decide that the yellow plough of Josiah Dutcher is the best, and that the plough of Minor and Horton is the second best, both as to their structure and operation. The committee would further state that the plough brought and tested hy Mr. Wyckoff, although not within the province of the committee to decide upon, is deemed equal to the second best,_Dated at the Wall. about, this 23th day of April, 1837.

> Leffert Lefferts,
> John Wyckoff,
> Gerrit Kowenhoven, Nicholas N. Wyckoff, James Cropsey,
Jeremiah Lott."
By this report it will be seen that number 1 , took the first premium, and number 5 , the second-number 2 , being equal to number 5 , but not entitled to compete for the premium, as it was not exhibited at the Fair of the Institute. Number 3, and 4, were not men. tioned in the report,-number 1, or Dutcher's plough, was in good condition for work, had a good team and performed admirably.

Number 5, or Minor and Horton's plough was not in good condition, being rough, and woithout coulter, except a sort of Rhinoceros horn, or cutter, extending up from the share, and its real merits were not generally appreciated. If it had been as well prepared for action as number 1 , it would have stood an equal, if not the best, chance for the first premium.

Number 2, or Mr. Wyckoff's plough was in perfect order and by many persons deem. ed the best in the field.

Number 3, or "Weaver's plough" was by no means in proper condition for use. It was rough, ant like number 5, with-aut coulter, and with the hare projecting upwards
from the sharc. This plough has an apparatus under the back end of the beam, where it comes in contact with the handle, for regulating its work. Mr. Weaver, the maker, was not present, and the only gentleman who had used it, and who properly understood the regulation of it, was obliged to leave the exhibition before it had had a proper trial, and therefore its merits were not duly appreciated. We have however great confidence in this plough, and do not doubt but that it will be found, when properly tested, a valu. able implement. We have been informed by a gentleman who has given it a fair trial--having three of them in use on his own farm, that it is superior to any plough he ever held ; and we can only again remark that when a person desires to test the merits of a machine, or invention, he must, if he would succeed, have it in order for competition. A plough can no more easily make good work, in a rough state, than a horse can make good time when taken from the plough to the race course.

Number 4, the "Scotch, or Drysdalo, plough," made entirely of iron, with handles projecting far behind, found little favor except with those who had been accustomed to its use. It made good work-yet not equal to the others, and was omitted in the Report of the judges.

After noticing in detail the Ploughs, it may be proper to mention those who distin. guished themselves as ploughmen. The judges of course, were most conspicuousthey all displayed both skill and judgmentyet to Gerrit Kowenhoven, Esq., whom we heard say that he had followed the plough more than forty years," we must yield the palm. He was indeed master of the art. There were many others with whom we were unacquainted, who needed no label on their hats to indicate their pursuits-even a casual observer might read, in their manner of handling the implements, their honorable calling. The greater number of those who aspired to, and enjoyed the honor, of "guiding the plough" were unskilled in, or at least for a long time unused to, the business. There were those however, of this number who did themselves much credit,and the work justice. The most and persevering industrious, of those present, was the veteran editor of the Commercial Advertiser, with " frock and trowsers"-who, although for many years more familiar with driving the quill than either oxen or mules, displayed to the satisfaction of all, the powerful effects of early impressions, sa deoply indeed, are his early agricultural habits seated that even the "aristocratic notions," which he is sometimes accused of having imbibed by a residence in NewYork, could not keep him from testing every plough on the ground, and ploughing mare than any other man present.

After a full and satisfactory trial, in which several acres were "turned up" and many more trodden down by the multitude present, the company adjourned.
The field labors of the day ended, those of the table commenced in due season, at the mansion house, near the lower Williamsburgh ferry-General James Tallmadge, president of the Institute, presiding, assisted by General Johnson. The fare was substantial, such as farmers are accustomed to, and
there was enough of it. The chair having
been called upon for a toast, Genęral Tallmadge rose and addressed the company in an appropriate and effective manner, as will appear from the following brief sketch :

Being called upon for a toast, he would ask the favor to precede it with a few re. marks. He wished to express the thanks of the American Institute to the gentlemen and farmers who had given so numerous and re. spectable attendance this day, on the trial of the plough. It was an essential means and the true source of national wealth and prosperity. The ancients had the cornucopic, or horn of plenty, as their emblem of wealth, because they had attained only the pasloral condition. But we had made farther ad. vance in agriculture, and the plough, as the means of agricultural wealth, was adopted by the Institute as the emblem of plenly.
He said a slight reference to historical events connected with the plough, and the spot on which we had been assembled-and the incidents associated with the early circumstances of the surrounding country, might be acceptable and somewhat curious. He would therefore state that the first plough which ever turned the American soil, was on the field which had this day been selected for the experiment by the Institute. The incident, after such intermediate events, was worth recollection. The Pilgrims of NewEngland had come to this country bringing with them little else but life-the love of li-berty-and the desire of religious freedom. The Walloons who settled on the field where we are this day assembled, were first provided with the plough and a team-about 1622. The necessity and the early habits of those first settlers, induced them to cultivate their soil for a time with the hoe.
Tobacco was the leading object of cultivation, and the early records show a colonial law compelling, under penalties, persons to plant as many hills of corn as tobacco; and also, as a proof of the early protection and encouragement of domestic industry, giving bounties to "persons who should cross the Spuytendeyvil, make clearings and plant corn in the wilderness."

The colonial statute book now shows an act of the Legislature of 1708 , giving bounties for killing wolves and wild cats in Kinge county, and on the soil which we have this day been ploughing. But, Mr. T., said, the act was supposed, by some persons, not to extend to the ferocious animals called shavers which now infest Wall-street. But its directions to get rid of the "young cubs," as the most mischievous, were worthy of consideration.

In the same year (1708) an act was passed for the encouragement of whaling; off Sandy Hook, by the Indians, and privilege for them from arrest, with penalties, on any person who sold them liquor, or got from them any fishing tackle, going to or returning from their whaling voyages.

Mr. T., said the members of the Institute entered into all the sympathies of their fel. low citizens under the pressure of the present hard times, Others would explain the causes of the present distress. That was nok his purpose. But the Institute could tell the sufferers for want of money, a sure remedy: It was for farmers' boys, of all agea, thom sixteen to sixty, to stick a little more to the plough. It has a wonderful power of creat.
ing wealth, and a proper and just encouragement and protection of its labor, will do more for the public good than the repeal of the treasury order, or even the friendship of Nic. Biddle.
The declared object of the American Institute was to encourage agriculture, com. merce, manufactures, and the arts. It seemed to be a fit occasion to submit a few facts bearing on these great sources of national prosperity.
Free trade objects to the protection of the home laborer of the country, and the manufacturer to be broken down, under the competition of European labor.
Commentary-One and a half million of bushels of wheat have been imported the last year.

Woolens, about	20 millons
Cottons,	19
Silks,	$18 " ، ~$

The Institute says-we should use our own country, and our own labor to produce for our own wants. Before the act. repealing in part the system of protection, the importation of silk was eight millions-The last year it was eighteen millions.
1830, the free articles importe1, $\$ 12,700,000$
The total importations,
70,000,000 1834, the free articles imported, $63,000,000$

Total importations,
125,000,000 1835, the free articles imported, $77,000,000$ 1836, total importations,

180,000,000
The excess of importations over our exportations, was last year sixty-one millionsa balance of trade against our country, in a single year, nearly equal in amount to the whole metallic circulating medium. This belance is a constant drain of our specie currency-aud needs no prophet to tell the causes of our monied distress. It leaves no doubt of the duty of the country to afford a just protection to its labor, and its agricultural and manufacturing productions, till it shall supply its wants, and thus with the exportations, shall be enabled to provide for the balance of trade, while it retains its circulating mediun.

In conclusion, General T., begged leave to offer the following toast :
The Badge of the American Institute. -The plough, the ship, the loom, and the eagie-as the emblems of agriculture, com. merce, and manufactures, guided by the arts.
General Jornson, the Vice-President, having been called on for a toast, gave a sentiment in Dutch, to the memory of three eminent Walloons who first settled at the Wallabout, but whose names we cannot now repeat, as they were not taken down at the time, which we exceedingly regret, as the remarks and toast of the venerable descendant of the early settlers of the New Nether. lands formod one of the most interesting in. cidents of the occasion-we may possibly give it hereatter.

Wiциих L. Store, Esq., having been callce upon by the chair, rose and spoke to the following effect :
$M_{\text {r }}$. President-I rise cheerfully in obedienoc to your call, but, in doing so, I must beg you distinctly to understand that, al.
thought I ventured to challenge your Honor thought 1 rentured to challenge your Honor to compete with me in holding the plough, I
tition with such a practised debater in speech making. In guiding the plough, I must persist in maintaining my superiority ; in the art of eloquence, I cannot approach you by a fearful distance. There is, however. one point, Mr. President, in which I shall yet take the liberty of going beyond the chair. You have just been edifying and interesting us by some of the fruits of your antiquarian researches. You have not only been shaking the dust from the musty records of our early Dutch history, but have hastily glanced at some of your classic recollections of a yet earlier day. But, sir, before I have done, I intend to outstrip you in travelling backward.
We have met to day, sir, for an important object connected with the husbandry of our country. It happens, moreover, to be a very suitable season for such a festivity. It is a time closely corresponding with one of the great festivals instituted by the Greeks, and commemorated by the Romans, in the honor of Ceres, the fair goddess of corn and har. vests, of potatoes and cauliflowers,-of man-gel-wurtzel and ruta-baga. There were two festivals sacred to this divinity-the one in harvest time, in commemoration of the ab. duction of her beautiful daughter Proserpine, by Pluto, and the other at planting time, in memory of the mother's anxious search for her stolen daughter. These celebrations were kept with great spirit ; and we are now assembled at the recurrence of the last mentioned festival.
Mr. President, I am somewhat partial to the celebration of festivals, and the indulgence of innocent recreations. I think that in this respect, the ancients were wiser in their generations than we. Relaxation of mind and body are necessary alike to the elasticity of both. We have all become utilitarians, and have not the time to spare for even rational amusements. Still, Mr. President, I cannot but think, that our ancestors who celebrated the appropriate festival of the haivest home-those who danced joyously around the May-pole, and twined the garland for the fair brow of the Queen of Maywere, on the whole, a happier people than those of our own time. We are always la. borious and care-worn. They had frequent seasons of throwing off their cares, and with light hearts could reinvigorate their constit!tons, and reanimate their spirits, by rural sports among flowers, and groves, and foun. tains.
I have often, Mr. President, been charged with being an aristocrat, and I hope. I shall not be treading upon the toes of the democracy, if I confess the charge to be true. 1 believe I am. Yes: I am in favor of an order of nobility-of which the husbandmen should be the members, and tho plough the escutcheon. Sir, the calling of the husbandman is a noble one, and the farmers are the nobles of the earth."The sun," said the lofty souled Tecumseh, when asked by the American commissioners to seat himself in their tent, "is my father, and the earth is my mother, and 1 will repose upon her bosom." This was a noble tribute from one who had not yet emerged from the hunter state, in honor of those who draw their sustenance from the bosom of our common mother.

Perhaps, sir, it will be expected that I shall say something specifically on the subject of ploughs. But there would not be time :o enter at large upon the history of the machine, and the many inprovements they have undergone from the day of their invention, down to the fine little red plough that I have just been holding, made by the friend at my right, [Mr. Wyckoff]-for that I take to be, on the whole, the best on the ground. I will, therefore, speak of the first plough-maker--albeit a difficult matter to identify him to a certainty. Ithink, however, that Adam must have been the inventor. After the had forfeited his proud estate in Paradise-when horticulture and floriculture could no longer be his exclusive pursuits-he was driven forth to till the ground. He then became a farmer. And if he was as sensible and as ingenious a man, as I take him to have becn-for be doubless was a Yankee-he inust have invented a plough. He would bave been sadly wanting in sagacity and self-respect, it he depended upon the spade-and there were no Irishmen in those days-a circum. stance inducing me to believe the spade was unknown. Be that as it may, however, the plough was an early implement in husbandry. It was acknowledged by Xenophon, and its merits were sung by Horace, Pindar and Virgil. There is, however, a hiatus in its history, from the days of Adam to those of Triptolemus: This Triptolemus was a noble fellowworthy in all respects to stand at the head of the order of nobility of which I bave been speaking. His birth was illustrious, since, according to the beautiful myihology of the Greeks, he was the son of Oceanus and Terra-of the earth and ocean. Others, however, claim that he was the son of Celsus, King of Attica, by Nerereus, and was bornat Eleusis. Hence the sub: lime Eleusinean mysteries, the nature of which it has puzzled so many of the modern learned to divine. He was doubtless a beautiful child, since he was adopted by Ceres, who took him to nurse at her own breast. She became so attached to him, that she undertook to divest him of all particles of mortality, by causing him to sleep upon beds of live coals-her own supematural powers of course preserving him from harin. His mother, however, one luckless evening, having discovered that her little one was not lying upon a bed of roses, uttered such a shriok as to dissolve the charm, and prevent him from arriving at absolute purification from earthly matter by the process of fire. But the goddess determined still to do her best for the child, and watched an opportunity for his advancement.
I have already alluded to the rape of Proserpine, and the search of Ceres to find her. Pluto, to prevent being tracked, leaped into his own murky homestead, with his stolen bride, through the fountain of Cyane-and all trace of him would have been lost, but for the circumstance that the poor girl dropped her veil upon the margin. The auxious parent was three years upon the search, and on her retum, found the agriculture of the world in a wretched condition. The fields, untilled, had grown up
with thorns and briars. The fences were down-the gates and bars were out of order-the hedges wanted trimaringand the barndoors were off from their hinges. Indeed every thing, in farmer's phrase, "had gone to rack and ruin" dur ing, her absence. Finding the husbandry of the world in such a deplorable condition, she cast about for a professor of agriculture, and designated Triptolemus for that important office. Sho taught him thoroughly in the art of husbandry-from the clearing and fencing, and draining of land, to the mixture of composts, and the more refined principles of husbandry adopted only by those acquainted with the science of agricultural chemistry. She then gave him her own chariot, and sent him, thus provided, and thus qualified, through the world, to resuscitate the great interest under her own peculiar adininistration.

In his travels through Scythia, Lyncus undertook to slay him-as a punishment for which the offended Goddess changed him into a lynx. He was accompanied in his travels by Bacchus-which shows that he paid some attention to horticulture-that he could twine the grape vine, as well as hoe the pumpkin-and also that he drank good wine if any. His name is derived froin two Greek words, signifying triple plough-ing-thus by his very name inculcating a lesson to farmers to till their lands well. Indeed, Mr. President, thorough and frequent ploughing is one of the inost essential characteris ics of a good farmer. Pliny recommends ploughing four times, and so do Virgil, Sir John Sinclair and Jesse Buel.

This mission of Triptolemus was most useful, not only to himself, but to the world. Agriculture revived under his judicious in-structions-the farmers becane rich by producing, instead of buying-end such was their gratitude, that in the end the fos-ter-son of Ceres was called to the throne, and deified at his death. Thus, Mr. President, I have traced the noble origin of husbandry, and gone beyond you in antiquity. Allow me, in conclusion, to congratulate you, and the members of the American Institute, upon their alliance this day with the farming interest. The NewYork Agricultural Society is numbered with the dead. So also, I believe, is the NewYork Horticultural Society. Cannot, therefore, the American lustitute extend its broad ægis, to some extent, over those important interests ? I hope something may be done upon this important subject. In the mean time, permit me, Mr. President, to propose as a sentiment-

The Plough and the Press.-Essential alike to prevent the sterility of matter and of MIND.

By Thadius B. Wakeman.-No repetition of modern free trade policy, importing grain to starve the people.

By Adoniram Chandler.-Our Country's Indiustry-Whether in ploughing the land or the ocean, whether at the loom, in the field, or in the workshop, it is alike entitled to the protection of a wise and justly administered government.

By S. Jenks Smith.-Agriculture-the parent of commerce and the foster mother of mechanics.
By Francis Ingraham.-The memory of the Ameriaan Farmer, upon whom the cries of the world have been turned in ad-miratinn-ihe farmer of Mount Vernon.
By Col. Jesur.-The farm of General Johnson and the ploughmen of the American Institute-they have this day seen that Stone is sometimes found on the best soil.
By Capt. Samuel C. Reed.--The American plough-May its future energits and industry create a thorough barrier to the importation of foreign grain or breadstuffs in all time to come.

By Mr. Williams.-May those who hamdle the plough never get under the harrow.

By D. K. Minor.-The PloughGuided by practical knowledge, improved by the Press-through the medium of agricultural publications, a sure source of wealth when others fail.
The President of the day having retired, Mr. Stone rose and remarked, that he ivas about to offer a toast which he doubted not would be universally acceptable. He was about to propose the health of a gentleman with whom he had had the pleasure of an acquain:ance for twenty years-a gentleman who was an eloquent and gifted meniber of the bar-who had adorned the talls of our State and national legislatures-who had presided with dignity in the Senate,and who had reflected honor upon himself and country during his travels abroad, in most of the great European capitals. He had, moreover, shown himself a staunch friend to the great agricultural and manufacturing interests of the country. He begged leave, therefore, to propose-
"The health of the President of the American Institute, (reneral James Tallmadge."

The toast was received and drunk with great enthusiasm.

A number of additional toasts and sentiments were given, and two or three speeches made, which have not been preserved. The festival was ended at " milking time," and the company from the city returned, just after the ruddy sun had sunk into a molten bed of amethyst and gold.

From the New-York Farmer.
 domestic economy.

Hang or Dried Beef.-Take eight ounces of common salt, two ounces of saltpetre, made into brine. This quantity to be applied to ten lbs. of Beef. It should lay in the brine four weeks; and then be hung up in the kitchen or some warm apartment to become dry. In order to preserve it from insects in summer, it should be tied up in a linen cloth.

The above receipt was given me by an excellent farmer and mana ${ }^{\text {ber }}$ in Massachusetts; and the beef cured by it was of the finest description.
H. C.

Salt or Corned Beef.-One peck of coarse salt, four ounces of saltpetre, one and a half pound of coarse brown sugar.

Add to the above ingredients, four gallons of spring water; boil and skim it until it is quite clear; when cold it is fit for use. The meat, either beef or pork, should be salted a few hours before it is put in the pickle. Hams and Tongues are very fine cured with the same pickle.

The above receipt is called Admiral Pococke's pickle, and is much approved and generally used in the British Navy. I have successfilly tested its value.
H. C.

Househoj.d Soap.-Put fourteen lbs. of Potashes to twenty lbs. of good grease for one barrel. Put the potashes into two pails of water over night; put the grease into a kettle and pour the petashes over it; let it boil moderately, filling it up with cold water until it thickens; then put it into the barrel, and fill it up, (a pail full at a time) stirring it about until the barrel is full.

List of subscribers to the Railiond Journal. that have paid, (contineed.) Mr. A. R.-Lawrence, city New-York, 1st Jantary, 1838
Chersant French, Consul, Philadelphia, Pa. 1st Jan. 1838
John Snowdon, Jr. Brownstown, $\lfloor\mathrm{Pa}:$ 1st Jan. 1438
G. S. Greene, Warwick, R. I. 1st January 1538
L. Wernwag, Harpers Ferry, Va. 1st Jan. 1837.
C. W. G. Williams, Greenville, S. C. 1st Jan. 1839
Tomilson Fort, Milledgeville, Geo. 10th April, 1837
W. H. Belcher, St. Louis, Mo. 1st Jan. 1838

PHILADELPHIA STOCK MARKET. April 29th

RAILROAD STOCKS
Now-Castle and Frenchlurn
Do loan, $5 t$ per cent Wilminglon and Susquehanna Camden and Amboy, shares,
Do luan, 6's 1836 Do luan, 6's 1836
Denville and P shares Norristuwn, do Du 6 per cent loan Valley Rallruad Westchester do
N. L. and Penn. Tp. do N.L. and Penn. Tp. do
Philadelphia and Trentwn do Philadelpha and Irenton do
West Philadelphia Railroad Harrisburg and Lancaster Harrisburg an
Cumberland
Beaver Mradow
MISCELLANEOUS STOCKS
North American Cual Company
steam Bt. Sis. Columbian
Exchange Siuch
Arcade
Thealres-Chertnut street
Heaires-Walnut street
Gas Company
Schuylkill Navigation, shures
Do loans, 5

Do loans, 5	1845	
Do	do	1855
Vo du	du	1837

Lohigh Coal and Narigetion

- Do loan, 6 . 1838
$\begin{array}{rlr}\text { Do du } 6 & 1844 \\ \text { Union } 5 & 1840\end{array}$
nion Canal, shares
$\begin{array}{ll}\text { Do loan, } & 1836 \\ \text { Do do } & 1940\end{array}$
1940

| | | | |
| :--- | :--- | :--- | :--- | :--- |

Advertisements.

FOR SALE at THIS office,

A Practical Treatise on Locomotice Engines. with Engravings, by the Chevalier De Pambour- 150 pages la:ge octavodone up in paper covers so as to be sent by mail-Price $\$ 150$. Postage for any distánce under 100 miles, 40 cents, and 60 cts. for any distance exceeding 100 ms .

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts. *** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.
$1010 t$
A COURSE OF INSTRUCTION IN CIVIL ENGINEERING, by informal lectures, to occupy two months, commencing the 1st week of May-Cnmprising
The use of the theodolite, level, Compass plain table, cross, and sextant explained upon the instruments thernselves: :opographical drawing executed under supervision ; survey of routes; problems of excavation and embankment ; railroad curves; all the usual details of construction upon common roads, railroads, and canals; including bridges; culverts, tunnels, and the various kinds of motive power; nature, strength and stress of materials; masonry, carpentry and constructions in iron; alluvial deposites, guaging of streams, \&c.The whole purely elementary. Terms of admission to the course, $\$ 20$.

Apply to C. W. Hackley, Professor of Mathematics in the University, 32 Waver. ly i lace.
transactions of the institution of civil engineers of great britaln.
The first yo'ume of this valuable work, has just made its appearance in this country. A few copies, say tuenty-five or thirty only, ha ve been sent out, and those have neally or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order therefore, to place it withi their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issue in six parls or nimbers, of about 48 pages each, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the close.

The price will be to subseribors thrio dol. lars, or five dollars for two copies_alucays in advance. The first number will be ready for delivery early in April-Subscriptions are solicited.

DRAWING INSTRUMENT'G.-E. \& G. W. Blunt, 154 Water-strect, NewYork, have received, and offer for sale, Drawing Instruments oi superior iquality, English, French, and German Manufacture.

They have also on hand Levels of superior quality at low prices.
4. Orders received at this office for the above Instruments.

AVERY'S ROTARY S'EEAM EN. GINES.-AGENCY.-The subscriber offors his services to gentlemen desirous of procuring Steam Engines for driving Saw'Mills, Grain-Mills, and otier Manufactories of any kind.

Engines only will be furnished, or accompanied with Boilers and thenecessary haachinery for putting them in operation, and an Engineer always sent to put them up:

Information will be given at all times to those who desire it, either by letter or by exhibiting the engines in operation in this city.
Inquiries by letter shou d be very explicit and the answers shall be equally so.

> D. K.MINOR,

30 Wall-st., New York.

AN ELEGAN'I STEAM ENGINE

AND BOILERS, FOR SALE.

TIIE Steam Engine and Boilers, belonging to the STEAMBOAT HELEN, and now in the Novelly yard, N. Y. Curosisting of one Horizontal high pressure Engine, (but miy be made to condense with lit-
le additional expense) 36 inches diametcr, 10 feet stroke, with latest inproved Piston Valves, and Metalic packing throughont.
Also fuur Trubular Boilers, constructed on th Englinh Tavomotive plan, containing a fire surface of over 600 feet in each, or 2500 feet in all-will be suld cheap. All communicatinns addressed (post pard) whe subscriber, will meet with due atlenijon.

HENRY•BURDEN.
Troy Iron Works, Nov. 15,1836 .
TO RALLROAD CONTRAC'IORS.
SEALED proposals will be received at lhe office of the Selma and Tennessec River Railroad Company, in the town of Selma, Alabama, for the graduation of the first forty miles of the Selma and Tlennessee Railroad. Propossals fur the first six miles frum Selma, will be received after the first of May, and acted on by the Board on the 15th May: Proposals fur the ensuing 34 miles, will be received after the 10th May, t jut will nut be examined until the Ist of August nex, when the wurk will be ready fur coniract.

The line, ;after the first few miles, pursuing the flat of ihe Mulberry Creek, occupies a region of country, having the repute of being highly healihful. It is free from punds and swanps, and is well watered The soil is generally in cultivation, and is dry, light and sandy, and uncommonly easy of excavation-The entire length of the line of the Sel a and Tennesaze Railruals, will be about 170 miles, passing generaliy through a region as favorable for healch as any in the Southern Country.
Owing to the great interest at stake in the success of this enterprise, and the amount of capital already embarked in it, this wurk must necessarily pruceed with vigor, and I invite the attention of men of industry and euterprise, bulh at the Nurth and elsewhere to this undertaking, as offering in the prospect of continued employment, and the character of the suil and climate, a wide and desirable field to the contractur.
Prupusals may be aldressed either to the subseriber, or to General Gilbert Shearer, President of the Company.
ANDREW ALFRED UEXTER, Chief Engineer Selma, Ala., March 201b, 1827. ; A 15 if

ROACH \& WARNER,

Manufacturers of OPTICAL, MAIIIEMATICAI A YU PHLLUSOPHICAL INSTRUMENTIS, 293 B. Jway. New York, wilh keep constantly on hand a large and general assortment of Instrumeats in their line.

Wholesale Dealers and Country Merchants supplied with SURVEYING COMPASSES, BARUMETERS, THFRMOMETERS, \&c. \&c. of thei own manufacture, warranted accurate, and at lowcr prices shan can be had at any other estabhshment.
instrnments made to order and repaired.

NOTICE TO CANAL CONTRAC.

TORS:

SEALED proposals will be recrived at the office of the Commissioners of the Illinois and Michigan Canal at Chicago, from this dey to the 20th May next for the construction of about eight miles of that part of the summit divixion of the said Canal, lying between the Chicago and desplaines River.
Alse nb,ut three and a lialf miles of the same divisivo, lying between the Sagauaskee Swamp, and the western terminalion of the sadd division. And also about twelve miles of the Western division, lying between the Grand Rapids of the Illinois and the western termination of tho Canal.
The two first portions offered for contract, are heavy work, the first deep earth excavation, divided into half puile Sections, the second mosily rucks, and divided into thity chain seclions; the third consiating of liglit earth excavalion, a litule rock and embankment, and is divided into forty-two chain sectionn.
Nu bond with security will he required of the Cortracturs, but the Commissioners will avail themselves of the powers granted them of awarding the contraess or the powers granted them of awarding the contracts
to the lowest responsible bidder, and it is experted that the hids of all those who are not lersonally that the hids of all those who are not iersonally
known to the coramissioners will beaicompanied with known to the coraminsioners will be aicumpanied with
the proper testimonials. And upon the aword of work. it is expected that the parties will immediately enter into written agreements, or the contractes will be furfeited.
Plans, profiles, and specifications, giving all the necessary information, may be examined at theoffice of the Canal Commissioners, at Chicago, and those wishing to oblain contracts on this work, are requested to make a minute personal examination of the work previous to seudiug in their proposals.

Aitest, J. MANNING, Secretary.
Chicago, March 24h, 1837.
16-3t

TO RAIIJROAD CONTRACTORS.

PROPOSALS will be receired, at the office of the Hiwassee Ralroad Com., in the town of Atheng, Tennessee, until sunset, of Monday, Juue 12th. 1837 ; for the grading, masonry and bridgea, on that portion of the Hiwassee Railmoad, which lies bewreen the River Tennessee and Hiwassee. A distance of 40 miles.
The quantity of excavation will be about one million of cubic Jards.
The line will be staked out; and, together with drainings anil specifications of the work, will be realy for the inspection of contractors, on and after the Ist das of June.

JOHN C. TRAUTWINE,
Engin:eer in Chief Iliwassee Railroad.
RAILWAYIRON, LOCOMOTIVES,\&c. THIE subscribers offer the following articles for sale.
Railway Iron, flat bare, with countersurk holes and mistred juinıs,
350 tons $2!$ by $t, 15$ finlength, weighing the.

wilh Spikes and Splicing Plates adapted thereto. To be sold fiee of duty to State goverimments or incorporated companies.
Orders for Pennaylvania Boiler Iron executed.
Rail Rnad Car and Locomotive Eingine Tires, wrought and turned or nnfurned, rrady to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 iaches aiameter.
E. V. Patent Choin Cable Bults for Railway Car axles, in lengthe of 12 feet 6 inches, to 13 feet $2 t, 2 t$ 3, 3t, 3t, 3t, and 34 inches diameter.
Chains for Incliund Planes, short and stay linke, manufactured from tho E. V. Cable Bolts, and proved at the greatest strain.
India Rubber lRope fur Inclined Planes, made from
New Zealand tiax Ncw Zealand flax.
Also Patent Hemp Corlage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and stune bluck of Edge Ra: Ways.
Every description of Railway Iron, as woll as Locumotive Engines, imported at the shortess notice, by the agency of one of our partners, who resides in England for this purpose.
A highly respectable American Engineor, revides in England for the purpose of inspecting all Locomoives, Machinery, Railway Iron \&e. ordered through

28 if
A. \& G. RALSTON \& CO.,
Philadelphia, No.
, Eouth Fronion.

TO CONTRACTORS.

James river and kanawha canal. THERE is atill a large amount of mechanical work to let on the line of the James River and Kanewha Improverneut, conslating of twenty locks, about one hundred culverts and several large aqueducts, which will be offered to responsible contracturs at fair prices.
The locks and aqueducts are to be built of cut stone.
The work contracted for mnst be finished by the Lst day of July, 1838.
Persons desirous of obtaining work are requested to apply at the office of the underaigned, in the city ot Richmond, before the fifteenth of May, or between the fifth and the fifeenth of July.

CHARLES ELLET, Jr.
Chief Engineer Jas, Riv. \& Ka. Co.
P. S -The ralley of James River above Richmond is healthy.

16-10t

PATENT RAILROAD, SHIP AND BOAT SPIKES.

**The Troy Iron and Nail Factory kceps conatantly for sale a very extensive assurtment of Wrought Spikes and Naila, from 3 to 10 iuches, manufactured by the subscriber's Patent Machinery, which after five yeare successful operation, and now aimost universal use in the United Stater, (as well as England, where the subscriber oblained a patent,) aro fuund superior to any ever offered in market.
Reilroad Companies may be supplied with Spikes having countersink heads suitable to the holes in iron rails to any amount and on short notice. Almost all the Railruads now in progress in the United States are fastened with Spikes made at the above riamed fac-tory-for which purpuse they are found invaluable, as their adhesion ja more than double any common spikes made by the hammer.
${ }^{\text {spos }}$ All orders directed to the Agent, Troy, N. Y., will be punctually attended to.
Troy, N. Y., July, 1831.
** Spikes are kept for sale, at factury pricers, by I. \& J. Townsend, Albany, and the principal Iron Merchants in Albany and Troy ; J.1. Brower, 222 Waler street, New. York; A. M. Jones, Philadelphia; T. Janviers, Balkimore; Degrand \& Simith, Boston.
P. Y.-Railniad Companies would to well to forward their orders us eurly as pructicablo, as the subscriber is desirius of extending the manufacturing so as so keep pace with the daily increasing demand for his Spikes. (1J23am) II. BURUEN.

NOTICE TO CONTRACTORS. WESTERN RAILROAD.

PROPOSALS will be received at the office of the Western Railroad Corporation, in Springlield, until the 10 h May, for the grading and masorry of the second and third divisions of the road, extending from East Brookfield w Connecticut river, at Springfielda distance of 35 miles.
Plans, Profiles, \&ec. will be ready for examination
anter the first of May. W. H. SWIFT,
Worcester, Masa., April 1, 1837. \quad 1\$6i

AMES' CELEBRATED SHOVELS, SPADES, \&C.
300 duzens Ames' superior back-strep Shovels 150 do do do plain do 150 do do do caststeel Shovels \& Spades 150 do
100 du
50 do do Gold-mining Shovels

Together with socket Slovels and Spodes.
Bars stcel pointed) Axee, Churn Drills, and Crow fized iren pointed, mannfactured frum Salishury reWITHERELL, AMES \& CO.

No. 2 Liberty strcet, New-York. BACKÚS, AMES \& CO.

No. 8 State strcet, Albany N. B - Also furnished tu order, Shapes of every deseription, made from Salshury refined lron v4-tf

S'I'EPHENSON ,
Builder of a superior style of Passenger Cars for Railroads.
No. 264 Elizabeth street, near Bleecker street, New-York.
RAILROAD COMPANIES would do well to exa mine these Cars; a specimen of which may be seen on that part of tho New.York and Harlsem Railroad now in operation

J25it

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build, on his Patent Plat, would respectfully inform Railroad and Bridge Curporations, that he is prepared to raske contracts to build, and furnish all materials ior superstructures of the kind, in
of the United States, (Maryland excepted.)
Bridges on the sbove planare to be seen at tho fullowing localities, viz. On the main road leading from Baltimore to Washington, two miles from the furmer place. Across the Metavaukeag river on the Mililary road, in Maine. On the national road in 1llinois, at sundry points. On the Baltimore and Susquehanna Rrailrond at three points. On the Hudson and Patterson Railroad, in two places. On the Buston and Worcester Kailroad, at several points. On the Boston and Providence Railroad, at sundry points. Acrose the Contoocook river at Henniker, N H. Acroes the Souhegan river, at Milford, N. H. Arruss the Connecticut river, at Haverlilil-N. M. Across the Contoocook river, at Hancock, N. II. Across the Androrcoggin niver, at Turner Centre, Maine. Across the Kennebec river, at Waierville, Maine. Across the Genesse river, at Squakiehill, Mount Morris, New-York. Across the While River, at Hariford Vt. Across the Conneclicut River, at Lebnnun, N. He Across the mouth of the Broken Siraw Creek, Penn. Across the mouth of the Cataraugus Creek, N. Y. A Railroas Bridge diagonally across the Eirie, Canal, in the City of Rochester, N. Y. A Ra lroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 leet in length; one of the spans is over 200 feet. It is probably the framest wooden aridge'ever buill in Aincrica.
Notwithstanding his present engagements to build between twenty and thirty Railroad Bridges, end several common bridges, several of which are now in prugress of construction, the subscriber will promptly attend to business of the kind to nuch greater extett and on liberal terms.
Roheater, Jen. istin, 1837. MOSES LONG.

ARCHIMEDES WORKS.
(100 North Moor street, N. Y.)
New-Yore, February 12th; 1836.
THE underaigned begs leave to inform the proprie tora of Railroads that they are prepared to furnish al! kinds of Machinery fur Ruilroads, Locomotive Engines of any size, Car Wheels, such as are now in success. ful operation on the Camden and Amboy Railroad none of which have failed-Castings of all kinids Whoels, A xles, and Buses, furnished at shortest notice 4-vtf
H. R. DUNHAM \& CO.

NEW ARRANGEMENT.

mopes for inclined planes of railroads.
WE the subscribers having formed it co-partnership under the style and firm of Fulger \& Culeman, for the manufactiring and aelling of Ropes for inclined planes of railruads, and for othet ust 8 , offer tosupply ropes for inclined planes, of any length required without splice; at shurt notice, the masufacturing of cordage, heretofore carried on by S. S. Durfee of Co., will be done by the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be promptly attendell to, and ropes will be shipped to any port in the United Srates. 12th month, 12 ih, 1836. Hudson, Columbia County State of New-York.
33-tif.
ROBT. C. FOLGER.
MACHINE WORKS OF ROGERS, KETCHUM AND GROSVENOR, Paterton, NewJersey. The undersigned receive orders for the following articles, menufactured by them, of the most superiur description in every particular. Their works superiur description in every particular. Their works
being extensive, and the number of liands employed being extensive, and the number of liends employed
being large, they are enabled to execute both large and small ordera with promptness and despateh.

RAILROAD WOHK.

Locomotive Steam-Engines and Tenders; Driting and other Locotantive Wheela, Arles, Springs and Flange Tirea ; Car Wheels of east iron, frum a variety of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axlcs of best American refined iron; Spring* ; Boxes and Bults for Cars.
COTTON WOOL AND FLAX MACHIǸERY,
Of all descriptions and of the moat improved Pat. terns, Stylo. and Workmanship.
Mill Geering end Millwright work generally; Hyraulic and dors; Lathes and Tools of all kinds; Iron and Brase Castings of all descriptions.

ROGERS; KETCHUM \& GROSVENDR
Patterson, New-Jetsey, of 60 Wall streft, N.
5itf

ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.

WILLIAM V. MANY manufactures to order, iron castings for Gearing Mills and Factoriea of every description.
ALSO-Steam Engines and lailroad Castings ol every description.
The collection of Patterns for Marhinery, is not equalled in the United States.

PROSPECTUS.

YOU AIRE DESIRED TO AID IN EXTENDING THE CIRCULATION OE THE

NEW. YORK FARMER, AND AMERICAN GARDENERS' MAGAZINE-published in monthly parts of 32 pages, at Three Dollars per annum, in advance.

MECHANICS' MAGAZINE, AND JOURNAL OF THE MECHANICS' INSTITUTE-published and fors warded, in weekly sheets of 16 pages, or monthly parts of 64 pages, if desired, at Three Dollars per annum; in advance.

RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTS-published once a week, in a large octavo form of 16 pages, at Five Dollars per annum, in advance.

TRANSACTIONS OF THE INSTITUTION OF CIVIL ENGINEERS OF GREAT BRITAIN-Re-publication, in parts. This work is from the pens of the most eminent Engineers in Great Britain. Price Three Dollars per copy, or Five Dollars for tzoo copies; it can be sent by mail to any part of the country. The English copy, from which this is printed, cost Ten Dollars, and others were sold for the same in this city by the importers. There will be about forty. pages of Engravings, neatly done on wood.

ALso, published and for sale at the same office, PAMBOUR on LOCOMOTION; VAN DE GRAAFF on RAIL. ROAD CURVES; NICHOLSON'S ABRIDGED TREATISE on ARCHITECTURE, with over 40 pages of Engravings; and VIEWS of the THAMES TUNNEL.
W. Orders received and prompily executed, if the articles cai be procured, for all kinds of Instrumonts required by Engineers, at the office of the RAILROAD JOURNAL, No. 30 WALL-sT., Basement story.

REMITTANCES MAY BE MADE AT OUR RISK THROUGH POST-MASTERS:

D. K MINOR, and

G. K MINOR, and

CONTENTS :

Adveritements ; Nollces; Áplicalion of Sieam
to Agriculture
New Consuruction of Railways :
Transactions of the Institution of Civil Engineers
Agriculture, etc \qquad 291

Adverisements. \qquad 297
363

AMERICAN RAILROLD JOURNAL. NEW-YORK, MAY 13, 1837.
KEMOVAL.-The Office of the RAIL ROAD JOURNAL, NEW-YORK FARMER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wail-street, base ment story, one door from William street, and opposite the Bank of America.

07 SUBSCRIBERS in this City, who change their residence on the lst of May, will please give notice at the office, 30 Wall-street, Basement Story. It is desirable that the notice should specify their late and future residence.

Subscribers to, aad advertisers in, the Railroad Journa!, who have not paid the amount due us, will receive our Circular, with a bill annexed, for the same, as it appears on our books. We are fully aware of the difficulty which many subscribers find in remitting so small an amount, and we have, therefore, in many instances, let the accoun's stand until they amounted to a sum which might be conveniently remitted by mail-and we now, in consequence of such delays of payment, find it very diffcult to continue the publication of the work; and we are under the necessity of saying to those who are indebted, that prompt payment nly will enable us to complete the present Volume of the Journal; we therefore expect every man to remit the amount of his bill by the earliest possible date.

WII, by any means, any subscribi? has paid, and not been cretiled with the amount paid-he will confer a special favor by sending us a copy of the receipt, so that we may correct our books, and at the same time know by whom the error was committed. With our beat exertions to preven: such errers, they have occurred-we will, however, endeavor to avcid a repetition of them.
Subscribers near the Hudson tiver, and in Philadelphia and Baltimore-will be called upon by our Agent personally,

Railiroads in Cuba. - A company has been formed at Puerto Principe to construct a railroal from that to Nuvitas, sixteen leagues distant. Estimnted cost, one million of dollars. The enginecr is Mr. Edward Huntingdon, from the United States.

Improved Railwaf.-We have seen models of improvements in the ecnstruction of Railroad=, made by cur townsman, Isaac Cooper. So far as we are capable of judging we give our most decided approbation of the Plan. The objects proposed to be accomplished by Mr. Cooper on his newplan, are cheapness of construction, serurity against lateral pressure, facility of repairing, and durability of this material, and we think those objects are all attained.
Mr. Cooper has applied for a patent and has now in preparation a full description of his improvements, which will be published in a few days.* We refer to this and to his models, as the best means of acquiring a knowledge of the plan. - [Ebensburg Sky.]

The Thames Tuxnel.-According to the Report of the Directors at the last meeting of the Thames Tunnel proprictors, the "great bore" has been driven one hundred and thirty feet nearer the Middlesex shore since the works recommenced, so
that in a short time it is anticipated the lower-water-mark on the Wapping side will be reached, and the completion of the unfertaking made a matter of comparative certainty.

More Railroans.-The Lockport Balance siates that the Railroad between Lockport and Niag ra Falls commences operation immedia ely-cars running twice a lay each way. The Railroad between Niasara Fails and Buffalo, is put in good order for the season; and as there will be a Railroad from Lewiston to-intersect the Lock. port and Niagara Falls route, great facilities are offered for intercourse between several impurtarit poinls. In connexion with our Tonawanda Railruad, a track from $\mathbf{B a}$. tavia to Buffalo or Lockport would give Rochester full enjryment of the conrentences 'herchy affurdcd.- L Rochester Repub. ican.]
apflication of steam to agriculture.
Hitherto Agriculture has received little advantage from labor-saving machinescom. pared with that which has been rendered to manafacturers and the mechanic arts; and altiough many of the implements of agriculture have been greally improved, especially those great implements, the plough and the thrashing machine, the toil of human hands is still in full requisition; and as great an amount of animal labor as ever, is demanded on our farms. By what means this is to be materially lessened does not at present appear ; but when these ir.vcntions and discoveries shall have been made, of which at least we will indulice a hope as not beirg distant, we shall perhaps then oe as much surprised at the simplicity of the inveltion as were the companions of Columbus at his method of causing an egg to stand upon the small end. Piofes-
sor Renwick lately deceased,* to the great regret of the friends of science, had made considerable progress in the application of steam to the purposes of ploughing, though we are ignorant of the particulars of his invention; in England they seem to have advanced in this matter, with considerable success, as appears from some accounts given in one of the late numbers of the British Farmers Magazinc, from which we copy the following remarks.
"That the steam-engine would, at wo very distant day, supply the place of animal labor in agriculture; and become as mighty an instrument in auginenting the productiveness of the soil, as it has proved in creating and economising manufactures, in navigating the ocean, and in travelling on land, was many yoars since predicted by Franklin (?) a prediction reiterated by Davy ; and latterly acknowledged and enforced, as a great desideratum in science by many distinguished agriculturists. The successful application of Mr. Heathcoal's invention to the culture of bogs, the most repellent and obstinate of waste lands, leaves no room to doubt its applicability to soils already in cultivation. Coals are now procurable throughout Creat Britain at prices, which have caused the steamengines to be extensively introduced as a substitute for animal labor in many of the processes connected with ragriculture.Threshing, cleaning, grinding corn, chaffcutting, and turnip-slicing, \&c., are now performed by small engines, fixel on farm premises; even the churn has its steamengine, managed by the dairy maid; and so great is the advantage arising to the dairy farmer from the regularity of motion ; and economy produced by it, that hundreds of small engines, for this simple purpose alone, are used in the north of England and Scotland. But thesc arc humble savings, compared with the benefits to be derived from the vast steam power, which may be applied to the soil itself. Those agriculturists who are acquainted with the effects produced by the valuable sub-soil plough, recently invented by Mr. Sinith of Deanston, will readily appreciate the importance of an invention, which will enable them to employ that kind of plough at a iruch dirninished cost per acre. Mr. Smith's plough, with steam-power, will effect a rerevolution in agriculture. Implements of husbandry have hitherto been restricted, in form, weight, and dimensions, to the management of a teain of horses. A new class of instruments will take their place. The stiffest soils may be broken up, and pulver-

[^27]ised to any tesired depth; strong clays, the natural wheat lands, may be profitably cultivated, rendered more fertile,-and fitied to bear a better, and more systematic rotation of crops.

Such are a few of the benefits, which land owners and agriculturists will derive from this substitution for aniinal power in husbandry. It is also no slight advantage, in a national point of view, that this important change will be effected, unaccompanied by any of those temporary evilz, which too frequently attend the application of mechanical discoveries to existing arts. This iuvention will not displace a single individual from his accustomed healthy occupations; it will, on the contrary, occasion new and increased employment for agricultural laborers: it will restore to the support of man a considerable share of that large amount of produce, now sacrificed to the maintenance of agricultural hotses ; it will furnish ernployment to the rapidly increas. ing rural population of the empire, by rescuing millions of acres of bog and waste land from obnoxious sterility; it will find on their native soil multitudes of those Irish jaborers, who annually emigrate to Great Britain in search of work and food ; or who are forced with numbers of our own countrymen to prefer the dangers and hardships of enigration to wild and eistant countries.

In the Mechanics' Marazine for July, there is a notice of a steam-plough, projected by Mr. Dickson, who has no doubt of its efficacy to plough all sorts of land, and adds that portable steam-ploughs will ere long be going about, and undertaking to plough for whomsoever may desire their assistance; and with very little more preparation than is now required to place a portable thrashing machine." An Edinburgh news-paper, states, that "Mr. Craig of that city, has taken out a patent for an American steam-plough, which costs much less than Mr. Heathcoat's, but probably is not sufficiently powerful for bogs. From our knowledge of the business of a farm the only objection we have to a steam-engine in such an establishment is, that it cannot do every thing. For all purposes, where horses cannot or should not walk, as on many descriptions of bog, a steam plough may answer well; and there is no doubt that old arable land may be properly ploughed with steam-power; but would it also take the corn to market and do all other kind of road work. Would it carry out dung ; and carry corn to the barn, or hay to tho rick yard? If not then some draft horses must be kept; and if there be not a
full complement, such work wculd go on very slowly and unsatisfactory."
"Siice writing the above we have seen anl account of a steam-plough made by Mr. Upton-London. He affirms that it can be made generally useful, and that an enormous saving in the expenses of a farm where it may be introduced, will soon be Inanifest. This steam-plough of Upton's is worked by Upton's patent lever steam-engine and his air-furnace boiler. It a single shared plough, the space occupied by the entire machine will be four feet by ten fect ; if for trench ploughing, the dimensions will be the same; if for ploughing two, three or more parallel furrows at once then the breadth and length will be about five feet by twelve. The work done by the trenching ploughing, will be equal to any spade husbandry ; and that by the parallel shares will be found very superior to any horse ploughing ; inasmuch as the ground will not be trod or rammed down by horses feet; and as the steerer and ploughman will ride on the machine, the land will be left as light and open as possible, arid resemble that of garden culture. To the steam-plough a harrow, drill, and seed box can be attached, when requisite, and the entire operation performed at one going, when it is for the last ploughing, without trampling the soil. The spots left in the angles of the field by Upton's stearc-plough will be smaller than by any horse plough, as the steam-plough will turn if a single share, in thrice the breadth and length of a common wheel-barrow; and if a three shared plough, it will turn in tho space of a small one horse cart. The simplicity of cunstruction and small number of parts composing this steam-engine and boiler ${ }_{2}$ and the great safety and security of the latter, will prevent the necessity of frequent and expensive repairs, as the only parts of the apparatus liable to wear and tear are the plough shares, soles, coulters, and harrow tines, which will only require the same rcpairs. us if drawn by horses. . The engine and boiler are calculated to go 50,000 miles or more, before any repairs could be wanted, unless from accident or unfair usage; and whenever from, long use, very much worn, if the boilers were to burst, it could only extinguish its own firo without injury. to any person close to it. The plough will require one steady man to dircct and steer it ; and a tractable boy to attend the fire and turn the steam off and on occasionally, the engine being of the most simple and efficient construction. The water tank will require replenishing now and then; and perhaps fuel will be required two or three times in the course of the day; and the
boiler is admirably constructed for burning either wood, peat or coke, or coal may be used. The single plough is calculated to do two acres per day. The double plough will do four acres; and the three shared plough will do six acres. The counter or trench plough would do about ten acres per day; but as it would be equal in power to the double shared plough, it would require the same quantity of fuel and expense. The land cultivated by this plough would doubtless be found, from its efficiency, to produce crops nearly if not quite equal to spade husbandry, with which mode of husbandry I am thoroughly acquainted from practice; and in such case it uould pay for the steam the first season."
Such are the accounts, which are given of these great inventions, upon authority, which must certainly be deemed respectable. We may be excused for remaining in some degree incredulous, as to the extraordinary advantages, which are here predicted to be brought about by them. At the same time it would imply á very gross selfesteem to say that no further improvements in this matter can be made; and an unwarrantable distrust of the testimony of other men, though they may be interested parties, to pronounce all there statements fictitious and visionary. We have no doubt that very great improvements in these matters are in progress; and after witness. ing the wonderful and almost miraculous results of mechanical ingenuity and skill as applicd to-other of the arts within a few years past, we indulge the sanguine hope that great things are yet to be realized in this most important of all arts, agriculture, which even our dreams have not anticipated.

Our common ploughs have within a few years passed through most valuable im. provements. The use of the cast iron plough has greatly reduced the expenses of their construction and repairs, and has already saved millions of dollars to the farmers in the country. The improved construction of the ploughs has likewise greatly reduced the power required for the draft, and the work is much better executed than formerly. In this matter however great improvements are still desirable.The manner of our executing our work in general is wretchedly slovenly: and bears no comparison to the ploughing of the Scotch and English laborers. This in part is to be ascribed to the division of labor annong them, where a plonghman is only a ploughman, and trained exclusively to this business from bis childhood. With us it is not so; but we may hope that these
fine examples of work, which these emi grants often set before us, together with the great improvement is the instrument it. self, will stimulate to a more vigorous and successfut emulation.

H. C.

Navigation -Our bay and the chainnel out of the harbor, have been clear frcm ice for the last day or two, though the lake by us is yet mich clogged; but being conpleiely broken up, we hope to be rid of it in a few days.- [Dunkirk Beacon.]
a new construetion of rallways.
M. Perkins has just exhibited a new plan of reilways, which he has secured by patent, and which from the explanation given by him, would appear calculated to supply the desideratum so long desired, and indecd appears to form an era in the progress of those great national undertakings towards perfection.

The plan embraces two modes of construction, founded on one common principle, viz. the continuous support of the rails In the one case this is effected by blocks of vitrified earth, as hard and durable as granite, and which lock into one another, being laid on a concrete foundation: and in the other, by an aldditional depth of concrete supplying the place of sleepers altogether. Upon the former plan, wooden bearers, four inches in the base, four thick, and two wide, on the ton, rest upon the vitrified blocks; and in the latter, upon the concrete, to which they are firmly secured.In both cases, iron bars, with the means afforded for expansion and contraction, aro fixed on the wooden beams, and the fonndation being continuous and solid, in fact like one block of granite the whole length of the road, no vibration is felt, as the numerous persons who rode in the wagon unanimously testified; and this is an important attainment in railway constructions. The saving by the plan first described will, it is stated, be full $\mathscr{E} 4000$ per mile, in four rows: and by the latter. very much more-in fact 30 enormous will it be, as to give a new feature to railways, and astonishingly facilitate their construction in all parts of the country.: We should much like to see it in practice, which is alone the test : so fallacious are frequently found to be the results when based alone on novelty and ex-periments.-[Mining Journal.]

AN ACCOUNT OF THE NEW OR GHOSVENOR bridge over the river dee at chesTEK.

Comilurei from p. 283.

The Aet of Parlinment under which this bridge has been built was obtained in the session of $18: 25$; the works were contracted for by Mr. James Trubshaw, of Haywood in Staffordshire, early in 1827, and immediatcly commenced, the son of the contractor being resident throughont; the first stone was laid by the present Marquess of Westminster (then Earl Crosvenor) on the 1st of October in the same year ; and the bridge was formally opened on the 17th of October, 1832, by the Princess Victoria, on the occasion of Her Royal Highness's visit to Eaton Hall, and named, at the request of the Commissioners, Grosvenor Bridge, but it was not thrown open to the public generally until New-Ycar-Day, 1834.
The total cost of the work was $£ 49,900$, in which is included a sum of $£ 7500$ for the heavy embankments required in the ap. proaches. The moncy was partly raised by bonds, and partly advanced by the Com. missioneas for the Loan of Exchequer Bills, and is secured on tolls charged both on the new and the old bridge, the revenue yielded by which is about $£ 3000$ a-year.

The following table*, containing the leading dimensions of the largest stone arches that have becn built (from 150 feet span upwards), will enable a comparison to be made between the bridge it has been the purpose of ths paper to describe, and others approaching but not equalling it in magnitude ot arch.

* The dimensions of the continental bridges have been gathered from M. Perro. net's Discription des Projets et de la Construclion des Ponts, M. Gauthey's Traite de la Construction des Ponts, and Von Wiebeking's Theorctisch.Practische Wasserbaukiunst; and in the cases of the discrepancies that sometimes occur, (particularly as to the span of the ancient bridge of Vieille Brioude, which is stated to be 183 feet by Perronet, in his bold project for the bridge of Melun, and also as to the rises of some of the other arches,) Gauthey's Work has been preferred, as it seems entitled to be from the character of its talented editor, the late M. Navier, in whose death the Institution has too soon to lament the loss of a va. lued honorary member.

Name.	River.	Form.	Span.	Rise.	Keystone.	Date.	Engineer.
			Feet.	Feet.	Ft. In.		
Claix (Grenoble)	Drac	Circular	150	54	31	1611	
Gloucester	Severn	Eillipticat	150	35	46	1827	Telford.
London	Thatmes	Elliptical	152	$37 \frac{1}{2}$	49	1831	Rennie.
Tournon	Doux	Circular	157	65	1545	
Verona ${ }^{\text {r }}$	Adige	Eliptica	160	53		1354	
Lavaur 1	Agout	Elliptical	160	65	109	1775	Saget.
Gignac	Erault	Elliptical	160	44	65	1793	Garipuy.
Vieille-Brioude	Allier	Circular	178	69	53	1454	Grenier and Estone.
Chester	Dee	Circular	200	42		1833	Hartley.

CHESTER

BRIDGE.

XV. on the strafn to which lock gates I have had the means of examining, that are subjected. by peter w. barlow, civil en.
Having of late been engaged in estimating the dimensions of timber required for Lock Gates, I have been led to the consideration of the different strains to which they are liable, and the results of my investigations having, in some instances, been rather unexpected and interesting, I beg to lay them before the Institution of Civil Engineers, in the hope that they will prove of utility.

In England of late years, lock gates of large d me isions have been constr. cted of an arched figure, with a view to increasing their strength; how far an advantage is gained by this construction, it is chiefly the object of the present paper to investigate. Previously, however, to entering into these inquiries, it will be necessary to explain tho nature of the strains to which the common straight gate is exposed.

The best angle tor the sally of lock gates made of straight timber is a subject which has already engaged the attention of some mathematical men, but I must observe, with reapect to those investigations whieb
they seem to be founded on data evidentl. incorrect. A common straight gate is exposed to two strains; one a transverse strain, produced by the we ght of water at right anglez to its surface, which is equal to half the weight applied in the middle; the other a strain in the difection of its length, preduced hy the pressure of the opposite gate upon its extremity.* This latter strain, if the salient angle was of 45°, or the gates stood at right angles to each other, would of course amount to hali the weight on the opposite gate, so that at this angle a lock gate has, in addition to the transverse strain, an equal strain in the direction of its length.
Bcfore we can arrive at tho angle at which, with given dimensions of timber, the greatest strength will be given to a pair ol gates, it becomes necessary to know the amount of transverse strain produced by the end pressure of the other gate; or in 1 beam loaded in the middle, the additional transverse strain produced by a given degree of pressure applied at the ends. In urder to ascertain this point precisely, it
would be necessary to have a distinct set of experiments, which would not only be difficult to extcute, but very uncertain in their results; and as precision in this point is not necessary to the present question, I think, by the examination of M. Girard's experiments, we may arrive at it sufficiently near for our purpose.
These experiments were made upon a large scale by order of the French govern. ment, and alihough there appears to be some rregularity in the results, I have no doubt they are as correct as the uncertain nature of such inquiries will permit.
The following is an abstract of his experiments on the strength of oak baulks loaded at the end, and with the weight the same timbers would bear loaded in the middle, calculated by the rules given in Barlow's work on timber; by which a comparison an be made of the relative strength when subjected to a direct and transverse strain.
The timbers experimented upon by Giraid were not in every case completely brokon, but there is no doubt the weight they were subjected to was very little short of that which would have completed the fracture.

TaBLE I.-Abstract of Girard's Experiments on the Strength of Timber
loaded on the End.

No. of experiments.	Dimensions of the Timber.			Weight il. pounds the beam bore applicd to :he esire. mity.	Weight in pounds the same beam would bear loaded transversely	Ratio.	Remarks.
	Length.	Breadth.	Thickness:				
	feet.	1 -ches	NCHE: 5:08 S	93616			
2	8	6.21 6.39	5.08 4.17	93616 94018	8598 6078	.062	
2	8	6.39 6.21	3.99	69165	5390	.078	Broken.
4	8	5.23	3.89	50526	4325	-085	Broker.
5	8.628	5.15	4.17	50609	4900	-097	Broken.
6	7.549	6.02	5.15	115359	9930	-037	
7	7.549	6.21	5.05	103799	9909	-095	
8	7.549	6.12	4.085	73095	6396	$\cdot 087$	Broken.
9	7.549	6.21	3.99	63177	6336	$\cdot 100$	Broken.
10	7.549	4.96	3.99	44857	4924	$\cdot 109$	
11	6.471	6.12	5.24	87494	12366	-141	
12	6.471	6.21	5.15	87481	12013	-136	
13	6.471	6.21	3.99	87079	7392	-085	
14	6.471	6.30	3.99	72823	7313	-100	Broken.
15	6.471	5.24	4.17	103622	6525	-063	
16	6.471	5.05	4.25	82261	6674	$\cdot 081$	
17	7.549	6.21	4.25	87443	7022	-080	
18	8.623	6.21	5.32	82332	9607	-116	Broken.
19	8.628	6.21	5.15	103863	8993	-087	
20	8.628	7.37	6.21	137966	15584	-113	
21	8.628	7.45	. 21	137866	15764	$\cdot 114$	
					Mean . .	$\cdot 996$	

It thus appears that the force required to break a timber in the direction of its length, is about ten times that which would break it if it applied transversely at the middle; from which I infer that the strain in the direction of the gate produced by the pressure of the opposite one, is equal to an additional strain -of one-tenth applied transversely.

A difference exists in the comparison made in the preceding Table and in the case of lock gates, which it is necessary to make some remarks upon; viz., that a lock gato has a transverse pressure acting in äddition to that prozuced by the other gatc, so that the end pressure is exerted upon it after it is already deflected by a transverse strain which is ot course not the case in the comparison made in the Table. How far this may effect the question, or how much greater effect the compressive force may have in consequence of the beam being already deflected, it is very difficult to determine, but from an examiniition of the subject, I am induced to think that the deflection is so small as very slightly to increase the effect of the end pressure.

The amount of the effect will of course depend upon the degree of deflection the beam has sustained from the transversc pressure, and if it amounted to a quantity ex. ceeding one-twentieth of the length, (which would make the lever by which the end pressure acted exceed one-tenth of that by which the transverse strain acted,) a greater effect than one-tenth would be produced; but as the ordinary load which timber is ex. pected to sustain, does not produce at the utmost a deflection exceeding one hundredth part of the length, I cannot conceive the
transverse strain above named materially to alter the comparison, and I have accordingly, in the fol'owing investigation, assumed onetenth as the amount of additional straiu produced by the end pressure of the opposite gate.

It now becomes necessary to get an ex. pression for the amount of the s'rains above mentioned at any angle of salience, which is arrived at in the following manner :-

Let $A B, A C$, represent the two gates, meeting at the point A ; draw the line AI) from the point A perpendicular io BC , and let BD , which represents half the breadth of the lock, $=l$, also

let the pressure of water upon the length l of the gate be indicated by w and the angle $\mathrm{ABD}=\varphi$.
Then the length of the $A B$ and any angle φ will be expressed by
and the pressure upon it by

$l \sec \varphi$

The transverse strain produced by this pressure on the centre of the beam at the same angle will be

It now remains to find the amount o! compression in the direction of the gate, produced by the opposite gate.

Let AF represent the force or tendency of the gate AC to turn upon the point C, which is of course equal to half the weigl.t upon the gate A C,

$$
\text { or }=\frac{1}{2} w \mathrm{sec} \varphi
$$

The furce may be resolved into AG, FG, the one GF is supported by an equal and op. posite force in the gate $A B$, and the other will represent the force in the direction of the gate, the expression for which may be found as follows;
as sine $\angle \mathrm{AfF}: \mathrm{AF}:: \operatorname{sine} \angle \mathrm{AFG}: \mathrm{AG}$
or sine $\varphi: \frac{1}{2} v \sec \varphi:: \cos \varphi: \frac{1}{2} 20 \sec \varphi$
$\frac{\operatorname{os} \varphi}{\operatorname{sinc} \varphi}=\frac{3}{2} \operatorname{cosec} \varphi$
The whole amount of transverse strain at any angle φ will therefore be represented by the expression,
$\frac{1}{2} w \sec \varphi+{ }_{2}^{\frac{1}{0} v} \boldsymbol{v} \operatorname{cosec} \varphi$
from which we may readily obtiain the angle at which the strain is a minimum as follows;
or $\tan \varphi \sec \varphi \mathrm{d} \varphi-+\cot \varphi \operatorname{cosec} \varphi \mathrm{d} \varphi=0$
whence $\tan ^{2} \phi=\frac{1}{10} \operatorname{cotan} \phi$

$$
\text { and } \tan ^{3} \varphi=
$$

$$
\tan \varphi=3 \sqrt{10}=1^{1} 0_{3} \sqrt{ } 100=.4641
$$

$$
=\tan \angle 24^{\circ} 54^{\prime}
$$

The sulient angle of a pair of oak gates, when the strain is a minimum, is therefore $24^{\circ} 54^{\prime}$
In the question of the best angle for lockgates, it becomes necessary to consider that the length of the gate also varies as tho secant of the angle φ. The angle $24^{\circ} 54^{\prime}$ is therefore not that at which, with a given section of timber, the greutest strength will be obtained; for although the strain is tho least at this angle, yet the gates, by their greater length, are less abic to resist it than at some intermedi:te angle, when the strain is slightly increased. The expression now becomes

$$
\sec ^{2} \varphi+\frac{1}{10} \sec \varphi \operatorname{cosec} \varphi=\min
$$

$2 \sec ^{2} \varphi \tan \varphi d \varphi+\frac{1}{10}(\tan \varphi \sec \varphi \operatorname{cosec} \varphi-$ $\cot \varphi \operatorname{coscs} \varphi \sec \varphi)=0$
$\rightarrow \sec \varphi \tan \varphi+\frac{1}{10} \tan \varphi \operatorname{cosec} \varphi={ }_{10}^{1} \operatorname{cotan} \varphi$ $\operatorname{cosec} \varphi$
$2 \sec \varphi \tan ^{2} \varphi+1 \quad \tan ^{2} \varphi \operatorname{cosec} \varphi=\therefore$ $\operatorname{cosec} \varphi$.
from which the cubic equation,

$$
\tan ^{3} \varphi+2_{2}^{1} \theta \tan ^{2} \varphi=2_{2}^{1} \theta
$$

This, being reduced, makes the tan. $=.25701$, or the angle $19^{\circ} 25^{\prime}$, at which a pair of lock-gates should be situated, so as to have the greatest strength with a given section of timber.

Having obtained, in a manner I thope satisfactory, the angle of greatest strength for gates of straight timber, I conclude this part of my paper with a Table of the necessary dimensions of oak tiniber for lock-gates, varying from 6 to 20 fect in length, and from 8 to 20 feet in depth, which I believe are the limits of the dimensions of gates of this construction.

The first column in each division of the Table gives the amount of transverse strain produced by the pressure of water upon three feet depth of surface, at an angle of $19^{\circ} 25^{\prime}$; and the second coiumn the dimensions of square oak timber necessary to bear three times that strain.

as foliows. Let. BF represent the force acting at right angles to the extremity of the gate BC, tending to, turn it upon the point C, which is of course equal to half the pres. sure of water. Resolving this into the direction of the tangent of the curve AB, by drawing FG parallel to $B C$, and producing D B, we obtain the line BG, which represents the compressive forec of the gate BC in the direction of the tangent D B, and which is equal $\frac{1}{2} w \operatorname{cosec}(2 p-0)$.

As the diminution of strain owing to this force is, in proportion it destroys the tangen. tial foree DB , the amount of the transverse strain at any angle, φ and θ may be found by the following proportion:
$\left.\frac{1}{2} w \operatorname{cosec} \theta: \frac{1}{2} w ; \operatorname{cosec} p-\operatorname{cosec}(20-)\right\}$
$:: \frac{1}{2} w: x$

$$
\text { Or, } \begin{aligned}
x & =\frac{\frac{1}{2} w\{\operatorname{cosec} \theta-\operatorname{cosec}(2 \varphi-\theta)\}}{\operatorname{cosec} \theta} \\
& =\frac{1}{2} w\left\{1-\frac{\operatorname{cosec}(2 \varphi-\theta}{\operatorname{cosec} \theta}\right\} \\
& =\frac{1}{2} w \cdot\left\{1-\frac{\sin \theta}{\sin (2 \varphi-\theta)}\right.
\end{aligned}
$$

which is the true expression of the trans. verse strain or weight applied transversely in the middle of the length, which would have equal effect in broaking the timber.

It will at once beseen that when the gates united from a completo arch, that is, when the angles ond θ become equal, the expression vanishes, the tangential force being then resisted by an equal compressive force in the opposite gate.

In this position, therefore, if the curve was mathematically true, the strain perfectly equal and regular, and the material also of an uniform density, the loading the areh would have no other effect than that of direct compression in the direction of the fibres, a description of strain which timber possesses great power to resist, as appears from the experiments of Girard. In prac. tice this cannot, however, take place; the curve can neither be perfectly true nor the density of the material uniform, cither of which defects would lead to a transverse strain, which, if sufficient weight was put on, would ultimately destroy the gate. 'In the former case, the flatter parts of the curve would naturally have a transverse strain up. on the bottom fibres, from the abutinents or terminations of it not being resisted with an equal degrec of compressive force; the fibres would in consequence in some mea. sure yield, and the relative position of the gates at the point of meeting would be changed, so as not to touch equally throughout ; an increased compression would be brought upon particular fibres, which must of course yichd, and the evil would continue to increase until fracture ultimately took place. In a sinilar manner, an irregular density of the material, by causing a yielding in some parts more thanf others, would bring on a change of shape which would ul. timately produce the same results.
It therefore appears that in either case the cause which ultimately leads to fracture is the transverse strain produced from the irregu. larity of the curve, brought on by circumstances which cannot be cuntrolled. Hence the nearer the curve can be preserved in the true figure of an arc of a circle, the greater the strength of the gates.
It has however to be considered that the
arch is not composed of one complete timber, but that the fibres are disunited at the point of meeting, and consequently if that part from any cause should become flattened there are no fibres to resist the trans. verse strain thus produced ; and us the flattening of this part of the arch is an effect which might probably arise from any yielding of the abutments, or wear of the heel posts in the hollow quoin, this would evidently be the weakest part of the curve. It therefore becomes necessary to deviate in a small degree from the true curve of the arch, by giving the gates greater lengtil, and causing them to meet at a point a short distance from the curve, or in fact rendering them slightly Gothic; but as the security to the point is obtained at the expense of a constant transverse strain upon each of the gates, the deviation from the true arched figure should be as little as possibic, consistently with the object in view, and by no means so great as is commonly employed in lock gates: I should think a deviation of one foot or cighteen inches quite sufficient for the purpose of locks of from forty to fifty feet wide.

General Remarks.

It was my intention to have cuncluded the preceding part of the article with a Table of the requisite dimensions of timber for gates of different sizes, both of the curves commonly cmployed, and of those which I should recommend; I find, however, that these calculations would require a greater length of time than I can at present devote to the subject, and I therefore conclude with a few gencral remarks on the results arriv. ed at.
In the first place, with respect to the proper angle of straight gates, this being at subject natorally calculated to excite the propensifies of the mathematician to set his inaxima and mimima to work, a greal number of solutions to the problem hare been given; but I must remark, with every respect for that useful class of men, that they are frequently too ansious to commence investigations without sufficient data, and consequently arrive at results totally incorrect, which has certainly been the case in those investigations I have had an opportunity of examining on the subject.
It seems to me perfectly impossible to arrive at correct results, without first ascertaining the amount of transverse strain produced by the end pressure, which does not seem to have been done before; but having obtained this from Girard's experiments to be one-tenth of the effect of an equal weight in the midtle of the length, I have little doubt that the angle $19^{\circ} 25^{\prime}$ would be found, by experiments, to be very nearly that in which the greates strength would be obtained with a given quantity of timber.

The angle commonly adopted in this country, is considerably more than 19° 25^{\prime}, amounting generally to between 30 and 40 degrees, which is said to be preferred from the direction of the thrust being met by a large quantity of brickwork. I cannot, however, conceive this to be a matter of much importance, particularly as
there are locks on the continent, of large dimensions, where the angle is considerably less, which have stood perfectly well. The angle of the celebrated sea-lock of Muyden is only $16^{\circ} 30^{\prime}$, and the ancient lock of Sparendam, which was built in 1568, and has stood many storms withont injury, has a sally of not more than one-sixteenth:- the angle ought cortainly to be in so:ne measure gnided by the circumstances in which the gato is placed; at the same time, I consider the angle corr. monly made use of in England, io be decidedly larger than necessary, and a useless weight of material employed, which increases one of the evils of canal naviga-tion,-the time consumed in passing the locks.
The employment of curved timber is undoubtedly adrantageous, but its application is evidently made upon no fixed principles, as may be seen from the differences of the curves which have been adopted; some being so great as to very nearly approach the figure I have pointed out as the best, while others are so exceedingly flat that they possess little advantage over the straight gate.

To illustrate these differences in wool. en gates, I have represented, in the accompying drawing, the curves employed in the gates of the St. Katharine's, London, and West India Docks. The dimensions are as follows:-

ST. KATHARINE'S DOCKS.
Width of the lock 45 feet.
Projection 11
Radius of the gate 117
Consequently the angle $\varphi=29^{\circ} 16^{\prime}$, and $d=6^{\circ} 8^{\circ}$.

London docks.
Wid!h of the lock: $\quad 40$ fee t.
Projiction 9
Radius of the gate 50
Angle $\varphi=23^{\circ} 35^{\prime}$, and $\theta=13^{\circ} 54^{\prime}$.

> WEST INDIA DOCFS.

Width of lock	45 feet.
Projecion	10
Radius of the gate	120
	Angle $0=26^{\circ} 24^{\prime}$, and 05°
53^{\prime}	

'Angle $\varphi=26^{\circ} 24^{\prime}$, and $\theta 5^{\circ} 53^{\prime}$.
With the aid of the preceding formule I have calculated the amount of transverse strain in each case, (half the pressure of water upon one gate being unity, and the same, if they were of straight timber, having an equal salient angle. These formulx are arranged in the following Table.
In order to make the comparison of the straight and curved gate more direct, there is also added a column of the amount of transverse strain on the latter, that on the straight gate being unity.

The fourth columin illustrates the reduction of the dimenzions of square timbewhich may be permitted, owing to the dir minished strain.

TABLE III.

Gate.	Transverse strain, $\frac{1}{2}$ w being unily.	Transverse strain of straight timber having the same salient angle, $\frac{1}{2} w$ be ing unity.	Transverse strain, that on the straight gate being unity.	Dimensions. of timber having equal strength, that on the straight gate being unity.!
AtSt. Katharine's		\%		
- Docks,	S6	1.178	$\cdot 73$	-900
, London Docks,	- 56	1.229	-45	766
West India Docks	- 86	1.201	$\cdot 72$	-806

It thus appears that considerable adrantage is gained in each casefrom the curvature, but that in the London Docks, from the radius being less, and the two gates in consequence approaching nearer the curve of a complete arch, the advan tage is mucb greater, and the transverse strain in consequence reduced to less than half that of straight gates having the same salient angle.

The difficulty of obtaining timber of sufficient curvature has been urged as a reason for the flatness of the curves employed in wooden gates; this is certainly a consideration which must be attended to, but as similar curves are employed when the material made use of is cast iron, I cannot conceive this to be a point which has materially influenced the choice of the figure.

In the accompanying drawing (Plate VII.) are given the curves of the gates of the Caledonian Canal, the Dundee Docks and Sheerness Basin, which are of cast iron: they will be found to differ very materially from each other, being in one in-
stance nearly as flat as in the West India and St. Katharine's Docks.

The following are the dimensions:caledonian canal.
Width of the lock 40 feet. Amount of projection 10 " Radius of curvature 75 Angle of sally $\varphi=30^{\circ}$, and $\theta=8^{\circ} 3^{\prime}$ DUNDEE DRY DOCK8.
Width of entrance. $\quad 40$ feet.
Amount of projection - 7 feet 6 inches. Radius of curvature 67 feet.
Angle of sally $\varphi=22^{\circ} 2^{\prime}$, and $\theta=9^{\circ} 12$, SHEERNESS basin.

Widih of entranec
Amount of projection
Radius of curvature

Angle $\varphi=24^{\circ} 5^{\prime}$, and $\theta=16^{\circ} 55$.
To make a comparison of these curves, I have calculated a Table, as in the case of the wooden gates, containing the amount of the transverse strain which straight gates would have under similar circumstances.

The same formula is employed for this || but I should not conceive the difference 10 , purpose as for the wonden gates, which il be sufficient to affect materially the commay not be stricly true with cast iron; $\|$ parison.

Gate.	Transverse strain, half the pressure of water being unity.	Transverse strain of a straight gate, with the same salient angle.	Transverse strain, that of the straight gate being unity.	Dimension of iron of similar section wilh the straight gate, that of the latter being unity.
At Caledonian Canal	82	1.173	- 700	-887
Dundee Docks	72	1.247	-58	834
Sheerness Basin	$\cdot 44$	1.215	-35	$\cdot 704$

It thus appears that in the gates of the $\|$ the same situation; but I conceive that yb Caledonian Canal the transverse st ain is nearly as great as in the West India and St. Katharine's Docks. In those of the Dundee Docks and Sheerness Basin, a considerable improvement is marle, paricularly in the latter, where the strain amounts to little inore than one-third of that which straight gates would have in slightly diminishing the salient angle, and increasing the curvature of the gates, the advantage might be carried still further,_ the same strength proluced by less weight of material, and a lightness given which would greally facilitate the passing and repassing of vessels.

> CURVES OF L(:CK-GATES.
> Plate 9 .
> St. Katherines Docks.

West India Docks.

Propost Curves.

Agriculture, \&e.

Cultivation of the Praimes. The following letters from, and to, the Hon. H. L. Ellsworth, superintendant of the Patent Office at Washirgton city, give a better idea of the cost of cultivating the Western Prairies than we have before seen, and we think our readers generally will be pleased with a perusal of them.

Washington, Jan. 1, 1837.

Dear Sir-You doubtless expect some further statement than has been received respecting the investment made for you in the valley of the Wabash. A desire to meet my son, who was daily expect ed from Lafayette, has delayed my writing until this time. And now, let me say, generally, that the west has grown, and will continue to increase beyond the most sanguine calculations. Nor will any action of general government materially check the advarcement of the lands which are judi ciously located on the great western canals or railroads. Very little is yet known of the valley of the Wabash. Alihough the fertility of the soil is unequalled, still few have ever seen this country. The reason is obvious, there is no communication with it, and hence speculators and settlers have passed around it going west, either by the Michigan Lake, or by the Ohio and Mississippi rivers.

Five thousand persons left Buffalo in one day to go up the lake, and yet not one went into the valley of the Wabash. A slight inspection of the maps of. Indiana, Ohio, and Illinois, will show a direct route to the Mississippi from the west end of Lake Erie, to be up the Maumee and down the Wabash valley to Lafayette. It may, therefore, be considered certain that when the railroad from St. Louis to Lafayette is completed, the great travel from the Mississippi valley to the east, will be by the lakes through the Wabash and Erie Canal the shortest and quickest route by several days. A person at the mouth of the Ohio will pass up to St. Louis, then take the railroad and canal to Lake Erie, in preference to following the meanders of the Ohio river in a steamboat. Can there be a doubt on this subject? What time will be occupied on this route to New-York? Not exceeding six days. From St. Louis to Lafayette, (240 tniles,) onc day may be allowed; from lafayette to the lake, at the rate of $4 \frac{1}{2}$ to 5 miles per hour on the canal, (now in operation considerable part of the way,) forty-eight hours ; on the lake, 24 hours ; and from the lake to New-York city, via railroad, (now commenced, not exceeding two days.

What changes this must make in the val ue of property on the route! The value of land depends on the fertility of the soil and the farility of transportation. From a personal inspection of the western States, during six years past. I am fully convinced the Wabash valley has the best soil and most favorable climate. In the latitude of Philadelphia, you avoid the extreme of great heat
in summer and of cold in winter, and also avoid the danger of eally frosts, so prevalent in a higher latitudc. You ray ask, what will be the markets fir Indiana? answer, New-York and New-Orleans. The former by the Erie Canal, and the latter by the Wabash river, (navigable to Lafayette for steamboats, and by the railriad above named to St . Louis, also Montreal by the Welland Canal. A choice of all these markets, equally accessible, is presented to firmers on the Wabash valley; and one peculiar advantage this valley possesses pver Michigan and Wisconsin, is the early navigation of the Wabash river. The produce of this valley can by this river pass down to New-Orleans in flat boats, free of tolls, and he transported to Charleston, Baltimare, New-York, and Buston, six weeks before the New-York canal opens. This early market may be estimated at a good profit in business.

You may ask, if the Wabash and Erie Canals will surely be completed? Undoubtedly they will. Indiana and Ohio are pledged to complete them. Nearly all is now under contract, and government has given lands adjoining sufficient to finish the same, without any expense to the States.

As like causes (other things being equal) produce like effects, it will not tax your credulity to beheve, that the rich lands of the Wabash valley will equal those on the Chio, New-York, and Pennsylvania canals which vary from $\$ 25$ to $\$ 60$ per acre. Is it possible that lands, yielding forty bushels of wheat, seventy bushels of corn, sixty bushels of oats, and four hundred and fifty bushels of potatoes, and distant only ten to twelve days transportation from New-York or New-Orleans cities, can be less than $\$ 30$ per acre?
In making selections, I have, when practicable, procured both prairie and timber, though I am sure there has been a cominon error to pass the rich prairie because tim. ber cannot be found adjoining, at government price. Under this belief many set. tlers have, to their sorrow, entered the tin ber and left the prairie, because they suppose nobody would enter that without possessing the timber. This prairie has been lately entered. And such is the facility of raising timber on prairies by sowing the seed of black walnut and locust, that the desire for timber land has diminished.Those who doubt the comparative value of prairie and timber land., will lo well to consider that \$12 is a fair price for clearing timber land. Timber land when cleared in the usual manner, is left incumbered with stumps and roots, fatal obstacles to laborsaving machines. $\$ 12,000$ will be requis. ed to clear 1,000 acres of nimber land; whereas the 1,000 acres of prairic can be put into tame grass, without ploughing.

A prairie farm may be put in complete cultivation, at from $\$ 375$ to $\$ 9$ per acre, accordrg to the annexed computations from my son Edward, who has been extensively engaged in cultivating the prairie for the last year. The annexed leter from Mr. Newell will also give much valuable information on this point. From a personal examination of the lands in France
and on the Wabash valley, I feel no hesitation in pronouncing the latier decidedly the best for the beet sugar manufacture.In France, eight, ten, and twelve dollars per acre are paid for rent, and yet great profits are made. An acre of good land will yield 44,000 pounds of sugar beet, from which 2,400 pounds of sugar can be extracted, which at ten cents per pound, amounts to $\$ 240$ per acre.

In England, paper is now made from the residuum of beets, after the saccharine matter is extracted. An application for a similar patent is now pending in the pstent office. The sample of paper exhibited is very good, and the rapidity with which the paper is made, must materially reduce the price of this article. Many labor-saving machines are introduced to aid in the cul. tivation of ncw lands. In a few years, it is probable that ploughing on smooth lands may be effected by steam; and even now mowing and reaping are successfully done by horse power.
Such are the profits of cultivation, that I would advise all who can, to improve some part of their lands. A small improvement will repay expenditures, and greatly enhance the value of the whole in. vestment.

Three benefits may be expected

1st. The crops will repay expenses, and yield great profit.

2d. The land cultivated, and the land adjoining, will be advanced several hundred per cent.

3d. If stock is put on the farm, the same may be numerically increased, and greally enhanced in value, by improving the breed.

Either of these considerations is sufficient to justify cultivation, and guaranty a large return. I might mention the successful cultivation of hay in the west-from one and a half to two tons is a fair crop.This can be cut and pressed without any labor-saring machines, for $\$ 2$ per ton; and if the grass was cut by horse-power, the expense would be still less. Tho profits on one hundred heifers, at $\$ 5$, might be easily supposed. Fifty breeding sows would probably give seven hundred pigs per annum; and by these means a large farm could be stockel, with lit'le capital advanced.

Hay at New-Orleans varies from $\$ 20$ to $\$ 50$ perton. An arerage, for the last three years, may be $\$ 30$ The cost of floating down hay in flat boats, to NewOrleans, may be $\$ 8$ per ton.

If, therefore, fifteen hundred to two thousand tons of hay could be cut on one thousand acres, would it not be a.profitable crop?

There is a practice mentioned by Mr . Newell, and highly recommended by others of putting in hay seed without ploughing the ground. This is done by burning the prairie grass in the spring, and harrowing in the seed. The seed catches quick, and grows well. Blue grass, espccially, succeeds, in this way, and the grass will sustain stock all winter without cutting any hay or fodder for them. A large drove of horses were kept lasi winter at Indianapo. lis on blue grass, on the open fielits, at the small expense of $\$ 1$ per head per month.

From personal examination, I am convinced that ditching and hedging, as practised in Holland, England, and France, almost entirely, and now successfully adopted in Illinois, is cheaper than fencing by rails.

The general complaint of the earth crumbling by frost, is prevented by sowing blue grass sced on the siles. Mulberry trees might be raised on the slope of the ditch, with great profit. Indeed, such is the rapid growth of the mulberry.in these rich prairie lands, that the purchase of this land at $\$ 125$ an acre, and planted with these trees alone, would in a few years be highly valuable. Such is the extent of the prairie, that wood land will always be valuable for timber. The wood land is nlso rich, and fine for cultivation; and if' rees under certain diameter are cut, a fine grazing farm may be easily made, and the good timber preserved. Similar pastures are found in Kentucky ; these yield $\$ 3$ profit per acre, annually. It may be asked, how can non-residents lest cultirate their lands? I would remark, that it is customary to rent land (once broke and fenced) for one third of the crops delivered in the crib or barn. At this rent the tenant finds all.

I would advise to employ smart enterprising young men from the New-England States, to take the farm on shares. If the landlord should find a house, team, cart, and plough, and add some stock, he might then require one half the profits of the same. I would advise to allow, for fencirig or ditching, a certain sum, and stipulate that the capital invested should be returned before profits were divided. A farmer could in this way earn for himself from $\$ 700$ to $\$ 1,000$ per annum, on a lease for five years.
The second year a mowing machine might be furnished, if one hundred acres were seeded down to tane grass. Mast for swine is found in great abundance, and the number of hogs coul? be easily increased to one thousand, by alding to the number of broeding sows.
Corn is easily raised, that it is found ad vantageous to turn the hogs into a field of this grain, without gathering it. It has long been the practice in the State of NewYork, to raise oats and peas together, and turn in the swine to harvest the same when ripe. Experiments this summer in Connecticut, show a great profit in raising spring wheat and oats togetlier, and feed. ing out the same to hogg. I have omitted to say, that good kituminous coal is found in the valley of the Wabash. The veins are from five to ten feet thick, and a large wagon loxd will supply one fire for a year. Sall also is manufactured in large quantities, and superior in quality to the Kenhawa salt.

Farmers in Illineis and Indiana are now successfully enclosing their lands by ditch. ing, which has cost from fifty to seventyfive cents per rod.

The laws of the S!ates of Indiana and Illinois, compel the owners of lands adjoining to pay one half of fencing, whenever they make use of, or derive any benefits fiom the fences of their neighbor. This lessens the expense of fencing one half.

If it be asked, what are the profits of cul-
tivation? I answer, if the land is rented for five ycars, the profits accruing during this period, will repay the capital adranced in the commencement, with twenty-five per cent. interest per annum, and leave the farm worth $\$ 20$ per acre at the expiration of the lease. Probably the profit will be inuch greater.

Yours, respectfully,
H. L. Ellsiforth.

Lafatette, Nov. 1836.
Dear Sir-In consequence of the numerous inquiries by yourself, and others, relative to the improvement of wild lands, and especially prairies ; the cost of cultivation ; the quantity of crops; the market for the same, and the profts that may be expected, I have concluded to write youl a gereral letter, to be uied as inight be thought proper. My knowledge is founded upon experience, having just completed a farm of eight hundred acres on the wild prairies.
The expense of breaking up the sod, is $\$ 225$. This is a fixed price, and certain calculations may be made on it, wherever the land may be located. But a difference will exist in the cost of fencing, according to the distance the rails are carted. For the farm I have just fenced, the rails were hauled four miles. This distance will form the basis of my calculations. It is apparent that the cost of fencing will depend materially on the size and form of the area to be enclosed. An area of three hundred and twenty acres will cost much more than half of the amount required to fence six hundred and forty acres. The four sides of a half section are three miles ; the two longest sides being one mile each, and the two shortest a half nile ench: The four sides of a whole section, six hundred and forty acres, are four miles, requiring only one quarter more fence for double the quantity of land.
Twenty rails are allowed to a rod; this makes a "Virginia," or worm fence, eight rails high-the eighth rail (called a rider) being elevated twelve or eighteen inches from the seventh rail, and resting on crotches, (eight feet long,) crossing at cach corner of the "worm." Rails of ordinary size, laid in this manner, make a durable and tight fence, over and through which no cattle or stock can pass.
First Estimate for improving six hundred and forty Acres.
Eour miles, or 1,280 rods, 20 rails to the rod, gives 25,600 rails.
Add for enclosures, cribs, \&c. 1,400 rails ; total of rails is 27,000 , which, at $\$ 350$ per
thousand, gives
For one log house and well, and laying up fence,
For breaking up six hundred acres, (allowing remaining forty for bad spots, enclosures, \&c.,) at \$2 25,

1,350 00 3000
Allow for contingencies,
$\$ 2,52500$
Making not quite $\$ 4$ per acre, costs, including buildings,\&c.
$\$ 94500$
20000
,, 525

Second Estinate for three hundred and tivenily Acres.
Three miles, or 960 rods, at 20 rails per rod, gives 19,200 rails.
Add for enclosures, cribs, \&c. 1,300; total of rails, 21,500, at $\$ 35$, gives
$\$ 75250$
For well, laying up fence and one house,

17500
For breaking three hundred acres, (allowing remaining twenty for enclosures, \&c., at $\$ 225$, gives

67600
Add for contingencies,
2500
$\$ 1,628,50$
Making near $\$ 5$ per ${ }^{2}$ acre.
The above calculations may vary a few cents per acre, owing to slight fluctuations in price of laborers. One hundred acres will cost about $\$ 6.50$ per acre, same biildings, \&c. ; and eighty acres will cost about $\$ 830$ per acre, same buildings, \&c.

I have found no difficulty in renting one hundred acres of land, fenced, at \$250 per acre. The tenant made a handsone sum by the lease. It is common to hire land that is fenced or has been broken up, and give one third of the crop delivered in the crib or barn.

You will perccive the profit on one hundred acres, 40 bushels of corn is a small crop; 75 to 80 bushels a good one; one hundred acres, at 40 bushels, will yield 4,000 , one third of which is 1,333 bushels, which, at 25 cents, is $\$ 333$ per acre.When the canal to Lake Erie is made, the price will be double; 30 bushels of wheat, is a fair crop; one third, 10 bushels, is equal, at present prices, to $\$ 1250$-deduct expenses, it will be $\$ 6$ per acre ; one half of the grass crop would be a fair proportion for the landlord, equal to one ton, which will be worth on the land $\$ 8$, and deduct $\$ 1$ for pressing, will leave $\$ 7$ profit per acre, which will be doubled by carrying to New-Orleans.

Many farmers raise a sod crop, by dropping corn in the furrows when ploughing is done; sometimes this succeeds well, but there is too much uncertainty about it to make definite calculations. As a general remark, I would observe, that the first two crops will pay for the land, at government prices, fence the same and plough it, and on 320 acres, build a house worth $\$ 200$. The land will sell readily at $\$ 10$ per acre, if improved. Yours, respectfully,

E. A. Ellsworth.

To Hon. M. L. Eileswonth,
Washington City, D. C:
Danville, Nor. 12, 1836.
Dear Sir-
Your favor of August 30 th , was duly reccived; and in answer to your inquiries; I can say, that :

1. "Does your prairie land bcar good wheat ?" None can hardly be better.
2. "How is the best way to improve prairie land ?" By ploughing it in the months of May, June, and July, with a plough peculiar to this country, which cuts a furrow two feet wide, and commonly three
inches deep, upon which sod, corn, oats, wheat, and most kinds of grain, grow well the first year, and with no farther labor in ploughing.
3. "How much wheat, co:n, or oats, do you realize per acre?" The first year or so, of wheat, commonly thirty bushels; oats, forty bushels ; corn, 30, \&c., \&c.The second year more of corn and oats, and not much of wheat.
4. "Do sod crops do well ?" They generally are fine, in a good season.
5: "How much grass on an acre?"I can't say, but over two tons, when well set.
5. "Can blue grass be harrowed in on the turf?" It can, and does well.
6. "Can herds grass also: is this the best way ?" It can also, and this is the best way.
7. "Is your country good for hogs ?"* Not so good; it is too cold-yet there is good pork made here.
8. "Can you keep cattle on blue grass?" They are kept by some all winter on blue grass, if snow is not too deep.
9. "Is your prairie good for beets?" It is the best for all garden stuff, that I have ever seen, and there can be none better:
10. "Is there coal near you?" The coal beds here are inexhaustible; they are found almost on every considerable creck, and perhaps as much in Vernillion county, as any in Illinois.
11. "What is the price of cattle now?" About $\$ 1$ per cwt., and higher now than formerly, owing to the great emigration and demand for them; and from the rapid settlements, they will not be lower, most likely, for years.
12. "How do ditch and turf fences do ?" As yet, I have seen none upon the right plan; but a ditch and sod sown with blue grass, I have no doubt will answẹ every purpose, instead of fence.
13. "What is the comparative expense of rail fence and ditching?" That depends upon the distance you haul the timber.But ditching may, by proper arrangements, be done cheap.
You ask me farther, whether I can furnish blue grass seed? I can, to the amount of sowing two hundred acres per year, price $\$ 1$ per acre. This seed can also be got at Louisville and Cincinnati.

You have the goodness to say, that I may add any information in my possession. I do it cheerfully; believing that we have one of the finest countries in the United States. - My experience here in farning has been not inconsiderable.

The prairie grass is an excellent substitute for tame grass, if it is well cured, and cut early. This grass, early in the spring, is equal to any pasture in the old States,

[^28]and some have said better; but when it becomes hard, in August and September, it is of little or no account. A inan and two horses can plant and tend forty acres of corn on the prairie, when the sod is well rotted; and, as an average crop, there will be fifty bushels per acre, and sometimes more. (lats grow fincly, and yield from fifty to seventy bushels, on ground well tended. I think, also, there is no country superior to ours for hemp and tobacco; at least, none of the southern states in which I have been.
Sheep do as well here as in Kentucky, even on the prairic grass. I need hardly add, that this country is peculiarly adapted to the raising of mules, horses, and catlle, and they can be raised cheaper here than any state in wKich I have been, fifty per cert. at least I will say.
Fruit trees that I have tried, have grown remarkably thrifty, and, perhaps, faster than in most countries-which is the case of all trees. I have grown, from the seed, black and honey locust, sugar and walnut trees, ash and hickory-that of nine years' growth, is nine inches in diameter. My pear trees, about nine inches long when planted, produced fruit the sixth year.My apple trees, from the seed, produced the fifth year; and some of the trees this year, (the ninth ycar, yielded me twenty bushels to the tree. I will not forget to mention, that flax also is luxuriant in is growth here.
You have said that you have the sugar beet seed, and proffer to send me a few, which will be most acceptable. I would like some of the hedge thorn for experiment also.
I live adjoining your lani, and have eight persons in my family, and during this, and for years past, have had none sick in my family. This, perhaps, comprises all you may wish to know about our delighted country.
I have the honor of being yours, \&c.,
JAMES NEWELL.

To Hon. H. L. Ellsworth,
 Washington City, D. C.

We are truly obliged to the writer of the following communication, and our readers, certainly cannot be less so ; as the facts therein given may be implicitly relied upon, and are of deep interest to every practical farmer. We take M. at his promise, and give him notice that we shall oiten draw upon him for the results of lis experience, and trust that our drafts will not be "protested for non-acecptance." If accepled we ask no endorser.
It will afford us great pleasure to aid hin in "hammering" out the truth of such vast importance, into the brain of every wool grower or shcep raiser in the country.[Eds. N. Y. F.

management of sheep.

Messrs Editors,-1 have long since desired to contribute something useful to the columns of your valuable journal, which is
the privilege and duty of every subscriber. Many are douhtless deterred from so doing, by the same reason which has influenced myself, viz., because they: have nothing novel to communicate. I have discoveral that rovelty is not always associated with utility, and therefore, after due reflection, 1 am convinced I cannot better subserve the purposes for which your journal was establislised, than in this communication, bear my testimony in favor of something already known, of the highest importance, and of undoubted advantage, in every point of view, to all who practice it. I refer to the housing and protection of sheep, during the wiuter. This a trite subject Messrs Editors, but it is one, which will bear more hammering than you are aware of; and if it were possible to hammer it into the brains of every wool grower, I should congratulate mysclf as one of the greatest benefactors of the age.

Much has been published on the improvement of the breed of sheep, the best modes of keeping \&cc., but I fear to very little purpose. I have sometimes thought, that our great freedom as a nation, had an unfavorabie influence upon private character, and is in some degree injurious to individual inprovement. Every man as soon as he slips "his leading strings" is proud of "going upon his own hook," this is frequently a sort of independance of thought and action, which is too apt to degenerate into self-suffi. ciency and concsit of our own superior knowledge. These remarks are particularly applicable in my opinion, to the great majority of farmers. Almost every man you meet with, in these days, is disposed to consider his own kind of stock best, his system of tilling best, and his every thing in regard to management better than his neighbors. All experience and observation prove, that when a man thinks he has arrived at the point of perfection, and he begins to retrograde. This spirit of of self-sufficiency is fatal to all improvement. The rapid strides which agriculture is making towards perfec. tion, renders it ridiculous for any one to suy " my system is best, I know enough already, and will follow in no man's track." In any opinion, we all ought to consider, that in this country, the great science of agriculturo is yet in its infancy, an! loudly applaud evely experiment that is made to develoje the wor. derful, and still hidden, resources of our soil. I am not, however, myself disposed to bow to every theorist and innovator, whether in religion, politics, or farming, but where experiments are based on cominon sense, and conducive to profit, I am ready for one, to adopt them. How much yaluable informa. tion and solid adyice have been tendered through the medium of your journal, which, if followed, would have increased our gein
some ten, some twenty, and some an hundred fold!! yet this spirit of self-sufficienc! rejects the experience of others, and rest: satisfied with pursuing the beaten track o' our grandfathers.

These observations have been deduced, not only from my own experience but those around me. I will now proceed to give you briefly the manner of managing my flock of sheep.

Until within two years, I have committed the abominable sin of allowing my flocks to be fed during the winter, about stacks, without any protection from the pitiless storm, and when I look back on the years and years which I did so, and recall their sufferings and death from exposure, it is really with shame and confusion of face that I make it known. I have, however, put a stop to so inhuman a course and a cordingly set about building barns, in size 30 by 20 feet, 14 feet pests leaving an opening underncath, of $4 \frac{1}{2}$ feet from the ground. I have found the body of each building sufficiently large to contain hay enough, in an ordinary winter, for 100 sheep, and the accommodation or shed part ample for that number. All of them front the south with a passage way of some 8 or 10 feet wide, which is at all times open, and leaves them free to go in and out at pleasure. About the barns, which stand on my meadows, I have created board fences, made close, which, when feeding, afford great protection from winds; as regards the size of the yards, never having measured them, I am unable to say; but 60 by 100 feet is large enough. My hay is fed in boxes, with opening at the ends and sldes, sufficiently wide for the admission of their heads. Some of your readers may smile when I inform them, that this is the first winter I have made use of boxes; this, however, it the fact, and such I have discovered in the saving of hay, that hereafter I shall ' veto' open racks, or scattering hay on snow or ground.

What is left in the boxes, every morning, is taken out, put in a pen until full, and then drawn away and fed to my cattle. Herein is great economy-the waste of feeding on the snow or ground, every practical farmer knows.
Raising a large crop of wheat yearly I am supplied with great abundance of straw, which is used partly for beds, and scattered about the yards-much of it, in cold weath er, sheep will eat, and the residue is turned into manure. By the way, I think this a capital mode of disposing of straw, as it is soon cut up by being constantly trampled upon, and thereby converted into immediate use, without the delay of rotting.

From the beginning of winter to its con. clusion, I feed daily to my last spring lambs, half a;bushel of clean oats to the 100 , a mix.
ture of bran and oats I thini preterable. owever, inasmuch as in the beginning of vinter, oats alone is rather too stimulating ind will occasion some to scour-the bran effectually counteracts it. Where bran cannot be obtained, feeding half the above quanity of oats, for the time of two or three weeks will answer.

I will here remark, that I have uniformly realized the greatest advantage in graining my lambs. Out of nearly 500 , up to this time (middle of March) I have not lost one. It must be obvious to all, that with a view to promote growth and a good constitution, with any description of stock, feeding when young, and keeping up good condition, is of the highest importance.

To my full grown sheep, I have, until this winter, fed the same quantity of grain to the hundred, that I do to my lambs. They now look as well as when they were grainedbut, it is almost solely to be ascribed to the protection which has been afforded them. It is my practice to give hay tiwce a day to all my sheep in ordinary reather, and when very cold, three times. So much for refer. ence to my winter economy.

I am a firm believer in the good old max. im, "that stock well summered are half wintered," and to this end, my farm is divided into fields of from eight to fifteen acres each. I allow a flock to remain but a few days on a field, when they are changed to another. By so doing, the grass is not eaten too short, readily grows again, and the effects of fresh pasture so frequent during the summer, your readers can easily conceive.

As my object in this communication was to make known, in some degree, my own mode of management of sheep, but more particularly to add my testimony of the benefits to be derived from housing sheep during the winter, I will state some facts, which will lend additional weight.

Until the erection of my barns, it has been my inisfortune to lose from 50 to 150 sheep every winter for the last cight or ten, notwithstanding the advantages of feeding oats and bran. The severity of last winter, all will readily remember; yet in consequence of the protection my sheep enjoyed, my loss was only 38 out of nearly 1600. Niy loss during this winter up to this period (as above stated) is only 6 ; my whole number of sheep at present is about 1800.

I will now record the loss of some of my neighbors, during the las̄t winter, in the adjoining Co., (Cayuga,) none of whom had barns, sheds, or hovels provided for their flocks. One individual out of a flock of 1400 , lost between 600 and 700-another, out 2000 , lost nearly 400 -another, from a flock of 1500 , lost between 200 and 300 , and the loss was nearly in the same propor-
tion, with fow exceptions, shroughout this region! !
These are starting ficts; and would seem not to require a word of comment. Will not humanity almost blush? That men will so utterly disregard their own interest is truly astonishing! They will make all needful arrangement for their horses and cattle, and get so absolutely neglectful of the comfort and benefit of that, to me, most interesting of all domestic animalssheep. Every one would naturally suppose that the above, who sastained such loss. es, would arouse themselves and prevent the recurrence of such devastations, by providing some sort of shelters-but no-to my certain knowledge not one of them have raised a finger to do it.

Will not my preparatory remarks apply to these and all others who do likewise ? I called it self-sufficiency-it is more-it is downright inhumanity: a treatment they are not guilty, even to their dogs. But 1 shall ieave your humane readers to apply tho lash. But one word more-these are the very kind of farmers, referred to, who regret all experiments, all experience of others - who have arrived at the goal of perfection-they will tell you "that hous. ing of sheep is injurious to their constitu-tions"-that they know their system of man agement is better than their neighbors. Have I not, Mr. Editors, proved conelusively that when men think-nay more-know they have arrived at the point of perfection; that inoment they retrograde. "The beginning of wisdom is to know our own folly."

J,ansing, Tompkins Co., N. Y.
Improved Corn.-We take the following correspondence from the Newark (N. J.) Daily Advertiser, and commend it to out readers, as well worthy their attention. We have no doubt of the correctness of the theory that a selection of the fairest and largest of the crop for seed will produce a superior article; and that perseverance in that course will richly reward the husbandman.

Improving common Seed-Corn.-The iollowing interesting correspondence has been furnished to us for publication by the Hon. Janes Parker, as containing information that may be useful to the Agricultural commanity. Mr. Ellsworth's circular was addressed to each member of Congress, with a sample of the corn of which Mr. Baden's letter speaks. We see nn reason why his theory is not equally. applicable to other seeds. It is certainly worthy an ex-periment-

Patent Ofpice, Jan. 30, 1837.
Sir : Hearing of some great improve. ments that had been made in the common
corn, I addressed a letter to Mr. Baden, a corn, $h i g h y$ respectable gentleman in Maryland, to ascertain what facts I could on the subject.
His letter is very interesting, and I transmit you a copy of it. This experiment of Mr. Baden shows most clearly what can be done to improve seeds, by carefully selecting each year the best kind raised. Theoretical opinions sustain Mr. Baden : but few experiments have been tried so successfully. What might be effected for agriculture by similar efforts.
The like efforts in improving the breed of animals have been crowned with great saccess, especially in Europe. I avail myself of this opportuaity to send you a ssrall sample of the corn mentioned by Mr. Baden. I will only add, that I have conversed with several persons who have planted the "Baden" corn ; and the concurrent opinion of all sustain the statements made in the letter. I have a few samples at the Patent Office, of corm, raised in this neighborhood which has four and five ears on a stalk; and I expect soon some stalks, containing six, seven and eight ears. If this corn were generally introduced, how greatly the amount of bread stuffs might be increased; woithout any extra labor. I hope some public spirited citizens will try to improve wheat, oats, barley, and other grains.

I avail myself of the opportunity to mention the introduction of the Italian spring wheat with great success. A friend of mine, in Connecticut, raised the last year forty bushels on an acre. This grain is heavy ; makes good flour ; yields well ; and the crop avoids all the danger of winter fieezing. I have ordered a quantity of this corn and wheat to be shipped to Indiana, and intend to try both on the fine soil of the Wabash valley, the ensuing summer.

I am, yours, very respectiully,
Henry L. Ellsworth.
N. B. Be careful to plant this corn in a place by itself. When good seed is planted in a field with poor seed, the former will degenerate.
H. L. E.
[Copy of Mr. Baden's Letter.]
Near Nottingham, Prince George's
Co., Maryland, January 26, 1837. $\}$
Sir : I received yours of the 14th, making inquiry respect ng the "Maryland Corn," which you understood I had raised. I have the pleasure to say that I have brought this corn to its high state of perfection by carefully selecting the best seed in the field for a long course of years, having especial reference to those stalks which produced the most ears. When the corn was husked, 1 then made a re-selection, taking only that which appeared sound and fully ripe, having a regard to the deepest and best color, as well as to the size of the cob. In the spring, before shelling the corn, I examined it again, and selected that which was the best in all respects. In shelling the corn I omitted to take the irregular kernels at both the large and small ends. I have carefully followed this mode of selecting seed corn fur twenty-two or twenly-three years, and still continue to do sor: When I first commenc-
d, it was with a common kind of corn. for there was none other in this part of the country. If any other person undertook the saine experiment, I did not hear of it ; I do not believe others ever excised the patience to bring the experiment to the pre sent state of perfection. At first, I was troubled to find stiflks with even two good ears on them, perhaps one good ear and one small one, or unie good ear and a "nubbin." It was several years before I could discover much benefit resulting from my efforts; however, at length the quality and quantity began to improve, and the inprovement was then very rapid. At present I do not pretend to lay up any sced without it comes from stalks which hear furr, five, or six ears. I have seen stalks bearing eight ears.

One of my neighbors informed me that he had a single stalk with ten perfect ears on i :, and that he intended to send the same to the muscum at Baltimore. In addition to the number of ears, and of course the great increase in quantity unshelled, it may be mentioned, that it yields much more than common corn when shelled. Some gentlemen in whom I have full confidence, informed me they shelled a barrel (ten bushels of ears) of my kind of corn, which measured a little more than six bushels.The common kind of corn, will measure about five bushels only. I believe I raise double or nearly so, to what I could with any other corn I have ever seen. I general Iy plant the corn about the first of May, and place the hills five feet apart each way, and have two stalks in a hill. I can supp.y you with all the seed you may need, and I suppose I have now in my corn house fifty and perhaps more, stalks with the corn on them as they grew in the field and none with less than four, and some six or sercn, ears on them. I will with pleasure send you some of these stalks, and alse some seed corn, if I can get an opportunity.

Early last spring I let George Law, Esq. of Baltinore ctty, have some of this seed corn; he sent it to his friend in Illinois, with instructions how to manage it. A few weeks since he informed me that the increase was one hundred and twoenty bushels on an acre; that there was no corn in Illinois like it, and that it produced more foolder than any other kind. I have supplied many friends with seed corn, but some of them have planted it with other corn, and will, I fear, find it degenerate.
I have lately been inquired of if this corn was not later than other kids? It is rather earlier; certainly nol later. Corn planted in moist or wet soils will not ripen so quick as that which is planted on a dry soil. In the former, there will be found unore dampness in the cob, although the kernel may appear equally ripe in both. In the two last years, the wet seas no have injured much corn that was too early "lofted" or housed.
I believe I hive answered most of your inquiries. I hope 1 have not exaggeratedI have no motive for doing so. I raise but little corn to sell, as tobacco is my principle crop. Should 1 fail to send you some seed this spring, I will next summer gather
soine stalks with the corn, fodder, and tassels, and all, as they grow, and send to you, that you may judge yourself of the superiorty of this over the common kind of corn.

Yours, \& © c.
Thomas N. Baden.
Hon. H. L. Elisworth,
Com aissioncr of Patents, Washington city.

From the New-York Farmer.

Gentlemen:-It was my intention to have sent you the following communication, on the subject of planting Trees. long since ; but through untoward circumstances the time has escaped and the season for making such improvements is almost here ; however, as it is never too late to do good, I send it to you, and it is at yonr disposal.
Cold Spring, March 1837.
Richard M. Conklin.
As the winter months roll slowly along, and spring impercepibly approaches, it is natural for the farmer while he enjoys his fire-side, to consider what he should first direct his attention to, in the way of improving his paternal acres, when that period arrives. Among the most prominent objects is the planting of trees; which may be done as soon as the frost releases the earth from its iron grasp, and nature revives from her death like slecp.
To the farmer who possesses a taste for the beautiful scenery of the country, I hardy need say how much it adds to that scenery, if it is embelished by sulug dwellings, whose velvet lawns and gentle slopes are orramented with trees, offering a cool retreat from the noon-tide heat. But alas! how often in our walks do we see the habitation of the farmer standing exposed to the burning rays of the sun, with not a single tree to offer its grateful shade, or relieve the cye with its green and refreshing verdure. It is indeed a charming sight, when the hills begin to extend their lengthened sladows and their purple peaks are illuminated by the parting rays of the sun, to look from an cmminence into a quiet vale and behold the curling smoke arise from neatly pair.ted or whitewashed cottages; but how much is added to the scene, if the white fronts of those cottages should peep from among trees, planted by the hand of industry and taste. Tne delightiful fragrance too of many of our ornamented trees and shrubs is a sufficient reward for all the tronble and expense of planting. But, as I am addressing myself to that c'ass in our community who are, in a good degree, obliged to make pleasure and profit go hand in. hand, it will not be amiss to say that nearly all the varicties of fruit bearing shrubs and trees are both profitable and oruamental, and by no means deficient in fragrance. The grape vine for all of the above qualifications is conspicuous.
The highways are susceptible of being ornamented too, by the planting of trees, they offer to the weary traveller a resting place by the way side, while he may repose until his exhausted frame is renovated.

For the last mentioned purpose, the yel low locust is admirably adapted, in a favora ble soil it grows rapid, stands erect, and
when in flower is a beautiful and fragrant tree : indeed the importance of this tree as a matter of profit, induces me to urge upon the young farmer the necessity of attending to it in șeason. There are but few farms which will not, upon examination, furnish many waste places for the introduction of this valuable timber. There are many howcver, who live years on their farms without making the least effort toward this improvement, under the impression that perhaps they may never live to sec the trees grow up large enough to be valuable. In reply to such objections I would observe, that should the farm pass from necessity out of the hands of the original owner, after he had improved it in the manner above named, yet it would command a much greater price; but on the contrary, should he hand it down to his posterity, surely it would afford him much more satisfaction in the evening of his days to reflect, that, instead of letting the golden moments escape, he had seized the opportunity and laid the foundation for a valuable inheritance for his children.

About ten years since 1 came into sole possession of a farm which consisted of one hundred and forty acres of land, twenty of which were hilly wood-land; the rest, ex. cepting four acres of wet meadow or swamp, was arable. Oal looking about I found many waste places in the woods, along the roads, lanes, and fences where I could introduce iocust trees. I accordingly set to work, and planted out at least five thousand. Many of these were set in the woods where the timber had been lately cut off : these are growing rapidly, and nearly all of them in a few years will be valuable timber. By replacing those which died the number probably had been kept good. It has been found by observation that locust on Long Island, from the time of planting until grown to. sufficient size for timber, averages in yearly growth twelve and a half cents per tree. A few years since I sold a tree which had grown upon an average, sixty-two and half' cents per year. The tree was sold âs it stood, and the age was ascertained by counting the circles exhibited on the stump after sawing it off; according to which the tree had stood fifty years.

If locust timber grows in value as I have stated, and the farmer plants on a farm of one hundred and fifty or two hundred acres, five thousand trees in favorable places, those five thousand trees at the end of twenty-four years will be worth sixteen thousand dollars: no ignoble sum for a man to realize from the planting of trees.

Before I leave this subject, I feel it as an imperious duty to caution the public against purchasing seed in the city of New. York, and other places sold under the name of yellow locust seed; by fer the greater part of this seed is a spurious kind; and some of the most noted seed stores in New. York have furnished a goodly quantity of this degenerate article.

At some more convenient time I will give my readers at large against the planting of the above mentioned seed, at present I will conclude by pointing out the visible difference between the genuine and the above mentioned spurious kind of lacust, which will be nearly as follows, viz.

1. A proneness to branch into equilateral shoots.
2. An inclination to bear seed in pods nearly as large as some of our garden beans, so that a tree of two inches in diameter is frequently loaded with them.
3. The heart wood instead of being yellow exhibits a blue tinge.
4. The grain of the wood is not straight, or easily riven, but appears stringy and tough.
5. In seasoning it inclines to shrink and split.
R. M. Conklin.

Soap. Making.-The subjoined is from a friend as well skilled in all matters of domestic economy and household management, as any one I have ever known.
H. C.

The last Soap I made, we used 20 lbs . of potashes and 25 lbs. of grease to a barrel ; and it made excellent soap. Success much depends on having the best quality of potashes. I have a set-kettle in which I dis. solved the potashesand put it into the trough in which we keep the soap; then melt the grease and put to it, the mass is then hot; having conveniences for heating the water, I have generally filled it up keeping the whole hot; by this means the ingredients incorporate quickly; and I have had but litlle to do after the first day. But I do not add the whole of the water at once. I prefer doing it by degrees, and stirring well at each time. There will be no difficulty, if you have good materials; and get them thoroughly incorporated. I have no doubt it may be effected as surely with cold water after the ingredients are mixed and put together; buit it will require longer time and more labor to stir it. I have been troubled a little once or twice by getting weak potashes; and have been obliged to add more, but have always succeeded in the end.Once I recollect I put more potashes than usual, and it was too powerful. I then added more grease and water and reduced it ; the above proportion, I think, is about right, if the materials are good; if the potashes should prove ntherwise, more may be added._[Brookline.]
B. G.

Wilmot's Early Rhubarb.-To thoze who cultivate the Rhubarb, we would earn. estly recommend the Wilmot's Early, before any other variety. We have seen it this season at Mr. Pond's garden in Cambridgeport, two inches high. The growth is very rapid. This is a plant which every body may cultivate. The fruit is considered a delicacy, and medical men ascribe to it a salutary effect, particularly upon children. Four roots are enough to supply a family.

> - From the Mechanics Magazine. ,
proceedings of the mechanics instiTUTE OF THE CITY OF NEW-YORK.
The weekly Tuesday Evening Scientific Meetings heretofore held in the Lecture

Room of the Institute, will be re-opened on Tuesday Evening the 9th inst., at 8 o'clock, by a lecture from Mr. Hodge, on machine and other drawing. N. B. Mr. H., propuses opening a drawing: school in tho Rooms of the Institute, should sufficient eucouragement be given.

Chemical examination of the stomachs of two individuals supposed to have been poisoned by Arsenic-being the substance of a paper read before the Mechanic's Institute of the city of New-York, August 1836, by James J. Mapes, Esq.

No. 1. In the first case the coats of the stomach only were subjected to examination. They were cut into small fragments and subjected to the action of distilled water, at a temperature of 212°, for 3 hours.

To a small portion of the solution was added ammoniacal nitrate of silver; a bulky yellow precipitate fell down, whichafterwards changed to a reddish brown, and was inferred to be a phosphate combined with animal matter; for had it been arsenite of silver it weuld have precipitated more rapidly, and presented a more decided color.
To a second portion of the solution, aminoniacal sulphate of copper was added to precipitate the arsenic, if any, in the form of an insoluble arsenite of copper, (scheele's green) a slightly green precipitate was formed, but of a doubtful character. This test, as well as the last, is entirely circumstantial; for common salt, onions, garlic and some other substances would, if recontly partaken of by the deceased, have produced the same effect.

A third portion of the solution was subjected to the action of sulphuretted hydrogen, but no precipitate was formed.
A portion of the stomach apparently much inflamed, having been previously removed, was carefully drie to expell all the water, and to decompose the animal matter, was heated with black flax in a glass tube for the reduction of the arsenic, if any, in the metallic state: but no metallic ring, garlic, odor or white vapor appeared. On throwing the contents on burning coals,-an effect that is uniformly produced when inetallic arsenic is converted to an oxide, or the oxide converted to the metallic state by means of heat ; but even this odor is not conclusive evidence, as zinc is capable of producing the same odor. The metallic ring of arsenic, however, is considered as the best evidence we can have, amounting as it does to demonstration.

No. 2. Stomach with some of the contents was boiled as No. 1, in distilled wafer
for three hours. The water in this case was slightly acidulated with nitric acid; the solution was filtered and evaporated to dryness, to drive off the nitric acid, re-dissolved and filtered, to get rid of the animal mattcr.

To a portion of the solution ammoniacal nitrate of silver was added; and to another portion was added the ammoniacal sulphate of copper, with results similar to those in No. 1. A third portion of the liquid was subjected to the action of sulphuretted hydrogen, which threw down a yellow precipitate. This precipitate being dried and heated with black flax in a glass tube gave none of the usual indications of arsenic.
As the two stomachs were brought to me preserved in alchohol, a liquid which is capable of taking up considerable quantity of arsenious acid, I filtered and evaporated, the solution; occasionally adding distilled water until the alchohol was entirely evaporated. With the ammoniacal nitrate of silver, the precipitate was quite characteristic; with the ammoniacal sulphate of copper it was too white and gelatinous; with the sulphuretted hydrogen the precipitate was too dark for the sulphuret of arsenic, this product on being dried and heated with black flax, gave no indication of metallic arsénic.
From the above experiments, I fecl assured that no arsenic was contained in cither of the stomachs above mentioned, their contents, or in the alcohol which preserved them, as both the circumstantial and posit:ve tests would have detected, the one hundredth part of a grain had it been present.

The fact that no arsenic was found in the stomach, docs not, however, prove that arsenic was not the cause of death; and especially, as the deceased vomited much and for a considerable time. The patient might have died either from the immediate or from the after effects of the poison, though none of this mincral was found. Had the patient died from the after effects, the arsenic would have been indicated by the inflamed state of the inner coat of the stomach, which would lave been covered with red spots; and such was, indeed, the case. It is highly probable, therefore, tht the arsenic had been entirely removed from the stomach, by vomiting, before death.
There is a case of the same kind record. ed in the Philadelphia Journal of Pharmacy, for July, 1834. The case was examined by Doctors Jamcs B. Rogers, Gco. W. Andrews and Wm. R. Fisher.
\therefore A lady was poisoned by arsenious acid, in soup, and died the same day, having vomited much. On examining the stomach and contents, not the slightest trace of arsenic
was perceptible ; but from a portion of soup that had been saved, it was obtained in abundance, by every test that was used. Doctors Prout and Christison, and Prof. Braude, have also cited cases similar to the above.

Advertisements.

FOR SALE AT THIS OFFICE,
A Practical Treatise on Locomotive Engines, with Engravinge, by the Cincralier De Pambour- 150 pages laige octavodone up in paper covers so as to be sent by mail-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts . for any distance exceeding 100 ms .

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifly cents. Postage as above, 8 cents, or 12 cts.
** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.
$1010 t$
A COURSE OF INSTRUCTION IN CIVIL ENGINEERING, by inforinal lecturcs, to occupy two months, commencing the 1st week of May.-Comprizing
The use of the theodolite, level, Compass plain table, cross, and sextant explained upon the instruments themselves : sonographical drawing executed under supervision ; survey of routes; problems of excavation and embankment; railroad curves; all the usual details of construction upon common roads, railroads, and canals; including bridges, culverts, tunnels, and the various kinds of motive power ; nature, strength and stress of materials; masonry, carpentry and constructions in iron; alluvial deposites, guaging of streams, \&c.The whole purely elementary. Terms of admission to the course, $\$ 20$.

Apply to C. W. Hackley, Professor of Mathematics in the University, 32 Waverly tlace.
transactions of the institution of civil engineers of great britain.
The first volume of this valuable work, has just made its appearance in this country. A few copies, say tienty-five or thirly only, ha ve been sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order therefore, to place it within their reach, and at a convenient price, we shall reprint the eutire work, with all its engravings, neatly done on wood, and issuc in six parts or numbers, of about 48 pages each, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the close.

The price will be to subseribors three dol. lars, or five dollars for two copies-alieays in advance. The first number will be ready for delivery early in April-Subscriptions are solicited.

DRAWING INSTRUMENTS.-E. \& G. W. Blunt, 154 Water-street, NewYork, have received, and offer for sale, Drawing Instruments of superior quality, English, French, and German Manufacture.

They have also on hand Levels of superior quality at low prices.

2 Orders received at this office for the above Instruments.
AVERY'S ROTARY STEAM EN. GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving SawMills, Grain-Mills, and otier Manufactoaies of any kind.

Engincs only will be furnished, or accompanied with Boilers and the necessary Ma. chinery for putting them in operation, and an Engincer always sent to put them up.
Information will be given at all times to those who desire it, either by letter or by exhibiting the engines in operation in this city.

Inquiries by letter shou d be very explicit and the answers shall be equally so.
D. K.MINOR,

30 Wall-st., New York.

AN ELEGANT STEAM ENGINE

 AND BOILERS, FOR SALE.TIIE Steam Engite and Loilers, belonging to the STEAMBOAT IELEE, and now in the Noveliy yard, N. Y. Cursisting of one Horizontal high pres. sure Engine, (but may be made to condense with litthe ndditional expense) 36 thehea diametcr, 10 feet sitruke, with latest improved Piston Valves, and Metalie meking thromghout.
Also, four Tubular Builers, constructed on th' English Locomotive plan, containing a fire surface of over 600 feet in each, or 2500 feet in all-will be suld cheap. All communications addressed (post paid) tothe sabscriber, will meet with due ntention.

MENRY BURDEN.
$\frac{\text { Troy Iron Works, Nov. } 15,1836 . \quad .7-1}{\text { TO RALLROAD CON'TRACTORS. }}$
SEALED proposals will be received at the office of the Selma and Tennessec River Railroad Company, in the cown of Selma, Alabama, for the graduation of the first furty miles of the Selma and Tennessce Railroad Propasals for the first six miles from Selma, will be received after the first of May, and acted on by the Board on the 15sh May. Proposals fire the cusuing 34 miles, will be received after the tohh May, but will nut be examined until the Ist of August nex, when the work will be ready for coniract.
The line, after the first few miles, pursuing the flat of the Mulberry Creck, occupies a region of country, laving the repute of bcing highly healthful. It is free irom punds and swanps, and is well watered Tie soil is generally in cuttivation, and is dry, light and sandy, and uncommunly easy, of excavation.The enire length of the line of the Sel wa and Tennessee Railruars, will be about 170 miles, passing generaliy through a region as favorable for healch as any in the Southern Country.
Owing to the great interest at stake in the success of this enterprise, and the amourt of capital alrendy embarked in it, ihis work must necessaprily pruceed with vigor, and I invite the attention of men of industry and erterprise, buth at the North and elsewhere to this undertaking, as offering in the prospect of continued employinent, and the character of ilie zoil and clinate, a widd and desirable field to the conand elinn
Propusals may be addressed either to the subseriber, or to General Gilbert Shearer, President of the Company.
ANDREW ALFRED UEXTVER, Chief Engineer. Selma, Ala., March 20th, 1837 . A 15 tf

ROACH \& WARNER,
Manufacturers or OPTICAL, MATHEMATICAL ANE PHILOSOPHCAL INSTRUMENTS, 293 Broadway. New Yolk, wilh keep constantly on hand a large and general assortment of Instruments in their lite.
Wholesale Dealers and Country Merchants supplied wih SURVEYING COMPASSES, BARUME. TEIRS, THFRMOMETERS, \&ic. \&c. of thei: oun manufacture, warranted accurate, and at lower prices manufacture, warranted accurate, and at low
than can be had at any other establishment.
instrnmenls made to order and repaired. 1415

TO CONTRACTORS.

Ja Mes RIVER AND KANAWIIA CANAL. THERE is still a large amount of mechanical work to let on ths line of the James Rivar and Kanawha Improvement, consiating of twenty lucks, about whe hundred culverts and aeveral large aqueducts, which will be offered to responsible contracturs at fair prices. The lock 3 and aqueducts are to be built of cus stone.
The work contracted for mnst be finished by the let day of July, 1838.
Persons desirons of oblaining work are requested to apply at the office of the undersigned. in the caty of Richmond, beforo the fifteenth of May, or between the fifth and the fifteenth of July.

CHARLES ELLET; Jr.
Chiof Engineer Jas. Riv. \& Ka. Co.
P. S The valiey of James River abovo Rechmond is hoalihy.

16-10t

PATENT RAILROAD, SHIP AND BOAT SPIKES.

** The Troy Iron sind Nail Factory keeps conatantly fur sale a very extensive assortment of Wrought Spikea and Naids, frum 3 so 10 inches, manufactured by the subscriber's Patent Machinery, which after Give years successful uperation, and now aimust universal use in the United States, (as well as England, where the subscriber obtained a patent,) are found superior to any ever utfered in market.
Railroad Companies may be supplied with Spikes having conntersink heads suitable to the hules in iroul rails to any amount and on short notice. Almost all the Railruads now in progreas in the United States are fastened with Spikes made at the above nazned fac-tory-for which purpose they are found invaluable, as sheir adhesiun is mure than double any' commuss apikes made by the hammer.
will be punctually attended to. Agent, Troy, N. Y.,
Troy, N. Y. July, HEN.
**. Spikes are kept for aale, at factury pricers, by 1. \& J. Townsend, Albany, and the principal Iron Merchante in Albany ana Troy ; J.I. Brower, $2 \cdot 2$ Water streat, New-York; A. M. Junes, Philadelphia; T. Janviers, Baltimore; Degrand \& Smith, Buston.
P. S.-IRailruad Cumpanies would do well to forward their orders us eurly as pructicable, as the subecriber is desirnus of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes. (1J23am) H. BURDEN.

NEW ARRANGEMENT.

ropes for inclined planes of rallroads.
WE the subscribers having formed a co-partnership under the atyle and firm of Folger \& Coleman, for the manufacturing and selling of Ropes fur inclined planea of railruads, and for ulier uses, offer to supply ropes fur iaclined planes, of any length required without splice, at shurt notice, the marufacturing of cordage, heretofure carried on by G. S. Durfee \& Co., will be dune by the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be promptly attended to, and ropes will be shipped to any purt in the Urited Slates. 12th munth, 12th, 1336. II udson, Culumbia County State of New-York.

33-If.
ROBT. C. FOLGER,
(iEORGE COLFMAN,

AMES' CELEBRATED SHOVELS,

300 dozons Araes' su

300 dozens A
150 do do
150 do do
150 do
100 do
50 do
Tugether wit
SPADES, \&C.
 50 do plated Spades
ocket Shovels and Soades.
Bara sateel pointed) Axes, Chnrn Drills, and Crow fined iron-for ande nannfactired from Salishury re WITHARELL, AMES \& CO.

No. 2 Liberty streel, New-York. BACKUS, AMES \& CO.
N. B -Also furnished to order, Shapes of every de. arription. made frum Salshury refined lron v4-if STEPHENSUN,
Builder of a superior style of Passengev
Cars for Railuroads. Cars for Railroads.
No. 264 Elizabeth street, near Bleeckerstre \in t, RAILROAD COMPANIES.
mine these Cars : a andimen would do well to exa on that part of the Now.York aud Harlaem heitroen now in uperation

THE undersigned, General Agent of Col. S. II. LONG, to build Bridges, or vend the right to others to build, on his Patent P/ati, would respectfully others to build, on his Patent Corpora, ions, that he i:
inliom Lailroad and Bridge Cor preparets to inake cuntracts to build, and furnish all materials for superstructures of the kind, in any part of the lirited Siatce, (Maryland excepted.)

Bridges on the above plan are to be seen at the following localities, viz. Un the main road leading frum Baltimore to Washington, two miles from the furmer place. Across the Metawaukeag river on the Military road, in Maine. Un the national road in Illinuis, at sundry points. Onthe Ba!timore and Susquehanna Rrailroad at three points. On the Hudsun and Patterson Railroad, in two places. On the Bueton and Worcester Kailroad, at several points. On the Buston and Providence Railroad, at sundry points. Acruss the Contuochok river at flennuker, N H. Across the
Souliegen river, at Milford, N. H. Acruss the CunSouliegen river, at Maverlill, N. II. Acroas the Consurocowh river, at Hancock, N. II. Across the Androscoggin river, at Turner Centre, Maine. Across the Kennebec river, at Waierville, Maine. Across the Genesse river, at Equakiehill, Muunt Morris. New-York. Acruss the White River, at Hartford Vt. Across the Connecricut River, at Lebanun, N. II. Across the mouth of the Broken Straw Creek, Penn. A Across the mouth of the Cataraugus Crtek, N. Y. A Railroar Bridge diagonally across the Eirie. Canal, in the City of Rochester, N. Y. A Ra lyoad Bridge at Upper Still Water, Oruno, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the FIRMEST wooden bridige ever built in America.
Notwithstanding his preselit engagements to build between twenty and thirty lailruad Bridges, and sesaral conmon bridges, several of which are now in progress of consiructiain, the subscriber will prompty atuend to business of the kind to nuch greaterextent and on liberal termis.
Rohester, Jan. jistin, 1837.

ARCIIIMEDES WORKS.

(100 North Moor strect, N. Y:)
New-Yoris, February 12th, 1836.
TIIE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furniwh all kinds of Machinery fol hailruads, lacomotive Engines of any size, Car Wheels, such as are now in surcessful operation on the Camden and Amboy Railroad, none of which have failed-Castings of all kinda, Whaels, Axles, and Buses, furnishedat shortest notice. 4-vil

MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Paterson, New Jersey. The undersigned receive orders fur the fol lowing articles, manutactured by thrm, of the mos superior descriplion in every particular. Their works being extensive, and the number of hands employed hring large, they are enabled to execute hoth large and amall orders with promptness and despatch-

RAILKOAD WORK.
Locomative Steam-Engines and Tenders; Drix ing and other Locomutive Wheeis, Axles, Sprin!'s and Flange Tires; Car Wheels of east iron, from a va riety of patterns, and Cinills; Car Wheds of castiron with wrought 'L'ires; Axles of best American refined ron', Springs; Boxes and Bolts for Cars.
COTTON WOOL A MD FLAX MACHINERY, Of all descriptions and of the nust improv.d Patcerns, stylo and Workmanship.
Mill Geering and Millwright work generally; Hydraulic and other Presses; Press Screws; Callea ders; Lathes and Tools of all hirds, Iron a!nd Brass Castings of all descriptions.

LOGERS, KETCLIUN \& GROSVENOR.
Patterson, New-Jersey, or $60 W_{\text {all strett, }} \mathbf{N}$.

ALBANY EAGLE AIR FURNACE ANE: MACHINE SHOP.

William V. MANY manufactures to order abon castings for Gearing Mills and Factories of very description
ALSO-Steam Engines and llailroal Castings o - very description.

The collection of Patterns for Machinery, is no equalled inthe linited States

NOTICE TO CUN'I'RAC'IULiS.

WES'IERN RAII,ROAD.

PROP()SALS will be received at the office of th. Wesiern Railroad Curporation, in Springtield, unii He 10h May, for the grading and nasoury of the econd and ihird divisions of the ruad, eatending fron East Browkied to Counecticut river, at Springfielda distance of 35 miles.
fians, Profiles, \&c. will be ready for exnmination. after the firbt of May. We. H. SWJFT,
Wesident Enginerer Worcenter, Masm., April 1, 1887 Resident Enginetr

NOTICE TO CANAL CONTRAC. TORS.
SEALED proposils will be reccived at the office of the Cummissioners of the Illinuis and Mirhigan Ca. nal at Clucagi, from this day to the 20th May next for the construction of about tight miles of that part of the summit divixion of the sadd Ganal, lying between the Chicago and desplainea River.
Alsc nb.ut three and a half miles of the some divisioo; lying between the Sagauazkee Swamp, and the western lermination of the said division. And also about iwelve miles of the Western division. lying between the Grand Rapids of the Illinois and the western termination of the Canal.

The two first potitiuns offered for contract, ate heavy wurk, the first deep earth excavation, divid, d into half mile Srclions, the second mosily rucks, and dividedinio thitty chain sections; the third consisting of light darth exceavation, a liale rock and embaukment, and is clivided into forty-two chain sertions.
No bond with security will he required of ihe Cortractors, but the Commissioners will avail themselve: of the powers granted thrm of awarding the contracts to the luwest responsible bidder, and it is experted that the hids of all those whu are not jersenally known to the commisaioners will be ascompanied with the proper testimunials. And upon the award of work. it is cxpected that the partips will immediately enter into written agreements, or the contracts will be furfeited.
Plans, profiles, and specifications, giving all the necessary informatiun, may be examined at the office of the Canal Commissioners, at Chicago, and those wishing to ubtain contracts on this work, are requeated to niake a minute personal examination of the work previous to sending in their propusals.

Altest, J. MANNING, Secrefary.
Chicago, March 24th, 183\%:?
$16-3 t$

TO RAILROAD CONTRACTORS.

PROPOSALS will be received, at the offire of the Hiwassse Railroad Com., in the wwn of Athens, Tre nessee, uatil slinsel, of Munday, June 12h, 1837; for the grading, masonry and bridges, on that purtion of the Hiwassee hailroad, which tiee between the River Tennessee and Hwassee. A distance of 40 miles.
I lie quantity of excavation will be about one million of rubic yards.
Tho line will be staked out ; and, together with drainings and specifications of the wulk, will bo drainings and specitications of the woik, will bo
ready fur the inspection of cuntractors, on and after realy fur the inspe.
the Ist day of June.

JOHN C. TRAUTWINE,
Engin.eer in Chief Hiwassee Railroad.
16-6t.
RAIL,WAY IRON, LOCOMOTIVES,\&c. TIIE, aubscribers offer the fulluwing articles for Railway Iron, flat bara, with countersunk holes and raitred juints,
350 tons $2 \frac{1}{4}$ by $f, 15 \mathrm{ft}$ in length, weighing $4 \frac{\mathrm{lbs}}{81}$. per ft.

70

with Spikes and Splicing Plates adapted thereto. To be sold fiep of duty to State goveruments or incorfgrated cumpanies.
Orders für Pennsylvania Boiler Iran execnted.
Rail Koad Car nnd Locumutive Engine Tires, wroughand turned or unlurned, really to bo fitted on the wheels, viz. $30,33,36,42,44,51$, and 60 iaches aiameter.
E. V. Patent Cisin Cable Bults for Railway Car axtes, in lengths of 12 fiet 6 inches, 1013 feet 47,24 3, 3t, 3t. 3t, and $3 t$ inches dianieter.
Chains fur Inclitipd Planes, short and stay links, manufactured frum the E. V.Cable Bolis, and proved at Nie grcatest strain.
India Ridjber Rope for Inclined Plines, made from Now Zraland llay.
Also Palunt Hemp Cordage for Inclined Planes, and Canal Tuwing Lines.
Patent Felt fir placing between the iron chair fand toun bluck of Edge Railways.
Every deacription of Hailway Iron, as n n-ll as Lo. rumutive Engines, impurted at the shortest notice, by the agency of one of our partaers, who resides in Fingland tor this purpose.
A highly respectable Amorican Engineor, residea in Eingland for the purpose of in ipecting all Loromoives, Muchinery, Railway Iron \&c. ordered through as

28 ff
A. \& Gi. RALSTON \& CO.,
hiladelphia, No. 4 8oath Proato

$=1$

 AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPIROVEMENTS.

PUBLISHED WEEKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVANCE.
SATURDAY, MAY 20, 1837.

IVOLUME VI-Ñ. 20.

D. K MINOR, and EDitore and GEORGE C. SCHAEFFER, $\}$ Promietory.]

CONTENTS :

Harlem Railmad; Wilmington and Susquehanna
Railmas ; New-Jersey koilroad
Communication
Rocheater and Batavia railroad; Che............. ruad
Batavia railroad; Chenangu rall-
d Roanoke railway 305
Greensvilte and Roanoke railway 307
Transactons of the Instituion of Civil Engineers 309
Egyptian Antiquities 309
Elcetro-Magnetic Machine ; etc:.................... 315
Agriculure, etc

AMERICAN RAILROAD JOURNAL. NEW-YORK, MAY 20, 1837.

REMOVAL.- The Office of the RAIL. ROAD JOURNAL, NEW.YORK FARMER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-street, basement story, one door from William-strect, and opposite the Bank of America.
$\sigma \underset{\sim}{\sigma}$ SUBSCRIBERS in tmis City, who change their residence on the lst of May, will please give notice at the office, 30 Wall-street, Basement Story. It is desirable that the notice should specify their late and future residence.

Hablaem Rallroad._We are pleased to perceive that the work on this road progresses to a close. It has indeed bee:ı a herculean work. Its excavations and embankments are probably heavier than on any other road in this country, of the same length; these, however, are but trifling affairs when compared with its Tunnel, of over 600 feet, through solid rocks. This is a stupendous and very expensive work. It is now in a great state of forwardness, and will scon be the greatest curiosity and place of resort in the vicinity of New-York. The road is to be compluted, we urderstand, in July, to Harlaem-when the cars will run through and do a large business. We shal. be gratified to see it completed at the north end, as we shall then expect to see it brought
down to the lower part of the city. It must and will be continued down into the business part of the city. It is less dangerous than stages-as there is no dodging from side to side. We again say that this road must be continued down into $W_{\text {hite- }}$ Hall.

Wilmington and Susquehania Rail-road.-We are happy to be able to notice the completion of another link in the great chain.

Wilmingbon, Del. May 9.

Railroad Excursion.-We attended the excursion given by the Wilmington and Sus. quehanna Railroad Company, on Friday last, and was much gratified with the same. There were about 200 invited guests on board, citizens of this city and Philadelphia. The cars proceeded to within about a milc of the stupendous bridge erceting over Principio creek, and there remained until the party had sufficient time to visit this extensive piece ot masonry. This bridge is the oniy important barrier in the way at present, and we were informed by Mr. Jones, the contractor, that it would be completed in about six weeks. The road is now finished to within four miles of the Susquehanna, and the whole distance to Baltimore will be ready for use about the fourth of July.
The company having enjoyed the refreshing virtues of the only liquor used in the construction of this bridge-cool spring waterreturned to the cars where a portion of them partook of the hospitality of Mr Donergan, the able contractor oa that portion of the road; and then returned to Elkton, where a sumptuous dinner was in waiting prepared by the Directors under the supernntendance of that prince of caterers, Kincade. The h sur being four and a half, P. M., am ple justice was done to the same-and after a short distiinsion over the afterpieces the party proceèded homeward in good cheer.
This magnificent road, as far as constructed, is well made, and the country through
which it passes is beautifully diver.ified by hills and dales, murmuring biooks, and gurg. ling rills, fierce running creeks, and the smooth face of North-East river, with a distant view of the Chesapeake, all tend to characterize it as one of the most pleasant routes of Railroad in the United States.The cars are well constructed for the trans. portation of passengers, being airy and so arranged as to allow a walking passage through the whole train without inconven. ience. The engines are of the first class, as an evidence of which, the distance from Elkton to Wilmington, 18 miles, was performed in 50 minutes.- [Baltimore Gaz.]

New.Jersey Railroad.-_Thus we pro. gress.

This road is now completed for the use of the Locomotive from Bergen Hill about $2 \frac{1}{2}$ miles from the Hudson river, to East Brunswick, and the cars will commence run. ling oul Monday by steam-passing through Newark, ald stopping at the Depot, foot of Market-street, for Newark passengers, and also leaving and returning to that point the same hours as heretofore.

The fare has been reduced from the New. ark Depot to Jersey City to 25 cents, and Newark passengers wiil be carried to and from the Depot to meet the arrival and de. parture of the trains, if desired, on the town tracks, (which are underlet,) at $6 \frac{1}{4}$ cents. Tue fare has also been reduced from Jersey City to Elizabeth to $37 \frac{1}{2}$ cents, and to Rahway to 50 cents. Passengers will hereafter procure their tickets at the office.- [New. ark Daily Advertiser.]

To the Editors of the Railroad Journal.
Gentlemen,-I bave read with interest he communications in your Journal, from Mr. Steere and Mr. Norris, but without any lesure to take part in a controversy which nust be, or has already been, settled by experimental demonstrations; and my object now, is, merely to explain what ap.

AMERICAN RAILROAD JOURNAL, AND

pears to have been mis-conceived ty Mr. Aldrich, the author of a communication in your last Journal, in reference to the "gravity of loads upon inclined planes."
Mr. A., says, "The communications which have been published in the Journal, between Mr. Norris and Mr. A. G. Steere of N. Y. and Erie Railroad, have probably been caused by the miscalculation of the gravity of loads upon inclined planes, by Mr. Steere, he, using the rule given by Pambour, the fallacy of which is very apparent, at least it appears not to give the result we wish to find, as it would give all the gravity on an angle of 45° which is impossible"
"I admit that the rule given is perfectly applicable, as it respects the velocities of falling bodies upon inclinatious; "-

There is nothing new or peculiar in the rule used by Pambour for calculating the resistances caused by the gravity of loads; nor in the present case is there any need of discussing the laws of falling bollies. The rule is one demonstrated in all books of mechanics and is strictly a proposition in statics, "as it may be and has repeatedly been shown, that when any power after having once been set in motion continues to draw a load up an incline with uniform relocity, the power and load are inequili brium; and when the power is applied in a direction parallel to the surface of the plane the power and load are in the same proportion as the beight and length of the plane. The correctness of this rule is almost universally admitted, it is the one used by Pambour, and does not by any means give the result stated by Mr. A., at an angle of 45°.

At an angle of 45° the length and height are as 1 to 0.7071068 or, the gravity of a ton will be little more than rivths of a ton instead of 1 ton as stated by Mr. A.

The ratio between the height and length of a plane is evidently one of equality when the plane is vertical; and it is equally evident that in such case, the ratio of the power and weight is that of equality, it being reduced to the equilibriuan of two weights banging over a pully.
The inclinations upon Railroads are generally so slight that the horizontal and absolute lengths will not differ sufficiently to require much, if any, correction for the measurements, which are made horizonally, and from Mr. A's result of the equality between the weight and power at 45° it would seem that he made the proportion between the power and weight equal to that between the height and base, instead of that betwcen the hoight and length.In the only other application of the rule by

Mr. A., the angle (4°) is so small, and results have so few places of decimals, that it is not clearly discernible which proportion was adopted.
How Mr. A. arrived at the results given in his table, is not st.own. They do " vary very much from the result of the rule" generally adopted ; and if his method is correct, the fact is important and should be established.
The proposition upon which Painbour's rule is founded is thus enunciated in Hutton's Mathematicz, Volume 2, page 164 "The power gained by the inclined plane is in proportion as the length of the plane is to its height. That is, when a weight W is sustained on an inclined plane, B C, by a power P, acting in the direction $D \mathbf{W}$, parallel to the plane; then the weight W, is in proportion to the power P , as the length of the plane is to its height ; that is, W: P:: B C: A B."

S.

Rochester and Batavia Realroad.We are pleased to learn that this railroad is in a condition to permit Locomotives to pass upon it. The following letter published in the Courier, shows the importance of this road to the agricultural community, even by itself, but its present value is nothing compared with what it will be when continued westward to Buffalo, and eastward to Auburn, Syracuse and Utica, an event by no means distant.

$$
\left.\begin{array}{c}
\text { Batavia, (Genesec Co.,) } \\
\text { May 5, } 1837 .
\end{array}\right\}
$$

Dear Sir,-The appearance here this morning of the first locomotive engine, with its train of cars, created quite an excitement among $u s$, and for a while dispelled the gloom of "hard times," and re-animated the spirits of our citizens. The railroad, 34 miles in length, connects the flourishing city of Rochester wilh this village, and brings the two places within two hours ride of each other, at the same time opening a new avenue for the discharge of our surplus produce directly into the Erie canal. In an agricultural point of view, perhaps no portion of western New-York is richer in all the great elements of wealth, than the section immediately around us; and, aided by this road, we must contribute greatly to the advancement of the commercial interests of Rochester-to say nothing of the advantages to the country generally. As a point for the purchase ol
wheat, I think I hazard nothing in saying that no place affurds greater advantages than this. It being the point where the Holland Land Company originally locited their principal office, and where their business has always been done, the roads, which intersect the farming territory in every direction, have been made directly to this vil. lage, making it, necessarily, the natural place for a market. -Suitable ware-houses are now in progress of building, and we have nothing to ask but easy times for money, and good crops, to keep half the flouring mills of the State in constant operation. The railroad itself passes through a very rich and interesting section, and is spoken of as among the most permanent and best constructed in the country,-offering to persons travelling in this quarter an agreeable change, either from the canal at Rochester, or from the usually travelled route by stage from Buffalo eastward. It cost for a single track, with suitable turnouts, three locomotive engines, passenger and frcight cars, \&c. \&c., about $\$ 10,000$ per mile, which has been furnished entirely by the individual means (with two or three exceptions) of persons resident in one or other of the two places it conrects, and speaks well for their enterprising spirit. After this week the trips of the locomotives will be regular, and should any thing bring you this way. allow me to hope you will make it convenient to pass over the Rochester and Tonnewanda Railroad.

From the Broome County Courler.

Chenango Canal.-The superintendents have wisely adopted the prudent course of very gradually filling the canal with water. 'Though very firmly constructerl, according to the opinions of the best judges, it was still necessury, as the strength of the banks was untried to test them. The water has been let in uponthe whole line, and generally the work has stood firm. We have intelligence direct from the three divisions. Some little diffculty was expcrienced about the waste wiers, on the northern division, but the superintendent designed to put on a head of water again by Wednesday evening. The slight break which occurred last week, ten niles above Greere, is repaired, and the superintendent supposed that the banks there might be filled at the same time.From that point to Bingbamton, there is belieted to be no defect. There is nearly a full head of water in our banks; and still it is probable, from one little obstacle and another, that several days will elapse before any boats will reach this village with goods.

From the Kingston, Luzerne Co. Herald.
The public will be pleased to learn that Edwin A. Douglass, Esq., the accomplishd Chief Engineer of the Lehigh Cumpa. ny, is now in the neighborhood of WilkesBarre with bis assistants, exploring, surveying \&c., preparatory to fixing the line from Wilkes Barre to White's Haven.This is the last link in the chain of communication remaining to be accomplished, 10 connect the Anthracite Valley (or, as it is called, the great coal formation of Penn-
sylvania) with the cities of Philadelphia and New. York. Baltimore on the South West-Philadelpha and New-York on the South and South-East-these three rival cities we shall soon see contending for oun trade, while at the North all the villages and cities spread over some thousands of miles of thickly populated and fertile country, will look to Wyoming for the luxury of a winter fire.

From the Farmers' Register,

account of the greensville and roanoke hailway. December 1st, 1836.
As the Greensville and Roanoke Railroad is about to go into operation, a concise account of its origin, location, construction, and probable revenue, may not be uninteresting to at least a portion of your readers.

To secure the trade, and bring to its own market the produce of the great and fertile valley of the Roanoke, has always been considered a matter of the greatest importance by the town of Petersburg. ${ }^{\text {a }}$ For this purpose, (among the first in this country, though still a new work,) was the Pctersburg and Roanoke railway constructed-an improvement which has far surpassed the expectations of its warmest advocates. Blakely, on the Roanoke, and nearly four miles below the fall3, was selected as the point of termination of this road. This work, however, had scarcely gone into operation, when the Portsmouth and Roanoke Railroad was projected, to connect the towns of Portsmouth and Weldon, (the latter place on the Roanoke,four miles above Blakely) the object of which was to divert this same trade to Portsmouth and Norfolk. The Peters. burg interest, thus in danger of being cut off from the trade of the upper Roanoke, saw at once the necessity of a branch from their road, to some point on that river still higher up than Weldon; and for this purpose, a joint charter was obtained from the legislatures of Virginia and North Carolina, fur a railroad from some point in the vicinity of Hicksford, in Greensville county, to Witkins' ferry, (now Gaston,) fifteen miles above Weldon.

During the summer of the past year, the surveys were commenced, vigourously pro secuted, the location finally determined, and the work let for construction in the latter part of September.
The line of the Greensyille and Roanoke Rairroad leaves the most western point of the Petersburg road, about three miles south of Belfield, and after crossing Fontaine's creek, about two miles from its commencement, keeps on the ridge -between that and Beaver creek, till it reaches the summit between the waters of the Meherrin and those of the Roanoke. The valley of a ravine, emptying into the latter, is there made use of in the descent to the Roanoke. This location, the best that could possibly be obtained, is, on the whole, favorable ; but yet, not as much so as the public might be led to suppose, from the term ridge location, in conse. quence of the sinuosities of this ridge at certain points.
This road is peculiarly adapted to the usic of locomotive power, the curves teing al short, and very gentle, and the grades easy,
no where exceeding a rise of sixteen feet to the mile in the direction of the heavy trade, or of thirty-two feet to the mile in the opposite direction, except in the short desceat to be Roanokc, of which more hereafier.

The following table will give the reader some idea of the curves, and the tangents, or straight lines, connecting them.

No. 1, is the junction of the Petersburg and Greensville roads-No. 17, is on the bank of the Roanoke; the other numbers are merely used to designate points of curve, and the terms right and left, are used on the supposition that the traveller is leaving Petersburg.
From No. 1-curve to right

radius 2865 fect,	3,000	
No. 2-straight,	7,800 feet	
urve to		
radius 5730 feet,	1,200	
No. 4-straight,	19,200	"
No. 5-curve to right		
radius 5730 feet,	800	
No. 6-straight, $\quad \mathbf{7 , 4 0}$		
No. 7-curve to left		
radius 5730 feet,	800	
No. 8-straight, $\quad \mathbf{4 , 0}$		
No. 9--curve to left		
-radius 5730 feet,	3,200	"
No. 10-straight, $\quad \mathbf{6 , 9 0 0}$		
-radius 5730 feet,	500	"
No. 13-curve toright		
radius 2865 feet,	2,100	"
No. 15-curve to left		
-radius 1910 feet,	2,100	"
No. 16--straight,	12,400	

No. 17.
From this table, we perceive that 79800 feet of this line are perfectly straight, and unly 13700 curved, the whole length being 93500 feet, very nearly 18 miles. Again -of the curved portion, 6500 feet have a radius of 5730 feet-more than a mile; five thousand one hundred a radius of 2865 feet-more than half a mile; and only two thousand one hundred feet with a radius as small as 1910 feet. This last is the only objectionable curve on the line, and was oecessarily ado:ted to avoid very heavy cutting. With the exception of these 2100 feet, a locomotive can pass as fast, and draw very nearly as heavy trains through the whole line, as though the road were perfectly straight.

As the numbers of the last table afford convenient marks of relerence, let me here introduce a few remarks relative to the consiruction of the work, and the nature of the country through which it passes. Between points Nos. 1 and 2, nothing remarkable oceurs-the whule consists of cutting from three to six feet-the soil principally clay. Between 2 and 3 , is encountered a swamp, or highland slash, which was found very troublesome, being completely covered with water during winter and spring, and in summer, baked so hard, that a pick could scarcely penetrate the soil. The clearing through this swamp was very heavy. In this distance, also, is crossed Fontaine's creek. O'ver this stream is erected ore of the handsomest stone structures in this country-now on the Raleigh
and Gaston road. This viaduct is built of most beautiful granitc, which was found in abundance at a distance of about three miles. At the roadway level, the bridge is one hundred and cighty feet long, and only six feet wide-the plate of the rail, being about forty-two feet above the surface of the water. The span, or archway, is sixty feet, and each abutment has a length of sixty feet. The abutments for the twenty feet next to the arch, are founded on solid rock, and have such a base, that with a batter, or slope, on each side, of one inch to the foot, they dwindle to a width of six feet, by the tine they reach the level of the roadway. Over the whole is put a coping, beautifully cut, one foot in thickness, which projects on either side, six inches, which gives the bridge the appearance of being seven feet wide. This bridge is remarkable for its light and graceful appearance, being only seven feet deep from the lop of the coping to the crown of the arch, or the stone work being only seven feet thick just above the crown or highest point of the arch, so that it looks as if it were actually suspended in the air. And yet there can be no manner of doubt as regards its strength or safety. The ring stones aro two and a half deep, and measure two feet on the inner, and two feet two inches on the outer circle-the beds or joints of these ring-stones are cut pesfectly smooth, as well as their faces, and they lie so nearly in contact, that it is almost impossible to run the blade of a knife between them. Such an arch supported by abutments sixty feet long, and founded on rock, will resist any pressure insufficient to crush the granite to dust. There are about one thousand eight hundred perches of stone in this struclure, and the whole cost was ebout $\$ 10,500$ -which, when we consider that the stone had to be conveyed three miles, is very moderate. The encbankment at either end of this bridge is very heavy-about thirtysix feet high, and in all, contains two thousand eight hundred cubic yards of earth.

From No. 4 to 5, there is a beautiful straight stretch of nearly four miles. The cutting in several places on this portion, is as much as twelve feet. Where the line crosses the head of Lynch's swamp, the ridge being much to the right, there is a very heavy embankment, thirty-four feet high in its deepest part, and containing nearly five thousand eight hundred cubic yards. Under this bank there is an arched culvert, (six feet span, nmety feet long, and containing three hundred to three hundred and fifty perches,) which is a most beautiful specimen of masonry. The cuts on this portion, were principally of clay. In then were sometimes encountered large isolated blocks of granite, measuring from five to ten feet in diameter, which had the appearance of having been, at one time, much subjected to the friction of water. At one place, also, the earth is impregnated with a good deal of iron ore, which renderdered it exceedingly hard.
From No. 6 to 7, the first half is heary culting, the remainder a heavy bank. Here after sinking the cuts eight or ten feet, through clay, there was reached a etratum
of sand, which scarcely needed the plough or pick. On this portion is situated the first depot, seven and a half miles from the junction of the two roads, and midway between Belfield and Gaston.

The short curve from No. 7 to 8, is on a heavy bank.

From No. 8 to 15, which includes all that portion of the railroad from near Puckett's cross roads, to the summit, near the Roanoke, a distance of seven miles, the location is most favorable - the country at one time, undulating so gently and regularly, that the hills just serve to fill up the small valleys, and at another, so regular and level, that the ruadway scrapes along the surface, sometimes a foot or two above, at others a fevt or to below. 'The texture of the soil, very sandy and light.

Between No. 12 and 13, there is a second depot. Another temporary depot is construciing at 15.
The curve from No. 13 to 14, brings you to the proper direction for striking the head of the ravine, by which the descent is made to the Roanoke, and the curve from 15 to 16, brings you into the direction of that ravine. This ravine is then followed to the flats of the the river, and the same straight line pursued across these flats, which are here three-fourths of a mile wide, to the river.

From 15 to a point one thousand four hundred feet south of 16 , there is a heavy cut, as much as thirty-one feet deep in one place, and containing nearly seventy thousand cutic yards. The top is of a stiff clay the middle third stiff clay mixed wi h large gravel-and the lower third,da mixture of clay and sand-the sand however prevailing. Next to this cut, the work consist principaliy of heavy embankment, tilly you reach the flats, across which there is a bank averaging about eight feet high.

After passing through the last curve, or on reaching point No. 16, a spectacle no less remarkable than beautiful stikes the eye. The straight stretch of road does not stop at the river, but continues on in the same straight line, ncarly to the summit on the other side-a thing unparelleled in the annals of railroads: not only that a perfectly straight line could be obtained in the descent on this side-but that a valley should be so disposed on the opposite side, that this straight line, continued, should afford the very best location for the ascent to the next summit and this too across a valley, the flats of which are two hundred feet below the summit on either side. This straight line, when completed, will be three and a half miles long, and the Reanoke bridge, when completed, which is now in the course of construction, will greatly add to the beauty of the view.

About the last seven hundred feet of the straight line between $\mathrm{N}_{\mathrm{o}} .16$ and 17, is a part of the Raleigh and Gaston Railroad. Just before reaching the Roanoke, the Greensville road curves down the river and runs into a noble warehouse, which is now constructing, three hundred feet by sixty. -T'bis depot is immediately on the water's edge, and the wharf, only fifteen feet wide, will reach water sufficiently deep to float the largest bateaux. Cranes will be fixed on
the wharf for raising produce from the boats to the level of the floor of the warehouse, which is made as high as the beds of the cars, so that the produce can be loaded on them, with but little additional trouble or expense.

At the point where the continuation of this straight line strikes the Roanoke, the river is about one thousand feet wide at the water level. A bridge is now constructing across it, which will be completed in the course of the coining year-built on the plan of 'Townes' lattice bridge, with double lattice, to consist of six pans-the piers and abutments of the finest granite, which is found here in the greatest abundance. These piers and abutnents will be founded on the solid rock which formis the bed of the river. Along the whole of this line, stone is found in great abundance and of the best quality. 'Ihis was a most fortunate circumstance, for on the latter half of the road, the number of drains is alm'st unprecedented. Wherever the line varies the least from the summit of the ridge, the head of some small ravine is crossed, which calls for at least a dry stone drain. The item of hauling, even now, is very considerable, but had stoue been scarce, or only found at a distance, the expense ot all the masonry, would have been very much increased. This stone most frequently occurs in the shape of large isolatedb locks, chiefly of granite, varying much in degrees of hardness.

Located as this road is, between two crecks, an abundant supply of white oak sills was easily obtained. Rails had to be ottained at a greater listance; but the Pe tersburg Railroad and the Roanoke river furnished ready means for their delivery at either end of the line. Thenre they had to be wagoned to the points at which they were wanting.

[^29]Grades.-The above table shows the beauty of the grades on this road. The first column contains mere points of reference, not corresponding to the similar numbers in the last table, but as those denoted points of curve, or changes of direction, so these the changes of grade. The second column, the elevation above tide water at Petersburg: of the point on the same line. The third, the length of grade from the point opposite, to the point in the next line. The fourth, the rate per mile. The fifth, the total ascent or descent in that distance. And the sixth, whether the grade rises, falls, or is level.

No. 1, is at the junction of the two roads. No. 26, at the Roanoke. From an inspection of this table, the reader will see that all the grades are as easy as is desirable, till we come to point No. 23. From'23 to 25 , the grade is very heavy. At No. 1, you will perceive the elevation above tide, is 141.40 feet-at No. 23, 308.70 feetand at 25, the elevation is 133 feet-about 8 feet below the point of commenceinent : so that from 23 to 25 , a distance of only 10600 fect, the road had to descend through a greater space than it had risen in all the distance between 1 and 23. The great difficulty here, arises from the fact of the summit approaching so near the Roanoke, that enough distance is not allowed for an easier descent. Even with the present grade, there is as much as 30 feet cutting at its head, and 12 feet filling at its foot. Previously to locating this portion of the road, the whole neighboring country was examined, in hopes of a better descent; but every where the summit was found to approach too near the river. The country was also examined with a view to an ing clined plane, with stationary power; but no location for such could be found, offering sufficient advantages to overcome the great objections always attendant on stationary power. As objectionable as this grade would be any where cl:e, it is not attended with great disadvantages, situated as it is, so near the termination of the line. When the Raleigh and Gaston line is in operation, the locomotive which comes from Raleigh, having a head of steam, can, without expense, assist the Petersburg locomotive, with its train up this grade, and afterwards return to Gaston. The Petersburg locomotive, in like manner, when it arrives at the Roanoke, can perform the same good office for the Raleigh engine, on the south s:de of the Roanoke, inasmuch as quite a heavy grade is encountered there also, for the same reason. Again-a temporary depot with a turn-out, is fixing at the head of the grade, and a locomotive can, in two or three trips, take from Gaston to this depot, as much produce as it can carry thence to Petersburg, and the train may be thus formed on this turn-out, ready to connect to the engine bringing up the mail and passengers. A little experience will show the most economical method of managing the matter; but there can be no doubt that the grade adopted is infinitely preferable to the use of stationary power.

This grade will always be perfectly safe. For its superstructure, the largest timbers
were selected, and iron two and a half inches by three-eights, is used; there is no curve at its foot, and there is a level grade of nearly three-fourths of a mile, before reaching the river; so that even should a brake give way in the descent, there would be no danger of either running off, or of the passengers taking a cold bath in the Roanoke.

The construction not being completed, it would be premature now to estimate the total cost. But that deficiency may be supplied as soon as the work is finished, from the official accounts of actual experditures for the road.*

Revenue.-I find Mr. Editor, that in these days, any railroad, or any railroad scheme, can be made on paper to yield a handsome revenue, so that under this head, I shall not resort to figures to make esti mates of the future dividends which this road will probably yield, but merely satisfy myself with the statement of rather the sources, than the amount of its revenuc. It will undoubtedly bring to market all the produce, (consisting of cotton, tobacco and small grain) of the upper Roanoke-the produce from a large portion of Northampton and Halifax, from Warren, Franklin, Wake, Chatham, Orange and Granville counties. To nearly all these, will merchandize and goods of various descriptions, be returned on this road. It will be a link in the great northern and southern mail routes, and of course, the transportation of the mail will be secured to it, as well as the great amount of travel which always accompanies, and will invariably stick to the mail. : The local travelling, also, will be great. - In fact, when I reflect, that in time, the Raleigh road is to be pushed south, that an improvement will be prcjected which will bring to this road the products of the rich lands of the Yadkin, and that the great western : scheme, pushing itself into, the very heart of Tennessee, and connecting with the Charleston and Cincinnati road, is to be connected at its eastern extremity with this work, I am completely at a loss to know what then would be the limit of its revenue, were none imposed by law.

The terms on which this work was let, and the manner in which it has been successfully prosecuted, is indeed a subject for congratulation with its friends. At the time it was let, a great number of public works were just about being conmencer, and lahor was very scarce. The demand fur mechanics at the north was so great, that it was next to impossible to procure a good mason. Labor, during its whole construction, has continued very scarce, and consequentiy very high: provisions too, have reached a price almcst unprecedented. If we add to all this, the unheard of winter

[^30]and spring with which the road had to contend, we may well wonder at its steady progress towards completion. R.J.

Railroids in Belgium.-M. Nothomb, the Minister of Public Works in Belgium, has just laid before the Chamber of Representatives, a return of the railways to be formed in the kingdom at the expense of the Government. They extend along 115 leagues, taving their central point at Mechlin. They consist of two principal lines, one from the French frontier to Ant werp by Erussels, and the other from Ostend to the frontier of Prussia near Aix laChapelle, by Ghent, Mechlin, Louvain, Liege, and Veriers. When the King of Prussia has authorised the projected alongation, Antwerp and Ostend will be brought into communication with the Rhins and Cologne.

Egiptian Antiquities.-At the close of a series of lectures on Egyptian Antiquitics, lately delivered at Exeter Hall, by Mr. Pettigrew, that gentleman unrolled a mummy, which had been presented. for the occasion by Mr. Jones, of the Admiralty. This operation excited a marked feeling throughout tlie whole of the numerous anditory, includ. ing many individuals of distinction in the literary circles. In the commencement, Mr. Pettigrew noticed that the inscription on the outer case differed from that on the inner case containing the mummy. Both stated the party to have been a female; but the names and genealogies were different: and the latter stated the mother of the deceased to be living when her daughter died. It might be that the wrappings would settle the point ; which. however, they did not, for no name was found on them, as often occurs. Tie mummy was Greco-Egyptian, and em0 entred after the ancient manner-the bowels being extracted by an incision on the left flank, and the brains, probably, through the nostrils as the nose was much broken. The legs were separately bandaged, and the ankles bound by stripes of painted linen, about half an inch in breadth. The figures were not hieroglyphic, but simply ornamental.Bands of the same kind surrounded the arms, which were crossed upon the breast ; and a similar circle went round the neck. On each knee was a thin piece of gold, rescmbling the lotus flower; over each eye the providential eye of Osiris, of the same material ; and another golden ornament upon the top of the ridge of the nose. There were rings on the fingers; but the opportuty was not sufficient for examining them, nor time for proceeding to the careful and laborious uarolling of the body to the ena. The upper wrappers were not voluminous, and of coarse nankeen colored linen. Then came a complete envelòpe of asphaltus, and below thrat, the usual disposition and extent of linen rolls. On the soles of the feet were slight sandals, transversely striped black, white, and red, exactly like those painted on the bottom of the inner case. The finger and toe nails were gilt ; and, altogether, the subject presented many objects for further investigation and study.
[Literury Gazette.]
XVIII. experiments óf the resistance or babgesmoving on canals, by henry b. palmer, esq., v. p. inst. C. E. address. ed to the late president, thomas telFORD, ESQ.
The statements that have been laid before the public in reference to the swift passage of boats along the Ardrossan Canal, having oscasioned a renewal of, and more extended inquiry into the subject of the resistance to which the motion 'o' boats and barges is exposed, I think it important that every useful fact relating to it should be colected. and placed in the records of the Institution of Civil Engincers.

With this view I have transcribed the particulars of some experiments with which, through your kindness, I had the honor to be entrusted in the year 1824, when the com. parison of the cost of conveyance by canals and railways constituted a popular question.

In the performance of the experiments referred to, I very sooh perceived the difficulty of obtaining the results with that accuracy which was required.
The moving forces being animal power, one imperfection arose from the difficulty of preserving an equable motion. From the same cause I was unable to obtain, at will, any given velocity, so that the results might be obtained in the order required for a tabular registration. A third imperfection was occasioned by wind, which. however slight to the sensation, materially affected the results.
Considering, however, that the experiments were upon the large scale, that the circumstances affecting each are recorded, and that no assumptions were allowed to interfere, they are susceptible of some useful deductions, more especially when received, in comparative order, with facts which have been since and which may hereafter be obtained.

The purport of the experiments was entirely of a practical nature, and therefore they were tried by means strictly conform. able with those actually in common use. The towing ropes were attached to the barges at the same parts as usual, the lengths of the ropes used were of the customary dimensions on each canal respectively, and the moving power exerted in the same posi. tion, viz., along the towing path on one side of the canal.

The results, therefore, do not exhibit precisely the resistances of the barges in a straight line. uninfluenced by the rudder, but that resistance which the circumstances oblige the horse to overcome, which from the obliquity of the line of force with that of the mution of the barge, gives an increased quantity in proportion. Although this error is of small magnitude, and will have litte effec: in the proportion of the results to each other, (which is an important feature in the experiments;) it may lead to incongruities in the comparison of these experiments with others determined by other means, if not at. tended to.
Method used for ascerlaining the Resist. ances of the Barges moving on Canals.
A sheeve or pulley was suspended from the post to which the towing line is usually fastened, the towing line was then pasised over that pulley, and the end of it fastened to the weights that were to indicate the re.
sistance; the barge was then towed in the usual manner, and the weight b ting always insufficient at the commencement, it was raised up to the pulley, and was suffered to remain so, until the barge appeared to be in a regular and uniform motion.s Aslditional weights were then suspenderl, until they fell to about 12 inches from the pulley, when they were so adjusted as to remain suspended there, their only motion being a slight vertical vibration, occasioned by the stepping of the men employed to draw the line.

A straight part of the cainal was chosen, and the length through which an experiment was continued was divided into equal parts, each being marked by a stake. The equality of the motion was therefore ascertained by the time occupied in passing each division, so that when the divisions of the whole
space had been passed in equal times, and the weights had during the whole time remained within the same limits of vibration, the experiment was considered as having been fairly madc.

The experiments being made on different canals, it was always found necessary to practice the men in drawing the barges, before they were found to walk with sufficient regularity, and the loss of time thus engaged caused frequent regret that soldiers could not be obtained for the purpose.

One of the experiments (No. 17) given in the Table was furnished to me by Mr. Bevan, the engineer to the Grand Junction Canal Company. In the four last I was favored with the assistance of Professor Barlow, the late Mr. Chapman of Newcastle, Mr. B. Donkin, and Mr. Bevan.

The following are the particulars of the last four experiments, made on the Grand Junction Canal, at Paddington, by Messrs. Barlow, Chapman, Donkin, and Palmer.

Experiment I.-Empty barige ; weight, $6 \frac{1}{2}$ tons; force employed, 72 lbs.; fraction of the force to the whole effect, $2 \frac{1}{0} \mathrm{~s}$; wind in favor.

Number of Stakes.	'Time.	Time between the Stakes.	Velocity per hour in miles.
1	029	29	3.104
2	17	28	3.214
3	134	27	3.333
4	20	26	3.461
5	224	24	3.750
6	249	25	3.600
7	313	24	3.750
8	339	26	3.461
9	43	24	3.750
10	428	25	3.660
11	454	25	3.600
12	515	22	4.090
18	541	26	3.461

Experiment II.-_Empty barge ; weight, $6 \frac{1}{2}$ tons ; force empleyed, 72 lbs ; fraction of the force to the whole effect, $2 \frac{1}{0} 5$; against wind.

Number of Stakes.	Time.	Time be. tween the Stakes.	Velocity per hour, in miles.
12	0́33	313	2.727
11	12	29	3.104
10	1. 29	27	3.333
9	156	27	3.333
8	224	28	3.214
7	251	27	3.333
6	318	27	3.333
5	345	27	3.333
4	411.	26	3.461
3	440	29	3.104
2	5•8	28	3.214
1	537	29	$3 \cdot 104$

Experinent III.-Load, $21 \frac{1}{2}$ tons, which, added to $6 \frac{1}{2}$ tons, the weight of the barge, gives 28 tons, the whole effect; fraction of force to whole effect, $2_{0}^{1} 3$; force, 308 lbs.

Nunber of Stakes.	Time.	Time between the Stakes.	Velocity per hour, in miles.
1	' 318	38	1'2.395
2	13	25	3.600
3	$126 \frac{1}{1}$	231	3.829
4	149 !	23	3.918
5	212	221	4.000
6	$234 \frac{1}{1}$	$22 \frac{1}{3}$	4.000
7	$257!$	$23{ }^{3}$	3.829
8	321	23\%	3.829
9	$344 \frac{1}{3}$.231	3.829
10	49	241	3.673
11	432	23	3.918
12	456	- 241	3.750
13	519	23	3.918

Experiment IV.-Load, $2 \frac{1}{2}$ tons $+6 \frac{1}{2}$ tons $=28$ tons, the whole effect; force em ployed, 77 lbs ; fraction of force to whole effect, $\frac{81}{8}$.

Number of Stakes.	Time.	Time be. tween the Stakes.	Velocity per hour, in miles.
1	$1{ }^{1} 16$	$1{ }^{1} 10$	1.363
2	154	48	1.875
3	$234 \frac{1}{1}$	40	2.222
4	313	38_{2}^{1}	2.337
5	349	36	2.500
6	42.	36	2.500
7	51	36	2.500
8	$537!$	$36{ }_{2}^{1}$	2.465
9	615	$37{ }_{2}^{1}$	2.400
10	$642{ }_{2}^{1}$	$37{ }_{2}^{1}$	2.400
11	730	$37{ }_{2}^{1}$	2.400
12	86	36	2.500
13	842	36	2.500

The weights with which the barges were loaded were those used for determining the gauge marks on the part of the Company.

The experiments on the Mersey and Ir well canal were made upon vessels that happened to arrive at the time without preference. The first was upon the packet which is used to convey passengers betweea Manchester and Runcorn, and is usually towed at the rate of $5 \frac{1}{4}$ miles per hour.
Nos. 5, 6, 7, and 8 were made on the Ellesmere canal, with a boat built for the purpose, and which was of the same length as those commonly used, but exactly half their width
Nos. $9,10,11,12$, and 13 , were made with one of the ordinary canal barges.

Nos. 14,15 , and 16 , were made with two boats jrined together end to end, and the curves, to the head of one and the stern of the other, so planked over as to form one boat of double the ordinary length.

No. 17, having been made by Mr. Bevan,
table of the dimensions of the barges used on the grand junction canal.

69 feet the whole length, not including the rudder.

I have no other information relating to it than the facts as given in the table.

Nos. 18, 19, 20, and 21, were tried under circumstances as favorable as are usually met with; the effect of the wind was, however, very apparent.

Every variation in the resistance through all the experiments was easily discernible when it amounted to six ounces, and sometimes less.

In conclusion, I think it necessary to remark, that in such experiments as these which have been described, the action of the wind, whether in favor or opposed to the motion of the vessel, should receive the nicest attention. The difficulty does not consist only in ascertaining the amount of the atmospheric action at any given time, but in making a due allowance for its variatons during the time of one experiment : still weather should be chosen for the purpose, and the experiments should be made early in the morning, before any sensible wind has arisen,

The above experiments we: submitted to Pcter Barlow, Esq., F. R. S., and the following are the deductions he made from them.
Report of Peter Barlow, Esq., F. R. S., on the Experiments of Henry R. Palmer, on the resistance of Barges on Canals, etc.
In order to reduce the law of resistances from the foregoing experiments, it is requisite that the comparison; should be made between those on the same boat and under the same circumstances; for the resistance opposed to different boats will depend on their transverse sections, their draught of water, the section of the canal, and various other circumstances, which will prevert the de duction of any general law applicable to all cases.
Mr. Palmer states that the first four ex. periments on the Ellesmere canal, with a small boat, were made under particularly favorable circumstances of weather, \&c. These therefore, may be employen tor do.
ducing the law of the resistances, as it derends on velocity.

It is generally assumcd, on the cominon theory of fluids, that the resistance varies as the square of the velocity, but it has been found that this law does not obtain in praclice, and different experimenters have obtained different results, varying from the 2 d to the $\frac{5}{2}$ power of the velocity. It will appear, however, from the following investiga. tions, that in the case of loaded canal boats, it varies in a still higher ratio, viz., as the cubs of the velocity very nearly, if not ex. actly. In order to make this comparison, it is only necessary to proceed as below, by saying,

$$
V m: v^{\prime n}:: \mathrm{F}: f .
$$

using for $\mathrm{V}, v, \mathrm{~F}, f$, the actual velocity and moving powers employed.
From this proportion is very easily obtained the theorem $m=\frac{\log \mathbf{F}-\log f}{\log V-\log v ;}$ and employing in this the velocities and forces given in the first four experiments, there is obtained the following results, comparing the experiment

$$
\begin{aligned}
& 1 \text { to } 3 \text {. . . } m=3.2 \\
& 1 \text { to } 4 \text {. . . . } m=2.7 \\
& \begin{array}{llll}
2 & \text { to } 3 & . & .
\end{array} \quad m=3.0
\end{aligned}
$$

Mcan value of $m=2.9$ or 3 nearly.
By comparing experiments 7 and 8, which are made under like circumstances and on the same boat, we find $m=3.2$, and in the same way experiments 17 and 18 give near. ly the same result, viz., $m=3.0$, the gene. ral mean being $n=3.0$

It is clear, therefore, that, whatever may be the deduction from theory; the actual resistance of canal boats varies very nearly as the cubes of the velocities; and, by adopting this law, the velocities due to any force and load may be computed from the velocity and resistance in any other case being given.

And as it will be seen by the experiments on the different railways, that at a mean, one lb. will draw along 180 lbs ., and that a power of 1 to 200 is the greatest that the most perfect railway can ever be expected to attain; I have computed what velocity is at. tainable on a canal answering to those two cases, viz., when the moving force is $7 \frac{1}{1}$ th part of the whole load moved. These results are given in the following table, omitting those made on empty boats and seagoing barges.
It is clear, therefore, that on a canal, when the moving power is $\frac{1}{2} \frac{1}{0}$ th of the whole load, including the barge, it may be taken forward at the rate of 4 miles per hour, and that when the force is $\frac{1}{8}-\frac{t h}{8}$, the rate of trans. fer will be $4 \frac{1}{2}$ miles per hour. It is easy also, from what has now been stated, to com. pute the power on a canal, at different velo. cities : for example,
At 4 miles perhour, 1 lb , will draw 200 lbs .

33	
$3 \frac{1}{2}$	243
34	299
3	373
$2 \frac{4}{4}$	674
$2 \frac{1}{4}$	815
22_{4}^{4}	1124
2	1600

From the American Junrial of Science and Arts, for April, 1837.

NOTICE OF THE ELECTIZO-MAGNETIC MA. chine of mr. thomas davenport, of brandon, neat rutland vebmont.
Many ycars have passed since motion was first produced by galvanic power. The dry columns of De Luc and Zamboni caused the vibration of delicate pendulums and the ringing of small bells, for long periods of time, even several years without intermission.
In 1819-20, Prof. Oersted, of Copenha. gen, discovered, that magnetism was evolved between the poles of a galvanic batte. ry. Prof. Sweigger, of Halle, Germany, by his galvanic multiplier, succeeded in rendering the power manifest, when the galvanic battery was nothing more than two small wires, one of copper and the other of zinc, iminersed in as inuch acidulated water as was contained in a wine glass. The power thus evolved was made to pass through many convolutions of insu lated wire, and was thus augmented so as to deflect the magnetic needle sometimes even 90°. Prof. Moll, of Utretcht, by winding insulated wire around soft iron, imparted to it prodigious magnetic power, so that a horse shoe bar, thus provided, and connecied with a galvanic battery, would lift over one hundred pounds. About the same time, Mr. Joseph Henry, of Albany, now Prof. Henry, of Princeton College, by a new method of winding the wire, ob. tained an almost incredible magnetic force, jifting six or seven hundred pounds, with a pint or twa of liquid and a battery of corres. ponding size ; nor did he desist, until, a ehort time after, he lifted thousands of pounds, by a battery of larger size, but atill very stnall, (1830.)
This gentleman was not slow to apply bis skill to the generation of motion, and a successful attempt of his is recorded in this Journal, Yol, xx. p, 340. A power
was thus npplied to the movement of a machine, by a beam suspended in the centre, which performed regular vibrations in the manner of a bean of a stean-engine. This is the original application from which have sprung, or at least to which have suc. ceeded, several similar attempts, both in this couniry and in Europe. A galvanic machine was reported to the British Association in 1835, by Mr. McGauly, of Ireland, and he has renewed his statements of successiul experiments at the late meeting at Bristol. Mr. Sturgeon, of Woolwich, England, also reports a galvanic machine as being in use on his premises for pumping water, and for other mechanical purposes.*
But, I believe that Mr. Davenport, named at the head of this notice, has been more successfiut than any other person in the discovery \dagger of a galvanic machine of greät simpliitity and efficiency. During the last two or three years, much has been said of this discovery in the newspapers, and it is probable, that in a future number "f this Journal, drawings, and an accurate description of the machine may be given. Having been recently invited to examine a working model, in two varieties of form, and to report the result, I shall now attempt nothing more than a general description, such as may render intelligible the account I am to give.

1. The Rotary Machine, composed of revolving electro-magnets, with fixed permunent magnets.
This machine was brought to New-Haven March 16, 1837, by Mr. Israel Slade, of Troy, N. Y., and by him set in motion for my examination. The moving part is composed of two iron bars placed horizon-

[^31]tally, and crossing each other at right angles. They are both five and a half inches long, and they are terminated at each end by a segment of a circle made of soft iron; these segments are eaen three incher long in the chord line, and their position, as they are suspended upon the ends of the iron bars, is horizontal.
The iron cross is sustained by a vertical axis, standing with its pirot in a socket, and admitting of easy rotation. The iron cross bars are wound with copper wire, covered by cotton, and they are made to form, at pleasure, a proper connexion with a small circular battery, made of concentric cylinders of copper and zine, which can be immersed in a quart of acidulated water. Two semicircles of strongly magnetized steel form an entire circle, interrupted only at the two opposite poles, and within this circle, which lies horizontally, the galvanized iron cross moves in sucha manner that its iron segments revolve parallel and very near to the magnetic circle, and in the same plane. Its axis at its upper end, is fitted by a horizon. tal cog-wheel to another and larger vertical wheel, to whose horizontal axis, weight is attached and raised by the winding of a rope. As soon as the small battery, destined to generate the power, is properly connecied with the machine, and duly excited by diluted acid, the motion begins, by the horizontal movement of the iron cross, with its circular segments of flangers. By the galvanic connection, these crosses and their connected segments are maguetized, acquiring north and south polarity at their opposite ends, and being thius subjected to the attracting and repelling force of the circular fixed magnets, a rapid horizontal movement is produced, at the rate of two hundred to three hundred revolutions in a minute, when the small battery was used, and over six hundred with a calorimotor of large size. The rope was wound up with a weight of fourteen pounds attached, and twenty-eight pounds werc lifted from the floor. The movement is instantly stopped by breaking the connex. ion with the battery, and then reversed by simply interchanging the connexion of the wires of the battery with those of the machine, when it becomes equally rapid in the oppusite direction.
The machine, as a philosophical instrument, operates with beautiful and surprising effect, and no reasoncan be discovered why the motion may not be indefinitely continued. It is easy to cause a very gradual Aloy of the impaired or exhausted acid liquid from, and of fresh acidulated water into, the receptacle of the battery, and whenever the metal of the latter is too much corroded to be any longer efficient, another battery may be instinntly substituted, and that even before the connexion of the old battery is broken. As to the energy of the power, it secomes at once a most interesting inquiry, whether it admits of indefinite increase? To this inquiry it may be replied, that provided the magnetism of both the revolving cross and of the fixed circle can be indefinitely increased, then no reason appears why the energy of the power cannot also be indefinitely in. creased. Now, as magnets of the common kind, usually called permanent magnets, find their limits within, at-most, the power of fifting a fow hundred poünds, it is obvious
that the revolving galvanic magnet must, in its efficiency, be limited, by its relation to the fixed magnet. But it is an important fict, discovered by experience, that the latter is soon impaired in its power by the influence of the revolving galvanic magnet, which is easily made to surpass it in energy, and thus, as it were, to overpower it. It is obvious, therefore, that the fixed magnet, as well as the revolving, ought to be magnetized by galvanism, and then there is every reason to believe that the relative equality of the two, and of course their relative energy, may be permanently supported, and even carried to an extent much greater than has been hitherto attained.
2. Rotating Machine, composed entirely of eloctro-magnets, both in its fixed and revolving members.

A machine of this construction has been, this day, March 29, 1837, exhibited to me by Mr. Thomas Davenport himself, who came from New.York to New.Haven for that purpose.

It is the same machine that has been already described, except that the exterior fixed circle is now composed entirely of electro-magnets.

The entire apparatus is therefore construced of soft unmagnetic iron, which being pro. perly wound with insulated copper wire, is magnetized in an instant, by the power of a very smail battery.

The machine is indeed the identical one used before, except that the exterior circle of permanent magnets is removed and in its place is arranged a circle of soft iron, divided into two portions to form the poles.

Thesesemicircles are made of hoop iron, one inch in width, and one-eighth of an inch in thichness. They are wound with copper wire insulated by cotton-covering about ten inches in length on each semicircle and returning upon itself, by a double winding, so as to form two layers of wire, making on both semicircles about one thousand five hundred inches.

The iron was not wound over the entire length, of one of the steel semicircles; but both ends were left projecting, and being tuined inward, were made to conform to the bend of the other part, as in the annexed figure, which is intended to represent one of

them; each end that is turned inward and not wound is about one-third of the length of the semicircle. These semicircles being thus fitted up, so as to become, at pleasure, galvanic magnets, were placed in the same machine that has been already described, and occupied the same place that the permanent steel magnets did before. The conducting wires were so arringed, that the same current that charged the magnets of the motive wheel, charged the stationary ones, placed around it, ouly one battery being used. It should be observed, that the stationary galvanic magnets thus substituted for the permanent steel ones, were only about half the weight of the steel magnets. This modification of the galvanic magnet, is not of course the best form for efficiency;
this was used merely to try the principle, and this construction may be superseded by a different and more efficient one. But with this arrangement, and notwithstanding the imperfection of the mechanism of the ma-cline-when the battery, requiring about one quart of diluted acid to immerse it, was attached, it lifted 16 lbs., very rapidly, and when the weight was removed, it performed more than 600 evolutions per minute.
So sensible was the machine to the mag. netic power, that the immersion of the battery oue inch into the acidulated water, was sufficient to give it rapid motion, which attained its maximum, when the battery was entirely immersed. It appeared to me that the machine had more energy with the electro-magnets, than with those that were permanent, for with the smallest battery, whose diameter was three inches and a half; its height five inches and a balf, and the number of concentric cylinders three of copper and three of zinc, the instrument manifested as great power as it had done with the largest batteries, and even with a large calorimotor, when it was used with a permanent instead of a galvanic magnet. With the small battery and with norle but electro or galvanic magnets, it revolved with so much energy as to produce a brisk breeze, and powerfully to shake a large table on which the apparatus stood.

Although the magnetization of both the stationary and revolving magnets was im. parted by one and the same battery, the magnetic power was not immediately destroyed by braking the connexion between the battery and the stationary magnet; for, when this was done, the machine still performed its revolutions with great, although diminished energy; in practice this might be important, as it would give time to make changes in the apparatus, without stopping the movement of the machine.
It has been stated by Dr. Ritchie, in a late number* of the London and Edinb. Phil. Magazine, that electro-magnets do not attract at so great a distance as permanent ones, and therefore are not well adapted for producing motion. On this point Mr. Davenport made the following experiment, of which I was not a witness, but to which I give full credit, as it was reported to me by Mr. Slade, in a letter dated New.York, March 24, 1837.
Mr. Davenport suspended a piece of soft iron with a long piece of twine and brought one pole of a highly charged steel magnet witlin the attracting distance. that is, the distance at which the iron was attracted to the magnet; by measurement, it was found that the steel magnet attracted the iron one inch and one.fourth. A galvanic magnet was next used of the same lifting power, and consequently of much less weight ; the attract ing distance of this maguet was found to be one inch and three-fourths, showing a material gain in favor of the galvanic magnet.Mr. Slade inquires, "has Mr. Ritchie's mag net been so constructed as to give a favorable trial to this principle ?"* Mr. Davenport in forms me that each increase in the number of wires has been atteuded with an increase of power.

* Jauuary, 183\%,

Conclusions.

1. It appears then, from thic facts stated above, thal electro-magnetism is quite adequate to the generation of rotary motion.
2. That it is not necessary to employ permanent magnets in any part of the construction, and that electro-magnets are far preferable, not only for the moving but for the stationary parts of the machine.
3. That the power generated by electromagnectism may be indefinitely prolonged, suce, for exhausted acids, and corroded metals, fresh acids and batteries, kept always in readiness, may be substituted, even without stopping the movement.
4. That the power may be increased beyond any linit hitherto attained; and proba. bly beyond any which can be voith certainty assigned,-since, by inceasing all the mem. bers of the apparatus, tue referrence being had to the relative proportionate weight, size, ard form of the fixed and moveable parts-to the length of the insulated wires and the manner of winding them-and to the proper size and construction of the battery, as well as to the nature and strength of the acid or other exciting agent, and the manner of connecting the battery with the machine, it would appear certain, that the power must be in. creased in some ratio which experience must ascertain.
5. As elcectro-magnetism has been exper. imentally proved to be sufficient to raise and sustain several thousands of pounds, no reason can be discovered why, when the acting surfaces are, by skillful mechanism, brought as near as possible, without contact, the continued exertion of the power should not generate a cuntilued rotary movement, of a degree of energy inferior indeed to that exerted in actuai contact, but-still nearly approximating to it.
6. As the power can be generated cheaply and certainly-as it can be continued indefinitely, as it has been very greatly increased by very simple means-as we have no knowlodge of its limit, and may therefore presume on an indefinite augmentation of its encrgy, it is much to be desired, that the investiga tion should be prosccuted with zeal, aided by correct scientific knowledge, by mechanical skill, and by ample funds. It may therefore be 1 ensonably hoped, that science and art, the handmaids of discovery, will both re. ceive from this interesting research, a liberal reward.

Science has thus, most unexpectedly, placed in our hands a new power of great but unknown energy.
It does not evoke the winds from their caverns; nor give wings to water by the urgency of heat ; nor drive to exhaustion the muscular power of animals; nor operate by complicated mecbanism ; nor accumulate hydraulic force by damming the vexed torrents ; nor summon any other form of gravitating force; but, by the simplest mearsthe mere.contact of metallic surfaces of small extent, with feeble cliemical agents, a power every where diffused through nature. but generaly concealed from our senses, is mystericusly evolveds and by circulation in

* This question I am not able to answer, as 1 hare periment, but onf of the reeult.
insulated wires, it is still more mysteriouslv augmented, a thousand and a thonsand fold, until it breaks forth with incredible energy: there is no appreciable interval between its first evolution and its full maturity, and the infant starts up a giant.

Nothing since the discovery of gravitation and of the structure of the celestial systems, is so wonderful as the power evolved by galvanism ; whether we contemplate it in the muscular convulsions of animals, the chemical decompositions, the solar brightness of the galvanic light, the dissipating consuming heat, and, more than all, in the magnetic energy, which leaves far behind all previous artificial accumulations of this power, and reveals, as there is full reason to believe, the grand secret of terrestrial magnetism itself.
B. S .

New-Haven, March 31, 1837.

Claim of Thomas Davenport.

In the words of the patent, taken out, this inveution "consists in applying magnetic and electro-magnetic power as a moving principle for machinery, in the manner described, or in any other substantially the same in principle."
"Mr. Davenport first saw a galvanic magnet in December, 1833, and from the wonderful effects produced by suspending a magnet of 150 lbs . from a small galvanic battery, he immediately inferred, without any knowledge of the theory or the experiments of others, that he could propel ma chinery by galvanic magnetism. He pur. chased the magnet and produccd his first rotary motion in July, 1834. In July, 1835, he submitted his machine to Prof. Henry, of Princeton, New-Jersey, also without any knowledge of Prof. Hecry's experiments in producing a vibratory motion. From this gentleman he received a certificate, testifying to the origmality and importance of the invention."

Mr. Davenport is, by occupation, a blacksmith, with only a common education, but with uncommon intelligence; his age about thirty-five. Mr. Ransom Cook, of Saratoga Springa, is associated with Mr. Davenport, and has rendered essenial service by the improvements he has made in the machine, and by his assistance in bringing the subject before the public in the most eflectual way. Arrangements have been made to take out the patent in Europe.
P. S. The proprictors are constructing a machine of sevên inches in diameter, and also one of two feet in diameter. Galvanic magrets will be used as the moving and stationary magnets of each.

ON THE PROCESS OF CARBONIZATION, OR manufacture of charcoal., at goERSDORF, in saxony.
It having been suggested by M. Boult that a superior charconl might bo produced by filling the interstices of the pile with small charcoal, the refuse of former burnings, an experiment was made, which, after being several times repeated, gave the following results: 1st, an increase of pro. duce, amounting to not less than four per cent. above that yielded by the ordinary process; 2nd, a much smaller q̧uantity of dust
and small coal, 3rd, scarcely any smoke; 4th, charcoal of a very equal and superior quality.

A pilc prepared for carbonization at Go ersdorf contained in genernl about thirty schragen, (318 cubic yards) of pine trees split in quarters, which yielded, including the small coal, from eighty-nine to ninty. two per cent. in bulk of charcoal. It was considered desirable to ascertain, whether by increasing the size of the pile, a more considerable product would be obtained. A pile containing forty-nine schragen (520 cubic yards,) of cleft pine wood, gave in an experiment, during which the weather proved favorable, 89.94 per cent. of charcoal (including the small,) very sonorous, and of very good quality. A second trial of $69 \frac{1}{2}$ schragen (740 cubic yards,) of similar wood produced only 87.98 per cent. but the weather in this instance was unfavorable.
Ihis experiment was repeated with sev. enty-ene schragen (750 cubic yards,) the weather continuing fine throughout the process; the produce amounted to 9.4 .87 per cent. ; equal in quality to the former results. The average results of the adoption of this process at Goersdorf, will appear from the iollowing table of the produce, from the commencement to the date of the latest improvements.

	Produce per cent.		Total product per cent.
$1821 .$.	74.34	3.91	78.85
$1822 .$.	7624	4.76	$81 .-$
$1823 .$.	76.44	5.25	81.69
$1824 .$.	77.95	4.09	82.04
$1825 .$.	86.31	4.35	90.66
$1826 .$.	6631	3.62	89.93
$1827 .$.	87.53	4.20	91.73

The increase observable in the produce of 1825 , is to be attributed, principally to the care with which the operations were conducted, but it must be also remarked, that the removal of the pipe for collecting the acid formed in the process of carbonisation, may also have contributed beneficially to the results. M. Karsten in his Voyage Metallus:rique states, that in Carinthia, the carbonization of pine wond is performed in large stacks, containing 20,000 cubic feet, and without the trees being previously split, yet the produce in bulk is computed at from seventy-one to eighty-sis per cent. It is obvinus, that there exists no analogy between these resul!s and th se obtained from the brushwood and billets of oak, beach, \&c., by the common process of carbonization, which seldom yields more than from thirty-five to forty-five per cent. ; it is, therefore, only necessary to call public attention to the fact, and it may naturally be expected that, in the present state of practical science, a subject of so much importance in met llurgy will be duly investi gated.-[Lond. Quar. Mining Review.]

Consumption of Coal in Great Bri-tain.- The quantity of iron annually pro duced in Great Britain may be taken at 700,000 tons; and the quantity of coal re-
quired, at an average, to produce each ton of iron, including that used by engines, \&c. may be estimated at $5 \frac{1}{2}$ tons; giving a total of $3,850,000$ tons consumed in the making of iron. According to Mr. Kennedy, the quantity of coal consumed in the cotton ma. nufacture, in 1817, was upwards of 500,000 tons, and the manufacture has since more than doubled; so that, allowing for greater economy, we may fairly estimate the consumption of coal in the cotton trade at 800,000 tons a year. Its, consumption in the woollen, linen, and silk trades cannot be less than 500,000 tons. The smelting of the copper ores of Cornwall consume annually about 250,000 or 300,000 tons; and it is supposed that the brass and copper manufactures require nearly as much. In the salt-works of Cheshire, Worcestershire, \&c. the consumption is probably not under, if it do not exceed, 300,000 tons. The consumption in lime works may, it is believed, be estimated at 500.000 tons. It would appear, th refore, that the total annual consumption of coal in Great Britain may be moderately estimated as follows :-

Tons.
Domestic consumption, and smal.
ler manufactures
$15,000,000$
Production of pig and bar iron
3,850,000 Cotton manufacture

800,000
Woollen, linen, silk, \&c.
500,000
Copper smelting, brass manufac-
tures, \&c.
450.000

Salt-works - $\quad \mathbf{3 0 0 , 0 0 0}$
Lime-works - 500,000
21,350,000
Exports to Ireland
750,000
Ditto to colonies and foreign parts $\quad \mathbf{6 0 0 , 0 0 0}$
Total 22.700,000
If we suppose that the above sum of $22,700,-$ 000 tons costs the consumer, on an average, $7 s$. a ton, it will be worth, in all, 7,955,000l. a year!-[M'Culloch's Account of the British Empire.]

1 From the Journal of the Franklin Insitute.
a mode of analysing german silver. by jas. c. bоoth.
As the employment of this interesting compound is daily becoming more general, it becomes a point of some importance to the manufacturer to ascertain with some accuracy the connosition of those kinds in the market, which are adjudged to possess -uperior qualities. For this purpose I have contrived a method of analyzing them, which may be successfully practised by any one who possesses a little chemical knowledge. A small piece of about 20 grains is dissolved in nitro-muriatic acid with the assistance of a gentle heat, by which means the metals will be converted into chlorides, If the solution be filtered through a small paper-filter, and a white powder remain after washing wih water, it is the chloride of silver, the presence of which metal inthe comprund is accidental and scarcely appreciable. The acidulated solution is then treated by sulphuretted hydrogen, which separates copper and a little arsenic. The sulphuret of copper is collected on a
filter, treated with nitric acid in a gentle
heat, till the sulphur appears whitish, then filtered, brought to boiliny, precipitated with caustic potassa, filtered and weighed. 100 parts of this precipitate contains 79.33 of metallic copper. To the solution after filtering off the sulphuret of copper, a little nitric acid is added, and the whole heated in order to convert the protroxide into the peroxide of iron. Muriate of Ammonia is then added to the same and a small excess of ammonia, which precipitates only the peroxide of iron. This may be collected on a filter and weighed, 100 parts of it contain 69.34 of metallic iron. The solution is now to be treated with carbonate of soda and evaporated to dryness; the dry mass is treated with hot water, and the residue washed and dried. This powder, consisting of carbonic of zinc and nickel, is mixed with half its weight of saltpetre, and ignited until the whole is nearly dry. It is transferred to a filter after being powdered in a small mortar, and is then washed two or three times with pure, but dilute, nitric acid, which dissolves the oxide of zinc, and leaves the peroxide of nickel. To the zinc solution carbonate of soda is added, the whole evaporated to dryness, treated with hot water, and the remainder after being dried and ignited is weighed, 100 parts contain 80.13 metallic zinc. The peroxide of nickel is dissolved in hydro-chloric acid, precipitateil by caustic potassa, filtered off and weighed, 100 parts of it contain 78.71 metallic nickel.

The separation of nickel and zinc is ever attended with difficulty and some uncertainty, but it is rendered much more simple by the method which I propose, and which is not more inaccurate than others in use. Before weighing any of the above oxides, it is decidedly preferable to burn the filter after shaking off as much of the substance as possible into a platinum crucible, to add the ashes, and then substract their weight from that of the oxide.

The First Russian Rallway.-The lo. comotive carriages made in England for the Pawlosk Railways, do not appear to have answered quite so well at the place of their destination, as they are said to have done on experimentai trips in the land of their birth. On the 22nd December last, some short journeys were performed on that part of the ine already completed, for the express purpose of demonstrating the practicability of Railway travelling in the very depth of a Russian winter. On this occasion, the velocity did not much exceed twenty miles an hour: a very satisfactory pace, especially under the circumstances, but still something under the " seventy-five miles an hour" rate reported to have been attained in England: on another day, the result was not even equal to this, which is attributed to the wind's blowing against the line of direction; perhaps, therefore, it blew the right way on the experimental trips, under the direction of the builder. On the 22nd December, the apparatus for removing the snow from before the wheels was tried, and proved quite successful; from recent experience at home, it would appear that any apparatus for that special purpose is quite unnecessaly.

Agriculture, \&c.

improving fruit trees.

Among the illustrious bene factors of mankind, the name of Van Mons* seems destined to hold a conspicuous place. By almost incredible labor, perseverance, and constan. cy of purpose, through a long succession of years, he seems to have established a philo. sophical theory of improving or ameliorating fruit trees and other productions of nature, worthy of a place by the side of the wonderful discoveries and improvements in other branches of philosophy which characterize the age of H lerschel, Sir Humphrey Davy, Cuvier, and a host of other distinguished contemporaries, -
" Whose names must honored live, till science dies."
From a long article in the Horticultural Register and Gardener's Magazine of June, 1836 ,-communicated by Hon. H. A. S. Dearborn,-we have compiled the following, which we think cannot fail of being interesting to a large portion of the members of the Essex Agricultural Society.
VAN mon's theory of aneliorating or Improving fruit trees, by ralsing suc. CESSIVE GFNERATIONS FROM SEED.
So long as plants or trees remain in their natural situation, their seed always produce the same; but on changing their clımate and territory some will vary more or less, and when they have once departed from their natural state, they never again return to it, but are removed more and more by successive gencrations.

The seed, for example, of the wild pear trees, in their native region, always reproduce their like at every age; that is, be the tree twenty or a thousand years old at the time the seed is taiken from it, the fruit of its offspring trees will be precisely like that of the parent stock. But the seed of a dom s. ticated pear tree, that is, a tree which produces better, or at least a different kind of fruit from its wild ancestors, produces trees not only very different from itself and them, but this difference will be greater if the seed be taken from the young seedling's first or early fructification, than it will be if taken from the same tree after it bas been many years in bearing.

To improve or ameliorate fruit trees, therefore, as expeditiously as possible, young seedlings should be forced into bearing as early as may be, and the seed first produced planted. Pursuing this method, Van Mons, notwithstanding the seed that ho was obliged to use in his first experiments were obtained from ancient varieties, whose age, although uncertain, was mach advaneed, was enabled to reach, in forty two years, the fruit of the fifth generation of his pear trees, all of which was good and excellent. His first generation yielded their first fruit in from twelve to fifteen years, his second in from ten to twelve ycars, his third in from eight to ten years, his fourth in from six to eight years, and his fifth in six years, and in the eighth generation lie obtained a few pear trees which fructified at the age of four

[^32]years. He also found that three or four generations without interruption, from parent to son, and from twelve to fifteen consecutive yeais, were sufficient to obtain no other than excallent fruit from the stones of peaches, apricots, plums and cherries;-that to obtain none other than good apples, only four generations, and about twenty years, were required.
Such, briefly, according to Van Mons, is the \$philosophy of improving fruit trees. But why, it may be asked, if fruit trees are capable of such rapid improvement, by reproduction from seed, do so few seedling trees among us produce good fruit? From the theory of Van Mons may be obtained a philosophic answer to this inquiry. Trees, like all other organized beings, have limited periods of youthful growth, maturity, and decay. Trees propagated by cuttings, scions, \&c.. are only the muitiplication of individuals, and subject to the same great law of nature. Their age, however late they may have commenced an independent existence, must be considered the same as that of the parent stock, and when the full period of the natural life of the original tree shall have been completed, will cease to exist. Age alone, according to Van Mons, causes our fruit trees to deteriorate, and their seeds to degenerate. Seed, he says, which are yielded by the hundredth fructification of a domesticated pear of excellent quality, produce a great variety of trees, whose fruits, almost always detestable, are more or less near to a wild state. Seedfing trees, with us, have generally been the offspring of old varieties; hence they have seldom produced good fruit. Whoever, therefure, may possess young seedlings which produced good fruit, would confer a great favor on the community by preserving the sced for planting. It has been ascertained that it is advantageous to collect the fruit a little before it is ripe, and leavo it to become perfectly mellow and reach a state of decay, before extractung the seeds or stones for planting. The apple is said to deteriorate less rapidy, and to live longer than the pear.

The subject of deterioration naturally leads us to inçuire how many years a va riety of pear may live. Van Mons esti. mates that it may live from two to thrce hundred years. But I have remarked, te says, that the most excellent, beyond all others, least resist the ravages of old age, They cannot attain the agc of half a centu, ry, without manifesting symptoms of decre. pitude. The first of these symptoms is that of bearing less constantly and the fruit ripening later. The decay of the wood, and the loss of the beautiful form of the tree, and the alteration of the fruit. follow at much later periods. The varieties that have exist. ed but half a century, do not suffer from canker at the ends of the branches, nor from diseases of the bark; the fruit does not crack, nor is it filled with a hard substance, covered with knots, nor insipid or dry.These varieties can still be grafted on other trees, without their infirmities being aug. mentod. It requires half a century more to render them worthess. It is painful to think that soon the St. Germain, the Beurre Gris, the Crassance, the Colmar, and t!o

St. Michæls, must submit to this destruction. None of these varictics succeed any longer in Belgium, except when engrafted on a thorn, and as espaliers, trained against a wall; but this success is at the expense of their commendable qualities.

Van Mans does not attribute the deterio. ration of fruit trees to their multiplication by repeated engrafting, but contends that natural and grafted trees deteriorate in the same manner and with the same rapidity, in consequence merely of their age. He disco. vered in an old garden of the Capuchines. the parent tree of the Bergamote de la Pentacote, an old pear. All the trees grafted from it are affected with canker, in slightly moist land, and the fruit is small, cracks when growing in the open air, is covered with black spots, which communicate a bitter taste, and no longer succeeds, but when trained as an espalier along a wall. The parent tree was infected with all the evils found in those grafted from the same varic. ty. He took suckers from the roots and scions at the same time, which he grafted on other stocks, and the trees produced by both were deteriorated in the same degree and manner as those which have been for a long time multiplied by the gratt. Poiteau, the admirer and panegyrist of Van Mons, thinks, however, that this rapid deterioration of fruit trees may be somewhat delayed if scions be always taken from the most healthy individuals and inserted only isto vigorous stocks.

Van Mon's method of raisug fruit trees from the seed was as follows. He left the plants in the seed bed two years; he then took them up, preserved and transplanted only the most vigorous, at such a distance one from the other that they could thoroughly develope themselves and fructify. He planted them about ten feet apart, sufficiently near to force them to run up tall and form pyramidal tops, which he states hastens their fructification. While waiting for his trees to produce fruit, he studied their form and physiognomy, and from long continucd observations established the following prognostics of what they may become, from their different exterior characteristics.

1. Prognostics of a favorable augury A good form, a smooth and slightly shining bark, a regular distribution of the branche. in proportion to the height of the tree; annual shoots bent, striated, a little twisted, and breaking clear without spiinters, thorns long and garnished with eyes or buds nearly their whole length ; eyes or buds plump, not divergent red or grizzled; leaves smooth, of a mean size, crimped on the side of the middle nerve, borne on petioles (the stem of the leaf) rather long than short, the youngest in the spring remaining a long time directly against the bud, the others expanded, hollowed into a gutter from the bottom towards the top, but not their whole length.
2. Bad prognostics.-Branches and twigs confused, protruding like those of the hornbeam, thorns short without eyes; leaves averted from the bud, from their first appearing small round, terminating in a short point, guttered their whole length. Thest characteristics indicate small fruit, sweet, dry and late, fit only for baking.
3, Proginstics of early fruit.-Wood large, short ; buds large and near,
3. Prognostics of late fruit.-Wood slim, branches well distributed, pendant, the shoots a little knotted, generally denote late delicious fruit; with leaves round, point short, stiff, of a deep green, borne on petioles of mean length, are analogous signs, but less sure.

Van Mons remarks, that among the new pears which he has obtained, there are some which were several years in taking a fixed form ; that several did not assume one for from twelve to fifteen years, and that others never did. Our old varieties, without doubt, have been in the same situation, and he gives as an example of pears that have never assumed a determinate form, our Bon Cretien de Hiver. Still it is most easily recognized, notwithstanding the variation in its form and size.

TRANSACTIONS OF TIIE ESSEX AGRICULTƯं-
RAL SOCIETY, Mass.
The Annual account of the "Transactions of the Essex Agricultural Society in Massachusetts" has just been published. It is a valuable document; and does honor to this society, which stands unsurpassed in the country for its spirited exertions in the cause of our improved husbandry ; and for the zeal, ability, and intelligence with which its operations have been conducted. We have already laid before the readers of the New-York Farmer the sens.ble address of Nath'l. W. Hazen, Esq., which forms the first article in these Transactions.This is followed by some remarks from Governor Liveret on the same occasion, which are particularly entitied to attention; and which, though they contain some local allusions, we are happy in laying before our readers. Like every thing of the kind which proceads from that distinguished gentleman, of whose talents, knowledge, eloq ience, public spirit, and usefulness the Commonwealth has just reason to be proud, they are to the point ; they are feeling, instractive, and patriotic ; and the local al lusions give them an increased interest.
REPORT-COMMITTEE OF ARRANGEMENTS.
When the discourso of Mr. Hazen was concluded, Dr. Nichols, of Danvers, addressed the Governor and audience through the following Report :-
The Commitlee of Arrangements ask leave to report:-That they have had the satisfaction of seeing their plans and provisions for the day carried into execution without loss of time, and in a manner equal to their expectations. As a whole, the exhibition has perhaps been inferior to some of the Shows in former ytars. This they are willing to attril ute to the unfavorable season and the inclement weather of the morning, rather than to a want of interest in the Agricultural community in the objects of the Society. The utility of this Association they are happy to believe depends not so much on the cattle and things xhibited at their Shows, as on the opportupities these afford the Farmers of the Copanty, to become acquainted with each of cr, for consultations on subjects pecu. liafly interesting to themselves, and for offering up their united adorations to Him
who giveth seed time and harvest, and who alone can crown the labors of the husbandman with success.

This day has also been rendered unusually interesting by the ןresence of His Excellency the liovernor of the Commonwealth. In extending to your Excellency an invitation to attend on this occasion, the Committee believe it to be peculiarly proper that an exhibition attained mainly by the bounty of the State should come under the supervision of its Chief Magistrate ; and they felt confident that one so distinguished for performing with the strictest fidelity all the duties and proprieties of his exalted station, would be pleased to embrace the opportunity afforded him, to countenance and encourage one of the great interests of the Commonwealth by showing himself personally interested in the success of its Agricultural Societies, and by manife ting a disposition to become acquainted with the wants of the industrious yeomanry of which they are composed. And your presence here,-for which the Committee in behalf of the Society tender you their hearty thanks,-assures them that they have not mistaken your views or feelings in these particulars.

Per order of the C'ommittee.

Andrew Nichols.

nemarks of gov. Everett.

After the Report of the Committee of Arrangements had been read, Governor Eierett rose and made his acknowledgments to the Committe for the manner in which they had alluded to the circumstance of his being present. He expressed his gratification at the exhibition of the day, and his confidence that the lounty of the State was beneficially applied by the Essex Agricultural Society. He stated that the wish had been expressed that he should address the audience. He felt that in complying with the request he stepped beyond the line of usage on such occasions, but he trusted the responsibility of his doing so would be considered as resting with the Comrittee, by whom the wish had been expressed.

The Governor added that he felt additional embarrassment in following the ora$t \sim r$, who, in his very able and interesting discourse, tad anticipated many of the gencrai remarks appropriate to such an occa. sion. His cnly effort could now be, to subjoin a few observations, so simple as to present themselves without research, and he hoped important enough to bear a repetition, should it happen, as was very probable, that they had been already made by the orator of the day.
After some remarks on the nature and objects of cattle shows, and their beneficial influence on the state of the husbandry of this part of the country, Governor liverett proceeded substantially as follows :
The benefit, which has accrued to our farmers from these exhibitions, cannot be estimated in dollars or cents, or measured by the figures employed to state an increase of agricultural products. A few more tons of hay from your meadows; a few more bushels of corn or potatoes from your tilled.
lands; a better stock of animals for the dairy, the fold, or the pen, would add something, it is true, to the public and private wealth of the community; but if nothing farther came of it, it would be a matter in which neither the patriot 1 or the christian could take a deep interest.

But when we consider, that the class of husbandmen is numerically the largest in the community; and that on their condition it has been found, in the experience of the whole world, that the social, political, and moral character of countries mainly depends, it follows as self-evident, that whatever improves the situation of the farmer feeds the life-springs of the national character. In proportion as our husbandmen prosper, they not only enjoy themselves a larger portion of the blessings of life; but society is kept in a healthy state, and they are eqabled to maike ampler provision for the education and establishment of their children, and thus leave behind them a posterity competent not only to preserve and assert, but to augment their heritage.

It will accordingly be found, that the great differences in the politicel condition of different countries coincide directly with the different tenure on which the land is held and cultivated. It is not that in one country the Groverninent is administered by an elective President; in another by a limited monarchy ; in another by an absolute despot. These things are not unimportant ; because forms have a tendency to draw the substance after them. But a far more important question, in deciding the political condition of different countries is, how is the land held? The orator has told us what is the case in many parts of Europe but there are countries where the case is still worse. - There are countries where the land, the whole of it, is claimed to be the property of an absolute despot,-rather a chief of bzigands than a sovereign,-who once or twice a year sends out his armed hordes to scour the territory, to sweep together, without the shadow of law or pretence of right, whatever they can lay their hands on; leaving the wretched peasant little else than what he actually grasps with his teeth. Such is the system introduced into some parts of Hindostan, by their Mahometan conquerors, and it has had the effect of breaking down the civilization of countries once refined, learned, wealthy and prosperous, into a condition very little better than that of the North American savage. Contrast this with the system on which our lands are held and occupied, in pursuance of which as a general rule, it is divided into small farms, the property of those who till them, who have every inducement and facility to better their condition, and who feel themselves on an equality with their fellow citizens in every other pursuit. It is plain that over such a population no governinent could exist but one like that beneath which we live, in which the people are the direct source of power. Where this is the case, it is equally plain that whatever improves and raises the condition of husbandmen, tends directly to sustain and fortify the social fabric.

A very celebrated ancient poet exclaimed, "Oh, two happy farme's! did you but know your blessings." If this could be said of the farmers of Italy, at the close of the civil wars, subjects of an absolute prince, and a part of them only the owners of the land they tilled, it may well be repeated of the husbandmen of New-England, the proprietors of a soil, which furnishes a competence of all the good things of life, and the possessors of an amount of bless. ings never surpassed, if ever equalled. Not among the least of these privileges, is the rich birthright of patriotic recollections which has come down to us from our fathers, and of which no portion of the country has more to boast than the ancient county of Essex. It is no mere compliment, sir ;-the county of Essex is a distinguished part of the State. It would be easy, within the limits of this single ceunty, to find, in the history of other times, bright examples of all the traits of character and conduct which promote the prosperity and honor of nations, in peace and war. From the carly contest with the Indians and French; from the time when the "Flower of Essex" fell at "Bloody Brook,", down to the close of the revolution, the fathers and forefathers of those I have the honor to address, contributed a full share of the counsel and treasure, the valur and blood by which the cause of the country was directed, sustained, and carried through triurrphant. Need I go beyond the limits of the town of Danvers? Is it not enough to recall the tinne, not beyond the memory I am sure of some whom I see before me, when a regiment of royal troops was here encamped, a sort of pretorian band to guard the residence of the royal Governor ?Need I do more than remind you of the morning of the 19th of Apri!, 1775, when your sires, at the sound of the bell of yonder church, hastened together, a portion of them under the command of your venerable fellow citizens near me.* and rushed, rather than marched, to the field of danger, sixteen miles in four hours,-flying into the jaws of death as rapidly as fear commonly lends men wings to fly from it ; and contributing,-this single town,-this one little town,-oli, prodigality of noble blood ! one sixth of the entire loss of that eventful day. Need I, my friends, for the most touching recollections, go beyond the walls of yonder ancient church, consecrated, as it was, by the strange spectacle, (at the memory of which your tears were called forth afresh, on last year's return of the great anniversary, -the sight of four of your brave sons wrapped in their bloody shrouds, the honorable wounds which they had received in their country's cause still freshly flowing? Could I before this audience, on such a theme, be whelly mute, would not the gray hairs of the veteran leader of that heroic band, who is now betore me, \dagger rebuke my silence, and put a tongue in every echo of this building, which would cry out and shame me!

Yes, fellow citizens, if any thing could

[^33]make your native land, your homes, your firesides, more dear tò you, it must be thesc recollections of the precious blood by which they wore redeemed. If any thing was wanting to inspire you with a passionate attachinent to the blessing you enjoy, it would be the thought of the inestimable price at which they were purchased.

Nor let us forget, if we have a patriotic ancestry to be proud of, and if we have privileges to enjoy, we have also incumbent duties to perform. The great principles of republican liberty are exposed to danger in peace as well as in war. Prosperity, not less than trial, may sap the foundation of the social fabric ; and there is at all times less danger from a foreign foe, than from party passion, individual selfishness, and general apathy.
It will not, of course, be expected of me to enlarge upon the dutics which devolve :pon our husbandmen, with a view to guard against these dangers and perpetuate our institutions in their purity. 'I can but glance at the topic. But I may say, that the first and most important duty of the husbandman, is to endeavor to preserve and if it may be to strengthen, the broad foundation laid by our fathers in a deep religious principle. Surely there is no clase of the community whose daily pursuite ought to furnish greater nourishment to the sense of religious things. The reflecting mind, it is true, beholds traces of a higher wisdom and goodness in every step of every walk of life; but the husbandman who drops a seemingly lifeless seed into the cold damp earth, there in great part to decay; who sees the vital germ in a few days pierce the clod, rise into the air, drink the sun's rays and the dews of heaven, shoot upwards and expand, array itself in glories beyond the royal vesture of Solomon, extract from the same common earth and air a thousand varietics of the green of the leaf, the rainbow hues of the petals, the juicy or the solid substance of the fruit, which is to form the food of man and his dependent animals. I say, the intelligent husbandman who beholds this, seems to step behind the veil which conceals the inysteries of creative power, and sit down (if I dare to speak) in the laboratory of Om nipotence.

Connected with the cultivation of the religious principle, and the natural fruit of it, we look to our husbandmen for a high moral sense. The worst feature in the degradation of many foreign countries, is the moral condition of those who till the soil, showing itself in the extreme of intemperance and the kindred vices. No man can fully understand this, who has not witnessed it. In the general moral character of our population, we are warranted in saying, that it might serve as an example to the world. I do not think that out of NewEngland (and I repeat only a remark, which, within a few weeks I have heard several times from persons coming from other parts of the country,) yon could assemble a concourse giving so much proof of sobriety, thrift, and industry, as is brought together in this town to-day, and might be assembled, on a similar occasion, in any town in Massachusetts. We look to ous
husbandmen, by precept and example to sustain, and if possible elevate, :his sound state of morals in the community.

Lastly, that I may say a single word on a subject on which the orator has preceded me. It is a great and just boast of the pilgrims and their descendants, that they made early and ample provision for education. Farmers of Essex, hold fast to that boast. I had rather for the appearance, if I must choose between them, see the country dotted all over, at its cross roads with its plain little village schoolhouses, than have the high places of a few large towns crowned with the most splendid fabrics of Grecian and Roman art. I had raiher for the strength and defence of the country, if I must choose between them,__see the roads that lead to those schoolhouses thronged with the children of bo:h sexes, saluting the traveller as he passes, in the good old New-Fngland way, with their litule curtesy or nod, than gaze upon regirnents of mercenary troops parading upon the ramparts of impregnable fortresses: Ay, for the honor of the thing, I had rather have it said of me, that I was by choice, the humblest eitizen of the State making the best provision for the education of all its children, and that I had the heart to appreciate this blessing, that sit on a throne of ivory and gold, the monarch of an empire on which the sun never sets. Husband. men, sow the seed of instruction, in your sons' and daughters' minds. It will grow upand bear fruit, though the driving storm scatter the blossoms of spring, ot untimely frost overtake the hopes of autumn. Plant the germ of truth in the infant understand ings of your children-save, stint, spare, scrape,-do any thing but steal, -in order to nourish that growth; and it is little, nothing to say, that it will flourish when your grave stones, crumbled into dust, shall mingle with the dust they covered-it will flourish, when that overarching heaven shall pass away like a scroll, and the eternal sun, which lightens it, shall set in blood!

Then follow the Reports of several committees and the annunciation of the successful competitors for the Premiums on the Dairy, on Milch Cows, on Domestic Manufactures, on Cider, on Ploughing, on Bulls, Working Men, Steers, and Calves, on Fruits and Flowers, and on Horses These are followed by a valuable cornmunication from Van Mons in improving Fruit Trees translated for the Horticultural Register by Gen. H. A. S. Dearborn, a gentleman distinguished for his scientific and practical skill in Horticulture; and to whose intelligence and public ${ }^{i}$ spirit the Horticultural and Agricultural Public are longly indebted. All these purposes are deserving of attention.

Dairy. Ebenezer King, the gentleman who received the highest Premium for his June butter, states "that he presents thirty nine pounds and three quarters made in June; also fourteen pounds made two weeks since : and seven pounds made during the last week (dated Sept. 28, h,) the produce of one cow. The cow has given at a milking twenty-six pounds, her feed has been principally ordinary pasture ; oc-
casionally she has had three pints of corn ineal per day. Her milk has set twenty four hours, when the cream has been sepa rated; has been churned once a week; the rutter milk pressed out ; and the butte kept in strong pickle."
We subjoin to this account that of Dan iel P. King, Esq., on the same subject, a successful competitor, and in all respects, one of the best farmers in the county.
"The Stone jar marked 1, contans about thirty pounds of butter, made in the last week of June from the produce of six cows; they had common pasture feed; only the milk stood in tin pans in a cool cellar thirtysix hours; the cream was then separated, and placed in pots on the cellar floor; in warm weather fine salt is stirred in the cream to prevent its souring. When the, butter is taken from the churn, the butter milk is pressed out, it is partially salted and remains in the collar till the next day, when more salt is added; and it is again worked over; the quantity of salt used is about one oz. to the pound. The butter in the jar has been covered with a pickle, made of rock salt, boiled, and carefully skimmed."
The produce of four cows, as given by Jacob Osgood, of A ndover, is thus stated.

New Milk Cheese from the 9th of
July, to the 10 th of September, 435 lbs . Butter from 1st of June, to the 9th of
July, and 17 days in September, 145 " Amount of 6 meal cheese made dur-
ing the time of making butter,
294"
The cow of Daniel Putnam, which received the first Premium as a milch cow, of native stock, from the amount of her produce, certainly deserved a premium.
"This cow calved May 21. The calf was sold June 20tr for $\$ 7.62 \frac{1}{2}$. During the thirty days that the calf sucked, there were made from her milk 17 lbs . butter. From June $20: h$ to Scpt. 26 th (14 weeks she gave 3370 lbs. of milk, making a fraction more than 34 lbs . and 6 oz . per day. The great. est quantity on any one day was 45 lbs. or 17 quarts and 1 pint-for the weight of a quart of her milk is 2 lbs .9 oz . The greatest quantity in one week was 288 lbs. The quantity of butter made in the same fourteen weeks was 139 lbs . The greatest amount in one week was 12 lbs. 2 oz. The cow has had good keeping. In addition to the pas. ture she has been frequently fed with fresh mown grass and corn stalks. She had about four quarts of cab meal (corn ground on the cob) per day, through the summer."
The Report on Domestic Manufactures gives a long list of premiums, fifty-two of which seemed to have been bestowed, and we have no doubt most justly upon the five seamstresses and knitters of Essex county, for beautiful and uscful specimens of theii patient handicraft ; and presents to those it pursuit of that most useful commodity, ar industrious wife, a pretty emphatic recommendation of the fair daughters of this favored district, long distinguished for the in telligence and patriotism of its men; an the virtue and industry of its women. O this county, the poet may say emphatically
"There is the noblest growth our realms sup ply;
And souls are ripened in a northern sky."

From the New-England Farmer.

TIIIRD ANNUAL RFPORT OF THE MANAGERS OF THE BOSTON ASYLUM AND FARM SCHOOL.
The managers of the above institution respectfully submit to the corporation the iollowing report :-
The present board of managers was elected in the month of June last, and this report commences with that period.

The objects of the institution are presumed to be well understood. To rescue from the ills and the temptations of poverty and neglect, those who have peen left without a parent's care; to reclaim from moral exposure those who are treading the paths of danger; to "place the solitary in families;" to give to those who krow nothing of the ties or influence of home, some taste and fondness for a local habitation, at the leist ; and to offer to those, whose only training would otherwise have been in the walks of vice, if not of crime, the greatest blessing which New-England can bestow upon her most favored sons, a good education, are some of the purposes for which :he Asylum and Farm School was endowed. Under the blessing of God, success has thus far attended the exertions which have been made to accomplish these objects. From the monthly reports of the superintendent, and from the personal examination of the establishment on Thompson's Island, the board of managers are satisfied that there has been much improvement in the character of the boys who have been committed to the charge of the institution. In the last report of the superintendent, 62 boys are placed in the highest or first grade, 40 in the second, 4 in the third, and 1 in the fourth.

The number of boys on the island at the time of the last report, was 92 ; since that time 18 boys have been admitted, and three withdrawn. The number on the 1st of January, 1837, was 107 ; all of whom, as well as all other persons connected with the establishment on the island, were in good health, and there has been no death a! the institution since the last report was made. The occupations and employment of the boys vary with the season. In spring, suminer and autumn, the larger boys, in classes, work upon the garden and farm, of whose labor they perform a large part The younger boys have stnall gardens of their own, which afferd them recreation when released from school. In the winter season most of them attend school, where they are instructed in the learning usually taught in our common schools, and some of them assist in making clothes and mending shoes. The winter evenings are occupied with the study of geography, and the use of globes; botany, and practical agricullure; lecturing on different subjects, singing and reading.The superintendent states that "every boy in the institution is required to be present luring the evening exercises, it he is able, vhich are very pleasing 10 them, and which we all enjoy very much."

A large number of mulberry trees have reen planted upon the island, and there are many silk worms at the establishment. It
is contemplated to improve the advantages of the location in the production of raw sills for manufacture.
As to the success of the boys in the firming operations, Capt. Chandler, the superiniendent, says, " they have succeeded far beyond my expectations; 1 thirk they have done more work, and done it better, than the boys of their age who have been regularly brought up to the business n the country geverally do." And as to the comtort and c ntentedness of the boys. h. says, "they are all comfo tably clad with woollen clo:hes, shoes, stockings and caps, and appear to be as happy in their presen situation as boys generally are under the paternal roof. They appre iate their advantages, and most of them are gratefut to the benefactors of the institution and their frie ds for placing them here. The boys are well supplied i ith books, and keep, them in excellent order; our library contains between 4 and 500 volumns of well selected books. I have also an arricultural library contain ng about 30 volumns, to which the boys have access." Opporsunities nre occasionally offered to the friends of the boys at the institution, of visiting them on the island in the summer months.

The school is under the immediate charge of Mr. George B. Hyde, and he as well as the superintendent and all engaged in the establishment, are believed to merit the continuance of the confidence which h is hitherto been reposed in them.

During the past summer, several parties of ladies and gentlemen, at the request of the board of managers, visited 'Thompson's Island. At these visits there have been many persons present, and an examination of the boys in their different studies has been accompanied by some remarks on the objects and prospects of the institution. Among these who have thus visited the island, have been many strangers, who have always expressed their interest and pleasure in its ebjects and conditor.

And how should it be otherwise than an object of interest; an institution designed to rescue the destitute orphan boys of our city from vice and ruin; to withdraw them from scenes and associătes, whose contaminating influence would quickly destroy the perceptions of conscience, and leave them, deprived of that monitor, to pursue the impulses of passions which inevitably destroy their victims. Many are the worthy objects of the charitable institutions among us; our hospitals relieve the sufferings of the sick, and restore $t \mathrm{em}$ to health and usefulness; they are a blessing which may be required by all of us, and we would not detract from their deserts. But we conceive that an institution which is to rescue immortal beings from the stain of \sin, which could hardly otherwise be avoided, which is intended to have an influence or the youthful mind, and lead it to an urderstanding of its own capacities, responsibilities and hopes, deserves the fostering care of an enlightened, benevolent community, as much as those associations whose aim is to cure the diseases of the body, or to restore the wanderings of intellect. Such an institution as the Asylum and Farm School,
is in true accordance with the spirit of the pilgrims; it carres into effect the first objects of their solicitude, the education of the young-of that young whose talents would otherwise be enployed to violate the pace and virtue of society.
It will be seen by the report of the finance committee, that the expenses of the institution for the year ending Janiary 1, 1837 , have amounted to $\$ 6,100$, while the receipts for the same time have amounted to 3,500 , leaving a deficiency of $\$ 2,600$. To meet this excess of expenditure over income, and to prevent its recurrence, it will be necessary to appeal to the liberality of the public. The board of managers had intended to have made that appeal in the autumn of the past year; but the condition of the financial affairs of this comnunity induced them to defer it. 'I hey would recommend the subject to their successurs as one requiring their altention when a suitable time shall have arrived for its execution, with the confidence that the appeal will be cheerfully and promptly answered. For the managers.

Willian Graf.
Cooking Potatoes.-This is no inconsiderable art; and I have some suspicion that Cobbett's ignorance of the best way of doing this may have been one reas on of his antipathy to the use of this esculent. The direction given by one whter is, never to put your potatoes into cold but boiling water; and keep it boiling until the potatoes are done or sufficiently boiled; then pour off the water as soon as possible; if a liitle salt be thrown into the water when boiling, the better." We will add a better mode than this, which has been so thoroughly and successfully tested, that we believe it cannot fail to be approved: Select the potatoes you design for dinner the day previous; pare them and throw them into eold water and let thern stand three or four hours ; then, at a proper time before dinner, put them into boiling water; and when they have sufficiently boiled, turn off all the water, leave off the cover and hang them over the fire to dry. When the steam has passed off they will then he in the best possible condition for eating. By this mode, potatees even of a watery and inferior quality, becomè mealy and good.
H. C.

Advertisements.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Ciefalier De Pambour- 150 pages la:ge octavodone up in paper covers so as to be sent by mail-Price $\$ 1$ 50. Postage for any distance under 100 miles, 40 cents, and 60 cts . for any distance exceeding 100 ms .

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price \$1. Postage, 20 cents, or 30 cents, as abore.
Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts.
*** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.

DRAWING INSTRUMENTS.-E \& G. W. Blunt, 154 Water-street, NewYork, have received, and offer for sale, Draning Instruments o! superior quality, Euglish, French, and German Manufacture.

They have also on hand Levels of superior quality at low prices.
3 Orders received at this office for the above Instruments.

AVERY'S ROTARY STEAM EN. GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Stẻam Engines for ilriving SawMills, Grain-Mills, and other Manufac. traics of any kind.

Engines only will be furnished, or accompanied with Boilers and the necessary hachinery for putting them in operation, and an Engineer always sent to put them up.
Intormation will be given at ali times to those who desire it, either by letter or by exhibiting the engines in operation in this city.
Inquiries by letter shoud be very explicit and the answers shall be equally so.
D. K.MINOR,

30 Wall-st., New York.
transactions of the institution of civil engineers of great britain.
The first volume of this valuable work, has just made its appearance in this country. A few copies, say tuenty-five or thirly only, ha ve been sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order therefore, to place it withia their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issuc in six parts or numbers, of about 48 pages each, which can be sont to any part of the United Elutes by mail, as issucd, or put up in a volume at the close.
The price will be to subscribors three dol. lars, or five dollars for two copies-always in adrance. The first number will be ready for delivery early in April-Subscriptions are solicited.

A COURSE OF INSTRUCTION IN

 CIVIL ENGINEERING, by informal lecturcs, to occupy two months, commencing the 1st week of May.-ComprisingThe use of the theodolite, level, Compass plain table, cross, and sextant explained upon the instruments thernselves : iopographical drawing executed under supervision; survey of routes; problems of excavation and embankment ; railroad curves; all the usual details of construction upon common roads, railroads, and canals; inclading bridges, culverts, tunnels, and the various kinds of motive power ; nature, strengih and stress of materials ; masonry, carpentry and constructions in iron; alluvial depositeŝ, guaging of streams, \&c.The whole purely elementary. Terms of admission to the course, $\$ 20$.
Apply to C. W. Hackley, Professor of Mathematics in the University, 32 Waverly Place.

TO CONTRACTORS.
James river and kanawilascanal. THERE is atil! a large amoumt of mechanical work to let on the lirie of the James Rivar and Kanawha Improsement, consiating of twenty locks, about one hundred colverts and sevelal large aqueducts, which will be offered to responsible contracturs at fair prices.
The lucks and aqueducts are to be built of cut stone.
The work contracted for mnst be finished by the Lat day of July, 1838
Persons desirous of obtaining work are requested to apply at the office of the undersigned. in the city of Richmond, before the fifteenth of May, or between the fifth and the fifteenth of July.

CHARLES ELLET, Jr.
Chief Engineer Jas. Kiv, \& Ka. Co.
P. S -Tha valiey of James liver above Richmond is headthy.

16-10t

PATENT RALLROAD, SHIP AND BOAT SPIKES.

**The Troy Iron and Nail Factory keeps constantly fur salea very extensive assurtmentof W rought Spikes and Nails, frum 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years successful operation, and now aimost universal use in the United Statea, (as well as England, where the suhscriner obtained a patent,) are found superior to any ever offered in market.
Rsilruad Companies may be supolied with Spikes having countersink heads suitable to the hules in iron rails to any amulunt and on short notice. Almost all rails to any amulnt and on short notice. Almosts now in progress in tho United States are the Railroads now in progress in the abited slates are fastened wilh Sikes made at the abuve nanned facas their adhesion is more than double any commur spikes made by the hammer.
*** All orders directed to the Agent, Troy, N. Y., will be punctually attended to.

Troy, N. Y., July, 1831.
** Spikes are kopt for sale, at fartory prices, by 1 . \& J. Tuwnsend, Albany, and the pribcipal Iron Merchants in Albany ana Troy ; J.I. Brower, 222 Water streat, New.York; A. M. Junes, Pluiladelphia;
Janviers, Baltimore; Dcgrand \& Smith, Buston. Janviers, Baltimore; Degrand \& Smith, Bostun.
P. S.- Railruad Companies would do well to fo ward their orders as eurly as practicable, as the subacriber is desirinus of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes. (IJ23am)

TO RAILROAD CONTRACTORS.

SEALED proposals will be received at the office of the Selma and Ternesseo liver linilroad Company, in the town of Selma, Alabama, fur the gradnatiun of the first forty miles of the Selma and Tonnoespe Railrouil. Propessals fur the sirst six miles from Selma, will be received atter the first of May, and acted on by the Board on the 15th May, Proposals fur the eusuing 31 miles, will be received after the loth May, out will nut be examined until
the lat of August nex, when the work will be ready for contract.
The line, after the firstrifew miles, pursuing the flat of the Mulberry Creek, occupies a region of country, having the repute of being highly healthful. It is free from punds and a wanips, and is well watered The soil is generally in cultivation, and is dry, light and sandy, and uncommonly easy of excavation.The entire length of the line of the Sel a and Tennessee Ruilruails, will he abuut 370 miles, passing gennesalie Ruiruails, will he about through a region as favorable fur healch as any in the Southern Couniry
Owing to the great interest at stake in the success of this enterprise, and the amoint of capital already embarked in it, this work must necessarily proceed with vigor, and l invito the attention of men of industry and enterprise, buth at the North and elsewhere to this undertaking, as offering in the plospect of continued employroent, and the character of the suil and climate, a wide aod desirable field to the contractur.
Prupuarls may be addressed either to the subseriber, or to General Gibbert Shearer, President of the
Company: ALFRED DEXTER, Chier Engineer Selma, Ala., March 20th, 1837 . A 15 tf

ROACH \& WARNER,

Manufacturers of UPTICAL, MAI HEMATICAI, AND PIILUSUPIICAL INSTRUMEN'SS, 293 Broadway, New York, wilt keep constandy on hand a large and general assortment of Instruments in their a line.

Wholesale Dealers and Country Merchants supplied with SURVEYING CUMPASSES, BARUMETERS, THERMOMETEKS, \&c. \&e, of their own manufacture, warranted accurate, and at lower priees than can be had atany other estableshment.
inofrnmente made to ordor and repaired.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build, on his Patent Plan, would respectfully inform Railroad and Bridge Curporallons, that he is prepared to make cuntracts to build, and furnish all materials for superstructures of the kind, in any part of the (inited States, (Maryland excepted.)
Bridges on the above planare to be seen at the following localities, viz. Un the main road leading from Baltimore to Washington, two miles from the former place. Acrons the Mctawankeag river on the MiliLary moad, in Maine. On the national road in $1 l l i n o i s$, at sundry points. Onthe Baltimore nnd Susquehan ua Rrailrond ut three points. On the Hudsun and Pateraun Railroad, in two places. On lhe Buston and Worcester Railroad, at several points. Onthe Boston and I'rovidence Railroad, at sindry points. Acruss the Contwocrook river at Ilenniker, N HI. Across the Soultegan river, at Milfurd, N. H. Acruss the Connecticut river, at Haverlill, N. II. Across the Contoocouh river, at IIancock, N. II. Across the Androscoggin river, at Turner Cenire, Maine. Across the Kennebec river, at Waterville, Maine. Acrnss the Kennebec river, at Waiervilil, Maine. Acrnss New-York. Across the While River, at Harifurd New - ork. Across the White River, at Hariford
Vt. Across the Connecticut River, at Lebanun, N. H. Across the mouth of the Broken Simw Creek, Penn. Across the muuth of the Cataraugus Creek, N. Y. A Railroart Bridge diagonally across the Érie Canal, in the City of Rochester, N. Y. A Ralroad Brdge at Upper Still Water, Oruno, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the Firmest woodrn eridge ever built in Aincrica.
Notwithstanding his present engngements to build between twenty and thirty Railruad Bridges, and several commun bridges, neveral of which are now in prugress of construction, the subscriber will promptly attend to business uf the kind to much greaterexten and on liberal terms.
Ruhester, Jan. 13th, 1827. 4-y
ALBANY EAGLE AIR FURNACE AND MACHINE SIIOP.
WILLIAM V. MANY manufactures to order, iron castings for Gearing Mills and Factories of every description.
ALSU-Steam Engines and Railroad Castinga o every description.
The collection of Patterns for Marhinery, is no equalled inthe United States.

NEW ARRANGEMENT.

ropes for inclined planes of railroads.
WE the subscribers having formed a co-partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropou firsinolined planua ut raitrunds, und for uther ust 8 , offer tusupply ropes fur inclined planes, of ans lengih required without splice, at short notire, the inalufacturing of cordage, heretofure carried on by S. S. Durfee \& Co., will be dune by the new tirm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All urders will be prompily attended to, and ropes will be shipped to any port in the United States. 12 th month, 12ih, 1836. Il udson, Culumbia County State of New-York.

33-1f.
ROBR C. FOLGER,

AMES' CELEBRATED SHOVELS, SPADES, \&c.

300 dozens Ames' superior back-istrap Shovels
150 do do do plain $\begin{array}{lllll}150 & \text { do } & \text { do } & \text { do } \\ 150 & \text { do lain do do } & \text { do } & \text { caststeel Shovels }\end{array}$ $\begin{array}{lll}150 & \text { do do do caststeel Shovels \& Spades } \\ 150 & \text { do do Gold-mining Shovels }\end{array}$ 150 do do Gold-mining Shovels
100 do do plated Spades
50 do do socket Sloovels and Spades.
Tugether with Pick Axps, Churn Drills, and Crow Bars (stcel pointed, nsannfactured frum Salishury refined iron-for sale by the manufacturing agenta WITHERELL, AMES \& CO.

No. 2 Liberty street, New-York. BACKUS, AMES \& CO.

No. 8 State street, Albany N. B - Also furnished to order, Shapes of every de-

STEPHENSON

Builder of a superior style of Passenger Cars for Railroads.
No. 264 Elizabeth street, near Bleeckerstreet, New- York.
RAILROAD COMPANIES would do well to exa mue these Cars; a specimen of which may be seen on that part of the New.York and Harlaem Railroad
nuw in operation.

TO RAII」ROAD CONTRACTORS.

PROPOSALS will be received, at the office of the

 Hiwassee lialroad Com., in the town of Athens Te nessee, until gunset, of Monday, June 12th 1837 ; for the grading, masonry and bridges, on that purtion of the Hiwassee Railroad, which lies be weell the Kiver Tennessee and Hiwassee. A dis tance of 40 miles.The quantity of excavation will be about one million of cubic yards.
The line will be staked out ; and, together with draininga and specifications of the work, will be ready for the inspectlon of contractors, on and after the 1st day of June.

JOHN C. TRAUTWINE,
Engineer in Chief Hiwassee Railroad.
RAILWAY IRON, LOCOMOTIVES,\&c.
THE subscribers offer the following afticles for sale.
Railv
Railway lron, fat bars, with counteraunk holet and maitred joints,
lbs.
350 tons $2 t$ by $t, 15 \mathrm{f}$ in length, weighing $\frac{1 \mathrm{fi}}{100}$ per f .

with Spikes and Splicing Plates adapted thereto. To be sold fiee of duty to State governmente or incor porated companies.
Orders for Pennsylvania Boiler Iron executed.
Rail Road Car and Locumotive Engine Tires wronght and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 iachen iameter.
E. V. Patent Chain Cable Bolts for Railway Car axles, in lengthe of 12 fuet 6 inches, to 13 feet \%t, 21 $3,3 t, 3 t, 3 t$, and $3 t$ inches diameter.
Chains for Incliued Planes, short and stay links manufactured from the E. V. Cable Bols, and proved the greatest strain.
India Rubber Rope for Inclined Planes, mada from wealand fla
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and tone bluck of Edge Ra: ways.
Every description of Railway Iron, as w-ll as Lo comotive Engines, imported at the shortest notice, by the agency of one of our partners, who resides in Fingland lor this parpose.
A highly respectable American Engineer, resides in Eingland for the purpose of inspecting all Locomotives, Machinery, Rail way Iron \&c. ordered through us.
A. \& G. RALSTON \& CO.,

28 tf
Philadelphia, No.4, South Frontat

ARCHIMEDES WORKS.

(100 North Moor street, N. Y.)
New-York, February 12th, 1836.
THE undersigned begs leave to inform the proprie tors of Railronds that they are prepared to furnish al kinds of Machinery fut Railroads, Locomotive Enginet of any size, Car Wheels, such as are now in success ful operation on the Camden and Amboy Railroad none of which have failed-Castinga of all kinds, Whoels, Axlee, and Buxes, furnished ai shortest nutice.
4-vti
H. R. UUNHAM \& CO.

MACHINE WORKS OE ROGERS, KETCHUM and GROSVENOR, Pateraon, NewJersey. The undersigned receive ordery for the folluving articles, manufactured by them, of the most superior description in every particular. Their works being extensive, and the number of hands employed being large, they are enabled to execute both large and small orders wath promptness and deapatch

RAILROAD WOKK.

Locomotive Steam-Engines and. Tenders; Driving and other Lucomutive Wheela, Axles, Springsand Flange Tires; Car Wheels of east iron, frum a variety of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of beat American refined iron; Springs ; Boxes and Bults fur Cars.

COTTON WOOL AND FLAX MACHINERY,

Of all deacriptions and of the most improv:d Patterns, Stylo, and Workmanship.
Mill Geering and Millwright work generally; HyJraulic and other Presses; Press Screws; Callen ders; Lathes and Tools of all kinds; Iron and Brast
Castings of all descriptions.
KUGERS, KETCHUM \& GROSVENOR
Patterson, Niow.Jersey, or 60 Wallatreet, N.
5is

PUBLISHED WFEKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DULLARS PER ANNUM, PAYABLE IN AUVANCE

CONTENTS:

Railroads ; Central Railrond; Railroads and Navigation in Cuba,
Louisville, Cincinnatti and Caarleston Railroad ; Railways in London, etc 322 Transactions of the Institution of Civil Engincers,
Ceremony of opening a Russian Rail. way; New Motive Power; New Steam Boilar,
Experiments with Canal Boats,
Tunnels ; Effect of highly-heated Mc. tals on the Generation of Steam,
On a peculiar Voltaic condition of Iron, 336
Cuoutchouc Cordage ; Kceping Becs,
On Ceme:nts
An Improvement in the construction of Chimneys ; On the Calcination of Ores,
Memoir on the Culcination of Coke,
Agriculture, etc.,
Advertiscments,
322

AMERICIN IE IILROLO JOURENAL.

NEW-YOKK, MAY 27, 1s27

> REMOVAL.-Tne Office of the RAIL ROAD JOURNAL, NEW.YORK FAR. MER, and MIECHANIC'S MAGAZINE: is removed to No. 30 Wall-Street, base ment story, one door froin William street and opposite the Bank of America.

~ SUBSCRIBEIRS in this City, who change their residence on the 1 st of May, will please give notice at the office, 30 Wall-street, Basement Story. It is de sirable that the notice should specify thei late and future residence.

Railroads-Their value tested by thes. hard times. -Tne present pecuniary diff cullies have tested thoroughly public con fidence in the value of stocks. It will havi been remarked by most of those who have
noticed the course of events that the stock of those Railroals in succeseful operation, has been less depressed by the scarci'y of noney than any other kind of stock in market. It is true that the stocks of unfinishe roads have been con-ilerably depiessed yet not mo:e than Bank Stocks, which had been deemed by many the beat kin' of investment. This important fact, in re. lation to Railroal Stocks, should lie fullv understood by this cominunity which is so derply intercsted in the success of Rail roads Every person interested in the success of any paricular road, or in the system generally should understand fully, and ins press upon his neighbor, that judiciously located Railroads will not only pay a good diviclend on his investincals in the road, bu it will, at the same time, greatly enhance the value of his real estate if he has any Such works produce a general increase in the value of proper:y. They are public benefits. They benefit nll.

Central Rallrqad-Georgia.-The Editor of the Savannah Georgran thus announces the opening of this mppottant ruad
We enjoyed the pleasure yesterdey af rernoon of a ride on the Railroad for a few niles fiom the vicinity of the city. In two or three weeks, perh.1ps in less time, our citizens will have the gratification of a ride for nine iniles on the Road, desilined to br he link between the waters of the vas Atlantic and the mighty river of the West. Our columns lieing occupied by the effu :ons of native gemis, which are ever hail. a with-emotions of pleasure, we must deis ourself the pleasure of dwelling on this irst trip of the second Locomotive which tas coursed its way on our native soil, an ne first on a road which is ere long ic ind the sons of Yamacraw in fraterna.
nion with the Western sous of Georgia, l'pmpssee, and other Statez.
We must offer the same reason as our pology for orintting to acknowlelge this norhung, a beantiful present from the gar. ten of one of Flori's devotces.
Could we print by steam, we would expend oceans of ink in the praise of our Rail. oard Engine, and the Roses and Lalies whi h bloom before us

We are anthorized 10 inform our readers hat the Engine will be in motion this afere noon at three o'clock, for the accommoda. tion of the public.

Cuba.-Railroads and Steam Naeiga-tion.-The railrond from Havana to Bamba. ro, (on the South Coust of the Island,) is in operation for five miles, and five leagues will be completed by the first of June. This is the first work of the kind in Cuba. There are several others projected, to wit:-fiom Carderas to Soledad de Benba; from Ma. tanzas to Guanaja ; from Guanaja to Porto Principe, and from thence to the South Coast. Steamboat navigation along tho coast is increasing. Thrce fine boats regularly ply betwren Havana and Matanzas. One between Havana and Carderas, touching at Matanzas, and lately the steamer Yumuri left Havana for Guankja, the port of Porto Principe, to touch at Mantanzas, Carderas, and San Juan de los Remedios, being the first regular packet on: this line. These and all similar improvements receive the largest portion of their impulse from the lib. eral enterprising spirit of his Excellency Govertor Tacon, who in consequence of the successful result of his late expedition against St. Jaga de Cuba, has lately receiv.d three military orders, one of which is Marquis de la Union de Cuba, as a testimony of tie approbation of the government. The estimation in which the military bold their chief, the Governor-General, will be maniested by a grand dinner and ball, on the 4th inst., to be given to him by voluntary ubscription, and to which the private cili. zens will be invited. - [N. Y. Express]:

Lodisville. Cincinnatiand Cifarleston Railroad-Major-M'Neill, the Cinef En gineer of this Company, arrived in this cit! a few days since, and after having mate thi necessary arrangements with the President. left here this morning for the mountains. where, after accertaining from Capt Williams the present state of the surveys, the will pro ceed to make a personal examination of the whole line, and give such directions to the operations of the Engineers, as may, in lis opinion, be best calculated to a! vance the work. It is hoped that by the time the necessary explanations and survers shitll be completed, the embarrassments under whicl the country now labors, may be so far rt moved, as to offer no serious obstacie to the progress of this great work.-[Charleston Mercury.]

Railiwaysin London.-The extension of the Birmingham Railway, from the oridinally intended terminu: at Camden-lown to Euscon-grow, near the New-load, is progressing rapilly, and the scafiulding is crected ifor the stupendous portico, whith is to be composed of sis columns, of the enormous height of forty feet, and proportionable thickness! The ralway crosses the Hampsiead-road and Park-street (leading to the east gate of the Regent's-park.) in an excavation of the depth or from twellty to thrty feet, althourgh, at no great distance, it is carried over the Regeni's camal at a height sulficient to allow the passage of barges below. The London Grand Junction Railwar, which is to leave the Birmingham at its orginal terminus, and earry on the line to the verge of the City, has also been commenced with cunsidera ble spirit, nearly at the back of Messrs. Cubit's, the contiactor, in Gray's-Imn ruad. It is, at that pait, at least, to be carried on arches, utter the fashicr of the Greeuwich Railway, and very little prigeress can be made in the line either way, irom the present site of operations, without pulling down houses and buidings of very modern erection. Its course wilt, in general, follow that of the celebrated River H leet, whose channel, which withen a short time saw "the ligh: of day" in that vicinity, is now covered over there, as weil as in mozt other parts watered by its " translucent streams."

TRANSACTIONS OF TIE INSTITETION OF CIVIL ENGINEERS.
XXII. an abstract account of coals used in cuke ofens and retorts, and coke phoduced from one year's work at the ipswich gas wores. communicated by WM. cubitt, esq., f. k. s., \&c. r. P. INST. C. E.

The coke ovens from which the following statement is made are worked with a danly charge of 20 bushels of coals, which are burned off in 24 hours.

Each oven, by means of its spare heat, keeps at a constant working state 6 retorts for making coal gas, which retorts are charged with 10 bushels of coals three times per day in a general way.

The coke produced from the ovens is the best possible quality for iron founders and maltsters, and is sold at 28s. per chaldion of 36 bushek.

Tne coke produced from the retorts is ised by some persons for drying malt, bu inineipally for common fires, and is sold at $31 s$ per chaldron.
'The coals which are found to yield the rreatest heat in converting into coke in the vens, and at the same time leaving the bes oke, are Pill's Tanfield Moor, fitted only y H. Clayton, of Neweastle.
The waste heat from these coke ovens seeps the retorts at a constant red heal brough an entire coating of fire-bricks, vaying from 8 to 3 inches in thicknese, according to the distance from the end of the coke oven.

XXIII. remaris on herm granite, by frederick c. lukis, esq., of guern sey, in reply to enquiries from thi president ; with some experiment: made iy the latter on the wear, ol difperent granites, communicated by THE PRESIDENT.
ilso, experinents on the folice requl. hed to fracture and, crush stones; made under tile direction of messrs. bramah and sins, for b. wyatt, esq., architect. Communicated by mr. Wm. freeman, a. inst. c. e.

1. of the durability of herm btone

 FOR BUILDINGS EXPOSED to AIR?The Herm granite (sienite) as compared with Peterhead and Moorstone from Devon to Cornwall, is a highly crystallized inter. mixture of felspar, quartz, and hornblende, with a smarl quantity of black mica; the first of these ingredients hard and sometimes transparent in a greater degree than that found in other British granites, the contact of the other substances perfect. It resists the effect of exposure to air, and does not easi'y disintegrate from the mass when mica does not prevail, but as this last is usually scarce in Guernsey granites, the mass is not deteriorated by its presence as in the Brittany granites, where it abounds, decom. poses, stains, and pervades the felspar, and finally destroys the adhesion of the component parts:-vide the interior columns of St. Petcr's Port church, which is built of it for an instance. The quartz is in a smaller quantity, and somewhat darker than the felspar in colour; the grains are not large, but unifurmly mixed with the other ingredients. The hornblende, which "appears to supply the place of mica, is hard and crystalized in small prisms, rarcly accomparied by chlorite; its dark color gives the greyish tone to this granite, or when abundant forms the blue granite of the Vale parish. This sub. stance is essentially superior to mica in the Tormation and durability of granites for strength and resistance; consequently its presence occasions more labor in working or facing the block, and its specific gravity is increased. The mica is interior in quan. tity to the hornblende, and usually dispersed in small flakes in the mass;-it may, with chlorite, be considered rare.
2. Do air and water altertately cause any, and what symptoms of decay?

The compact uature of a close grained granite, such as the Vale and Herm stone, having the felspar highly crystalized and tree from stained cracks, seenis well calculated to resist the effeet of air and water. When the exterior bruised surface of a block has been blown off; I do not know a stone better disposed to resist decay:-if the sur. face blocks of the island are now examined after the lapse of ages, it will be found to uave resisted th: gradual disintegration of time in à superior degree, when compared with large grained or porphyritic granite ; when exposed to water and air there is no change beyond the polish resuling from friction of the clements. Among the symp.oms of decay, disintegration prevails generally among granites, usually commencing with the decomposition of the mica; its ex--oliating deranges the cobesion of the grains, and it inay be considered then to be the more frequent mode of decay. Desquamation is rare with the well defined granites of Guernsey and Herm, and in buildings I know no instance of its existence.
3. What the greatest age of building, or experience of the above?
The churches of the Vale and St. Samp-: son, although much of the materials are

French atd Alderney, bear many proofs of the remarks made in the last answer ; these erections date A. D. 1100-1150. Tise an. cient buildings of decided Herm and Vale stone must be sought for among the old houses in the northern parishes, where they not only encounter the effect of air and water: (rain,) but the sea air and burning rays of the sun. Disintegration alone ap. pears going on by slow degrees, but in no case affecting the interior of the stone, and so gradual and general as not to deface the the building materially; indeed, the oldest proofs taken from door-posts, lintels, and arches, have scarcely lost their original sharpness or sculpture. The pier of St. Peter's Port and bridge of. St. Sampson's mav also be mentioned.
The shore rocks in like manner do not show any material change of surface by wearing; where the force of the tide is strongest, a slight smouthness ilone may be observed on the exterior particles, and in many instances each substance possesses this polish without being levelled doun to a face.

Vale stone on the northern point of Guernsey produces a finer grained sienite than Herm, more hornolende in it, and specific gravity greater. The Herm is somewhat larger grained, but equally good for every erection waere durability is the clacf point. The Cat-au roque stone in the wes tern part of Guernsey must be considered of a different structure 10 the above: it is : fair and good stone and appears to last well ; i.s schistose texture must ally it to the gneiss series, and I do not know its coun. terpart in Briain. In color it is much the saine as the blue granites; tue felspar is b.il lint and the hornblende prisms are well de. filed; there is more chlorite in it and it is easier to work.
table showing the result of experiments MADE UNIJER THE direction of Mr. WalkER, ON THE WEAR OF DIfferent stones IN THE TKAMWAY ON THE COMMERCIAL TOAD, LONDON, FROM 27 TH MARCH, 153 U , to 24th august, 1831, being a periou of seventeen months.

The Commercial Road stonewny, on which these experiments were made, conists of two parallel lines of rectunguiar tramstones, 18 inche; wide by a fout deep, and jointed to each other end wise, for the wheels to travel on, with a common street pavement belween for the horses. 'I he tramstones subjected to experiment were lad in the gateway of the Limehouse turnpike, so as of nccessity t.) be exposed to all the heavy traffic from the East and West India Doçks. A similar set of experiments had previously been made in the same place, but for a shorter period, (little more than four months,) with however not very differenf results, as the following figures corres ponding with the colunn of "relatave losses" in the forcgoing table will show.

Guernsey 1.000 Piterisead (blue) $1.7: 5$ Badle 1.040 Aberdeen (red) 2.413 Herm 1.155 Aberdeen (blue) 2.8:21
A I the above stones are granites except the Budle, waich is a species ot whill fr m Northumberland, and they were all new pieces in each series of experiments.

Gaudaloupe.-It appears that the vol. 'ano on tice island of Gaudaloupe is just low in a state of great activity, which has seen preceded by ten years of earthquates, and ejection of lava and volcanic cinders. The eruption began on the 3 d of Decem. ber, at 2 o'clock in the afternoon, with a

EXPERIMENTS MADE WITHं MESSHS. JOSEPY Dlialian ant wnns iypro-mectanical rRESS OS vid.bous SPECIDENS OF STONE.
Tue following experinents were made witil a 1: inch press, the pump one inch diameter, and the lever 10 10 1 ;-the me. chanical advantage therefore $144 \times 10=$ 1440 to 1 . Tise weights on the lever were addel by 7 lls. at a time;-cach addition thercfo:e cquivaleat to $1440 \times 7=10,080$ lbs or $4 \frac{1}{2}$ to:ls.

In consequence of the smalluess of the specimens, the press was filled with blocks to the required heig:at, and with these the surplus effect of the lever was $4 \frac{1}{2} \mathrm{lbs}$. at 10 to 1 , which strictly should be added to the pressure, but as the filiction of the apparntus is equal to the cefice of the lever, it is dispensed with in the ealculation.
'l'be coluann containing the pressure per squ we inch required to produce a fracture, gives the true value of the storie, as the weight that does so would possibly completely destroy the stone if allowed to reinain on for a lengih of time. It should also be observed, that fiom the exceedingIy short lime allowed tor the experiments, the resuls are probably too high.
noise like that of a torrent falling over high rocks. " Tue usual accompaniements attended it, and several mouths or cracks are opened, from one of which nave issued fragments of rock, weighing from forty to fifty pounds.-[.Iticnaeum.]

Ceremony of opening a Russian Rail. Way.-A letter from St. Petersburgh. of Nov. 21 st, sais,-"' The first Iron railroad in Russia was opened on the 18th. The travelling steam engine, built by M. Hackworth, having got finished, was preparel for the occasion, but was not permitted to commence until religiously consecrated.At eleven o'clock, A. M., a friar with lus attendants. in whe their appearance at the station at which the train was to stut, bringing witl them a table, tirec was candles, a dish full of holy water. and a golden cross. After being clothed with thair priestly garments, they began to chant, and the ptiests crossed themselves and various parts of the engine, then took the birch and threw the holy water on the engine, and the crowd of spectators which had assembled to witness the seene. The chief priest then prayed that the enperor and farsily might be prescrved, that the engine might be fortunate and do much gool; this, alter prorouncing the benediction concluded the ceremony, which lasted about three quarters of an ho:r. Tue candles were then removed, and the engine commenced with a train of carriages, and proceeded from Paulowsk to Kowzmino and back, much to the satisfaction of the spectators, and tise Grand Duke, who rode on the train during the journey. The Emperor's attention w.is attracted by tie ingaificent appearance of the iron horse, and he was much gratified with tho success which had atsended their first attempt at this new inode of convey. ance."

From the Baltimore Faineer andi Gridener. A New hotive fower. Biltimore, April 8, 1837.
Ma. Roberts-When I stated to you the fact of an intimate acquan'ame of mirie having constructed a machine of almost unlmited propelling power on the Hydrostatic principle, you were so much pleased with the accountas to mennest a communication from ine for insertion in your periontal; with that requesil cheer fully comply.

The inventor of this wonderfil and use ful machine is Mr. Theophilus Curbyne, an emment vetimarian-a native of Scontland, aud now resilliner in Pittshurg, $\mathrm{P}_{\text {x }}$, who whtle practising his profession, hat for the lust seven years employed his heisure hoars on this subject and has now the satisfaction of seeing his plan natured by having constructed one of welve horse power, which comes fully up to his most billuguine expectations
'This machine he calls Corbrne's Mrdrostatic Propelling Machive. In its cunstruction it is too simple to admit of improvement, and as no stean nor heat of any kinit is used in its operation, there can be no explosion, therefore in its use life is safe; and should any part break, it is by its simple construction, admirable of speedy repair.

It is "tupplicable to the plough,* and all propelling purposes, and as such it must supersede the use of steam.
A machine of 500 horse power can be worked by one man, and neither its weight
or the room required, will be more than one tenth of the steam engine.
We of the present age, entered on a new era when Fulton brought forih his exrented scheme in the application of steam 'o the propelling of boats on water-in which smoke and vapor suppliel the place of canvass. The same age is now bring. ing forth another era in a more useful und extented scule of operation ir this discovery of. my friend, who is a philosopher anil philauthropist in every sense of those terms

Although our profession has for several years made us intimately acquairted, visiting each other, and conversing freely, for mitual benefit in our professinn-yet true philosopher like, he never intimated to me that he was studying the anbject, until on his way to Washing:on, lie calle:l on me and shower the model, which is now in the Patent Office.

> With iny respecté, I am, youra, truly, Joun Hasiam.

* The invenior is fully under the impression that a plough constructed on the princioles of his machine, will be couriperent to plough 100 acres of ground a day.

From the London Mechanics' Mazazine.

New Stea: \boldsymbol{A}-bohler.-Sir,-Having discovered a means of generating steam by a systen at once exceedingly powerful, safe, of comparatively light ${ }^{\prime}$ weight and mall size, I beg to call the attention of the scientific readers and others of your Journal to its astonishing power; and to state, that I am desirous of relinquishing wholly, or in part, my inierest in its use. A 6c-horse power-bciler will measure 2 Feet 6 inches long by 1 font diameter, and will weigh under 2 cwt. ; a 600 -horse powr will measure 6 feet long by 4 feet diameter, and will weigh under a ton. Incretibe as these results may appear, they are quite certinn, and jest upon well-known principles; and is, therefore, for locomo-tive-engines and steam-navigation particularlj, hidely valuable.

> I am, Sir,

Your obedient scrvant,
G. L. Smartt.

Enfield.

Bridgr Burned.-On Thursday afternoon the Railroad Briflge across the North Ana River, on the road from Riclumond to Fredericksburgh, Virginia, caught Gire, and the wood work was entircly burned. This accident will cause no suspension in the travelling on the road.
important expemiments with canal

boats at high velocities.

We extract from the Edinburgh Adverti ser the annexed account of some experimente, which prove that high velocities are attainable by properly constructed vessels, upon canals, or narrow waters, without
"We regard the experiments described below as exiremely important. If the $r \in$ sult is correctly stated, and if no counteracting disadvantages has escaped notice, we think these experiments may be said to have added a million sterling to the value of anal propetty in Great Britain, since they must, at no distant pegind, add fifty or a hindred thousand pounds to the annual dividends. Norhing can be more paradoxical or startling in appearance than this result; and $y \in t$ our knowlecge of the many unexpected truths in mechanical science which experiment has brouglit' to light, will not permit us to reject it as incredible.It is this:-that the surge generated in a canal by the motion of a boat, and which is so destructive to the banks, in moderately rapil motion (such as four or five miles an hour.) ceases altogether when a high velocity is empl yed. It is true the vessels were of a particular construction, but this is immaterial. A boat sixty feet long and six feet wide, is capable of being extremcly serviceable, both for the conveyance of goods and passengers; and if a boat be safely and conveniently dragged at the rate of nine or ten miles an hour upon our canals, passengers by this species of conveyance will then be upon a leve!, as to speed, with those who travel per mail. The great rcommendations of canal carriage at present are, its cheapness, and the liberty of locomotion which passengers enjoy. Its leading disadvantage is its slowness; and this is now felt more and more, when our stage coaches are toucling a speed of ten miles an hour, which will soon be doubled on our railways. We have not technical skill enough to know what a gig. boat is; but we infer from the other particulars stated, that it must be flat-bottomed in the cross section, pretty well curved npwards at stem and s ern, and very ligh. With this form, the quiçker it is moved, the less water it will daw. At a very bigh velocity, it w: merely skin the water as it were; the displacement of the fludd will reach enly a tew inches down; and this circumstance, with the quick motion of the boat, causing a readjustment of the equilibrium of the water equaily rapid, the necessary time will be wanting for the motion to prepagate itself beyond the narrow zone of water which iinmediately encompas*es the boat. Such is our hypothesis, supposing the fact to be as stated. We have a strong impression however, that the result depends chiefly on the form of the boat. and that a much greater depth than five feet will be no material disadvantage except where the canal is extremely narrow.
"Some months ago, by the suggestion of Mr. William Houston, of Jobnstone, the committee of management of the Ardrossan and Paisley canal were induced to make certain experiments for ascertaining the rate of velocity at which a lighi gig-boat might be propelled along that canal. Tho experiments were made with a gig rowing boat of about thirty feet in leugth, constructed by Mr. Hunter, boat-builder, Brownstreet, Glasgow; and this boat with ten
men on beard, was drawn along the Ardrossan and Paisley canal, in the space of less than ten minutes, without raising any surge or comniotion on the water-the force employed being mie horse, rote by a canal driver. No account of this trial has ever been given to the public, but it was so satisfactory as to induce the committee of the. Ardrossan canal to contract with Mr Wood, of Port-Glasgow, for a gig-shaped passage-boat, sixty feet in length, and five in breadth, fitted to carry from shirty-six to forty passengers. In the month of Apria last, a number of experiments were made in the Forth and Clyde canal with twoggigboats fixed together, constructed by Mr. Hunter, and thus forming what is called a twin-boat. The object of these trials was to ascertain the rate of speed at which vessels might be propelled along that canal, and the effect of a light double or twin, boat, in giving that degree of steadiness which it was apprehended would be so much wanting in a light single boat. A statement of these experiments on the Forth and Clyde canal has already appeared in the newspapers. and the only fact therein mentioned, which it seems necesssary to repeat here, is the remarkable circumstance, that the quicker the boats were propelled through the water, the less appearance there was of surge or waves on the sides of the canal. The result of the experiments was so satisfactory, that a twin boat of a gig shape, sixty feet in length, and nine feet broad, was built by Mr. Hunter, Brown-street, Glasgow, and launched in the Forth and Clyde canal, in the course of the following month.
" The singlo gig-shaped passage boat contracted fior by the Ardrossan caval co nmittee, was launched at Port-Glangow, on Wednesday, the 2nd of June, and she was towed up to the Broomlaw, and thence carried to Port.Eglington the day following; and on Friday, the 4th of June, a trial, of which the following is an account, took place. The bnat is six'y feet long, four foet six inches breadth of beam, and drew on an average, including a deep keel, ten iaches when light :-
"From the great hurry in which this trial was made, it was done under many disad vantages. The boat started from PortEglington for Paisley, a few minutes aiter one o'clock, with twenty persons on board, and the distance from Port-Egluygton to Paisley being seven miles, was accoinplished in one hour and seven minutes. The rider was ordeed to start and proceed the first mile or so at a very moderate pace but even at this moderate pace the wave raised in front of the buat was very considerable. A high wave was seen on the canal preceding the bont, about eighty or ninety leet in front, and in some cases farther, and causing an overflow at the bridges and in the narrow parts of the canal. The surge of the cutting wave behind the boat was, how. ever, comparatively slight, ant except, the cürves, would not have caused much injury to the canal banks. The horse was very much exhausted when ho got to Paisley though by no means so exhiusted as he wa about the middlo of the journey, havini
sensibly recovered after the first four or five niles.
"Two post horses were hired there ; and lighter towing lines being attached to the boat. it started again, on its return to Glas gow, with :wenty. our persons on board, four of whom were boys, and arrived a Glasgow, a distance of seven miles, in corty-five minutes. The greatest speod at ained during the journey, was two miles in eleven minutes. During this voyage th: surge behind was entirely got quit of, even at the curres, where it was reduced in nothing; and there was no front wave except at the bridges. It appeared oally at the bridges, and just as the boat was about to enter under the bridge, and disappeareci as the stern of the boat cleared the bridge. The quicker the boal icent the more entire wes the disappearance of all veares and surge, except where the water escaped in the centre of the canal, and met in two very noisy and rapid currents from each side of the boat at the rudder. This noise and rush of water was so great behind as to induce persons on board to look rount expecting to sce a gieat wave or surge on the banks of the canai, but on the lianks there was hardly a ripple. The two rapid noisy currents seemed to be completely spent and ex hausted by the shock of their coucourse behind the boat. Here, theiefore, there was no roon to doubt the correctiless of the re ports of the Furth and Clyde canal experiments. It was not merely to lie said, that the greater the speed the less the surge or wave, but it was demonstrated that, at a high. rate of speen surge and wosce vere done asoay wilh allogethcr. Unluckily, there was no dynamometer attached to the rope, so as to ascertain whether, contrary in all thenry, the strain or pull was not equally with the wave, and the tugging lat bur ot the two horses, lessened instead of increased, by the a celerated rate nt which they drew the boat. There can be no doubt, however, that with one trained horse properly attached, the distance could be done in a peitiod under forty mimutes. Contrary to expectation, Mr. Wood's boat was quite steady in the water, and by no means crank. It may be proper to men tion that the Ardrossan canal is throughout very narrow ; at the bridges, and many o:her places it is ouly uine feet broad. It has a great number of turns, and many of them very sudden.-[.Mining Journal.]

From the Lundon Mechanies' M gazi.ze.
 tunnels.

refort on the primeose-hill. tenvel on the london and birmengilam railway. by john paris, m. d., thomas watson m. d., cantab., wh. lawrence, esq., and r. PHILLIPS, ESQ.

We, the undersigned, visited together, on he 20th February, 18:37, the Tunnel now n progress under Primrose-hilt, with the view of ascertaning the probable efiect of iuch Tunuels upon the health and feelings If those who may traverse them.

The Tunnel is carried tarough clay, and s lined with brickwork. Its dimensions, as described to us, are as follows : height 22
feet, width 22 feet, length 3,750 feet. It is ventiated by five shafts, from 6 to 8 feet in hiameter, their depth being 35 to 55 fect.

The experiment was made under unfavorable circunstances. The westem extrenity of tue Tumal being only partially "ipen, tie ventilation is less perfect than it wil be when the work is completed. The ream of the locomotive engine also was suf. erel io cscape for twemty minutes, while the carriages were stationary near the end of the Tumel; even during our stay near the unfiais!ed end of the Tuanel, where the enguse remained stationary, although tho cioud caased by the stean was!visible near the rooi, the air for many fect above our terts remaneil cloar, ind apparentiy unaffected by stan or effuvia of uny kind ; nei. her was there any damp or cold perceptible.

We found the nimosplere of the Tunnel dry, and of an agrecabie temperature, and free fiom enstli or perceptible cefluvia of any kind; the lamps of the cariages were light. ed; and, in oar transit inwards and back again to the mout! of the Tunnel, the sensaois experienced was precisely that of traveling in a coach by right, between the walls of a narrow street. Tie noise did not orevent easy conversation, nor appear to be nuc. 1 greater in the Tuauel thath in the open
Jutiging from this experimont, and knowing the ease and certainty with which tho. ough ventilation may be etf cted, we are lecidediy of opinion that the dangers incurred in prassing through well-coastructed 'Iun. nels are no greater than those incurred in ordiary travelling upon an open railway or upon a turajike-road; and that the spprerensions which have beea expressed that sach Tumats are likely to prove detrimen. al to the healih, or incoavcinient to the feel. ings of those who may go through them, are pericetly futile and groundless.

John Paris, M. D.
Thomas Watson, M. D., Castab.,
L'aysician to the Middlesex Hospital, aid Professor of Medicine at hing's College.
Wh. Lawrence,
Surgeun of St. Bartholomew's Hospital. Rd. Phillips,
Lecturer on Chemistry at St. Thomas's Ho.spital.
London, Feb. 21, 1837.
From the Londun Mechanics' Magazine.
effect of hionly-heated metals on
the generation of steam-colored witer.
Sir,-My attention having been drawn to the very curious inquiry, which is detailed by Mr. Tomlinson, of Salisbury, in your Number of January 2sth, I would beg to make a fow remarls thereon.
It appears from the results of Mr. T.'s experiments, as also from his extracts from Pouilet, Baudremont, and Laurent, that a globule of "ater, when contained in a mec.tlic vessel, evaporates in a shater time, if the vessel be at or about 212 degrees, than if it have a higher temperature. This is very remarkable, and far removed from the common ideas on the subject; but I cannot assent to Mr. X,'s explanation, so
far as regards the existence of a stratum or bed of steam between the vessel and the water.

We all know that the specific gravity of steam is less than that of air, and infinitely less than that of water. On what principle, then, can a portion of steam exist bcneath the water? Let us take the analogy of any fluid whatever, and see how far :t will bear out the objection.

It we have a vessel of water in process of heating over a cominon fire, the first formation of steam takes place at the bottom. This ascends to a higher stratum of water, and is then condensed and imparts its caloric to the watery particles whe which it is imınedia:ely surruunded. It is this which sn rapidly heats water, for the conducting power of water is exceedingly limited.

We constantly ebserve that the rapidity with which the bubbles of vapor rise to the surface is proportionate to the heat of the water. Now, let us apply this to the case of the heated crucible. Mr. Tomlinson supposes the existence of a stratum of steam under the glohule of water, which retards the transmission of heat from the me. tal to the water; but why should not the law of specific gravity remain in force at high temperature? Why sheula not the steam-its expansive tendency being still more increased by its high lension-why should it not have the power of darting upwards through the watery globule, in order to gain the level of a lighter atmo phere? We must recollect that the steam is formed from the globule itself; at the lower part of it ; and ought, if it exist at all, to ascend to the upper part of the globule, just as the steam-bubbles in a common kettle of water do.
I feel more inclined, of the two opinions, to choose that which attributes the siow evaporation of the globules of u ater to the rapid passage of heat through it. Extraordinary as such a hypothesis may at first appear, yet we have analogies in physical ecience which aid such a conception

A pane of glass, broken by a pistol bullet, is not sri much shattered as when broken by' a stone moving with pcrhaps not one-tenth the velocity. If a card be balanced horizontally on the end of the finger, and a shilling flaced on it, and if the card be struck sh.rply on the edge, it will slide away from under the shilling, leaving the latter on the finger; but if it be struck more sofly, both card and shilling will fall.*

I would appear that transparency consists in a perlect facili y in the progress of light, through the pores of any substance. Now, if we suppose that heit is material, we may conjecture that the caloritic tensio:, when the vessel is highly heated, is sufficient to overcome the relucta $7 t$ conducting power of water, and that it darts

[^34]through the latter by virtue of the velocity acquired by such tension.
1 do not wish to give this opinion the nit of n theory, but there is one remark of M . Laurent' \because, quoted by Mr. Tomlinson, which I should much wish to see the basis of a series of experiments; he says that when he used colored water instead of transpa rent, the water evaporated much more rapidly.

Now, to those readers of your excellent Journal who have facilities of making such experiments, I would beg to observe, that it would be very desirable to know whether a given quantity of water, al a given temperature, evaporat $\cdot s$ in a shorter time when colored or black, than when transparent.
B!ack we know to result from the absorption of all light and colors from that of some of the rays. Now should we find that blackened water absurbs more beat, or absoibs heat more quickly, than transparent water, it would permit some evidence of th> analogy between light nud heat, and would also assist e's in determining whether the rays of huat from an excessively heated vessel do really pavs through the water too rapidly to impart much of their influence to it during the passage.
Prolessor Lestie made some very accurate experiments on the comparative albsorptive power of different substances for heat. but I an not aware whether they extended to water differently colored.

Whether metals and water become, at a high temperature, electrically excited with the same kind of electricity, and so re i_{i} el each other, we cannot at present say; but should such turn out to be the fait, it might furnish us with a reason why the globules of water appear not to be in con:act with the he ited metal: but be this as it may, it would assist us in the solution of this interesting question, if we could determine whether he same apparent repulsion exists between thes metal and colored or blackened water, as between it and pure colurless water.

At all events, I can scarcely subscribe to Mr. 'Tomli ison's opinion, that a bed of sleam exists between the water and the glubule.

> Your obedient servant,
D.

From the London Mechanics' Magazine.
on a peculiar voltaic condition of iron, fikst noticed by professor schoenbein, of bale.
Sir,-The facts contained in the present communication, are not to be understond as laying cla m to orig nality in their leading principle; ; some of the experiments, however, that I shall have occasion to describe, have never been made, or at any rate, I have never seen any account of them by any one else, and the whule are so extraordinary, and will, in any opinion, eventually throw such light on the rationale ol Voltaic action, that I think you will not cb ject to give them publicity through the medium of your Journal. In the London anci Elinburgh Philosophical ., Laguzine, vols. ix. and x., may be found the original pa pers of Profassor Schoenbein and Dr. Fa-
rady. All the experiments there described, I have sttentively gone thr ugh, and I shall merely give here such an abstract of them as may be necessary to set the mytter clearly brfore your readers.

Ex. 1.-When iron wire, $\frac{1}{6}^{\text {th }}$ of an inch in diameter, was mmersed in pitric acid, specific gravity 1.379, it was attacked with violence; but when surrouniled, or even touched in the acid by a piece of platina wire, action was instantly stopped. The platina was then removed, and the wire remained tor any length of time in the acid without any action, and as bright as silver. If it was now taken out, wiped, and again immersed, viulent action immediately took place for a moment, but it soon (generally) was again quiescent.

Ex. 2.-lf, when the wire was in violent action, it was touched by a piece of platina, the effervescence instantly ceased, but again commenced when the platina was removed. Bringing the two metals a second time into contact effectually stopped the action. If the wire was in a very violent state of effervescence, it was not for some time protected by the platina.

Ex. 3.-If a wire made thus inactive by platina, was touched in the acid by a piece of zinc, or a common iron wie, it was thrown into uction: but an iron wire having the smallest piece of platina attached to it, did not throw it into action, being itself inactive. If the platina was no v slipped off, and either wire touched once with a common wire, both were instantly thrown into violent action.

Ex. 4. - When the acid was disturbed with an equal bulk of water, platina did not preserve irun wire from its action, even when coiled thickly round it ; it appeared, indeed, rather to quicken the action. But though it did not preserve it under these circumstances, it did under others which I shail notice presently.

Ex. 5.-Hali a wire, four inches long, was heated to dull radacss, the blue tinge extended through three inches when the wire was cold, and these three inches were quite inactive in acid specitic gravity $1 \cdot 379$, he other inch was active; when the heatel end was mado bright by filing, it was rendered active, showing the former inactivity to be owing to the superficial coating of oxide.

Ex. 6.-When a wire made indifferent to nitric acid by platina was i.ımersed in the acid, and another common wire dipped into the saine vessel, the latter was of course active; but when the wires were made to touch at their parts above the liquid, action was excited in the indifferent wite.

Ex. 7.-A cohmun wire was mado to touch an indifferent, one, and both dipped into the acid, the ir-different one going in first. By this means, the comnion wire was made indifferent, nut being in the slightest degree acted on by the acid; the second wire rendered indifferent a third, the third a fcurth, and so on. This experiment succeeds best with wire that has seen made indifferent by platina, but with are it will answer equally well with wire hat has been made indifferent in the fire ; the conditions appearing to be perfect con-
tact, and gradual immersicn. When these wires were taken out of the acid and wiped, they always returned to the active state, but were again made indifferent by repeating the process.
Ex. 8-A wire, polished very bright, was protected by platina, and immersed in a solution of nitrate of copper, and nitric acid, which acted very strongly on common iron, copper being deposited on the metal : the protected wire remained, howcuer, bright. After remaining a fow se conds the platine was: removed, the iron instantly became as common iron, but when the platina was allowed to remain in contact an huur or two, and then removed, the wire was left in the peculiar state, exhibiting the curious phenomena of a piece of polished iron being quite inactive in a solution of nitrate of copper and nitric acid. The wire this inactive, on being touched by a piece of common wire was instantaneously rendered active, undergoing rapid solution, and becoming covered with a crust of copper.

Ex. 9.-A piece of iron was photected by a piece of platina, and immersed in nitriac:d ; the platina was then withdrawn, the iron remaining in the peculiar state. A piece of cominon iron was then bent into a fork, and slipped down the inactive wire into the acid, by which it was itself rendered inactive. Now if another piece of iron wamade to touch the fork before being introduced into the acid, it was rendered itself inactive; but if it was first thrown into action, and then made to touch either end of the fork, it threw all the wires into action. This is rather different from the result obtained by Professor Schoenbein. He describes that end of the fork that was touch. ed, being alone thrown into nction, the other remaining in the peculiar state as long as the first wire was kept in contact with the bend, but when that was removed both ends became active. The Professor's experiment was made with an oxydised wire. 1 found it difficult to reduce the fork to the peculiar state with such a wire, but when I accomplistled it the phenomena were similar to those just described. I should much wish this experiment to be tried by others as $I \mathrm{am}$ 'at a loss to understand whence this disaccordance should arise.

Ex. 10.-When an active wire was con. nected with one of the cups of a galvanome. ter, and a platina wire with the other cup, and both wires dipped into nitric acid, momentary action took place, and an electricai current was shown to pass from the iron to the platina through the fluid, the later me. tal becoming positive, but the action soon ceased, the platina protecting the iron, though not in actual contact with i; when chemical action was stopped, the electrical current was stopped also.

Ex. 11.-When the iron wire was con. nected first with the galvanometer, and the circuit completed by putting it into the acid, the platina wire having been previously arranged, no action, either chemical or electrical, took place. The same was the case if a wire, having been previously made inactive, was sulstituted for the plati ،a. Now when platina was used, the moment the cir-
cuit was closed, bubbles of gas made their appearance on the platina, and if an iron wire was used, having a small piece of platina foil or wire attached to it, the bubbles formed on all parts of the foil, but none made their appearance on the iron. It then the platina toil was removed, the bubbles made their appearance on the iron, which some. times also went slightly into action.

Ex. 12. When two cups were employed, being connected by a compound platina and iron wire, all the phenomena which took place in a single glass were observed, and the platina or mactive iron in one glass, exerted a protecting influence on the iron in the otber. provifed the communication was first made through the galvanometer; a touch from a common wire also threw the iron into action, producing a strong electrical current. The same was the case with three or four glasses connected by a compound wire.

Ex. 13.-When the acid was diluted, so as to have a specific gravity $1 \cdot 204$, platma, as was before observed, could not proteet iron from its action; neither when connected with the galvanometer did it, if the iron was dipped in the acid first ; but if it was first connected with the galvanometer, and then put into the acid, no action whatever wok place in any length of time; on remosviag the platina, action sometumes took place; it always commenced when the inactive wire was once touched in the acid with an active wire, or with a piece of copper. The wire, thus made inactive, did not possess the power of rendering other wire isactive, but was always thrown into action itself. When a piece of common iron was substituted for the platina, whether it was connected with the galvanometer first or not, the wire in this case acted as platina to the second.
Ex. 14.-When two cups were employ. ed, and connected by a bent piece of wire, and so arranged that the iron wire should be active, on removing the counerting wire. and taking a frush piece, if it was dipped first into the cup coataining the iron, and tine other end b ought into tie platina cup, that and was in the peculiar state, and there was to passage for the electrical current, the aeedle of the galvanometer being quiescent; but when it was put into an active state the electrical current passed. Now here we rave the iroa made inactive without any mecallic communication with the platina, and wh n inactive it is found incapable ot conveying a current of Voltaic electricity; an inactive wire could not, in this experimen: be substituted for the platina. Tais latter nost remarkable, and, as I belicve, at present, inexplicable fact, has, as far as 1 know, never before beea noticed, but that it is true, any one may in a few minutes conviace him. elf. I have often left the whole arrangeinent undisiurbed for hours, and still, at tac and of that time, the end of the conneciag wire in the platina cup has been perfectly bright, and the needle of the galvanometer stationary in its usual position ; but on touch. ing it once with a comınon wire, it has bcen mrown instantaneously into action, and tacn tue electrical current has passed, the needle being strongly deflicted. I am, at pressut. occupied in further researches, aud I hope
something satisfactory in explanation of this dark subject will soon transpire.

I am, Sir,
Your obedient servant,
Near Bath, March 15, 1837.
From the I ondon Mechanirs' Magazine.
mr. Sievier's patent choltchouc corDage.
Sir,-In consequence of a letter which uppeared in your valuable journal respecting Mr. Sievier's "patent rope," and the sirictures thereon by your correspondent Many points, I was induced to procure a piece of the said rope from the Company's establishnent it 'Tuttenham, prepared and inanufactured accordang to the directions given in the specification by the patentee; it ineasured 4 feet 6 inches long, and was $\frac{3}{4}$ he of an incla in diameter, composed of 12 strands: each strand had a slip of Indiarubber in its centre. This was placed in the garden in a northerly aspect, and allowed to remain exposed for two nights and days to a frosty atmosphere, uncoveredt, the thermoneter being at the time at 29°. When removed earty on the third murning from its Siberian slluation, it was fount to be pliable and elastic, and its lengh was the same.

A similar piece was immersel in a butt of cold water, and allowed to remain for en days; at the expiration of the above lime it was removed, and its elasticity, plability, strength, and length, were found to be the same as when first put ino the water. Caoutcholic, or India-rubber, by itself becones very hard when exposed to the atmospheric air, or when in. inersed in cold water for any time; but ihis change does not take place when it is interlaced or combined in any way with goud hempen threal-the rigidity is prevented, its elasticity is preservel, and its plabihly renains. Peabapz Many points was not aware of this fact.
Hoping the above brief statement of facts wi.l satisfy Many-points, as well az your numerous readers,

> I an, Mr. Edior,
> Yours respecifully,

Nautices.

March 28, 1837.

Frum the London Mechanics' Magazine.
practical remares on heeping rees.
Sir,-Having been requested by some person desirous of keeping bees, to give. t.rrought the medium of the .Mechanics' Ma gazine, my opinion as to the best method of managing these usefil insects, I beg to so. heit tace fivor of the following observations baing inselted.

I have k pt bses nearly twenty years, and practised varioas plans with a view to gain the greatest produce in honey and wax with the least trouble, but more particularly with a view to tae preserving the lives of the bses, and feel confident that the story-fying system, which I believe Wildman practised, is the best. I tried for six or eight years t ie plau Mr. Nutt advocated, whicn, by-the. bye, is as old as any of the plans known, but without in eting with any tuing like the suc: cess of the common cottage live. A strong
stock in the latter had produced me an earJy swarm and cast, the swarm producing in a good season upwards of forty pounds of hency, and the cast fifteen pounds, the stock bsing kept 'five or six ycars. 'The honey thus procured is always of good color, intid fit for sale; and when aiter six seasons the parent stock is cestroyed, the honey, being dark, may be used to make meed, or sweeten wine with, a strong swarm being kept to supply its place. This plan requires the destruction of the bees, and is therefore censured as inhuman; bu' to me is not more so than destroying beavers and cats for their skins, or catching fish to manure the lan? with; the consumer nover considering how produce is procured, and should, thorefore be considered the most culpable, if such icts are breaches of humanity. 'Ihe hives I now prefer are flat, having wooden tous tixed on with wires. The inside should be twelve or thirteen inches clear, and about seren inches lig!, the toj hatving a centre hole, and thee or four oilicers roind it near the outside, each hole being two or tirce inches diameter, and fitted with nice beipges. If no swarms are wanted, a large glask, or small straw hive, may bie put on tiog top about the end of March, or a small grlass to each hole, previously puling out the bungs. sentiy turning them roand first, eac'ı glass laving a bit of parrer pasted on it, stating its weight when emroty ; such glasses boing kept from the light, by an conpty hive being plac. ed over them. Every ten or iwelve days they should be cxamined, and when fille: may be removed, and others put on, as lon as the season permits. If a stock is whak, a new swarm or a cast may be put on the top of it, and the entrance closed till eight or nine o'clock the following night. Tinese stocks may be.preserved seven or eig!n years, but should be kept in a house or shed; and when the winter begins, the bungs hav ing been replaced, shoukd be covered oves with sacking or other warm articles. Glas. ses may be put on a swarm inmediately after hiving them, removing them in three or four weeks, to enable the bees to procure enough for the winter. Tie boards above mentioned should be made of pine plank, nalf an inch thick. The botom boitid: should be made of the same, one incli or one inch and a lialf thick, having a piece project ing for the bees to light upon. By pirsuing this plan, any number of stocks may be kept with but little trouble, and the bees saved; but the placing the glasses on empty hive early, is esceintially necessary.

I am, Sir,
Your obedient servant,
G. L. Smartt.

Enfield, Feb. 10, 1837.

on cements.

A patent was granted to John IIenry Cassell, of Mill-wall, for his invention of a cement or combination of materials applicable to purposes for which cenment, stone, brick, or other similar substances, may or can be used.- [Sealed April 19, 1834.]

This invention consists in cementing or combiring the materials for making roads, and for constructing docks, water courses, foundations, and other similar works, by the ald of cal or other mineral tar, wood tar,
and resinous mattors, or the producte of tir, in the inanner hereafter descibilied; and thu: prodacing a mass, which may be formed on moulded intu any figure, which, when cold. will be excecdingly hard, and be servicea ble for the purpose of cement, stone, or brick, in constructing any such like works or buildings, as before mentioned. But in order that this invention may be perfectly urderstood and rarried into effect, it may bo necessary to describu the me!hods used by the Patentee for combining such materials together, and applying them to the aforesaid purposes. A quantity of titr, such as is produced by the distillation of coal, shale, or wuod, is first tiken, and by furbher distillation the aqueous parts are separested therefrom, and thus the tar or resinous substance is reduced to the consistency of treacle; this is called the first prodact, the tar or re inous substance being in a thick and adhesive condition when cold. In order to prorlise the second prorluc:, the distillation is carried on still farther, and by this menns the essent:al oil is obtained and for the third proluct, the process of distillation is carried on, till the substance becomes so adhesive, that a small portion being remeved from the still may be drawn ont into threads and when cold, becomes brittle; and for the fourth nroduc!, the distillation is carried on still farther, till the ubstance beconses extremely hard, and will not solten by heat, either of the sun, or any ir if.ial heat. The apparatus or still whi-ll is used for this purpose, is similar to that which is called a pitch still, which is well known, and forms no part of this invention, nor does the process of distillation for separating the tar intu thrfe products; that is to say, first, tar diprived of the iqueous parts, and reduced to a thick adhesive condition when cold. Secondly, the essential sil. Thirdly, the adhesive tar, or product herent, which when cold, is hard; and ourthly, the substance not acted on by the heat of the sun. It may bo desirable here to remark, that cofal tar is preferred, in con-- equence of cheapness.
'The Patentee then proceeds to descri e the combining of these products with other naterials, in firming a cement or comlination in the making of roads, docks, watercourses, and such like works. We will first describe the incthod pursued in apply. ing this invention to th: maling of roads, or in repairing them. . Having laid out the road, and made the necessury drains for preventing the lodgment of water below the road, the surface is prepared by beating or rolling, in o:der to compress the earth, particulasly when the surface is composed of loose earth, and, by raking, bring the surface to tho required figure, that is, with such slopes as may have been determined upon, and make the samie as eren as possible. The surface is then saturated with the essential oil, (lie second product,) in thin layers, allowing time for it to subside. The oil put on in this manner will quickly penetrate the grodind: the second operatio. is then commenced, which consists ol spread ing over the surface, of the carth so preparec a tilin coating of the first product, perhsps one-fourth of an inch thick, then let the same
be ignited, and permit it to burn a short ime. Dry sand, or fine dry earth, or slag, or cinder, or a combination of these, should then lie sifted on the tar and oil, to the depth of about half an inch, which will instantly jut out the flame. The ground should then bo rolled, in order to cement the tar and sand together ; and, iu order to faciltate the operation, it is found desirable to have a feame of iron, or other material, about three cet square, which is successively placed over the surface of the ground, and thus complete portions of the surface at each operation. By this means, it will be evident that a thin cemented luyer or surface will be produced on tive road. In some instances, onc, two, or more layers of this description in ty be made on the road, depending on the extent of trafic to which it is to be subjected; but it will be desiruble to remark, that the essential oil is only used previous to the first layer. Having thus prepared the under surface of the road, the Patentec procceds to describe in what manner the same is finish. ed ; and observes, that the finishing materially depends on the description of materials, which may be readily obtaincd at the place where tiie roud or other work is bising constructed, such as broken granite, flint, slag, gravel. or, any other hard material suitable ior the surface of a road. It shou'd be observed that the same should be broken somewhat small, say not larger than three inclies, and one-third of the third product should be taken to two thirds of sand, and boil and mix them together; then four such mix:ure over the brolien materials to the desred depth, which running into the space bet ween the stones, forms a very hard and solid mass when it cools. When the said fourth product is in a melted state, any of tise materials, such as sand, stone. \&e., may be mixed in an open vessel, in the proportion of one-third of the fourth product to three of sione, sand, \&.c., by weight, and nix them well together; and when so mixed, the composition is spread over the surface of the road from one to four inches deep, or more if it is thought necessary, the road being prep:red as bufore described; this is then rolled so that as even a surface as possible will be produced; by which means a haril surface will be fo:med, twhich will wear exceedingly well, an'd produce a cheap and lasting road. Or where it is desired that the upper surface strould be formed of larger stones, or other material, such as broken granite, flint, slag, or other substances, of a size such as is generally used in making what arecalled Macad. amized roads, frames or moulds may be used from twelve to forty-eight inches square, open at top and bottom, like a brick mould ; pack in them a numberr of such broken pieces of material, and then run in a quantity of the iourth product in a melted state, and then fill up the interstices between the stones or oth. er materials, making the upper surface as :ven as possible. These materials, when icft in the moulds till they are cold, will bo stronly cemented together, and be ready to orm the upper surface of the road, they should be put on in the following manner: naving prepared the road, as above described by the essential oil, with the first product, and the sand or fine earth, a coat of tho third product of t.se tar should be spread hover to about the thickness of one inch ;
then, while the third product is warm, cover the ro d with the moulded materials, placing that part which was uppermost in the act o moulding, on the surface of the road pre pared as above, an 1 by rolling or pressing cause tise moulded parts to adiere firmly to gether, by this means, rather a rough surfac will be produced, suitable to the tread of a horse. The first preparation is also used to cover good Macademized or other roads, which firmly cements every stone into its place, prevents the wheels from ploughing up the roads, the water from softening the sub. strata, and preventing mud and dust from rising. The third product is also used; when in a melted state, to pour between the joints of strect pavement, in the manner that grouting is now performed : this will cement eve ry stone together, and so prevent water from getting beneath the stones to the sub-soil, ot rising therefrom. If the sub-stratum is of i soft substance, or the street is required to be very durable, the ground is first prepared, as described in the first process : the paving stones are then saturated with essential oil, and the third product is then run betwecn the joints of the stones or bricks that are required for foundations. The resin of wood is used for making stone and cast figures, that are required to be of a yeliow color; sand of the required color is added, as in the fourth process. In some instances, instead of moulding such larger pieces of flint stone, or other material, sind, or fine earth, is mixed with the fourth product when in a hot and melted state, and the composition is moulded, as above described: such materials being very suitable for foot paths, water-cisterns, pipes, and a variety of other useful purposes.
Having thus described the nature of the invention, as applied to roids, the Patentec proceeds to describe its application to canals docks, water-courses, and such like works. The earth being excavated, and the s'opes of the banks made to the intended figure, the next prucess is to beat the surface of the earth; and in order to render the same as compact as possibie, it is saturated with the essential oil, as before described; then a thin layer of the first product of the tar j run over and ignited; after that, sand, or any other dry earth or material, is sifted over, as above described. Three layers of these cemented materials will be sufficient when applied to the usual slopes for canals and water-courses, and will offer a compact and close surlace to the water; which will protect the banks from the prejudicial wash. ing to which they are otherwise subject, and consequently be of great utility when quick travelling is required, or when the canal boats are propelled by machinery. In forming the embankments of docks or quays requiring steep or perpendicular walls, a mucl, stronger facing is required, depending on the depth of the water tiey are to support, and also the description of ground b-bind.
The Patentee proceeds to state that a framing of wood is usually constructed to the desired thickness; and having previously made a good baie or foundation of a com. bination of the fourth product of the tar, wit, broken stones, or otuer rough hard materials and sand or eartil, he continues melting anc mixing quantities of the fourth product o tur with brukenstones and sand, in the pro portion of about one of the fourth product to
three of the stones and sand, or other matecial, and successively throws them into the rame, and levels and beats such coacrete maxture, t:ll the frame is quite full to the surisce of the inteaded finisti of the wall, whic: s usually made to lar on the surface of tio earth. It would be advisable to remark, that between each quantity of the material thas put into the frame, it is found desirable to spread over a thin coat of the first product of the tar, and ignite the same, in order that the surface of the last quantity should be in a melted state, to receive the next quantity of tho material. It wilt be evident, from the -bove description, that piles, and alsc land ties, may be built in the walls, in order to give additional strength to them; and that where frames or mounds are used, they are washed over with a covering of white-wash or of clay, by which means the compostion ioes not adhe.e to them.
The Patentec conclules by saying, that having thus described the nature of his invention, and the manner in which the same is performed, he would have it understood that he does not claim any of the materials separctely; and it will be evident that the means of carrying the same into effect, may be varied to suit the particular object to which the invention is to be applied : but he would aave it understood, that what he claims as his invention, is the cementing or combining the materials for making and mending roads, and for constructing docks, water-courses, water-tanks, pipes, and such like work, by the aid of tar and resinous substances, or the products thereof, as above described. [Lond. Jour. Arts and Sciences.]

From the Mechanics' Magazine.

an improvement in the construction of chimneys.
I have thought that an improvement would be made in the construction of chim reys, by building the flues circular instead of square. By a plan which I shall describe, the inside of the flues might be made much smoother with less trouble than the square ones are now made, and might be carried up with less variation in the size.
My plan is, to mou!d brick clay into pieces about 24 or 30 inches long (or any length most convenient in using,) about two inches thick, and shaped like half of a hollow cylinder, divided from end to end. When the fire-pface is built, the flue should be brought to its size in a circular form, sufficiently large for the free passage of the smoke. The outside of the chimney:being carried up a few courses, two of the half tubes are to he put on as a continuation of the flue, with mortar under the ends on which they stand, and between the edges which come together. 'They will thus foim a circular tube, which should be of the same dianneter as the flue where they ar put on. Where the filae bends, it will be aecessary to cut the ends of the piecer, so that they will make an angle, when put toether, in the saune mauner as the juints of a stove pipe. When the tops of the pieces come even with the outsideccurse oi lirichs, they migh. be tied by thin pieces of iron plate, such as are used tor binding the fronts:
of walls to the insido work. The advan-
tages of this plan, I think, are, the flue has a shape which 1 believe is considered the best for carrying smoke; the itiside is smonther than the square ones usually are, and it therefore presents fewer in pediments to the passuge of the smoke; the chimney might be cleaned easier than the square ones, for a circular brush passed up and down, by means of a rope, would sweep well and quick, and the chimney-sweep might thus be spared his labor inside of the flue. I should think the expense would not be more than that of the square flue, after the brick-maker had got the necessary tools, and had had some practice in the manufacture of the flue pieces.

If you or any of your readers are disposed to examine this plan, and show its defects, or improve it in any way, I whall be glad to read their opinions in your next, or as soon as convenient.
A. H. W.
on the calcination of ores.
A most simple method for effecting this process is practised at the Iron works in Staffordshire, as well as at some of those in Scotland and Wales. It consists in spreading the ironstone intenfled for calcination over a bed of coal about a foot in thickness, adding occasionally a layer of small coal, unil a heāp is raised about eight or ten feet in height, and fourteen or fifteen in diameter ; the fire is then lighed, and the operation left to itself without any further attention. The open fires vary, however, in their form. A nother, and more economical morle is used in South Wales, by which the refuse coal and coke are consurned in ovens or kilns, constructel for the purpose.

The form of the interior is, usually, a reversed cone or pyramid; those which ap. proach to an oval being also held in much esteem. The oven, or kiln, being first charged with coal and ironstone, but not entirely filling it, when the fire begins to reach the upper part, small coal is thrown on alternately with the ores, until the kiln is filled. The lower part is then drawn out and left to cool, as in lime burning; the kiln is recharged, and the process continued indefinitely.

In Wales it is generally contrived to erect the blast furnaces on the side of a hill and the calcining ovens are built on a terrace surrounding it, to the height of the furance moath : the time for the operation is regulated so as to keep a supply only to the quantity requ red for smeiting. At Neweastle-nn-Tyne a similar method is practised, but the fuel consists of small coke

At Bradford the ovens are rectangular, and about twenty-five feet in depth, fourteen long, and five wide, i:1 the upper part; towards the middle it takes the form of a truncated pyramid, whose base is about twenty inches diameter : small coke is used here also: at other works in the same vicinity the ovens are of a similar shape to the furnaces, and about filteen feet in height.these dinuensions are, however, exceedingly variable, both in different counties, and sometimes in the same establishment.
At Pouldice, in Cornwal!, the tin ores are roasted, to facilitste the subsequent scpara-
tion by washing. The furnaces for this puirpose have a fire plare about one foot by fuur feet, on the same level as the part destined for the ores, and only separated from it by a course of bricis plared flat, the furnace: bed is about nine feet six iaches by eight fect; the height of the rool one foot; its course nearly h rizontal. In the front of the arch, near the door, is a vent, which, after rising vertically, takes a course neaily horizontal, and discharges itself at the distance of a quarter of a mile into a large chimney, the upper part is formed of flat stones, which are easily removed for thr purpose of clearing out the arsenic accumulated on its sides, which is sold for 10 s per ton: on the outside of the furnace is, also, a projecting or forge chimney, rising about filtren feet. Similar precautions, favorable to the health of the workman, are in use in all the tin works throughout England, which have not yet been introduced ino Gerinany. The charge of this furnace is six cwt., requiring $1 \frac{1}{2}$ bushels of charcoal to each roasting ; this is, however variable, as well as the duration of the process, according to the nature of the rineral acted upon.- Itond. Quar. Mining Review.]
memoir on the calcination of core.
Abridged from the Report, by Messrs. Perdonnet and Leon Coste, in the Annales des Mines.

Coke is obtained in England by two distinct processes ; in the open air, and by means of ovens constructed for the purpose. The former is the method usually adopted, the latter being applied almost exclusively to the small coal ur slack. In the vicinity of Dudley, in Staffordshire, all the coke is made in the open air ; the process consists in forming a small conical chimney, with bricks placed in such a manner as to leave spaces between them, these openings are larger in the lower than in the upper courses, the usual height is about fur feet six inches, surmounted by a cylinder of one foot. The coal is then disp .sed around the chimney, the largest lumps being placed first to form the base of a cone, after which more is thrown on the heap, until the top is above the level of the brick work; the whole surface is then covered with slack, with the exception of the lowest part of the heap, to about ore foot high, the fire is then lighted in the chinney at a certain period of the operation the remaining part is also covered with slack, and when the carbonization is judged to be complete th.e fire is extugnished, by throwing on a sufficient quanti y of water, and dispersing the materials of the heap.
The dimensions of the coke heaps vary considerably, they are most commonly fourteen or sixteen feet in diameter, and contain, about twelve ton of coal. From the time of lighting the pile the operation is completed in seven days, three for the calcination and four for the extinction and subsequent cooling of the mass.

It would appear that a method so simple as this would be invariable in the resuts nevertheless the contrary is the fact, much depending on the attention and judgment
of the burner or superintendant. A tono eoat usually yields iwelve cwt, of coke, o ixty per cent. someti ies tencwt. or fít: ner cent. from the same materials. h_{1} South Wales hot I methols are practised. but the coke is not ralrined with so mull atteution as in Staffiordshire, the proces: iffers in the heap beng made in the for:of a long bank four to six feet in breadth. and about three lee' high, the I rge coals it the middle, and the fire being lighted either at one end or at several parts of the heap. At Puntypool and Abergaveny the coke is calcined il the open air; the coal in seme parts of this district bears a resemblarce tu charcoal, in converti.g it into coke great care is taken to preserve this entire, the operation is completed in five days. In the neighborhond of Merthyr Tidvill the process is conducted in the open air, and al though very little care seems to be given to its progress, yet, a considerable quanti: y of coke is produced, the coal being generally dry and giving but little smoke. At Plymouth works six tons of coal yield five tons of coke; at Dowlay 720 llss. of coal yield from 450 to 500 lbs. of coke; at Pen-yDarran the nperation lasts only three days, the increase in bulk being also very con-iderable, three tor's of coal producing twelve hatrows of coke, each contaming seventeen cubic feet, or above one-fourth part more than previus to calcination.

At Neath Abbey the carbonization is more rapid than in any other place, it being finished in nine hours, producing rather less than sixty per cen. of coke. In Scotland calcination in the open air is generally adopted; furineily the heapls were burned without much attentiun being paid to their progress, but the Stafford-hire mode liabeea used latterly with grent advant..ge, the heaps consisting of eighten tons of coal, well covered with slack, kept burning three or four days, and four or tive days more being allowed for the cooling of the mass, the loss in weight is aboui fity per cent.; the old method occupied only five days, but the loss amounted to from sixty to sixty-six per cent. The coke is of very unequal quelity, some parts b:ing very heavy and others light and porous. In Yorkshire the coal i arranged inl lung banks six feet wide by two and a half high, with square vertical ct imneys, cight or nine in ches in diameter, lommed with large coals, at about the dis ance of six feet from each other throughiout the length; the loss is about lifiy per cent. in weight.

Calcination in ovens is considered to prodıce, a heavier coke than the open cal cination; the process varies but little, be ing in all cases perlurmed in ovens of a cir cular or oval form, with a low arch sur. mounted with a small chimney, the furnaci has two doors or openings opposite to eacl wher, sliding in a groove and raised by lever, they are usually of cast iron, the di mension of the furnace abuut twelve len by six; height of the arch in the celitr tive feet, at the door twenty-one inches; tha chimney rises thiee feet extermally ann about nine inches in dianseter. At Neat Abbey the furnaces are smallor; the chis,ney is eighteen inches externally, and only
one door, but in this case a hole is made in he opposite side to facilitate the clearing ut of the coke. From the small coal arbonized in this manner the produce is bout sixty per cent. while the same quanity of coal in the open air yiells but fifty ver cent. the coke from the furnace being oo much more dense. At Swansea, by the vame process, the produce is about fittyiour per cent.
In the vicinity of Glasgow a circular oven with une door is in use, the diameter is nine feet, beight of the arch six feet.The coke is drawn out every twenty-four hours; the ordinary charge, one ton and a half of coal, rising about two and a half feet in the oven, the loss is from fifty to sixty percent. On Saturdays the charge is increased to two tons, and is not withdrawn until the Morday. At the Lymington works, near Newcastle-upen-T'yne, all the coke is made in ovens, the usual charge is one chaldron of about two and a half tons, the operation lasts forty eight hours, and the average loss thirty-nine per cent. 'The coke is screened to the diameter of about one inch, for smelting in the high furnace, the smaller poition being einployed in roasting the ores. At Bradford, in Yorkshire, the method is similar to Newcastle, but the furnaces are smal!er, the charge being only about one ton, the loss is about forty per cent. It is difficult to decide to which process a preference ought to be given, the loss is less in the ovens, but they require tnore space, more attendants, and more expense, while the open carbonization is considered to yicld coke better adapted for smelling in the higb furnace.- [Lond. Quar. Mining Keview.]

Agriculture, \&c.

From the New-York Farmer.

The following article was designed for the May number, but it did not reach us until that number had been forwarded to subscri wers. In relation to the hoe referred to, we shall be pleased to show a sample of them at this office.
Burlington, N. J., Weeding Hoe. This instrument, which is an improvement of the .10e, passing by the several names of "French or Dutch Weeding Hoe, Snuffle, and Lazyback," was inveuted about :wenty years since, by Mr . Nathan Stowell, of this plare, and has within a few years past, been introJuced into the gardens of Horace Binney and Charles Cuauncey, Esqrs., Henry Ca. ey, Haverford School, and many others, und is highly approved of wherever known. setts of these lowes may, probahly, be procured oi Geo. Thorburn, No. 11 John-st., New.York, who has been furnished with a ett as sumples for any good smith to imiate. In making them, care should be taken o punch rivet-holes through the sawplate ci:hout healing it, so as to retain the tem. .er of the plate. Both this hoe, and the Surlit gton hand " IVeeding Fork," ure wor:y tue attention of Gardeners.

Burlington, N. J.
T. C.

From the New. York Farmer.
We are truly obliged to \mathbf{M} for this continuation of the subject commenced in our last. His views, opinions and experience, are erititled to high respect.

- Management of Sheer.-No. II.

Messrs. Editors,_With your approba. tion I wiil resume the above subject, commenced in your last number. In that com. munication I endeavored to establish the first, and most prominent advantage, derived from adequate protection afforded to sheep during the winter season, viz., the savin? of life. I shal comment further on this head, and mention other advantages, found. ed upon my own experience, although fully confirmed by the experience of thousands before me. 1 arrogate to myself no claim whatever for any new discoveries, but mere ly have followed the lights which others have discovered and set up: my object is, only, to bear testimony to the correct bearings of those lights, and assure all my agricultural brethren that they will invariably lead to the harbor of true interest. I know to well, from my obscrvations, that the proclamation of a truth, and that sounded but once, is like the fall of a solitary drop of water upon the rock,-it is only by its thousand repetitions that an impression is made. Having this in view, it seryes as my only foundation for hope that my reflections, trite as they are, yet having the merit of being based upon facts, will not be altogether passed by likc the idle wind. We have indeed fearful and gloomy times upon us already, and a dull prospect of immediate amendment, and it therefore behoves every farmer to be awake and diligent in every, department of his calling. Our duty is to practice economy : no: simply that economy which, according to common acceptation, consists in saving shillings and pence, but adopts all wise and salutary means for saving our stock from pre. mature death.

In my former communication, I stated that the severe winter of 35 and 36 caused a destruction of sheep in this quarter which was unprecedented,-that many with flocks similar in size to my own, lost hundreds up. on hundreds, while my own loss, in conse quence of being well provided with shelters. was only 38 out of 1500 -that previnus winters, and when my flocks were exposed, my luss varied from 50 to $\mathbf{1 5 0}$. As the fod. dering season is over, (truly a long one has it been,) and my sheep; turned upon the: fields, I will state the result of last winter's opera. tions. Of lambs, having wintered nearly 500. I have not lost one. They were grained from the time they were put in winter quar. ters to the 25th ultimo; and here I will with pride state the faet, that for the number, as their equal will hardly be fonnd in the state Of grown sheep, out of 1300,17 have died. six or eight of which was from old age This, a thorough and critical wool-grewes will not allow is good management, in per mitting old sheep to die on my hands. I admit it; and my practice is, to select in the fall all inclining to old age and poverty, and put them by themselves, and in the spring or early in the summer, make sale of the flock with their lambs. The few of this de scription which died, werc reserved last ycar on account of their fineness of fleece, and a wish to retain their lambs.

But, this inquiry will perhaps suggest it self to some sceptical readers of your Jour. nal, whose self-sufficiency causes them to regard their own mode of management superior to every one else, and who perhaps think sheltering of sheep, among other things, mere fudge, viz... whether my sheep were not in better flesh at the beginning of winter before the last, when so many of my neighbors lost their hundreds upon lundreds, while my own loss was less than forty? and further, were mine not naturally more hardy? I answer, that I saw parts of several of the flocks mentioced, late in the fall, and then they were fully equal in flesh to my own; and also, that they are the same grade of sheep, and therefore no material difference of constitution. I call my own flock Saxons; but some of your readers, will bet. ter understand their grade, by naming the price I have ob:ained for their wool. It has been purchased in Boston for the Middlesex Company the last three years : the two last clips I received a little less than 75 cents jer pound. So it must be the legitimate conclusion, drawn from all the facts I have stated above, and in my former communicatoon, that in saving of life, my success is almost entirely to be ascribed to sheltering.

I will now briefly speak of another advan. tage, or rather consequence, resulting from protection of sheep; viz., the precention of disease. I know it is difficuit to get at facts to prove this; but your readers perhaps can gather the proofs of my position, as I have satisactorily done, by reasoning from arialo. gy,-from "man to brute." Will not ex. posure to the rude storms of winter and spring have a tendency to engender disease ?-and if not active disease, wil. it not so affect the constitution that it is liable to curtail several years of their existence? Every candid and experienced wool.growes will answer in the affirmative. I leave, however, what is in some measure speculaion, and turn to facts-for facts are truly stubborn; and I like them the bettu:r for it.

If there be any who doubt that shelte: ing, of sheep will ferfect and improve the quali.
y, I will suggest a cheap methof by which t can be thocoughly tested. Select in the all two sheep of equal quality, as regards vool ; jacket one of them, as it is called, by oovering the body of the animal with an s.led or painted canvass, in order that it be impervious to rain, and let it be kept on, un. il shearing. Allow the other to go at large, without jacket or shelter, and the re. sult, after comparing the two fleeces, will clearly establish the point in question. But the improvement of fleece is too important to be passed over lightly: I will, therefore, aving my Invoices at hand, give the result as stapled in the Middlesex Mauufuctory at Lowel, exhibiting the clips of '35 and '36. It will be remembered I stated, that, the winter of '34 and '35 my sheep were not sheltcred. I sheared about 200 more in '36 than in '35, and those I disposed of dur. ing the interim of the clips, consisted, mostly of sheep inclined to age and not altogeth. er my coarsest.

Clip of $1835 . \quad$ Clip of 1836.
3 lbs. Wool extra.

62⿺𠃊 ${ }^{\frac{1}{2}}$	6	${ }^{6}$	prime	186	"	prime
743	${ }^{6}$	*	1 st	1470	*	1st
1092	${ }^{6}$	${ }^{\prime}$	2d	1169	"	2 d
1059	${ }^{6}$	*	3d	879	6	3d
260	${ }^{6}$	6	4th	199	*	4th
72	"	6	5th	37	${ }^{6}$	5 th
12	"	*	6th	9	"	6th

By a comparison of the above, it will be observed, that the stapling of the last clip shows a considerable increase of the higher qualities, and from what is above stated it is clearly proved that the difference is mainly to be ascribed to warm shelters.

But want of time urges me to close this communication. I hope I have sufficiently demonstrated to the sceptical portion of your readers the great importance of protecting their sheep from the inclemency of winter. If their own interests, together with what I have represented, based as it is upon experience, will not convince, as well as arouse to action, I know not what will.

May 2d, 1837.
M.

Lansing, Tompkins Co., N. Y.

From the New-York Fiarmer.

Hovels for SHeer.-Our worthy friend M has favored us with another article on sheep-husbandry. It is a subject well worthy of more general attention than has been uşually given to it ; and we shall not, willingly waive any claim which we may hare made, or which we may hercafter make, up. on M , in relation to this, or any other ag icullural subject, though we shall not liand the drafts to the "District Attorncy," even it not honored.

Hovels for Sheép.-No. III.
The reason, doubtless, why many neg. ect to provide shelters for their sterp dur-
ing winter, is generally to be attributed to the expense. To all those who neglect thi important matter on this accoait. I will sur gest a simple ant econonical mote of building them. When securing hay, if stacked out, build two pens, for tie reception of the bottom of the stacks, four and a half fiet high, and place them about thirty-five feet apart, in, or nearly, an east and west line. Then take two poles of sufficient length to reach from pen to pen, and rest the ends on the top of each pen ; the centre of the poles to be supported by crotciles, and well secur ed in the ground. A sufficient number of rails or poles will then be required to sup, port the straw, wiich will be neccssary for a covering; a plentiful supply of waich should be used in order to absorb rain, and prevent leakage. I will also suggest, that the straw ought to be secured by placing a few rails on the top of it, otherwise viulent winds will displace it. The rear of the hovel, which of course should bo the nortis side, can be made of boards, and must be perfectly tight ; if it is not, snow when drifting will be certain to find its way in, and often occasion the trouble of removing it. If boards can not be readily obtained for the back, racks, made of rails or poles, and stuffed with straw, will answer quite as well, and perhaps rather better, inasmuch, if they are well made, the hovel will be warmer.

I also rec:ommend the erection of several racks, to be filled with straw. called " wind breakers.". I will not mention where they ought to stand, as practical farmers know pretty, well the point a northwester is apt to bite hardest. Old and partly rotted straw will answer all the above purposes the better. Tue size of the hovel, as described, is calculated for 100 sheep.

Lansing, Tompkins Co. N. Y.
Although not designed for publication, we give the annexed P. S. for the benefit of all concerned.
P. S. I now will mention some mistakes which your 'decil' made in priating my first communication, which I beg you to correct in your next No. I am a great friend to order, and like things done just right.
You make me say "created board fen-ces"- it should be "erected board fences" -and following on as printed, "this however it the lact"-should be "is the fact" --and "in the saving of hay"-should be "is"\&c. And tuwards the conclusionprinted "get so ab=olutely neglectin!"should be "yet so" \&c.,-" will nut m preparatory remarks" \&c.,-shruld be prefatory"-"these are the very kind of farmers referred to who uegret all experiments" \&c,-should be "reject" \&e.there are some others too small to notice, the first and last are the only ones necessary to correct.
1 am afraid, as the more busy season with farmersis is at hand, tiat all your dralts, that is, monthly dratts will not be accepted. But I have the great canse of agrieulture s much at heart, and so much desire its prosperity; that I am will:ng to coat ibute my feeble effiorts tow .rds its promotion, eithe by verbal or written, reflec ions drawn from, tie great well of experience and truth.
M.

From the Quarterly Jgirnal of Agriculture.

STUDIES IN TIE SCIENCE AND PRACTICE OI AGRICULTURE, AS CQNNECTED WITH PHY sics.
Chance mey do much in the discovery o? arts, and the invention of means, as wher: Mr. Nutt discovered the only range of temperature at winch bees swarm, and the idle roy, by tying a string to the valve of the iteam-engine, invented an ingenious mode of making it work without his continual as sistance. Yet it often requires much saga city to turn to beneficial or practical account such discoveries as are made by accident ot chance observation, and even men of the uighest talent frequently fail in this. Dr. Lister, the celebrated Eiglish naturalist. states certain facts with regard to fossil s'iells that would almost induce a belief of his having had more than a glimpse of some of the most important doctrines of modern gology. These facts, it does not appear that ne followed up to any general induction, which was done almost a century after his time, without, it is believed, any hint having heen derived from his statement. Lord Kames, in his very clever book, the "Gen tleman Farmer," by a chance remark, most fistinctly shows that he was on the very brink of anticipatıng the important discovery of the excrementitious discharges of plants into the soil, recently proved beyond all question by the experiments of M. Macaire of Geneva.*
Cnance observations, however, though they should be of the greatest importance. are frequently lost, sometimes for want of b) ing recorded, and sometines from the observer's being incompetent to see their various bearings. Mr. Nutt might have contented himself with merely announcing, in some scientific journal, his having dis. covered that bees will not swarm except at a particular degree of temperature, without applying it practically, as he has done, to increase the population of the hives by al. ways prevening artificially the na:ural pro cesis of swarming.

Lord Kames, on the other band, only mentions it as probable, from the analogy of animals, that plants may discharge some. thing similar to excrementitious ma: t r, without tollowing up the idea experimentally, to prove or disprove the fact.

A more extraordinary instance may be given from tire science of optics, as bearing upon practical subjects in agriculture, in a manner which could scarcely have been magined by the most fanciful speculator. About a hundred and fifty years ago, the Dutch pailospher Huygens, in his observatons ou Iceland spar, discuvered a remarkable property of the rays of light transwitted tarough it,-a property whical led Sir Isaac Newton to suppose cach ray to ha:e four sides or quarters calising it to be disposed in a particular manner. Here the matter restad ull it was taken up by M. Malus, whose attention was attracted to the subject by one if those rare accidents which a connmoa sbierver would inave passed unlaceded, but wh.ch, to a master mind like his, was pro:uctive of briltiant results. In 1808, while -us philusopiter was viewing wit a doublyeiracti.ng prism, a fune sumsut retlected from

[^35]the palace of the Luxembourg, on turning the prism slowly round, he was surprised to iec a very great difference in the intensity of the two images, that which was most reracted being alternately changed from rigitness to obscurity at each fourth part of a turning, or as opticians would say, at ach quadrant of a revolution. From that period, Malus, Dr. Brewster, Fresuel, Ara. yo, Biot, and others, have discovered facts "so singular and various," in the words of Sir J. Herschel, "that, to one who has only studied the subject of physical optics under its ortinary relations, it is like entering into a new world, so splendid as to render it one of the most delightful branches of experimental inquiry; and so fertie in the views it lays open of the constitution of natural bollies, as to place it in the very first rank of the sciences."

Some general idea of this may be given to the unscientific reader by stating, that when a ray of light from the sun is reflectell from a piece of glass, polished metal, or other such substance, it will pass freely through any transparent body, or may be reflecied from another surface, even when we turn round the body. But if a ray of light be reflected from plate glass at an angle of 57°, it is rendered altogether incapable of being reflected from the surfaco of another piece of glass, when turned in certain positions, though it may be reflec:ed in other positions: and further, this ray will not pass through transparent substances turned in certain positions, though, when these are turned in other positions, it will freely pass through. Hence, it has been inferred, that the different sidem of the rays of such light, as imagined by Newon, must have diffe:ent propertics in relation to the surface on which they are received, termed in optics the plane of incidence, and hence this sort of light is termed polarized light, on account of the sides of the rays being supposed to have, somewhat like a magnet, different poles. It is necessary to say, that the existence of such sides or poles isonly conjectural, andnot proved ; but this does not in any way affect the results of the observation of facts connected with the phenomena.

One other property of this polarized light requires to be stated here. When reflected from a surface, the polarized ray is sometimes observed to go to the right, sometitnes to the left, and sometimes more and sotnetimes less deciledly, on account of the nature of the substance used in the experiment.

Now, it is but natural for the agricultural ieader, who has accompanied us thus far, to ask, What can all this minute nbservation and experiment on the rays of light and their polarization have io do with agriculture? Before we have done, we have no doubt that we shall most ampiy prove, not its mere theoretical, but its strictly practical inportance; so that the reader Inay hunself prove the correctness thereof in a very short period.

We are indebted in part for the facts to M. Biot, of the French Academy of sciences, hinself one of the most successful expermenters in the new science of polarization. Taking advantage of the
tests afforded by substances polarizing ligh' to the right or to the left, M. Biot institute, a series of experinienis and observations fu detecting the intinate constituenis ol certain vegetable substances, where chemica analysis falled, or at best was only imper fect or uncertail. From his researches by means of polarization, and those of M. Ras pail with the microscope (another application of opticss), we are now enabled to asceriain two kinds of facts of the highes' imporiance to agriculturists, namely, first, What constitutes the nuirtive principles of the food of anımals; secondly, What consiitutes the nutritive principles of the food of plants. The second is not yet quite so distinclly brought out as the first ; but M. Biot, we are glad to learn, is continuing his researches. We shall now endeavor to give some account of the important dis. coveries in question.

Nutritive Principles of Animal Food contained in Grain and Roots.-Towards the end of the 17th century, the illustrious Dntch observer Leeuwenhoeck, in his microscopical researches, examined, atnong other things, portions of wheat flour, which we now know to consist of a various mixture of starch, gluten, oil, resin, sugar, and gum; and by oue of those happy chances alrendy exemplified, was led to make a shrewd conjecture respecting the real constitution of flour made froin grain. In the wheat flour he found globules (globuli fa. rinarii), each, as he supposed, furnisted with a vessel, by which the plastic matter passes in order 10 produce other globules, -an optical illusion, as has since beert shown; but in subsequently studying ihose globi.les, he shrewdly asks whether they be not enclosed, as in the case of seeds, in some sort of inembrane. "I then," he adds, "used my utmost endeavors to discover the internal hidden make of the globules of meal, wherein, at length, to my great satisfaction, I succeeded. ${ }^{\prime 3 *}$ He describes the grains of wheat as princ:pally composed of those minute globules which are singly transparent, and lie closely compacted wihin a kind of metribranes, so exquisitely thin and transparent, that in soure places their texture is not to be discerned. M. Biot has said, that Leeuwenhoeck observed the grain of fecula (rather farina) to be composell of a vesicle and a soluble substance, which is its nutritive part, since no. thing but the shells or husks are met with in the dung of animals.
Now these observations of Leeuwenhoeck were lost sight of, as that of Huygens had been relative to the polarization of light, till, eight or ten jears ago, the subject was taken up by M. Raspail, apparently without being aware of what Loeuwenhoeck bad published, and he has so simplified the views of the constituentof the nutritive principles contained in f_{1} rinaceous substancez, as to render them: when conjoiner with the researches of Biol. Persoz, Pelouze, and others, of the higheal interest to scientific agriculturists.
It may be remarked, in passing, that

[^36]M. Raspail* endeavors to show that Leeu venhorck's observations afforded no: evel iglumpee of his own discoveries, and tha M. Biot has misunderstont or misi-repr enled his meaning. In the quotation from Leuweuhoeck above, however, whict. ve have gyven in Hoo e's exceilent tranGalion, it will be seen that M. Raspail hins: zelf has not tranislated hiniaiassedly. Hould was deal before Raspaii's discovery. Frou he expleriments of M. de Saussure, it was believed thal he had procused the chemical basis of starch, which he termed amedine. This amedine may be procured by boilting starch in a large quantity of water, hruwing it on a double filler; and by boiling again the mater remaining on the filter, fillering again, atid drying the residue The substance thus obtained, after repeated washings and dryinge, is in irregular white, or yellowish-whiie fragmen:s, vers friable, and without tasie or smell. M. Saussure said this formed with potass a non wicid solution, was insoluble in water below the temperature of 140°, and did not frrin a jelly with boiling water. But M. Raspail shows, that what was supposed to be a solution in water at 140°, is only a suspension. Saussure failet most signally in discovering the nutritive basis of slare!!, which he ought to have sought for, not on the filter, but in the liquid which had passed through the filter.
Berzelius is no less in error than Sans: sure, when he states, as quoted by M. Raspail (Chimic Organique), that starch or fe cula is composed of small crystals, which party dissolve in water al an ordinary temperaiure. On the conirary, the miscroscope shows, that starch or fecula is coinposed of shining white smooth g'obules, quite insoluble in cold water, elen when inmersed for any length of tine.
The globules of starch, indeed, consist of an envelope or shell and a kernel, if it may be so ci.lled, of a substance very dif ferent,-the chief discovery of M. Raspail, which serves to explain the errors and discrepancies of previous observers; for the envelope is allogether insoluble in cold as well as in boiling-water, and it is only what we shall for the present term the kernel is at all soluble. The partial solubility, therefore, observed by Berzelius, must have arisen frorn the accidental rupture of some of the envelopes by which means the water could obtain adriission to the kernels.
-Accordingly, when Berzelius states that starch is dissolved into a mucilaginous li quid by boilng water ; Thenard, that fecula combines easily with boiling-water, forning a hydrate popularly termed starch; and Despretz, that, when fecula is mixed with boiling-water, it becomes soluble, and does not recover its insolublity in cold water, when exaporated to dryness,-they all ppeak vaguely, and in part inco rectly. rom not knowing the discovery of Raspail already mentioned. The kernel containe 1 in the globular envelope of fecula. consists of a gum-like matter. which, by the eva poration of its watery parts, becomes hiard nn exposure to the air. When immersed n water at 122°, the envilure, which is

* Chimio Organique, sub jn.
naffeced by cold water, expands, and in wollng-water it bursts, while the kernel is liseolved in the water. When the water a in large quan'ity, the enselopes detached rom their kernels, and now ten titnes their mignal size, having fiee motion, subside; int when the quanity of water is small, bey become mutually entangled, form jol-y-like sirata or layers, and render the waer thick,-beng what is terned stareh ir he laindry (empois).
M. Raspail, from numerous experiments, ccncludes, that each grain of fecula is an organized globule, formed in the interior of living vegetable cells. such as in those of a grain of wheat, or of the tuber of a potatoe; that the enveloping membrane of the kernel is incapable of being dissolved in cold water, spirits of wine, ether, or the acids, but expanding in proportion to the degree of heat, and in boiling-water bursting on one side of the globule; and that after boiling in a large quantity of water, the burst and detached envelopes fall to the bottom in the form of snow-white fl ikes, leaving the liquid above them as limpid as water.
With respect to the kernel contained with. in tle enve.opes, M. Raspail concludes. that if the limpid liquid be cautiously poured off, the addition of spirits of wine, the concentrated acids, or tincture of galls will coagulate it, but it will not coagulate by heat ; tha: it acquires a blue color by adding iodine, a property it possesses in common with the envelopes, but it loses this property by being spread out thinly on a porcelain. plate and dried, differing in that case in no respect from gum ; and that it does not lose its characters on being dried by a moderate heat, which causes it more to resemble gum with a glass-like fracture, a splintery texture, au.d a shining surface.
We have M. Raspail's authority, then, for considering the kernel within the envelopes in starch as resembling gum, if not identical with it in physical and chemical characters, and hence we might be led to believe that the nutritivi or soluble part is gum. or of the nature of gum. At this stage of the inquiry, however, M. Biot, along with M. Persoz, :ook up the subject, and succeeded so far in discovering a distinct and very remarkable difference from gum. Accordingly, on iso. lating the kernel portion of the parsnip root by builing to burst the envelopes, precipita. ting by alcohol, purifying by repeated wash. ings with alcohol, and then dissolving it in water in order to observe in what manner it polarized light, it was found that -it turned the planes of polarization with more energy towards the right than any substance yet known; while all gums, and the sugar of grapes, turn the. plances of polarization towards the left. Cane sugar, indeed, turns the planes of polarization towards the right, but not with the same energy as the kernels of starch. The latter, therefore, MM. Biot and Persoz term dextrine, and we shall adopt the term notwithstanding M. Raspail objects to it, till one more appropriate be proposed. The soluble portion accordingly of starch, or the farinaceous matter of grain and roots, is dextrine, which is always contained in a globular envelope, compased of membrane 3 that are incapable of being dissolved in wa. trer even when boiling. By means of this
singular and unexpected test of turning the planes of polarization towards the right of the observer, the nutritive qual ties of all vegetable substances can be examined, and many of them have been s.) examined by M. Biot, as we shall presently sec. Amongst other vegetable productions, M. Biot examined the juice of the carrot, taken from the white variety, by cold pressure. He divided this into two parts, one part being filtered through white paper without being heated; and another, after being similarly' filtered, was brought for an instant to the boiling point. The result was most important in a practical point of view; the part which had been brought to a boiling produced a rotation towards the right exactly double of that which had not been heated, and its absolute intensity corresponded to the proportion of four per cent. of cane-sugar, as deduced from previous observation.
"The liquor," continues M. Biot, " treated with alcohol, gave a considerable precipitate, which was instantly redissolved in water, as is the case with dextrine, and this appears to me to explain sufficiently the sudden increase of the rotation after the boiling." It will follow that even a slight boiling doubles the nutritive quality of carrots. a fact known indeed from other experiments, but only in a vague manner, without any philosophical data to explain it by.

The juice of the turnip exhibited similar phenomiena. When it was procured by simple pressure and filtered through paper, the portion which passed the filter exercised no ration that could be appreciated; but on boiling it with the pulp, a liquid was obtained, which turned the planes of polarization towards the right, indicating cane-sugar, as found in the turnip by chemical analysis.

In the juice of the beet-root, so interesting on account of the increasing manufac. ture of sugar from it, M. Peiouze, a young but able chemist, having found no grape-sugar, or su h as is incapable of crystallization, and only cane or crystallizable sugar, M. Biot undertook experiments to investigate the subject still farther. Taking the fresh juice of the beet-root, he repeatedly measured with the greates care the intensty of rotation which it communicated to polarized light, which he found to vary from 10° to $12^{\circ} 6^{\prime}$, according to the difference of individual roots, or different parts of the same root, indicating from 11 to 14 per cent. of cane-sugar. The crown and the sides of the root being less mature than the centre, appeared to him to be less rich in the proportion of nine to ten. As the best root on whicia the experiments were made had been taken from a field very liberally manured, the large proportion of saccharine matter, indicated by the intensity of the rotat on, confirmed the remark of Mi. Pelouze, that the richness of the manure did not diminish the constituent quantity of sugar, though it renders it more difficult to preserve the roots. M. Biot seems to think that tue large proportion of sugar might likewise be partly accounted for by the summer having been dry and hot. There did not appear to be any dextrine, for the white precipita.e, perfectly soluble in water, and not coagula: ble by heat, did not affect the planes of polarization at all, and ccnsequently this pro-
trine.

Dextrine was procured by MM. Biot and Persoz from laundry starch (empois) by acids cold or hot, strong or dilute i, by potass, or by hot water, any one of which will rupture the envelopes, and set free the dextrine. Water alone, however, as M Raspail proved, and MM. Biot and Persoz verified, will not completely rupture all the envelopes of fecula, or at least extract all the dextrine, unless the boiling is continued fer a long time with considerable quantities of water; because the uubroken globules of iecula are apt to be held together in clots by the gum-like matter disengaged from the broken ones, and in this manner are partly protected from the full influence of the heat.
The dextrine thus obtained by any of the foregoing agents is uniformly the same, being completely decomposable by heat, while it can be analyzed into water, hydrogen. and carbonic acid gas, but no nitrogen has been found in it. When treated with yeast it undergoes the vinous fermentation, while acids cinange it into a saccharine syrup; but, when tried by the rotatory polarization of light, this syrup has a greater power in turning the planes towards the right than the sugar of starch in the proportion of ten to turec.

Varieties in the unburst Glabules._Bcfore the application of heat or any other agent to rupture the enve opes of the glob. ules and set free the soluble dextrine, the globules themielves allord interesting objects of investigation, as will appear from the following important statement ol M. Raspail. He tells us, (Chimie Organique, 134,) that in the Paris inarket he seldom found any wheat flour not to a certain extent mixed with potato starch, by which mixture the fraudulent dealer gains as much as 25 per cent. The potato starch has scarcely any effect on the appearaace of the flour, and it requires experience and skill to detect it by the nakel eye, unless the quantity of starch be considerable, when the crystalliue appearance of the flour gives room for suspicion. The fraud, however, is readily de tected 'y the microscope, and M. Raspail says he could thus discover the starch if it constituted only 1 per cent. of the flour. In examining suspected flour, it is always more easy to pronounce that it is adulterated than to tell in what the adulteration consists. T,:e dimension and form of the giobules, as given by M. Raspail, are the cnief means by which such examinations can be made, and we think that no extensive dealer ought to neglect making himself thoroughly acquainted with these. He has only to furush himseli with a commou microscope and a uicrometer or glas i plate divided by very minute lines like a foot-rule, and by laying a grain or more of flour on the micrometer, and examining if with his microscope to see how many lines it cuvers, he will be enabled at once to tell the quality and kind of the flo: r in question. Micrometers divided so as to measure the $5, \frac{1}{50}$ th part of an inch may be employed.
Potato.-The globules containing dex rine in this root acquire a larger size that anv hitherto examiued, being usually of frol he $\frac{d, 5}{5}$ th to the roveth part of an inch,
or even the 20.0 th part of an inch. When fresh they exiibit on the surface con. centric wrinkles which disappear on drying. The form of the ie globules when large is oval; when small more sphe ical, the former belng slightly contracted and bluntly triangular.

Wheat.-The largest globu'es rarely ex. ceed the $\pi v^{2}-0^{\text {th }}$ part of an inch, or about haif the size of the largest potato globules. They are of a round or spherical shape, and are much smaller when taken from half ripened wheat.

Barley.-The globules of barley are similar in appearance to those of wheat, but are much smaller, rarely exceeding the 100.80 th nart of an inch.

Oats. - The globules of oats are oval and yellowish, being from the $10^{8,7,0} 50$ th to the $1 \sigma_{0}^{10.800}$ th of an inch in diameter. The in. numerable minute inirs of this grain give the meal a sort of cottony appearance to the naked cye.

Rye.-These globules are about the roso th part of an inch in diameter, of a flat firm. somewhat sharp on the edge, and marked with a black cross or three black rays forming a central star, which gives a black color to rye flour.

Arrow Root.-The genuine arrow-root from Brazil may be distinguished from the starch of potatoes by boiling, which only produces in arrow-root an enlargement of the globules to four times their original diameter, because, as M Raspail thinks, they are exposed to heat in the original Brazilian preparation, while the globules of the potato expand to twenty or thirty times their original diameter.

The largest globules of genuine arrow-root do not exceed tine ro, ${ }^{18} \mathrm{~g}_{0}$ th part of an inch, and, like those of rye, exhibit through their translucid surface black lines like a star, or sometimes like the letter T. Potato starch is better than the genuine arrow-root.

Buckvheat.-Tine globules are yellow, and seldom appear so large as the $\Gamma 0,600$ th part of an inch.

Maize.-Few of the globules attain the size of the To.9,800 th part of an inch. The dried fecula is usually injured by grinding, boing folded, wrinkled, and more or less rounded. When tahen from the haif ripe milky grain, they are smooth, entire, and quite round. Hence the destrine of maize is obtained in greater proportion from the half-ripe seeds; and hence also the small proportion of starch found by the usual modes of chemical analysis, though it actu. ally exist in the grain.

Peas -Tue globules of peas are of the jame form as those of the potato, with an unequal surface, and the largest are about the roioth part of an inch.

Beans.-The globules are of the same size as those of peas, but differ from being egg.obloug, or kidney-shaped, sometimes tppearing as if a smaller grain were enclosed in the interior.

Other globules were examined and measured by M. Raspail, but these are the most Hiteresting for our present purpose; and, efore proceeding fa. ther, it is indispensable to impress upon the attention of the reader,
1st, That the globules constituting meal, lour, and starch, whether contained in grain
nourishment as animal food till they are bro ken.
$2 d$, That no mechanical method of break ing or grinding is more than partially eff cient.
3d, That the most efficient methods of breaking the globules is by heat, by fermen tation, or by the chemical agency of acid: or alkalies.

- 4th, That the dextrine, which is the ker nel, as it were, of each globule, is alone soluble, and therefore alone nutritive.
$5 t h$, That the sheils of the globules, wher reduced to fragments by mechanism or heat: are insoluble, and therefore not nutritive.

6th, That, though the frigments of these shells are not nutritive, they are indispensnble to digestion, either from their distending the stomach and bowels, or from some othe, cause not understood, it having been proved by experiment that concentrated nourish. ment, such as canc-sugar. essence of beef: or osmazome, cannot long sustain life with out some mixture of coarser and less nutritive food.

7th, That the economical preparation of all food containing globules of fecula co:sists in perfectly breaking the shells, and rendering the dextrine contained in them soluble and digestible, while the fragments of the shells are at the same time rendered more bulky, so as the more readily to fill the stomach.

We hope these principles have been herc put in intelligible and unequivocal language, so that they may not be misunderstood, secing that they are of the very highest practi. cal importance in preparing the food of all live-stock as well as of our own. But lest some of our readers of the old school, wio are apt to reject most novelties as theoretical, should refuse to admit the truth of the deductions, it may be well to corroborate the results from actual expreriments made by those who were ignorant of the very existence of the globules described by M. Raspail or the dextrine of M. Biot.
(To be cuntinued in our next; ,

Inferiority of English to China

 Ink. - The directors of the Bengal bank lately refused payment for a number of bank notes, in consequénce of their containing no signature. It appeared that they belonged to a Hindon, who had kept thein in a copper box. He asserted that they originally possessed the signitures of the director, comptroller, cashier, \&c., but that they had been effaced. The notes on which the signa ures had been written with Chiuz ink remained uneffaced, but all the writing with English ink had completely disappeared. Mr. Princep, in order 1. determine the question, placed a paper co vered with writing in English ink betweet two plates of copper. - Atter a short space of time he found that the copper had de composed the ink, aud that the writing wa completely effaced. He concluded that th. accoint of the Hindoo was cerrect, an thai the bank ought not to refuse payment. - [Rtc. Gen. Science.]* Asiat. Society Journal, and L'Institut. 180, 360 .

Coltivation of Filberts.-Sir, in conon fnr trying the merits of the sugge: tio: 1 in . erted in your number 183 . just 10 years ago ir improving the crop of filberts. and as I rave reason :o believe from my own and other's subsequent experience, t.at my idea is well founded, you will perhaps allow the e-appearance of the following:-"In coun. ries where figs are cultivated to the greatest sertection, particularly in Italy and Greece, I great augmentation, butt in the size and lumber ot the figs, is obtained by placing en -ire to; of the tree a branch ol the wild fig. ree (Caprificus), upon which have appeared male-flowered figs, which are the first to come forth. I have o.ten thoug'it, that the srop of filberts might be both ameliorated and increased, by a somewhat analogous application of a branch of the common haz.e, when covered wit.' the 'cat-kins' or lowers. Tiuis is just the time to try the axperiment." I hope taat some of your correspoadents who have the opportunity, will try and report upon the experiment. Besides the increase of the pollen, it may tave an effect like the recurring to the original stock by grafting or seed, as with ap. des and some other fruit-trees. Filberttrees are oiten deficient in male flowers.Yours, \&c.,
F. Maceroni.

The Impolitance of Time Keeping.The topography of watch-making, at houne and abroch, would present a vast number of cuions and interesting facts.In consequence of the minute subidivision of labor in this trads, it is sail that there are unlf three plices in the United Kingdom where a complete watch can be wanufac. tured,-London, Lirerpool and Coventiy. The business has been in roluced at the tatter place entirely since the year 1800 , n.l the number of persons employed in it there isnow supposed to equal the nuriber n the metropolis.

Analysis of Iron Ores.-Berzelius states the following to be a rapid mode of analysing these ores. He boils them with chloride of enpper slightly acidulated with mitiatic acid, then on boilng the residue with carbonate of soda, washing the result, drying and "etghing, its weight indicates that of ihe barbón.*-[Rec. Gell. Science.]

* L'Institut. 170.

Advertisements.

AVERY'S RUTARY STEAM EN. SINES.-AGENCI.-The subscriber ofers his services to gentlemen desirous of rocuring Steam Elighes for driving Saw. Allls, Girain. Mills, and other Manufacwries o. any kind.
Engines only will be furnished, or accom. anied with buzlers and tue necessary Sia. henery for puting tuem in operation, and .n Engineer always sent to put tuen up.
Information wall be given at all times to oose who desire it, eitaer by letter or by xn biting the engmes in operation in this city. Inquiries by letter shou d be very explicit ad the answers snall be equally so.
D. K.MINUR,

80 Wall-st, New York.
transactions of the institution of civil engineers of great britain.
The first voume of this valuable work, as just made.its appearance in this country. A few copies, say trenty-five or thirly only, ha ve been sent out, and t. lose have neally or quite all been disposed of at len dollars cach-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order tierefore, to place it withi , their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on, wood, and issue in six parts or numbers. o? about 48 pages each, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the close.
Tae price will be to subseribors three dol. lars, or five dollars for two copies_aleays in advance. Tue first number will be ready for delivery early in April-Subsc.iptions are solicited.

DRAWING INSTRUMENTS.-E \& G. W. Blunt, 154 Water-street, NewYork, have received, and offer for sale, Drawing Instruments of superior quality, English, French, and German Manufacture.

They have also on hand Levels of superior quality at low prices.
5 Orders received at this office for the above Instruinents

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pamboun-150 pages la:ge octavodone up in paper covers so as to be sent by mail-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts. for any distance exceeding 100 ms .

Also-Van de Graaff on: Railroad Curves, done. up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.
Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts.
** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the Unied States.

A COURSE OF INSTRUCTION IN

 CIVIL ENGINEERING, by informal lectures, 10 occupy two montlis, commencing the lst week if May-ComprisingThe use of the theodolite, level, Compases plain table, cross, and sextant explained upun the instruments themselves: :opographical drawing executed m der aupervision ; survey of routes; problems of excaration and embarkment ; railroad curves; all the usual details of construction upon cominon roads, railroads, and canals; including bridyes, culverts, tunnels, and the various kinds of motive power; nature, strengih and stress of materials ; masonry, carpentry and constructions in iron; alli: vial depusites, guaging of streams, \&c.The whole purely elementary. Terms of adinission to the course, $\$ 20$.

Apply to C. W. Hackley, Professor of Mathematics in the University, 32 WaverIly tlace.

TO CONTRACTORS.

JAMES RIVER AND KANAWHA C INUL. TIItKE is still a large amoult of merlinnical wort to let on the line of the James Ruvor and Kanawha finprovempat, consizing of twenty lowhe, alona wit handred culserts and'sesimal large aqu-ducte, whinh will be offered un resimnsible cont achurs at fair paire.

I'he lociss and aqueducts are to be built of cut stone.

The work contracted fur mast he finished by the 132 day of July, 1838
Persons desirous of ubtaining work are tequested toapply at the office of the underaigned. in the cits of Richmond, before the fifteenit of May, or betweet the fifin and the fifteemh of Joly.

CHARLES ELLET', Jr.
p- S -The Chief Engineer Jas, Riv, \& Ka. Co. mond is healthy.

16-10t

HATENT RAILROAD, SHIP AND BOAT SPIKES.

** The Troy Iron and Nail Factury keeps constantly for andea very extpnsive assurmenit of riught Spikes and Naifs, frum 3 to 10 inches, manufacturd by the subscriber's Patent Machinery, which after Give years successful uperntion, and now ainust miversal use in the United Staten, (as well as England, where the subscriber obtained a patent,) are found superior to any ever offered in markw.
Rsilruad Cumpanies may be anpolied with Spikes having countersink heads suitable to the hules in irul rails to any amumt and on short notice. Almost all the Railruads now in progress in the United Sitates are fastened wilh Spikes made at the above named lacfasteneal whith pikes made at the abuve named fac-tory-for which purpuse they are found invaluabli, as their adhession is more th
spikes made by the hammer.
*** All orders directed tu the Agent, Troy, N. Y. will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spikes are knpt for sale, at fartory prices, hy 1. chants, and the principalifon Mer chants in Albany ana arny; Jo.i. Brower, er2 Whier atrevt, Now-2 ork; A. M. Jones, Philadelphia;
Janviers, Baltimore; Degrand \& Smith, Buston.
P: S.-lRailrnad Companies woull do well to for ward their orders as eurly as pructicable. as the subscriber is desirnus of extenting the manufacturing so as to keep pace with the daily increasing desand fo his Spikes. (IJ2Jann)
H. BLRUEN.

TO RAILROAD CONTRACTORS.

SEALED proposals will be received at the office of the Sclma and Trernesseo River Railroad Company, in tho town of Sillua, Alabnma, fur the graduatiun of the first furty miles of the selma and rennessee Railroud Pruposals fur the first six miles from Selma, will be received after the firsi of
Mas, and arted on by hise Board on the 15 :h Maj. Mrupusals fort the ensuing 34 miles, will be recrived after the loth May, out nill nut be examised unal the lst of August nex, when the work will be ready for cuntract.
The line, after the first few miles, pursuing the flat of the Mulberry Creck, uccupies a region of cuuntry, having the repute of being highly healthful. It is free frum ponds and a wamps, and is will watered The suil is generally in cultivation, and is dry, light The entire length of the line of the Sel a and Tennesuce Rilruails, will be about 170 milvos, passing generaliy through a region as iavorabte for heilth aw any in the Southren Country
Owing wo the great interest at atake in the success of this enterprise, and the nnount of capital already embarked in it, this wurk must necessarily pruceed with viger, and 1 invite the altenion of mell of indus. try and euterprise, buth at hee Nurth and elst wheie to this undertaking, as uffering in the ptospect of continned empluynent, and the rharactir of ihe suil and elimate, a wide and desirable field to the cortsractur.

Pruposala may be addressed cithor to the snbseriber, or to General Gilbert Shwarer, President of the Company:
ANDREW ALFRED UEXTER, Chier Engineer
Solmn, Ala., Ma-ch 20ih, 1827.

ROACH \& WARNER

Manufacturers or OPFICAL, MA!IILMATICAI, AND PHILUSUPIICAL INSTIRUMFINI'S, 293 Brualway, New York, will keep constantly on han! a. large and general assurtment of instruneuts in thei W
Wholesale Dealers'and Country Mirchants supplied with SI RVEYING COMPASAES, B+RU.MI TERS, THEHMOMETY.KS, \&c. \&c. of thei OWH manufacture, warranted accurate, and at luwer price than can be had at any other extablishment.
unarmments made to order and repaired. 14 ly

FRAME BRIDGES.

THE undersigned, General Agent of Col.
II. I.ONG, to lmild Bridger, or vend the right to

 preparwal th make e ntracts to hinild, and furni ho all ruaterials for superstruchres otith hind, ill any part of the 1 tilied siaten. (Maryland ixepol-d.)
Bitiges un the stove planare to lie reen at the fill. lon i. yg localitips, viz. On the main road lending irom
 place. Across the Metawaukeag rivir on :he Miliplary noad, in Maine.: Un tha national ruad in Illinuis, at sundry puints. Onthe Ba'timore and Sisquehartna lirailrond nt three points. On the Hudsun anc Patervon Railruad, in two places. On the Bustonand Wurcester Kailroad, at aeveral points. On the BusIon and l'rovidener Railruad, at sindry points. Acruss the Contuorgok river at Henniker, N H. Across the Suulhegan river, at Milford, N. It. Arross the Cunnecticut siver, at llaverlill, N. H. Across the Cont tuwcuoh river, at Hancuck, N. II. Acrose the Androscoggiat tiver, at 'Iurner Centre, Maine. Across the Kennebec river, at Waierville, Maine. Acmss the Genesse river, at Equaki-hill, Mount Morris. New-Jork. Acruss the Whis liver, at Harlfurd V_{t}. Across the Cunnerlicut Kiver, al Lebnnum, N H. Acruss the mouth of the Broken Siraw Creek, Penn. Across the month it thr Cataraugus Creek, V. I. A liailroad Bidge diagonally acuss che Erie Canal, in the City of Rochexter, N. Y. A Ra lroad Bradge at Lipper sill Water, Urunu, Maine. This Bridg. is 500 leet in laggh; one of the spans is uver 200 feet. lt is prubably the finmest wuo, N anidge ever huilt in America.
Nutwithstanding his present engugements to builu hetween wenty and thirty lailruad Bridges, and aeveral common bridges, orveral of which are now in prugress of consiruction, the subscriher wiil promptly altend to business of the kind to much grater extent uns un libural serms.

Rohester, Jan i3tin, 183\%.

ALBANY EAGLE AIR FURNACE ANU MACLIINE: SHOP.
WILLIAM V. MANE manufactures to order iron castings fur Gearing Mills and Factoriea or every desrription
ALSU-Stenm Engines and llailruad Castinga o every descriphtun.
Tlie cullection of Patterns for Machinery, ia now
oqualled inithe United States oqualled inithe United States

NEW ARRANGEMENT.

ropes for inclined planes of railiteade.
WE the subscribers having furmed a oo-parinership under the atyle and firm uf Fulger \& Culeman, fur the manufacturing and selling of Lzopes for incline d planes of railruads, and fur uther uss s, uffer tu supply ropes for inclined planes, of anis lengih reguird withont splice, at short notice, th inalufacluring of cordage. heretofure carried on by
is S Durlue de Co., will bedone by the new firm, he A. S Durive de. Co., will be done by the new firm, the lie new firm thit were empluyed by S. S. Duriee \& Co. All urders will be prompily atirnded to, anul rupes will be shipped to any port in the United states. 12th rnonth, 12.h, 1836. Iludson, Culunbia Cuuns Siate of New-广ork.

33-1f.
ROBT. C. FOLGER.
AMES' CELEBRATED SHOVELS, SPADES, \&C.
300 dozens Ames' superior back-xtrap Shovels
150 do $\begin{array}{lllll}150 & \text { do } & \text { do do plain du } \\ 150 & \text { do do do } & \text { do caststecl Shuvels }\end{array}$ 150 do du du caststeel Shuvels \& Spade
150 do do Gold-mining shovels 100 lu. do plated Spades
50 do do pucket Shuy-ls and Spades.
Fagether with Pick Axes, Chirn Drills, and Cron bars (steel pionted, namifartured from salivilury re ised iron-lor sale by the manulhrluring agents, WITHERELL, AMES \& CO.

No. 2 Liberty atreet, New-York BACKUL, AMES \& CU.
N. B - Also furnished tuorder Shaper Albany N. B -Also furnished to order, Shapes of every de
anrintion. made from Salshury' refined Iron v4-If

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads.
No. 264 Filizabith atree!, near Blecekersitrcet, vew- Yurk.
RAILROAD COMPANIES would do well to ex. mne these cars; a sperimen of which may lin see on that part of the New-Yurk and Hariaem Railroa nuw in uperation

TO RAIJ,ROAD CONTRACTORS.
Proposals will be receiced. at the offiee of the Ilinassse lialtruad Com., in the town of Athens, Tre nessee, muil stintet, of Monday, Juise 1\%h, 1837 ; lior the grading, mavoury and biitiges, on that pirtion of the Hiwasur e Railkuad, u hich lieg beincell ihie Riser 'l'tmiessee und Hiwassee. A cistaicer of 40 miles.
I lie quantily of excavation will be sbout one mil. joln of rulni yardw.
Th line will b, stak dont; and, sogether with Jranmige and sp culicotions of the work, will bo ria y tor the inspecion of cuitiactors, on and afier the lat day vi June.

JOHN C. TRAUTWINE,
6as.
RAILWAYIRON, LOCOMOTIVES,\&c. Tlle subscribers offer the folluwing articlez for sale.
Railway Iron, fat bars, with countersunk holes and mitrell juints,
350 tons 24 by $t, 15 \mathrm{~B}$ in length, weighing $\frac{1 \mathrm{lbs} . \frac{8}{106}}{}$ per n .

7
80
90
with Spikes and Splicing Plates adapted thereto. To be suld fien of duty to State goverimeits or incor. furatad cumpanics.
Orders fur Pennaylvania Boiler Iron executed.
Rail Road Car and Locumutive Engine Tires, wronght and turned or unturned, re ady to be fitted on the nheels, viz. 30, 33, 36, 42, 44, 54, and 60 ieche: uinmeter.
E. V. Patent Chain Calle Bults for Railway Car nyles, in lengthe of 12 fi et 6 inclips, to 13 feet 24,21 $3,31.3 k .3 t$, and $3 t$ inches diameter.
Cliaina for lincluied Planes, shurt and atay linka, manutactured from ihe E. V. Cable Bolts, and proved at the greatest atrain.
India lusbber Rope fur Inclined Plines, made from New Zealand flax.
Also Pau-nt Hemp Cordage for Inclined Planer, and Canal Tuwing Jines.
Patent Felt fur placing hetween the iron shair and toll bluck of Edge Railways.
Every descripison of Kailway Iron, as woll as Lo i umotrye Engines, imported at the shartest nutice, by the agency of one of our partners, who resides in Fingland for this purpowe.
Llighly respectable Amorican Engineer, reviden in Elugland for the purpose ut ia ipecting all Loromutives, Machinery, Kal'way Iron \&c. urdered thruugh ns

28 if
A. \& G. RALSTON \& CO.,

ARCIIIMEDES WORKS .

(100 North Mur street, N. Y.;
NEW-York, February 121h, 1836.
THE undersigned tegs leave to inform the proptictors of Railroados that the 5 are prepared to furnish all ninds ul Mlachinery fur Railruads, Lucomolive Enigines of any size, Car Wheels, such as are nuw in sucetes. ful operation on the Camden and Anibuy Ruálroad, numa il which have failed-Castings of all kinda, Whdils, Axles, and Boses, furnished at shorest thetice
-vil H. RUNHAM \& CU.

MACHINE WORKS OF ROGERS, isticillim and GROSVENUR, Paterron, New. tersey. 'T he undersigned recise orders furithe folwwing artieles, manutariured by tho m, of the mont -lperiur deseriphion mevery particuar. 'I heir work: - ing exsensive, and the number of handa en-ployed *ing large, tisey are ginahld to execute both large and sinall urders in th piuniftnis mand detpatich.

RAILROAD WORK

Loromotive Steam-Engines and Fenders; Drivug and ullier Lucumanse Wheels, Axlis, Sprinfz and lange Tires; Car Wheels of rast iron, irem a varely of paiterns, and Chills; (ar Whecls uf castiron, *ilh wanght 'liris; Axles of beat Averican refined ron, Springs ; Boxes and Bults for Cara.
CU'ITTON WOOL A.VD FLAX MACHINERY,
Uf alldescriptions and of the most improv. d Patarus, Sityle and Woiknianahip.
Nill Geering and Millwright work generally; Hyrauil: and vher Presses; Fres screwe; Callen. lers; Lathes and Tuuls of all hinds, Iroti and Brase astings of all descrpicurs.
fUGCKR, KEHCHUM \& GROSIENOR
Patterion, Now-Jeroey, is 60 Wallaiselt, N.

AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTS.

published wfekly, at no. 30 wall street, new-york; at five dollars per annum, payable in advance.
D. K MINOR and

GEURGE C. SCIIAEFFER, EDITORS AND
ClatFfer, \} Prorietoru.]

CONTENTS :

Notices,

Railroad Items, etc,
Railroads at the South,
Michigan and Laporte Railroad,
Extraordinary draught by one horse;
Sta uistic of Great Britain, etc.,
New Patent Law,
Poppy Seed Oil,
Precious Stones,
New Lamp; Galvanism,
Fall of Fishes from the Atmosphere in

Abstract

\because India,

Agriculture, etc.,
Advertisements,

339
337
334
33ε
338

340
342
343
345

345
346
351

AMERICAN REIEROLU JOUIRNAL.
NEW-YORK, JUNE 3, 1837,
REMOVAL. - The Office of the RAIL ROAD JOURNAL, NEW.YORK FARMER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-street, base ment story, one door froin William street, and opposite the Bank of America.

07 SUBSCRIBERS in this City. who change their residence on the l.st of May, will please give notice at the office, 30 Wall-street, Basement Story. It is desirable that the notice should specify their late and future residence.

TO CONTRACTORS.

PROPOSALS will be received unil Tunday ovening, the 27 th June next, at the office of the Wrighaville, York asd Gen.se nurgh Reilroad, in York, fur laying a single srack of Rails on $12 /$ mil-s on the ebove road, extending from Wi ighleville to Yoik Plans and epecificatiuns of the work will be - Mh ned in the office alter M, ndis, the 8 th insi, and foriber informaiion will be furnished by Mr. J. Y. Houstun, P. M, at York.
F. W. MIFPLIN, C. E.

Mey $8,1837$.
22-3:

NOTICE TO CARPENTERS.

A number of Carpenters are wanted to lay the superstructure of the Georg:a Railroad, to x hom liberal wages will be given.
The ruad traverses an elevated ridge which is en:irely free from any local cause of sickness.
john edgar thomson, Ch. Eng.
Engineers Office, May 22, 1837.

NOTICE TO CONTRACTORS.

NOTICE is hereby given that the grading of the ! Buffato and Missiassippi Railroad,' for a double track, between Michigan city and La Porte, a dis. tance of 12 miled, will be let at public ouncry, wo the linwest bidder, at La Porte, on Wednesday, the 1 Hith Jay of June next.
The Maps, Prufiles and Estimates of the route will be ready for examination at the Engineer's uffice in La Porit, afier the first of June.
R. STEWART, President.

Michigan City, April 2s, $1837 . \quad 22-2 \mathrm{~m}$
Mechanics' Fair in Boston, Mass.We give the fullowing notice of the Board of Managers of the Massachusett; Charitable Mechanies' Associatioa, for their First Annual Fair, to be held in September next. We are gratified to see that the Mechanics' of Boston are not to be outdone by other cities, in the establishment of such in s:itutions for the benefit of industrious and enterprising Mechanics. We anticipate a splendid exhibition of New-England ingenuity, industry and skill.

MECHANICS' FAIR.

Notice to Mechanics, Altisans, Manufaclurers, \&c.-The undersigned give no. tice that the first Annual FAIR of the Massachusetts Charitable Mechanics' Associa. ion will be held in the city of Boston, in Jeptember next, commencing on Monday the 18th, and continuing at least thre days.
The Asociation have placed at the dis-
posal of the Board of Managers, the sum of Five Thousand Dollars, to enable them to conduct the Fair upon a liberal scale ; and they hope to be able to render satisfaction to all who may feel disposed to offer articles for exhibition.
Medals or Diplomas will be awarded to the owners of all articles that may be deemed worthy of such distinction; and the Managers intend that the strictest impartiality ard fairness shall be observed in the distribution of Premiums.
The Managers, in furtherance of the ob. ject they have in view, invite contributions of articles from every department of industry ; of choice specimens of American in. genuity and skill; rare and valuable domestic productions, natural or artificial ; the delicate und beautiful handiwork of females ; useful labor-saving machines, implements of husbandry, and new models of machinery, in all their varieties.

Judges will be appointed to examine all articles offered. and the managers will award a gold or silver medal, or a diploma, to all articles that may be pronounced by the judies worthy of reward.
Articles intended for exhibition, must be delivered on or before Wednesday, Septem. ber 13 l .

Arrangements will be made to exhibit, in operation, any working models that may be offered, which will render the exhibition useful and interesting, and the managors re. spectfully invite contributions in this branch. A careful and competent super miendent vill be appointed to take chare of all mo. lels sent fur this purpose.

Board of Managers.

$\begin{array}{ll}\text { Stephen Fairbanks, } & \text { Jos. T. Buckingham, } \\ \text { Join Rayner, } & \text { James Clark, }\end{array}$

William Adams,
Uriel Crocker,
Gardner Greenleaf,
James L. Homer,
James Barry,
Joseph Tilden, Ephrain Harrington,
Joseph Lewis,
Walter Frost,
Thomas J. Shelton,

Henry W. Dutton,
George Darracoth, Wm. S. Pendleton, Charles A. Wells, Henry Bailey, Jonas Chickering, Henry H. Barton, Thomas Boyd, Wm. Uunderwood, George G. Smith, John G. Rogers.
P. S. For any further information address JAMES L. HOMER, Correspoṇding Secretary, Boston.

Boston, March 24, 1837.
m28-ts1
$0-5$ Should any subscriber receive his account, by any means. incorrectly made out, he will confer a spceial favor by returning the account, with a copy at full length of his last receipt. The name signed to the 'receipt, with all the dates, are important. to correct the books.

This request is made in consequence of the detection of several errors which occurred in consequence of the destruction of our office by the great fire, and the omission of a few names by collectors.

Postponement.-The time for reeciving, proposals for laying the rails on the Railroad between Wrightsville and York, has been postponed until the 27th of Junc.Those papers requested to copy the atlvertisement will make the correction and give it three additional weekly insertions.-[star and Banner.]

The Rideau Canal has been in tull operation since the 4 th inst., and the Companv's Steamboats are running full trips. On Saturday afternoon, the Rideau arrived with two barges in tow, all laden with goods, and with a large number of passengers, mechanics and laborers from Bytown and the neigh. borhood.-[Kingston (U. C.) Herald.]

Compliment to American Genius.Our mechanic Avery's simplified steam en. gine, exhibited in full and successful operation at the last New-York Fair, and since admirably applied to various mills in the interior is nighly extolled by the learned Dr. Lardner, and is to be reported upon at the French Institute, by the illustrious astronomer Arago. What will they eay of the total abandonment of fuel and steam in Davenport's Electro-magnectic Rotary machine 1-[N. Y. Star.]

Internal Improvement Convention. -We are glad to perceive that the people generally approve of the proposed Convention. Delegates have been appointed in many of the counties. We hope to sec all the counties represented. It is an important subject, and no plan can be more effec tual in concentrating public sentiment in
favor of a judicious system, than that of a Convention, in which the interest of every section of the State can be fully represented.
The Convention is to be held in this place on the first Monday ir Juns.- [Tuscaloosa (Alabaına) Intelligencer.]

Important to Rail Road Subscri-bers.-On Tuesday last an action was brought in the city of Detroit by John Prince, Esq. (President of the Ningara and Detroit Rivers Railroad Company) against Robert Bolton, Esq. late of Sandwich, U. C. but then living in Detroit, to recover the sum of $\$ 31,25$, being his first instalment of $2 \frac{1}{2}$ per cent. on 50 shares taken by him in the above stock.

Mr. Bolton employed Messrs. O'Keefe and Churchman, counsellors at law, to defend the action; and they resisted the demand upon several grounds, and especially on an alleged want of consideration, ant because the scrip had not been delivered or tondered to their client.
Mr. Prince conducted the case in behalf of the Company, and answered the objections raised by the defendant's counsel.

The jury retired, and in about a quarter of an hour returned with a verdict for the plaintiff for the full amount, which carried costs also.
This case establishes a precedent which renders the subscribers to railroad stock liable to be sued at law for the amount of their subscriptions.- [Detroit Courier.]

Railroads at the South.-We find the following article from a (ieorgia paper called the "Federal Union" in the "Georgean." It evinces a spirit and a proper sense oi the advantages of internal improvements, which does credit to the Editor. We are always happy to meet with such advocates of the system, which more than any other, will continue in existence the Federal Union of which we as a people have been so justly proud.

The remarks of the Editor in relation to the opposition of men in "high places" to the public works of Georgia, will apply as well to other States as to Georgia_and we regret that it is so. Opposition however fortunately cannot prevent the success of such works as the $\mathcal{N}_{\text {cto }}$-York and Erie, the Baltimore and Ohio, the James River and Kanawoha, the Charleston and Cincinnati, and the Georgia, Western and Atlantic Im. provements. The Pyople require them and they will be accomplished in due time. Wil the Editor of the "Federal Union" exchange with us ?

From the Pederal Union.

western and atlantic railroad.
It gives us much pleasure to state, that Colonel Long, the Chiet Civil Engineer of the State, arrived in this city on Saturday evening last, and is now making preparations to proceed immediately to make a re.
connoisance of the country from the Chattahoochee to the Tennessce River, preptrato. ry to the instrumental survey of the route .or this great State work, which will be conmenced so soon as the necessary instru. ments shall arrive. The Governor has been very fortunate in the selection of Col. Long, because having formerly passed through the country from Athens to the Tennessee River, on both sides of the Lookout Mountain, in discharge of his duty as a member of the Corps of Topographi. cal Engineers, he has acquired much know. ledge of the Topography of the route where the road will probably pass, and will therefore be able to proceed with the surveys inuch faster than one who does not possess this information.
There can be no doubt now, that the work of internal improvement in Georgia, will be prosecuted with energy and despatch, and that before the fall, a considerable portion of the road from the Tennessee to the Chattahoochee, will be located-under contractand partly performed.

This important road, designed to connect the great west with the Southern Atlantic sea coast through the territory of Georgia, is a work that will be productive of more benefit, and reflect more honor on the State than any thing she has heretofore attempted.

The enlarged and liberal views of the members of the last legislature, manifested in the act for the construction of this road, and in the distribution through the Central Bank, of the surplus revenue to the peopie, are worthy of all praisc. Yet strange to tell, there are men, and some too, who fill high places, who openly denounce both these acts, thus exerting their influence against the best interest ot the State. But the people will not heed such advisers. The spirit of internal improvement is aroused, and Georgia though late to begin, will not linger in the glorious race she has commenced.Her best and most intelligent citizens are united in this policy,-thay do not doubt the most brilliant results. They look confident. ly forward to the day in which Georgia will be traversed from the sea to the mountains in railroad cars, travelling at the rate of 20 miles or upwards in an hour. Then will the voice of revilling be hushed and those who now oppose this enterprise be laughed to scorn. The pressure of the times but urges us onfvards in this important matter, and unless we greatly err the people. will be but the more confirmed in the necessity of bringing all their energies to its aid.

We are proud to say that his Exceilency, Governor Schley, has been very artive and zealous in the cause of internal improvement not only in his exertions to procure the passage of the law pledging the funds of the State for the construction of this road, dur. ing the last session, but in procuring competent persons to execute that law, ánd we un. derstand that he intends as soon as he can, consistently with the discharge of his official duties at the seat of Government to repair to the line of the road and aid as far as may be in his power to expedite the work.

Tie Raileoad.-By the time our paper is issued the whole line of the railroad from Michigan City to Laporte will have been run.

Through the persevering labors of Gen. Orr, all the relinquishments have been made both in the city and through the interior. and the necessary depots and tracks withir the city located. Great credit is also du to that genileman, as well as to Col. Stewart, and Gen. Brown, for the able, eficient; and zealous manner in which they have per. formed the arduous duties intrusted to them Nor ought we to suffer the opportunity to pass without congratulating the public and the stockholders on the unanimity and yood feeling which have prevailed among all parties. The relinquishments have been made in that generous spirit of enterprise and noble impulse which has ever characterized our section of the country, and which is always ready to second any efforts made or projected for the general good. Independent of this it may not be invidious to advert to what has been done wihhin the immediate limits of our city. The Michigan city Company, through their triustees, Col. Teall, and Wm. H. Goodiue, Esq., the West Addition Company through their agent, Willys Peck, Esq., and James Forrester, Esq., whose lands corner togother at the most eligible spot, have donated to the Railroad Company, for its general and manufacturing depot, a quantity of land amounting to upwards of fifteen acres-the present value of which may be estimated by those even at a distance, when informed that it lies almos: in the hoart of the city. This general de. pot will be reached by an arm branching off upon eight streets.
Nor is this all. The Railroad is designed to pass down Wabash strect, on which it reaches the Lake, by a double track in the centre of that street. A depot also, for the passenger cars, is to be constructed in the centre of Wabash street, between eighth and ninth, of a spacious and convenient size, for which the requisite ground has also been donated, and so as to leave the street, at this point, one hundred and forty feet wide, none of this valuable property costing the Railroad Company a solitary dollar.
Probably no scetion of the country could be pointed out presenting fewer obstructions for laying a railroad than this. The undulations are few and slight, and that useful, and in most places, indispensable tool, a pick-axe, will not need handling the whole distance. By an advertisement in another column, it will be seen, that the grading will be let out, at public out-cry, on the 14th of next month, and we know there are enterprising men enough in this country to undertake and carry it through without delay. We hope to have it in our power shortly 'o lay the Charter before our readers.- [Michigan City Gaz.]

extraordinaty draught by one horse.

The following extraordinary feat of a draft horse has been recorded. Soon after the completion of the Surrey Iron Railway and when it was open for the conveyance of goods frorn Wandsworth to Merisham, a bet was made, that a common horse could draw thiry-six tons for six miles along this road, and that he should commence his labor with a dead pull, as well as turn it round the occaeional windings of the road

A number of persons aszemblel near Mertsham to witness the perfornance. Twelve wagons loaded with sicmes, each wayon weighing three tonn, were linked toget her, ind a horse taken from a timber team o: Mr. Harwood was hnoked to th first waron: He staried from near the Fox public house, and drew this immense weight svith arparent ease, to near the turnpike.at Croydon, a distance of sis mules, in one hour and forty-one ininutes. - In the course of his journey, he was stopped four times, in order to show that it was not by the acquired impetus that he perforned the task. After each stoppage, a chain of four wagons was added to the train, with which the same horie set off again without difficulty, even afier about fifty men had mounted them.-[Far. Mag.]

Canal Boat Performance --The Prov. ider $\mathbf{c} 3$ Journal states that the Canal Boat William Wirt, for Worcester, laden with 560 bushels salt, and 100 barrels of flour, (27 tons,) went over the dam, ten feet, at the 'Sinking Fund,' on Saturday, at 120 '. without the slightes damage to boat or cargo, or the lest blame to any one.

From tha Now York Fariner.
statistics of great britain.
Statistics of the British Empire.-A highly valuable work on this subject has been recently given to the public by James McQucen, and dedicated to the Duke of Wellington. We infer from this circumstance that its authority may be relied upon; and we believe that many of its details, especcially as far as they relate to agriculture, come within the province of this work; and will be interesting and instructive to our readers. Statistical facts are always valuable; but we do not think in this country sufficiently appreciated. They alone enable us to form any think like an exact opinion of the actual condition of a country, its actual wants, its actual capacities and improvements. They are extremely useful to the age in which they are given; and they remain as most important documents of reference to all succeeding periods. With respect to many matters of national policy and legislation, they are the only safe grounds of action; and the most serious mistakes have been made for a want of this knowiedge. In many subjects of statistical detail, perfect accuracy is not attainable. Changes are perpetually occurring, and allowance for these changes, in the shape of what sailors zall 'dead reckoning,' must be made. But aven a tolerable approximation to the truth is infinitely better than mere vague guesses or conjecture. The extremo difficulty and abor requisite in prosuring such details can be but very imperfeetly estimated by those
who lave niade no experiments of this kind; the diiniculty of superintenling the press in such cases, so as to insure accuracy, is not inconsiderable ; extreme candor is to be shown and the Jighost credit is duc to those who bury themselves in this severe and hum. bie labor'; and present the results to the public cye wih all the accuracy which extreme diligence an pains taking can secure. This work, though compressed into a thin octavo, could not have been executed in the manner it las been done, without application to numerous, various, difficult and distant sources of information. We stall make such feiv extracts from it as may be most likely to command attention.
The rents of land in England, vary from 20s. to 3!. sterling per acre. In Scotland, from 20s. to 7l. per acre. The latter very high rents are in the finely cultivated districts of Mid Lothian, and probably in the neighborhood of city markets. The average rent is put at 25 s. to the acre. Rent in Ireland, on land manured for a crop, is 92 ; not manured $2 l$. to $3 l$. The average rent in Ireland is put down at 23s. per acre. Land in Ireland sold for thirty years, we should rather say leased, is calculated to yield $3 \frac{1}{2}$ per cent. Rent of sheep pasture in Scolland, is from 3s. to Gs. per acre. The wear and tear of horses is estimated at one.tenth; so that there is a complete ab. sorption of this species of capital once in ten years. This fact, if well established, has a most important bearing upon the question of the comparative expediency of em. ploying horses or oxen for farming purposes : the former a deteriorating, the latter when properly managed, an improving capital. This single circumstance of difference will not however by any means decide the ques. tion. Many other matters are to be taken into the account, and at present we forbear a judgment.

Hozses.-The whole number of horses now owned (1832) in Great Britain 1.412,797. Add for Ireland one half more 706,-: 393. Total. Great Britain and Ireland $2.119,705$. We have in a note some other details. The number of horses in the Prus. sian provinces was in 18:25-Horses 1.202,. 642. Coits, 199,706. Total, 1.402,348. Tne number of horses in France is stated to be $2.400,000$. The estimated value of riding and carriage horses in England, is 40l. each-of horses for agricultural purposes, 25%. each. 'Total value, $£ 60,630,130$ sterling-a considerable capital to be literally worked up once in ten yoars.
Blace Cattle.-The number of Black Catle in the United Kingdom is estimatod at $15.000,000$. According to the agrievel-
tural report of 1833 , the value of cows bought, is from 131 . to 151 . and of oxen, working, 14l. to $16 l$., and of those sold from 18l. to 20l. The wear and tear, or loss it, cattle annually, is reckoned as in horses, about one-tenth. The absolute loss of onetenth of black cattle, by disease or accident. so as to be worthless, excepting for their hides, as of horses, in a year, must, if so understood, be a great overstatement. The total number of cattle and calves slaughterod in London in the year 1834-5, was 17\%,
000. The average weight of the cattle was 880 lbs . each. The number slaughtered in Liverpool, Manchester, Leeds, Sheffield and Birmingham, according to the Agricultural Report of 1821 , was yearly $47,8.59$ cattle, 668 lbs. each; and 52,448 calves at 90 lbs. each. The number killed in Ireland to procure salt-beef must be great, when it is known that reduced as that salt.beef trade is, still the quantity exported to all foreign parts was in 1825, 73,135 barrels, or 219, 305 cwts ., equal to at least 30,000 of the heaviest oxen alluded to. The Kyloe breed of cattle in tre West Highlands are very numerous; thousands of these cattle are fed, and fattencd, and slaughtered yearly in every part of Scotland and England ; their price is very high; three years old, 13 to 14 guineas each in 1816. 'The totul num. ber, classes, and value of black cattle, thus : Bulls, young and old, 500,000. Cows, cio.. 7,000,000. Oxen, \&c. fattened to kill, 2,000,000. Oxen growing up for fatting 4,000,000. Oxen, used to work, 500,000. Cattle to supply wastage, $1,400,000$. To. tal, $15,400,000$. The total vadue, which, at 14l. per head, we think must be an over-es. timate, is set down at $£ \mathbf{£} \mathbf{2 1 5 , 6 0 0 , 0 0 0}$.

A note here, in giving the modes of keep in some places, states that in Jutland a cow yields from 64 to 84 lbs. of butter; in Hul. land, the same ; in Zealand, less milk givet to calves, $\mathbf{8 4} \mathrm{lbs}$. do. A horse has weekly 84 lbs. of straw, 56 lbs. of hay; 88 lbs . of barley or 96 lbs . of oats. A cow of middle size dally 8 lbs . of straw and 8 lbs . of hay during the 200 days she is in the stall. When fed with potatoes, must have 52 lbs . pel day, but with this, less straw and hay. From eeven to ten sheep consume as much as one cow during 180 days they are housed. The number of black cattle in the United States in 1827, was estimated at $14,000,000$. By what means this estimate was formed, I am unable to say.

Potltry and Rabbits.-"The amount of capital vested in these two species of agricultural stock is of no mean importance, and much more considerable than is genesally thought. According to the Times nerpepaper, Nov 20, 1835, the consumption
of poultry in London for the year was about $30,000 l$., and rabbits 14,000 . On the same scale for tite kingdom, the value of the foriner would be nearly $1,000,009 l$., and the latter in number 163,000 , nad the value $34: 300$. The skin of the rabbit is very valu. able, being double the value of the carcase. At Dunfries' February fair, 30,000 rabbitskins.have been sold. In Feverham, rab. bits and pigeons are very numerous. In the district of Brundon, Suffolk, are 350 pigeon houses ; here also 40,000 rabbits are produced yearly. The Agricultural Committee of 1833 , scts down the produce of pigs and poultry on a farm of 100 acres at 20l. annually; this, taking the farms wholly arable at 490,000, gives $9,800,000$ l. yearly, which sum, even on this srale, must be more than doubled, for the poultry, \&c., raised by sheep farmers, and all other classes, who kecp poultry; also it must be taken into the account that the above produce, at 20l., is exclusive of the value consummed on the farms, \&c., which, say one-fourth, would give for pigs and poultry, a consumption annually of about $25,000,000 l$., leaving for poultry about $2,500,0001$; and admitting that stock is in the proportion of four-fifths to the produce, we have a capital of 9,000 , $000 l$. or $10,000,000$. invested in poultry, rabbits, \&c., which, great as it is, is proba. bly very neur the truth. When we look at the inmense number of eggs, brought from Ircland (50) tons of eggs and 10 tons of live and dead poultry being shipped from Dublin alone in one day) and 66,000,000 eggs, imported from France for London alone ; and this immense number, a trifle certainly to what are produced in this country, we shall cease to wonder at the large capital here stated to be invested in poultry of all kinds. The quantity of eggs imported into Liverpool from Ireland in 1832 was 409% crates, value $81,940 l$., which at $6 d$. per lozen, gives $3,777,600$ dozens, and the number $39,331,200$. The number imported into Glasgow from Ireland, in 1835, by the Custon-House entries, was 19,321 cwts.; at nine to a pound gives $17,459,568$. In 1833, the import has increased to 7,857 crates, or upwards of $70,000,000 . "$ Of sheep and swine, we shall give further details on a future occasion.

Produce of one Seed.-Extract from proceedings at a late meeting of the North. amptonshire Farming Society in England :

Mr. Hillyard then produced his bag ot turnip sced, for which a great scramble took place anidst much lauglter. He observed hat ore of the advantages of thesegturnips was, lhat they wo sld not run to top, if allowed to stand till late in the year. He haci seen turnips in April run to top until they
resembled a painter's brush. As an evi. dence that they were well worth attending 'o, he would mention that some time ago. he was walking over a turnip field in a dis. tant county, when he'perceived that the turnips were exactly the same sort as those he was now showing. Upon mentioning the fact to the owner, he confirmed it, adding. that his son'had obtained one of the seeds handed round by him alter the dinner of the society; that he had sown it ; and liked it so much that he preserved the produce; and had now his farm stocked from that insig. nificant origin.-[B. Farmer's Magazine, Oct., 1836.

Death of Rev. Heney Beray.-By a late number of the British Farmer's Maga. zine, we have the painful annunciation of the death of the Rev. Henry Berry, for some time the editor of that useful publication.He died on the 24th August last. He was eminently distinguished as a scientific and practical farmer; for the zealous aid which he was always ready to lend to the farming interests ; and particularly for his able de. fence of, and his long and distinguished success in improving the breed of improved Durham Short Horns. The death of such a friend of agriculture is a serious public loss.
H. C.

Froin the Journal of the Franklin Institute. NEW PATENT LAW.
We have now the pleasure of prese ting to the public the Law for the restoraion of the Records and Models of the Patent Office, which will be fuund, also, to contain various provisions tending to secure the rights of bona fide inventors. For whatever there is of good in this law, and we think that there is much that is 50 , tho public are indebted to the inderatignble exertions of the Hon. John Ruggles, of the Senate of the United States, who has devoted himself to this subject with equal zeal and success, from the inception of the bill, to its final signature by the President, at the moment before his term of office expired.

AN ACT,
In addition to the act to promote the progress of science and useful arts.

And be it enacted by the Senate and House of Representatives of the United Stales of America in Congress assembled, That any person who may be in possession of, or in any way interested in, any patent ior an invention, discovery, or improve. ment, issued prior to the fifteenth day of December, in the vear of our Lord one thousand eight hundred and thirty-six; or in an assignment of any patent, or interest therein, executed and recorded prior to the said fifieenth day of December, may, without charge, on presentation or transinission thereof to the Commissioner of Paients, have the same recorded anew in the Patent

Office, together wirh the descriptions, specifications of claim, and drawings annexed or belonging to the same; and it shall be the duty of the Commissioner to cause the same, or any authenticated copy of the original record, specification, or drawing which he may obtain, to be transcribed arid copied into books of record to be, kept for that purpose ; and wherever a drawing wanot originally annexed to the patent and referred to in the specification, any drawing produced as a delineation of the invention, being verified by oath in such manner as the Conmissioner shall require, may be transmitted and placed on file or copied as aforesaid, together with the certificate of the oath; or such drawings may be made in the office, under the direction of the Commissioner, in conformity with the specification. And it shall be the duty of the Commissioner to take such measutes as may be advised and determined by the Board of Commissioners provided for in the fourth section of, this act, to obtain the patents, specifications, and copies aforesaid, for the purpose of being so transcribed and recorjed. And it all be the du'y of each of the several clerks of the Judicial Courts of the United S:ates, to transmit, as soon as may be, to the Commissioner of the Pateni Office, a statement of all the autheriticated copies of patents, descriptıons, specifications, and drawings if inventions and discoveries made and executed prior to the aforesaid fifieenth day of December, which may be f und on the files of his office; and also to make out and transmit to said Commissioner, for record as atoresaid. a certified copy of every such patent, description, specification, or drawing, which shall be specially required by sait Commissioner.

SEc. 2. And be it further enacted, That copies of such record and drawings, certified by the Commissioner, or, in his absence, by the chief clerk, shall be prima facie evidence of the particulars of the invention and of the patent granted therefor, in any judicial court of the United States, in ail cases wheru copies of the original record or specifications and drawings would be evidence without proof of the loss of such originals; and no patent issued prior to the aforesaid filteenth day of December shall after the first day of June next, be received in evidence in any of the said courts in behalf of the paten ec or other person who shall be in possession of the same. unless it shall have been so recorded anew, and a drawing of the invention, it separate from the patent, verified as aforesaid, deposited in the Patent Office; nor shall any written assignment of any such patent, ex ecuted and recorded prior to the sald fifseenih day of December, be received in evidence in any of the said courts in be. half of the assignee or other person in passession thereof, until it shall have been so recorded anew.
Scc. 3. And be it further enacted, That whanever it ahall appear to the Commissioner that any patent was destroyed by the burning of the Patent Office builling on the aforesaid fifteenth dav of December, or was otherwise lost prior thereto, it slall
be his duty, on application therefor by the patentee or other person interested therein, to issue a new patent for the same inven ion or di covery, bearing the date of thriginal patent, with his certific te ther-oti that it was made and issued pursuart t. the proy sions of the third sect on of tlia. ect, and shill enter the same of record: Provided however, That before such patent shall be issued, the applicant therefor shall deposite in the Patent Office a duplicate, as near as may be, of the original model, drawings, and description, with specification of the invention or discovery, verified by oath, as shall be required by the Commissioner ; and such patent and copies of such drawings and description:, duly certified, shall be admissable as evidence n noy judicial cour: of the Unitel Sta es, and shall protect the rights of the patentee, his administrators, heirs, and assigns, to the extent only in which they would have been protected by the original patent and specification.
Sec. 4. And be it further enacted, $\mathrm{T} t$ at it s!.all be the duty of the Commissioner to procure a duplicate of such of the models destroyed by fire on the aforesaid fifteenth day of December, as were most valuable and interesting, and whose preservation would be important to the public; ats such as would be necessary to facili tat. the just discharge of the duties imposed by law on the Commissioncr in issuing patents, and to protect the rights of the pullic and of patentecs in patented inventions and impravements: Provided, That a duplicate of such models may be obtained at à reasonable expense: And provided, also, That the whole amount of expenditure for this purpose shall not exceed the sum of one hundred thousand dollars. And there shall be a temporary board of Commissioner, to be composed of the Commissioner of the Patent Office and two other persons to be appointed i.y the President, whose duty it shall be to consider and determine upon the best and most judicious mode of ootaining models of suitable construction; and, alsn, to consider and determine what models may be procured in pursuance of, and in accordance with, the provisions and limitations in this section contained. And said commissioners may make and establish all such regulations, terms, and conditions, not ir.consistent wi:h law, as in their opinion, may be ןroper and necessary to carry the provisions of this sec:ion into effect, according to its true intent.

Sec. 5. And be it further enacted, That whenever a patent shall be returned for correction and re-issue under the thirteenth section of the act to which this is addition. al, and the patentee sha!l desire several patents to be issued tor distinct and separate parts of the thing patented, he shall first ?ay, in manner and in addition to the sum provided by that act, the sum of thirty dolars for cuch additional patent so to bc issued: Provided, hovever, That no patem nade prior to the aforesaid fiftecnth day' of December, shall be corrected and re-issuec mitil a duplicate of the model and drawing of the thing as originally invented, verified
hy oath as shall be required by the Commis. sioner, shall be deposited in the Patent Office. Nor shall any addition of an improwement be made to any ${ }^{1}$ atent heretofore sranted, nor any new patent be issued for an improvewent made in any machine, nanufacture, or process, in the original inventor, assigiec, or possessor of a patent therefor, nis any disclainer be admitted to rccord, until a duplicate model and da awing of the thing originally intended, verified as aforesaid, nhall have been deposited in the Patent Office, if the Coinmissioner shall require the same; nor shall any patent bo granted for an invention, improvement, or discovery, the model or drawing of which shall have been lost, until annther model and drawing, if required by the Commisioner, shall, in like inanner, be deposited in the Patent Office; and in all such cases, as well as in those which may arise under the third section of this act, the question of conipensation for such midels and draw. ing:, shall I e subject to the judgment and decision of the Commissioners provided for in the fourth section, uader the same limitations and restrictions, as are therein presiribed.
Sec. 6. And be it further enacted, That any patent hereafter to be issued, may be made and issued to tte assignee or assignees of the inventor or discoverer, the assignment thereof being first entered of recerd, and the application therefor being duly made, and the specification duly sworn to by the inventor. And in all cases hercafter, the applicant for a patent shall be held to furnish duplicate drawings, whenever the case admits of diawings, frie of which to be depesited in the office, nd the other to be annexed to the patent, and considered a part of the specification.
SEc. 7. And be it further enacted, That, whenever any patentee shall have, through inadvertence, accident or mistake, made his specification of claim too broad, claming more than that of which he was the original or first inventor, some material and sulstantial part of the thing patented being truly and justly his own, any such patentee, his administrators, executors, and assigns, whether of the who'e or of a srctional in. terest thercin, may make disclaimer of such parts of the thing patented, as the disclaimant shall not cltim to hold by virtue of the patent or assignment, stating therein the axtent of his interest in such pa'ent ; which disclaimer shall be in writing, attested by one or more witnesses, and recorded in the Patent Office, on payment by the person disclainning, in manuer as other patent duties are required by law io be paid, of the sum of ten dollars. And such disclaimer shall thereafter be taken and considered as t part of the original specification, to the extent of the interest which shall be possessed in the patent or right secured thereby, by the disclaimant, and by those claim. ng by or under him subsequent to the rezord thereof. But no such disclaimer shall iffect any action pending at the time of its reing filed, except so fir as may relate to the question of unreasonable neglect or ielay in filing the same.
SEc. 8. And be it further enacted, That,
whenever application shall be made to the Commissioner for any addition of a newly discovered improvement to be made to al: exisiir.g patent, or whenever a patent shall be returned for correction and $\mathbf{r}-$-issue, the specification of clairn nnuexed to every such patent shall be subject to revision and restriction, in te same manner as are original applications for patents; the Commissioner shail not add any such improvement to the patent in one case, nor grant the reissue in the other case, until the applicant shall have entered a disclaimer, or ultered his specification of clain in accordance with the decision of the Commissioner; and in all such cases, the applicant if dissatisfied with such decision, shall have the same remedy and be entitled to the benefit of the same privileges and proceedings as are provided applicat:onsoriginal case of by law in the for patents.

Sec. 9. And be it farlher enacted, Any thing in the fifteenth section of the act ot which this is additional to the contrary notwithstanding, That, whenever by mistake, accident, or inadvertence, and without any wilful default or intent to defraud ir mislead the public, any patentee shall have in his specification claimed to be the original and first inventor or discoverer of any material or substantial part of the thing pitented, of which he was not the first and original inventor, and shall have no legal or just right to clain the same, in every such case the patent shall be deemed good and valid for so much of the invention or discovery es shall be truly and bona fide his own, provided it shall be a material and substantial part of the thing patented, and be def. nitely distinguishable from the other parts so claimed without right as aforesaid. And every such patentee, his executors, administrators, and assigns, whether of a whole or a sectional interest therein, shall be entitled to maiatain a suit at law or in equity on such patent for any infringement of such part of the invention or discovery as shall be bana fide his own as aforesaid, notwithstanding the specification may cmbrace more than he shall hav: any-legal right to claim. But, in every such ense in which a judgment or verdict shall be rendered for the plaintiff, he shall not be entitled to recover costs against the defendant, uuless he shull have entercd at the Patent Office, prior to the commenceme it of the suit, a dinclainer of all that part of the thing pateat d which was so claimed with. it right: Procided, however, That no person b.ing. ing any such suit shall be entitled to the benefits of the provisions contained in this section who shall have unr asonably neg. lected or delayed to enter at the Patent Office, a disclaimer as aforessid.

Sec. 10. And be it further enacted, That toe Commissioner is hereby authorized and empowered to appoint agents in not exceed. ing twenty of the principal cities or towns in the United States, as may best accommodate the different sections of the coun. try, for the purpose of receiving and forwarding to the Patent Office all such models, specimens of ingredients and manufactures, as ahall be intended to be patented or de.
posited therein, the transportation of the saine to be chargeable to the patent fund.

Sec. 11. And be it further enacted, That, instead of one exainining clerk, as provided by the second section of the act to which this is additional, there shall be ap pointed, in manner therein provided, two examining clerks, each to receive an annual salary of fi teen hundred dollars; and also an additional copying clerk, at an nnnual salary of eight hurdred dollars. And the Cornmissioner is also authorized to employ, from time to time, as many temporary clerks as may te necessary to execute the copying and draughting required by the first section of this act, and to examine and compare the records with the criginals, who shall receive not exceeding seven cents for every page of one hundred words, and for drawings, and comparison of records with originals, such reasonable compersation as shall be agreed upon or prescribed by tho Commissioner.
Sec. 12. And be it further enacted, That, whenever the application of any foreigner for a patent shall be rejected and withdrawn for wnta of novelty in the inventio:, pursuant to the seventh section of the act to which this is additional, the certificate thereuf of the Commissioner shall be a sufficient warrant to the Treasurer to pay back to such applicant two-thirds of the duty shall have paid into the Treasury on account of such application.
Sec. 13. And be it further enacted, That, in all cases in which an oath is required by this act, or by the act to which this is addi:ional, if the person of whomit is required shall be conscientiously scrupulous of taking an oath, affirmation may be substituted therefor.

Sec. 14. An:l be it further enacted, That all menies paid into the Treasury of the United States for patents and for fees for copies furnished by the Superin:endent of the Patent Office prior to the passage of the act to which this is additional, shall be carried to the credit of the patent fund created by said act; and the monies constituting said fund shall be, and the same are hereby, approprated for the payment of the salaries of the officers and cleriss provided for by said act, and all other expenses of the Fatent Office, including all the expend tures provided for by this act ; and also, for such other puposes as are or may be hereafter specially provided for by law. And the Commissioner is hereby authorized to draw upon sail! fund, from time to time, !or such sums as shall be necessary to carry into effect the provisions of this act. governed, however, by the several limitations herein confained. And it shall be his duty to lay before Congress, in the month of Janualy, nnnually, a detailed statement of the expenditures and pay. ments hy him made trom said fund.

And it shall also be his duty to lay beforo Congress, in the month of January, annually, a list of all patents which shali have been granted during the preceding year, designating, under proper heads, the subjects of such patents, and furniehing an alphabetical list of the patentees, with their placos of residence ; and he shall
also furnish a list of all patents which shall have become public property during the same period; together with such other information of the state and condition of the Patent Office, as may be useful to Congress or to the Public.

Approved, March 3d. 1837.

From the New-York Farmer.

Poppy Skel Oll.-Many of our readers will probably recollect that we published a communication in the January No. of the Farmer on the subject of Poppy Seed Oil. The facts set forth in that communication attracted the attention of some of our rea. ders, who take a decp interest in the introduction of new branches of industry ; and we, at their request, applied to the writer of the communication referred to for more particular information in relation to the mode of cultivation; and we are now grat. ified to be able to publish the following com. munication from a gentleman whose state. ments may be fully relied upon. For this very interesting communication, and the capsules con:aining some of the seed, which we shall plant with great care, he will plea e to accept of our thanks, and the numbers cf the Farmer which we forward to him. We shall look with much interest for further communications on this subject from the same pen, and also in relation to the cultivation of Madder. If convenient we should be much obligéd to Mr . Bishop, at a suitable time, for a few seeds, or roots of the Mad. der to plant.

For the New-York Farmor:

Mr. Minor.-Dear Sir: Your letter of the 10 th inst. to E. S. Script are, has been handed me, with a request to answer your several inquiries in relation to the cultivation of the Poppy and Madder. You inquire, 1st. What kind of Poppy is best ? 2d. What kind of soil is the best? 3d. How do you plant or sow it? 4th. At what time should it be planted or sowed? 5th. How much seed to the acre? 6th. How do you culi. vate itป 7th. How do you gather it? \&c., \&c. As I have some practical knowledge of its cultivation, I cheerfully answer the above inquirics, so far as my experience and in?ormation enable me to do. In answer to the first inquiry, I send you some of the seed capsules, containing the seed. This species of the Poppy, having imperforate sced cap suls, appears altogether the best adapted for cultivation for obtaining seed, as you will readily perceive, on examination, as the per. forate, or open seed capsules, would render the gathering of the crop tedious and ex. pensive.
2d. This species of the Poppy has a very zeneral adaptation to all the different sois usually met with in this State. Yet when cultivated as a field crop, for the purpose of
obtaining oil from the seed, it should have a warm dry soil,-either sand and loam, or loamy gravel. Planted on a deep, moist, and very rich soil, it continues to shoot up lateral branches which bud and blossom until killed by very savere: frosts. Under such circumstances, we can never have that perfect and simultaneous maturity of the bolls which is necessary to obtain a good crop of seed. This difficulty, however, can be obviated in a great measure, if not entire. ly , by the method of sowing and cultivation mentioned in answering your 3 d inquiry.
3d. Sow the seed in drills, eight inches apart, and four anches in the drill, with as light a covering as practicable. If the weather be damp and rainy immedately after sowing, the seed will vegetate in a few days. The objections to sowing broad cast are, that much of the seed is covered too deep if the common harrow is used, and that so small a portion of it has an equal covering of earth, the crop will never be uniformly ripened. Those seeds having a deep cove: ing either not vegetating at all, or so late in the season that some part of the crop will be fit for harvesting, while another is in blossom, and another with the bud in embryo. This was the case with a field sowed broad-cast, on a deep rich alluvial soil, and was never harvested, winter setting in while a portion of the crop was in blossom, and another in the bud. I have a hand drill, of different construction from any 1 have examined. It sows the poppy seed with the most perfect accuracy, drojping just one or two seeds at a time. I may, ut some future period, send you a drawing of it. Another objection to sowing broad-cast is, the utter impossibility of making a uniform distribution of secd; If however this method is practised, the seed should be sown just before rain, having the surface of the field made as smooth and level as may be, and no covering attempted.
4th. Sow the sced as early in the season as a good preparation of the soil can be made.

5th. An acre, with the distances before mentioned, will contain 196,020 plants, and unless there be an unnecessary waste of seed, one pint will prove sufficient for on acre.
6th. The growth of the plant will be so rapid as not to require, or even admit, of much cultivation. The plants should be thinned out when small, and all luxuriant weeds removed that would interfere with, or check their growth. The poppy is very hardy,_not liable to be destroyed by any insects, or injured by early frosts.
7th. Reap it as you do wheat, and bind in bundles. Thresh it upon the barn floor,
(which should le very tight.) in the same manner us wheat, and separate the seed from the broken capsule and stalks with a wire scive:
The nil may be extracted in the game manner as from fiax seed-and the roller and plate used in the first operation upo: flax seed is well adapted for poppy seed Atter it has passed through the rollers, a portion of the oil may be taken out for table use-and the cake then broken up, and ground under the stone in the same manner as flax seed-and, after heating in the cylinder, the remainder of the oil may be expressed. The cold expressed oil is very valuable for many purposes. The ge. nuine Macassar oil for improving and beautifying the human hair is the oil of poppy seed. The article is often counterfeited at present, by substituting fine olive oil for the poppy. This deception may be detected in cold weather-the olive oil loosing entirely its fluidity, while the poppy oil is not in the least affected by the most intense degrees of cold.

The quantity of seed an acre of land will produce, must depend very much on the soil and cultivation. If the plants stand singly upon a good soil the distances above meutioned, each one will produce from 4 to 7 heads, or seed capsules, averaging throughout the field 5 to every plant, mak. ing 980.100 to the acre. Of those I raised last season, 12 often produced one gill of seed-but this was measured before it was quite dry-so that in estimating the average quantity, we will say 25 heads to the gill. This calculation would give the enormous quantity of 150 bushels of seed to the acre.

The experiment has not been made on an acre of ground, which it must be acknowledged is the fairest way of testing the productiveness of any crop - but it will be found practically true, that an acre of good land, well fitted, will produce 196,020 poppy plants, of vigorous growth, averaging 5 seed capsules each - and in proof of the quantity of seed they contain, you have but to examine those I send you. I shall be able to furnish you with the results of further experiments, as early as the coming October, and will send you some of the seed capsules entire-that you may distribute them among your friends if they are not supplied. In concluding my remarks, for the present, I will say, that, although the enormous quantity of 150 bushels of seed to the acre, will not often, if ever, be realized by the cultivator, owing to negligence and inattention-yet one half the quanity will render this business one of the mont
profitable branches of agriculture-the value of the seed being at present not less han $\$ 2.50$ per bushel. In regard to Mad-der-l have an acre under cultiration, and have availed myself of most of the practical knoviledge of nur farmers in this region on this subject. I must defer any communication on this subject for a few weeksprobably until after the first laying or soiling, as I anticipate some innovations upon the custems of our farmers in this matter.

L. Віsнор.

Sauquoit, Oneida Co., May 4, 1837.

From the Scientific and Literary Journal. precious stones.

Gems, or precious stones, as they are frequently called, are for the most part transparent, and have a vitreous or glassy appeararce. Their difierent colors are occasioned by metallic oxydes of various kinds with which they are impregnated, Some writers have classed them by their colors, but this is a very uncertain mode, since dif. ferent gens have not unfrequently the samo cnor, and in many cases, the same gems are of different colors. The usual distinc. tion of gems into oriental and occidental is also liable to error, siuce the best gems, from whatever part of the world they are brought, are always called oriental. The most estimable of all the species are the diamond, ruby, emerald, and eapphirc. The amethyst, topaz, and equa marine are considered of nearly equal value with each other ; and the garnet is the cheupest of precious ctones.

The ancients engraved upon several kinds of gems, but they aprear to hnve been ignorant of the art of catting the diamond, the ruby, and the sapplaire, which were too hard for them to operate upon. The eme. rald and the upal were too highly estcemed as precious stones to have often found their way into the hands of engravers. The gar. net was often engraved upon, and there are many master-pieces of the art in chalcedoay and cornelian. Onyx and sardonys were employed for that species of engraving in relief called camcos; and in many instances, it is pleasing to obscrve with what dexterity the ancient artists availed themselves of the different colors in the alternate zones to ex. press the different parts nnd shades of their figures.

diamonds.

The diamoid, or adamant of the anciente, which, by universal consent, has been placed at the head of the mincral kingdom, is the hardest of all bodies, and, when pure, is per. tect.y transparent, like crystal, but infinitely more brilliant.
The best are brought from the East lo. dies; and the principal mines are those of Raolconda and Coulour, in the province of Golconda ; and that of Soumelpour, or Goual, in Bengal. At Raolconda they are found in deep crevices of the rocis. Per. sons, by means of long iron rods, with hook at the ends, draw out from these crevices the loose ocantents, and afterwards wash therm in tubse, for the purpnee of discovering the diamond.

As soon as all the earthy particles have been washed away, the gravel. like matter that remains is raked together, the stomes are thrown out, and what diamonds happen to be present are found amoang the refluse that is left.
In order to ascertain whether a stone which has been found be really a diamosd, the workmen have a mode of placing it upon a hard substance, and striking it with a hammer. If it resist the hlow, or seperate into leaves. it must be a diamond ; but, in the latter case, the discovery is made at an immense expense, since by thus diminishing the size, its value must also, of course, be greatly diminished.

When the diamond is rubbed, it will attract bits of straw, feathers, hairs, and other small objects; and if exposed to the rays of the sun, and immediately takon into a dark place, will appear luminous.

chrysolite.

Chrysolite is the softest of all the gems, and usually of yellowish green color, though sometimes it is grass green, or b.uish green, but with a tinge of brown.

Though scarcely harder than glass, and consequently inferior to most other geins in lustre, these stones are not unfrequently used in jewelry, particularly for necklaces and ornaments for the hair; and when well matched in color, and pruperly polished, their effect is very good. They are, howe. ver, too soft for ring stones.

This stone is imported from the Levant, and is said to be found in Upper Egypt.

garnet.

This stone is found abundamly in many mountains of different parts of the world. But those of the hardest and best quality are brought from Bohemia, where there are regular mines of garnets; and a great number of persons are there employed in collecting, cutting and boring them. The boring is performed by means of an instrument, having a diquond at its extremity, which is rapidly turned by a bow.

Garnets vary much in size, some of them being upwards of an inch in diameter, and o:hers not larger than a pin's head. Generally spenking, they are stones of interior value.

In comparison with the ruby, those even of finest quality havo a very sowbre appearance. 'The kinds most esteened are such as have a clear and intense red color, or a rich violet or purplish tinge. The latter are called Syrian garnets, not from the country of that name, as is usually supposed, but front the word soranus which signifies a red stone,

The best garnets are cut, in the manner of other precious stones, and set upon a foll of the same color; but some are cut into beads, and strung for necklaces.

The oriental sapphire is a gem of blue color, the shades of which vary, from a full and deep tint to a nearly colorless appearance.

We are chiefly indebted for the sapphirt to the East Indie ; and the islani of Ceylon. where it is found amung the sand of tho rivers.
In hardness the sapphire ranks nex to
the ruby, and in value it is about equal to the emerald. In the Museum of Natural History at Paris, there is a sapphire which weighs upwards of sixty-six carats, and which was placed there from the wardrobe of the crown.
It is said that sapphires lose their color 13 the fire, and that, alter having been subjected to heat, they are so hard and transpirent as sometimes to be sold for diamonds.

RUBY.
Oriental ruby is a precious stone of very intense and bright red color, occasionally varied with blue, and sometimes partically colored.

The ruby is imported into this country from the East Iudies, though seldom in. a rough state, since the stones are almost always first cut by the Indians for the purpose of ascertainng their value. They are said to be found in the sand of certain streams near the town of Sirian, the capital of Pegu; and with sapphires in the sand of the rivers of Ceylon.

The hardness of this stone is such that the ancients do not appear to have possessed the art of cutting it ; and in the improvements which have of late been inade in the construction of time-keepers, no stones have been found sufficientiy hard for jewelling the holes, except the ru by and the diamond.

AMETHYBT.

The amethyst was a gem well knownto the ancient Greeks and Romaus, and held by them in great esteem. Its name is derived from the Greek langunge, and implies a power of preventing intoxication, which, originating no doubt in the resemblance of its color to that of wine, and the absurd doctrine of syapathies, it was believed by the ancients to possess They a cribe to it many other virtues equally surprising and 'qually absurd, particularly that the wearing of it would "expel melancholy, procure the confidence and friendship of princes, render peoplo happy, and even dispel storms of wind and hail. 'I'he ancients frequently engraved upon the ameilyst ; and their favorite subject was the representation of Bacchus and his followers.

Persons accustomed to make imitations of the precious stunes find the amethis one of the easiest to be counterfeited.

toraz.

The topoz is a grm usually of a wine yellow color, but somutimes orange, pink, blue, and even colorless like rock crystal.
The word topaz is derived from an island in the Red Sea, where the ancients found a stone, but very different from ours, which ihey denominated topaz. The best, are of deep color, which are itnported from Brazil; and the most brilliant are supposed to be those of Saxony ; but the latter are generally of very pale color. This species of gen is also found in Siberia and other ccuntries. It 18 often defective in transparency, and sometimes even opaque.
It is a some what siugular circumstance, hat if the topaz of Saxouy be gradually ex. posed to a strong heat in a crucible, it will become white; and, on the contrary, that
the Brazilian topazes by the same process become red or pink. The latter are not unfrequently sold, as natural stones of this color, by the name of pink topazes and Brazilian rubies.
The blue topaz is a rare Brazilian gem, which varies in size from one or two rarats to two or three ounces. The white topaz is perfectly colorless. This stone, which generally occure of sinall size, is in considerable estimation \ln Brazil. It is usually employed in circular ear-rings, or for the purpose of being set round yellow topazes.

emerald.

The emerald is a well known gem of pure green color. By the ancients it was in great request, particularly for engraving upon. They are said to have procured it from Ethiopia and Egypt. The most in. tensely colored and valuable emeralds that we are acquainted with are brought from Peru.
The emerald is one of the softest of the precious stones; and is almost exclusively indebted for its value to its charming color. The brilliant purple of the ruby, the golden yellow of the topaz, the celestial blue of the sapphire, are all pleasing tints; but the green of the emerald is so lovely, that the eve, after glancing over all the others, fiads delight in resting upon this.

The largest emerald that has been mentioned, is one said to have been possessed by the inhabitants of the Valley of Manta in Pcru, at the time when the Spaniards first arrived there. It is reccrded to have been as big as an ostrich's egg, and to have been worshipped by the Peruvians, under the name of the Goddess, or Mother of Em. eralds. They brought smaller ones as of ferings to it, which the priests distinguished by the appellation of daughters. Many fine emeralds are stated to have been formerly bequeathed to different monasteries on the continent ; but the greater part of them are said to have been sold by the monks, and to have had their place supplied with colored glass imitations. These stones are seldom seen of large size, and at the same time entirely free from flaws.
The emerald, if heated to a certain de. gree, assumes a blue color; but it recovers its own proper tint when cold. When the heat is carried much beyond this, it melts into an opaque colored mass.

aqua marine.

The beryl, or aqua marine, is a light or mountain green variety of the emerald, sometimes straw colored, bluish, yellow, or even white.
These stones are of such frequent occur. rence, even in large pieces, perfectly clear and free from flaws, and in general so soft, and have so little the brilliancy of other gems, that the y are generaily considered of very inferior value. The most beautiful kinds are brought from Dauria, on the fron. tiers of China, from Siberia, and from Brazil.

to: RMALINE.

The tourmaline is a stone belonging to the same family as the emerald, and gener. ally of a smoky blackish color, th:ough it is sometimes green, red, blue, or brown.When not wery thick, it is transparent.

This stone was first made known in Europe about the beginning of the last century, by the Dutch merchants, who brought it from the island of Ceylon, where it is principally found. When strongly heated, it becomes electric; one of the suminits of the crystal negatively, and the other positively. An early writer by whom it is mentioned. says that "it has the property not only of attracting ashes from the warm or burning coals, but that it also repels them again, which is very amusing: for as soon as a small quantity of ashes leap upon it, and appears as if endeavoring to writhe themselves by force into the stone, they in a little time spling from it again, as if to make a new attempt. It was on this account that the Dutch called it the ashes drawer."

When laid on the table, the toumnaline appears dark and opaque; but when teld against the light, it has generally a pale brownish hue. It is sometimes cut, polished and worn as a gem; but on account of the muddiness of its colors, is not in general much esteemed. Tuose persons who wear tourmalines set in rings, consider them mor as objects of curiosity than of elegance : they show them as small electrical instru ments, which it is only necessary to expose for a little while to the heat of a fire, to make them attract and repel light bodies, to the amusement of all who are unacquainted with their qualities.

cornelian.

Cornelian is another kind of agate, usually of a red or flesh color, though sometime. white, orange or yellow.

On several of the British shores, corne lians are found with other pebbles; but the most beautiful and valuable kinds are im ported f:om the East Indies. These are sometimes so large as to measure nearly three inches in diameter. The kinds principally in request are those of pure white and brigit red color; and jewellers have the art of changing the color of the yellow varieties to red; by heat.

No stone is so much in request for seals, as the cornelian : it is likewise cut into beads for necklaces, and stones for ear-rngs'; into crosses, bracelets, and other trinkets which in India furm a considerable branch of traffic.

onyx.

Onyx is a kind of agate, marked alternately with white and black, or white and brown. Its name is derived from the Greek language, and has been given on account of its resemblance in color to the whitish band at the base of the human nail, -The distinction which appears to be made betwix onyx and sardonyx, arises from the colors ol the former being arranged eituer concentrically, or in a somewhat confused manner and those of the latter in regular stripes o1 bands.
Both these kinds are highly esteemed by lapidaries, for the formation of vases, snuff.boxes, and trinkets of various kinds. Of the sardonyx the ancients made thost beautiful cameos, many of which still orna. ment our cabinets.

Tae onyx is imported from the East In dies, Siberia, (zermany, and Portugal.

OPALS.

Opals are a semi-transparent kind of
stones, which have a milky cast, and when held betwixt the eye and the light, exhibit o changeable appearance of color.
There are in Hungary some quarries ol mines from which, about four centuries ago, opals were obtained in such abundance, that upwards of three hundred persons were em ployed in them. 'These quarries still produce opals, some of which are so valuable as to pass in comm: ree under the appellation of oriental npals, whilst others are so poor as to be of ro value whatever to the jeweller. Opals are also found in other parts of Europe, and in the ișland of Sumatra, and several parts of the East Indies.
Few precious stones are more beautiful than opals. Their elegant play of colors, brilliant blue, green, red and yellow, vari ously modified, have procured for them a distinguished rank among the gems. Notwithstanding this, they are but ill suited to the purposes of jewelry. on account of their softness, their gleat frangibility, and thein sometimes splitting on a change of temperature. By the Turks they are so peculiarly estermed, that a fine opal of moderate size has been sometimes sold at the price of a diamond. The esteem in which they were held among the ancients Romans was such, that Nonius, the Roman senator, is stated to have preferred banishment to parting with a favorite opal wiuch Mark Antho. ny was anxious to possess.
In the abbey of St. Denys, near Paris, there was formerly a curious ancient opal, which was green on the outside, and wien viewed against the light, exhibited a fine ruby color.
Ia the purchasing of opals, great caution is requisite, since fine glass pastes have noi unfrequently been substituted for them, and so'd at enormous prices.

Hydrophane, or oculus mundi, is a kind of opal, the distinguishing characteristics of wnich is, that it gradually becomes transparent by immersion in water. It is either of a whitsh brown, yel owish, green, milky grey, or yellow color, and opaquc. The name of oculus mundi has been given to these stones from an internal spark, or la minous spot, which changes its position according to the direction in which they are neld to the light. Tue countries in which they are chietly found are Hungary and Icelatd.

The phenomena of their becoming trans parent in water, is supposed to be occasion: ed by that fluid soaking through their whole substance, in the same mainner as the transparency of paper is occasioned by the in. nersing it ia o.l. Wien taken out of the water, these stones, as they dry, become again opaque.-[Bingley's Usetul Know ledge.]

New lamp.--A lainp of a new construc:on, which describes a circle of light ot about thirty feet in diameter, of the apparent iutensity of sunshine, showing the objects within its sphere as distincily as on he table of a cainera obscura, has been sected at the head of the inclined plane in st. Leonard's depot. Its object is to enable the engine-man to a distinct view of the in lined ropes during the night, and this has been fully attained. The lamp consisis of
an Argand burner, placed in the focus of a large speculnm, of a peculiar form, by which the whole light is distributed just on he spaoe where it is required. It is computed that the light on the abore space is equal to that of iwenty-five or thirty fimilar burners in common lainps. A lamp of this kind we have no doubt would be useful for other purposes. It appears to us that the largest assembly-rooms might be brillianily lighted by one placer at each end of the room, and one would be sufficient to light the stage of a theatre. The cost of this one is said to be about $\boldsymbol{£ 2 0 0}$ but we understand it aaves an anntial expense of about half that sum. The inventor is a Mr. Rankin, and he names it the conoidal lamp, probably because the light is thrown from it in the form of a cone.- [Caledonian Mercury]

Galvanism.-Dr. Charles G. Page, of Salem, Mass., has lately made the valuable discovery that iron, lead, or any metal, may be substituted for the expensive atticle of copper in galvanic batteries, whereby the cost of this apparatus will be diminished by about one-half. In order that a battery of this construction should equal one of copper and zinc, it is necessary that the exciting lijuid should be some acid, holding the oxide of copper in solution, such as the nitrate or sulphate of copper. A solution of blue vitriol or the sulphate of copper, is preferable from its cheapness. A small plate of lead and zinc, each the size of a cent, immersed in a wine glass of the above solution, will give bright sparks, strong shocks, and proJuce decompositions when connected with a spiral coil of copper ribon three hundred and iwenty feet long, which-is, for convenience, aow generally called a dynamic multiplier The superior action of such batteries appears to be owing to the greater readiness with which copper deposits upon alother metal than itse.f. He has further found that a tolerably good battery may be inade of one metal only, viz. zinc, provided oue of the plates much exceeds the other in size, and the sulphate of coppier be used as the exciting liquid. To construct a battery of this description, a number of narrow strips of s. teet zinc, arranged in the form of a cylin. der, are immersed in a cylinder of zine containing a solution of the sulphate or nitrate of copper ; the zinc strips answering merely for conductors.

Among other discoveries ately made by Dr. Page in relation to this subject, we :otice ine proluction of sparks and shocks from a thermo electric apparatns, consisting of a pair of bismuth and antimony plates neated by a spirit lamp This condition has hitherto been wanting to establish fully the identity of thermo-electric, with common galvanic curients.

Fall of Fishes from the Atmog. phere in India; by M Prinset.-The fact that fishes fall from the atmosphere in the rainy season, however incredithle it may appear, hus teen so fiequently atiested by creditble winnesses that it can scarcely be doubted. As for myself, my ciedulity is compelled to yield to the discovery I made oue day of a small fish, in my
pluviometer, which was situated on an isolated pile of stones about five feet high in my garden at Benares. A note fron M. Cameron informs me that a rain of fish es occurred on the 19/h of February, 1830 near Feridpoor. This fact was asserie: before a magistrate, by many ocular wll nesses, and it was their concurring testi mony that towarls noon of the above men tioned day, the sky was obscured, the rail commenced to fall, and shortly after, fishe: of various sizes fell from the atmosphere. A large number were collected by several witnesses ; some were found destitute of a head, and commenced to putrefy; others were entire and fresh, but no one dared to eut them.-[Bib. Universelle, No. 3, Mars, 1836.]

Agriculture, \&c.

Beet Sugar Manufactort. We have published occasionally statements in relation to the Beet culture for the manufacture of Sugar; but seldom any thing in relation to the manufacture of the Sugar. We therefore now give a concise discription of that process. We give it for the purpose of dis. pelling the idea, which many entertain, that the process of manufacture is a complicated and difficult one; when in truth it is about as simple as the manufacture of Maple Su gar.
[Prom the Silk Culturist.
process of making beet sugar.
The attention of the public having been some time drawn to the manufacture of sugar from the beet, and having repeatedly recommended its cultivation to farmers as a profitable crop, we have felt ourselves under an obligation to give them the details of the process by whech it is extracted. We have, therefore, examined t:ee best authorities on the subject, and coasulted several gentlemen of some practical knowledge and experience in the business, and the result of our inves. tigation is that the process is altogether more simple and less expensive than has generally been supposed. In describing the various processes in the manufacture, we have carcfully avoided the use of chemical terms. and substituted language which we hope will be understood by every reader.
There are soveral varieties of the beet which yield sugar; but the Silesian beat is recommended as the best and most ${ }^{\text {i }}$ produc. tive. Ihis beet will come to maturity isi all parts of the United States, up to the 45 ti degree of latitude. Tire soil most cong:nial to its growth is a light sandy loam, ol good depth, and if free from stones, the bet ter. Piobably no country in the world is better adapted to the growth of this roo than the alluvial meadows on the Conaceticut and other rivers of New England. The cultivation, however, need not be confine: to valleys, as in most of the hill towns, landmiy be found well acapted to its growth. Toe land is prepared for the seed by deej ploughing and pulverizing the surface. This is best aecomplis'ied by ploughing in the fall, athd leaving the land in furrows throug.. the winter. In thie spring, the land should
be cross ploughed and harrowed, and, if the ooil be light, it will be prepared to receive he seed. The seed may be sown as earl is the season will admit, broad-cast, or ii Irills; but ultimately the plants should be rom 12 to 18 inches apart. They shoul. re hoed and kept free of weeds-at the se :ond hoeing they should be thinned out, ant unt one plant left in the hill-the surplu dants may be transplanted to vacant place. in the field.

In the extraction of the sugar, the beet: nust first be cleaned by washing or scrap. ng with a knife, and care be taken that al. decayed parts be cut off. They must then be passed through the rasper and be reduced to a pulp-the finer they are rasped the better, as it facilitates expressing the juice. The pulp must then be put into cloth bags, and have the juice pressed out by a screw press. In France they use the hydraulic press; but a cider, or other press, will ansiver the purpose, and be attended with much less expense. As decomposition commences soon after the beet is out of the ground, and progresses rapidly, no time should be lost in converting them into sugar.

After the juice is expressed, and before it is converted into sugar, it must undergo tour distinct and different processes. 1. Detecation. 2. Evaporation. 3. Clarification. 4. Concentration.

Defecation.

The composition of the beet juice does not differ essentially fiom that of the cane -it combines with the saccharine matter small quantities of malic or acetic acid, wax and mucilage, which must be extracted be. fore evaporation is commenced. The first process, therefore, is to purify the juice, which must be done by reutralizing the acid, decomposing the wax, and coagulating the mucilage, and hence is called defecation. All this may be done by heating and mixing with it the milk of lime in about the proportion of 46 grains troy weught to the gallon. 'The milk' of lime is prepared by slaking quicklime with hot water, and reducing it to the consistence of cream. The juice must be heated to about 160 degrees ot Fahrenheit, and the milk of lime poured in. to it and thoroughly mixed by stirring with a stick. Alter it is intimately mixed, the stirring must be stopped, and the mixture suffered to rest for a short time. It must then be heated to the boiling point, which will throw the impurities upon the surface in the form of scum, when the boiling must be stopped. When the juice has become dear it mast be drawn off from below, by neans of a cock, or the scum must be skim ned off from the top-care baing taken iu sither case to effect a complete separation.

Evaporation.

The next process in the manufacture is io dissipate the water, which is done by "boiling away," as it is commonly called, but in technical language, evaporation. If in the process of defucation an excess of litue has been used it should be extracted. Itis may be done by a mixture of sulphu ic acil and water, in the proportion of ont of the former to lorty-four of the latter. This mixture, put in contact with the lime causez an effervescence, by which the lime is thrown off, and the cessation of which is
a sure evidence that the lime is neutralized. Jome manufactures say that a small porion of lime should be allowed to remain, ind others that the whole should be neuralized. As practical men differ on this soint, we may safely conclude it is not ve. cy material.
The juice is boiled down till it is reduc. d 10 about one-fifith or one-sixth of its oripinal quantity. For this purpose pans or kettles may be used; but it will be seen :hat those vessels which present the greatest surface to the fire, and give the least depth to the juice, will best facilitate eva. poration. As the water evaporates, flaky substances will separate from the juice and collect in a white foam on the surface, which must be skimmed off as it appears. To promote their separation, the boiling is commenced with a moderate fire, which is subsequently increased as they disappear. Sometimes the white of eggs beaten, or a little blood, is added for the same purpuse. During the boiling, the juice will rise in fro:h and flow over the top of the pan, unless preven'ed by occasionally throwing in a small quantity of some fatty substance. Butter is commonly used, but tallow, lard, \&c. will answer the same purpose. It not only causes an immediate subsidence, but hastens evaporation.

Clarification.

After being defecated and evaporated, the juice is yet in a degree impure, and the ohject of the next process is to separate it from its remaining impurities, and hence is called clarification. This consists in filtering it through animal charcoal granulated [burnt bones broken to grains,] and is performed in the following manner. Tubs, or vats in the form of those used for leaching ashes are made of wood or metal, and furnished with a cock inserted near the bottom. The size of the vats is immaterial but those of the fullowing dimensions will be iound most convenient-2 feet 8 inches deep-1 foot 8 inches diameter at the top, and 11 inches at the bottom. They may be four sided or round; but those made of staves and hooped with iron hoops we should think the cheapest, and on sume accounts the best.
A strainer standing on legs, and covered with coarse roloth, must first be placed in the botton of the vat and filled with the charcoal-about 100 pounds will be necessary for a rat of the above dimensions. The charcoal must then be covered with another strainer and cloth, and the vat filled with evaporated juice, or, as it is then called, sirup. After standing long enough io leach through the charcoal, the cock must be turned and the sirup be slowily Irawn off, and the vat re-filled as fast as it is emptied. The charcoal mlist be chang. ed twice a day; but it may be washed and reburnt, and, thus prepared, it will answer for another filtration. This may be repeated until it is consumed.

Concentration.

The next process is to solidify the sirup, and hence is called concentration. To accomplish this it must be again evaporated intil it is brought into a proper state for rystalization. As it is important that evaporation should cease as soon as it art
rives at this point, Chaptal gives the fol-
lowing rules for asceraining the fact. "1.
Pren lawing rules for ascertainitg beiling sirup.
Plunge a skimmer into the bit and iupon withdrawing it, pass the thumb of the right hand over its surface, mould the sirup which adheres to the thumb, between that and the fore finger, till the temperature be the same as that of the skinthen separate the thumb and finger sud-denly-uf the boiling be not coinpleted, no thread will be formed between the two; if there be a filament, the boiling is well advanced; and the process is completed as soon after as the filament breaks short, and the upper part, having the semi-transparency of horn, curls itself into a spiral. 2. The second mode of judging of the completior of the process is by observing the time when the sirup ceases to moisten the sides of the boiler, and then blowing forcibly into a skimmer which has just been ummersed in it-if bubbles escape through the holes of the skimmer which ascend into the air in the same manner as soap bubbles do, the liquor is considered to be sufficiently boiled."
When the concentration arrives at this point, the sirup must be taken froun the boiler and poured into large pans, for the purpose of cooling. The pans must be placed in the air, and the sirup occasionally stirred during the process of cooling, which will be completed in about two hours. On examination, the bottom and sides of the pan will be found covered with a thick bed of crystals, having but little consistence; on the surface of the sirup, a crust will also be formed. To promote crystalization, or, as it is more properly called, graining, a thin bed of brown sugar is sometimes put upon the bottom of the cooling pan, in order to make a nucleus about which the cryslalized matter may gather.
Afier the sirup is cooled and crystalizell, or grained, all that remains is to separate the sugar fro:n the molasses, and it is fit for domestic consumption or market. To effeet the separation, moulds, as they are called, must be prepared in the form of defecating vais, with the lower end drawn to a point, or so near a point as to leave a hole of three-fjurths of an inch in diameter. These may be made of wood, metal or earthware, and their capacity may be'regulated according to the convenience of the manu facturer. Those used in the sugar factories in France usually are large enough to contain five or six gallons They are also used in the refining process. - Before using them, if of wood, they must be soaked several hours in water, and dried a short tine before they are filled with sirup. Thus prepared, and with a cork in the hole at the point, they must be filled, or nearly filled, with crystalized sirup, and secured in an upright position, over a pan or tub of sufficient size to receive the quanity of molasses it contains. After standing from 12 to 3 d hours, according to circumstances the cork is withdrawn and the molasse permitted to drain off. It will at first drain off rapidly; but soon cease to flow in any considerable quantity. To hasten its separation from the sugar, which takes plact slowly, the mass must be pierced with an iron spear, by thrusting it into the hole at
the point, which will give it vent and cause it to drain off. This operation must be ropeated as ofien as is necessary, and until all the molasses is extracted.
After having remained long enough to have the molasses run off, the sugar is detached from the sides of the mould with a knife, the moulds are set on the floor in a reversed posi:ion and left for two or three hours-when, by lifting from the floor and giving it a shake, the loaf will separate from the mould by force of its own weight. The bead of the loaf will retain a degrec of moisture and a portion of molasses, and, consequently, should be cut off, and thrown into the juice intended or the next clarifcation. The molasses, also, when a sufficient quantity is on hand, should be again concentrated in order to obtain all the crysadizable sugar it contains. By the foregoing processes the beet is converted into brown sugar, the kind which is consumet in the largest quantities in most families. In the inanufacture of loaf, or lump sugar, here is another process called "refining;" but being foreign to our present purpose, we omit it.

From the Quarterly Journal of Agriculture. studies in the science and practice of agriculture, as connected with phystcs.
(Continued from page 335.)
Experiments on Feeding.-Some of the most instructive experiments upon the feeding of farm-stock with different materials, were made by an intelligent foreign agricul:urist, M. Mathieu de Dombasies, and pub lished in a work litle known in this ceuntry. the Annales de Roville. The experiments usually made on this subject have been con. ducted upon the principle of continuing one species of food, such as hay or carrots, for a given time ; but M. de Dombasles reflecting that it is neither natural nor agreeable to any animal to be confined for a length of time to the same species of food. adopted a different method. He, separated into several groups the cattle on which he designed to experiment, and brought those in each group as nearly as possible to a given weight, by feeding them with an exactly weighed proportion of common articles of food, diversified to suit their taste. When he bad proceeded so far, he then began to take away from their diversified lood a known portion of one of them, such as lucern hay, (luz rne seche,) replacing it by some sort of root, such as carrots, gradually increased or diminished, so that each iudividual in the group came up to and sustained the weight it had stood at before the cliange. The comparison of the quantities thus ascertained by trial to be equivalent. gave the practical proportions of their nutritive properties, under the conditions thus assoc:ated.
The results thus obtained by M de Dom. vasles by trials with sheep, appeared to place carrots very far below the rank usualiy as. signed to them as food for sheep by farmer on the Continent, and even as food for horse: when gubstituted for grain. But it is im jortant to remark, that M. de Dombasle: rave the carrots in a raw state to his sheep and consequently from their stomachs being unable in the process of digestion to can:sc
the globules in the carrot containing the dextrine to burst, they derived little nutrimant from a substance which is undoubtedly very nutritive when the dextrine is developed by boling. The iutelligent farmers in Belgium, who seem to be almist a century beforè other parts of Europe in improvement, never, it is said, give any roots to their live stock without boiling.
The digestion of food is in all animals partly a chernical and protly a mechanical process, and varies much in different animais, even when they feed on similar aliunent, for example, the rabbit, the horse, and the gamecock, when fed upon oats or barley. The horse, and even the rabbit, when fed on oats, swallow many grains without crushing them with their teeth, and their stomachs not being endowed with the power of digesting solic' uicrushed grain, it is voided whole, and so little changed as frequently to be capabic of germinating. In the case of the gamecock, again, and all gallinaceous föwls which feed on grain, it is unifornly swallowed whole, their bills not being adapted for bruising it like the teeth of the horse, nor for shelling it like the linnets and sparrows. But the gizzard of these fowls has not only sufficient power to crusil oats and barley, hut even, as Spallanzani proved, to reduce glass to powder ; yet with all this power, so very much greater than the digestive powers of the horse, poultry cannot, as will immediately be proved, completely extract the dextrine from grain, unless assisted to do so by artificial means, besides their powers of digestion. The celebrated M. Reaumur undertook a series of experiments on raw and on boiled grain in feeding, which though made long before the discovery of dextrine, strongly corroborate the views of MM. Ras. pail and Biot, the more so, indeed, from M. Reaumur's non-acquaintance with the prin. ciple.
The farmers in France who keep poultry, have long been in the habir of cooking the grain given to fowls which they intend to fatten, boiling it in water till it is soft enough to be casily bruised between the fingers, the heat causing it to swell till the mealy por. tion of the grain splits the chaffy envelope, and this they term bursing. It is therefore the popular opinion, that boiled grain is more nutritive and fattening than raw grain, an opinioa founded, however, upon vague notions, which M. Reaumar endeavored to basc upon precise calculation.

Boiling of Grain.-.For this purpose M. Reaumur cateed about four mreasures (cach $1 \frac{1}{3}$ pint English or $\frac{8}{9}$:hs of a chopin beotch) of einch of the six commo:s sorts of grais, to be boind till they were well burst, (which may be fanly taken to mean thio two-thirds of the dextime was set frec,) and be fuald that the incrense oi bulk in each sort was as under :-
Four meazares of oate, aftuer being looild to bursling, fill.

7 meacures.
Four measures of balley, aller
being bolled to burs'il: s , till.
d
Four measures of bunkwheat
or brank, after being boiled
to bursting, filled

Four mensures of maize, after

being boiled to bursting, fill.

 ed above13
Foirr measures of wheat, afier being boiled to burating, fill. ed little more than
Four measures of rye, after being boiled to bursting, fill. ed nearly
Rice swells considerably more than any
of the preceding, but wras not measured.
In order to ascertain whether the boiling altered the preference of poultry for any oi the particular sorts, M. Reaumur made experiments, varied in every possible way.The fowls were furnished with two, three, four, five, and six different sorts, sometime: all the compartments of a feeding-box being filled with burst grain, each division differing from ano:her, and sometimes each sort of grain filled two of the divisions, on having nothing b'it boiled, and another nothing but iry unbolled grain.

All that could be inferred from these repeated experiments was, that the greater number of fowls prefer boiled to raw grain, though there are many of them which show, a greference to the raw grain on certain days, and no permanency could be discovered in the preference shown for any sort of burst grain. Some fowls, for instance. which one day preferred boiled wheat, would on other days, make choice of buckwheat or maize, oats or barley, and sometimes though more seldom, even of rye; but rye, either boiled or raw, is their least favorite sort of grain.

It follows as an importa.it practiral con clusion from such experiments, that we may make choice of the sort of grain which hap pens to be cheapest to feed poultry, withou: much if any disadvantage, always excepting rye, when other sorts are to be had on rea. sonable terms.

It requir $\cdot d$ experiments of a different $k \cdot n d$ to prove whether there is any cconomy, or the contrary, in feeding poultry with boiled grain, and this was readily ascertained by finding first how nuch dry grain sufficed one or more fowls, and then boiling the same quantity and trying how much of that would in like manner be sufficient. The experiments which, for this purpose, M. Reauinur made with the different sorts of grain, were as follows :-

Rye -Although, as we have seen, rye is very considerably increased in bulk by boi'ing, so far from being more sufficing, it becornes less so; for fowls will eat rather more of it when it is bo:led than when it is 12 s and dry. Seven hens and a cock, which consumed oaly three-fourths of a measur:of dry rye in oae day, nte in the same time three measures of the boiled grain. Consequently, as three measures of boiled ryc are equivalent to four-fifths of "dry, it woulc cost one-tweaticth more to feed fowls wit. boiled than with dry rye, four.fiths beine one-twentieth more than three-fourths.The globules of rye are almost the sam size, according to M. Raspall, with the glo bules of wheat.

Oats.-It appears, that although oats art increased by boiling nearly one-half, the are not, any more than rye, rendered mor sufficing as food; for the fowls, which, it two days, would have eaten four measures
of dry oats, consumed in the same time se. veral measures of the boiled grain. Conse. paently, so far as fowls are concerned it is is saving to boil oats; though this does not rove that the same holds with regard to iorses whose power of digestion are so inirior to those of towls.
Buckucheat or Branl:-This grain is inreased by boiling still more than oats, since four measures, when well boiled, swell io fourteen. Notwithstanding, there is little advantage obtained by boiling it for fowls, as they will consume the fourteen measures of the boiled grain nearly in the same time which the four measures of the dry grain would have sufficed them.
Maize or Indian Corn.-This grain is nore profitable as food for poultry when boiled than when raw; for the fowls which would have eaten a measure and a quarter of dry maize, consumed only three meas. ures of the boiled grain, and these three are not equivalent to one measure of dry maize. But it is worth remarking, that the fowls experimented upon continued only for two days able to get through three measures a day of the boiled maize. After this time, they either lost their appetite or came to dislike the food, since they could not then eat quite "two measures of the bolled grain.Now calculating that they had continued to eat even as much as three maasures of boiled maize a day, there would be a saving of more than one-fifth; and if they were satis. lied with two measures, the advantage would ba nuch more coasiderable, inasmuch as this would nut be equivalent to two-thirds of a measure of the dry grain. Tue saving in this case woald be oue-third and one-fitta. tiat is eight-fiteentlis or moce than one-half. Barley.-Tnis grain also was found upon trial to be much more economical when given to poiltry boiled than raw. Fowls, which woald have consumed two measures of the dry barley a day, got through only three measures daily of tine boiled grain.Now, as ten measures of boiled barley are produced from foar measures of dry, three ineasures are, therefore, equivalent to no more than six-fifiths of a measure of dry.The expense consequently in dry barley, is to that of boiled as ten-tifths to six-fiths, that is, as ten to six or as five to three, showing a saving of two-fifths by feeding poultry witu boiled instead of dry barley. This result is, no doubt, owing to the more effectual bursting of the grains of fecula, and setting free the dextrine coatained in them.

Wheat.-Tue results of the experiments on boiling grain, given above, show that wheat increases in bulk about the same as sarley; but the experiments made on feed ug poultry were considerably different in heir resu!ts, the saving not being nearly so nuch with boiled wheat as with boiled barey ; for the same fowls, which consumed aree measurcs of boiled barley in one day the three measures of boiled wheat. Now, 3 measures of boiled wheat are not equivaent to 2 measures of dry wheat, but only to a neasure and a half of dry wheat, the quantiy consumed in one day by the same fowls. But as a measure of boiled wheat is equivaint to no more than two-fifths of a measure of the dry gram, the three measures eaten in one day are equivalent only to six-fifths
of dry wheat, and therefore the proportion of what they consumed of dry wheat was to what they consumed of the boiled, as fifteententiss to twelve-tenths, or as five to four ; rence there is a saving of one-fifth by feed. ing with boiled wheat, as there is of two-fifths with bo:led barley.

It is clearly proved, then, by these inter. esting experiments, that there is in most cases a considerable saving by feeding with boiled grain. It would be well if some intelligent gentleman would undertake similar experiments on feeding horses and cattle with boiled or steamed grain or meal. The advantage of feeding with crushed grain instead of giving it unbroken, has been very satisfactorily proved and acted upon by Captain Cheyne (Quarterly Journal of Agriculture, iii. 1024, and iv. 378,) and recommended by Mr. Dick and others. The steaming of potatoes is well known to be advantageous in feeding both horses and cows, and more particularly in causing hens to lay, and in fattening pigs. Why should not the various sorts of grain, such as peas and beans, and meal, such as barley meal, given for similar purposes, not be advantageously increased in their nutritive properties by the same means? The expense of fuel, though it ought to be taken into the account, must be small in comparison with the advantage, at least in districts where coal or other fuel is reasonable in price. In large concerns, also, the expense of fuel would of course be proportionally less when compared with the saving in food.

Bread-making.-The most complete methoil hitherto discovered, for bursting all the globules of fecula, is the usual process of making bread, or, as chemists term it, panification. This arises fron the presence in wheat flour of a substance termed glu. ten, associated with the globules of fecula, and constituting in the unbroken grain its cellular texture of frame-work: It would lead us too far from our present object to go into the history of this impurtant substance minutely, but it may be necessary to state that the gluten miy be procured by kneading and washing a piece of dough, made with wheat flour, in a stream of water, till all the globules of fecula are washed out. The gluten thus obtained is a greyish mass, elastic, like Indian rubber, when moist, and incapable of being dissolved in water. It is these two properties which render it so important in bread-making.

When a loaf is put into the hot oven, the steam and gases expand wihhin it, and raise up the elastic gluten into bladder the vesicles; and by this means expose the globules of fecula in the dough more uniformly to the heat than could be effecteil without such agency. In consequence of this they burst; and in a well baked loaf of bread not a single unburst globule of fecula can be found. On the Continent this is practically understood in the districts where they feed thei- horses chiefly on bread, as in most parts of Belgium, Prus. sia, anil Switzerland. The brear thus given to horses is coarse, dark colored, and rather sour, from leaven being employed instead of yeast; but the partial termenta. tion caused by the leven must assizt in bursing the globules, and setting free the
dextrine from the action of the acid thus developer.

According to M. Raspail, and the fact has been stated by others, the more of othes fecula we mix with good wheat flour, containing its due proportion of gluten, the less increase of weight does the breal acquire For example, six pounds of flour will produce eight pounds of bread; but if thret pounds of potato-starch be mixed with three pounds of wheat flour: in tead of eight pounds of bread, there will only be six pounds. He explains the circumstance from the globules of fecula while unbroken not imbibing water, but being only moist. ened by its adhering to them; while the gluten sucks in water like a sponge, anil the more it is kneaded the more water it will take up. The mixture, therefore, of other flour with that of wheat diminishes not only the weight but the nutritive materials in the bread.

> Concluded in our next.

From the New-York Farmer.
 agricultural tour.

No. 4.

Tonawanda is a small stream flowing into the River-Niagara about twelve miles above the Falls. It is dammed at its mouth and is used for several miles as part of the Eric Canal. A considerable village is growing up at the mouth of the river, nearly opposite to Whitehaven on Grand Island ; and the timber from Grand Island, destined for the New.York and Boston shipyards is here a lmitted into the Grand Canal. Tne railroad between Buffalo and Niagara Falis passes through the village; and in future passengers in the Canal packets will probably disembark here and take the cars to Buffalo by which means a distance, which by water occupies about three hours will be passed over in less than an hour, 3 quarters of an hour will ordinarily be deemed sufficient; a great and most valuable gain to travellers. The river Niagara, at the entrance of the Tonawanda into it, presents deep water and a secure anchorage for large vessels, which may be employed in naviga ting the Lakes; but the dificulty of reach. ing the Lake against a strong current and some difficult rapids, excepting under peculiarly favorable winds or very strong power of steam may be thought to present strong obstacles to its use and improvement as a port of ship nent. These however, will be easily overcome by steam power; and availing of the slhip canal at Black Rock. This aud Whitehaven, must from the facility ou procuring the best of timber in the immedia.e vicimty, offer a most lavorable situation: for the building of vessels. The village is destined to extraordinary prosperity from its advantageous situation and the geeat improvements now in progross. 'Tue land in tue vicinity of Tonawanda is of an excel. lent description. As far as the backwater of the creek extends, a distance of three or four miles, this circumstance is prejudicial : the cultivation in some places being neces sarily hindered, and the general healthi .es: of the country has been supposed to be af. fected. The latter circumstance however is becoming obviated by clearance and culii vation. "But when the land is not so affected
the soil is eminently favorable to wheat, oats, potatoes, and grass. Indian corn is someimes cultivated with success but it cannot be sonsidered a safe crop. Tue soil is inprovad by cultivation. The whole country is of salcareous formation: loam resting upon limestose and intermixed with limestone. gravel, which in the form, of a carbolate is seen it tormixed -abundantly with the soil in smill grains. 'Tiese being broaght to the air by the plough becom: decomposed ; and the soil in this way acquires constantly increased blackness and fertility. Pease are a favorite and very productive crop. On visiting one of the best farms in the neighborhood of the creck, the farmer informed me that his crop of wheat usually averaged from twenty five to thirty bushels per acre; of pease thirty bushels;-of grass one and a half to two tons per acre. He ases no manure for his land excepting that he has spread some on his grass land; and se showe I me a field which with the exception of three intermediate years, had been in wheat thirteen years without a diminution o the crop. I have perfect confidence in the aonor of the gentleman who made these statements, but possibly there may be some little unintentional overstatement ; as it almost always happens, where crops are not matter of exact measurement, but of estimate or conjecture merely, there is a tendency to overstate. A crop of wheat certainly with. out very careful cultivation, averaging fiom twenty-five to thirty bushels is quite large. The aftermath in the fields was short; and by no means a tair test of what the land is capable of being made to do. The furm. ing in most parts of this country was inferior and sluvenly; and the regular introduction of clover, with all the grain crops and tae ploughing it in, would produce a most tavorable and extraordinary change in their condition. Speculation however, is so rife, other means of procuring money seem to promise so much quicker returns ; and labor is indeed so difficult to be procured, and withal so expensive and troublesome, that mere cultivation, it is to be feared, will continuc to be regarded as a secondary interestTne passage of the Canal through this country, and the multitude of canal boats, which seem to pass and repass in an almost unin. terrapted succession, afford a ready and cas! market for all the produce of their farins. Their wants even then are but inperfectly supplied. The growth of the country here is in many places magnificent-oak. blackwalnut, mapie, whitewood and elm, of the largest description. Most of the wood, which is cut here, is sent to Buffalo, or sold at the Steam Saw Mill on Grand Island.Much of that which is suitable for timber is sawed at the same establishment for this purpose.

The ride from Black Rock to the Niagara Falls, by the side of the Niagara River, is extremely beautiful; the expanse of water, he several fine islands skited with rich toliage to the waters edge, and the excitenent of an approach to the Falls, which it is not easy to suppress, thouga you may .ave visited them repeatedly, render this ;aunt exceedingly interesting and delightful. The ride for some miles below the Falls towards Lake Ontario increases in pictur.
esque effect ; and presents many points of view, embracing the Falls themselves, the wonderful passage of this torrent through its walls of natural masonry, which it would seem, must have occupied centuries, not to erent, but to excavate and widen, the compression of the torrent before it branches into the wairlpool, where owing to the narrowness of tie passage, and the velocity with which it is forced onward, the central ridge of waters like the roof of a barn is elevated at least ten feet above the edge of the waters at the shore ; the whirlpool itself, and after. wards the whole course of the river until it enters into Lake Ontario, which is seen distinctly from the high grounds, and lastly the magnificent and glittering expanse of the Lake itself, present a succession of views unrivalled and enchanting.
The land on the shores of the Niagara River from 'Tonawanda to a distance of three miles below the Falls as far as my ride ex'ended, is similar to what I have al. ready described excepting that in some places the clayey portions predominate much mure here than in others. A good deal of this land has been a long time cleared and the stumps removed. It is much of it of a very fine character for wheat. A bighly intelligent gentleman of the village at the Falls, who accompanted me, showed me a field which with the exception of one year had been for thirty years in succession in wheal, without manure and without any apparent diminution of its fertility. Twenty to twenty-five bushels of wheat are considered an average yield; thirty are often obtained. The first ploughing is generally shallow; afterwards deeper ploughing improves the soil. Plaister and clover have not yet been trier Improvements are in progress and a spirit of enterprize awakened, united with intelligence, from which the best effects will result; and which must soon put a different aspect on the whole face of this splendid country; for which in respect to picturesque scenery, nature has lavished her gifts in prodigal and almost unrivalled profusion.
Opposite Tonawandu, and lying along in the river'for a distance of about nine miles, is Grand Island, a magnificent tract of land of an average width of four miles, and containing about eighteen thousand acres. The Northern extremity is inrsight of the the rapids of the Great Falls, though steam vessels and, others cross far below it from the American side to Chippeway on the Canada shore. A small portion of the Isla d is at present cleared; and the re. mainder is covered with a noble growth of the .nost valuable white oak timber, black walnut, and other wood. The surface of the Island presents few inequalities and the highest point is but few feet above the river, in the middle of which it is situated; and which furnishes deep and excellent ship channels on either side. The soil is excellent, where it has been brought into cultivation; some of it being alluvial and the rest a rich loam with an intermixture in greater or less measure of clay; suitable for wheat, oats, grass, and succulent vegetables; and if the beet culivation for sugar should be pursued to any extent, emi-
nently adapted to that product. It is likewise extremely well suited for dairying and grazing. The land hitherto being held in common, and the objects of the company being mainly the getting of ship timber to market, small atten:ion has been given to agricultural operations and improvements. I was much gratified here in looking at the barn above 100 fert in length erec ed by Lewis F. Allen, Esq., near the village of White-haven for the keeping of the numerous ox-teams employed in the saw mill at that establishment. The barn is entered lengthwise, and the great floor extends through the whole. The mows for hay are on each side of the floor; and leantos, or close sheds are projected from each side of the barn for the whole length, which furnish stables for the cattle. 'the whole is well contrived considering the flat situation in which it stands; and the teams and every thing connected with the establishment, in nxcellent and farıner-like condition. shall forbear a more particular acccunt of it, as I hope at a future time to receive it from Mr. Allen's own pen.
H. C.

From the New. York Farmer.

$$
\text { agricultural zour, No. } 5 .
$$

To Lewis F. Allen, Esq. of Buffalo, well known as eminent, among the intelligent and spirited agriculturistsin New.York, Iam much indebled for various polite attentions, and much agricultural information. Mr. Allen is spiritedly engaged in endeavors to improve the live stock of the country; and I had the pleasure of seeing in his posses. sion several very fine animals of the improv. ed Durham Snorthorns, which certainly did great credit to his management, and his skill in their selection. I will not undertake to dascribe them particularly, as I hope that he will himself in due season favor the public with his success and opinions in this matter. The samples of this stock in his possession are of high pedigree and fine promise; und I am particularly anxious that by some continued and exact observations he should determine the dairy properties of bis cows. He thinks highly of them in this respect ; but in a matter which can be easily tested, we want accurate experiments and observations. Of his improved breed of swine, I can speak in the highest terms. They are not of the largest class, but their extraordinary thrift and admirable forms place them among the best that have fallen under my notice.

Mr. Allen is the general superintendent of the establishment at White-Haven. The saw mill at this place is an interesting object of curiosity. It is one hundred and fifty feet square; it drives six gangs of saws, and two single saws by a steam engine of one hundred horse-power. Eighteen cords of wood are required per day for supplying the engine. Besides the timber on the island large quantities of pine are brought from Canada and sawed at the mill. Their fiue timber is in quick demand at Buffalo, and in the vicinity, and their oak timber is exported to the Atlantic States. The frames of several large vessels of from 400 to 700 tons have been sent to the sea-board.

Accounts of the city of Buffalo, have within a few years been so much before the public, that I shall do nothing more than to express my admiration of the rapid growth: the increase of pojulation and the rise i. the valuc of property, of this Queen of the West. She is destined to still farther in crease; and looking back upon her almos nagical advances for the last few years, it is not easy to conjecture the limits to which he business may hereafier be carried. The land in the immediate neighborhood of Buffalo is not under cultivation : and compared with the demand and the intrinsic resources of the country, the meagre and inferior condition of her meat, vegetabic, and fruit market is matter of just surprise. It seems impossible that it should long remain so; and the universal complaints on this subject, and the erection of large and hands: me market houses will undoubtedly contribute to its improvement. The floating character of the population has undoubtedly retarded these improvements; the fever of speculation, wnich has been more violent in no place, has directed the attention to more exciting and engrossing objects, and the extraordinary, and to those, who have not witnessed it, the almost incredible influx of strangers, emi grants, and adventurers has extended the demand beyond the present ability to sup. ply.

A large tract of land in the immediate neighborhood, eighteen miles in length and seven in breadth, is held by the Seneca Indians. This great tract contaning, 49,000 acres, as seen from the road which passes through it, embraces much land of the very best character. At present not much of the land is cultivated; and thoug'1 there are some striking exceptions, the cultivation is in most cases very imperfect and slovenly In sume instances we saw tidy frame houses, neat enclosures, and the front yardsornamented with flowers. The Indians seem every where to be an indolent and improvident race, and unwilling to do more than procure a bare subsistance. Their wants in general are few, and their endurance under hardship and privation well known. Their appearance is in general squalid and disgusting. They are constantly to be seen in the strects of Ruffulo, where they bring their baskets, their ornamental work, their reticules, moccasins, and slippers made of leather and inwrought with beads, to sell; and likewise berries and herbs. They stand about the streets, and stroll from one p'ace to another gazing in stupid inanity. They are harmless and not giving to quarelling, but do not always understand, at least are not always wise observers of thatgreat distinction in civil society, of meum and turm. Tue men are a fine tall race, muscular and well proportioned ; the women short, and in general extremely ugly ; though in this matter they do not fall very far below the lowest class of Swiss and German women, who are to be seen constantly about the streets.

These Indians are entirely in the power of the State ; and in my opinion ought to have been treated preciscly like ignorant anc helpless children. The State should mainrail among them competent guardians and agents; and should compel them by fine, if it were practicable, and if other inducements
friled, to clear, sow, build, enclose, and ren. der their lands productive, and their condiion comfortable, sinder a perfect assurance hat the tenare of their improvements should be secure, and they shonld enjoy the fruits of their labor; instead of encouraging them. as is obviously too often the policy, in idie. aess, wretchedness, and vice, in order that they may become easily in the end, dispos. sessed of their territory or their race itself be extinguished. One great bar to the im provement of their condition arises undoubt. edly from the custom prevailing among hem, by which all the improvements made by any one, with all his personal property of every description, instead of giving at his death, by his will, to his squaw or children, in that event reverts to the tribe; and is scattered among the community. The great principle of accumulation, the right of property, and the power of controling and transmitting that property according to our pleasure at death, though principles violently assailed in these days of Agrari anism, and often in their operation productive of apparently unequal and unfortunate results, are notwithstanding, of the highest moment to the virtue of individuals, and the general welfare of the community.
There are some agricultural improvements in the vicinity, of Buffalo, on the farm of Hiram Prait, Esq., which are capital, and deserve particular notice. His farm lies on the shores of the Lake, and an extensive tract of bog, which was constantly filled with water from the Lake, has been drained; the waters in a great degree excluded, drains cut in various directions with perfect neatness and by skilful hands, the bustes and stumps extracted, and a meadow of a hundred acres extent, brought into grass; and presenting, I must admit, the most successful and beautiful improvement that my eye has ever rested upon. The process has occupied but a short time and, compared with the vaiue and productiveness of the redeemed land, has been executed at small expense ; and at an outlay, which will be immediately returned four fold. The growth of the second crop of grass upon it, which was all that the season permitted me to see, was most luxuriant ; and the land is brought into condition for other crops to be cultivated with advantage. I have had only to regret, that Mr. Pratt's unusual engagements at the time, prevented his giving me that detailed account of the process and expenditures, which I should have been glad to lay before the readers of the New-York Farmer. The almost unsurpassed fertility of this deep alluvion, when the waters are taken from it, and the immediate vicinity of a quick market for all the produce, which can be gathered from it, would jusify almost any expenditure for the redemption of this land. The process is still going on, and large adjoining tracts are to be cleared, drained, and subdued.
The trees on the uncleared lands bordering the turnpike, and rom four to eight miles from Buffalo, in height and diameter iurpass any thing that 1 ever witnessed. They are chiefly elm; white oak and white wood intermixed; and are of most singu-
lar beanty and magnificence. Similar remarks apply to many of the forests of this western world; and those of us, who have been accustomed only to the steuted growth of more northern and less fertile soils, may be allowed to express our surprise, may I not add the enthusiasm of our admiration. coupled with deep humility, when standing among these mighty and untouched forests; and louking up to the spreading tops of these magnificent plants, these noble tenants of the soil, who have survived the storms and decays of centuries.
I am unwilling to quit Buffalo, without alluding to, I will not say the tide, but the torrent, the rushing flood of emigration, pouring itself westward. During a protracted stay of several weeks at Buffalo, it seemed "to cease not," day or night. Two, three, and sometimes five steamboats left Buffalo daily, for the upper shores of the Lake, beside other vessels; and all of them carrying their hundreds and hundreds. I have been often asked since my returi, if these were not principally foreigners. I can only answers that of those v hom I saw there was but a small sprinkling of Irish, and comparatively few Swiss and Germans. The great majority were NewYorkers and New-England men. of the best class of yeomanry; respectable in manners and appearance, and of substa:tial condition and equipments. Such a population, especially migrating as is often the case in companies, and I may say villages, are not compelled to pass through the chrysalis state; but commence inmediately with all the advantages and improvements of an advauced condition of society.
H. C.

List of subscribers to the Railroad
Journal. that have paid, (continued.)
E. Smith, city New.York, January 1, 1838.

George Johnson, city New.York, 1st Janu ary, 1838.
S. G. Cornell, city New-York, 1st January, 1838.
J. W. Cochran, city New.York, lst May, 1838.
G. N. Dennistown, Albany, 1st Jan. 1837.
O. R. Van Benthuysen, Albany, Ist Janua ry, 1838.
W. C. Buuck, Albany, July 1, 1837.
N. P. Tallmadge, Poughkeepsie, N. York, 1st January, 1838.
C. B. Stewart, Utica, N. York, 1st January, 1838.
J. M. Gardner, Newburgh, N. York, April 1, 1837.
P. Sours, Oswego, New-York, 1st January, 1838.

Uister Iron Co., Saugerties, New-York, 1st January, 1838.
Thomas Turner, advertising, Troy, N. Y., 1st January, 1835.
Thomas Moore, Philadelphia, Pa., 1st Jan. 1838.
J. M. Sanderson, Phil., Pa., June 1, 1837.
S. Bradford, Phil., Pu., Ist January, 1838.
J. Snowdon, Jr., Brownstown, Pa., April 1, 1838.

McClury, Wade \& Co., Pittsburgh, Pa., 1st January, 1838.
J. A. Roebelling, Saxenburgh, Pa, April 1, 1838.
W. Woodville, Baltımore, Md., 1st January, 1837.

Baltimore and Susquehannah Railroad Co., Baltimore, Md.. 1st January, 1838.
W. Patterson, Baltimore, Md., 1st January, 1837.
P. R. Hoffman, Raltimore, Md., 1st January, 1838.
Wilmington and Susquchannah R. R. Co., Wilmington, Del., 1st January, 1833.
J. Randall, Jr., Wilmington, Del., August 1, 1837.
J. P. Stabler, Wilmington, Del., 1st January, 1835.

Betts, Puzley \&'Harlan, Wilmingtoa, Del., 1st January, 1833.
Charles Bush, Wilmington, Del., 1st January, 1838.
Isaac Orr, Georgetown, D. C., A pril 1, 1838.
S. Yount, Bowman's Mills, Va., June 1, 1837.
P. Martineau, Fredericksbưrgh, Va., 1st January, 1838.
O. O Wilder, Eckford, Michigan, 1st Jan. uary, 1833.
Mr. Coffee, Athens, Tenn., March 1, 1838. L. B. Wilson, Logan's Port, Ia., 1st January, 1838.
D. Hardenburgh, Laporte, Ia., May 1, 1833.

Rev. Wm. Twining, Madison, Ia., 1st January 1838.
J. E. Thompson, Augusta, Geo., 1st January, 1838.
J. F. Mansfield, Savannah, G̣eo., 1st January, 1838.
S. R. Curtis, McConnclsville, Ohio, 1st Jan. uary, 1838.
Literary and Scientific Institute, Columbus; Ohio, 1st January, 1838.
A. Twining, New Haven, Con., 1st January, 1838.
Francis Jackson, Boston, Mass., 1st January, 183s.
John Wilkinson, St. Andrews, N. B., 1st January, 1838.
R. J. Kennett, (2 copies,) London, England, July 1, 1837.

Advertisements.

AVERY'S ROTARY STEAM EN-

 GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving SawMills, Grain-Mills, and other Manufactories of any kind.Engines only will be furnished, or accompanied with Boilers and the necessary Na. chinery for putting them in operation, and an Engineer always sent to put them up.

Information will be given at all times to those who destre it, either by letter or by exhibiting the engines in operation in this city.
Inquiries by letter should be very explicit and the answers shall be equally so.

> D. K.MINOR,

30 Wall-st., New York.

DRAWING INSTRTMENIS.-E. \& G. W. Blunt, 154 Water-street, NewYork, have receired, and offer for sale, Drawing Instruments o" superior quality, English, French, and German Manufac. thre.
They have also on hand Levels of superior quality at low prices.
nor Orders received at this office for the above Instruments.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pambour- 150 pages la:ge octavodone up in paper covers co as to be sent by mall-Price $\$ 150$. Postage for any distance under 100 miles, 40 ceuts, and 60 cts . for any distance excecding 100 mg .

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.
Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts .
** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.
A COURSE OF INSTRUCTION IN CIVIL ENGINEERING, by informal lecturcs, to occupy two months, commencing the 1st week of May-Cnmprising
The use of the theodolite, level, Compass plain table, cross, and sextant explained upon the instruments theinselves: :opographical drawing executed urder supervision ; survey of routes; problems of excavation and embankment ; railroad curves ; all the usual details of construction upon cominon roads, railroads, and canals ; including bridges, culverts, tunnels, and the various kinds of motive power; nature, strength and stress of materials ; masonry, carpentry and constructions in iron; alluvial deposites, guaging of streams, \&c.The whole purely elementary. Terms of admission to the course, $\$ 20$.
Apply to C. W. Hackley, Professor of Mathënatics in the University, 32 Waverly a lace.
transactions of the institution of civil engineers of great britain.
The first volume of this valuable work, has just mado its appearance in this country. A few copies, say tuenty-five or thirty only, ha ve leen sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order therefore, to place it within their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the close.
The price will be to subseribors three dol. lars, or five dollars for two copies-always in adrance. The first number will be ready for delivery early in April-Subscriptions are solicited.

TO CONTRACTORS.

JAMES RIVER AND KANAWHACCANAL. THERE ia still a large amount of mechanical wo:k to let on the line of the James fivor and Kanawha Improvement, consising of twenty lucks, ahout une hundred culverts and seviral larioe aquedncts, whieh will be offered to res;onsible centraciurs at fuir price. The luciss and aqueducts are to be built of cui atone
T'he work contiacted for mnst be finished by the Lst day uf July, 1833
Pursons desirnis of obtaining work are requesten to apply at the office of the und-rsigned in the city of lic.um.mad, befuru the fifteenth of May, or betweell the fifth and the fifternth of Joly.

> CHARLES ELLET, JR.

Chef Engineer Jua, Kiv. \& Ka. Co. P. S-Tha raliey of James Kiver above Richmond is healthy.

16-10t

PATENT RAILROAD, SHIP AND BOAT SPIKES.

**The Troy Iron and Nail Factory keeps constanty for saloa very extenaive assurtmentof Wruught Spikes and Naiks, from 3 to 10 inches, manufaciurted by the subscriber's Patent Machinery, whirh after five yeara elliccessful uperation, and now aimust universsl, use in the United Statex, (as well as Eingland, wh-re the subscriber obtinined a patent,) are found suparior to any ever offered in markel.
Rsilroad Cimpanins may be supolied with Spikes having countersulk heads suitable to the hules in irun rails. tu any amount and on whort notice. Almost all the Railruads now in progress in the lluited Siates are fastened with Spikes made at the abuve uamud fac-tory-for which purpuse they are fuund invaluahle, as their adhesion is mure than double any commur. spikes m ude by the hammer.
will be purctually allenued to. Agent, Troy, N. Y., will be puuctually amenued to.

> HENRX BURDEN, Agent.

Troy, N. Y., July, 1831.
\& J. Tuwnsend, Albant, alld the factory pricices, hy T . \& J. Tuwnsend, Albany, and the principal lron 3lerchavts in Albany ana Irry i J. I. Brower, 2LL Waier street, New. York; A. M. Junes, Philadelplia; T Janviers, Baltimore; Degrand \& Smith, Buston.
P. S.-Railroad Companies would do well to fur sward their orders us eurly as pructicable, as the subscriber is desirnus of extending the manufacturing so as to keep pace with the daily increaning demand tor his Spikes. (IJ23ann)

TO RAILROAD CONTRAC'IURS.

SEALED proposals will be received at the office of the Selma and Tennessee Kiver Kailroad Company, in the town of Selma, Alabrma, fur the gradvation of the first forty miles of the Selma
and Tennesace lRailroad Propisals fur the first six and Tennesace Railraid Prupusals for the first six
milea frum Selma, will be received after the first of May, and acted on by the Board on, the 15ih May. Prupusals fir the ensuing 31 miles, will be received after the $10 t \mathrm{~h}$. Mav, tout uill nut be examined unil th: lst of August nex, whell the work will be ready for contract.
The line, after the first few miles, pursuing the flat of the Mulber y Cre k, uccupies a region of country, lisving the repute of being highly healthtiul. It is free frum poinds and awanps, and is well watered The suil is generally in cultivation, and is dry, ligh and sandy, and uncommunly easy of excavaiion.The enire length of the line of the Sell a and Tennefser IR.ilrunils, will be abuut 170 miles, passing generaliy through a regiun as invorable for health ax any in the Southern Country
Owing to the great interest at stake in the success of this enterprise, and the amonnt of capital already embarked in it, this work must necessarily proreed with vigur, and 1 invito theatten ion of men of industry and enterprise, buth at ilie North and clsewhere to this undertaking, as offering in the piospect of to this undertaking, as offering in the plospect uf and climate, a wide and desirable field to the contractor.
Propusala may be addressed either to the subseriber, or to General Giibert Shearer, President of the Company.
ANDREW ALFRED UEXTER, Chief Engineor Selma, Ala., March 20th, 1827.

ROACH \& WARNER,
Manufarturers of UP I'ICAL MAI IFSM ITICAL AND PHILUSUPHICAL INSTRUMENTS, 293 Broalway. New Yoik, wils keep conatantly on hand a large and general assortment of Instruments in their lifio.

Wholesale Dealpra and Country Merchants anpplied with SI-RVEYING CUMPASSES, BARIMME:TERS, THFRMOMETYRS, \&ce. \&C. of theit own manufacture, wirranted accurate, and at lower prices than can be had atany other earablishment. Jnetrnmenter made to order and repaired

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. II. IONG, to build Bridgen, or vend the right tn whers to buid, on his Patent I'lan, would resurecefull\} nfurn Railroad and Bridge Curpura.ions, that he i: prepareal to make e.miracts to build, arkl furni-h all raterials for superstructire of the kind, in any part of the linitel states. (Maryland excepted.)
Bridges on the above planare to be seen nt the fol. lowing localities, viz. Un the main road leading from Bahimore to Whahington, two miles from the furmer place. Across the Metawamkeag river on the Milicary ruad, in Maine. On then national road in llinuik, at sundry peints. Onthe Balinore and Sisqueharsia Rrailruad at three points. Ont the Itudsun anc Pate?xon Railroad, in two places. On the Burtunand Worcester Kailioad, at several points. Out the Bos. Tin and l'ruvidence- Railruad, at snindry points. Acruss the Contoocrok river at Henmier, N H. Across the Souhegan river, at Milford, N. H. Arruse the Connecticut river, at Haverliill, N. H. Across the Contwoconk river, at IIancock, N. II. Across the Androscoggin river, at Turner Centre, Maine. Across he Kennebec river, at Waierville, Maine. Across the Genesse river, at Equakiehill, Mount Morrig, New-York. Acruss the Whate River, at Hartfond Vi. Across the Conneclicut River, ai Lebnnon, N. II. Across the mouth of the Brokfn Stran Creek, Penn. Across the moush uf the Cataraugus Creek, V. V. A Railroad Bridge diagonally acioss the Erie. Canal, in the Cily of Ruehester, N. Y. A la lruail Binge at Upper sill Kater, Uruno. Maine. Thir Biodg is 500 feet in lingils; vie of the apans is over 200 feel. It is prubably the firmest wuon. N anidge ever built in America.
Nutwithstanding his present engigements to builu hetweell twemy nnd thirly Railrund Bridges, und sevaral common bridges, several of which are now in progress of construction, the subscriber will promptly intend to business of the kind to nuch grater extent und on liberal terms.

Rohester, Jan. Jitin, 1837.

ALBANY EAGLE AIR FURNACE AND

 MACHINE SHOP.WILLIAM V. MANY manufactures to order iron castings for Gearing Mills and Factories ol every description
ALSU-Steam Engines and Railroad Castings o every description.
The collection of Patterns for Marhinery, is net equalled inthe United States 9 - 15

NEW ARRANGEMENT.

ropes for inclined planes of rablroads.
WE the subscribers having formed a co-parinership under the style and firm of Fulger \& Coleman, for the manufacturing and selling ol Rupes for inclind planes of reilruads, and for wither ust 8 , offer tu supply ropes forinelined planes, of ant lenglh requircd without splice, at short notic e, th. malaufacturing uf cordnge. heretofure carried on by S. S Durfee d Co., will be done by the new firm, the rame superintendant and machinery are employed by the new firm hat were empluyed by S. S. Durfee \& Co. All orders will be prompily attendel to, and ropes will be sbipped to any port in the United Alates. 12il monhh, 12, h, 1836. Hudson, Culumbia Cuunty Siate of New-York.

33-1f.
ROBT. C. FOLGER.
AMES' CELEBRATED SHOVELS, SPADES, \&c.
300 duzen
150 du
da
do
$d o$
d) do plain do do 150
150
do $\begin{array}{ll}150 & \text { do } \\ 100 \\ \text { do }\end{array}$ $\begin{array}{cc}100 & \text { do } \\ 50 & \text { lo }\end{array}$
do csutsteel Shovels \& Spade 50 do plated spadea
logether with Pick Axes, Churn Drills, and Crou Bars (steel puinted, n.anufactiared frum Saliahury refined iron-lor sale bythe manufarturing agents,
WITHLCELL AMES \& CO.

WITHERELL, AMES \& CO.
No. 2 Liberty atreet, New-York BACKUS, AMES \& CO.

No. 8 State itreet, Albany
N. B - Also furnished to order, Shapew of every de seription, made frum Salsbury refined Iron v4-If

STEPHENSON,

Builder of a superior style of Passengen Cars for Railroads.
No. 264 Elizabeth street, near Bleeckerstreet, RAILROAD COMPANIEES would do well th ext mune theve Cars; a specimen uf which may he seel
on that part of the Now.Yotk ond Harleem Reilroen.
nuw in meration on that part of th
nuw in aperation

TO RAIILROAD CONTRACTORS.
PROPOSALS will be receired, at the office of the tiwashes laalrual Com., in the wown of Athens, Te.nesaee, mitil sunsel, if Monday, Juise 12th, 1837; fur the grailing, masonry and brilgea, on that portion of the Hiwasake Railruad, which lipa be iwect the River Tennessee and Hiwassee. A distalice of 40 miles.
The quantity of excavation will be about one millioll ol cubic jards.
Th - line will b. stakod out; and, together with Irainings and sp cificatiuns of the wo:k, will be ri a y thr the intapeciion of contractors, on and aftar ithe list Jay oi June.

JOHN C. TRAUTWINE,
Engit eer in Chief Hiwassee Railroad.
RAILWAY IRON, LOCOMOTIVES,\&c. THE subscribers offor the following articles for sale.
Railway Iron, flat bara, with countersunk holes and milserl juints,

90 " 1 "t, "t " " " " " " with Spikes and Splicing Plater adapted therelo. To ruraied compans-s.
Orlers for Pennsylvania Builer Iron exeented.
Rail Road Car and Lucumotive Engine Tires, wrought and turned or unlurued, re ady to be fitued on che wheels, viz. 30, 33, 36, 42, 44, 54 , and 60 iaches
E.V. Patent Chain Cable Bulta for Railway Car axifo, in lengthe of 12 fi et 6 inches. to 13 feet $2 t, 2 t$ 3, 31. 34, 34, and $3 t$ inches diumeter.

Chains for Jnclised Planes, short and stay links, manulactured frum the E: V. Cable Bols, and proved at ilie grent-st atrain.
India Rubber Rope for Inclined Plunes, made from gealame flax
Also Palunt Hemp Cordage for Inclined Planer, and Canal Tuwing Lines.
Patelt Felt lior placing between the iron chair and stoul bluck of Edge Railways.
Every description of Railway Iron, an w-ll an Locumotive Engines, imported at the shortest notice, by the agency of one of our partners, who resides in Fingland lor this purpose.
Λ highly reapectable American Engineor, renideu in Eingland for the purpose of inspecting all Loromoives, Machinety, Rai'way Iron \&c. ordered through us.
A. \& G. RALSTON \& CO.,

28 if
Philadelphia, No. 4, South Frontat.

ARCHIMEDES WORKS

 (100 North Moror street, N. Y.)New-York, febrnary $12 \mathrm{hh}, 1836$.
THE undersigned begs leave 10 infurm the proprierors of Kailronds that they ure prepared to furnish all inds of Machinery fur Ruilroads, Lucomotive Engines of any size. Car heels, such ak are nuw in ongersaHil operation on the Camden and Ambuy Railroad, none of which have failed-Castings of all kinds, Whaele, A xles, and Boses, furuished ai shomest nutice. 4-vil
H. R. DUNLIAM \& CU.

MACHINE WORKS OF ROGERS, iffTCHUM and GROsVENUR, Patervon, New. Jersey.- The undersigned recrive orderu fur the following articles, manufacturel by $t \mathrm{~h} m$, of the most upersur descripion in every particu'ar. 'Their works bn ing extensive, and the number of hands employed bring large, they are anahled to execute both large and smali orders whi pronifinc se and despatch-

RAILROAD WORK.

Locomotive Stenm-Engines and Tenders; Driving and other Lucomutive Wheels, Axlen, Springs end Flange Tires; Car Wheels of east iron, from a variely of patierne, and Chills; Car Whecle of cartiron, with wrought 'lirts; Ailos of beat Americap refined iron, Springe ; Boxes and Bulte for Cars.

COTTON WOOL A.ID FLAX MACHINERY,

Of all deacriptions and of the must jmprov d Paterne, Siyle and Worknan-liip.
Mill Gerring and Millwright work generally; HyIrauic and wher Presses; Prers Screwz; Callenlers; Lathes and T'ooly of all kinds, Iron क्षnd Brqeo Castings of all dearriptions.

 \title{
AMERICAN RAILROAD JOURNAL,
 \title{
AMERICAN RAILROAD JOURNAL, and advocate of internal imphovements.
}
publisifed weekly, at no. 30 wall street, new-york, at five dollars per annum, payable in advance

1. K MINOR, and

GEORGE C. SCHAEFFER, $\left\{\begin{array}{l}\text { EDITORS AND } \\ \text { PRORIETOR*.] }\end{array}\right.$
..S.ITERDAY, JUNL $10,183 \%$.
IVULLME VI -Ni. 23.

CONTENTS:

McAdam Roads,

Revolutionary Dociment,
Patent Rifle;
Transactions of the Institution of Clvil Eagincers.
Telegraphs; Cements,
Fire Bricks; Important Process,
Experiments on the Adhesion of Iron Spikes of various forms,
Agriculture, etc.,
Advertisements,

AMERICAN R.AILROAD JOUR NAL.
NEW-YORK, JUNE 10, 1837.
REMOVAL.-The Office of the RAIL. ROAD JOURNAL, NEW.YORK FAR. MER, and MECHANIC'S MAGAZINE, is removed to No. 30 Wall-STREET, base ment story, one door from Wiiliam street, and opposite the Bank of America.

McAdam roados-Indiana Improvemerits We extract the following from a letter received from a gentleman in Indiana, in relation to the public works of that StateThis road is constructed at the expense of the State. We are doubly obliged to Mr. Frazer, the writer, for his comnunication It is one of the most interesting which has come to hand of late-as it furnishes us at the same time with useful information-four new subscribers and cash fifteen Dollars-a rare cornbination; and amount of good fortune, these hard times.

This Road when finished from New. Albany to Vincennes will be about 104 miles long. Forty-one miles of seid road
the distance from Now-Albany to this lace) are now under contrict for graduaron and bridging. The whole number of raburers now engaged in the construcio: if it be:iween quid points, amounts to 956 persons. The piyinents on estimate to ihe contractors for the month of April, amounted to $\$ 16.450 .00$. The plan of construction in every respect is similar to that of the Cumberlanil road, in thi. State and in Ohio. The maximum grade on this road is $16^{\frac{1}{3} 3}$ or $3 \frac{1}{2}$ degrees, and the ininimum grade for the ditches is $3 \frac{1}{14}$ or 10 minules. The country between New-Al bany and Vincennes is undulating, abound.
ing whih hmestune of superior quality for metalling, and also with a great abundance of fine timber fur bidying. I have rounded all the angles on this road with curves, none of which have a less radius than 600 feet. The whole cost of the graduation and bridging between this place and New-Albany, when finished will be $\$ 207,921$ 71-giving an average per mile of $\$ 507126$.
'I'he following statersent shows the numbir of iniles there are of $3 \frac{1}{2}$ degrees grade, of 3 degrees grade, of $2 \frac{1}{2}$ degrees grade, and of 2 degrees grade and under, betweon New-Albany and this place.

GRADES.

Oi $3 \frac{1}{2}$ degrees.	If 3 degrees.	Ol $2 \frac{1}{8}$	Of 2 degrues and under.	dislunce.
mines.	u川1 ${ }^{\text {a }}$	nilles.	unles.	miles.
$7.2 \overline{3}$	1.32	3.13	29.62	4160

I am sir, very respectfuly, Your obedient servant, Jno. Frazer.
Eng:neer New-Albany and Vincennes McAdamized Turnpike Road.

Revolutionary Document.-The fol. lowing is a copy of a document found among the papers of a Revolutionary officers now no more, who took an active part in the stirring scenes of that period. It appears to be a statement of the proceedings and expenses -in continental mmsy, the currency of that day-of establishing the claim of Mess:s \longrightarrow, \ldots, to certain good; which were ssized at Woodbury, N. J., on the 11th of August, 1780. It is an interest. ng document, exhibiting the great depreciation of the currency of the days in which our fathers fought and bled for liberty.
"An Accou, it of Cost and Expenses of the Seizure of the Goods belonging to _\& _ at Woubury, N. J., 11th day August, 1780 :
Going to Newark Mountain, for advice of the Attorney, 60 Dollars. Cost of Jury,67
Going to Elizabeth Town, 65
Horse Hire and Time, 120
Co procure a Witness to go to Philadelphia, 8
The Expenses of going to Phia., Brunswick Ferry, 12
Brunswick all Night, 116
6 Mile Run, -6)
Maidenhead, 54
Trenton Ferry and Way, 60
Bristol, 80
Neshamony Ferry, 16
10 miles from Phía.,

Phindephia	
On Return Red Lion one night, 112	
Neshamony Ferry,	
Pens Manor	
Trenton Ferry,	
Trenton,	
Prince	
Mile Run,	
Hire of Horses and Wagon at	
	1050
e Evidences and my Time	
ing to Philadelphia, 5	
Days each, at 70 Dollars	
per Day,	
To get White Matlacks Deposition,	
To geting some Bills Proved at Elizabeth Town,	
For the Evidences going to Elizabeth and attending the	
Trial,	14
Our own time in attending	
Trial,	21
Docts. Lester and Gallaudet, attending Trial one Day, 140	

Phiadephia, 545
On Return Red Lion one night, 112
Neshamony Ferry,16
Trenton Ferry, 45
Trenton, 30
6 Mile Run, 116
210 Dols. per Day, 5 Days1050
The Evidences and my Timegoing to Philadelphia, 5Days each, at 70 Dollarsper Day,700
sition, 6
at Elizabeth Town, 9
Elizabeth and attending the Trial, 140
Trial, 214
attending Trial one Day, 140

Which makes $£ 1500 . "$

Patent Rifle.-We have recently examined a patent rifle of improved construction, and superior workmanship. It is an invention of our ingenious citizen, Mr. Themas M'Carty, who has sold the right to Mr. John Lamb, of Southport. The improvement divides itself into various items; lst, the breech and barrel are united, by a joint that is opened by means of loosing a catch, and are beld together by two stirrups, one on each side of the barrel, so that the breech may be folded over against it, and thus the piece carried in a trunk or chest; 2d, it ha, as appendages, any desired number of iron tubes for cartridges, which may be charged at leistre, and carried at convenience-these can be placed in the barrel at the breech and discharged at the rate of ten to a minute, with case: these tubes are made with a cone at the lower end, that fits into a niche in the barrel and projects to receive the percussion cap already fitted on, so that the piece can be loaded and fired as fast as the joint can be loosed, and the tubes exchang-ed-all which may be done with ease in any position; 3d, it is easily cleaned, if it should become foul, as there is no breech-pin. and the barrel, when the tube is out, has no obstruction ; 4th, its construction is simple, and its cost, to the manufacturer, can not much exceed that of ordinary, well made rifles; 5 h , it is perfectly safie, as it cannot possibly be fired until every thing is ready; and it need not be carried or left with a load in it ; 6 th, it can be used with as much certainty in wet weather as dry; 7th, it has no incumbrance of a ramrod and its appendages ; 8th, there is no drawing. loads, for if a tube should miss fire, it can
$\|$ he instantly replaced with another; 9 th, it $\|$ is pretty, light, cheap and so nicely made that the joint would not be detected by or dinary inspection. The same principle is applicable to fowling pieces, too of which have been made. This is the only rifte of the kind that has been completed. We should think the article would find a ready market among sportsmen, prove valuable to the manufacturer, and in war be of great importance. By the use of this invention, the ordinary laborious drill for loading rifles and muskets would be superseded entirely. - [Elmira Republican.]
transactions of institution of civil ENGINEERS.
XXIV memoir on the use of cast iron in piling, particularly at brunswick WHARF, BLACKWALL. BY MICHAEL A. borthwick, A. I:ST. C. E.
A short sketch of the introduction and use of cast iron in piling, may not be considered an inappropriate accompaniment to an account of one of the most recent works in which it has been adopted.

Public attention was first drawn to such an application of iron by Mr. Ewart of Manchester, now of his Majesty's Dock-yard at Woolwich; but though this merit is certainly due to that ingenious gentleman, he had been, as it afterwards proved, anticipated in the idea by the late Mr. Mr. Mathew's Mathews at Bridlington, who previously to the date of Mr. Ewart's patent, had used cast iron sheet piles in the frundations at the head of the north pier of that harbor. These piles were of different forms; the following is a cross section of one of, I believe, the most common, in which it will be seen the adjoining piles dovetail to each other, while in others, I have been informed, they merely overlap. Their length was about 8 or 9 feet, their width from 21 inches to 2 feet, and their thickness half an inch.

In ignorance of Mr . Mat-
Mr. Ewart's plen. news's proceedings, Mr. Ewart, in the begi:ning of 1822, took out a patent for a new method of making coffer-aams, which he proposed to effect by employing plates of cast iron, held together by cramps fitted to dovetailed edges on the piles. A section of these piles, taken from some that have been used, is shown in the accompanying sketch. A detail in the mode in which it was proposed to combine them so as to form a coffer dam might be out of place, in a paper that has reference more to the use of iron piling for permanent purposes ;-the plan, as described in the specif. cation of the patent, is to be found in the Repertory of Arts, and an abstract of it in the London Journal of Arts and Sciences for the year 1822. The length of the piles is therein stated as intended to be from 10 to 15 feet, which is, I understand, about what they have generally been made, and for cases requiring a greater depth, a mode
is described of lengthening the piles, by placing one above arother, and securing the sorizontal joints by means of dovetailed cramps.

Though on being apprised of what had been done at Burlington, Mr. Ewart did not defend his patent, his piles have been pretty extensively adopted, particularly by Mr. Mylne, of New River Head, London, and Mr. Hartly, Liverpool. Besides other operations in the innportant public work under his charge, the former gentleman used the piles, swon after their invention, with complete success, in a coffer-dam of considerable sizr, constructed in the River 'Thames for the purpose of putting in a suction pipe opposite the New River Company's establish. ment at Broken Wharf. They bave also been used with advantage by Mr. Hartley, in founding the pier heads of the basin of George's Dock, and various parts of the walls of some of the other docks at Liverpool, as also in putting in the foundations of the south river-wall.
Looking at the dovetailed form of these piles, one would, I think; have been inclined to anticipate difficulty in driving them, but this does not seem to have been met with to any extent in practice, at least in cofferdams, the original object of the inveution. On this point I have pleasure in being able to quote some observałions of Mr. John B. Hartley, which contain the results of the Liverpool experience :-" Oonsiderable care," he writes, "is required in keeping the piles in a vertical position, as they are apt to shrink every blow and drive slanting. They require to be driven between two heavy balks of timber to keep them in a straight line, as they expose very little section to the blow of the ram, and are so sharp that they are easily driven out of a right line. There is another very necessary precaution to be taken, which is the keeping of the fall in the same line as the pile;-otherwise the ram descending on the pile and not striking it fairly, all parts equally, the chances are that,jif in a pretty stiff stratum, the head breaks off in shivers, and ihe pile must be drawn, which is sometimes no easy matter." He concludes by saying, "these piles are on the whole the most useful tools you can use for their purpose (cof-er-damming). I believe they have had as extensive a trial at the Liverpool Docks as any where else, and certainly with success. They have generally been driven with the
ringing or hand engine and rams of 3 or 4 cwt., a front and back pile being driven at the same time by one ram."

In the work at broken Wharf, the practice was to insert the piles and cramps all round the dam first, and drive them a moderate distance into the ground-then to pass the engine repeatedly round and send them down gradually, instead of driving tiem home at once ; and Mr. Mylne has mentioned to me that waile this was in progress, the piles being at the time but slightly driven, he was somewhat alarined one morning at finding that the run of the water had elevated one end of the dam considerably above the other. The dovetails however held good, and proper precautions being taken, the return of the tide put all right again, without at all crippling the work, the movement having been regular all over the dam. 1 ought to add that these dams are still used in the works on the New River, four setts being generally kept in hand, and that the ringing engine is always employed, and the above stated metiod of driving fullowed.
I have perhaps dwe't longer on Mr. Ewart's project than I should otherwise have done, from a feeling that from his labors has sprung much that has followed in the way of iron piling ; and besides it may be observed, the remarks as to driving are not entirely limited in their application to this particular description of pile. Thenext work that occurs was executed Mr. Emart's plan
madified.
man by Mr. Walker, in 1824 ; this was the rebuilding of the return end of the quay-wall of Downes Wnarf, Saint Katherime's, which had been under. mined by the wash from the Hermirage entranec of the Londou Docks. With a view to a more effectual resistance of a like action in future, iron instead of wood sheet piling was introduced, in the foundation of the wall in question; and though, if one may judge from the specification of the patent, no application of his plan of so permanent a nature seems to have been coatemplated by Mr. Ewart, the work was begun accordug to it, but it was afterwards molifie. 1 at the request of the coatractor, so as to give the section of pile shown in the following, the flanch being in frout or outside. Although as has been already seen, the piles in their original form may be easily enough driven in some cases, it was found impozsible to get them down in a regular line to the depth required in the present instance, through the hard inaterial that had to be penetrated, and by which in fact they were surrounded and pressed for nearly their whole length of 14 feet.

Mr. Oublt's pans
A work on a much largeı scale than any yet mentione now presents itself, the wharfing at the sca entrance 0 . the Norwich and Lowestoft nav igation. In this Mr. Cubbitt has adoptod
sheet piling exclusively without the intervention of main or guide piles; the form and section will be seen by the accompanying sketches, whi :h it is almost unnecessary to observe are not diawn to the same scale. the transverse section beiug cousiderably enlarged beyond the other two. 'The piles are all 3) feet long; their weight is abo:at a ton and a half each. The back flanch which is shown at the dcepest on the cross section, tapers graduaily to about 6 inches at top, where the angles are blocked in to form a head for driving, and is diminished at the lower end by steps or sets-off of parallel width with square ends, instead of a straight or curving line, as the latter shape was found to have a tendency to press the pile forward, whereas by the p.an adopted, it drove as fairly as if the flanch had been continued its full width to t.te foot of the pile. Tue driving was all effected by means of crab engines with monkeys aboit as heavi as the piles, no more fall being allowed than was necessary to send them down, and the whole is secured by land-ties, two in height, at intervals of six feet. The entire length of wharfing thus constructed is about 2,000 feet.

From the form of the pile, according to his plan, giving so thin an atutting suriace. ind the joints not being covered in any way, - lose atid accurate driving seems essential to its efficacy, ar.d the nature of the ground sand mxed with s ingle) wou have made is a somewhat troublesome ojeration at Lowestof, but for the plan that was taken to
ensure procision. This consisted in riveting clos:* to the lower end of the pile about to be driven, a pair of strong wrought iron cheeks, projecting beyond the edge about two or three inches, which clasping the pile already Iriven, served as a guide or groove to keep the piles flus!, however thin the edge,* and the tendency to turn out or in at the heel was counteracted after a few trials by giving a greater or less bevel to the front or back face. With these appliancestbe piling was pretty closely driven, and the work which was completed in 1832, has been found fully to answer the object of supporting the sides of the cut from Lake Lothing to the sea against the effcets of the very ingenious and nowerful sluicing apparatus provided in the l.sek at that place.

About a year later than the Mr. Sibly's plaa. above, Mr. Sibley constructed an iron wharfing on the Lea Cut at Limerouse on an opposite principle, shect piling being in tlis cuse altogether discarded, and the work consisting of flat plates let down in grooves on the sides of guide piles of an

elliptical form according to the section opposite, driven at distances of 10 feet. These pilns are 20 feet long, weigh about $1+$ ton each, and are 9 feet apart; they are hollow throughout, to enable a passage for them to be bored in the soil by means of an augur passed through them, and so ease the driving, and are filled with concrete; each pile is landitied, and the plates extend to within 6 feet of the point. A similar wharfing, but on a larger scale, hus since been made on each side of the Thames, adjoining New London Bridge; that on the City side rather an extensive work, the piles in it being 43 feet long, (cast in two unequal lengths with a spigut and faucit joint,) of a cylin. drical form, 12 inches diameter, and of metal $1 \frac{1}{2}$ inch thick, and each pile being socured by two tiers of tics of 2 inch square iron carried 70 or 80 feet back, to resist the great depth of filling up or backing.

The plan just described seems well enough adapted for situations where any great in. crease of depth is not likely to take place.

Tue absolute depth is not so important, though where this is considerable, it may be questionable whether a heavy wharf would not be the better for the protection of a con. tinuous row of piling at foot;-the strong land-tying necessary in the last mentioned work seems to point to this.

I now come to the quay wall Brunwwick whar. constructed in 1833-4 by Messrs. Walker and Burges on the River Thames, in front of the East India Docks at Blackwall, and since named Brunswick Whalf. The object of this work was to afford accommodation for the largest class

* This plan has, I boliev, been followed by Mr. Cubbitt in driving timber piling aloo, in cases requiring nioesty of work,
of stcam-vessels at all times of tide, for which the old quay. even had it rot been in a state of decay, was not adapted from the shallowness of the water in front of it. To effect this, the first idea was to run out two or threc jetties from the wharf, but this was soon abandoned, and a new rivar-wall resolved on; and advantage was taken of the occasion to improve the line of frontage by an extension into the river, under the sane. tion of the Navigation Committee of the Port of London, varying from a point at the east end to about 25 fect at the other extremity. The use of iron in the work was, I have understood, suggested by Mr. Cot. ton, deputy chairman at the time, and for many years an active member of the most respectable and liberal body then in the direction of the East India Dock Company, and the adoption of the proposal was facill. tated by the circumstanee which probably led in the first instance to its being made, namely, the low price ol the material at the period, the contract being little more than £7 per ton delivered in the Tnames.

In the accompanying drawing, plate No. XII, an attempt is made to slow the mole of construction that was followed, so as to avoid the necessity for much written detail. The first operation was to dig a treneh two yards deep in the intended line, and this was immediately fullowed by the driving of the timber guide piles. The decpening in fron:, which to give the required depth of 10 feet at low water, was as much as 12 feet. was not done until near the conclusion of the work;-to have effeeted it in the first instance would, without any countervailing advantage, except some saving in the driving, have been attended. with the double expense of removing the ground forming t.ine original bottom between the old and new lines of wharfing, and afterwards refilling the void so left by a material that would require time to make it of equal soldity; and even if this had been otherwise, sucia an attempi would have endangered the old wall, or ruther would have beeu latal to it. Tae permanent piling was next begun, the main piles be-ing driven first at intervals of 7 fect, and the intermediate spaces or bays then filled iu, working always from rigit to left, towards which the drafis of the shect piles were pointed. The ground is a coarse gravel, with a stratum of hard Blackwall roek occurring in ${ }^{5}$ places, and some trouble was occasionally experienced from its tendency to turn the piles from the proper direction, bu. due attention being paid to the form of the points, the driving was on the whole effected pretty regularly, but few of the bays requiring closing piles specially made for tuem, so that the work may be said to be nearly iron and iros from end to end;-at the same time, the vertical joints of the piling being all covered, as will be noticed presently, any slight imperfection in this respect is no serious detriment to the work as a whole.

The main piles are in two pieces, the lower end of the upper one being formed so as to fit into a socket on the top of the under length, and the joining made good by means of a stroug screw-bolt;-the only object of this was to insure a supply of truer castings, and lossen the difficulty of transporting such unwieldy masses from Northumberland and

Staffordshire to London.* Each sheet pile. $\|$ is scrured at the top by two bolts to the up. rermost waie of the woodwork behind, and he edge of the eind ones of each bay, it will be observed, pass behind the adjoining main pile, while the other joints are overlapped by the bosses with which all the sheet pilcs exept the closers are furniched on oae side. Besides adding to the perfection aud security of the work by breaking the joints, so tisat the water, (if it penetrate, as with even the best pile-driving it will,) cannot draw the backing from its place, these projections appear to me to relieve the appearance of the otherwise too uniform face; and a like effect is produced by the horizontal fillets on the iower edges of the plates above, which also mask the joints. These plates, filling up the spaces over the sheet piling, are bolted to the main piles and to each other in the manner shown, and the joints stopped with iron cement. Where the mooring rings come, the plates are cast concave, with a hole periorated in the middie to alluw a bolt to pass tirrough, and this boit is secured, as we.l as the land-ties from the main piles, to the old wharf, which was not otherwise disturbed, o: to needle piles driven adjoining it. The vacking cousists of a conerete of lime and gravel, in the proportion of one to teli, extending down to the sulid bottom. The coping with the water channel in its rear is of Devonshire granite; the water is con. veyed from the chanal at intervals by pipes exterding from gratings in the bottom in a s anting line to the lowermost plate, and discharging themselves immediately above t.e heet piling.
*Tae Birtley Iion Company, Newcastle-on-Tyne, were the contractors for the iror work, but a portion was supplied by the Horsley Iron Cumpany. Mr. M'Intosh, of Bivomsbury Square, had the contract for driving ti.e pies and fixing the work.

> (Tu be Continued.)

Telegraphs - The Honse of Repre. entatuves of the Unitad States, at their litte session, Feb. 3, 1837, passed a rcsolve.
"That the Secretary of the Treasury be requested to report to the House of Representalives, at its next session, upon the propriety of establishing a system of tele. graphs for the United States.
In compliance with this resolution, the Secretary, the Hon. Levi Woolbury, has issued a circular, with the view of obtain my information in regard to "the propriely of establishing a system of telegraphs for the U:ited S'ates,". und invites the collectors, coinmanders of revenue cutiers, and others to furnish the Department of State with their opinions upon the subject, especially by pointing out the manner, and the varions particulars, in which the system may be renderel most useful to the Govermment of the United States, and the pub lic generally. It would be desirable, to present a detailed statement as to the pro per points for the location, and distance of the stations from each other, with general rules for the regulation of the system, together with an opinion as to the propriety
of connecting it with any existing depart. ment 0° the Governinent, and some definite idea of the rapidity with which intelligence cotid, ordinarily, anl, also, in urgent cases, be communicated between different places. An estimate of the probable expense of establishing and supporting tel-graphs, upon the moit approved system, for any given distance, during any specifiol period, is also desired. Iuformation and opinions are also asked as to the practicability of uniting with a system of telegraphs for communication in clear weather and in the day time, another for communication in fogz, by cannon or otherwise, and in the night: by the same mode, or by rockats and fires, and returns are asked by the lst of October, 1837.

As the sulject is one of high importanco to national and inlividual welfare, especially in a country of such vast extent and diversity of interests and physical features as the Unitel States, we trust that the call of the House of Representatives and of the Hon. Secretary will weet with prompt at. iention and full replies.- LAmerican Jour. of Science and Arts.]

Natije of different Cements.(Berzelius's Jahresbericht, etc. xivth. year, 1st number.)

Fuchs has studied the nature of different species of moitars, and demonstrated that their solidification dapends on the formation of silicate of lime, and sometimes also of silicate of alumine. These silicates retain some water and assume the firmness of stone, whilst the hydrate of lime in excess unites by degrees with carbonic acid; and consequently solidified inortar inay be considered a compoun! of carbon. ate of lime and of a zeolite. Opal, pumice stone, obsidian and pitch stone pulverized, firas with hydrate of lime a good cement. But only the surface of each gram of quartz or said, is transformed into a hydrated silicate, and though this is sufficient to unite the mass, solidification d ees nut take place :o promplly. The inass becomes the more solid, the more finely the quariz is pulverized. If the pulverized quartz be mingled with one-fourth part of lime, and after thoroughly calcining the mixture, it be pulverized and mixed with one-fifih part of lime, it forms a hydritulic cement which beco:nes so hard as to be susceptible of a polish. Feldspar hardens slowly, and with lime only after five months; but if calcined with a litule lime it is much improved.Common potter's clay, which is absolutely worthless in its natural state, affords with lime, when calcined, provided it contains but little iron, a cement which readily hardens.
Fuchs having discovered that stcalite, which had been subjected to a red heat, could not be made to unite with lime, and thence concluding that magnesia has a strong affinity for silicic acid, attempted to employ calcined dotomite, in the place of ordinary lime, and found that it surpassed it, both as a material for ordinary mortar, and also for a hydraulic cement. He obtained a good mortar with this last material and calcined marl

Firx Bricks.-Mr. Isaac Doolittle. snperintendant of Iron Works at Bennington: Vermont, has, from materials found in that vicinity, manufactured fire bricks. which have stood a blast of five months, and being r cently exaniued appeared so little worn that the furnace his again been put in blast.

This discovery appears of serious impor tance. We have seen specimens of the sand, which is purely siticeous-of the clay, which is of the porcelain family, and of the brick and a crucible made from these inuterials, all of which appear to be excellent.

In the furnaces they substitute blocks and bricks formed of these materials for fi e stones in the construction of hearths, and of tymps for blast furnaces. Heretofore hearth-stones have been obtained from Stafford, Connecticut, but these materials appear prelerable to either for durability and cheapness.

Ifportant Process.-A new process has been discovered at Sirasburg, by means of which a crystallized sugar is produced in twelve hours from beet-root, and which does not require any further refining. The invention is the more curious, as neither any acids or chemical agency is emplojed in this remarkable operation, and the use of animal black is entirely dispensed with. It has also the advantage of saving 24 per cent. in the consumption of fuel. . The new process is applicable in all the mannfastories of sugar, with the execution of those upon the priticiple of dessication of the beet-root. The inventor is M. Elward Stohic, who, thougu not more than twentyfuur years of age, is already highty distinguished for his experiments in chemistry and his works in p lite literature.
From the Ameriean lournal of Science nnd Arts. EXPERIMENTS ON THE ADHESION OF IRON SPIKES OF VARIOUS FORMS, WHEN DRIVEN INTO DIFFERENT SPECIES OF TIMIBRR; by Walter r. Johnsun, protessor of MECHANICS AND NATURAL PUILOSOPHY IN THE FRANKLIN INST:TUTE, FHHLA-

In reference to railroad constructions, bridge-building, and several cther usefui applications in civil engineering, as well as in naval architecture, the adhesion of spikes, bolts and nails of various furms becomes an object of much practical importance. In regard to railroads, this matter is worthy of more attention than might at tirst sight be supposed. Owing to the high price of iron, the flat rail is often unavoidably adopted in preference to the edge rail; and whenever the speed of a train descending by gravity, or impelled with great velocity by the moving power, is to be suddenty checked by the brake, the friction of the periphery of the wheel on the rail, tends to drive lise latter lengthwise, and thus to force all the spikes with which it is faste ned into closer contact with the ends of the fibers which have been cut in driving them. 11 this partial or total dragging of the wheels along the rails take place, sometimes in ont direction, and sometimes in the other, the spikes must be eubjected to alternate im pulses on iopposite sides. Indeed, whenever the motive power depends on friction for its efficacy, as in the case of the com-
on locomotive engine, there is a constant uccession of these two opposite dragging Corces, the engine constantly tending by itdriving wheels to urge the rail backwards. and the train by an equal but more extentensively distributed action tending to urge forward all the rails over which it is at th: same moment passing. So decided is this influence, that on a railroad where the transportation is all in one direction, and where the cars descend by gravity, I have seen rails entirely detached, or remaining loosely connected but by a single spike. while others clearly indicated by the inclined position of their upper faces or heads, that they were pressed into an oblique or leaning position in the wooden sill.

This single case may serve to show the importance of attending to the character of the spikes usel in similar constructions.
'ro determine some of the points relating to the forms of spikes, and the kind of timber into which they are driven, the following experiments were undertaken. They serve to show the relative economy of each form of spike, as well as its fitness for the purpose intended. The mode of executing the experiments was, to drive each spike to a certain distance above its cutting edge, into the edge of a piece of plank or scantling, and by means of a suitable apparatus, adapted to that purpose, to draw it out by a direct longitudinal strain. The machine employed for this purpoie was the same as that which has been used for testing the strength of iron and coppuer, in experiments on the tenacity of materials employed in steam boilers. A strong band or strap of iron, connected with the weighing beam of that machins, held the piece ol plank, and a clamped pincers, with a : uitable jaw, for tiakng hold of the hoad and projecting part of the spike, was attarhed to the opposite part of the machine, which being tirlitened by a strong screw held the spike firmly, while the appliration of weights upon the long arin of the Jever drew the timber away, and released the spitie. Care was taken to cause the strain 10 pass through the axis of the spike, and, by a very gradual application of weights, to avoid surpassing that force which was just sufficiunt for its extraction.

The first experiment was upon one of Buiden's patent square spikes, with a cutting edge, intended to be in all cases placed across the grain of the timber. This spike was . 375 of an inch square, and was driven into a sound plank of seasoned NewJersey, yellow pine, $3 \frac{3}{8}$ inches. The force required to extract it was 2052 lbs., and the exact weight of the part driven into the wood was 866 grains tioy.

The second trial was upon a flanched, rooved and swelled spike, haring the grooves between two projecting wings or Hanches, on the carne sides as tie faces of the cutting edge. The other two sides were planes, continuing to the head. A cross section of this spike, taken $1 \frac{3}{4}$ inche: bove its edge or puint, had the form of ig. 1. At $\frac{8}{8}$ of an inch, that is, where the lianches project least from the edge, on where the swell between them comes nearest to forming a perfect square, the form is

as shown in fig. 2 ; the dotted line $e e$, in rach figure, representing the direction of the cutting pdge. Towards the head of this spike, the flanchines and grooving is suppressed, and the form becomes a square. This experiment was made on the same piece of Jcrsey yellow pine as the first, and the weirht required for extracting the spike was 1596 lbs. The weight of the part driven in was 705t grains. Tho cutting edge was irregular ; the distance to which it was driven, was 3_{8}^{3} inches, as the first trial. Io know the relative value of the ' wo forms of spikes, we have but to divide the weight required for the extraction of each by the number of grains in the part which had been buried in the wood; thus, $2052 \div 866=2.37$, and $1596 \div 708.25=$ 2.112 . Hence the plain spike had an ad. vantage over the swelled and grooved one, in about the proportion 23 to 21 . It should be mentioned also, that the plain spike was drawn out by a very mradual addition of force, whereas the force of 1596 lbs , drew the grooved spike immediately after its application. In the first trial, an attempt was made to detect any yielding or gradual retreat of the spike, betore the final start, but none was observed.

The third and fourth experiments were made with the same spikes respectively as the first and secons; but instead of yellow pine, the timber employed was thoroughly seasoned white oak.

The plain spike driven $3^{\frac{3}{8}}$ inches into that tinber, required for its extraction o f ree of 3,910 lbs., und, as betore, exhihit. ed no signs of movement until the instant of starting, when it suddenly came out about one $\frac{1}{4}$ of an inch, or as far as the range of motion and the elasticity of the nachine would permit.

The flanched, swelled and grooved spike, driven 3_{8}^{3} inches into austher part of the sane piece of plank, from which the plain one had been extracted, was drawn out with a force of $3,791 \mathrm{lbs}$. A slow moion to the extent of $\frac{1}{25}$ or $\frac{1}{20}$ of an inch was, in this trial, perccived to precede the starting of the spike; and was accompanied by a gradual pretrusion of the fibres of the timber immediately around the iron. In these experiments, though the plain spike bore the greaicr absolute weights, yet when the weight of metal is considered, it is seen that the relative values of the two are 4.515 in the piain, and 5.334 in the grooved form. The various circunistances of the four preceding experiments are seen at a single viev in the following table.

Hence it appears, that in yellow pine the grooved and swelled form was about 5 per cent. less advantageous than the plain ${ }^{4}$ while in the seasoned oak the former was $18 \frac{1}{2}$ per cent. superior to the latter. It is apparent that the advantage of scasoned oak over seasoned yellow pine for retaining spikes, is, by a comparison of experiments 1 and 3 , as 1 to 1.9 ; and by a comparison

of 2 and 4, it is as 1 to 2.37. In the pre- |'spikes were driven, were as nearly alike as ceding experiments the spikes were driven it was practicable to obtain them, being alinto the timber and immediately drawn out again. In the second series, the spikes were driven into their respective pieces of timber, and then soaked for a few days in water. The pieces into which the different
table II.
Timber soaked after the spikies were driven.

REMARKS.

Experiment No. 1.-In this and the fou: following, the thickness of the spike is that at the bottom of the grooves.

Experiment No. 4.-The oak used in this experiment was firmer than that em. ployed in the first series.

Experiment No. 5.-The timber had been slightly split by the driving of this spike.

Experiment No.6.-The flanches remained after filing out the swelled part of the original form.

Experiment No. 12.-Timber slightly split in Hriving the spike.
The first five of the preceding experiments show that with a spike of piven form and driven a certain distance into different timbers, the order of retentiveness, beginning with the highest, is as follows: 1, locust ; 2, white oak ; 3, hemlock ; 4, uuseasoned chestnut ; 5, yellow pine. From the 6th, 7 th, and 8 h experiments, we see thot chestnut is still above yellow pine, but that hemlock is inferior to both. By the 9th and 10 th, it also appears that hemlock is still to be placed below chestnut. Comparing the 1 st experiment in this table with the 6 th , and the 2 nd with the 7 th , we perceive that the swell towards the point of the spike, was so far from being an advantage to it, that it in fact rendered the spike less retentive than when that swelled part had been removed; so that, even could this form have been produced without any increase in the weight of the spike, it would still have been less advantageous than the simple groove without the swell; but when it is considered that the swell added 47 grs . ($=806-759$) to the weight, it is evident that the groove alone has a decided advantage over the other form. By the trials in unseasoned chestnut, (Nos. 1 and 6.) this advantage is 15 per cert. :
thus $\frac{2440-2121}{2121}=15$; and by those on yel. pine, (Nos. 2 and 7,) it is $\frac{2328-2069}{2069}$ $=12.5$ per cent. In fact, after the ends of the fibres have once been thrust apart by the thick part of the swell, it is evident that when they come opposite to the cavity above the sweil they must lose some portion of their power to press the spike and pro. duce the retaining force of friction; this lorce must then deperd for its production on the action of those fibres of the wood which are opposite to the swelled portion, or between it and the point of the spikes.
In the next series of experiments, it was attempted to ascert in the relation between forms more diversified than had hitherto been employed.

As itis ϵ vident that the total retentiveness of the wood must depend, in a considerable degree, upon the number of fibres which are longitudinally compressed by the spike, it was inferred, that on the afea of the two faces, which in driving the spike are placed against the ends of the flbres, must in a great measure depend the retention of the spike. In this series, four kinds of wood and ten forms of spikes were employed. :

A comparison of the results given in the
following table, will show what order thcse tages of the respective species of timber forms would possess annong ihemselves, in into which they were severally driven. point of retentiveness, as well as the advali- $\|$
table III.
Spikes of various form s-imber of differanl linds.

No. of Experiments.										ジ๊
1	Straight square.	Chestnut unseaso'd	. 405	. 402	$2 . ¢ 3$	3.5	942	1995	2.11	1835. Dec. 4.
2	Burden's patent.	"	. 373	. 384	2.64	3.5	866	$1<73$	2.162	Dec. 8.
3	Broad flat.		. 539	. 288	3.77	3.5	898	2394	2.663	Dec. 4.
4	Narrow flat.	W"	. 390	. 253	2.73	3.5	566	2223	3.927	Dec. 8.
		White oak thoroug'ly	. 405	. 402	2.83	3.5	942	3990	4.129	Dec. 7.
	Straight square.	seasoned.								
6	Bro	"	.539	. 288	3.77	3.5	899	5130	5.712	"
7	Narrow flat.	"	. 390	. 253	2.73	3.5	566	3990	7.049	"
8	Burdcn's patent.	"	. 373	. 384	2.64	3.5	866	3905	4.509	
91	Cylindrical with cutting edge.	"	. 485	(1) ${ }_{\text {am. }}$		3.5	1211	3876	3.200	-
$10\{$	Grooved and swelled.	"	. 375	. 375	2.60	3.5	806	3727	4.624	
11 \{	Grooved but not swelled.	"	. 375	. 375	. 260	3.5	759	4247	5.662	"
12	Grooved, and bottom of grooves ser-	"	. 375	. 375	. 260	2.5	500	2550	5.300	"
12	rated.									
13	Square. - \quad (Locus	. 405	. 402	2.83	3.5	942	5967	6.334	Dec. 8.
		3 years								
14	Broad flat.	"	. 539	. 285	3.77	3.5	898	7040	7.839	"
15	Narrow flat.	"	.390	. 253	2.73	3.5	566	5273	9.316	"
	Cylindrical, pointed with 15 grooves filed	Ash sea-	. 500	$\mathrm{Di}-$		3.5	929	2052	2.208	1836. Jan. 4.
	longitudinally from the point upward.	soned.	. 500	am.						Jan. 4.
17.	the point upward.	،	. 500	,		3.5	929	2309	2.507	"
18 \{	$\left\{\begin{array}{l}\text { Plain cylindrical, } \\ \text { pointed, } \\ \text { scale not }\end{array}\right.$	"	. 500			3.5	1015	2451	2.414	+

REMARKS.
Experiment No. 10.-The measure in this and the two following cases were taken outside the flanches.

Experiment No. 12.-The weight of the part inserted is given by estimation in this experiment.
Experiment \boldsymbol{N} U. 16.-In this and the two following experinents, the spikes were driven into the timber in the direction of the length of the fibres.
The above table furnishes three sets of comparisons for deducing the relative retaining powers of green chestnut, thoroughly seasoned oak, and equally seasoned lo. cust. Thus the weight which in those three cases drew the square spike from chestnut, was 1995; and that which extracted the broad flat one 2394; and that which drew the narrow flat one from the same timber was 2223. The sum of these is 6612 . The sum of the three numbers for the same three spikes used with oak, was by experiments 5,6, and 7,13110 ; and the sum of
the three locust, by experiments 13,14 , and 15 , is 18280 ; these three numbers have to each other the relation oi 1,2 , an a $2 \frac{2}{3}$; from which we infer that oak is almost precisely twice, and locust $2 \frac{2}{3}$ times as retentive as unseasoned chestnut. By comparing together the results oi experiments 1 and 2 , it will be seen that the weights required for extracting the two spikes respectively, are more nearly proportional to the breadth than to either the thicknesses, or the weights of the spikes. For the spike with a breadth of .405 inch and a thickness of .402 , required 1995 lbs . for its removal. while that which had a oreaith of .375 inch took 1873 lbs. Now . 373: 405 : : 1073 : 2033 for the calculated retentiveness, instead of 1995, as given by experiments ;a difference of only +38 ibs . between the observed and calculated reaults. Calculating the retention by the weights of the respective spikes, we should have 866 : $942:$: 1873:2987, or a difference of 42 rence of an cpposite kind of 35 lbs . from be observed result, the greater thickness iciding the less retentive power. This orresp:ndence between the breadths and the extracting weights becomes still more pparent when we compare the third, and specially the fourth with the second experiment. "Thus ior the broad flat spike, (3d 0 x .)-compared with experiment 2 , we obtain

and for the thinner and lighter spike, (Ex. 4th.)-compared with the same,
By breeullhe, $873: 390: 1873: 1958$, Inateed of 2223, observed dif. - $\mathbf{2 5 6}$ "weights, $868: 506:: 1873: 1224$." a " " thicknessen, $384: 253:: 1873: 1234$,
Nearly the same conclusions would result from a comparison of those trials, which were made on seasoned white oak and locust. Indeed, it appears that with a given breadth on the face of the spike, a diminution of thickness is sometimes a pusitive advantage to the retentiveness of the timber; for in white oak, the spike which had a breadth of only .390 , requised as much force :o extract it, as one of which the breadih was .405 , though the thickness of the former was but .253 , while that of the latter was .402 ; and on chestnut, the thinner, narrower, and lighter spike, required absolutely more force to withdraw it than the other. This leads us to notice the different kinds of action of the respective spikes on timber of various kinds. In the solter and more spongy kinds of wood, the fibres instead ot being forced backed longitudinally and condensed upon themselves, are, by driving a thick, and especially a rather obtusely pointed spike, folded in masses backward and down vard so as to leave in certain parts the faces of the grains of the timbur in contact with the surface of the metal.
That the view jus: presented is correct, seems also probable from what was observed in the case of the swelled spike. For while the grooved but unswelled one, driven into chestnut tumber, (table II. Ex. 6,) required 1852 lbs . to extract t , the grooved and swelled spike, (Ex. 1, same table,) took but 1710 lbs. And in table III. Ex. 1:, we find the swelied spike drawn from white oak by $372^{7} \mathrm{lbs}$. and the grooved but not swelled one, Ex. 12, requiring 4247. Heace it appears to be necessary, in order to obtain the greatest effect, that the fibres of the wood should press the aice as nearly as possible in their longitu. dinal direction and with equal intensitics droughout the whole length of the spike. Arrangirg the spikes according to the order of their ratios of retention to weight, as given by the experitnents in table. III, from ive to twelve inclusive, we have the following :

1. Narrow flat spike, with a ratio of 7.049

2. Wide, " " " 4 's 5.712 3. Grooved but not swelled, " 5.662 4. Grooved and notched, " 45.300 5. Grooved and swelled, " "4.624	

6. Burden's patent,
7. Square hammeled,
8. Plain cylindrical,
" 4.50 s
" 4.12 !
" " 3.20 i
Experiments 16, 17, and 18, of the same table were made by driving the spikrwheih were cylindrical with conical points into the timber endwise of the grain. This method of comparing two furms, the one grooved and the other plain, was adopted on account of the extreme liability of the timber to be split by driving spikes of these forms across the direction of the fibres. It was observed that on drawing thise spukes, the holes were alinost perfectly square. This resulted from the position of the rings of annual growth and the greater elasticity in some directions than in others. It is probable that if the filed grooves in experi men!s 16 and 17 had been covered with a scale of oxide, as was the case with the plain spike used in experiment 18, the former would have given a result somewhat higher.

When holos are drilled into stone block: and afterwards plugged with timber to receive spikes in lastening on the chairs of edge rails, the method of experimenting just described finds an application, and it is probable that in such cases the grooved cy'inder with a conical grooved pcint, may prove advantageous.

A few experiments were made to determine the effect of driving to diffirent depths. on the total annount of retention. For th is purpose two different spikes were selected, viz., the square hand-wrought spike, the section of which was $.405 \times .402$, and the wide flat oas of which the section was $.539 \times .288$. They were respectively driven to a certain depth into unseasoned cliestnut, and then subje ted to a force just sufficient to start them. This force was noted, and the spike was immediately driven down one inch deeper than before, and tle force again applied. All my.experments proved that uhen a spike is once started, the force required for its :nal extraction is much less than that which produced the first movement. This is readily accounted for on the prisciple that as the wedge-shaped point was from half an inch to an inch in length; and as this, on the staring back of the spike a very little distance, becam mostly relieved from the pressure of the fibres, all that part of the retention which had heen due to the wedge-shaped portion of the spike was at onec destroyed. The following t:ble will show, however, that the mere starting of the spike with parallel faces does not essentially diunnish the re. tention, when again driven into the timbet to a greater depth than before. But when a bar of iron is spiked up n wood, if the spike be driven down until the bar coinpresses the wood to a great degree, the recoil of the latter may become so great as to sta. t back the spike a short distance after the last blow has been given. In this cast ia great diminution in the useful effect will be the consequence. This shows that a limit may exist to the force which wi should apply in urgigg down spikes or bolt: destined to fasten materials togather.

										¢
	square not filcd.	chestnut unseasoned. "	. 405	${ }^{.402}$	$\mathbf{7} 695$ 1.1745 1.5795	1.9	483	1183	2.428	$\left\|\begin{array}{l} 1835 . \\ \text { Dec. } 4 . \end{array}\right\|$
2 3		"،	.		1.1745 1.5795	2.9 3.9	759	1995	2.528 2.342	"
4	Broad flat.	' ${ }^{\prime}$. 539	. 288	. 9702	1.8	442	1525	3.457	- "
5		'،	-6	6	1.5092	2.8	745	2594		"

By comparing experi:nents 1 and 4 together,it will be found that weight for weight the flt spike had when driven 1.8 inche=, an advantage of 42.3 per cent. over the - quare oe; and by a like comparison of experiments 2 and 5 , it is evident the former had n superiority of 37.7 per cent. As he spike when driven in only 1.9 inches had a much less proportion of its paralle laces exposed to the reaction of the fibres and a greater proportion of the wedgeshaped point, it is reasonable to expect that the retention would not correspond precisely with the lengths inserted. It will be understwod that when we speak of culting. edges and the wedge-shaped portion of spikes, whether square, flat, or cylindrical, he direction of the cutting eilges is always across the fibre or grain of the timber. It must le evident that the wodge-shaped part may be so acute, as to correspund nearly with two parallel faces, in which case, the tendency to retreat from the lateral pressures is small; and the pressures themselves, increasing from the point upwards to where the spike is thickest, the total efficiency of a given length may be as greal as that of an equal length of the parallel faces, and even greater, provided the thickness of the pike be so considerable as it driving it to produce much crushing and irregular folding of the fibres of the timber. If, ou the other hand, the edge be very blunt, the tendency to recoil maty, be such as to diminish the adhesion, and in this case the effect of the wedge shape is negative. In the other it may be positive.*

The first, second and third experiments indicate, in the tenth column of the preceding table, that beyond a ceitain lumit the ratio of werght f metal to extracting force begins to diminish, showing that it would

* The following formula may represent the several experiments; $\mathbf{R}=l f \pm c$, in which R is the observed retention; $l=$ the length in inches of the part inserted; $f=$ the force of retention on one inch of the parallel fuces, and $c=$ the differences between the retention of a parallel portion of the spike, and of an equal length of the converging faces near the point. The sign of ambiguity arises from the cause above explained.
be more economical to increase the num. ber rather than the length of the spikes, tor producing a given effect in fastening mate. rials toge her. In this case, also, it will be perceived, that the adhesion has a much closer relation to the areas of the compressing faces of the spikes, than to their weights. For three of the experiments this ratio may be regarded as idertical, and dividing, or each of the five experiments, the observed retention by the area of the two faces opposed to the ends of the fibres, we get a mean result, which proves that the absulute retaining power of unseasnned chestnut, on square or flat spikes of from 1.8 to 3.9 inches in length, is about 813 lbs. for every square inch of those faces which condense longitudinally the fibres of the iniber.

Agriculture, \&c.

Prejudice and conceit are the offsprings of ituorance, und the great barrier to agricultural improvement. An African prince inreatened to take the life of a traveller, because he dared to assure him, that water became solid by freezing, in his country. Decause he had $110 t$ seen i, the princo leemed the traveller an impostor and a liar. A few years a go, the growth of a hundred bushels of corn on an acre was considered a fatiulous tale by the muss of the firmers. They had not seen such a product, and hey therefore did not believe in it. But tuch a produst is now of so common occurrence, that few doubts its reality. Tell these rnen that they can double the pro. lucts of their farms, by economizing and judiciously applying their manure ;-that hey can quadruple it, by this, by underdraining, by alternating crops, and by root culture-and they are as incredulous as ihe African prince, because they are irnorant of those natural laws which ever have governed the material world, and which ever will govern it. The savage laughs at and rejects the art of civilized life, for the same reason that the ignorant or indolent farmer scouls the idea of improving the condition of society by agricultural socie. |lies, agricultural schools and legislative bounties for agricultural improveinent.-

They either do not know enongh of natu ral science, to comprehend its utility in the ordinary business of llfe, or they are governed by a sordid, selfish, illiberal policy, which, coull it be carried out, would shut out every ray of light, and sinother every sentiment of patriotism, which should either th wart their views, or which would tend to elevate their fellows above their own limited standard in society. Some men seem to have an idea, that they are balanced in a scale; that us others can be made to sink, in the same proportion they shall rise, and vice versa. The first requisite to improvement, in any business, is the coriviction, that we can learn; the nexi, that we will learn. And it perhaps is invariably true, that the more we do learn in useful know. ledge, the more we become sensible of our comparative ignorance, and the more we are anxious to learn. This results not only from a wish to serve ourselves, and mul. tiply our enjoyments, but from a sense of sacred duty to society.

Our national motto once was, " millions or defence, but not a cent for tribute." A correspondent suggests the following parody, as suited to the action of the legislature upon the surplus fund:-" Millions for the professions, but not a cent for the arls of productice labor."

If it is true, as is alleged, that some farmers in our legislature, are averse to giving any public monies to aid ngricultural improvement, we do not hesitate to say the sentiment is unwrithy of them; and that enlightened men will be apt to charge them with either ign rance or jealousyignorance of the value of rural improvement, and of their daty-or jealousy lest others may be enabled to surpass themand their own profits and popularity be consequently lessened.
The Contrast.-Massachusetts gives nothing from her public treasury to sustain her common schools, but she gives bountifully from her public treasury to sustain and encourage her agricultural socities, and is now about making an agricultural survey of her territory. Her schools are surpassed by none in'the Union.' New-York has given millions to her colleges, and millions to her common schools; but she clenches ber purse with a convulsive gripe when she is asked to aid and encourage agricultural societies. If it is true, that wisdom lies between two extremes, these States might learn from each other.

Farming Implements. - The State Agricultural Society have appointed a board of examiners, comprising men of science, and practical machinists and farmers, to ineet semi-annualli, to examine. and thoroughly to test (and to give certificates of merit.) all farm implements and machinery which may be offered for their in pection. We are glad to learn, that the gentlemer designated will attend to the dutios of their appointment, and that notice will shortly be given of the time and place of their first meeting. This measure, ir properly carried out, and we feel confident that it will be, eannot fail of producing a
highly salutary influence upon our agriculture, and upon the general interest of thi State. It will give general confidence in implements and machines which are truly meritoriouss and to mul iply them upon ou farms; while on the uther hand, it will tend to prevent imposture. and to save great expenditures for enventions which are comparatively worthless.

Brooks' Silk Spinner and Twister, deserves a further notice from our hands. because we think it ranks among the mos: useful improvements of the day, and is calculated greatly to facilitate our progress in the silk business.- Let it be reinembered, that very little instruction is required to qualify a woman to use it; that it is equally adapted to the fatrication of sewing silk, twist, or to a threall for any required fabric, and that it produces all these, as far as we can judge, in a perfect manner. Now the question is, what will it earn, in a silk fumly, or a silk neighborhood? For now-adays, profit is the great desi leratum. In this matter, we shall speak on the authority of the patentee, a very unassuming, intelligent, and, we believe, hones.t member of the society of Friends, or Quakers. He says it is a moderate day's work to spin and twist half a bu:hel of cocoons into sewing silk, and that the fair average product of these cocoons would be 175 skeins of sewing silk, worth now, at wholesale price five cents the skcin. The highest price of cocoons i: \$4 per bushel. Assuming these data, and basing our calculation upon five bushels of cocoons, which a family of girls may easily produce every year, let us see what would be th: gain which would accrue to this family in five years; from the are of this macnine.
The 25 bashels of cocoons would produce 8,750 skeins silk, worth
five cents at wholesale,
$\$ 13750$
From which deduct the
wages of a woman, 50
days, at 50 cents,
$\$ 2500$
Add cost of machine,
3500
And it makes a total of
$60 \quad 00$
And leaves a profit of
837750
The lighest price at which co. coons sell is $\$ 4$ which would be
for the 25 bushels,
10000
$\$ 27750$
Which slows a profit, in buying and using this machine, over selling the cucou:ss, in the small quantity of 25 bustels, of \$277 50. 'This would require the labor of a women only ten days in a year, or filiy days in the five years. The remainder of the tine, to any extent required, mights be as profitably applied, in working up the cocoons of the neighbothood, of the town, or of the eounty; and the value of the maciine would be yet but litite impaired by these earnings! Every si!k distric! should have o:ac of Brooks' macines.

important requisites in a wiff.

A knowledge of demes':ic duties is be yond all price to a woman. Every one of
and mend, and cook, and superintend a suseliold. In every situation of life, high ir lo x, this sort of knowledge is of great ad. vintage. There is no necessity that the raining of such information should interfere vith intellectual acquirement, or even elegant accomplistment. A well regulated mind can find time to attend to all. When a girl is nine or ten years old, she should be accustomed to take some regular slare in rouschold duties, and to feel responsible for the manner in which her part is performed; such as her own mending, washing the cups and putting them in place, cleaning silver, or dusting and arranging the parlor. This should not be done occasionally, and neglected when ever she finds it convenientshe slould consider it her department. When older than twelve, girls should begin to take turns in superintending the house. hold-making puddings, pies, cakes, \&c. To learn effectually-they should actually do these things themselves, and stand by, and see others do them.- [Mrs. Child.]
a healthfui. becreation.
Ainong the pleasant employments which seem peculiarly congenial to our sex, the culture of flowers stands conspicuous. The general superintendence of a garden has been repeatedly found favorable to health, by leading to frequent exercise in the open air, and that communing with nature which is equally refreshing to the heart. It was laboring with her own hands in her garden, that the mother of Washington was found by the youtliful Marquis La Fayette, when he sought her blessing as he was abont to cornmit himself to the rcean, and returu to his native clime. The tending of flowers aas ever appeared to me a fitting care furthe young and beautiful. They then dwell as it were. among their own emblems, and inany a voice of wisdom breathes on the ear from those brief blossoms, to which they ap. purtion the dew and the sun-beam.- [Mrs. Sigourney.]

From the Quarterly Journal of Agriculiture.

 Studies in the seience and practice or aghiculture, as connected with physics.(Continued from page 4 49.)
Nutritive Principles of the Food of Plants. -It is stated in most elementary books, ih:: the chief food of plants consists of car bonic acid gas diffused in water, together with potass and some other matters appa. rently not well understood. But a plain agriculturist not acquainted with science will very naturally ask how this is proved. By burning plants, indeed, he knows thet charcoal (carbon) and potass may be producel ; but in that case these are in a va ry different state from the one in which hey exist in the growing plant. M. Lassaligne, the able Professor of Chemistry at Al.crl, devised the ingenious experiusent of analyzing the chemical constituents of seeds before and after germinating, and in this way arrived at one meihod of provf of the facts just stated; yet the plain farmer who might have wilnessed such nalysis would readily make a sinular obj, ction to it whe that procuring chatcoal and putass by burning, namely, th.t it was an altificial procese, and therefore calculated to
change the state of the substances discovered.

In order to elucidate these points, confessedly difficult and obscure, M. Biot nndertook the investigation, by applying his newly discovered and powerful test of the rotary polarization of light. Before giving any details of M. Biot's experiments, how. ever; it may be well to state the views of M. Raspail respecting the imbibition and flow of the sap, these being rather novel as well as probable.

Circulation of the Sap.-All growing vegetable textures are composed of cells, every where closed, containing, a fluid, which is in continual motion so long as the temperature is above 32° Fuhr. The cells adhere to one annther, or rather are fixed to one another by a sort of root or pedicle (hilum,) often 100 minute for observation ; and it is this, and the globules of the cell, which being lengthened out and expande! in the progress of growth, give origin 10 new parts, or to the enlargement of old one-

The circulation of the flund in the cells, originally discovered by Corti in the Chara, cannot be observed when the cells are opaque or the fluid transparent; but an idea may be formed of it by filling a tub. with spirits of wine, having some raspinge of ccrk in it, and holding it in the hand, when the heat of the hand will cause a current to rise from the hottom up one side ot the tube, and the cold at the top abstracting the heat from the particles as they rise, will cause an opposite current to descend on the other side. The difference of the vegetable circulation from this experimental one, consists in its being caused by a living principle, and not heat, though a cer, tain tenperature is indıspensable. M. Ras. pail terms the operation of this principle in circulating the sap, aspiration (meaning by this some:laing like suction or attraction, and expiration (meaning something like expulsion or repulsion,) the sides of all the cells of growing plants alternately aspiring and expiring, or attracting and repelling fluids.

The membranes of plants, as well as the cells compozing ther, aspire and expire fluids; and when these membranes forin a tube with branches more or less composed of net-work or reticulations, the fluid furms one continuous current in every part of the tube.

The stems and branches of all plants are formed of cells, which, from having been originally globular, expand by growth; and by the preasure of other cells expand. ing around them, take a wedge like shape, the thin portion furmitag their point of altachnent or pedicle (hilum.) The mem branes thus formed may be conceived to sheath each other, the inner sheaths being inserted by their wedge-point (hitum) into the siles of the ouler ones. These inutu ally sheathing membranes besides are traversed both across and lengthways by a net-work of vascular canals, and conse. quently the fluidtransmitted by each wedge puint must necessarily rise along the side next to the part above the wedge-point, falling down the opposite side, and again rising along the part below the wedgepoint, or the contrary. At the same time
a portion of the fluid is transmitted to the wedge-point of the next enclosed sheathing menbrame, where the circulation will takt a similar direction.

The flow of the sap from the cut ends oi a plant may thus be explained; for on each cut surface there will be alternately onehalf of a sheathing membrane, the fluid in which was rising up, and another half in which it was falling down.
The branches are inways inserted by the wedge-points (hila) of their component sheathing membranes into the trunk or stem, and,..consequently, the circulation of the fluid at the junction is the same as that just explained.

The sheathing membranes of the root, it must be remarked, do not terminate in the outer sheathing membrane or burso of the stem, but penstrate to one of the inner ones, and hence the rising sap, as yet not organized. is conveyed to an inner sheath.

The strong attractive power of the tips of the root fibres, througil which alone the liquid fool of plants is transmitted, may be seen when roots have been forced to grow between stones; for the tips will be found to udhere more or less firmly to the stones, while the other parts of the root are loose and free. In the same way particles of earth will generally be found adhering to the tips of the root-fibres, having been altracted by the suction or aspiration of the spongiole. (Chimie Organique. 811, \&c.)
Changes in the Sap.-Tue preceding are the views of M. Rasiail, whicn further revearches may either confirm or refute. Tie ollowing are a s.nall portion of the interesting experiments and observations of M. Biot on the sap and its changes, and these, it nay be remarked, wear more the air of i.ct, and look less theoretical, than Raspail's statements.
M. Biot first proposed to himself to as certain, by means of circular polatization, the presence of the gunmy or saceharine principles in the sap of trees, and to truce these principles as connected with the nour ishment of the young buds in spring. Some of the facts which he discovered were very remarkable.

He pierced with holes, sloping slightly Jownwards, several species of trees, early in February,-the almond, the birch, tive uornbeam, the map!e, the, ash, the lilac, the mulberry, the walnut, the elm, the poplar, the plane, the willow, the elder, the sycanore, the lime, and the vine,-fitting into cach bole a dry reed, with the inserted extromity cut sloping, and scareely penetrating deeper than the bark. The other extremiiy entered a small phial, suspended by a bit oi wire, and luted with a mixture of oil and wax, immiscible in water. The flowing saj was collected in these phials, and when any evaporation of the water portion occurred ison the temperature of the tree being higher than the air, it was condensed within the phial. He was not contented with experimenting on one trée of a species, but seleet. ed several of the same sort in various positions and exposures; and he also fixed ol the s.ime tree a considerable number of phials, at various heig.its from the ground.
In the birch be both discovered that the sugar in the sap is not cane but grape sugar, and also that the sap actually fows progres.
sively from the root to the summit, the flow varying with exterior physical causes, which serve to modify it. The walnut, the syca. more, and the maple, did not in February slow any flow of sap; and M. Biot took advantage of their state of rest to examine their interior by having a number of trees of these species clit down on purpose. It was remarkable that the interior of the birch trees was found to be without moisture, and even quite dry, while the walnut and syca. more trees were distinctly soaked (imbibe) with moisture from the imner surface of the bark to near the central pit. On being pressed, also, the moisture could be squeez. ed $o u^{+}$, and the oozing was most distinct be. tween each of the circles constituting the annual rings of wood. All this was observed while there was no flow from the reeds into the phials except in the birch.

The walnut trees began togive a few drops about the 11th of February, in the phials placed about seven inches from the ground. The sap thus collected was not fermentablo grape.sugar, like that of the birch, but erys. tallizable cane-sugar, for it gave a strong polarization towards the right, while that of the birch was towards the left. Tne run irto this lower plial, after continuing abund. ant for several days, began to diminish to. wards the end of February, and at length it ceased altogether, Tue phial immediately above it, about a yard from the ground, also gave a very small quantity, while all the other phials on the same tree, to the number of eigiteen, remained quite dry.

What appeared most singular was, that this individual walnut.tree was known to be rather a late one, while another very large one. at a hundred paces distant, known to be about filteen days earlier, gave no trace of sap in filteen phials which M. Biot had attached to it. He began, accordingly, to suppose that this early walnut, as well as the sycamores and maples, had been pierced too lute, and that the spring flow of their sap was over ; or rather that, in the then state of the atmosphere, they evaporated as much sap as they recelved from their roots. The flow, of course, would not 'gain take place unless the evaporation should be checked by the oscuricuce of cold weather. This actually did occur, the thermoinet:r falling to one degree below zero, followed by a sharp dry trost, when the maple, sycamore, and walnut trees began to flow, continuing thus till the 16th of March, when the flow began to diminish. M. Buot says, the effect of the cold on the birch tree was very dif. lerent, but gives no details.
M. Biot distinctly proved that the sap near the root is less dense, and less rich in sac. charine matter, than higher up in the turnk or branches, a fact previously stated by $\mathbf{M r}$. i. A. Knight, but explained by hiin to arise riom the sap in spring mingling with the condensed nutriment deposited in the roots the preceding autumn. M. Biot thinks dif. icrently, believing it to arise from the watery ,ortiou of the sap being in its ascent eitier liffused through the cellular substance, or evaporated, or both; and he proved; that though the sap collected in the phials at dif. erent heights from the same tree was more iense and rich the higher it was procured, the portions of wood and bark containing the sap gave exactly the same proportions of
saccharine or nutritive matter at all heights. M. Biot farther discovered, that the swel ling and opening buds (at least of the lilac) have the power of decomposing the sugar of the sap, and of appropriating the carton contained in it, in the same way as he proved the seed-leaves of corn to decompose the feculla contained in the grain, and change its dextrine into the sugar which nourishes them.

Observations on the Growth and Nutrition of Corn.-M. Biot, finding that the slow growth of trees was not so well adapted to some of his experiments as the quick growt. of annual plants, inade choice of wheat and rye for obscrvation. It has long been known to physiologists, that, in the process of germination, the farinaceous matter (how known to consist of globules of dextrine in their envelopes) is changed into sugar, which serves for the noirishment of the young plant up to the period when its seed. leaves and primary roots make their appearance. But wien the supply of nourishment contained in the seed has been ex hausted, the young plant must depend on other sources to maintain its growth; and hitherto it had not been experimentally determined what these other sources of nourishment really are, what modifications they undergo in tie various parts of the plant, nor in what manner the different portions are transmitted to the nascent seed in the ear to nourish and mature it.

It is important, in all such inquiries, to distinguish the solid parts, which constitute the frame-work of the plaut, from juices or soluble materials, which, constantly formed, destroyed, and renewed, are carried into alt the vegetable texture for its nourishment. Tue first, or solid materials, can be examined by chemical analysis after a plant is dead and dried, but it is different with the other parts or liquids examined by M. Biot.

Rye.-He made his first observations, the 3d of May, on plants of rye already in the ear, but not yet in blooin, the period of bluoming being still at some distance. He treated the roots, the stems, and the ears, each separately, with water, subunitting them to the prools of circular polarization, and then he treated the watery extracts, condensed but not to dryness, w th spirits of wine ; submiting to the proofs of polarization the precipitates as well as the substances not precipitated from the liquids. In a word, he tried, by adding to each the yeast of beer, whether they were susceptible of fer. mentation, again examining wnether, their rotation was dininished, increased, or chang ed in direction.

Tne matter from the roots gave traces of an exceedingly feeble rotation towards the left, but when it was observed, M. Biot had not discovered that a mixture of cane and grape-sugar would, in a manner, neutralize the right and left rotation. Tre stem indicated a proportion of grape-sügar turning to the left, and of cane-sugar turning to the right, as well as gum precipitated by spirits o. wine, and turning to the left with a force similar to gum. Twelve days afterwards. the 15 th of May, while the ear was still fal from blouming, the stem presented a mixture of the three substances, but with a considerably larger proportion of cañe-sugar,
proved by rotation towards the right before being fermente 1.
Tue matter from the ear oa the 3 d of May, and before blooming, gave very different results from the matter of the stem ; for M. Biot could not detect it in any sugar, either grape or cane, but only sugar of starch, of which fermentation enfeebled the circular power, witiout changing its'direction. The precipitates also formed by spirits of wine, iustead of having the characters of gum as those of the stem, showed only flakes similar to the cavelopes of dextrine in the mature gram. These results accord with the observations of M. Raspail, who ascertained that, before blooming, the grains of fecula in corn are extremely small, and that their soluble matter is gradually absorbed by the seed organ (ovarium,) which it serves to nourish. M. Biot, as yet, found no dex. trine.

After blooming, the compostion of the ear was found to be very different. T.e 15 th of June, the young grains of rye taken from the ear, already contained globules of fecula containang dextrine, along with some sugar of starch, but wo trace of cane nor grape sugar. It follows, M. Biot infers, that the cane-sugar, the grape-sugar, the gum, which are contained in the stem and reaves of rye, are changed in their nature on passing the neck of the car (le collet des epis), supplying materials for nourishing the young grail, which forms it into dextrine and its envelopes.

Wheat -In his observations on wheat, M. Biot was more parricular than in the case of the rye to keep separate the different parts of the plant, and, in consequence, discovered differences of composituon, which he could not have beforehand imagined.
'The 19th of May, he took yo'ung plants of wheat whose ears had not issued from heir sheath or hose, he carefully separated the sheathing leaves from the cylinIrical stem, and treated the two separately with water; alcohol, and fermentation.The stems like those of rye presented three carbonaceous substances, namely, grape sugar, cane-sugar, and gum; but subsequent observation showed, that the proportions of these three substances varied much during the progress of vegetation. The 2014 of May, the cane-sugar: evidently prelo:ninated; but the 4 th o: June, when the ears began to bloom, the stems gave a rotation towards the left, anl afterwards preserved this rotation, showing hat the cane-sugar had become much less abundant in the stcra.

The leaves gave very different rezults; for though they contained three substances the cane-sugar was proportionably much greater than the grape sugar, the contrary of what was found in the steni ; and instead of the third substance being grm curning to the left, it pruduced a rotation lowards the right, appearing in fact to be lextrine. The leaves of wheat continue to preserve the same composition till they Segin to grow yellow and wither, as effect hat uniformly commences at the tip of a leaf, and on the leaf nearest the root ; but ater this, scarcely a trace of sugar or dexrine car be found in them, all, it wonld ar-
pear, having gradually passed into the stem to nourish the ear, in the same was as the carbonaceons materials of the leaves of trees descend under the layers of the inner bark and palp wood (alburnum,) to nourish the young cylinder of wood and bark, which, similar to a hollow stem of wheat, is annually formed, and moulds itself upon the old frame-work of the wood.
In wheal, therefore, as well as in rye, the base of the steris can derive nourishment partly from the leaves and partly from the 'soil, and the summit of the stem can draw nourishinent from its own leaves, as well as suck up the sap froin below; but the ear, when it issues from the sheath appears to exercise on the proper juices of the top of the plant a powerful absorption, causing them to rise rapidly in proportion as they are furnished by the base of the stem.

The 4th June, M. Biot took plants of wheat in full bloom, and depriving the stems of their leaves, parted them into halves, the tops in one parcel and the basis in another. The extracts from the base, when examined by polarization, indicated alnost twice as much sugar as the extracts of the tops of equal, density ; and at the same time he found, that the saccharine principles abounded in the ears of the wheat, in the form of cane sugar and sugar of starch, together with a substance sinilar to, if not identical with, dextrine.

Ripening of Corn, and Ploughing of.

 Green Crops for Manure.-In proportion, it has just been shown, as the fecundated ear increases in magnitude, the leaves near the root begin to grow yellow sind dry in consequence of the stem drawing from them the carbonaceous materials which they contain. As the growth adrances, the base of the stem becomes yellow and dry in its turn, while the upper part remains green, and continues to nourish the ear.These beautiful rescarches of M: Biot afford interesting expanations of several agricultural practices hitherto not well understood, at least in a scientific point of view. For example, when the base of tho stem begins to become yellow and dry, if the corn be then cut down, though the grain is nct ripe, it will continue to be nourished at the expense of the green matter in the upper part of the stem, almost, if not quite as well, as if it had remained uncut, and will thus ripen well; while having been thus cut down early, much loss from shaking is prevented, besil!es the chance of loss by lodging from hervy rain and wind. M. Bict's experiments, from his well-known high character for rigid accuracy, are therefore well calculated to give farmers confidence in cuiting down their corn, as soon as the lower leaves and the lower part of the stems are yellow and dry, though the upper parts be green.*

* It is a grod practice to cut down every kind of grain before it is fully ripe in the grain or the straw, and that for the reasons just enumerated in the text. But, as M. Biol's observations and common practice do not exactly agree as to the symptoma which determine the time of cutting, it is

A gain, as the leaves and stems of plant while green, contain sugar and other car bonaceous materials for nourishing tl. seeds and bringing them to inaturity, follows that, if they are in this state plough ed down into the soil, they mist greatt. enrich it with all the products ready prepa ed for the nourishment of plants.

It has been proved, indeed, by other ex periments previous to those of M . Bio: that the leaves and all the green parts of plants, decompose the carbinic acid gas of the air, appr,priating the carbon and set ting free the oxygen; and hence it hnbeen inferred, that the carbon thus derived contributes to form their mass of sugar anc gum, additional to the sap absorbed from the soil by their roots. This view is corroborated by the difference which M. Biot has shown between the composition of the leaves of wheat and the stem, which is more especially supplied from the soil. If, then, a purtion of the sold frame-work of plants is derived tron the air in the form of carbon, the ploughing down of green crops for the purposes of manure, gives to the soil more than the plants, while growing, had extracted from it.

We may well conclude with M. Biot that " every positive determination in science is susceptible of progress and of useful application, though these may be distant. A microscopical observation. or an optical property, which at first appears only curious and abstract, may thus in time become important to agriculturists and manufacturers."
as well to notice the difference. In a fine srason, farmers cut duwn when they find the neck of the straw immediately under the ear free of juice, when twisted round between the finger and thumb; and do not wait until " the lower part of the stems are yellow and dry," because they find in such a season the straw to die from the ear domenwards. This fact, we conceive, does nol miligate against M. Biot's theory, for as the absorbing power of the ear at the top of the stem is always powerful, it must be the more powerful the nearer the ear approaches maturity, and, of course, the part of the stem ne:arest the ear should first beco vie dry. In a bad season, on the other hand, the lower part of the stem first'becomes yellow and dry, after which, of course the crop is not allowed to stand; for, in such a season, the ear never becomes ma. ture, having, of course, less absorptive power, whilst the vitality of the root is early destroyed by the co:nbined effects of bad weather and ungenial state of the soil -Editor.

From the Maine Farmer.
USE OF THE ROLLER-MAISING POTA-
TOES, \&c.

Mr. Holmes:-The first knowledge 1 had ot the roller I obtained from the-N E Farmer, some years since. Being alway: desi ous to try "new things," if they pro mise utility, and especially if they cost bu little, I set about constructing one. As coald procure neither stone nor cast iron,
ind was too poor to do it, if they had been within my reach, I took a "junk" out of a ımalock log, about six feet in length-in:erted gudgeons in the centre at each end, in which was hung a sort of frame, with a iongue liie a sled.
With this machine, I went over my wheat ;round, breaking every "lump," aad sinkng every sniall stone, and left the field in excellent order for the scythe.

Nor is this all the benefit derired from rolling. By pressing the soil c.osely round the grain, much more of it will vegetate ihan with the usual management-and in case of drouth, the ground will not "dry up" so quickly. As to making the ground heavy, (as some fear it will) I think it has about the same effect, with respect to that, as the hand of the housewife has, in being passed over the surface of the "brow., loaf," before committing it to the oven.
Much has been said in the Farmer upon raising potatoes-each writer has rather a better method than the others. I am well satistied with the method I have adopted, which is, to select a piece of grass ground, (the smoother the better) and cart on a large dressing of green barn manure, at my leisure. When ready to prepare for planting, I spread the inanure evenly as possible, but no more in a day than I can turn under-turn the sod, flat and roll well immediately-then harrow length-wise of the furrows with a light harrow, till the interstices between them are filled-next mark off the rows with a small plough er chain, and plant on the surface with a covering of about two inches. I have practiced hilling lighly, but think I shal omit it altogether this year. I stir the ground well with the Cultivator.
Some of the a lvantages of this mode of culture I conceive to be the following:The ground not being ploughed till late, the grass gets a good start, and being covired, together with the unfermented manure, lerments, an Ifurms a hol bel which brings forward the crop surprisingly, and continues to afford nourishnient in abundance, till it comes to maturity. The rolling prevents the furrows from being torn up by the harrow, and the filling of the crevices between the furrows prevents the possibility of any grass or weeds growing t:om the manure, and you have a clean field, if the soil is free from foul seeds, in tine order for a crop of wheat the next spring. I have pursued the same course with iny corn for three years past, with the iddition of a light top diessing of old manure, and I have never had better success

Farining begins to look u_{p} in this section of the State, and, with the bounty on wheat, and the present pinching scarcity o. rovisions, in view, I think, with the bless .ng of a bountiful Providence, we shall be seiter supplied tor the future.

Horace Wilder.
North Dixmont, April, 1837.

Froni the Maine Farmer.

a Cent's worth of sauce saves a shilling's worth of meat."
Mr. Holmes :-I sometimes scribble a
tule for the Farmer, and I hope when you
thum that the public or farmers are not interesterl, you will oblige me by throwing my communications under your table.The Legislature have very wisely given an impulse to the rasing of breadstutfsthe staff of life, so called-in Maine.I'hough I hope considerable money will be taken from the Treasury for the premiums proposed-all can see tha' if more wheat be raised, more money will be saved in the State to replenish the Treasury-I am nevertheless convinced that Farmers do not pay attention enough to their Gardens, and the raising of beans, peas, and the various other varieties of yauce.

Does a cent's worth of sauce save a shilling's worth of meat? No doubt it does,-and I add that good sauce saves bread too. Beans, for instance, are a hearty sance. One remarked to me recently, that "dear as beans are at present, they are the cheapest sauce in my family, for they save bread and meat too." I wish farmers would raise more of them, and attend more to the varieties. Sauce is also more healihy or wholesome than many things which we eat.

> A Lover of Good Things.

Corresponience of the Springfield Repub. and Jour. Boston, March 6.
The Faneul Hall Market attracts the attention of strangers: In many respects it has not its equal in the Union. It is 536 feet long, 50 feet wide, two stories high, and wholly built of granite. The centre of the building is wider and higher, being 74 feet by 55, with a dome. In the second story of the centre, is a spacious Hall, called Quincy Hall, in honor of John Quincy, Esq., who, as Mayor of Boston, contributed so much to the execution of the noble enterptise. The principle entrances are at the east and west ends-the west end fronting Faneuil Hall. This grand structure was commenced in August, $\mathbf{8 2 4}$, and with the improvements on eaah side of the street opposite, was completed in abuut two years. The Market cost about $\$ 1$,000,000 . The greater pait of the land on which the Market stands, as well as the beautiful row of steres on each side of the street opposite, has been reclained friom the sea, by filling in with earth at different times. Many acres in other business parts of the city, have been made in the same way. The interior of the Market is divided into 128 stalls; 14 for mutton, lamb, veal and poultry; 2 for poultry and venison; 19 for pork, lamb, butter and poultry ; 45 for beef; 4 for butter and cheese; 19 for vegetables, and 20 for fish. The second story of the Market is used as a depository for wood-and the Stures on South and North Market streets are built of corresponding architecture -to the mar. ket. It is sadd there is no market in the ' 'rion which is so uniformly stocked in variety as this. Besides the usual assurtnents of meats and vegetables, here may ie had all sorts of nuts and fruits. It is a sight for an epicure. One would think to ee the great quantities of every kiud of vod, that there was no danger of fanine. At the east end, on the outside, is a large
open stall, where a thousand funny articles,
books, soligs, matches, \&c. are offered for sale. This is brilliantly lighted in the evening. The market is most thronged of a Saturday evening, As I enterel the west end, and looked down the long avenue of more than 500 feet, with a row of lamps on each side, it seemed like an endless gal lery of "fat things," with a dense crowd ol buyers the whole distance. As I furced my way through, I saw a number of poor men and wonien luoking wishfully upon the fine beef, poultry, and butter; and secming to say, I wish my money was equal to my desires.

FARMERS' WORK.

Bucon-About Christmas, if the weather be coldish, is a good time to kill. If the weather be very mild, you may wait a little longer; for the hog cannot be 100 fat . The day before killugr, he should have no food. To kill a hoog nicely, is so much of a business, that it is better to pay a shilling for havin. t it dane, than to stab and hack and tear!! he carcase about. There are two ways of going to work to make bacon; in the one you take off the hair by scalling. This is the practice in most parts of England, and all over America. But the Hampslire way, and best way, is to burn the hair off. There is a great deal of difference in the consequences. The first method slackens the skin, opens all the pores of it, makes it loose and fiabby by drawing out the roots of the hair. The second tightens the skin in every part, cortracts all the sinews and the veins in the skin, and makes the flitch a solider thing, and the'skin a better protection to the meat. The taste of the meat is very dif ferent from that of a scalled hog ; and to this chiefly it was that the Hanpshire ba. con owed its reputation for its exconllence. As the hair is to be burnt off, it must be dry, and care must be taken, that the hog be kept on dry litter of some sort, the day previous to killing. When killed he is laid upon a narrow bed of straw, not wider than his carcase, and only two or three inches thick. He is then covered all over thinly with straw, to which, according as the wind may be, the fire is put at one end.As the straiw burns, it burns the hair. It requires two or three coverings and burnings, and care is taken, that the skin be not, in any part, burnt or parched. When the hair is all burut off close, the hog is scraped clean, but never touched with water. The upper side being finished, the hog is turned cver, and the other side is treaied in like manner. This work should always be done before day-light ; for in the day-light, you cannot so nicely discovet whether the hair be sufficiently burnt off. The light of :he fire is weakened by that of the day. Besides, it makes the boys get up very early for once at any rate, and that is something; fir boys al
ways like a bonfire-[Cobbetts Econoways like a bonfire.- - Cobbett's Economy. 1

[^37]is a method of culture, and result of the seed corn purchased of you last autuma, which, i you taink proper, you are at l:berty to giv a place in the Cultivator. Tae varicty the twelve rowed early Datton, or Bael cort: and is the bost witn whica I am acquainted particularly for latitules north of 40°. o account of its early maturity, which is, should say, two woeks earlier than the com mon or eignt rowed kind. Out of severd acres of the latter, planted the last season, had not a busiacl of sound corn, it bong de stroyed by the early frosts, whle the ()utton was ripened and harv sted on the 20th $\mathrm{S} \rightarrow \mathrm{p}$. tember, and did not give more than two per cent. of soft corn. In the preparation of, the methol of culture, \&c., I pursuicd the course frequently recommended by you; but was, througa the whole process, excee lingly annoyed in contending wit: old prejulices and practices of laborers and others, who often rebelled, and werc disposed to place themselves conservators over me, in spite of all resistance oil my part. If their prophecies were to prove truc, my corn would have been seven times blasted. Grave doub's were expressed as to the advantage of tate roller, and in t:e preparation of the seed (see Cultivator, vol. 1, p. 37.) "whoever seard of rolling corn in hot tar? It will be scalded, ruined, and never come up." I all came up, however, and why? Because being of tive early variety, it was well ripened, the preceding backward scason, the reverse of which was much complained of in the common kind. Tuen, again, "it was tou thick-depend upon it, sir, wien you come to look tor ears, you will find nothing but stalks; two feet and a half! four stalks in a hill! it is entirely too much-it will cover the ground and you will get nothing., As to smooth hoeing, or witho t hills, it was a thing they had "strong dousts about."Tue cultivator, however, was allowed to be "a grand thing," and clean weeding presented no objections ; here of course was a long respite, and I was allowed quietly to enjoy the pleasant anticipation oi a good crop. It so happened that my corn was not hid in a corner. but grew in an open field, was sub. ject to the mspection of many a passer by, and I was much gratified by the frequeint remark, -" what a tine piece of corn ?" But when the harvesting came, the objector says, " you have done wrong in cutting it up, it is better to top it," and again, "you are entirely too early, it will not harden." The tact is, nowever, it got taorougaly hard, and brighter or better corn I never saw; it was cut the 20th September, husked and weig.aed the 10th November. Tae piece of ground measures one acre and five and a half rods, and yielded eignt tho asand seven hundred and eleven and a half pounds, (whichi, at 75 lbs. the busiel, allowed by the agricultural society,) gave one huadred and twelve and a hali busitels to the acre; also, four heavy two horse loads of well cured corn stalks, worth more tian a ton of the best haj.

preparation of the ground, manure, \&c

I have a finc lot, containing six acres, ly ing east, and in full view from my house, slightly undulating and gently soping, o which two or three years ago, 1 commenced farming in miniature, on the rotation system,
that I might judge of the comparative profit if good systematic culture, (by some laugh. il at as a book of knowledge,) compared vith the slóveuly and parsimonious habit, too iten persevered in, and I ans so far much leased with the resuit; it speaks loud in invor of goo l hisbandry. I am well satisfis.d, too, that you turat teed your land if you rould be fed yourself, This lot has for inany years, (5!) or more, for augit I knuw,) seen undisturbed by the plough, from the erroneous opinion that good grass land should remain for the scythe, only. The soil is mostly a warm sandy loam; some part of it, however, is low and wet; this I have overcome by thorough draining. (On this subject I may hereafier have something to say.)
I prepared by deep ploughing last fall, a part of the above lot, carted and spread upon it the 10th ol May, 35 loads of long uu. ferme.ted stable dung to the acre, making five heaps to the load, dropped at five yards distance each way ; this, ulter being carefully spread, was passed over with a heavy rol. ler, and afterwards well harrowed, planted the 15 th of May, and ashed as it made its appearance above ground.

> estimate of expences, \&c.

Dr.

To ploughing wit t two yoke of cattle, $1 \frac{1}{2}$ days, at $\$ 3$,
$\$ 450$
Rollung and harrowing $1 \frac{1}{8}$ days, single team, at \$2,
Sced corn,
Preparing seed corn with tar, \&c. 100

Pauting two dov, at 81 , 25
Trree noeings, two day's each, at \$1.

600
Horse and man $1 \frac{1}{4}$ days, with cultivator, $\$ 150$, Cutting and binding two days,
at $\$ 1$, at \$1,
Picking and hushing seven days,
at $\$ 1$.
700
38 loads manure, at $\$ 1, \quad \$ 3800$
Cartung and sprcading, at 25
cents,
950
84750
Deduct iwo-thirds for the suc-
ceeding crops in the rotation, 3161
20 bushels ashes, at $12 \frac{1}{2}$ cents,
1589
Spreading 1 day, at \$1,
50
luterest on land, valued at $\$ 150$
1.0

尼
$\$ 5639$
Cr.
By $62 \frac{1}{2}$ bushels corn, at 81 50, 9275 50 bushels seed do. at $\$ 2, \quad 10000$ 2 do. soft do. at 50 cents, 100 4 loads stalks,

1500

Deduct expenses,
\$20y 75
Profit, \$153 36
I have not had experience enough to kncw which is the most preferable, to plough nid sward land in the fill, and spread the me. nure on the surface the following spring, or to spread the manure in the spring betore ploughing, and then turn it in. I think much inay de pend on the season, in the first prac. cice ; if the season should be dry, may not a
grod deal be dissipated by the winds? and a.rain, if it should be wet, may not the roots raap a greater advantage, than if it lay be. n outh the turf? I will thank you for you: V.ews on the subject.*

Although I used my own teans, and hire nay labor by the month, at 12 to $\$ 14$, yet in consequence of rainy weather, broken days, \&c., I think it but right to charge the fair price of lahor by the day, both for man and team. In estimates of this kind, the labor is frequently charged per day at the average of the price per month, which makes quite a different result. The estimate of corn, at $\$ 150$, may appear to many overrated, nevertheless, it is a fact. that corn of an inferior quality is selling with us ut that price.

> Yours, very respertfully,
H. G. Bowers.
N. B. Since writirg the above, it occurred to me that, although in the preparation of seed corn, tar is recommended chiefly, as a protection against birds, it may also have another very important effec!, (thereby saving a replanting in consequence of wet weather.) in providing a coat, impervious to the superabundant water, until the sun shall, by its genitl warmth, cause the germ to disengage itself from its confinement.

* Old sward, for corn land, is best ploughed in the fall, and if long manure is at command, it may be buried in the operation. It will undergo but slight if any termentation before ploughing, and the soil will imbibe what it gives off of nutriment. A clover lay is best plougher carly in May, having the manure previcnsly spread. If, in the first, manure is rot at coinmand, we would recommend that the plough be set deep, and that the manure be buried in $t e$ spring, immediately preceding planting, by a superficial furrow, which shall leave the sod as much as possible undisturbed.[Conductor.]

From the Farmer and Gardener.
CUlture of huta baga.
Mr. James M. Lawton, in a communication in the Cultivator, gives the following iules for the preparation of the soil, and the culture of the Ruta Baga. The conclusious at which he arrives are the result of many years experience and cluse observation.

1. The land, he says properly adapted to the nature of the plant, is a strong loain.
2. The land should be ploughed eariy in the spring, in order that the sward, if it have one, may rot by the 10 th of Juue.
3. The land should be made per.eectly mellow and smooth, and a good coat ut manure, that is fine, say sheep or barn manure should be put on.
4. Throw the land into ridges 24 inches apart, with a small horse plough.
5. Roll down the ridges by a light rol. ler, or other instruments; make a light furrow, say an inch deep, drill in the seed or: or about the 15 th of June: the seed shoule be 10 inches apart in the drill, and when the plants come up, all but one plant should be pulled up.
6. Dress the plants three times in a sea-
son, that is, keep the weeds out, and the parih stirred about the plants; as they ure irst breaking the ground they must be pow dered with plaster of Paris, -and iwice af terwards also-when they receive the two ast hoe ngs.

Mr. Lawton further adds, that he has lound the above rules, when closely followed, never to fail in producing a good crop; that last year he raised from 90 rods, that is fro $n \mathrm{~h}$ lif an acre and 10 perches of land, 605 bushels of sound, close grained Ruta baga turisips, on land a distance from the house and barn, on which, never to hiis knowledge, a spoonful of manure had been placed until within a few days of the time he put the sced in the ground. This product was equal to $1075 \frac{5}{9}$ bushels per acre I'he success oi Mr. Lawton should surely serve to stimulate every fariner and planter to at least appropriate an acre or two to the culture oi this excelent and hardy root. Unlike the other members of the turnip family, it preserve thro:igh the hardest winter in the tield, if the precaution be taken to throw a furrow up against the rows just as the hard frosts set in, and may be drawi thence for use, as occasion may suit. They are also more firm in meat, and more nutritious than any other turnio. Horses and cows fed upon them do not scour as when kept on the other varicties.
horticultural. society of pennsylva-NiA-liberal premium.
We have been favored with a copy of the alvertisement of this society offering premums for "culinury vegetabl :s, fruits, and flowers, tor 1837," and on looking over them we are graified to find that its members are influenced by leelings of enlarged liberality.

We comply with their request to publish the subjcined, with pleasure; the generous spirit which numates the institution is to be seen in this noble effort to preserve one of the most delicious of fruits, from its most deadly enemy, and we sincet ely hope that the pecuniary stimulant they offer will serve to urge the nursery men and horticulturists of our country, to turn their at ention seriously towards the discovery of the prevertive in question.
blight in pear trees.
The Pennsylvania Horticultural Society, anxious to promote the discovery ol preventive for the disease usually terme I blight in Pear 'l'rees, offers a premium of FIVE HUNDRED DOLLARS, to be paid the person who shall discover and make public an effectual means of preventing its attick. The premium not to be awarded until after the expiration of three years from the publication of the preventive, nor untal the Society shall be fully satisfied of its efficacy. Communications on the subject may be addressed per mail to David Landreth, Cor. Secretary, Philada.

Frum the New-Eugland Farmer.

Manure.-Stable and barn-yard manure is rendered of little value by long ex posure to $t e$ air, sun and wet weather. Indeed, every moment of such exposure takes away from such manure some part of
its fertilizing principles. The following remarks on the waste of manure by exposure, have been given in the N. E. Fariner, vol. v. page 342 , but may be new to some of our more recent subscribers.
"He who is within the sphere of the scent of a dung-hill," says the celebrated Arthur Young, "smells that which his crop would have eaten, if he would have perinitted it. Instead of manuring the land, he manures the atmosphero; and before his dung-hill is finished he has manured another parish, perhaps another courity." Stalile and barn-yard manure should be kept as carefully from the sun and rain as grass, which has been cut for hay. When cattle have been yarded over night, it will be well to throw their manure into heaps, and cover them with a little loam or marsh inud, previuusly prepared for that purpose.
c. Earth is a powerful absorber of all the gasses which arise Irom putrefaction. But a layer of common soil along the top of a lermenting dung hill from 12 to 18 inches hick, and allow it to remain there while the process is carrying on with activity, and afterwards separate it carefully from the heap, and it will' have been impregnated with the most fertilizing virtues. The composts, which of late have attracted so universal attention, and occupied so large a space in all agricultural publications, originated in the discovery of this absorbing power of the eartn, and in the application of it to the most bencficial purposes. A skilful agricultuist would no more think of allowing a violent fermentation to be going on in this dung-hill, unmixed with earth, or other maiter to fix and secure the gaseous aiments, than the distiller would suffer his apparatus to be set at work, without surm untung his still with the worm to cool and condense the rarified spirits, which asuend in evaporation. In both the mest precious matter is that which assumes the aeriform state; and to behold it escaping with indifo ference, is a demonstration of the most profuund ignorance."-[Letters of Agricola.]

Infusion of Walnut Leaves to destroy Insects.-It appears by a communication to the London Horticultural Socieiy, by Sir Charles M. L. Morick, Bart., that worms which infested plants in pots, were destroyed by a pint of an infusion of walnut leaves given to each pot. The worms quickly emerged from the mould to ihe surface, and were removed. This treaturnt was repeated the following week, when a few more worms were extracted; the plants, which had been sickly, after ihis application resumed their health and blossomed strongly. This success induced Sir Charles to try the experiment on oranire trees, and other planis in pots, and it was attended with equal success. He thinks that the infusion is beneficial, not only in destroying worms, but that it acts also as a manure. The infusion is made by pouring boiling water on fresh walnut reaves; which having slood till cold is rea. ly for use.

Forsyth recommènds a decoction of walnut leaves as an untidote to insects, and a decoction of elder leaves is also said to answer the same purpose.

Potatoes.-In Prussia the Potatse is cultivated with peculiar success ;-as thr stalk grows, the earth is heaped up, leaving only three leaves at the top; roots are thus greatly increased, and the produce is said to be astonishing.

Fat Oxen.-Messrs. Hillman and Thayer, of this town, slaughtered a pair of oxen last week, from the stall of Mr. George Cook, which presented as fine specimens of beef as we ever witnessed. We saw a hind quartor as it lay in the butchers' cart, and it appeared to be almost a complete mass of fat. The fat on the rounds was apparently two or three inches thick. Our s'omach yearned, as may well be supposed, for a good cut from the tender loin, but we were compelled to turn disappointed away, for the price was fourteen cents a pound. Thëse oxen weighed 4,385 on the hoof, and after they were dressed, 3,190 pounds. The butchers paid ten dollars the hundred pounds.-[Hampshire Gazette.]

Advertisements.

AVERY'S ROTARY STEAM EN. GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving SawMills, Grain-Mills, and other Manufactories of any kind.

Engines only will be furnished, or accom. panied with Boilers and the necessary Ma. chinery for putting them in operation, and an Engineer always sent to put them up.

Information will be giyen ai ali tines to those who desire it, either by letter or by exhibiting the engines in operation in this city.
Inquiries by letter should be very explicit and the answers shall be equally so.
D. K.MINOR,

30 Wall-st., New York.
DRAWING INSTETMENIS.-E \& G. W. Blunt, 154 Water-street, NewYork, have received, and offer for sale, Drawing Instruments o. superior quality, English, French, and German Manufacture.

They have also on hand Levels of superior quality at low prices.
w Orders received at this office for the above Instruments.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pambour- 150 pages. la:ge octavodone up in paper covers $s o$ as to be sent by mail-Price $\$ 1$ 50. Postage for any distance under 100 miles, 40 cents, and $60 \mathrm{cts}$. . for any distance excecding 100 ms .

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts.
** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.

MECHANICS' FAIR.
Notice to Mechanics, Artisans, Manufacturers, \&c.-The undersigned give notice that the first Annual FAIR of the Mas. sachusetts Charitable Mechan cs' Association will be held in the city of Boston, in September next, commencing on Monday, the 18th, and continuing at least three days.

The Association have placed at the disposal of the Board of Managers, the sum of Five Thousand Dollars, to enable them to conduct the Fair upon a liberal scale; and they hope to be able to render satisfaction to all who may feel disposed to offer articles for exhibition.

Medals or Diplomas will be awarded to the owners of all articles that may be deem. ed worthy of such distinction ; and the Managers intend that the strictest im. partiality ard fairness shall be observed in the distribution of Premiums.

The Managers, in furtherance of the ob. ject they have in view, invite contributions of articles from every department of industry ; of clace specimens of American in. genuity and skill; rare and valuable domestic productions, natural or artificial ; the delicate and beautiful handiwork ol females ; useful labor-saving machines, implements of husbandry, and new models of machinery, in all their varieties.
Judges will be appointed to examine all articles offered. and the managers will award a gold or silver medal, or a diploma, to all articles that may be pronounced by the iudges worthy of reward.
Articles intended for exhibition, must be delivered on or before Wednesday, Septem. ber 13th.

Arrangements will be made to exhibit, in operation, any working models that may be offered, which will render the exhibition useful and interesting, and the managers respectfully invite contributions in this branch. A careful and competent superintendent will be appointed to take chare of all mo. dels sent fur this purpose.

Board of Managers.
Stephen Fairbanks, John Rayner, William Adams, Uriel Crocker, Gardner Greenleaf, James L. Homer, James Barry, Joseph Tilden, Ephraim Harrington, Joseph Lewis, Walter Frost, Tnomas J. Shelton,

Jos. T. Buckingham, James Clark. Henry W. Dutton, George Darracott, Wm. S. Pendleton, Charles A. Wells, Henry Bailey, Jonas Chickering, Henry H. Barton, Thomas Boyd, Wm. Uunderwood, George G. Smith, John G. Rogers.
P. S. For any further information ad. dress JAMES L. HOMER, Corresponding Secretary, Boston.
Boston, March 24, 1837. m28-ts1

A COURSE OF INSTRUCTION IN CIVIL ENGINEERING, by informal lectures, to occupy two months, commencing the 1st week of May-Cnmprising

The use of the theodolite, level, Compass plain table, cross, and sextant explained upon the instuments theinselves : iopographical drawing executed urder supervision ; survey of routes; problems of excavation and embankment ; railroad curves ; all the usual details of construction upon common roads, railroads, and canals; including bridges, culverts, tunnels, and the various kinds of motive power ; nature, strength and stress of materials; masonry. carpentry and constructions in iren; alluvial deposites, guaging of streams, \&sc.The whole purely elementary. Terms of admission to the course, $\$ 20$.

Apply to C. W. Hackley, Professor of Mathematics in the Univefsity, 32 Waverly lace.
transactions of the institution of civil engineers of great britain.
The first volume of this valuable work, has just made its appcarance in this country. A few copies, say tuenty-fize or thirty only, ha ve been sent out, and those have nearly or quite all been disposed of at-ten dollars each-a price, although not the value of the work, yet one. which will prevent many of our young Engineers from possessing it. In order therefore, to place it withi 1 their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the close.
The price will be to subseribors three dol. lars, or five dollars for two copies-alucays in advance. The first number will be ready for delivery early in April-Subscriptions are solicited.

NOTICE TO CARPENTERS.

A number of Carpenters are wanted to lay the superstructure of the Georgia Raitroad, to alom tiberal wages will be given.
The ruad vaverses an elevaled ridge which is enircly free from any local cause of sickness.

JUHN ENINAR THOMSON, Ch. Eng. Engin'er- Uffice, May 22, $1837 . \quad 22-31$ A ugusta, Geu.

NOTICE TO CONTRACTORS.

NOTICE is hereby given that the grading of the "Buffato and Mississippi Railroad, for a double track, belween Michigan city and La Porte, a distance of 12 miles, will be let as public out-ery, to the luwest bidder, at La Porie, on Wednesday, the isth day of June next
The Maps, Profiles and Estimates of the route will be ready for examination at the Engineer's office in La Porie, afier the first of June.

$$
\begin{aligned}
& \text { R. STEWAR T, President. } \\
& 23,1837 .
\end{aligned}
$$

Michigan City, April 23, 1837.

TO CONTRACTORS.

PROPOSALS will be received until Tunsday evening, the 271 h June next, at the office of the Wrighisville, io k ard Getiyssurgh Railroed, in York, for laying a single track of Rails on 12 miles of the above road, extending from Wighisville to York. 8 Plans and apecifications of the work will be exlibitrd in the office alter Munday, the 81 h inst. and furiber information will be furuished by Mr, J. F. Houstun, P. M, ai York

Mey 8, 1837.

TO CONTRAC'CORS.

JAMES RIVER AND KANAWIIA CANIL. TIIERE is slill a large amount of inechanicnl work to let on thj line of the James Rivar aud Kanawlia Inprovement, consisting of twenty locks, ahout urie humsed calverts nil sevisal large aqueducts, which hill be ofered to resimonsible coratractors at fair price..
The lucks and aqueducts are to be built of cut Thene.
The work contracted for innst be finished by the Let Jay of July, 1838
Persons dosirn ts of obtaining work are requested to apply at the office of the undersigned. in thin est y of Kichmond, befure the fifteenth of May, or between the Gifth and the fifteenth of July.

CHARLES ELLET, JR.
Chief Engineer Jas Riv. \& Ka. Co. P. S.-The valley of James Hiver above Richmona is healthy.

16-10t

PATENT RAILROAD, SIIIP AND BOAT SPIKES.

**The Troy Iron and Nail Factory becps constantly for sale a very extensive assortment of Wrought Spikes and Nails, frum 3 to 10 inches, manufaclured by the subscriber's Patent Machinery, which after five years successful operation, and nuw aimust universal use in the United Siaten, (as well as England, where the subscriber obtained a patent,) are found superior to any ever otfered in market.
Railrual Cumpanies may be appolied with Spikes baving countersink heads suitable tw the hules in irun rails tu any amonnt and on short nutice. Almust all the Railruads now in progress in the United States are cory-for which purpuse they are found invaluahlo, as their adhesion is mure than duuble any commun spikes made by tho hammer.
will be punctoally will be punctoally attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July; 1831.
-* Spiker are kept for sale, at fantory prices, hy 1. \& J! Townsend, Albany, and the principal Iro: Merchante in Albany ana Irny ; J.I. Brower, 22% Water otreot, New-York; A. M. Jonns, Pliludelphia; Janviere, Baltimore; Degrand \& Emith, Buston.
P. S.- Railruad Companies would cos well to fur ward thoir orders us eurly as pructicable, as the subacribar is desir"us of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes.
(1 J 23 am)
H. BURDEN.

TO RAILROAD CONTRACTORS.

SEALED proposals will be received at the office of tho Selma and 'Tennessee Kiver Knilroad Company, in the town of Selma, Alabarma, for the Eradnation of the first forty miles of the Solma and Tennessce Railroud Proposals fior the first six milcs frum Selma, will be received afier the first of miles frum Selma, will be received after the first of
May, and acted on 6y the Board on tho 15ih Mas. May, and acted on by the boaru on will be reccived
Pruposals for the ensuing 34 miles, will after the loth Mav, out will nut be examised nutil the lst of August nex, when the wurk will be ready for contract.
The line, after the first few miles, pursuing the flat ofthe Mulberry Creek, occupies n regina of country, lisving, the repute of being highly healthlul. It is free frum punds and 8 wamps, and is will watered The soil is generally in cuttivation, and is dry, light and sandy, and uncommunly easy of excavaitun.Thesee Railruals, will he ubuut 170 miles, passing genoraliy thruugh a region as iavorable for health as any in the Southern Couniry

Owing to the great interest at stake in :he sucecss of this enterprise, and the amount of capital already embarked in it, this work must necessarily proceed wish vigor, anu I invite tha attention of sien of industry and enterprise, buth at the North and elspuhere to this undertaking, as offering in the piospect of continued employment, and the eharacter of the suid and climate; a wide and desirable field to the contractor.
Prupusals may be addressed either to tha subseriber, or to Gencral Gilbert Shearer, President of the Company.
ANDREW A LFRED LEXTER, Chief Engineer.
Selma, Ala., March 20ih, 1837.
ROACH \& WARNER,
Manufacturers of OPTICAL, MAI IIEM. TTICAL AND PHILUSOPHICAL INSTRUMEN'I'S, 293 Broalway, New Yoik, wilı keep constantly on haus s large and general assortment of Instruments in thei. line.
Wholesale Dealers and Country Merchants supplied with SIRVEYING COMPASSES, BARUMFTERS, THFRAOMETERS, \&C. \&C. of their Uwh than oan ho had atany other estabhshment. instraments made to order and repaired.

THEs undersigned, General Agent of Col. S. II. LONG, to build Bridgen, or vend the right to others fo build, on his Patent rilur, would respectfulty infurm Jnilroad and lsridge Curpura.ions, that he is prepared to make contracts to tuild, arkl furui-h al inaterials for superstructures of the kind, in any part of the linited siaten, (Maryland exceptid.)
Bridges un lhe above planare to be seen at the fullowi:ng localities, viz. On the main road leating from Baltimore to Washington, two miles from the furmer place. Across the Metawawkeag river on :he Mililary ruad, ia Maine. On the national ruad in Illinuis, at sutidry points. Onthe Ba!timure and Sirsquehanna Rrailroad ut three points. On the Hudsun ant Pallerson Railroad, in two places. On the Buston and Wurcester Railroad, at several points. Onthe Bustun and Providence Railroad, at sindry points. Acruss the Contoortook river al Hennker, N H. Across the Sunhegan river, at Milfurd, N. H. Arruss the Cinnnivticut river, at IInvertill, N. M. Aeross the Coustoocouh river, at Hancock, N. II. Across the Andrusaggin river, at Turner Centre, Maine. Across the Kennebec river, at Waierville, Maine. Across the Renesse river, at Equakiehill, Munnt Morris. New-Y'urk. Across the Whit Hiver, at Hartford Vt. Across the Connecicut River, at Lebanun, N. I. Acruss the inouth of the Broken Sirnw Creek, Penn. Across the muth of the Calaraugus Creck, N. Y. A Railroard Bridge diagunally acrows the Érie. Canal, in the City of Rochester, N. Y. A Ra lroad B. rdge at Upper sitll Water, Orunu, Maine. This Bridg; is 500 feet in lungti; one of the spans is over 200 fect. It is prubably the firmest woon N aridge ever buill in Aincrica.
Notwithstandiug his jresent engagements to build betweell tweuty and thirty Railrual Bridyes, und sevaral commun bridges, several of which are now in progress of consirnethot, the subscriber will promptly athend to business of the kind whuch gr-ater exich ind on liberal terms.
Ruliester, Jan i?lin, 183%.
ALBANY EAGLE AIR FURNACE AND MACHINE: SHOP.
WILIIAM V. MANY manufactures to order iron castinas fur Gearing Mills and Factories of iron castings
ivery description
very desrription Engines and lailruad Castings every description.
The collection of Patterns for Marhinery, is nul equalled inthe Uniced Sitntes

NEW ARRANGEMENT.

ropes for inclined planes of hailhoads.
WE the subscribers having formed co-partnership under the style and firm of Fulges \& Culeman, for the manufacturing and selling of Ruper fur inclined planea ot raitruads, and for uther ur 8 , uffer to supply ropes for inclined planes, of an tengit required withuat splice, at short notit c, the matufacturing of cordage, heretofore varried on- by S. s Durfee \& Co., will be dune by lise new firm, the same superintendant and machinery ore empluged by the new firm that were empluyed by S. S. Durlee \& Cor. All urders will be prompily allended to, and ropes will be shipped to any purt ill the Urited slates 12th numh h, l2h, 1836. Il adson, Culumbia Counts S: ate of New-York.
33-1f.
ROBT. C. FULGER.

AMES' CELEBRATED SHOVELS, SPADESS, \&c.

300 dozens Ames' superior back-trap Shovels
$\begin{array}{lllll}150 & \text { do du do plain do } \\ 150 & \text { do do } \\ \text { do }\end{array}$
150 do do do caststeel Shuvels \& Spade 150 do do Gold-mining shovels
100 do do plated Epades $\begin{array}{rll}100 & \text { 10 do plated spades } \\ 50 & \text { do do }\end{array}$
50 do do sucket Shuvely and Sjades.
Bars (steel puinted) Ases, Churn Drills, and Cron bied iron-lir and, hathinactured frum salinhoury re Wiale by lie manufacturing agents
WITHERELI, AMES \& CO

No. 2 Liberty street, New-York BACKUS; AME'S \& CO.

Nu. 8 State street, Albany
N. B - Also furnished to order, Shaper of every de srrinion, uade from Salshury refined lrun v4-If

STEPHENSON

Builder of a superior siyle of Passenges Cars for Railroads.
No. 264 Elizabeth street, near Bleeckcratreet, New- Yurk.
RAILROAD COMPANIES would do well to exa mane these Cars ; a specimen of which may le seet on that part of the Now-York and Harlaem llailrosi

TO RAIJLOAD CONTRAC'IORS.

PROPOSALS will be recejved, at the offire of the lliwassee lialfuad Com, in the tuwn of Athens, Te nessee, Hutil' sunsel, of Munday, June 12hh $13: 57$; fur the grating, masurury and bridiges, on that partion of the iliwaswer kailnuaib, which ifie be tweell the Kiver l'ennessee und Hiwassee. A dix talice of 40 miles.
The quantity of excavation will be about one mil. ion of cubic jardy.
The line wid be staked out; and, logether with droinings and spicitications if the work, will be reaty for the inspecion of contracturs, on and after the lst day of June.

JOHN C. TRAUTWINE;
Engineer in Chief Hiwassee Railiond.
RAILWAY IRON, LOCOMOTIVES,\&c. TIIE subscribers offer the following articles for salp.
ILailvay Iron, flat bart, with countersunk holes and raitred juinte,
350 tons $2!$ by $t, 15$ finlength, weighing $4 \frac{68}{160}$ per f. 280 "' 2 " 1 , " " " " $3 \frac{50}{100}$ "
70."1t"t, " 4 . "... 28
$\begin{array}{lllllllll}80 & \text { " } & 15 & \text { " } & \frac{1}{1} & \text { " } & \text { " } & \text { " } & 1_{10}^{25} \\ 90 & \text { " } & 1 & \text { " } & \frac{1}{1} & \text { " } & \text { " } & \text { " } & \end{array}$
with Spikes and Splicing Plates adepted thereto. To be suld fite of duty to state goverumente or incorpuraied companse.
Orders fur Pennaylvania, Boiler Iron executed.
Kail Rowad Car and Locomotive Eingine Tires, wrongla and turned or unturued, ready to be fitted on the riheels, viz. $30,33,36,42,44,54$, and 60 iaches
E. V. Patent Choin Cable Bolts for Railway Car axles, in lengthe of 12 fi et 6 inclies, to 13 feet 2 zt , 2 l 3, 3t, 3t, 3t, and $3 \frac{z}{2}$ inchies cliumeter.
Chains for luclaned Hlanes, shurt and stay links, manulactured from the E. V. Cable Bults, and proved at the gryutest suram.
India R(d)ber Kope for Inclined Planes, made frum Ncw Zealand Hax.
Also Pukat Hemp Cordage fur Inclined Planes, and Canal Iowing Jines.
Falent Felt fur placing between the iron shair and sun bluck ul Edge Ka:Iways.
Every descriphon of Railway Iron, as woil as Locomotive Eingines, impurted at the shortest nolice, by the agency of une of our pariness, whor resides in lingland lior this purpose.
A hyhly reypeciuble American. Engineor, resides in England for the purpose ol inspecting all Luromuiives, thachinery, Kaid way Iron de. ordered through us.

23 if
A. \& G. MALSTON \& CO.,

ARCIIMEDES WORKS.
(100 North Mour street, N. Y.;
New-Yoas, february 121h, 1836.
THE undersignel tege leave 10 infurm the proprieurs of kailronds hat thit are prepared to furninti all ninds ul Maelinery fut Railruads, Lacomotive Engines it any size, Car Wheels, such as are uuw in sugcessital uptratiun on the Gamden and Anubuy Kailroad, mune on uhich have, fuiled-Castings of all kirds, Whoels, Axles, and Buxes, turnisinedat shortesi notice. 4-vil
H. 1h. DUNHAM \& CU.

MACHINE WORKS OF ROGERS, KETC"HCM ind GRUSVENOR, Paterson, New. lersey. The undersigned recrive orders fur life foltuwng articles, manulactured by th m , of the most - upetior destripiou in every parucuiar. 'I heir works is ing exientive, aud the nuaber of hands eniployed hring large, they are enaliled to exerute buith large hring iarge, tiley are snained to execute buth
and small urders whit pionupincss and despatch.

RAILKOAD WORK.

Locomotive Stenm-Engines and Tenders; Driving and uther Lucumouse Wheeis, Axles, Eprinzin dind riauge Tires; Car Whecls of east iron, frum a variety of pallerns, and Chills; Car Wherls uf cas tiron. with wounght lirre; Axles of best Americen refiutd iron; Springs ; Boxew and Bolte for Cers.

COTTTON WOOL A:V FLAX MACHINERY,

Of all descriptions and of the nust improv, d Patrerne, Stylo, and Wurkmaneliip.
Mill Geering and Millwright work generally; HyIrauic and uther Presses; Press screws; CellenJers; Lathes and Tools of all kinds, Jron and Brase Castings of ell descripliuns.

HUGEKS, KEICHUM \& GROSVENOR
Pamerson, Niewderney; or to Wallatreet, No:

PUBLISIIED WFEKLY, AT NO. 30:WALL STHEET, NEWAYORK, AT FIVE DULLARS PER ANNUM, PAYABLE IN AIVVANCE,

CONTENTS.

Turnpike, North-western, Va.,
369
Norris' Locomotives, etc.,
Jtems,
Hollow Cylindrical Rail for Railways,
Transactions of the Institution of Civil Engineers.
Beunell's Steam Engine.
Whitney's Tunnel ; \&c.,
Oonvention; \&c,
Life in the Couniry and City,
Nothing is beneath the attention of a Great Man, Agriculture,
Advertisements,
369
870
371
372
372
374
375
375
376
377
378
Advertisements, $\because, \quad 383$

AMERICAN RAILROAD JOURNAL.

NEW-YOKK; J!NE: 17, 1837.

TO RAILROAD OR MANUFACTURING COMPANIEE.

We ask attention to the following advertisement. The gentleman referred to will be found an acquisition to any company that reguires the aid of a superintendant, professing skill, experience and character-and we shall take great pleasure in being the merrium ot communication to him from those who may desire information. - [Eds. R. R. Jour. and M. Mag.]

RAO TO RAILROAD COMPANIES.

A PERSON experienced in the construction of Loconotive Engin- (matiy of hie Manifacture being in surcesesful operation on important Rairvale, min the United flates) ant whio is likewise ophroughly acquainted with the managemeut of such machines, and, indect, the entire ardeal of Rairmeds ix detiruas of bbraining the sutuation of General Supetintendart of comé Railruad, South or Weal:
The most satisfactury teatimonials of characler and capability can be prodiopd. Commusications addreased is the Edjars of this Journal, ataing the tocation of Roed, \&c. will meet with prompt atiemion.

Enginezr's Office, Wilminguton and Raleigh Rillroad, May, 4, 1837.

TO BRIDGE BUILDERS-Proposals will he received until the 30h Jane, for the erection of Bridges on the Wilminetion and Raleigh Rail-
 eutaby Croeks. The Bridgee will bo builr on tho phean of Town. The gill eat-
 roilal.). The eimber will bo founth
Water frum piert and aburmenti, yone can bo lad, at the Nease six mileen by
 getc the Bridgo wil rost on wooden abumment; at Swifita Creek, the ruck is
 foutd within ofow hundred yords of the bridge on the bank of the creek-and at Quanky the quarries are sinuated bout thriea nitles by land frum the pro, o. ued pridge. The piarar ano sunated nbout throe nuiles by lavid frum the pros o-
 WALTER GWYNN, Civil Eneineor. $x-4$

Turnpixe, Northwestern, Fa.- Extract from a letter dated Clarksburgh, Va , June 1st.-In reply to the question of the writer of the letter, " whether we will receive Virginia Bank Notes, for what is due" us, we reply unhesitatingly, res, and glad to get them. We receive any thing in the character of Barik Notes current where the Periodicalsare received-alhough we prefer such Notes as have the least discount here-and.wo are sure that our subscribers will always send us that if they can obtain it.-[Eds. Railroad Journal.]
"The only public improvement in this section of the State. is the Virginia Noth-western Turnpike, now in progress of construction. It coinmences at Winchester, Virginia, and terminates at Parkusburg on the Ohio river, a distance of 226 miles, one half of which is completed, as are likewise the bridges over the South Branch of Potomac, and Middle Islend rivers.Thiose across the North Bianch, Cheat, Tygari's valley river, and the West-fork of the Monongahela are rapidly. progrossing."

Norris' Locom tives. - The following ex ract from the Philadelphia National Gazette of Saturday last, will prove as gratifying to our readers as it has been 10 us. We have ascertained that the stalements therein made are perfectly corrert. Mr. Norris' engines challenge competition with any others.'
We have understood that recenily in addition to its own train of 33 burden cars, one of his englines look 18 passenger cars, making in all 51 loaded cars which were drawn around curres of 400 feet radius, the whole train occupying n: arly a eerni-cir-cle-and this over a road never intendel for locomotive power, and racked by the daily wear and tear of an immense travel.
. Mr. Norris has mate several engines for the Portage raad, where one of them is constantly employed upon a long grade of 54 feet to the mile in descending, which, with a load of mere than 100 tons it was able to stop in time to eare the lifo of a man who hadfallen upon the track.
We bave been furnished by a friend with the following particulars, Irom Mr. Pbleger, the engineer, of the perfoccoance of a locomotive engine, recently constructed for the Slate, at the manufactory of Mr. Norris, at Būh-hill. The engine lefi Col. umbia with a train of 31 cars, and afier altaching five more, at several depots on the road, making a total load of 172 tans in 36 cars proceeded to Philadelphia With this great load of 172 tans, it peessod up the Gap grade of to feet rise per mile, at
a speed of full 10 wiles per hour ; and on the grade of $\mathbf{3 2}$ feet rise per mile for nime successive miles, a speed of 25 miles per hour could have been easily allaihed, but the engineet was deterred therefrom, by the regulations of the road, which limit the speed of burthen trains to 10 miles per hour. The whole dis. tance, 82 miles, was travelled in the usual running time, and the engine repeatedly started the train from a state of rest, on several of the highest grades and in short curves, without slackening the coupling chains of the cars. This performance, it is said, has never been equalled by any other locomotive engine of the same weight, nine tons, in Europe or America, and is considered the regular daily rate of travelling.

Illinots and Michigan Canal.-We Wre highly gratified to learn that this important work is progressing, notwithstanding the extreme scarcity of money. The Chicago American, says,-

Contracts, to the amount of about one million of dollars, were made by the Commissioners on Saturday last, and at about sixty thousand dollars less than the estinated prices. Laborers to ailmost any number can now find employment on the different sections of the line, and receive high prices. Several thousands are canted inmediately.

Dethott and St. Joseft Railroad.-We are happy to have it in our power to say that the Board of Internal Improvement are determined to complete the first thirty miles of this work by the 1st of September next. An additional number of hands are about to be employed upon it. and no pains will be spared to ren. der it fit for use as far as Ypsilantior Ann Arbor by the time above mentioned. One of the locomotives intended for it is now at Buffalo, and will be received here in a few days.- [Detroit Jour.]

05 Tho following gentlemen were yesterday re-elected Directors of the New.Jersey Railroad and Transportation Company for the ensuing year, viz:-

John S. Darcy, W. W. Woolsey, E. Townsend, R. S. Colt, A. Day, A. Lee, G. P. Molleson, G. L. Schuyler, J. P. Jackson.

At a subsequent meeting of the Board, the following officers were unanimously re-elected for the ensuing year. Jorn S. Dabcy, President; John Wortuington, Treasurer; Jchin P. Jack. son, Secretajy ; and William Pennington, Attorney and Counellor of the Board.-[Newark Daily Adv. June 1.]

Cintago and Galena. Railroad.-We copy from the Chicago American of May 27 th, the report of James Seymour, Esq. Chief Engineer, formerly on the New. York and Erie Railroad.
Chicago only five years since, was not even a village, now the is a cıry, with her Mayor and Board of Aldermen, and will in less than five yeals more, be the center of an immense business. With a steamboat canal to the Illinois, Mississippi and Chio rivers. With one railroad reaching her from the east, and another connecting her with the Upper Mississippi, whilst its branches will penetrate every part of the State. Chicago must become all that her sanguine friends have predicted. It cannot be otherreise: The Chicago American says, that

The first Report of James Seymour, Esq., Chief Engincer on this Road; will be found in our columns to-day. It will, we have no doubt, attract great attention, both at home and abroad. This work will form the last link in the chain of railroads (all of which will soon, be completed) connecting the Atlantic with the Missis-sippi-the East with the great West. The charter of this company is of immense value, as it secures them the privilege of making latteral roads in any direction ; and contains no restrictions as to the rates of toll which the company may tax. "The country, too, through which the road will pass is very favorable, being flat und smootn, and requiring little more than laying down the rails to make the rjad complete. With such adraninges, what can prevest the company from "going ahead" sind riaping a rich re wanl for the oathay.

ON A PRELIMINARY SCRVEY OF PART OF A ROUTE PROPOSED FOR the galena and chicago union railroad. by james seyMOUR, CIVIL ENGINEEH.

$$
\text { Chicago, 11th April, } 1837 .
$$

To T. W. Smith, Esf.,
President of the Chicngo and Gajena Union Railroad Com. pany.

Deas Sir : Conformably to your instructions, I have caused an exploration and survey to be made of different lines for that part of the Galena and Clicago Union Railroad, which is to extend from the city of Chicago to the Des Plaines River, and herewith submit to you a map and profile of the work, euch drawn on a horizontal scale of 500 feet to an inch,--vertical scale of profile 40 feet to the one tentio of a foot. I have carefully and minutely examined the lines in the field, and inspected the Estimate, Map, and Profile made in the office; and am satisfied, that of the four lines that have been traced, the best has been selected.
The length of the line is 97 miles, and the total cost of grading for a double track, and building a single one with the necessary turn outs, $\$ 72,952$.

The estimate based upon the plan proposed, I have no doubt, is sufficiently liberal to meet all contingencies, and to construct the work within the amount specified. For more minute particulars, I would refer you to the report of my assistant, Mr. P. H. Ogilvie, who conducted the survey. It is estimated, that part of the embankment is to be taken from ditches cast on both sides of the road throughout ; the ditching serves the double purpose of keeping the road-bed dry, and draining the prairie.
The embankment estimated for that part of the road where piling is required, may at present be dispensed with, provided it be not deemed necessary to drain the prairie. Should both these sug. gestions respecting embankment and draining be disapproved of, and it be proposed to grade, at present for a single track only, then $\$ 15,000$ may with safty be deducted from the estimate.

In either case, should the whole be constructed by one contractor, or firm-responsible men, it may be done for at least $\$ 12,000$ less than the estimate, by adopting the following plan, viz:

1st. Erecting a steam saw mill, at the Des Plaines River, for the purpose of sawing the cross-ties, rails, longıtudinal sills, and wedges, and preparing them for the work.

2d. Commencing the road at the Des Plaines River.
3d. Prociring a small locomotive engine, and railroad car, to convey the timbers to their destination, as fast as the wooden su. perstructure progresscs; the same engine to be used in driving piles; all of which may be done previous to placing the iron bars on the road, the whole distance of which is so perfectly straight. In this way the wooden superstructure may be completed from the Des Plains River to the south branclı of the Cnicago River where the iron bars can be shipped, and put on board the car for distribu. tion along tine line.

Nevertheless, I would recommend grading for a double track, for the following reason, viz: The company's interest to assume the privilege of the Act amended aud passed in their favor, 4th March, 18:37, and thereby to extend a branch of the road south of west, to connect with the Centrul Railroad to Galena, and another branch norih of west, to cross the Du Page, Fox and Rock rivers; thence entering the valley of the Peckatonica, traverse the mine. ral region, in tiae direction of Galena; this securing to the company the vast avails of travel and freight $t)$ be attracted in traversing the rich and fertile regions of the west, and forming a most important link in the grand projected scheme of connecting the At. lartic with the Mississippi-a scheme, the completion of which will induce thoisands to visit us, and scatter their wealth and influence throughout the country.

As far as I am acquinted with the face of the country between the Des Plaincis and Fox rivers, it is mostly uniform, higher, and mucli diver, than it is east, for which reason, the construction of either or both branches of the Road, will be attended with much less expense per mile, tian that part of the work herewith rendered.
I have made no reconnoissance, personally, of the country a far west as Rock River, but from the best information I can obtais from intelligent men, a similar uniformity of surface and dry prairie prevail in the direction of either branch proposed -thus a:fording to the compuny the facility of constrncting a cheap:and permanent railroad wejt to that river.

There are no tangible data, wherefrom to venture an opinion, as to the probable amount that may be derived from the contemplated work, until-explorations, surveys, and estimates of cost be made for either branch proposed, or that of a middle route to the Rock River.

GENERAL REMABKS.

Vast is the latitude of she charter granfed to the Company, and pregnant with advantages; especially the 6th section, empowering the company to place the main line of road wherever their interest may direct, and constructing such lateral branches as they may think proper, to give effect to that interest-together with the unlimited power of fixing and regulating the tolls upon each and every one of these routes. 1 know of no project where capital may be more safely invested, or where there is a greater prosipect of a large and speedy return.
By the Company's selecting valuable lands, and judiciously fix. ing on important points, the road may, soon after completion, with proper management, be made to pay the cost of constraction, as it progresses from piaee to place.

Your charter invests you with the privilege of extending the Road to the earstern boundary of the State, forming a connecting link of a chain of railroads now in progress through Indiana, Ohio, and part of Pennsylvania, thence to Buffulo, in the State of New-York-thus opening a direct communication with this State and Pennsylvania, whose lakes, canals, and railroads, now in use for the transfer of freight and passengers, together with the inmense transport of merchandise and iuflux of emigrants by way of Lakes Erie. Huron' and Michigan, render the completion of the work in question, an all important operation. All of which is respectfully submitted by,

Dear sir, your ob't servant,
James Seymour.

From the London Mechanics ${ }^{\text {' Magazine. }}$ hollow cylindroidal mail for railways. Fig. 1.

Sir,-The following is a description of a new form of rail, in which the strength of the arch is brought into operation-and which I think will be found worthy the attentian of railway engineers.

Tig. 1 is a perspective representation of the disjointed ends of tho rails, A A, with the cross-bur B, waicul, eatering the nothees aa; binds them firmly to the lungitudiual timbers D .
Fig. 2 is a transverse section of the rail, \&c., showing its elipti. cal shape, with the proposed form of tire (F) for the wheels of the carriages, and the mode of securing the rails-ncarly one-half being buried in the timbers D.

Fig. 3 is a perspective view of the whole when put together.
The timbers are proposed to be of Kyanized oak, and laid in concrete ; the two lines of each track being truly parallel, and connected throughout by ties. Tiue longitudinal groove, in which the rails lie, should be cut ou: by machinery, a perfect fit beng thereby ensured.
The advantages anticipated for this arrangement are -
1st. Greater ease and smoothness of motion to the carriages. Gravity would keep the wheels in a perfectly straight line. By this mode also of connecting the rails and timbers, lateral discon. nection of the bearing surfaces would be rendered impossible, and all jolting in consequence avoided. A rib, b b, is proposed to be furmed on each side of the rail, for further security, as well as to prevent wet insinua:ing itself between the rails and timbers:The groove E E, in which the cross bars slide, will also diminish the strain upon the screws c c, c.iused by the action of the propel. ling wheels.
(With all deference to the experience of Mr. Vignoles, whose system of continuous timbers I have here adupted, I would ask, if the oft-repeated rapid rolling of a mass of iron, six or eight toa in weight, would not soon loosen rails that are merely nailed or serewed on to their bearings, without at all entering the wood?)

2nd. Greater strength of rail from the same werght of iron.The lower half being firmly bedded in oak, the upper presents an arch to the incumbent pressure.
3rd. A more convenient (and, as above shown, a firmer) inethod of fixing the rails. In order to remove a rail for repair, it would be merely necessary to withdraw four large screws, and knock out two bars, when it might be lifted out.

4th. Economy in wear. When it has become no longer safe to use a rail in its original position, the simple operation of reversing it would present a new surface as firmly fixed as the first. A bar rail, if formed with this view, would obviously not be held so securely in its second position ; it might probably thercfore bs found advisable, to make the bearing portions of the tube somewhat thicker than the rest.

Should it be objected that the narrow bearing surfaces would induce rapid destruction of the wheels, I reply, that the weight of the engines (the heaviest load, calculating per wheel) might prob. ably be lessened. On the present plan a cousiderable waigat of engine is necessary to give cohesion between the propelling wheels and rails: this I propo ie to efficet by the form of tire represented in fig. 4, wich would also give additional safety at high velocities, by diminishing the liability of the train to get off the tracks. (What has become of that beautiful little engine, the "Novelty?" I trust Messrs. Braithwaite have not abandoned the idea of bringing so c.egant a construction into use.)

Probably cust iron migat be the cheapest, as it would be the firmest material for hollow rails; but they might be rolled out with a core, in the mode used for gun barrels.

Another advantage of this system, not immediately connected with the subject, has since occurred to me. Various schemes have been proposed for the rapid communication of intelligence between distant places-some of thein not a little expensive. Herc is a speaking-pipe ready made; for, were such a plan really feasible, some other mode of fixing the rails might be adopted, which would not interrupt the transmission of distant sounds.
London, 16 th March, 1837.
J. R.

P. S.-I would add a word on the subject of cost, though having

 no practical knowledge, I can give no very satisfactury account. It appeared to me, that on this plan the rails need not be longer than six fect. If cast then, the greatest addition to the expenss would be the additional weight of metal. But as my rails will admit of being turned, when worn, they cannot fairly be compared with others, weight for weight. Perhaps some company might think it worth while to try how much substance would be necessary for this form of rail, for without experiment no correct idea can te formed on this point.Plate 12.

;

Fig. 1. A, High Water; B, Low Water ; C, Wharf ; D, Concrete; E, Seticon through Sheet Piling and Plate.-Fig. 2. A, High Water ; B, Low Water; C, Wharf; D, Guide Pile ; E, Laid Pile; F, Section through Main Pihe.

X XIV memoir on the use of cast iron in piling, particularly at beunswice Wharf, blacewall. by michael a. BORTHWICE; A. INST. C.E.

Concluded.

The main piles were originally proposec to be hollow in section, according to the sketch following ; but this was given up ot further consideration of the uncertainty of procuring sound castings of the intendec form, and of the greater liability to breal afterwards from a blow sidewise. The sol id form shown on the plate was therefor adopted, according to which the lower lengths weighed about 28 cwt . ; and that this wai not too nuech was shown by the circumstance of several of the piles, particularly the
early ones, breaking in the testing or driving, and showing in th3 fracture the danger of even a slight defect. The greater care

subsequently taken at the foundry, and probably also greater experience in driving, made accidents of this kind of rarer occur. rence in the later stages of the work; and it may be mentioned as no bad proof of the care of all parties, that of upwards of six hundred piles, including both descriptions, only sixteen broke in driving, seven being of one sort, and nine of the other:-the failure was in five cases attributed to strains in driving, and to imperfections of casting in the other eleven. The sheet piles, which bear a considerable resemblance in their general outline to those used at Downes Wharf ten years before, were proposed to be an inch thick, but it was found necessary to increase this dimension, and some of them were as much as $1 \frac{1}{4}$ inch ; the average, however, was not above $1 \frac{1}{8}$ inch, and the weight of each pile 17 cwt . The length of the wharf is about 720 feet, and the whole weight of iron used upwards of 900 tons.

The crab engine was employed invaria. bly, the heads of the pilcs being covered with a slip of $\frac{3}{4}$ inch elm, to distribute the force of the blow equally over the iron, and pre. vent jarring. The monkeys used weighed from 13 to 15 cwt . each, and it was found necessary to linit the fall to a height of 3 feet 6 inches, and sometimes less, when the resistance proved more than usually great and the pile showed a tendency to turn from its straightforward course. The driving throughout was very hard, more especially at the west end, where the sheet piles in fous bays could not be forced to the full depth, the space above being in two of them made up with two plates in height, and in the otner two admitting only one, instead of three as in the rest of the work. Driving was the only méans resorted to, or indecd practicable in the gravelly soil that prevailed. Had the bottom been clay or other similar sub. stance, the plain of boring to receive the points, that has been followed elsewhere, might probably have been partially adopted in the main piles with advantage; but I should say, certainly not to tae extent of depending mainly upon it for getting the pils home to their places.
I cannot quit the subject of the Bruns wick wharf without stating that his avocaions alone have prevented Mr. George Bid. ler's association with me in the account of a work, the execution of which he had, unJer Messrs. Walker and Burges, the charge if superintending. Though rejoicing at the :ause, I cannot nelp regretting the circumtance in the present instance, as such co peration on the part of my friend would, I cel, have given this paper an interest and : ralue it has now but little claim to. I taki wis opportunity also of acknowledging my ubligation to several of the gentlemen above
named in connection with the previous use of iron piling, whose kindness has enabled me to make the preliminary review much fuller than I-had at one time any expecta. tion of having the power to do.

It remains for me only, in
Eficet of enter conclusion, to advert to a consid. eration that ought not to be los: sight of in deciding upon the eligibility of cast iron wharfing,-I mean the action of water upon it. I do not recollect any ob. scrvations made so as to enable a practical inference to be drawn from them; but the importance of the subject seems to claim sttention, and possibly even this notice may be the means of inducing it from those who have the opportunity. The investigation belongs perliaps rather to chemistry than engineering, but notwithstanding the practical turn some of the most distinguished cul. tivators of that science have given their researches, little I believe has yet been done to explain the present question. How iron is affected by water in its various states, and in what manner the action on crought differs from that on cast iron, are interesting points, still, so far as my information goes, to be determined; and they are not likely to be so in a satisfacto:y manner, until some one competent to the task calls a series of weli conducted experiments in ai.!, as every day shows mo:e clearly the uncertainty of analogical reasoning, however apparently strict, on such subjects. But whatever the modus operandi between cause and effect, that decomposition of the metal, more or less rapid, gradually goes on from the action of water, seems to admit of no doubt. Pro. fessor Faraday, in a letter to Captain Brown, says, "Cast iron is certainly liable to great injury from constant immersion in salt water, and I think you would find few, if any exceptions, proviled the water and the iron are in contact."* And the saline principle, to use a somewhat antiquated form of ex. pression, though a great accelerator of the process, does not appear to be aliogether an essential to it ; \dagger at least, I know a case that happened in a part of the River Thames where thi water cannot be said to be more than brackish at any time, and indeed is generally quite fresh, in which cast iron, af. ter being immersed for little more than 20 years, was on being withdrawa from the water, found so soft as to yield to the penknife; and the original surface of the iron referred to,-it was the socket.plate to the heel-post of a lock-gate,-had not been submitted to the tool, in which case it is well known the water would have operated with much greater efect.
jut though I have thought it well to glamee at the above case occurring in water, always except on rare occasions fresh, the sea is no doubt in practice the invader whose nroads are most alarming. Instances night easily b : cited in prool of the ravages

[^38]committed by that active enemy, though no! perhaps noted so circumstantially as is desirable, but I am unwilling to lengthen this communicatio 1 further, and shall therefore confine myselt to a passing allusion to the example oit a large scale, and after long triat, furnishid by the state of tlie guns taken from the wreck of the Roval Gcorge, as describer at at a late meeting of the Institution ; * and to a similar instance mentioned by Berzelius, in a passage which I quote at length, not so much fionever in co:afirma. tion of so well established a fact as the eventual decomposition of cast iron by the action of wator, as for the properties men. tioned of the substance into whicis the metal is resolved. Tre extract is as follows:
"Quand la fonte reste long-temps sous l'can, elle- est decomposc'e.; l'acide carbonique contenis dan. l'eaudissout le fer et l'entraine; il reste -une masse grise ${ }^{\text { }}$ qui resemble a la plombagine. Lorsqu'on retira de l'cau, il y a quelquess annécs, les canons d'un vaissoau, qui avait conle' a load cin. quante ans auparavant, aux environs de Carlscrona, on les truava au tiers converti en unc parciile masse poreuse; a peine e'taient ils a l'air depuis un quart d'ieure, qu'ils commence'rent a s'e'chauffer tellement, que l'eau qui, y restait encore s'e'chap. pa sous forme de vaj'eur, et qu'il fut im. possible d'y toucher. Depuis, Maccu loch a observe' \dagger que le corps analogue a la plombagine qui se forme ainsi presc'nte toujours ce phomonenc, et quo ece corps s'échauffe presque jusqu'au rouge, en absorbant de l'oxygenc. On no sait pas pre'cisement ce qui se passe dans ce cas." Traitc' de Chimie, Tom. 11I. p. 273.

* Min. of Contere, Vol. V., No. 12.
\dagger The observation referred to by Berzelius in the above occurs in Macculloch's Western Is'es of Scolland, (I think in the account of the ssland of Mull,) where an explanation of the phenomenon was first attempted, though, if on such a subject I may " hint a doubt," not to my mind quite a satisfactory onc. A more perfect solution will probably be furnished by whoevert availing himself of the powerful moans of chemical analysis now possessed, may undertake such an investigation of the wiole question of the action of water on iran as I havo vciturod. to allude to in the tex t.

From the Journal of the American Institure.

 bennet's steam engine.A model of c.n engiac, constructel upon the principles of those w'ich are to bremployed in propelling C.ipt. Coob's steamer hetween this and Liverjool, has been at the Repository of the Institute for several weeks past. A throng of visitors have constantly surrounded it. Between the hours of eleven and oase, Mr. Bemnet has attended, and explained its operations. It has undergone the scrutiny of great numbers of scientific professors, ingenious and experienced mechanics and engineers, citizensand strangers

Mr. B. by request, has kindly given all the explanations requisite to a perfect understanding of its operations, and auswered the ten thousand questions that have been pro pounded, with a clesrness, simplicity, and patience, that is luighly creditable. He ha-
invited objections, that he might have an opportunity to meet them, and if found to be icrious, that scasonable remedies might be provided. The examinations have resulted in a gefral conviction that the world is about to realize a new improvement, not interior io that of Watt and Boltoa-an imbprovement that wull effect a new era in ocean navigation, and bring all parts of the world in approximation to each other. A veyage to Liverpool, it is believed, may, by the power of this engine, bs accomplished in ten days, with one-tenth of the fuel hereto. lore required.

We have requested Mr. Bennet to give a minute description, accompini s with a drawing, which, we hope, will enable the rend. ers of the Journal who have not visited the Repository, to comprehend what to us was incomprehensible, till we examined the mo lel, and heard the exp'anation, ho:v the fi:e and the water could be brought and coatinued in actual contact with each other, and, rapidly generating the steam, still kept in con. trol, and its potency safely directed to prupel the car or the ship:
Tan following is the description whil:' Capt. B. has been so obliging as to prepars to: us.

"Tiue engine for the Liverpool packet, is a double horizontal bigh pressure engine, thirty-five inch cylinder, six feet stroke, with two blowing cylinders, of half the capacity, worked by the piston-rol of the steam cylin. der passing through the lower or extreme hear, and into the blowing cylinders ; consequently, both will be of the same motion. Pipes C, with the necessary valves attached to the blowing cylinders, convey the air to the stean generator, whose outer case (a a) is four feet diameter, and twelve feet high, and the inner case, or fur ace B, is three and a half feet diameter, and nine feet thigh.Sinble and feed-pipe D, is constructed with two slides, (ee,) winch closes tire pipe periectly tight when thrust into it ; their uses will hereafter be explained; f is a cap-valve in the steam chamber, placed over a short pipe or nozzle on the upper head of the furrace, and fitted to its seat perfectly tight, with a rod exteuding through the upper head of the outer case ; g is the ash-pit below the grate; h an opening into the ash-pit, with a slide to close it tight, when neccssary.

In order to put the engine in operation, and successfully use all the advantages of this generator over any other, it will be necessary to set open the feed and smokepipe D, and the pipe h, as now represented; introduce fuel down the feed pipe, in sufficient quantity, and to ignite it. Previously fill the space between the outer and inner case with water up to the dotted line, half way up the cap-vulve f, which will completely immerse the furnace; and when steam is generated of sufficient elasticity to start the engine, say seventy-five pounds per square inch, close the piper D and h, with their respective slides; then start the engine in the usual way, by opening a communication with steam-pipe i; then the blowing cylinders will force their charges of air through the pipe \mathbf{C} into furnace \mathbf{B}, partly taking its course through the mass of fuel on the grates, a sufficient quantity being iniroduced above the fuel to burn the smoke, which can be regulated by slides in the branch pipes, terminating the fair-pipe C. You will discover that there is no escape for the air thus forced into the furnace until its elasticity is, by the continued blast from the blowigg cylinders, a little superior to the stea:n in the steam chamber, when the cap-valve f will rise from its seat, and the air, flame, and gases arising from combustion, will be forced to pass under the edges of the said valve out into the water; and in this process, all the heat generated will be inparted to the water, without the possibility of escaping otherwise.
"By the repeited experiments I have heretofore made, I find that one foot of air blown into the furnace to promote combustion, by the expansion it undergoes, and by the addition of the gases and stean, is augmented in bulk at least five times its original size, or, to speak briefly, there is five times as much compound steam, as air, forced into the furnace; consequently, it will talse one filth part of the power of the steam to operate the bellows, plus the friction, or this is nearly the power ; but I forbear at present, nor is it necessary, to speak at large on that subject in this paper.
"By a careful examination it will be seen that the pressure of steam will wholly depend upon the proportion of the size of the blowing cylinder to the steain cylinder. In my engine now building, the blowing cylinders cach contain twenty cubic feet, the steam cylinders each forly feet-q but the stean being cut off when the piston has made but one half its ent.re stroke, which reduces it; size, as a measure to deal out the stean, to exactly the size of the blowing cylinder-the measure of the air forced in by the blowing cylieders being augmented, by passing t rough the generator, to five tinies its bulk, has to be forced into a space in the steam cylinder of just its original bulk; it will, therefore, exurt a force equal to five atmospheres, which will be sixty pounds to the square inch above the atmospheric pressurc.
"This furce, pir inch, will not be exerted during the wbole length of the stroke of the piston, but only half way, or to where the steam is cut off; and at the end, its elastic force is reduced to about twenty
pounds which will, make the average pressure fifty pounds per square inch, and the piston contains 962 syuare inches, which multiplied by 50 , will prodice 48,100 !bs. the whole average force the piston moves with. It is: calculated $t \leq$ have the engine make thirtv-five double strokes per minute; hence, the piston will move 420 feet per same time, which multiplied by 49,100 , produces, $20,202,000$ pounds ; the weight that the piston'would lift one 'foot high per minute, divided by 33,000 , being what a horse power is estimated at, gives 612 horse power for each steam cylinder. But the - power abstracted to operate the biowing cylinders, and ! overcome the friction, I allow nearly equal the power of one of the cylinders; therefore I estimate the power of the engine at 612 horse power.
sthe amount of fuel cons mell, will depend upon the amount of air forced into the furnace by the blowing cylinders, and my two blowing cylinders, at every revolution, would force in 80 feet, it there were no leak either in piston or valves, and no space between said piston and valves for the air to compress in, and not be wholly forced out ; therefore, probably not more than 75 feet will be expelled cach revulution of the engine; and as it takes all the oxygen contained in 175 feet of atmospheric air to burn one pound of carbon, and 525 feet to burn one pound of hydrogen, I ain of opinion, that to allow 225 feet to be necessary to burn one pound of fuel, will not be allowing too much; and, as before stated, 75 feet will be forced into the furnace at each revolution, it will therefore take three revolutiors to barn one pound ; and as a corl of yellow pinc weighs about 2,100 pounds, it will take 6,300 revolutiuns to burn one cord, which, divided by 35 , the motion of the engine per minute, will give three hours for each cord-which, compared with the engine of the steamer Erie, on the Hudson, of little less or nearly the same power, (600 horse power,) will consume forty cords in tea hours, or tivelve cords in the same ti.n; my engine will one cord."

Whirner's Tonsel. - This is a very convenient article. It is inade something in the ordinary furm, though not quite so bevelling, and has a flat bottom, into which the nozzle is inserted. The tunnel has several ridges at certain distances round its body to designate different measures, as a gill, half pint, pint, quart, and 2 quarts. There is also a valve on the top oi the nozze, which is pressed close to its place by the liquid in the tunnet, so that it may be used as a measüre of either of the above mentioned sizes. This valve is so arrang ed as to be opened by a slight pressure on a thumb piece-which lets the whole, or any portion of the liquid escape, as may be desired. By this arrangement this article serves as a measure of different dimen sions, and also as a tunnel, and will br found a very convenient article. It may
bo seen at tho Anerican Institute, $187 \mid$ Broadway.

Inclined Plane, and Mode of Ascending by Locomotive Power. Ald. ricu's Plan.- We have recently examin. ed the model of a Railoay and Car, constructed by Mr. E. F. Aldrich.
The rails are, except on the plates, like other rails; at the planes there are side posts, with rails on their top, so arranged as to receive upon its surface a small wheel with cogs, or pins on the outer end of the Journals of the driving wheels. This upper rail receive the small wheel whilst the large one rests upon the main rails, but as it advances, the upper rail has a little more elevation by which the main wheel is raised from its bearing, and the whole load resting on the hisd wheel, rests upon the small wheels on the outer end of the Juurnal. By this arrangement the velocity is of course greatly diminished, and the power increased. On the periphery of the sinall wheels are short pins, or $\operatorname{cog} 3$, which work into corresponding holes or cogs on the upper rail, which carries the load forward, even when the incliation is too grat for adhesion. There is attached to the center of the axle a bar, or rod of iron which we supposed to be designed for arresting its progress in descending - but having no description or explanation, we cannot tell precisely what it is fir.
This model may be seen at the Ameri. can Institute.

We are hapipy to learn that the Rev. II Colman, has been selected to the important station as below.
appointments by the gövernor.
Henry Colman of Boston, to be Commis. sioner for making an Agricultural Survey of the State, and Edward Hitchcock, of Aın. herst, to be Commissioner for making a fur. ther (reological Survey of the State, severally under Resolves of April 12, 1837.

NRW LOCOMOTIVE POWER.
An advertisement appears in our paper this morning, on a subject which cannot fail to arrest the attention of all who feel an interest in the interual improvements of the country, apart from the novelty of the movement. The invention is entitled to a fair examination, from the immense advantages which must accrue to the public, in case the new and ingenious locomotive power shal stand the test of experience.

We find the above paragraph in the Phil. adslphia U. S. Gazettic-but not the advertisement referred to. We should like to know more of this power.-[Eds: Mechanics' Mag. and Railroad Journal.]

Revolutionary. Document.-The following is a copy of a document found among the papers of a Revolutionary officers now Do more, who took an active part in thé stir. ring sces.es of that period. It appears to be a statement of the proceedings and expenses -in continental money, the currency of that day-of establishing the claim of Messrm \longrightarrow, —\& to certain goods which were seized at Woodbury, N. J., on the 11th of August, 1780. - It is an interesting document, exhibiting the great depreciation of the currency of the days in which our fathers fought and bled for liberty.
"An Accouit of Cost and Expenses of the Scizure of the Goods belonging to ———, \longrightarrow, at Woobury, N.J., $11 t h$ day August, 1730 :
Going to Newark Mountain, for advice of the Autoraey, Cost of Jury,

50 Dullars.
Going to Elizabeth Town,
$\begin{array}{ll}\text { Going to Elizabell } \\ \text { Horse Hire and Time, } & 120\end{array}$
To procure a Witness to go to Phuladelihisa,

6
The Expens.s of going to
Phia., Biunswick Ferry, 12
Bruaswick all Night, 116
6 Mile Rusi, 60
Maidenhead, : 64
Treuton Ferry and Way, 60
Bristol, GU
Neshamony Ferry, It 10
10 miles from Pria., 23
Puadepiiia, 545
On Return Red Lion one night, 112
Neshamony Ferry, $\quad 16$
Pens Manor, 36
Cienton Ferry, . 45
Crenton, $\$ 0$
Prince, 90
6 Mile Run, 116
Hire of Horess and Wagon at 210 Duls. per Day, 5 Days
is 1050
The Eii ences and my Time : going to Piniladelphia, 5 Days each, at 70 Dollary fer Day,
To get Whte Matlacks Depo. sition,'
To getting some Bills Proved at Elizubeth Town,
For the Evidences going to Elizabeth and attending the Trial,
Our own time in attending Trial, 214
Docts. Lester and Gallaudet, attending Trial one Day, 140

Convention. - The proceedings of the Aserican Institute, of which the following is a copy, in relation to "a Generat Convention from all the productire portion of our country," are worthy of, and should receive from every friend of his country, immediate attention, and dcep consideration. We are at present, in the midst of a calamity which has prostrated thousands, and will reduce thousands of others from competence, to in. digence ; and it thercfore becomes the duty of those who can trace the evil to its source, to counsel together and if possible to devise and recommend a remedy. It cannot be otherwiso than that good will result from ouch assemblage of intelligent practical men, from all parts of the country; the more so as it is-designied to be composed alike of all parties, and yet not to be in any way political.

We ask for the circular, an attentive pe. rusal, and trust that it wili meet with advo. cates, and immediate action in every State in the Union.
at a mefting of the anerican institute
OF THE CITY OF NEW-YORK, HELD AT CLIN.
ton hall, in saio city, on the 18th day
OF MAY, 18:37,-IT WAS
Resolvel, 1st. That the present condition of our commercial community generally is that of the most painful embarrassment, and that the distress is rapidly extending to all the other occupations and departments of productive industry, and that thousands of our most iudustrious and useful citizens have bcen dismissed by their employers, and their wages, the sole reliauce for their duily tood, their clothing and habitatons, have within a few days been entirely cut off.

2d. That it is of vital importance, that the causes of this wide-spread distress should be early and fully uuderstood, so that remedies, as far as practicable, may be provided for existing evils, and preventives to guard against future evils.

3d. That, in the opinion of this Institute, the multitude of discordant views promulgat. ed, in relation to the causes of our present disastrous cendition, have led to popular errors, that have in a measure turned, the public mind from the accumulating dejbt in favor of freign nations, which the repeat of countervailing protective duties has swelled against us, which is now pressing on our banks, and incapacitating them from administering relief to their suffering customers.

4th. That the only way to correct the public mind, and restore confidence, regula. rity, and prosperity, is by the dissemination of correct knowledge among the people, as to the prominent causes of our embarrass. ment, and by producing a general concert of action in applying suitable remedics.

5th. It was also Resolred, That a Gene! ral Convention of representatives from al the productive portions of our country: without distinction of parties, for the purpose of a full and candid exchange of sentiments. and a thorough investigation of cause anc effect, and concert in action, would greatly conduce to a farorable state of things, and,
it is hoped, hereafter may prevent the recurrence of those evils with which we are now visited; and that it be recommended, that the said convention be held at Philadelphia in the State of Pennsylvania, on the first「uesday of August, 1837, at 10 o'clock A. M., and that it consist of business men, selected from the productive classes, and that they continue, by adjournment, to ineet until the desired object be attained.
6th. It was further Resolved, That, as the American Institute ; was incorporated to encournge agriculture, commerce, manufactuics, and the arts, in this State and the United States, it is peculiarly appropriate, that it should recommend and forward such niea. sures as are calculated to advance the great interests of industry, and produce a sound and healthy state of things; and especially on occasions like the present, when the barks acknowledge their inability to supply the requisite circulating medium, and cevery occupation is expericncing the most ir:tensc suffering.

7th. It ras finally Resolved, That, in order to render this convention effective, and procure a full representation of business men, delegates be invited from all the States -the cotton growing, sis well as the grain growing, manufacturing, and cominercialfrom cities, cotinties, towns, and agricultural societies, incorporated manufacturing and mechanic assgciations, as well as railroad and canal companies, and that a committee be appointed, on behalf of this Institute, 10 consult with the friends of national industry, and solicit the concurrence of all those friendly to the foregoing objects; and that mectings be lield at an early day, to elect delegates to respond to this recommendarion; and that suritable papers be prepared and published, in order to give publicity to the convention and its objects, and to impress on all interested the necessity of general attendance, concert, and co-operation.

James 'Tallmadge, President. F.dwin Williams, Recording Sec.
T. B. Wakeman, Corresponding Sec.
$0-$ Editors of newspapers, \&c., friendly to the causc of national industry, through. out the United States, will oblige the Institute by giving the foregoing one or more insertions.

From the New.York Farmer.

Gentlemen,-In answer to the article in No. 6 of the Farmer, on the management of Bees, I will give you the result of a long expcrience on the subject. I consider the plan of Mr. Hebert, French economist, decideilly the best. His hives are composed of several, 10 or 12 parts, of about one and a half inches each in width, placed side by side, and confined by two rods, with keys to hold them together. The following description will probably be more intelligible. Tako n common hive and divide the top and sides into $8,10,12$ or more parts of $1 \frac{1}{2}$ inches: in' width, and with a saw. cut it into as many parts-then these , arts are to be placed together, and cor:fined by pieces cf board across two sides,
with keys on earh end to crinfine the parts together. The advantage of ihis hive will be found in the facility with which it can be increased or reduced in size. Its internal arrangement is such, that the bees build their comb in strata, which never exceeds $1 \frac{1}{2}$ inch in thickness, to correspond very nearly with these divisions of the hive, by which the hive may bo divided, and additional parts put to each, thereby making two swarms, or the swarm may be enlarged to almost any extent, or you may, at your pleasure, take one or two parts from the side, or centre, of the hive, with as many strata of comb for use, with very little injury to the remaining part of the comb; replacing an equal, or any other number of parts of the hive.
By this process very few bees are destroyed, it is therefore entitled to consideration with every humase and reasonable person; notwithstanding the writer referred to, Mr .
G. I. Smart, considers it no inhumanity to destróy this useful little insent; or not more so than to destroy beavers, or cats for their fur, or fish for manure. This is by no means a fair corrparison, as those can only be useful when dead, and therefore the order of things justifies the act, whereas bees can easily be preserved, and will, with proper care produce the ralue of a good beaver skin every year. With this hive, which opens like a book, you may take frum it any proportion of its contents you please, and preserve the bees for further use.When you desire to take away a part of the honey, seperate the hive, and 'o that part in which the queen is attach the new part, or parts, of the hive, and leave the part to be removed exposed to the light for a short time and the bees will soon seek the queen, leaving the part to be removed ne rrly deserted, and in a day or two, they will be quietly at work in filling the vacant part. This operation should always be performed two months before the close of the working season. You may also change bees from one hive to another if you desire, by taking off the outside of each and puttig the hives together, closing up the entrance and drumming on that in which the bees are, which will drive them into the emply hive. Their progress can be readily ascertained by listening at the hive:

These operations to be performed after sunset, or before sunrise.

AClose Observer of BeEs,
CITY AND COUNTRY LIFE.
We copy the following article from the "New-York Daily Express" because thery
culture ifs not justly estimated-Parents who hase accumulated a fortune by cultivating the soil, prefer to make any thing but farmers of thyir sons. This should not be so. Educate them well, and then use all proper means to induce them to cul. tivate the soil-with education and such ha. bits they are prepared for any station to which they may be called in the service of their country.: They know the value of liberty, property, and independence, and will always be safe agents to employ to discharge public trusts.

From the New-York Daily Exprose.

LIFE IN THE COUNTRY AND CITY.
The poets of old Rome sang in loud strains the praises of the country, and hap. py was that Roman who had his farre, his garden, or villa, around the base of Soracte, or on the' shores of the beautiful Baine.Cicero was a farmer, as well as a statesman and an orator. All the illustrious men of Rome delighter in quitting the Forum, the Campus Martius, and the walls oi "the Mother of Empires," to pass the summer solstice in the cool groves, with nymphs and satyrs,-or, in the season of the harvest, to rejoice with the baschanals, and to see them frolic in the games. Even so in Engla:id, and the Continent of Europe now. Loadon, the mistress of modern times, as Roine was of the olden, is deserted of much of its popuiation in summer and autumn. The poisession of land is the passport to gentility in Europe, The great Metternieh boasts of his famous vineyard on the Rhine. A landed estate is the first aim of nobility in England. Titles, there come from land. Hence agriculture is the work of science and of art, and as much knowledge and art ara demanded to cultivate and to lay out the park; to adorn it with trees and with fountains, as to fill the gallery, or the studio, or the niche of the palace.

How happens it then that in our part of our country-it is not so in tne South,that agriculture is avoided, as much as it can well be,-that the son flies off from the fields to the counter, the daugnter to the city or the factory-all panting to exchange the free glorious air of Heaven for the dusty, noisy, crowded thoroughfare, say of Wall-street, Pearl-street, or the Bowery? Whence comes the passion for cities, and of herding logether ? Whence that madness that makes the workingman cherish the cellar or the garret, for hinself and his children, when he can live better and wealthier even on the borders of the wilderness, with sky enough over his head, earth enough under his feet,-with the green grass to trample over, and the proud trees for a shade?
\therefore There is a belief in our country,-it exists no where else,-that agriculture is a vulgar occupation, remanding no taste; no genius, and nothing but the turning of the sod, and the levelling of the trees. Ho" false is this. Why, the Vatican, in its way, is not more beautiful, - with the cho,0e works of ancient and modern art in $\mathrm{it},-\mathrm{a}$ Belvidere Apollo here, and a Ra .
phael fresco there, - than tan English park in its way, - where a landscape is worked out as a picture has been,-a tree shaped to fit this view; and a hedge designed to aid that, - -now perhaps a fountain, or a waterfall, anon a herd of deer,-it may be a hill created by industry, or a little river, with the gods and goddesses presiding over, fitted to run in the line that beanty is de-manding,-and all harmonizing with Na cure, as taste and genius and science have aided in adorning it. Even the coitage of the laboring Englishman-with his, front door so neal;-the roses, and ivy and woodbine creeping over and adorning it, and the well-trimmed hedge in its front, is a jewel upon the face of the earth, and taste has made it so, for Nature has done but little for her fatiner land. The idea then is preposterous, that the highest effort canuot as well be expended in adorning the surface of the ear: h , as in chisseling out tlie rough block of marble; or in putting colors on the canvas to speak. All art is but subsidary 10 agriculture. The Vatican, and the galleries of the Roman capital, and of Naples and Florence, have been made up froin the Roman villas,--from the ruins of the Tevoli of Adrian - the Tusculum of Cicero, or the garlens of Sallust.

We know not why it is, but so it is, there is in the northern States a most unconquerable aversion to agriculture, and the consequence is, with New-England in particular, that a farming people are fed from abroad, by the agriculture of other States, or of foreign nations. The multitude seem more to love the throng-the city,-the tinkling of money in the shop of the broker, or the rustle of silk and calico in the shop of the dealer, than the n ctes of the sweet songster of the woods, the rich beauty of the trees, or the inviting verdure of spring :and summer. One reason is, that we have no Carmers, such as the farmers of England, of Holland, or of Lombardy, who emhellish Nature, and make, their homes more delightful than the loftiest palaces of the town. Our men of wealth in the country, who have, sons to educate, prefer to manufac ture them into third-rate lawyers, fourthrate parsons, and sixth-rate doctors, rather than to bring them up in the way that should teach them to raise a double crop from the same acre of land, or to introduce some new product, which should double the available means they now have.
As a farming people, the means of creating wealth from landed estates are not yet half developed. There is no reason on earth why this should not be a vine growing country, and yet it is not! There is no reason why the Old World should find us in silks, and yet itdoes. So varied is nur soil, our climate, and so extended our lin of latitude, from the rocky and frozen regions of the river St. John, to the sandy Sabine, that we have all the capacities fol doing every thing for ourselves; and yet at this moment, we are oppressed, and overburthered with a prodigious fureign debt. The cotten planters make money. Why may not the hemp growers? The suga planters make moncy; and why not the stock growers of even the Green Mountains? Science is what is wanted first, and
then art and taste will come as handmaids. Edacate then your boys in college, if you choose-a good education hurts no manbut make Farmers of them afterwards, if you wish them to be happy and wealthy. Wall street is a big-sounding place in the history of our time now. We live there some twenty hours in a day, and therefore know something about it. When the Wall street Banks suspend specie payment, the whols Union follow the example. When the Wall strect Banks expand, thie hearts of the people are made glad. Wall street is the money throne of the United States, of America Its bankers, are the money princes of the day. "States of the Union have their destinies settled there $\frac{-}{T}$ and Wall street tells thrm whether they shall have railroads or not, canals or not, money or not ; for the Rothchilds of Wallstreet make and unmake empires here at will. But Wall street, the Thread Needle street of the New World, is a vile place at best. The street is so dusty, ind dirty, so filled up with old bricks, and stones, that respiration even is difficult in it; and a lusty old tree, which has long felt that it was not at home in such a street as this, is sickening and dying away daily in this busy thorough-fare of man. . When the clerks within it go home, many of them lie down in boarding houses in rooms no bigger than the coffins of the ancients, and when the money makers of the day reach their families, they are harrassed and agitated by ex. citement, trembling lest a packet ship should bring them the news of the shipwreck of their furtunes, or some convulsion blast all their hopes. Now in what is this Wall street to be compared with some beautiful river or lake of the country. Not twenty of these men of wealth have a g :rden as largeas the pea-patch of the Farmer. Not one of them who, on a warm summer diny, does not envy the Farmer, who has his green grass, his garden, his trees to took at, and above all, his pure air to breathé, and his pure water to drınk.
The true art of living is the Roman life, or the life of the English of the present day,-the mingling of the country and the town,-the country for summer, and the city for winter, -with its books, its libranies, its excitement, and the collision of mind with mind. Say not the farmer cannot afford a residence in the city in the winter, cor with economy he can. He needs' no big palace for himself and family there; let him live as the French do in Paris-in some one story of some large huuse, with a kichen and all its appurtenances,-and not in a princely habitation. Econony, a judisious expenditure of money, -pradence and skill will make a litte go far. That wealth is the great object of life, particulary in a country where " wealth is" no "sign of nseri:," is one of the most delusive and ruinous ideas of the day. All of inatter that we can gather together, it has been well said, will but give us our bread and lothes,-but there is a double means of living upon the resources of man's own inind, upon taste, upon science und the arts, -when books answer for companions, and When with them, a man can throw hi nself .nto every country, and every circle of the o
habitable globe,-now in the saloons of the Europeen prince, now with the Arab in the desert, and anon with the Indian in his wil derness,-reading instruction in every spear of grass he walks over,-every stone his foot-fall strikes,-in every star above him, and the whole atmosphere, in and around him. To live, and how to live, what is living are topics we should like to discuss, if we can ever find room and time.
" NOTHING IS, BENEATH THE ATTENTION OF A GREAT MAN."
This short sentence is inscribed over the door of the small building in Holland, which was once the workshop of Peter the Great; and furnishes more than volum $\because s$ of common description and history could do, an insight into the character of the man who raised the Muscovites from the deepe.it barbarism to the rank of civilization, and lrid the foundation of an empire, the extent of which the world seems as yet little able to comprehend.

One of the most fatal errors to which men are subject is the disposition to treat small things with ?contemptuous indifference; forgetting that great things arc but an aggregate of small ones, and that disco veries and events of the greatest importance to the world, can be traced to things most insignificant in themselves: Nothing more truly marks an original mind, and stamps its possessor as a truly great man, than the seizure of circumstances which would pass unnoticed by the great multi tude, and by subjecting them to the powerful analysis of his reasoming power3, deducing inferences of the greatest practical results.
The power of the loadstone to attract iron, has been known from time immemorial; accident discovered the fact that a magnetized needle would indicate the north; but for a long time this truth was productive of na results. In the hands of Flavia Gioja of Amalfi, it produced the mariner's compass, an instrument which has chang. ed the whole course of con:merce, and opened America and Australia to the rest of the world. 'To mention only one of the things that the use of the compass in maritime discovery had led to-it has given the potato to Europe, and thus trebled the means of subbis:ence as well as doubled the population.

- We owe the Galvanic or 文oltaic baite ry, one of the most powerful instruments in advanciag science the world has yet seen, to Madamo Galvani's noticing the contraction of the miscles of a skinned frog accidentally touched by a person on wt.on her husband was at the moment making some experiments in eleciricity. The expericeats of Galvani and Volia were followed up by Davy, Hare and Silliunar, and effects which have astonished and instructed the world, hiave been the result. The dry.galvanic pile in the hands of the discoverer, De Luc, was nothing more than a scientific plaything. Singe of London, a mechanic of genius, saw the pile, and applied the power thus generated 10 move the machinery of a watch; and one cons'ructed by him tas now run more
than 16 years without winding or loss of motion.
A chemist was at work in his laboratory preparing a powder for a certain purpose. A spark fell into this composition and it exploded; and from that day gunpowder was discovered. Some may question the utility of this discovery, but we do not. Gunpowder has materially aided the miner, the founder and the chemist; but more than all, it has given internal order and tranquility to the kingdoms of Europe, by knocking down those strong holds of feudal barbarisin and cruelty, the castles of a haughty and domineering nobility, and placing the weak, so far as regards protection by law, and security to person and property, on a level with the highest.

A German peasant carved letters on the back of the beech trec, and with them stamped characters on paper for the amusement of his children. Nothing more was thought of them; but from them Faust conceived and executed moveable type; and printing, an art that perhaps has exercised a greater influence on the destiny of mankind than any other, thus had a be: ginning.

Galileo was in a church at Florence, where a drowsy Dominican was holding forth on the merits of the Virgin, and the miracles of the Holy Church; things about which the philosopher cared very little. The principal lamp of the church had been lett suspended in such a manner that it swung to and fro in the slightest breath and caught the eye of the philsopher. The regularity of its oscillations struck him, and the idea of employing such vibrations to measure time occurred. Galileo left the church and returned to his study b and in a short time the first pendulum ever made was swinging.
Some children playing with glasses of e Dutch spectacle maker, accidentally placed two so that the steeple of a church appeared much nearer and turned botom upwards From this small beginning was produced the telescope; an instrument which more than any other, bas enlarged the boundaries of the universe, and given to man more exalted ideas of that Being who spake all these worlds into existence.
About one hundred and fifty years ago, an old man might have been seen in his study, apparently amusing himself by witnessing the escape of steam from an old wine bottle, and then checking it by in stantaneously plunging it into the cold water. There are multitudes who would sneer at an observer of nature who could stoop to notice such a trifle; yet this ex. pansion and condensation of steam in the wine botlle, and the train of thoughts which it suggested, in the hands of the Marquis of Worcester! gave birih to thesteam engine, the tnost valuable present science has ever tade to the arts. These very men who are now filled with delight and astonishment when they behold the beautiful steam boat majestically ploughing the waves, or the steam car whirling its train of carringes over the railroad with alinost the rapidity of thnught, would be the first to look and speak with contempt on the train
of small causes that led to such important results.

But perhaps the example of Newton, more than ally other, conclusivcly proves that there is in the whole circle of nature, nothing trifling to a great mind. Thousands had seen apples fall from the trees to the earth; yet no one had ever asked the question whether the cause that caused the apple to fall to the earth extended to the moon?-yet this question and its solution was the key that has unlocked the mochanism of the universe, and given to man powers and ideas, which could otherwise never have existed.
The great truth these examples inculcate is this-that there is nothing trifling in nature, nothing that is not worthy of attention and reflection, nothing that does not form part of the great chain of cause and effect, and consequently capable of leading to the most valuable and interesting events. There is a feeling abroad, that it forms no part of the business of the tiller of the soil to think. This is not true, and the position should be exploded at once. It is scarcely possible for a man to be more favorably situated for an observation of nature than the farmer. His business is with the soil he treads upon, with its various constituents and their ever varying propor-tions-with the green earth and its covering of grapes and plants, its flowers, while over the head is stretched the broad o'erarching sky, inviting him to useful refec. tion, and urging him to "look through nature up to nature's God."- [Genesee Far.]

Agriculture, \& c.

tropical fibrous plants.

It is with pleasure we lay before the rea. ders of the New. York Farmer the following communication from Dr. Perrine, late U. S. Consul at Campeche. His long silence made us apprehensive that he might have ful. ien a victim to his zealous and continued ef. forts to introjuce into this country the fi. brous and unestimated plants of southern Mexico. His devotion and sacrifices appear to throw around the object he has in view a sacredness that renders further " n glect and delay" unhallowed. We hope and trust, that ere long his anticipa. tions will be fully realized, as they long since deserved.

Dr. Perrine's object is to acclinate In Florida the fibrous plants of southern Mex. ico. These plants produce materials for ropes and cordage ; but from the miserable cufture and rude manufacture in that coun: try, Dr. P. has been led to infer a vast source of national wealth, if introduced into the southern section of the Union. He accordingly has had the subject brought be. fore Congress several times; but the momentous concerns of party politics have been too engrossing for him to obtain any positive action. State Legislators, and Agricul. tural and other associations, in various parts
of the country, have strongly recommended the undertaking. Dr. P. has devoted mo ney, and much of his time, and made sac rifices of health, in procuring plants anc specimens of the hemp, and in distributing them in various parts of the country. Fol acclimating the valuable plants of the globe in our extended country, it has been suggested that there should be three national gardens,-one in the Northern, one in the Middle, and one in the most Southern States. To aid in the establishment of a natitital experimental garden in Florida has been Dr. P.'s request of the General Government. A grant of a tract of the unoccupied, and almost valueless, portion of Florida, the assistance of a Government vessel in importing the plants; and an appropriation of a small amount of money, would accompiish the object, and add vastly to individual and national prosperity ; and it is to be hoped that Congress will at its en. suing session give this subject that attention to which it is so eminently entitled.

We shall, at all times, be ready to aid Dr Perrine, and others who may take an interest in the subject, through the columns of our publications, or by any other means in our power.

To the Enitor of the New-York Farmer.
Model Farm of the Agricultural So. of La.,
Parish of St. James, about 60 miles above
New.Orleans, 13th April 1837, 8 o'clock,
P. M.

Dear Sir :-After ten days confinement to bed by a fresh attack of my ancient dis. ease of the liver, 1 have this moment risen to attempt a communication to you. After waiting at Campeche in vain the arrival of my successor in office, during eighteen months, sustained by the lingering hope that one of our naval vessels would call to receive and transport to Florida a cargo of at least the fibrous leaved plants of Yucatan, I became convinced that our government would not aid, either my arduous endeavors to promote the utility of:A merican Consulates in Mexico, or my still more persevering ex: ertions to acclimate tropical plants in the United States. Hence, on the 23th of January I embarked in the schr. Pocahontas, with the Archives of the Consulate; on the 8th ol February the schr. struck a nd stuck on a mud bank, off the S. W. Pass of the Mississipi ; and on the 11th I alone arrived at New-Orleans. During the ensuing month it rained more than half the time, day and night, and the streets were literally iniry with mud, yet so rapid was the evaporation in the intervals that two to three or four sunny days at fartherest sufficed to fill the air with dust.
My health was so bad on my departure from Campectie that the master of the vessel expressidd to the owner his apprehensions
that Twould not live to reach New.Orleans, und the bad weather of New-Orleans wa :ertainly not caiculated to improve my con lition ; yet such was the magical effect o jreathing once more the air of "freedom: only home," that within the month m! weight considerableincreased, and my ap pearance was so nitith bettered as to excite the remarks of my friends. During this period there were two meetings of the $\mathbf{A g}$. ricultual Society; at which I assisted, and exhibited specimens of the plants and products of Yucatan. The results were highly satisfactory to me. Two resolutions intro. duced by the worthy President, Ex.Governor Roman, were unanimously passed, one re. questing the publication of iny correspondence and the other my agency in obtaining plants at the expense of the Society. Seve. ral members of the Society were also mem. bers of the Legislature, and one of them Dr. Brashear, I believe, on the 11th February, introduced a resolution in my favor which was unanimously passed by both houses of the Legislature. This resolution with an explanatory preface, instructs the Senators and requests the Representatives of La. in Congress "to procure the passage of said Bill into a law under such conditions as may comport wih the public good." I cannot conceive what possible opposition can be made to the law, especially since Gen. Scott has officially declared that the granting of Florida lands to volunteers would be a fraud. Indeed I have never anticipated any rational objections to the Bill; but what I have suffer. od by so long, and what I still fear, is negl ect and delay. There is not probably another man in the United States who would accept the land as a gift, if he were obliged to occupy it, particulurly after the unfavorable mpressions of soil and climate created by the late Seminole war; but I still persist in my opinion that the tropical temperature of the Southern district of Florida will counterbalance the defects of its surface : and if ths facts and arguments I can offer, with a township of miry marshes and arid sands, will not suffice to attract associates and capital, to plant and populate it, wiy I shall continue on hereafter, as I have gone on ten year heretofore, unaided and alone, as I am determined to locate my fanily there for life.

14th-11 A. M. The exprtion of writing the foregoing, cost me a bad night and morning, yet it is so painful to be lying it bed, preyed upoa by pestering.thoughts, tha: I have got up again to continue this letter. It was, agreed that I should proceed to thi Farm, to ascertain the condition of the tropizal plants, which I had sent to the Agricultaal Society during the last four years; and o. the 10th March I left New.O:leans and ar.

List signed by the manager, C. Dumont, 'ast fall, the following names. Hiematory. on Campechanum 2 plants, Piscidia Erythina, 5 plants, Crescentia eujete, 1, C. pepino, 1, Melia sempervirens, several (plusieurs) Ficus indica, 4, Agaves 0, Bromelia analas, 2, B. karatta, 2. I went into the garden and fouud a frame shed about 12 feet broad, 15 feet long, and 7 feet high gn one side, and nite on the other. A single layer of thin cypress boards constitues the weath. er boarding and roofing. On the south side there áre three rows of small window glass extending the whole length, and on the west side a similar arrangement about half the breadth not exceeding the surface of a com: mon window. You may infer from this de: scription how little protection from cold could be afforded to plants during the ex. cessively cold days and nights which visit Louisiana every winter. Indeed, it has become here a general opinion that both the winter and summer of this State have been gradually getting colder during many years: Notwithstanding all these discouraging circumstances, I found that all the woody plants had continued to increase in height and diameter during two or three years. The Logwood, the Habi, (P. E. Campeche Teak) the 2 species of Calabash tree (C c and p.) had grown to a very encouraging degree, but imagine my regret when I found that the branches and trunks of each were now dead! Tnese had all been left in shallow boxes of earth, had outgrown the capacity for nourishing them, and this fact alone would account tor their perishing independently of other neglect, or of cold. It nevertheless appearis that the roots are still alive, and that if proper care be takea of them, their acelimation will be easured.
The Ficus indica planted on the border of the central path of the garden is also killed in the trunk, and has beeli cut off at the level of the ground. The rosts however appear to be vigorous, and will hercafter bear so great a proportion to the steans as tw sus. tain the heat and life of the latter. Plants like auman beings mast pay the price of accla. nation. Taey must suffer from sickness Jurugg their seasoning to maintain their health afterwards in their new residence. Many individuals, both of the vegetable and animal race, must even die during the process of ac. clamation in their adopted or adoptive coun. ry, but the species of both will be preserved. Rut the Meliasemperviseas has exceeded ay expectations, Althoagh the seeds hal ren planted very cioso in a shallow box at least 50 within 25 square incieles, so that aey sprang up as thick as wheat, the height of 18 to 30 incthes, and had been left in the pee air all winter entirely neglected, yet tine stems on my arrival, the 20 tin of March, were
already putting out leaves! I insisted in having them immediately transplanted to the border along the Eence of the garden; without my knowledge half their lengths were chopped off ; three weeks of dry weather succeeded, and yet they did not loose a single leaf! It has now been raining the greater part of the last four days and nights, and at this moment I went to the garden and ascer. tained that not a single plant has been damaged in any way. I doubt not that it will soon overrun all our South-western and Southern States like its brother the Pride of China, (M. Azedarach) under its Campeche name of Paraiso or Paradise tree. As this is the only one of the aforesaid tropical trees which has been here produced from the seed, does it not afford encouragement to believe that such of the others as can be propagated by seed might have sacceeded as well. I brought with me a considerable quantity of the seeds of the Meliasempervisens, and have distributed many in New.Orleans, and to planters up the river, and confidently anticipate its extensive propagation.

But how unfortunate it is for the first propagators of plants, that various very valuable species cannot be reproduced by seeds. He only who like myself, has been many years endeavoring to transport, transplant, and transacclimate living plants, can form an adequate conception of the difficulties and disappointments which lie in his way. Al. thoughthe Fecus indica appears to be disseminated by birds, yet I have not ascertained that man has been able to reproduce it from the minute seeds of its minute fruit. The Crescentia eugete, or Calabash tree has seeds enough in the pulp of the shell, so use. ful for domestic utensils, yet it is always pro. pagated in Yucatan, by shoots from its roots. Even admitting that when these trees get acclimated in a civilized country, the propagation by seed can be affected; very few persons would have patience enough, to wait so long as would be required in that way to re-produce their useful trees. It is hence, especially important, to select the best possible location for living plants, imported from tropical climates. Tiat the damage done to the Logwood, and the Campechy Teak,* and the wild Fig, and the Calabash trec, does not discourage me, results from the fact, that these living plants sent from Campeachy, have in the model farn a bad location, both as regards exposure and soil.
By the by, when I use the term Campea. chy 'l'eak, 1 don't mean to express that it is a species of the Tectona, but adopt the language of the sailors, who thereby convey the idea that it is an equivalent of the Teakwood, of the East Indies, and much superior in durability, even to our live oak. In Jamacia it is said to be called Jamacia dogwood, a still niore innappropriate name. have been planted here in the cypress swamps. Tr.e Habi, is a native of arid sandy and limestone soils, and should have been plant. ed in the Pine woods. Both being forest trees, should have the protection of forest: at least, during the process of their acelima. tion. The wild Fig appears to delight in the most sterile soils, and will flourish in the crevices of barren rocks. Indeed it will take root in the cracks of stone walls and fences, and its swelling roots, will at the same time, force apart and fasten portions of the stony mass in which they grow. In the suburbs of Campeche, the lots are surround. ed by walls which are made rather of mortar and stone, than of stone and mortar, but the latter is so excellent, that it becones as hard as the lime stones themselves, which are laid on it. It is hence of course easy to form piliars and columns resembling solid pieces of stone or marble. On one side of a gate way, there was a stout square pillar, on the top of which was a pyramidal head with a groove at the base. In this groove a young wild fig was growing, and its roots had removed the pyramidal summit at least a foot bsyond the centre of gravity of its base ! and there they held it fast and firm!! and thus it has remained several years!!! Sometimes I have seen it growing out of the top of a palm tree ! and at others I have seen the top of a palm tree apparently growing out of a wild fig tree!! The explanation is easy. The minature fruit, about the size of a raspberry, is voided by the birds on wall on other trees, and there adneres and grows, extracting mostly its nutriment from the air. When germinated on the top of a palm tree, it sends down aerial roots, which twine round the trunk of the palm as they gradually descend to the ground, so as to cover finally the whole trunk, and appear to convert it into a wild fig tree! When growing by itself after it has reached so great.a size that its branches are disproportionately large to itş roots, it sends down aerial roots from the lower sides of its heaviest branches in a direct line to the earth. This process being repeated, and these downward shoots being rooted, they both serve as props to support the tree against the unruly winds, and as pumps to suck up nourishment from the unwilling earth. In the course of ages it thas becomes a forest ; and such is the history of the celebrated Banyan tree of the East Iudies. But I am running away from my principal subject. and my sickness must plead my excuse for

[^39]my desultory style. At all events, you will perceive that the wet muddy soil of the banks of the Mississippi is not naturally adopted to the growth of the Fecus indica, and much less to its acclimation.
From what I have written you will per. ceive that I am decidedly of opinion that the pinewoods of Louisiana are decidely superior to its river banks for the acclimation of tropical plants. Indeed I may declare that as the intermediate domestication of tropi. cal plants is essential to promote the gradual acclimation of tropical plants in all thes. sand. S. W. States, so in these states, the in. termediate transplantation of tropical plants in their pinewoods, is highly important to promote their success in the other sections of the same states.
The very important fact should also be always kept in mind, that independently of the protection of the evergreen woods, nearly all valuable plants of the tropics, yet to be introduced, demand the most sterile soil. Mr. McCarty of New.Orleans, showed me a plant in his garden, which he had brought from the pinewoods, where it grows rapidly into a beautiful tree, but which remained in a scunted state, under his fostering care. He attributed its failure to the wetness and cold. ness of the soil :alone, but I would add to its excessive richness, because you know that all the alluvial banks of the Mississippi are loaded with regetable and animal remains The soil on the banks is of course exceedingly fertile for such marsh plants as delight in decomposing, or organized matter, and hence the Sugar Cane could not find a bet. ter soil, but even for this the subsoil is too much charged with water. You know of course that the dead are buried above the earth, on account of the fresh water below it which is spread all over a vast extent of the State like an onderground sea:: As the process of living vegetation is never sus. pended in' evergreens, its activity in every season, generates a notable degree of heat by means of which they elevate the tempe. rature of the freezing, winds, whose force they, at the same time, mechanically arrest and thus afford a double protection to the other plants which seek their shelter.
When I began, I did not expect to write three pages, and yet I find myself in the middle of the fourth page, without haying said a word on my most favorite topic- -f . brous leaved plants.

To be Continued.
Limestone, Ground but not burned for agricultural purposes. The following paper, on the use of Lim? Stone, ground instead of burned, for agricultural purposes, was read before the Jyceum of Natural History of New-York, by Wm. Partridge,

Esq. The facts therein set forth, are high; Iy important, and are worthy of being tested by those who have limestone on their farms. We ask for this subject, the attention of our readers; and of those who have heretofore tested, or may hereafter test, the theory by experiment, to furnish us a statement of the result for publication. We shall also be much obliged to Mr. Partridge for a continuation of his favors.

TO THE PRESIDENT OF THE LYCEUM OF SATURAL HISTORY.
Sir,-In a conversation I had with you on board a steamboat on the North river, sometime during the summer of 1835 , rela. tive to lime, as applied agriculturally, I mentioned the advantage of uaing it generally in a ground state, as plaister is now used, instead of burning it. You informed me, subsequently, that your farmer had applied some on your land in a state of powder, and found it decidedly beneficial. I then promised to send you my written opinion on the subject, and I now beg leave to fulfil that promise, with an apology for delaying it so many months.
It is well known, to every intelligent agriculturalist, that soils covering limestone rocks are the most productive of any on the globe. I know of but one exception, when thelime stove is too highly charged with magnesian earth. Our country affords many facts in proof of this assertion. I shall refer to two locations as all sufficient for my purpose. The state ot Kentucky has a bed of lime stone running underneath its whole surface, and its natural soil has been produced; and is still producing by the abrasion of those rocks. The superior productive powers of the soil of that State is well known to every intelligent farmer in our extensive country, and is spoken of in terms of admiration by Europeans. That part of Pennsylvania extending from the Lehigh Water Gap to Easton, is a limeatone country, and affords another instance of its highly productive powers.
\because In England, the soil deposited in valleys at the foot of limestone hills, are equally productive. The valley running from the city of Bristol, to the city of Worcester, is of this description, and there is no soil more productive in Great Britain. There are more than twenty spurs of hills bounding that valley, each containing large bodies of limestone rock, and the springs flowing from them, are so charged with limestone, as to incrust every thing lying in them. When the springs issue from the rocke high up the hills, they are much used for irrigating the higher lands, and the beneficial effects are visible to every observer.

Lime, in the state of Chalk, is also uscd very generally on land near to the Chalk Mountains in England.

The lower part of this State abounds in primitive limestone, and the preceding observations were made with a view to apply the facts to rectify a material error committed, as I conceive, by the farmers in using it on their land. They burn the limestone at considerable expense, and in that state use it for agricultural purposes. I would suggest, as a far better general application, that the limestone be merely ground, and in that state applied to the land. As this may be a new mode of application, I shall endeavor to show wherein it is preferable to the present.

I have been frequently informed by farmers who use burnt lime on their land, that they keep it some munths before using, and that then the good effects are not observable the first year. We have only to ascertain what these facts prove, and the whole mystery will be instantly solved. In burning limestone two materials essential to agricultural productiveness are driven off, its water and its carbouic gas. In its naturai state it is a carbonated hydrate, when burnt it is caustic lime (oxide of caleium,) made so by the heat driving off its water and carbonic gas. Why does the farmer delay putting, it on his land, but for the simple reason that it is too caustic for vegetation. Why does it require to lie in the soil one year before producing any visible fertilizing effect? it is for nothing more than to give it time to return again to a state of carbonat: ed hydrate, the same condition it was in before burning.

I have said that limestone merely ground is the best general mode of applying it to agricultural purposes, there are some exceptions to this rule. When a soil contains " hard roots, dry fibres, or other inert vegetable matter, a strong decomposing action will take place between burnt lime, and the vegetable matter, rendering that which was before comparatively inert, nutrative." Where this is the case, it would be well for :he farmer to use one third burnt lime, and two thirds of ground limestone, or any other proportion he may find most effica. cious. For stiff heavy soils use the limeatone coarsely powdered, for in this state, after being well ploughed and harrowed, so as to mix thoroughly with the soil, it would so lighten it as to enable the sun and air to penetrate to the roots of its vegetation, thereby rendering the future crops more productive. For lighter soils it cannot be ground too fine. Our primitive limestone rocks are peculiarly well calculated
for this purpose, as the pasticles are held : ogether by a lonse aggregation, and therefore easily reduced t, small pieces, or to a fine powder, at the option of the opera. tor.

The question was asked, by a writer in a late New-York Farmer, "if it be possible that ground limestone can answer the purpose of plaister of Paris." I should say that it can, and it may be, eventually, a better purpose. The fertilizing property of plaister depends mainly, if not altogether on its hydratic property, that is, on its power to attract moisture during the night, and imparting it gradually to the plants during the day. The carbonate of lime possesses the same property in a considerable degree. I have never heard of these two limestones being analized, for the purpose of developing their comparative pow ers of absorbing moisture from the atmosphere, and their facilities of giving out thei moisture at atmospheric temperatures. To have this accurately periormed, would be a desideratum with agriculturalists.

We know that soils formed by the abrasion of Jimestone rocks are of the most fruitful description, we see its productive powers when land is irrigated with water holding limestone in solution, and with equal effect in the state of Chalk. Science has developed the properties on which this productiveness depend, and if our farmers would suit their appliances scientifically, we should not now be receiving a supply of agricultural products from Europe.

William Partrioge.
short horned durhas bull "essex."
We saw on Saturday last, the fine Durham Bull Essex, raised by Gorbam Parsons, Esq., of Brighton, Massachusetts, but now the property of Col. Ralph Watson, of East Windsor, Connecticut.
The following is a description of him with his peligree.

The thorough bred Durham improved short horn Bull, by sire and Cam is from the most celebrated stock ever imported from England-was bred with great care by Gorham Parsons, Esq., of Brighton, Mass. He is a beautiful red roan, and red and white speckled, red neck, white face, upright ahort and small horns, red and white mat. tled legs, white throat, red hams, fine straight legs, fine bone, and altogether a very superior animal, was dropped in Byfield, on Fatheriand farm, May 10th, 1883, and weighed May 11th, 1837, in ardinary flesh, 1578 lbs. His form, muscle, bone, \&ec., are such as Farmers, Darymen and Butchers admire and consider essential to make a perfect and profitable animal.

pedigree.

Essex was got by Young Admiral from
old Violet, old Violet was from the imported cow Bountiful, that took the first premium of $\mathbf{7 5}$ dollars at the Catte Show in Brigh ton, in 1817, her sire Cornelius Coolage of Boston celebrated Bull Celebs, which he imported from England to improve the stock of cattle in the county of Essex, Young Admiral was got, by Admiral, a fine bull seut from England to Mass. by Admiral Coffin. to improve the breed of cattle in his native State, Young Admirals dam was the fine full blood DurhannCow Rose.

Ralph $\mathrm{W}_{\text {atson }}$
East Windsor, Conn. May 22d, 1837.
Potatoes.-In Prussia the Potate is cultivated with peculiar success;-as the stalk grows, the earth is heaped up, leaving only three leaves at the top; roots are thus greatly increased, and the produce is said to be astonishing.

From the Maine Farmer.
valuable improvement.
pitts' grain separator and cleanger.
Every thing which shall facilitate the labor of the Farmer and enable him to do more at a less expense, we look upon as a valuable improvement, and never refrain from giving as early notice of it 10° our readers as possible, that they may put themselves in a way to profit by it, or at any rate, not remain in ignorance of it.
Ia accordance with this practice we would ask tho attention of our readers to the communication below, respecting a machine, invented by the Messrs. Pitts', of Winthrop, for threshing, separating the grain fiom the, straw and foul stuff, and winnowing it in a mo.t clean and perfeet manner.

The Inventors are favcrably known to the public by several inuportant improvements which they have made in machinery of different kinds. It will be reeollected that a premium has been a warded them by the Kennebec Agricullural Societv for their inachine for threshing and cleansing grain. since then they have been busily engaged in improving and perfecting their invention, until at length they have produced one which we think is all that can be asked for. The machine is made up of the thresher, which is of the usual form, $-a$ belt so constructed as to separato the grain from the straw, and to pass the straw forward and throw it off of the machine, -a winnower or fanner, with its sieves of different degrec3 of fineness to separate foul seeds from the wheat,-a reservoir for the cleaned grain, and another for the light stuff or tailings. An apparatus is attached if desired, for returning the last the winnower again for a second cleansing. The fan is so constructed that the wind may be regulated so as to give any quantity, from a zephyr to a tornado. The maehine is simple in its conssruction, and oc cupies a space about eight feet long, three and a half high and two wide, and the expense is probably from sixty to seventy-five dollars according to the style and finish.This includes the threshing machino.
Heving seen the m=-sine in operation,
and examined every part of it; and having rritically watched every movement with a view to detect any faults which might render it unavailable, we are constrained to say that we could find nothing which could lead us to doubt its utility, and we therefore embrace the opportunity to advise our friends of the facts, in order that they may be aware of the existence of so important an auxiliary in the wheat business and govern themsclves accordingly.
This machine will be exceedingly well adapted to the practice of the Southern and Western States where they are in the habit of threshing grain in the open air, and as it can be done wihout the loss of a kernel.
important improvement in thireshing and clennsina grain.
An improvement in the mode of threshing and cleansing Grain has been effected by Messsrs. J. A. \& H. A. Pitts, of Winthrop, Maine, which we think exceeeds any thing that we have heretofore seen or heard of.The improvement consists in adding apparatus of a simple kind to the common threshing machine whereby the straw is separated from the grain and the grain winnowed from the chaff and foul seeds in a complete and expeditious manner, all by one operation of the machine. We had the pleasure of witnessing the operation of this machine on the 8 th. It was propelled by one horse.
The Grain was threshed perfectly clean, and winnowed or cleaned far better than we have ever seen it by any coummon hand winnowing machine. No grain was found passing over with the straw, or scattered out from any part where it should not. We congratulate the Agricultural commmanity in having the prospect of so efficient an aid to the wheat or grain culture, and cheerfully recommend it to the attention of the farmers of the United States à a valuable improvement.
Peleg Benson, Jr. \mid Benjamin'Stevens, Sam'l Benjamin,
Peleg Barker, Daniel Carr, David Stanlef, G. A. Benson, M. B. Sears, A. S. Richmond, Wm. Henry Lord, Sam'L. Wood, Jr. Jos. A. Melcalf.
The following rernarks we copy from the Augusta Banner. It seems that we are not alone in the opinions which we hare expressed in regard to the Messrs. Pits' Separator.
Thesinga, Separating and Winnow. ing Machine.-I was very much gratified while at Winthrop, in beholding the ope. ration of a Machine bearing the above tille. It is the invention of the Messrs. Pitrs' of Winthrop, who are the Patentees. These gentlemen are well known as the invenlors of several instruments, one of which is the Stone Cutter, which bids fair to be of much advantage in hewing stone. The Threshing, Separating and Winnowing Machine will probably be of as much real utility as any of their inventions. As yet, it has not been introduced finally to the public, but must clain the approbation ó popular opinion. It performs with the utmost ease what by many has been considered an impossibfity, completing effectual. ly the different operations of threshing out
the grain, seperating it from the straw, and winnowing it from the chaff. As such it is at once perceived, that it will not only be highly useful, but must be exceedingly valuable to farmers., Its intrinsic excellencies are its perfect simplicity, its great power, the great quantity of labor it performs in a limited period of time, and tho velocity and thoooughness with which it prepares the grain for the operation of the mill. It combines every desirable principle for the purposes for which it is designed and commends itself at once to the notice of grain growers. It can be moved either by horse power, water power or stenin power. Further particulars will readily be furnished on application to Capt: John A. Pitts, Winthrop, Maine.
D. J. M.

The Crops in Indiana. -The follow. ing extract is from the Madison (Indiana) Courier \& Enquirer of 6th May, a well conducted journal, of which we have No. 6. We welcome it to our table, and wish its publishers all success.
Since our last went to press, we have conversed with several farmers, who inform us thet the wheat crops, although at present suffering for want of rain, look better than ihey did this time last year, and that unless injured in its growth by a continuance of the present unfavorable weather, promise a fair yield. The present prospect for oats is rather unfavorable. A1though the ground gencrally has for some time been prepared, but few farmers have ventured to plant corn, and those few, it is conjectured, will be compelled to re-plant, the seed having rotted in the ground. It is high time this invaluable grain was in the ground, and we sincerely hope that wo may soon have sufficient rain to prepare the earth to receive it.
Vegetables of every kind are exceedingly backward, owing to the same cause. This however, is nu news to our marketgoing friends.
There is at present every prospect of an abundance of fruit of every kind. The dry weather has been rather favorable to them than otherwise. A few of the peaches have been destroyed, but more than a sufficient quantity still remain.
We had acarcely finished writing the above paragraph late last evening. When we were blessed with a refreshing shower.

> From the Farmer and Gardener.

CULTURE OF RUTA BAGA:
Mr. James M. Lawton, in a communication in the Cultivator, gives the following tules for the preparation of the soil, and the culture of the Ruta Baga. The conclusions at which he arrives are the result of many years experience and close observation.

1. The land, he says properly adapted to the nature of the plant, is a strong losm.
2. The land should be ploughed early in the spring, in order that the sward, if it have one, inay rot by the 10 th of June.
3. The land should be made perfectly mellow and amooth, and a good coat of
thanire, that is fine, say sheep or barn manure should be put on.
4. Throw the land into ridges 24 inches apart, with a small horse plough.
5. Roll down the ridges by a light roller, or other instrument ; make a light furrow, say an inch deep, drill in the seed on or about the 15 th of June : the seed should be 10 inches apart in the drill, and when the plants come up, all but one plant should be pulled up.
6. Dress the plants three times in a season, that is, keep the weeds out, and the oarth stirred about the plants ; as they are first breaking the ground they must bo powdered with plaster of Paris,-and twice af terwards also-when they receive the two last hoeings.

Mr. Lawton further adds, that he has found the above rules, when closely followed, never to fail in producing a good crop; that last year he raised from 90 rods, that is fro n hilf an acre and 10 perches of land, 605 bushels of sound, close grained Ruta baga turnips, on land a distance from the house and barn, on which, never to his knowledge, a spoonful of manure had been placed until within a few days of the time he put the seed in the ground. This product was equal to $1075 \frac{5}{5}$ bushels per acre The success of Mr. Lawton should surely serve to stimulate every farmer and planter to at least appropriate an acre or two to the culture of this excellent and hardy root. Unlike the other members of the turnip family, it preserve through the hardest winter in the field, if the precaution be faken to throw a furrow up against the rows just as the hard frosts set in, and may be drawn thence for use, as occasion may suit. They are also more firm in meat, and more nutritious than any other turnip. Horses and cows fed upon them do not scour as when kept on the other varicties.

List of subscribers to the Railmoad Journal. that have paid, (continued.)
J. M. Price, City, N. Y. Jan. 1, 1838
A. Brocklebank, City, Jan. 1, 1838
J. E. Thompson, Augusta, Geo. To

Oct. 1, 1838, Inslead Jan. 1, 1838
Geo. Gillingham, Baltimore, Md. Jan. 1, 1837
W. R. Cunningham, Greensboro, Geo. June 1, 1837
J. Myers, Attleboro, Mass. June 1, 1838 Capt. W. Turnbull, Washington, D. C. Jan. 1, 1838
T.W.Smith, Georgetown, D.C.Jan. 1,1838

Benj. Hallowell; Georgetown, D. C. Jan. 1838
Holt Wilson, Portsmouth, Va. Jar. 1, 1838 Ogden Mallory, Sandusky City, Ohio, Jan. 1, 1838
Giles C. Smith, Paolia, Inda. Jan. 1, 1838 J. Fraser,

Jan. 1, $18: 38$
Canàl and Railroad Co. Charleston, S. C., Jan. 1, 1838

Wm. Henry, Stroudsburg, Pa. Jan. 1, 1838
Wm. Williams, Athens, Geo. Jan. 1, 1838 M. P. Menny, Philadelphia, Pa. Feb. 1, 1836.

Wm. Jerome, Kane P. O. Ill. May 1, 1838 Lt. A. G. Blanchard, Fort Jessup, La. July 1, 1839

Nolice to Mechanics, Arlisans, Manufacturers, \&c.-The undersigned give notice that the first Annual FAIR of the Mas. sachusetts Charitable Mechanics' Association will be held in the city of Boston, in September next, commencing on Monday, the 18th, and continuing at least three days.
The Association have placed at the disposal of the Board of Managers. the sum of Five Thousand Dollars, to enable them to conduct the Fair upon a liberal scale; and they hope to be able to render satisfaction to all who may feel disposed to offer articles for exhibition.
Medals or Diplomas will be awarded to the owners of all articles that may be deem. ed worthy of such distinction; and the Managers intend that the strictest impartiality ard fairness shall be observed in the distribution of Premiums.
The Mardagers, in furtherance of the enbject they have in view, invite contributions. of articles from every department of industry ; of choice specimens of American in. genuity and skill; rare and valuable domestic productions, natural or artificial ; the delicate and beautiful handiwork of females ; useful labor-saving machines, implements of husbandry, and new models of machinery, in all their varieties.
Judges will be appointed to examine all articles offered, and the managers will award a gold or silver medal, or a diploma, to all articles that may be pronounced by the iudges worthy of reward.
Articles intended for exhibition, must be delivered on or before Wednesday, Septem. ber 13 th.
Arrangements will be made to exhibit, in operation, any working models that may be offered, which will render the exhibition useful and interesting, and the managers respectfully invite contributions in this branch. A careful and competent superintendent will be appointed to take chare of all mo. dels sent fur this purpose.

Board of Managers.
Stephen Fairbanks, John Rayner,
William Adams, Uricl Crocker, Gardner Greenleaf, James L. Homer, James Barry, Joseph Tilden, Ephraim Harrington, Joseph Lewis, Walter Frost, Thomas J. Shelton,

Jos. T. Buckingham, James Clark, Henry W. Dutton, George Darracott, Wm. S. Pendleton, Charles A. Wells, Henry Bailey, Jonas Chickering, Henry H. Barton, Thomas Boyd, Wm. Uunderwood, George G. Smith, John G. Rogers.
P. S. For any further information address JAMES L. HOMER, Corresponding Secretary, Boston.

Boston, March 24, 1837.
m28-ts1
DRAWING INSTRTMENTS.-E \& G. W. Blunt, 154 Water-street, NewYork, have received, and offer for sale, Drawing Instruments of superior quality, English, French, and German Manufacture.
They have also on hand Levels of supe rior quality at low prices.
of Orders received at this office for the labove Instruments.

AVERY'S ROTARY STEAM EN. GINES.-AGENCY.-The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving SawMills, Grain-Mills, and other Manüfacs tories of any kind.
Engines only will be furnished, or accom. panied with Boilers and the necessary Jka. chinery for putting them in operation, and an Engineer always sent to put them up.
Information will be given at all tines to those who desire it, either by letter or by exhibiting the engines in operation in thiscity. Inquiries by letter should be very explicit and the answers shall be e fually so.
D. K.MINOR,

30 Wall-st., New York.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotire Engines, with Engravings, by the Chevalier De Pambour- 150 pages large octavodone up in paper covers so as to be sent by mail-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts . for any distance exceeding 100 ms .

Also-Van de Graaff on Railroad Curces, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a vie of the works of the Thames Tunnel-Price fifly cents. Postage as above, 8 cents, or 12 cts.
*** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States:
TRANSACTIONS OF THE INSTITUTION OF CIVIL engineers of great britain.
The first voiume of this valuable work, has just made its appearance in this country. A few copies, say tuenty-five or thirly only, ha ve teen seni out, and those have nearly or quite all been disposed of at ten dollare each-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order therefore, to place it within their reach, and at a convenient price, we shall reprint the entire work, with all its engravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be seut to any part of the United States by mail, as issued, or put up in a volume at the close.

The price will be to subseribors three dol. lars, or five dollars for two copies-alueays in adrance. The first number will be ready for delivery carly in April-Subscriptions are solicited.

NOTICE TO CARPENTERS.

A number of Carpenters are wanted to lay the superstructure of the Georgia Railroed, to whom liberal wages will be given.
The ruad traverses an elevated ridge which is on. tircly free from any local canse of sickness:

JOHN EDGAR THOMSON, Ch. Eng.
$22-32^{\circ}$.
Engineere Office, May 22, 1837.
Augusta, Geo.
TO CONTRACTORS.
PROPOSALS will be received, until Tuceday evening, the 27 Ih Jnne next, at the office of the Wrightsville, York ard Geliss burgh Railroed, in York, for laying a single track of kuils on 12 miles of the above ryad, extencing from W, Sigh wille to York 3 Plans and specifictivns of the work will be extibited in the office attor Monday, the 8 in iopit, and further informaion will be furnislled by Br . 1

May 8, 1837.

TO CONTRACTORS.
JAMES RIVER AND KANAWHACANAL. THERE is ati! a large amount of mechanical work to let on the line of this James Rivar and Kanawha Improvement, consiating of twenty lucks, about one hundred cealverts nnj several large aqueducts, which will be aifored to re spunsible eontracturs at fair pricen
The locks aad aqueducts are to be built of cut stone.
The work contracted for mnst be finished by ilse Ist dny of July, 1833
Persons desiro ts of oblaining work are requested toapply at the office of the undersigned. in the caty of Richmond, befure the fiffeenth of May, or between the fifth and the fifteenth of July.

CHARLES ELLET, Jr.
Chief Engineer Jas. Riv. \& Ka. Co
P. S-The valiey of James Niver above Rich mond is healihy.

16-10t
PATENT RAILROAD, SHIP AND BOAT SPIKES.
** The Troy Iron and Nail Factory keepa constantly for sale a very extensive nssurtmention Wrought Spikes and Nails, frum 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five ycars successful operation, and now aimost univeraal use in the United Statew, (as well as England, where the gubscriner obthined a patent, are found auperior to any ever offered in market.

Rsilruad Cumpanies may bo' supplied with Spikes having conntersink heada suitable w the huleg in iron rails to any amount and on short notice. Almost all the Railroadx now in progress in the United States are fastened with Spikes made at the abuve named fac tory-fur which purpuse they are fuund invaluable as their adtesiun is more than duuble any commut spikes made by the hammer.
will be pupctually attended to Agent, Troy, N. Y. will be pupctually sttended to.

HENRY BURDEN, Agent.
Troy, N. Y., Jely, 1831..
** Spikes, are kpt for male, at factory prices, hy I \& J. Townsend, Albany, and the principal Irun Mer chants in Albany and Irny; J.1. Brower, 2:LL Water streat, New-York; A. M. Junes, Philadelphta; T Janviers, Baltimore: Degrand \& Emith, Buston
P. S.-Railroad Companies would do well to for ward their orders as early as practicable, as the sub veriber is desiruus of exteuding the manufacturing so as to keop pace with the daily increasing demand io his Spikes. (IJ23am) H. BUIUNEN.

TO RAILROAD CON'TRAC'IORS.

SEALED proposals will be received at the office of the Selma and Tennesseo River Kailroad Company, in the town of Selma, Alabana, for the graduation of the first forty miles of the Selma and Tennessee Railroud Proposals fur the first six milea from Selma, will be received after the firat of milea from Selma, will be received after the firat of
May, and acted on by the Board on the I5ils May. Mry, and acted on by the Board on the for the ensuing 34 miles, will be received after the loth May, nut will not be eamined until the let of August nex; when the work will be ready for contract.
The line, afer the first few miles, pursuing the fiat drith Mulberry Creek, occupiea n region of country, having the repute of being highly healthful. It is free frum punds and awampa, and is well wntered The soil is generally in culivation, and is dry, light and sandy, and uncommonly easy of excavaiion.The entire length of the line of the Sel a and 'renThe entire length of the hne of the Sel a and rennessee Ruilroads, will be about 170 miles, passing gen-
eraliy through is region as favirable for health as any in the Southern Couniry
Owing to the great interest at stake in the success of thia enterprive, and the nmount of capital already embarked in it, this work must. necessarily pruceed with vigor, and I invite the attention of men of indus ify and enterprise, both ai the North and elsewhere to this ondertaking, as offering in the prospect of continned empluymens, and the character of the suit eand climated a wide and desizable field to the conand cbar.

Pruposals may be addressed either to the subseriber, or to General. Gilbert Shearer, President of the Company
ANDREW ALFRED UEXTER, Chief Engineer.
Selma, Ala., March 20rh, 1837 . A 15 kf
ROACH \& WARNER,
Menufacturers of UPTICAL, MAIIEMATICAI. ANJ PHILUSOPIICAL INSTRUMENI'S; 293 Broatway, Now Yoik, wilt keep constantly on han:l a large and general assortment of Instruments in thei linte.
Wholesale Dealers and Country Merchants supplied with SURVEYING COMPASSES, BARUMI. TERS, THERMOMETERS, \&c. \&c. of their ow manufacture, wiuranted accurate, and as luwer price: theig can ho had at eny other usiablshment.
Inotraments made to order anil repeired.

THE undersigned, General Agent of Col. S. H: LONG, to huild Bridges, or vend the right to others to build, on his Patent Plati, would respectfully infurm Railroad and Bridge Curpuratiuns, thar he is preparest to. make cuntracts to build, and furnish all materials for supersitructures of the kind, in any part of the (inited Siates, (Maryland excepted.)
Bradges on the above planare to be seen at the followivg localities, viz. On the main road leading, from Balimore to Waxhington, two miles from the firmer place. Across the Mctawamieag river on the Military mad, in Maine. On the national road in Illinvis, at suudry pointa. Ontbe Ba!cinnore and Susquehanna Rrailrond at three points. On the Mudsun and Patermon Railroed, in two places. On the Buetun and Wurcester Kailroad, at several points. Ont the Bustun and Providence Rallroad, at snndry pointe. Acroes tun and Providence Railroad, at snndry pointe. Acroes
the Contoocook river at Henniker, \mathbf{N} H. Across tha Seuhegan river, at Milford, N. H. Arross the Connecticut river, at Haverlill, N: II. Acrose the Conwocook river, at Mameock, N. II. Acrose the Andruscoggin river, at Turner Centre, Maine. Acrosy the Kennebec river, at Waierville, Maine. Across the Genesse river, at Squakiehill, Muunt Morris, New-York. Acrose the Whise River, at Hartford Vt. Across the Connerlicut Rlver, at Lebanon, N. Hi. Acruss the mouth of the Broken Strniw Creek, Penn. Across the mouth of the Cataraugus Creek, N. Y. A Railroad Bridge diagonally aciose the Erie, Canal, in the City of Hoeliester, N. Y. A Ralroad Bruge at Upper Sill Water, Oruno, Maine. This Bridge is 500 leet in lt-ngtis one of the opans is over 200 feet. It is prubably the flamest woourn bridue ever built in America.
Notwithstanding his present engagements 10 build between twenty and thirty Railruad Bridges, and sevaral common bridges, neveral of which are nuw in prugress of consiruction, the subscriber will promptly altend to business of the kiad to much greater extent and on librral terms.
Ruheate r, Jan. i3th, 1837.
ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.
WILLIAM V. MANY manufnctures to order. iron castinas fur Gearing Mills and Factories of every deseription
ALSU-Steam Enginea and Railroad Castings o overy description.
The collection of Patterns for Mertunory, is not equalletl in the United States. \quad-iy

NEW ARRANGEMENT.

ropis for inclined planer of railmoads.
WE the subscribers having formed a co-partnership under the atyle and firm of Fulger \& Coleman, for the manafacturing and selling of Lupes fur inclined planes of railruads, and for uther usis, offer wsupply ropes fur inclined planes, of any lengih required withoot splice, at short notic o, the malafacluring wf cordnge, heretofure carried on by S. I Durfec \& Co., will be dune by the new firm, the same superintendent and machinery are employed by the new firm that were empluyed by S. S. Durfee \& Co. All urders' will be promptly atiended to, and roper will be shipped to any port in the United Silates 12th manth, 12.b, 1836. II adson, Columbia Cuunty State of New-York.

33-1f.
ROBT. C. FOLGER.

AMES' CELEBRATED SHOVELS, SPADES, \&C.
300 dozons A mes' superior back-strap Shovels
150
do do do plain do
150
do do do do caststeel Shovelse Spsde
150
100
50
do do do
50
do do plat-mining Shovels Spades 50 do do sucket Shovels and Spades. Bars ereel puint Pirk Axes, Charn Drills, and Crow bare steel point sd, nanniactired frum Saliahury reWITHERELL, AMES \& CO.

Nn. 2 Liberty streel, New.York EACKUS, AMES \& CO

No. 8 State atreet, Albeny
N. B -Also furnished to order, Shapes of every de. ription, made from Salahury refined Irun v4-If

STEPHENSON:

Builder of a superior sigle of Passenger Cars for Railroads.

No. 26-4 Elizabeth street, near Bleecker street,

New. York.
RAILROAD COMPANIES would do well to exa mino these Cars; a speciman of which may he seen on that part of the Nuw.York and Herluen Reilroad

TO RAIJROAD CONTRACTORS, PROPUSALS will be recelted, at the office of the Iliwasse Kalruad Com., in the wwn of ATHENs, Tr.Nessize, until sunset, of Monday, June 12h, 1837 ; for the grading, masonry and bridges, on that purtion of the Hiwasare Railroad, which liea bea tweell the River Tennessee and Hiwassee: 1 distance of 40 miles.
The quanity of excavation will be about one mil. ion of cubie yapds.
Thy line will be staked out; and, together with drainings and speciticatiuns of the wulk, will be ready for the inspection of contractors, on and aftef the Ist day of June.

JOIN C. TRAUTWINE,
Engin.eer in Chlef Hiwasmee Railroad.
RAILWAYIRON, LOCOMOTIVES,\&C. - THE subicribers offor the following articles for sale.
mitway, Iron, flat bare, with countersink holes and mitred joints,
350 tone $2 才$ by $t, 15 \mathrm{f}$ in length, weighing $4 \frac{108}{68}$ per f

with Spikes and Splicing Plater adapted thereto. To be sold fien of duty to state governmente or incorpurated compenies.
Orders for Pennsylvania Boiler Iron execoted.
Rail Roud Car and Locomotive Engine Tires, wrought and turned or unturned, rredy to be fitted on the wheels, viz. 30, 33, 36, 42,44,54, and 60 isches oiameter.
E. V. Patent Chein Cable Bolts for Railway Car aslew, in lengthe of 12 f.et 6 inclies, to 13 feet 81,24 3, 3t, 3t, 3t, and $3 t$ inches diumeter.
Chains for Inclumed Planer,' shute and stay linke. minnatactured frumetio E. V. Cable Bolts, and proived at the grvalest strais.

India Rubbor Rope for Inclined Planes, madéfrom Ncw Lealand flax.
Also Patent Hemp Cordage for Inclined Planea, and Canal I'uwing Ianes.
Patent Felt fir placing between the iron chair and mon bluck of Edge Ra:lways.
Every descrupuon of Railway Iron, as w-ll an Lo comotive Engines, impurted at the shortest notice, by the agency of one of our partneri, who revides in Fingland tor this purpowe.

A lighly respectable Amcrican Enginecr, residea in Elugland for the purpuse uf inspecting all Loromutives; Machintery, kailway Iron \&c. ordered through us
A. \& \&. RALSTON \& CO.,

ARCHIMEDES WORKS.
 (100 North Moor atreet, N. Y.)
 Nkw-Yors, February $12 \mathrm{ih}, 1836$.

THE underaigned begs leave to inform the propric. tors of Kailroads that they are prepared to furnish all hinds of Mochinery fot Ruilruads, Lucomotive Engines ut any size, Car Wheels, such as are now in surceasal operation on the Camden and Amboy Railrond, tuonn it which have fuiled-Cnatings of all kinds, Whoele, A rles, and Buses, farnishod at shurrest notice

4-vil
H! R. UUNHAMICU.

MACHINE WORKS OF ROGERS,

 KETCHUM AND GROSVENUR. Paterión, New. Jersey. The underaigned recrive orderw fur the folluning articles, manulactured by thrm, of the must smpertur description is every partioulai. II héin works by ing oxtensive, and the number of hunde eniployed buing large, they are enahled to executo both large and small orders with promptness and deypaich
RAILROAD WOKK

Lonomotive Steam-Eingines and Penders; Driving and ullier Locurnutive Whecis, Axles, Sprimirand Flange Tires ; Car, Wheels of east irol, from a variety of patierne, and Chilly; Car Wheels of castiroh. with wrought Tires; Axlea of beit American refined iron, Spring* ; Boxex and Bolts fur Cats.

COTTON WOOL A.VD FLAX MACHINERY,

Of all descriptions and of the nomat impiter. d PabMrs, Stylo and Workmanslip.
Mal Geering and Millwright work generally; HyUraulic and vther Presses; Press Screws; Callendors ; Láhes and Tools of all tinds, Ironis Brase Castings of all descriptions

CONTENTS.

Hudson and Berkshire Railroad; Commuitication, 385 New-Yorkand Efie Railroad; Reports on the Tunnel of
the Leeds and Selby Railway ; etc.; Adhesion of Railroad Spikes,
Davenport's Electro-Magnetic Machint ; Baddeley's Hose Reel for Fire Engides;

388
Items, $\quad 390$
Transactions of the Institution of Civil Eìngineers.
392
Pile Driving and Sawing Machine,
393
Now-York Statistical Society; Valuable Invention; Animal Electricity,

394
Compliment to American Genius ; Facts for consideration, $\mathbf{5 9 5}$ Agriculture, etc.,

395
Advertisements,
399

AMERICAN RAIKKOAD JOURNAK.

NEW-YORK, JUNE 24, 1837.
Hudson and Berkshire Railroad.-Al an election for Directors of the Hudson and Berkshire Railroad, held on the 5th inst., the following gentlemen were elected, viz:

James Mellen,	William A. Dean,
Elihu Gifford,	Robert A. Barnard,
Rufus Reed,	Oliver Wiswall,
Govertieur Kemble;	Eilas Sprague,
Saminel Anable;	Anbrose L. Jordan,
Rebert McKinstry;	Seneca Butlo,

John Power.
We are gratified to leafn, as we do, from the following extract from a letter that this road is ready for the ralls.
: Our toad is ell graded, except $1 \frac{1}{\frac{1}{2}}$ miles, and that portion far advanced. The road would have been in opetation this season; had not these fearful times prevented."
0. It was by no means intended as "partiality," that the report in relation to this road was not published, if it was received, of which we have to recollection.

We give the following communication of "A Merchant," in reJation to the important proposition of the New-York and Erie Railroad Company, to the Common Council-and cordially approve of his suggestion for the call of a meeting of citizens for sonve ovening of this wiok, for the purpose of laying the subject
before them, and of eliciting an expression of opinion from those who are to be most effected by it. Tuat such an expression of opinion would be highly faverrable we cannot doubt; did of course satisfactory to the people's ropiesenlatites, the Common Council.

We do not entertain a doubt, as to the result of the prondsitidn; as, to doubt its steceess, would be to do abt the intelligence, and enlightened forcast ef the gentlentien who compose that body.

> To llie Editoss of ste Railtoad Journal.

Genticenen.- - perceive by the Times of this mornitig that a sery important proposition was made to the Common Council on Alonday evening last, by the JVew-York and Erie Railioad Company.

It will be seen, by referring to the memorial of the President and Secretary; in behalfof the Railroad Company, that they ask the Corporation of New. York, to aid the Company, either by subecrpition to its stock, or by loan; and offer in returti to erriploy at least 3000 laborers from this city, if the Corporatior, will place them along the line of the road by the first of Autist. This is a measure of great importance to this city, in more than one point of view:-

It will in the first place relieve the city from an enormous bur: then, by employing many who are now, or must sodn be, support. ed by the city:

It vill enablẽ hundreds of industrious, and honest men; to earn a living, instead of being degraded, in their oun estimation by the necessity of asking charity.

It will contribuie largely to the prevention of vice and crime, by removing from the city hundreds of families whio must either ber, steal or starie-ind it is therefore a measure, the adoption of which is urged alike by hiomitanity and self-interest. In addition to these important reasons it will contribute largely to the progress of a work in which this ci'y has a deep and lasting in. terest. It will, beyond all question. ensure and hasten the eirly completion of the New Yodi and Erie Railroad, a work, second only-if even second-in intportance to thie city, to the Eriz Canal.

With these views, gentlemen, of the importance of the propo. sition. as a matter of policy and pecuniary interest to the city, I cannot refrain from requesting you to urge the subject upon the Common Coinncil, and also upon the citizens ut larger as one on which there should be no diversity of opinion.

Would it not be well to call a public meeting of the citizens at large, for Saturday evening, that the subject may be publicly discussed, and properly understodd, in time tor the next meeting of the Common Council ?

Tridy yours
A Mblezing.

New-Your and Erie Railroad.-We desire to call the attention of our readers, especially in this cily, to the following memo. r:al of the New. York and Erie Railroad Company, which we copy from the N. Y. American, together with the remarks of the Editor of that paper. The proposed measure, will, if adopted, contribute largely to the consumation of two important objects, viz : the progress of this important work, and the relief of the city from a heavy expense, for the support of hundreds of men, who are, or will be, without labor, and of course without the means of support ; it therefore becames the duty of every friend of humanity, and of internal improvement, to give to the measure a cordial efficient support.

NEW-TDRE AND ERIE RAILROAD.

The following memorial, presented to the Common Council last Evening, soems to us amazingly well calculated to effect two good objects: that of finding eniployinent for several thousand laborers, who, or many of whorn, may otherwise become a charge to this city; and ihat of aiding a great national un. dertaking, in the success of which this city again has a very deep interest, and which, without some such plan, must languish at least for the present.

As a matter merely of economical calculation, we take it, that our tax-payers would gain by such an arrangement as is proposed, viz.; that the Corporation shall adrance its credit to the New.York and Erie Railroad Company, on condition of their giving employment to 3,000 men; the wages thus paid, while providing a fund that would supercede all necessity of, or claim for, eleemosynary relief from this city on the part of such large numbers, would, in effect, be like seed sown in the ground, and re-produce threefold benefits, 10 the city, to the counties through which the road runs, and to the laborers themselves.

Nor would any adrance of city funds be required, for the credit of the Corporation would call them forth readily from capitalists.

Aliogether, the proposition strikes us as one to which the Common Council will do wisely in acceeding.
To the Mayor, Aldermen, and Commonaliy, of the, Cily of Nees-Iork.
The New. York and Erie Railroad Company respecifully reresent:

That they have coinpleted the surveys of ecctions of their road between this city and Lake Erie, exceeding in the aggre. gate 250 miles in leng:h, all which are now ready for actual construction.

Your memorialists had designed to prosecute the work vigo rously during the present season, and could have doue so with much advantage, liabor being cheap, and provisions abuidant; they regre:, however, to state that the merchants of this city, whose subscriptions had principally supported the enterprise, have suffered so severely in the present prostration of credit and comnerce, that your nemorialists will be unable, unless they shall secure public aid, to con'anue their operations daring the present year.

It is beliered that the city of New. York ought in its incerporate capacity, to exert any legitimate authority it may pos. sess to expedite the progress of this work of improvement, destined as it is to promote so materially the prosperity of all c'ass. es of its inhabitants. Thequestion, huwever how far th epublic authorities shall follow the example already set by other cities of the Union, in subscribing to the stock of works of improvement designed to protect and extend their commerce, your memorialista do not propose at this time to agitate; and they now present the subject to the consideration of the Conmon Council, principally because an opportunity at this time presents atself by which the city can effectually aid the enterprise, and at the same time accomplish other otjects with which the municipal interests are more dinectly and peculinrly concerned.
The large numbers of our laboring population thrown out of employment by the commercial dianters which have overtaken the city, are cons: antly increasing by the influx of destitute emigrants; and it is obvious, that their support through the approaching winter; unless prompt measures cun be adopted to re-
move them from ithe cli:y, mist impose a heavy burthen upon the tax paying poriion of our citizens.

Upon the Now. York and Erie Railroad leading through the most healihiul and desirable porions of the State, this class of our inhatitants inight be immedia!ely employed ; and it is con. filently believed that the city could hardly fail 10 gain, in a pecuniary point of riew, by assisting in their removal, and in furnishing such pecuniary aid to your me:norialists as should enable them at once to afford to these laborers sufficient and steady employment.
Your memorialists, therefore, for the purpose of presenting a proposition in a definite form for the consideration of the Common Council, hereby offer, that if the ci!y authoritien, by the 1st of August next, will furnish, at convenient points on the railroad to be agreed on, any number not exceeding 3,000 able bollied laborers, the Company will afford to them immediate employment; and at fair ratcs of wages, subject only to such regulations as may be neceseary to eccure their faithful services; provided, that the city shall authurize either a temporary loan to the Company, or a subscription to its capital stock, for an amount sufficient to cover the expenditure necessary to carry this proposition into (ff ct.

James G. King, President
New.York and Erie Ruilroad Conpany.
'I. J. Waters, Secrelary
New. York and Erie Railroad Company.

New Yolk, June 19, 1837.

Whimixgton and Susqueifanna Rallroad.-We are happy to learn from the enterprising builder of the Principio Bridge, Jo .us Jones, Esq., that it will be finished by the end of next week. This is the only obstacle of importance in the completion of the road, and we have no hesitation in saying that it ${ }_{3}$ will be ready for use by the 4th of July, between ti,is ct's and Baltimore.- [Del. Guzetic.]

From the London Nechanics Magazine-

. Salubrity of raileay tunnels. reforts on the tennfl on TIIC LEEDS AND SELSY RAILWAY.
beport of dr. dify, and dr. rothman:
Afier careful inquiry, and an cxmaination of this Tunnel, we fire of opinion that it has no imjuriou, influence on the health of the passengers. We have come to this conclusion from find. ing :-1at. That the air in the Tunnel at the tirre of passing is not appreciably yitiated. Chernically examined, its composition appears to be the same as that of the atmosphere, even affer repeated transits of the locorso:
$2 n d$. That the temperatu:e of the air in the Tunnel, though more uniform than that of the external air, does "not vary so inuch from it as might have been expected In the warmest weather in which observations have been niade, the air of the midite of the Tumnel was only 8 deg . lower wan that of the uthosphere, the latler being 70 deg . In February, the grea:est difference we found was also 8 deg. the atmosphere then being at 56 der. We were assurel that, during the severest weather of the list winter, the temperalure of the Tunnel never fell to the freezing point.

3rd. That the humidity of the air in the Tunnel, judging from the new experiments which we have been able to make, will be more unform than the temperature. That it will generally be somewhat greater than that of the external air, hut never sufficiently so to cause the precipitation of aqueous vapor in the carriajes, or on the persons of passengers.
4th. That we have not been able to detect, in any part of the Tunnel, traces of acid, or other irritating or noxious effluvia.
The 'Tunnel, at present is passed through in darkness, which, though not dlangerous, is to many persons unpleasant. This seems to require correction, and it is understood to be in contemplation to attach lamps to the carriages.
The noise made by the engine and train of carriages did not seem to us much greater in the Tunnel ihan in the open a r , nor to form any reasonable ground for complaint. Annexed to this Report is a certificate by Dr. Williamson, a high medical anthority in Leeds, generally in accordance with the opinions
above expressed. He has even arrived at the conclusion, which we see no reason to doubt, that travelling en the Railway if often beneficial to persons in delicate health, particularly in certain cases of slight pulmonarary disease.
The Tunnel in question is situated very near the terminus of the Railway in the town of Leeds. It is 700 yards in length, 17 feet high, and 22 broad. Its direction is nearly east ard west. The inclination of the fioner is 1 in 3 co. It has three shafts at irregular distances, which now se vo the purpose of ventilation. The westermost is somewhat the deepest ; the depth of this is 23 yards, measured to the floor of the Tunnel. The Tunnel is bricked throughout its whole extent. It is traversed by 20 engines daily, and on an average by 350 passengers. The averago time of passing is abrict a minute and a quarter. The steam is generated by coke of the best quality, under a pressure of 56 lb ., with regard to our sensations in passing through the Tunnel, with the windows of the carriage purposely left down, we experienced nothing unpleasant, either from smoke, vapor, or currents of air. The temperature in the carriage was agreeable, and every thing felt dry.

We would conclude by observing, that the opinions we have expressed of this Tunnel we hold to be applicable to all other Tunnels, the circumstances of which are similar; and to Tunnels of greater length, if they are higher and have a sufficient number of shafts to secure an adequate ventilation.

John Davy, M. D. F. R.s.
Assistant Inspector of Army Hospitals.
R. W. Rothman, M. A. \& L. M.

Fell. Trin. Coll. Camb.
London, 21st February, 1837.

- DR. WILBIAMSON's REPORT.

In reference to the effects of the thansit through the Tunnel of the Leeds and Selby Railroad on the health of passengers, I have to state, that in the whole of iny experience, both in private practice and in my official connexion with the infirmary, and with the other Medical Institutions of this town, I have never scen a case in which I could ascribe injurious results to that circumstance. I have, indeed, frequently recommended delicate persons to make excursions on the Railroad for the benefit of their health, and have known very decided advantage to accrue from such excursions to persons even laboring under the slighter forms of pulmonary irritation.
I conceive that the vaper, smoke, and gaseous results of combustion can never exist in such proportions as materially to deteriorate the air; and that there is no degree of humidity or deleterious enanation, peculiar to the Tunnel, which can be appreciably detrimental to anımal life.

I believe that persons of irritabie bronchial membrane may respire in the air of the Tunnel for a considerable period without feeling the slighest inconvenience or sustaiming any injury.
(Signed)
James Williamson,
Senior Physician of Leeds General Infirmary, and Lecturer on the Pra tice of Physic in the Leeds Medical School.

Leeds, 19ih February, 1837.

Adaesion of Railroad Spires.-We conclude in this num. ber the very important article of Prof. W. R. Joinson, from the Journal of the Franklin Institute, (it was commenced from the Journal of Science, in which however, we did not find all the engravings,) "On the Adhesion of Iron Spikes of various forms, etc.1 To Railroad Companies the writer has performed a sery acceptable service, and we take great pleasure in giving it publi. ty in this Journal_and shall always be gratified to give such articles a frrt plee in its columns.

Continued from Page 360.

The accomp inying figures represent the appearauces of timber as developed by splitting the specimens, through the axis of the cavities, left by the spikes whes withdrawn.

Fisures of Climber.
Fig. 1.
Fig. 2.

Fig. 3.

Fig. 4.

Fig. 1-Is that presented by the locust timber, mentioned in Table II, Experiment 11, in which the weight required to extract thic spike was 3990 lbs . The upper part of the figure exhibits the rising up of the timber just as th:e spike starts. In every case this effect was found, on cramining the timber, to have been of very limited extent.

Fig. 2-Represents the grain of chestnut timber as effected in experiment 3 , Table III, with the bread flat spike, and other trials. At the poin: of inflection downwards the grain appears to be not only bent but often actually broken off.

Fig. 3-Exhibits the appearance of a specimen of hemlock timber, used in experiment with the straight grooved spike, (Fig. 4 of spikes) in which the weight required to extract it was but 1296 Ibs.-See Table II, Experiment Eth.

Fig. 4-Conveys an idea of the manner in which a defective specimen of putch pine was affected by a spike. The force required to draw this spike was so trifling that it was not thought worth recording in the tables.

Figures of Spikes.

Fig. 1-is a squsre spike 405 of an inch wide oa each face, referred to in Table III, Experiments 1, 5, and 13.
Fig. 2-is a cylindrical spike . 485 inch in diametcr, sharfopel to a cutting edge-sec Table III, Experiment 9.

Fig. 3-is the grooved and notched spike, serrated in the bottoms of the grooves on the two face;-Table UII, Experiment 12.

Fig. 4-is a spike with plane gronves on the faces, extending from the upper part of the bevel to the height of about $3 \frac{1}{3}$ inches.

Fig. 5-is a grooved and swelled spike, that is, having the groove deeper at the distance of two inches from the point, than it is at one inch from it. At the former the depth of each groove is .066 inch.

Fig. 6-is a cylindrical spike .5 inch in diameter, tapered to a point.
Fig. 7-is a spike of the same diameter as the preceeding, but having 15 spiral grooves proceeding from the point upward.
Fig. 8-is a flat spike .390 inch in breadth, and .253 inch in thickness. See Table III, Experiments 4, 7, and 15.

Notr.-The only, series of experiments analogous to those above detailed, which has fallen under the notice of the writer was made in 1824,* by Mr. B. Bevan, on the adhesion of sprigs, brads and nails, when driven into timber longitudinally and transversely. His operations were extended to scveral kinds of timber, viz :Norway deal, dry oak, elm, dry beech, and green sycamore.

He employed some nails of a very minute size of which 4360 were required to make a pound averdupois. One of these required 22 lbs. to extract it, when driven .4 of an inch into pine board. From this size he advanced by several gradations to the sixpenny wrought nail, of which 73 make a pound averdupois. Of the latter he drove one to the depth of one inch successively iuto pine, elm, dry oak, dry beech, and green sycamore, and found the forces required for its extraction to be as follows:

For Pine,	187 lbs.
Elm,	327
Oak,	507
Beech,	667
Sycamore,	312

Mr. Bevan examined, to somo extent, the difference between driving a nail by percussion with a hammer of known weight and range of fall, and forcing it into the wood by simple pressure.This curious inquiry did not for obvious reasons, enter into the plan of the writer of this article. Mr. B. found that to force a sixpenny nail into pine 1 ibch, it took a pressure of 235 lbs ; to extract it, 187 ; to force it in $1 \frac{1}{3}$ inch 400 ; to extract it 327 ;

$$
2 \text { inches } 610 \text {; " } 530 \text {. }
$$

* See Gill's Technical Repository, vol. V., p 248.

From the New. York Mechanics' Magazine

 davenports' electro-magnetic machine.Of all the means hitherto discovered for propelling machinery, nothing exceeds in sin plicity, permane ncy, and perhaps in power, that lately applied by Mr. Davenport.
The great, but unknown powers of electro-magnetism, is now arousing atention throughout the scientific world; and what is to be the result of its surprising energies time alone will determine. It may be affirmed, that nolhing since the tume of Newton appears more wonderful, than the application of this latent principle to the useful arts. If capable of increase to an unlimited extent, as Prof. Silliman contends, the inventions of Watts and of. Fulton, will soon be thrown into the shade; but of this we have our doubts, the authcrity of the Professor and many othera to the contrary, notwithstanding. Sbould we, afier a careful investigation of the machine, find ourselves nistaken, we shall
be prepared to say, that nothing within the history of man, has ever proposed those great and genial advantages to mankind that Davenports' machine does ;--nothing half so safe, so cheap and so efficient. We could sce through the vista of years, and point to the alnost innumerable purposes to which this astonishtug power will be applied in the various pursuits of life. Steam will, of courge, remain uninvoked, and the winds will be suffered to pass by unheeded. A new and hithorto unappreciatod agent, will be called into activity, and wonderful will be its potency and advantage.
Though now working miracles in matters of science. yet even these will be neglected or forgotten in its ultimate triumph as a motive power. No one will dare to assign limits to its prospective utility. The quiet and unobserved energies of this principle, will all at once be waked from its eternal sleep, and aroused to the most intense action.
The ingenuity of man, after science awakened us to a sense of its active properties, has not long permitted it to exert its influence alone in hidden phenomena, but, as in the case of Mr. Davenports application, it has been brought to the traces and it is now about to put forth its strength in behalf of man, and to work submissively for the gratification of his innumerable wants.

Although the nature, and many of the phenomena of ElectroMagnetism, were long since known, and although the developement of its properties, has steadily progressed for some years past, yet it remained for Mr. Davenport, a Vermont blacksmith, to harness it to the useful arte, and to show to the world how cheap, how safe, and how uniting are its powers. It appears that this ingenious mechanic, first saw a galvanic magnet, about three years since, when struck with attonishment by the power which it exhibited in sustaining a weight of 150 lbs . on being attached to a galvanic battery, he at once drew the inference, yan-kee-like, that it might be adapted to useful purposes, in the propulsion of machinery. He purchased the magnet, poor as he was, though not without obtaining, even in this incipient step, the assistance of his iriends. Various and interesting were the progressive advancenents of this unread yeoman, in the produc. tion of his designs, and the ultimate production of a rotary motionIn this, however, he succeeded, and the first model was for some. time exhibited among the curious. More recently, models havo been made and exhibited in this city; where stock in the patent right, is now offered for sale. The patent is about to be taken out, also in Europe ; and, if we are to give credit to report, the stock is rapidly selling off.

Improvements have repeatedly been made in the mode of gen. erating this power ; and it may be presumed that others may yet be made, so as to increase it without additional expense, and without a corresponding increase in size. The models we have seen are about 8 inches in diameter: they make more than 600 revolutions in the minute, and raise 16 lbs. at the rate of 1 foot in that time. A model is now making of a still larger size, which will more fairly test the question, whether the power can be increased ad in finitum. Experiments are also making with fixed and galvanic magnets, in order to determine their relative powers, etc.

It is but proper to add that Prof. Henry, of Princeton College, was the first who applied this power to the movement of machincry by means of a beam, like that of a walking beam of a steam engine, but Mr. D. was alone in producing by this agent a rotary motion.

The former gentleman also succeeded, by a method of galvanic arrangement, peculiarly his own, in exciting a power far beyond that it had been known to possess. Justice, therefore, demands that to these individuals should be awarded the meed of praise which the world may hereafter give the earliest discoverers in this branch of philosophy: though we are aware that numerous experiments have been made of la:e in Europe to test the applicability and powet of this natural agent, as yet, however, without success.
L. D. C.

From the London Mechanics' Magazine.

DADDELEY's HOSE-REEL FOR FIRE ENGINES:
SIR,-Every contrivance, calculated to save time, and in some measure to supercede skilled labor, is at all tines valuable, but eapecially so when adaptod to emergent occasione-as, for in stance, when applied to such objocts ap the extinction of fief.

BADDELEY'S HOSE-REEL FOR FIRE-ENGINES.

The present form of fire-engines is so convenient, and so exceeding compact, that it is only in the minor details of its, arrangements, that there is any room for the exercise of ingenuity.
In addition to the several minor improvements, which I have from time to time suggested, I have now to submit another, intended to simplify and facilitate the application of this useful machine to its intended purpose.

As fire-engines are now built, the leather hose is stowed a way very conveniently in separate lengths (six lengths and a half being the usual compliment,) in the fore part of the engine. In London and aome other places, where the firemen, from continual practice, become amazingly expert in the management of all their apparatus, six, seven, eight, or even a still greater number of lengths of hose, are got out and jcined up with astonishing rapidity. It sometimes happens, however, even with the most experienced firemen, when short-handed, that some loss of time occurs in performing this necessary operation. When no regular firemen are employed, is in the case of engines belonging to parishes-to public or private establishments, \&c., where only one individual is acquainted with, and has himself to perform the several preparatory evolutions, or entrust their pertormance to strangers altogether unpractised in matters of this soit-the getting out and joining of any consiberable quantity of hose is a work of much time and labor.

The drawings herewith sent, exhibit a little invention, which I have termed a hose-reel; it is intended to have wound upon it a quantity of leather hose already screwed together, so that on arriving at a fire, the engineer has only to take the branch-pipe in one hand, and the end screw of the hose in the other, and run off to any point from which the fire can be successfully opposed; a sufficient length of hose being run out, the next joint is screwed and attached to the engine, which may immedately commence working. The speed with which an engine can thus be brought to bear upon the flames, at some cunsiderable distance, is very great ; one joint has to be uninade and another inade, when all that is necessary is performed. Whereas, at present, perhaps five or six lengths would have to be taken out of the engine, carried forward, and as many joints made betore the engine could be set to work-to say nothing of the uncertainty as to the quantily required, or of the imperfect manner in which the joints are made when done hastily, amid the confusion which always prevails, and perhaps by persons unaccustomed to the office. By using the reel all twisting of the hose is effectually obviatedthe joints having been previously madefare all perfect, and the connecting screws are proserved from much of the injury to which they are at present exposed.

Fig. 1. is a side elevation of a fire-engine of the most approved oanstruction, furnished with the hose-reel, which occupies a space enlarged for the purpose above the cistein and under the driver's seat-the extent and position of the reel being shown by the dotted circle. Fig. 2. is a front representation of the hose-

Fig. 2.

box; by which it will be seen that there is an oblong flap or door, fastened in any convenient manner, with an aperture of such a size as to holl firmly the male screw of the bose. Fig. 3. is a side view of the same, with the hose in the act of being drawn out. A small roller is placed upon the flap for the hose to run in and out upon, the flap being supported horizontally by chains on either side. Fig. 4. shows the construction of the reel ; it con. sist of a hollow spindle a, and two circular sides $b b$, of thin sheet iron, the spindle runs in two brass collars in the sides of the hose-box, and at each end there are two square eyes for the insertion of the handles ef, by which the bose is wound upon

Fig. 4.

the reel. In winding up the liose, two men stand one on either pocket, another one in front guides the hose backwards and forwards from end to end of spindle. The female screw is in the first instance hitched upon the forked notch e, which holds it fast, and on turning round the handles the hose is wound upon he reel. There is a pall and ratchet (not shown in the drawing) which prevents the hose from unwinding in travelling, \&c On reaching a fire the ratchet is thrown back, and a sufficient quantity of hose drawn out, which is then disconnected from the remainder and attached to the engine. There is roam in the engine for stowing away two of three extra lengths of hose, which, on an extraordinary occasion can be joined to the great length if required; but a reel of sufficient dimensions, 10 carry hose enough for ordinary purposea, can be obtained without in. conveniently extending the shape, or injuring the appearance of the engine. Yours respectully, Wm. BADDELET.

ITEMS,

The Detroit Journal says. that the ncting Commissioner of the Detroit and St. Joseph Railroad advertises for 600 laborers, tr. whom liberal wages will be paid. They are to be employed o: the part of the road beiween this city and Ann Arbor.

the conewago.

It has already been stated, that the Harrisburg, and Lancaster Railroad, is passable by locounotive power, the whole distance. excepting about $2 \frac{1}{2}$ miles. The journey between Harrisburg and Philadelphia is now made in about 10 hours, allowing of frequent stoppages, and without occasinning weariness.

There is one point on this road worth a day's ride to see ; it is where the track crosses the Conewago river. In coning down, the road winds along the Conewago hills, presenting seenes of wild beauty rarely met. The track is here very far abovo the level of the stream, and as the land commences sloping, the earth is thrown up for the roal, and when the abutments of the bridge are reached, passengers look down the wild ravine, hundreds of fect below-the long train, just resting on the verge of the fearful precipice-makes the dizzy gazer feel as if ho was about to topple down the fearful height. At the bridge, tall hickory trees tower up from below, but do not approach the upward distance of the bridge; while tho stream dashing and foaming over its bed of rocks, scarcely sends upwards to such a height, the noise of its coursc. There may be other railroads as much elevated, but we have scen none that presented so much wilduess, and strongly marked scenery, as does t.je IIarris'sarg and Lancaster Rajlroad at that height.-[U. S. Gazettc, May 30.]

From the Juurnal of the Franklin Institu:e.

IMPROVEMENT ON THE WISG GUDGEON.

Str-My attention was drawn a few days ago, to oae of my water wheel (wing) Gudgeons. From some chuse or other the neck of one got twisted off, and in looking to it," thought I could make an improvement upon it. If you think it worth the trouble, and I am sure it will, you can publish it in your valuable work.What I claim is an additional neck, exactly on the opposite side of the common wing gudgeon. It can be put into the shaft without the least inconvenience, and when the outer one is worn, or broken off, it can be turned and then you have a new one. This will save a great dcal of time, particularly in establishments distant from a furnace, and ninctecn-twentietis of the cost as the additional reck, when made in the first instance, will not be fifty cents.

> Yours, \&c.

Virginia Mills, Buckingham Cu., Va.
Edwatd Sims.

The following statement should teach a saluiary lezson. The changes of a day are often wonderful.

Reverse of Fortune.-A subscription has been opened at Paris for the benefit of Richard Lenoir, once, it is stated, the first manufacturer in France, now an old man of 74, ill and des. titute. He once possessed forty manufactories in different parts of France, and employed 10,648 workmen. "My property," he says, in his memoirs, the first volume of which has been lately publisher, "was, on the 22d of April, 1814, about right millions of francs (or near $£ 320,000$.) "On the 24th I was a ruined man." The only cause of this reverse, he states to have been the sudden euppression of the duties on cotton by an ordonnance of that date made by the Count d'Artois, since Charles X., then Lieutenant General.-[Lonjon Mechanics' Mag.]

From the New.York Mechanict' Magazine. MICROSCOPIC CHENISTRY.

An important, but simple, arrangement of lenses, for the purpose of observing the phenomena of chernical action, has late been brought into use, which will be found, in the hands of chem. ists, to develope interesting facts in the procoss of analysis.

It will open a new and boundless field for enquiry.
Since this useful Microscope has been successfully applied a Micrometer has boen added for measuring the angles of the minutest crýstals.

A work has recently appoared on this subject in Paris, from M. Raspail, entitled, "Nouvel Systeme de Chimic or gnnique fonde sur des methodes notvelles d'observation," which should be in the pos. sesion of all chemists. The observations made with this instrument may, and undoubtedly will, lead to the discovery of unknown laws of chemical arrangement between the clement of fluids. Remarkable clanges aie observable during the process of chrys. talization ; and, in the arrangenent of molecules of coloring mat. ter, the phenomena are very curious. . Very curious results are also perceived on the application of the galvanic pile to chemical substances under this Microscope. The experiments which we have noticed on the arrangement of the positive and negativo veins of the battery to a drop of fluid exhibited highly pleasing effects.
L. D. C.

Ancient Colors.-In the Couricr Greek newspaper, No. 65 of the date of the 7th of February, an interesting account is given of some archicological researches, recently carried on with much success at Athens. Amongst other discoveries two old paintings have been found in the Propylma, fragments of the colors of which have been handed down to the chemist Landerer, for the purpose of investigation. As it is stated, however, that these painting are on windows it seems doubiful, though the Greek Courier epeaks of them as ancient, whether they in reality belong to a higher antiquity than that of the middle ages, in which it is well known that the painters of the Bj zantine school, mantained a high repu'ation all over Europe, which in our own days some German cities have made an atternpt to revive. Should this be the case, no fresh -information as to the composition of colors can be expected from their analysis; but if they actually belong to classic antiquity, the investigation will lead to very interesting results.- [London Mechanics' Magazine.]

Preservation of Animal Substances.-M. Gannal, o Paris, has discovered that the substances inost efficacious for the preservation of bodies deprived of life are the salts of alumina; and be recommends the acetate of alumina as, of all, the best adapted for this purpose. By means of this substance, a dead body may be preserved for a length of time as effectually as if embalmed in the manner of the ancient Egrptians, and at a very trifling expense. The aluminous fluid may be introduced by the aorta, or still better, by the caroted artery, and any disication produced may be counteracted by the simple agency of a layer of varnish. It is anticipated that this discovery, from its simple and cconomical nature, will produce an important change in all procosses to which it is capable of being applied. The preservation of specimens of natural history for museums, may be hencefurih effected with a great saving of labor and cost, and the study of anatomy which could not till now be carried on in surnmer, and even in winter was atten ?ed with serious risk of health, may be pursued in perfect safety and at all seasons of the year.- [London Mechanics' Magazine.]

Shefrield. -The entire consumption of coal in this town amounts annully to 515,000 tons, the whole of which is taken from collieries in the immediate vicinity of the town.-[Min. Jour. 1

COATING WHICH PREVENTS THE FORMATION OF TUBERCUL:JUSEX. CHESCENCES IN CASTING IRON PIPES USED AS CONDUITS FOR water.
The cast iron pipes which convey water to the city of Greno. ble, became so obstructed by the formation of concretions of o.s. ide of iron as to lessen the discharge of water to nearly one half in the course of seven years. This diminished diameter of the pipes appeared to remain afterwards, and for a considerable time stationary, but as do dependence cou'd be placed upon this cessa. tion of the cause of obstruction, it became a matter of greatim. portance to devise the means of preventing its further progress.
M. M. Gruymard and Vicat, engineers en chef, propose an in. terior coating of hydraulic lime. Two years trial have safisfied them that hydraulic mortar of a suitable consistency and applied to the thickness of about fo of an inch is, of all easy applications,
the cheapest and best. It adicres readily to cist iron and prevents all oxidation and consequent production of tubcreules.When the pioes aredong, the mortar is applicd with a maulkin or swab.L[Jour. de Pharin.]

NOTE ON RADIANT HEAT.-BY H. F. TALEOT, ESQ., F. R. S.
M. Melloni says (in the Number of this Journal for December last, vol. vii. p. 475,) that
"For a long time the immediate transmission of terrestrial ra. diant heat by transparent substances, hoth solid and liquid, has been denied, and the opinion las become prevalant that we see in experiments of this kind only an affect of the heat absorbed by the body submitted to the calorific radiation."
This "prevalent opinion" he has shown to be erroneous, but by experiments which are too delicate to be repeated witli fucility.

As a popular illustration of the fart, therefore, serms to be wanted, I subjoin the following rude but conviaciag experimont.

Let a poker be heated brigit red hot, and having throwia open a window, approse', the poker quickly to tie outside of a paue, and the hand to the insille. A stro gg heat is felt at tie instatat, which ceases as so:n as the poker is with liaw. and miy be again renewed, and made to ceass as quickly as beiore. Now, every body knows that if a piese of glass is so mich warm slas tocus. vay this impression o: heat to the hand, it will retain some part o: that heat for a miauts or more; bat in this exparine.t the heat vanishes in a momont. It is no', therefore, heated glass wiac' we feel, but heat whic', has come througi the glass, in a free or radiant state.-[L. \& E. Pail. Mag. Miarci..]

ON THE SYMGETRIZING POWER OF TH: EYE.-BY THE KEV J. G. macivar, a. M.
Let the surface of a glass mirror be sprinkled over with some powder, as, for instance, with flower fiom a dredging-box. This done, on lonking perpendicularly dọwn upon the reflecting surface at the distance of distinct vision from it (unless the eye be too long. sighted,) the powder wid appear, not irregularly scattered, as it really is, but symmetrically distributed in tiro systems of beauti. ful radiations, having tie pupils of the eyes for their centres.

The phenomenon is sufficiently remarkable to strike even those who are not otherwise curious in such matters. "It may be observed, however, that as every cye cannot catch it at once, it is better to commence by using one eye only, as this gives only one system of radiations, which, being more simple, is mo:e easily obser. ved. If this phremomenon has not beea alieady attended to (and I do not recollect to have scei it noticed anywhere, it is, 1 think, well worthy of investigatio:l. Some facts are, indeed, immediately obvious respectiag it. Tius, as to the region in which the physical part of tac plaenomenon takes place, it plainly appears that it is not either the hunors or retina, as is generally supposed in reference to other phænomena of the same order, but a more deeply seated part of the apparatus of vision. For if it were any of these anterior parts, or even the retina itself; the centre of the radiant system would certainly change its place when the eye was made to wander over the mirror. In poillt oil fact, however, that centre does not chinge plase except when the whole head is moved, in which case it does so proportiozally.

I ascribe the phronomenon to a peculiar morle of action in the nervous part of the apparatus of vision, proper to it as an elastic tissue, in v.rtue of which it tends, like the tissues and media experimented on by C.ladni, Savar, Faraday, and others. and doubtless all elastic tissues and media, to distrísuts all mations impressed upon it in symmetrical systems; a view of the matter havitig very interesting baainzs upoa the principles of taste, -during the investigation of which it was that t.iis experiment frst occurred to me, and onde calculated to expluin several seemingly unaccountable phæzomena as to the distribution of sensibility in the retina.-[L. \& E. Phil. Mag. Jour. Sci.]
Johnfield by Dindee, Oct. 14.
\therefore - From the London M. chanics' Magazine.
COWELL'S WINDOW SASB SUSPENIERS.
Sir,_In your number of Saturday last, I was much pleased to find that Mr. Cowell's improvement in, window sashes has been introduced to your notice.

On the announcement of his plan, I had all the windows of my residence here, as well as those of a house in the city, fitted up on his principle, and am so well satisfied, that I wish publicly to bear testimony to its utility; the cxpense, as you state, is a mere trifle, but the importance of the object it embraces is very great, that of siving human life.

I will only further observe, that my female servant, after shift. ing them once or twice, manages them wih the greatest ease and facility. I mention this, becaus; some of my friends have ima. gined it to be a much more formidáble undortaking fur a femalc than it really is.

I am, Sir, yours respectfully,
J. W. Cox.

9, Gibsoa-square, Islington, 29t'ı March, $18 \subset 7$.

Dinamometric Cifeck.-A committee of the French Inatitute, composed of Messicurs Arago, Dilong, and Poncelet, has gone through a series of experimeats on the "dynamometric (or power measuring) check," an instrumeat invented by Prony, and lately improved by M. de Saint Lueger, mining engineer at Rouen, för the purpose of measuring with accuracy the power of steam. engines and the quantity of fuel tirey coasume. A large party of mombers of the lastizute and the Camber of Deputies, of profes. sors, engincers, \&c. was present at the investigation, which took place o: the 10 th of March at the machine manufactory of M: Pauweis at Paris. Tue ubject of the experiments was to ascer. tain the practicul exactuess of tise apparasus, and for this purpose a stame gine of twive hors: powar of M: Pauwei's manu. facture was made use of. The result appeared to be perfectly satisfactory, and the scientific world now waits, with some interest. the report of the committec of the Iastitute. This new in. vention may, periaps, sup;ly M: Arago with less disputable grounds for claiming for his countrymen a share in the honor of improving the steamengine, than he has been able to supply in his two disingenerously national essays on the subject in the French Annuaire for 1823 and 1837. - [London Mechanics' Mag.]

From the New-York Mechanics' Magazine

Gentiemen -In your last number, I was much pleased with an account, and engraring of the new and mush talked of Boiler of Mr Bennett. Can you inforin me when the public will be male acquairted with the facts in relation to the experiment which has been so long in progress in this city? If I recollect, the boat was 10 have been long since completed. Rumor - s famous tattler, I am well a ware, and not to be credited-has reported a fulure; ls it so? Please answer this question in your next, and oblige one who is always willimg to defer judgement on new invenions, until fairly tested by their friends, and not their enemies, and idle gossips.

A Constant Reader.

"A constant reader" evinces the true spirit-a spirit of kindness and liberality, which every intelligent and reasonable rea: der will entertain towar is such men as Mr. Bennet and Mr. Davenport. It is not to be supposed that great and important inprovements in the Steain Builer and Engine can be perfected by one experiment. If Mr. Bennet succeeds in his efforts, he will do intinitely inore to benefit others, than himself; however great may be his reward, the community will derive the greatest benefit fiom his labors.

This argument does not, unfortunaiely, weigh a feather with such patriots as would rather have their prophecies of failure verified, than that the greatest improvements of the age should be perfected. We will endeavor to gire some information in our next number, in relation to this matter.

Glass Road.-Among the novelties announced for the ap: proaching season at Tivoli, the Parisian Vauxhall, is a Glass: road, on which passengers are to travel, at a rate which would carry them over as much space in three minutes as on ordinary roads they could travel in an hour. The invention is probably a first cousin to the Russian mountains, so popular at the same gariens some years ago.

PRAMGACTION8 OF TAE INSTITUTION OF CIVIL EMGINEERS.
XXV. AM ELEMENTARY ILLUSTRATION OF

THE PKIACIPLE OF TENEION AND THE RESIS
TANCE OF BODIES TO BEING TORN ASUNDER
IN THE DIRECTION OF THEIR LENGTH. BY
THE LATE T. TREDGOLD, M. INST. C. E.
Writers on mechanics have usually stated that the resistance which a bady offers to being torn asunder in the direction of its length is proportional to the area of its section, but withnut showing that there are certain conditions necessary to obtain results in proportion. The object of this paper is to show in a plain and simple manner, the conditions necessary to render the resistance proportional to the area, and that there are few instances where the rulc will be fqund true in practice.

If a weight be suspended by a small filament or thread of any species of matter, there can be no doubt that the strain at any point is equal to the weight suispended by the section at that point; ard when the weight is sufficient to tear the filament as under such weight may be considered the measure of its cohesion.

Fig: 1.
Fig. 2.

Fig. 1. Thus the weight W may be considered the measure of the cabesion of a filament at C; neglecting the weight of the portion C B of the filament for the sake of simplifying the reasoning.

Let us now suppose that two threads of exactly equal strength are applied at a given distapke apart, to support a weight.

Fig. 2. Thus the weight W may be sup. ported by two threads or filaments by means of a bar D E.

The filaments in this case being supposed to be of equal strength it is obvious that the stress on them ought to be equal, otherwise only that one which has the greatest stress on it will bear its proporion of the breaking weight.

Add in order that the stress on both filaments may be epual, it is evident that the point F, from which the weight is suspended, should be exactly in the middie between the filaments: For if the point F be nearer to the filament E than to D, then E will be most strained, and consequently break be. fore the other.
The proportion of the strain is easily found by the properties of the lever. Call the force necessary to pull one of the fila. monts asunder P , and we have,
$D F: D E:: P: W$; whence $\frac{D E \times P}{D F}=W$.

This is the greatest weight the two fila: ments will support, becinse when the weight pulls one apart the other will break of course. But if both filaments were equally sirained the equation would be $2 P=W$, and this can happen only when $D E=2 D F$, or when F bisecis $E D$.
If the point F be only one sixit out of the centre of the bar then $\frac{6 \times P}{4}=1 \frac{1}{2} P$ $=W$. Hence, the filament A D will be exerting only half its power when B E breaks.
Even in this stage of the inquiry we can sé haw important it is that the links of the chains shoull be formed so as to have the centre of tension in the centre between the sides of the link. But when we have to consider the extension of the material, as well as the difference of stress, the variation will be found more considerable.
The extension of a substance is nearly, if not accurately, as the strain upon it.

Pig, 3. Let a bady be suspended by a pin at R, and suspend a weight by another pin at S , so that a line drawn through the sup. porting points may not be in the middle of the width A B; but nearer to B than A.

Here the salid parts below the line BA periorm the same office as the lever or bar, in fig. 2, and the strain will be greater at B than at A, and the extension will also be greater, and in the same prapartion as the strain; and in cansequence of the lengthening of the side B , the bar will became enrved.

Fig. 3.
Fig. 4.

Fig. 4. Represents the curved state of the bar. The curvature it acquires will be such that the resistance of the part AC is equal to the resistance of the part CB; and till this equilibrium of resistance takes place, the bar will continue to curve.

Fig. 5.

The distance of the neutral point may be found by different methods, but a diagram on the bar will best illustrate this point. Let Bm. and An, Fig. 5, be two equal portions of the surface of the bar in its natural state, and $\mathrm{P}_{\mathrm{g}}, \mathrm{Ae}$, the length of the same portions where the bar is strained by the wopight W. The lines drawn thraugh AB, and eg, must mbet in a point wherever the stress on the parts is not equal ; and the point thus de. termined is called the neutral point.

To find the neutral point put DC, its dis. tance from the direction of the straining force, equal z; and DE , its distance from the extended surface of the bar equal a_{1} make $C B=y$, and $A C=x$.
Since the extension is proportional to the strain, we shall have,

$$
a: z-x:: f: \frac{f(z-x)}{a}=
$$

the force of a filament at the distance x from C; its force at B being f. And suppose the section to be a rectangle of the breadth b; we have $\frac{f b(z-x) \dot{x}}{a}=$ the fluxian of the force of any filament $b \dot{x}$; and its ef. fect is as the leverage x, therefore the fluent of $\frac{f b(z-x) x \dot{x}}{a}=$ the resistance of, the part AC of the bar, or
$\frac{f b x^{2}(3}{6} \frac{z-2 x)}{a}=$ the resistance of $A C$, In like manner it will be found that the re: sistance of $B C$, is $\frac{f b y^{2}(3 x+2 y)}{6 a}$.

Now, in order that there may be an equilibrium of resistance, we must have $\frac{f^{b} y^{2}(3 z+2 y)}{6 a}=\frac{f b x^{2}(3 z-2 x)}{6 a}$. or,
$y^{2}(3 z+2 y)=x^{2}(3 z-2 x)$.
Whence we find the distance of the neutral axis,

$$
z=\frac{2\left(x^{3}+y^{3}\right)}{3\left(x^{2}-y^{2}\right)}
$$

If d be the whole depth $\mathbf{A} \mathbf{B}$, then $\xi=d$ $-y$ and,

$$
z=\frac{2\left(d^{2}-3 d y+3 y^{2}\right)}{3(d-2 y)}
$$

Consequently $a=z+y=\frac{2 d^{2}-3}{3(d-2} \frac{d y}{y)}=$ the distance of the neutral axis from the point B.

The distance of the neutral point being found, the solution becomes easy. Thus, let f be the cohesive force of a equare inch, $d=$ the depth, $b=$ the breadth, and $a=$ the distance of the neutral axis from the extended side.

The force of a filament $b d$ will be $f b d$, at the extended side; and its force in any other part will te,

$$
\begin{aligned}
& a: c-d: f b d: \frac{f b(a-d) d}{a} \\
& \text { The fivent of } \frac{f b(s-d)}{c} \text { is: }
\end{aligned}
$$

$\frac{f b d(2 a-d)}{2 a}=W=$ the weight the
bar will support,
But we found that $\mathrm{a}=\frac{2 d^{2}-3 d y}{3\left(d-\frac{d}{2 y}\right)}$; hence substituting this value of a, we have,

$$
\frac{f^{b} d^{2}}{4 d-6 y}=\mathbf{W}
$$

That is, a bar strained in the direction of its length, the weight it will support is equal to the breadth multiplied by the square of the depth, and by the cobesion of a square inch in lbs. ; livided by four liares the depth added to six times the distance of the direction of the straining force from the nearest side of the bar ; the quotient thus obtained expresses the weight it would support in lbs.; and the dimensions are all supposed to be taken in inches.
If the distance of the direction of the straining force be half the depth, then

$$
y=\frac{1}{2} d \text { and } \frac{f b d}{4 d-6 y}=f b d=W
$$

But if $y \equiv \frac{1}{3} d$, then $\frac{f b d^{2}}{4 d-6 y}=$
$\frac{f b d}{2}=W$; which shows that by this variation of the direction of the straining force, half the strength of the bar is lost.
In the same manner the investigation may be extended to other fornus, but the subject having been already treated by a different process of reasoning, and also by a different notation, in the second edition of my book on the Strength of Iron, I will not proceed further with analysis, but confine myself to a few practical conclusions.
In making a joint to resist tension, the surface in contact should be so formed as to render it certain that the direction of the tensile force may be exartly, or at least very nearly, in the centre of the bars that have to resist it.
In all the calculations of the magnitude of hars, \&c., to resist tension, the greatest pos. sible variution in the direotion of the strain ing force should be calculated upon, and the dimensians determined accordingly.

Fig. 6.
Fig. 7.

If the connections of a bar, to resist tension, be made as in fig. 6, it is very dificult

It to get them fitted so perfectly as to cause the direction of the tensile force to be in the cen. tre of the bar.

A connection by a piece in the middle, is fig. 7 , is more certain to effect the object of limiting the variation of the direction of the standing force, as will be obvious from the figure, and the joint should be fitted so as to kear at A the centre of the direction.

The like remarks apply to joints in long ties, joints of the forms slown in fig. 8 and 9. are very comman, and very good forms for a connecting joint.

I have, however, not unfrequently seen joints in ties formed as in figs. $10,11,12$, where the line of strain is at or beyond the side of the bar, and such a tic would obvious. ly bend till the strain on its parts would be. came very unequal.

The same conclusions are obtained by considering the forces to be pressive, instead of tensile, with the exception that the strain increases the curvature when a curved bar is compressed, while it diminishes it when the bar is extended. Hence it is of still greater importance it attend to the variation from the centre of magnitude of the resisting body in cases where it is to sustain pres. sure.
This difficult subject, for so it has been considered by an eminent authority, whom I shall presently quote, is capable of an easy popular illustration with regard to pressure.

When a pressure is on the centre of the block whioh supports it, and the block is a material of equal texture, then all the parts must offer an equal resistance to the pressure, there being no reason why one part in the bounding surface of the block should take a greater or less strain, all being similarly affected.

But if the pressure be nearer to one side of the block than the other, the resistance becomes obviously unequal. If an elastic body be employed in the experiment, the inequality of conpression is decidedly shown; but what bady is there-which has not some degree of elasticity? ar what is warse, allows of compression without restoration of figure when the pressure is removed?

The consequence of a pressure being at a disfance from the centre of the supporting surfare does not simply depend on the dis. lance, but also on the degrec of compression it produces, for the form of the support, whether it be a column, a pilar, or a wall, will alter till there is an equal resistance on each side of the line of pressure, if it does not totally fail.
These considerations will explain many
circumstances which occur in practice, where walls, piers, and arches undergo changes of form, which have always been familiar to practical men under the name of settements.

The first person who remarked the defciency of ordinary theories in regard to inequality of resistance was Dr. Robison, in his article on the strength of materials; he was more conversant with theory than practice, but his remarks have some interest.Speakirg of Euler's theory of columns, he says, " It leads to the greatest mistakes, and " has rendered the whole false und useless. "It would be just if the coiumn were of ma. "terials which are incompressible. But it is " evident, from what has been said, above, " that by the compression of the parts, the "real fulcrum of the lever shifts away from " the point C (fig. 5 ,) so much the more as " the compression is greater. In the grest " compressions of loaded columes, and the " almost unmeasurable compressions of the "truss beams in the centres of bridges, and " other cases of chief impartance, the fulcrum " is shifted far over towards (D,) so that very "few fibres resist the fracture by their co"hesion; and these few have a very feeble " energy or momentum, on acconnt of the " short arm of the lever by which they act, "This is a most important consideration in "carpentry, yy it makes no element of Eu. - ler's theorys? It will now be asked (he 'continues) what slaall be substituted in "place of this erroneous theory? what is " the true proportion of the strength of col. "umns? We acknowledge our inability to give a satisfactory answer. Such can be " obtained only by a previous knowledge of ' the proportion between the extensions and "compressions produced by equal forces, by " the knowledge of the absolute compres. " sions producible by a given force, and by a " knowledge of the degree of that derange" ment of parts which is termed crippling, "These circumstances are but imperfectly " known to us, and their lies before us a wide "field of experimental inquiry."
'Such was Dr. Robison's view of the subject, but the question did not long remain in that state. Our celebrated countiyman, 1)r. Thomas Young, soon discovered the hroper mode of investigation, which way published in 1807, and yet, strange as it may peem, the popular writers on mechanics in shis country, as well as on the continent, either have not seen, or do not comprehend, the brief but elegant demonstration Dr. Young has given. We can attribute it only to the difficulty of following the inquiries of that able philosopher without a most extensive knowledge of msthematics and of na. ture.

From the Joursel of the A.sterisan Institute.
captain cram's pile-driving and sawing machine.
It would greatly surprise our fellow citizens, if one half of the benefits which our Institute has conferred could be traced out, and presented to their view. We think they would experience a fresh gratification that their patronage and favor, which is the vital principle of its existence, has been bestowed upon it. By means of the American Institute, Capt. Cram, one of its ingenious mem.
bers was introfuced and recommended to the Commissioners of the New-Orleans and Nashville Railroad, as mentioned in a former number. It was necessary for them to lay their course through swamps and lowgrounds in many instances heavily timbered.
The following, from the New.Orleans Advertiser, of January last, will slow the opinion in that quarter of the benefits of invention, and the mechanical arts, in their application to this undertaking. When Capt. Cram was introduced to the cornmissioners, he was out of employ, and his means of support for himself and family a'most exhausted. He has since become in dependent, and he has benefited his employ. ers hundreds oi thousands, if not millious of dollars. We have frequently heard him apoken of as having produced a new era in southern internal improvement.

Below is the extract from the publication referred to.
"We are indebted to James W. Breedlove, Esq., for the very interesting and descriptive letter that follows, obligingly copied by him for our use, as lie states it to have come into his hands by accident. As we have ever been willing to make our columns subservient to the promotion of works tending to benefit and develope the resources of our country, by laying befone the public our own views and opinions, or giving publicity to the apt suggestions of others conversant with the subjects which they undertook to explain or discuss, we cannot now hesitate in laying before our readers the elear and lucid views taken by this writer; feeling satisfied that any thing having a bearing on a matter of such vital importance as the New.Orleans and Nashville Railroad, will be perused by them with avidity, and weighed with proper deliberation."

New. York Statisticil Societr.-A statistical socicty has been recently incorporated by the Legislature of the State for the city of New-York. Its capital stock is fifty thousand dollars, in shares of two hundeet and fify dollars each; the society to commance operations when the fihole sum shall have been subscribed and five thousand dollars paid in. It may hold real estate conve. nient for the transaction of its business, provided the income does not exceed five tiousand dollars.
The society is modelled upon the plan of that of London, incorporated in 1834.
All opinions are excluded-facts only be. ing its object, and as far as possible, those that can be arranged in a numerical and tabular form. The sulject was divided by the British Association at Cambridge, into 1. Economical-2. Political-3. Medical-and 4. Moral and Intellectual Statistics. Tinc class of
Letonomical Statistics conpreliends, 1st the statistics of the natural productions and the agriculture of nations; 2ndly, of manufactures; 3dly, of commeree and currency: 4 thly, of the distribution of wcalth, or all facts relating to rent, wages, profits, ctc.
Political Stitistics furnish three subdivisions, 1st, the ficts relating to the elements of political institutions, the number of electors, jurors, otc.'; 2dly, legal statistics ; 3 3ly, the statistics of finance and of nation-
al expenditure, and of civil and military establishments.
Mepical Statistics, stictly so called, will require at least two subdivisions, and the grea: subject of population, although it might be classed elsewhere, yet touches medical statistics on so many points, that it would be placed most conveniently, perhaps in this division, and would constitute a third subd.vs sion.
Moral and Intellectual Statisrics comprehend, 1st, the statistics of literature ; 2dly, of educalion ; 3dy, of religious instruction and ecclesiastical institutions; 4thly, of crime. Although four teen subdivisions have now been enumerated, it is probable more will be required.
It will, of course, be one prominent ob. ject of the society to form a statistical library, as rapidly as its funds will admit.

The gentlemen incorporated by the NewYork act, are James Tallinadge, James M. Matthews, Edwin Williams, Talman J. Waters, William Minot Mitchell, Samuel Cowdrey, and their associates, and the board of trust, for the present season, is composed of the same gentleinen, with the addition of Livingston Livingston, Genrge Bacon, Berjamin D. Silliman, Juhn W. Francis, Timothy Dewey, Reuben Ellis, and Jonathan Amory, with power to perpetuate the succession.

The subject of statistical societies for the United States, was recommended in this Journal, Vol. xxxi. p. 186, by Mr. San. derson, as the representative of the Statis. tical Society of Paris, with which we have interchanged publications and correspon. dence ever since its institu:ion. Although from the pressure of other duties we have been obliged to decline taking an active part in this subject, we are much gratified to find that it has been brought forward under the best auspices. The sulject is one of extreme importance to the United States, in every view that can be taken of it—political, secial, moral, economical, commercial: accurate facts, digested and arranged, oo that the priper deductions shall of course flow from them, are no where so much needed as in the United States, because we ate still in the forming stage of society-because our interests are imnensely diversified, and becauso in this republic, beyond any nation that exists, or that ever did exist-man, in high intelligence, is in a state of the greatest activity, with the most numerous and powerful exciements and with the feeblest restraints. Political economy must be founded wholly upon statisticz, and there is no way to obtain correct results but by a patient collection of facts.
Our abled statistical writers, Seybert and Pitkin, would have derived immense advantages froin the labors of such a society, and we hope to see its eperations and influence become co-extensive with the nation. It is obvious that the subject admits, on this occasion, of cogent and ample ilustration, from which we are precluded by he want of time and space.
Viluable Invention.-It is remarkable that an invention far more valuable to
all who travel upon the seas, lakes, nind rivers of this great commercial country, and more important, on the score of human: ity, than any other devised by human ingenurty, should remain in comparative oblivion and neglect. We allude to that beautiful preparation of pulverized cork, for seamen's and passengers' mattrasses and beds. Will it be believed that a mattrass made of this material, weighing only twenty-five pounds cannot be sunk by the weight of seven men? and that one or two persons might float on it in the midst of the ocean, with as great security frum drowning, as it he were on board a ship? Yet such is a fact, as demonstrated by experiment. The beds, cushions, \&c., made of this preparation of cork, are more elastic, soft and comfortable than those of the best hair, and have the sul'erior adrantage of never becoming matted. Every ship and steanboat should inmediately substitute them for all others, and even passengers going to sea should purchase one.- [New Era.]

Animal Electricity; by MM: Linari avd Matreucci.-The five helices anployed by M. Linari, contained five hun. dred and seventy-seven metres of copper wire. Two had the ordinary form; the three remairing were composed of the wire wound spirally in a plane, and liad a square perineter. Through one of :hese helices was passed a cylinder of iron, 0 m 635 !ong, and $0 m 31$ in dhameter. This system of helices was connected and terminated by iwo plates of silver, provided each with an insolating handle. The circuit was interrupted by cutting the, wire between the last belix and one of the plates of silver, in order to insert the extremities of the wire into a vessel of mercury and thus amalgamate them.
The experiment was performed as follows : the torp ${ }^{\text {do }}$ wiped dry, was placed on a plate of glass, with one of the pieces of silver upon his back and the other on his belly. The animal was then irritated by striking him with one of the plates on his tail and gills, and was thus induced to discharge himself. Afier several trials, M. Linari succeeded in obtaining a spark, which appeared between the mercury and the wire. By touching together the amalgamated wirzs out of the mercury, he suc. ceeded in oblaining a succession of brilliant sparks. He observed no difference in the capabilities of torpedues of different eizes to produce this result. A small one four inches in diameter afforded a long succession of bright eparks.

The decomposition of acidulated water, and a durable magnetization of a steel needle were invariably obtained by M. Linari.
M. Mateucciemployed in bis experiments sinrilar apparatus to that of Linari, conthining however only three hundred metres of wire, of which he made two double helices. One of these belices was 0 m 44 in length, and had a diameter of 0 mm 05 m ; the other was 0 m 72 metres in length, and 0 mz 03 in diameter, and was wornd on a horse shoe. In the interior of the two helices was plinced a cylindrical bar of sof
iron. With this arrangement, completed
as above described, Matteucci succeeded without fail in ootaining a bright spark. One of the helices wound on a horse shoe sufficed to produce the same successful result.
Matteucci attempled to obtain the electric spark by means of two plates of brass, with short wires attached and inserted into mercury. But, notwithstanding the em ployment of every means which could insure success, he failed in obtaining any ef fect except the shock. He therefore infere since the spark is not obtained with a very short wire, and on the contrary is easily obtained with the above described helices, that the spark is produced where the dis charge ceases, in which case the current by induction, adds to the primitive current
He has also ascertained, by means of a delicate galvanometer, that the current passes from the back to the venter, and that the back may be considered the positive pole and the venter the negative.The discharge is effected in the same manner by the two organs situated on the sides of the torpedo, and the current is produced in the same directions when one of the needles of the galvanometer touches the ventral part of the left organ and back part of the right, or inversely. The deviation in the galvanometer is augmented if the two neeiles of platinum are put in contact with two metallic plates placed on the two sides of the fish, instead of a direct application of the needles. A discharge can alinost invariably be produced by forcibly curving the torpedo, making the venter the interior of the curve. A remioval of the skin of the animal diminishes the doviation, but does not entirely prevent it. If the outer of the three nervous cords which proceed from the brain to the electric organs are cut, the electric discharge may still continue. It ceases immediately on cutting the intermediate one.
These experiments were tried with thir-ty-six individuals, which M. Matteucci ob. tained during a long residence at Cesenati-ce.-[L'Institur, No. 167. July, 1836.]

Compliment to American Genius.Our mechanic Avery's simplified steam en. gine, exhibited in full and successful opera:ion at the last New-York Fair, and since admirably applied to various mills in the interior is highly extolled by the learned Dr. Lardner, and is to be reported upon at the French Institute, by the illustrious astronomer Arago. What will they say of the total abandonment of fuel and stenm $\mathbf{i} .1$ Davenpor's Electro-magnectic Rotary machine ?-[N. Y. Surr.].

Facts for consideration, and they should cause serious reflection.-[Eds. Mechanics' Mag. Railroad Journal, and N. Y. Farmer.]
Eight ycars ago we had a United States Bank of $835,000,000$ capital, iwerity million of opecie in the country, and a currency equal to any in the world.

The United States Bank has been vetoed, the deposites removed into the "pet banks," and now, with cighty millions of specie in the
country, we have either n', currency at all, or one of the very worst in the world!
Eight yearsago a man could travel throug! he United States and Canada with bills of the United States Bank, and without having to pay one per cent discount.
Now, the pet and other bunk bills are rom five to ten per cent. discount, even in the States to which they belong.
Eight years ago, with twenty million of specic in the country, they were at par, and all the banks paid for their notes in specie. Now, none of the banks pay it, and one hundred and ten dollars of the best bank paper must be given for one hundred dollars in specie.
Eight years ago we had specic fur change; now we have thousands of tickets called " shin plasters," or no change at all.
Eight years ago, business, commerce, and trade all went on smoothly and prosperous. ly. Now, business is broken up, trade destroyed, and bankruptey, dis!ress, and povcrty, staring people in toe face.
Eight years ago, the expenses of Govern. ment were thirteen millions of dollars. Now, they are over thirity-twoinillions of dollars.

Agriculture, \&c.

Ross Bugs.-The best antidote a ganst the rose bug, and the small yellow bug, that has yet cone under my inspection, is slacked lime applied with a dredging box, while the fruils or plants are wet with dew. If the fruits or plants be wet with a weak solution of gum arabic previously to the application of l.me, it will remain on them much longet, and no injury will be sustained by it:. If applied to young cucumber plants, the seed leaves must be carefulIy turned up, wet, and the time applied as afore aid. The lime used has been nicely slacked with a litlle waler, one ycar, for the purposes of the garden. Perhaps it would be equally as well if slacked imme diately before its application.
It was found that if rose bugs while on plants be thoroughly wet with very s:rong soap suds, (cne gill of strong soap to one quart of water) they soon die. This sirength did not injure the plants on which it was tried. This experiment was made when the bugs were on the decline, and whelher the mixture would have the same effect in the beginning of their race, while in their utmost vigor, or prevent from prey. ing on the plants wet with it, further experiments may determine. It is needless to say any thing in this paper, as to the fertilizing power of this application or that of lime.-[Dr. R. Green, Man ficld, Mase.]
Engrafting-Grape Vines.-A friend of the editcr says that he has succeeded in grafting foreign grapes on native stocks, and thinks that motices on that subject may be uzeful. In the N. E. Farmer, vol. vii. F. 329, are some directio s relative to this improvement, which were, originally, communicated to John Prince, Esq. by Brig Gen. Armistead, from which the followint are extracted:
"I pickel out four native vines, [in the month of March] and headed thens down
at low as the turf, and after going through the common process of inserting the graff, I bound then with woolen yarn, and covered them with common grafting clay, and to make the process douthy sure, I cut large sods and enclosed the grafts completely, and covered them in this way about four inches, leaving two ryes exposed. The experiment proved the utility of thus preserving them from sun and air, for threc outt of four took, and on the head of tho largest vine, I put two grafts, both of which survived, which made it equal as if all had taken. The result of the first year was, that the grafts averaged a growth of from nine to twelve feet. The second year they bore many bunches of graper. The third year my mother wrote me that they had gathered upwards of two barrels from my four vines. The succeeding year the neighborhood was in part supplied, and from others following the example, no failure of fine fruit has, I believe, existed in that neighborhood."

We believe it is not yet too late to grait grape viases, and wild slocks to engration may be found in woods, \&c., in many parta of the country.

From the New-York Farmer.

We commend to our readers the following communication. It is from the pen of a practical farmer of grest experiencefrom one who has long practiced what he recommends, and profited thereby-we ask for it not ouly an attentive perusal by our patrons, but also an extensive re-publica. tion by those Editors with whom we ex. change. Of the writer we ask frequicut communications of the same kiild.
Messrs. Minor \& Schaeffer-During a long life I have never witnessed a period wherein the necessity of agricultural improvement was soimperious as at present. In an extensive fertile country it is wonderful to behold the inhabitarts importing treir bread stuffs and other forase-a.ld for no other reason but fur lack of industrious and skillful cultivátion-thus we see a litile Seagit Island three thousand miies distant supplying the peopic of a fertile coninent with those productions which our farmers ought to produce to supply them. This demonstrates what may be done by the powerful machinery of industry, knowledge, and skill, united. En viewing our present condition, I feel a blush of shane for myself, and my country - every acre of our soil, with no more libor, might produce doublc its present yield if all was done perfeclly right. I say unto you my brother larmers we must do better. Listen for a moment to the voice of more than sixty yearz experience. Many good periodical works on agricilture are now extant-buy some one of them,-plain common sense will direct us to those articles that apply to our
business. The New-York Farmer is a work I have prefered-it contains generally much useful information for us. Industry must lead the way, for this will produce knowledge, and knowledge will produce skill-and these three sublime atributes if kept in exercise would soon renovate the condition of our country, and this not ouly ought-but must be done-or otherwise hunger and shame will await us. I have only time at present for one gencral remark. Iofinitely mote may be done by contracting your cultivated acres and tilling them higher and to greater perfection. The time in arable and in grass culture should be short, say two years, of never exceed three ; use plenty of grass seed,-white clover is one of the best. If a life already protracted and heallh shall be sustained, I shall be happy to confer with you again.

The Old Man.

agriculture.

One effect which it is supposed the present state of times will have, may be looked upon as decidedly advantageons, and that is now in the greater attention which it is probable will be given to agricultural pursuits. The fertile, uncultivated lands, with which pertions of our country abound, have becn too much overlooked, and we presume will be more carefully looked alter. The life of a farmer has more altractions, by far, and more solid, substantial comforts than the multitude seem willing to concede Too many have, of late years, left its quiet and healtiful pursuits, to croud into the al. ready over crowded cities; forsaking with most perverted tastes, the green fields and fine atmosphere of the country, for the dust and noise, and confined air, that is found in streets and alleys. We thank attention will be now strongly turned to the cultiva-Hon of the soil, by thousands whom the embarrassments of the times have deprived of employment and as a consequence, provisions of every kind, will be more abundant and cheaper. It is time the current should set the other way, and if the distress under which the whole country now suffers, has the teudency to divert labor into its more appropriate chaunels, we may find that even this affliction has unt lieen without its ad-vantage.-[U. S. Gazette.]

The Crops.-The coning season bids fair to be one of the most productive ever known. The agriculturists: have been taught a useful lesson, by the experience of the past year, and there prubably was never so much ground put under cultivation in the United States, at any one time, as there has been this spring. Our exchange papers from every quarter, brings ua cheering accounts of tho state of the crops, and all ánticipate a rich harvest.This is really good news. The past year bas been one of dire disaster in almost every respect, and the scarcity and high priee of provisiong, has intensely aggrava-
ted the other evils ; but a couple of fruitful years will go far towards repairing all our losses.-[Buffalo Com. Adv.]

We are pleased to learn from almost every part of the country, that the wheat fields are in a very flourishing condition and bid fair to yield a good crop.- [Minors Journal, Pottsville, Pa.]

New method of propagating Apple Trees.-A new plan for increasing plantatations of apple trees, has lately been car. ried into extensive practice by the horticul. turits of Bohemia. Neither seeds nor grafting are required. The process is to take shoots from the choicest sorts, insert them in a potato, and plunge both into the ground, leaving but an inch or two of the shoot above the surface. The potato nourishes the shoot, while it pushes out roots, and the shoot gradually grows up and becomes a beautiful tree, bearing the best fruit without requiring to be grafted.
Whatever may be the success of the undertaking, its novelty is at least an induce. ment to give it a fair trial.

From the New-York Farmer.
animal manure,-night soil, \&c.
New-York, May 12th, 1837.
Gentlemen-Agriculture is the source of the wealth of nations; the most enlightened governments have always given it encouragenient, knowing that the earth pays geuerously a man's labur; therefore one is right to ask how it is that your country, which is productive enough to subsist, not only the American continent, but Europe also, is under the necessity of importing every year, so many thousand bushels of grain? This is a state of things by no means creditable to the country-but the surprise is still greater when you come to consider the high price of the first necessaries of life; especially of vegetables in your markets. The population of Paris and London are much larger than that of New.York, and yet the markets are more abundantly supplied with all those kinds of provisions, and at n much lower price, Is it the cause in the high price of, er rent paid for, land in the vicinity of New-York $\}$ or is it in the carelessness of cultivation, want of namangement, or ignorance of the use of cheap and powerful manure? The larger the city, the more abundant is the manure produced, if it is well manage -and properly attended to.
Allow me, Gentlemen to ask you what becomes of the cleaning of streets, and of the nightsoil?
In what state is the first article given to the farmer, and at what rate ?
How do they manage in your city for the secand article so much sought for in French, English, German, and Chinese husbandry?

What kiad of animal manure do they make use of here, beside the bone manure, so costly after ali ?
Do they employ, or understand the value of, the manure known by the name of Pou^{2} drette, which is considered by all cultiva. tors in Europe and China, as the most powerful manure used, when well prepared, by a disinfecting process, which removes the offensive eflluvia of its unprepared state ?
If any of your renders will furnish you with a statement in relation to its use and management in this country, for my bene. fit, I shall take pleasure in furnishing you with some interesting facts in relation to its use in France and Germany, for the benefit of agriculturists in the vicinity of New-York, and other large cities of the United States.

I am sir, very respectfully,
B.

The subject of Animal Manure has at. tracted considerable attention of late. We some time since received the preceding communication from a scientific foreigner, which induced us to make enquiry on one of the impurtant subjects to which he alludes, and in reply we have received from a valuell correspondent, the following important communication. It contains use. ful information to many of our readers; and will be the means, we hope, of inducing our correspondent B. to resume the subject in a way which may add another to our present means of improving the soil-a pursuit, in these trying times, to which thousands are resorting, who have heretofore viewed it as degrading. Drgrading ! Agriculture degrading! Who is, if the skilful cultivator of the soil is not, Natures Nobleman 3 And he, who discovers a new. or applies successfully any previously discovered, but unapplied, process of in. praving the soil, so as to cause " two blades of grass to grow where one only grew be fore," is entitcd to more gratitude and consideration, from his countrymer, and the world at large, than the successful conqueror of an hundred battles-who conquers to oppress.

The pursuit of agriculture is becoming more justly appreciated-and this feling will gain ground precisely in proportion to the introduction of improved modes of cu'-tivation-it therefore becomes the imperstive duty of every friend to the cause to give it the aid of his experience and observaion.

We hope soon to be able to publish many intervsting facts an the subject.
D. K: Minor,

Dear Sir,-In answer to the inquiries in your late letter, I am happy to give you the best information which I can obtain.
"Night soil" is deemed one of the most powerful manures that can be used; and my own experience in its use, which has been considerable, confirms this opinion. It is much used in China, where it is mixed with marl; in this way freed from its offensive odor, and made an article of common traffic and distant transportation. By what process this is done I have no information. In Holland it is thrown into their large urine cis. terns, where the urine of theircattle is preserved; and these mixed with rape cake (after the oil has been expressed) and other refuse substances, and carried out in the spring in a liquid state into the fields. In Paris it is dried in some way, and converted into a powder; and this powder, or "poudrette" as it is called, is very extensively used in the vegetable gardens round the city. In the neighborhood of London it is dried, in some way, and packed and transported as a powder. In this vicinity it has been extensively usel; and is obtained and transported in a crude state in large covered and water-tight wagons. The city has a superintendent of privies. The citizens, who wish their vaults cleansed apply to him. He contracts with certain individuals at a ceriain rate per cubic foot. The city likewise contract with certain farmers to be ready with a wagon to receive the contents. The owner pays for the emptying; and I believe the farmer is either paid for the transportation, or has the manure delivered into his wagon free from all expense. The carts are not allowed to enter the city until after ten o'clock in the evening; and obliged to leave it hefore sunrise. The farmers pay their men something extra for this night labor, over their usual wages. The farmers deposite it in a shallow hole dug in the ground, and mix enough loam with it to absorb all the urine, and make it easy for them to handle it in the spring.

The farmers deem it excellent for grass grounds spread broadcast ; and excellent for all vegetables, excepting potatoes, and particularly for vines, squashes, cucumbers, melons, \&c., and especially for corn. The objection to its use for potatoes is, that it causes them to run too much to top; whether this is well founded or not I do not know. It has been said by some persons that its effects are very transient, but, as well as I can learn, this opinion is vilhout foundation, and its efficacy is as durable as of any manure. Many pers.ins advise to the free intermisture of quick lime with it. This will destroy its offensive qualities; but there is no duubt that, while it destroys the offensive odor; it also destroys its efficiency. This I believe is the effect of the intermixture of quick lime with any animal manures. In the country, where it was easy to get access to the back of the privy, I had a moveable shutter, and a large pile of loam always placed near, and during the season when frost and snow did not prevent, was accustomed to throw frequently among the manure enough of the loam to render the deposite inoffensive and absorb all the liquids.. By this method I found no difficulty, whenever it was necessary, in removing the contents.
The facility of obtaining this manure in New.York must be immense. Its transportation by water, provided it can be removed in a desiccated state, to the shores of Long-Island, cannot be difficult; and indeed up the Hudson; but I do not know what pian to recommend, to put it into a portable state. I should be very glad to be informed; and you may command any farther information which I can give you.
Respectfully yours,
H. Colman.

The Season and Crops.-For about three weeks, the weather has been cold and wet. On Tuesday week there was frost, and on Monday the 29th inst, another serere one. The blossoms of the apple began to appear a week since, but have made but little progress since. Our gardens are very backward, and spring grain is not sufficiently advanced to warrant an opinion as to its promise: Wheat has improved very much since the rains set in, and there is now a fair prospect of full three fourths of a crop-at least in this vicinity. So far as we may judge by the newspaper accounts, this part of the State is as well advanced as any other. The scasou below the High-
lands has not started vegetation much if any before ours, and the ice in Lake Erie has retarded it at the west considerably behind the usual period.-[Onondaga Standard, May 31.]

From the Journal of the American Insutute.

hints on the cultivation of the mulberry, with some general observations on the production of stle, by lewis tinelli, doctor of civil law in the university of pavia, and formerly propaietor and diaectoa of a filature of silk N lombardy.
Mr. Tinelli adverts to the peculiar situation of the northert States, and the necessity of their providing a staple of export. We advert to his remarks, not because they are new, but as the impartial suggestions of an intelligent foreigner, who has made America his country, and who looks upon our condition as it actu. ally is.
"When," says he, "we look at the table of imports and ex: ports of different merchandise in the ports of the United States, we are struck with the lamentable fact, that the northern States $\boldsymbol{s}_{\boldsymbol{t}}$ with a widely extended and very fertile territory, are not only without any considerable staple of export, but even do not always produce enough for their own consumption.

6The example of the year just passed, is a proof of this assertion. Where, then, are the elements of prosperity for these States, and the foundation of their commercial wealth? Can they consist in the profits of that foreign commerce which is carried on at our various marts with all parts of the world, or in the present productions of the soil? Certainly not. The resources of foreign commerce are too subject to variation, to secure the perma. nent riches of a nation spread over so vast a surface, and posses. sing so immense a territory for cultivation.
"Looking at the actual state of things, the real relations existing between the north and the south, and casting our views forward into the future, it might be allowable to doubt, whether the produc. tions of the southern States will always serve to employ profitably the extended speculations of the north; and whether the northern States will not be obliged to seek in their own resources of agriculture, a supplement at least to the commerce in cotton, rice, and tobacco."

On the uses of the mulberry, we quote as follows :
"All the different parts of the mulberry are useful, and good for sone purpose or rather. Its leaves form the only food that experience has found appropriate to nourish the silk worm (phalana bomhyx of Linnæus.) The leaves of a second growth serve, at the close of autumn, as an excellent nourishment for cattle and sheep; it being understood, however, that the eecond gathering ought not to be made till the vegetation of the plant has entirely ceased, and the sap has began to descend froro the branches. The body, and larger limbs, not only make excellent firewood, but may also be converted into boards, of a bcautiful, yellowish color, and finely clouded, for the use of the cabinet maker ; the fibrous epidermis of the young branches, that are often cut, either for the purpose of engrafing, or of pruning, and directing the shape of the tree, if macerated in lime and water, may be made into paper, that is extremely delicate and shining, and is properly called silk paper. The young mulberry trees take the most beautiful forms that it may please the trand of man to give them ; and thus this plant, so rich in its produce, furnishes also an elegant ornament in parks, or garders, and in the avenues to villas and country houses."

Frequent attempts have been made to find a substitute for the mulberry, as food for the silk worms, but the experiments have failed; many other plants have nourished them for a few daye, after which it has caused their death, or affected them with dis. tempers.
"Experience has not only shown that the silk worm has no other aliment proper to its nature than the mulberry leaf, but it is also ascertained to be extremely hurtful to this delicate insect to change the quality of the leaf, as inexperienced persons, in rearing them; are too apt to, do. The cocoons produced by worms uniformly fed with the same kind of leaf, ate always more beautiful, finer, richer in silk, and of a more delicate tissue."

With regard to the constituent elements, we extract :
"It is not doubtful, in my opinion, that silk is only an extract from the substances which nourish the insect that spins them, and upon the quality of the aliment depends the quality of the silk.-

This opinion seems to me to be supported by the observations on species of mulberry recently discovered by Professor Bafrau De lijle, of Montpelier, in France, which he calls morus nervosa. It is said, in fact, that the transparent edges are formed by the extravasated gummy and resinous matter of which the sill is constituted, and that the worm that is fed with this sort of leaf gives a silk of finer quality and greater quantity. It has always been scen that an immense service could be rendered to the seropedic art, if we could ascertain, by an exact and thorough analysis, what is the actual composition of silk. Unhappily, this precise knowledge is yet wanting., Berthollet, Fourcroy, and Chaptal, have declared that silk has much analogy with the tissue of horn, and that by distilation, they have obtained from it carbonate of ammonia, and a large portion of oil. Roard, in his excellent Memoir, addressed to the National Institute at Paris, (see volume xxix. Decreusage des Soies,) on this subject, gives an analysis conformable to the observa:ions of the three chemists above named. He demon. strates that the yellow silk contams:
"A. Of gum, 24 or 25 per cent.
"B. Of coloring matter, which is a resinous substance, nearly solid at 12 degrees of the centigrade therniometer, and entirely liquid at ' 30 degrees, its proportion is 55 to 60 per cent.
"C. Wax, which melts at between 75 and 80 degrees, is insoluble in water, and dissolves easily in the alkalies, or in soap.
"It appears the wax forms the exterior varnish of the silk; it is found in the yellow as well as the white, and forms 1.200 or 1.250 of their weight.
"D. A volatile oil, having a strong and disagreeable odor.By itself, it resembles the essential oil of anise, or of any other vegetable matter. Brigman has also stated that silk is of an intermediate nature, between vegetable and animal, which corresponds with the qualities discovered by the other chemists."

As to the climate and soil best adapted to the mulberry, Mr. T. remarks as follows:
"Hills, are beyond doubt, the best situation for this tree. They are, so to speak, so many large espaliers, where the greatest brightness of the sun's rays is united with the influence of fresh air. Mulberries so situated give, if not the greatest quantity, certainly the best quality of leaves; ahove all, when the soil is mod. erately light, and tolerably moistened by exhalations from a neigh. boring lake or river. The small stones that are commonly mingled with the soil in such situations, are very useful in keeping the ground loose, ard thus facilitating the growth of the roots, while reflecting the rays of the sun. They contribute to secure that degree of warmth which is essential to the furmatio: of the sap in all young trees.
"The action and influence of the air easily penctrate into these light soils, spreading and developing the more fully the delicate principles of vegetation. Strong and clayey soils are much less fit for the mulberry. The strata of clay, by their hardness, ob. struct the percolation of the rain drops, and cause an excessive wetness, occasionally very hurtful to the roots of this tree. Nevertheless, we may sometimes see superb plantations of the mulberry, in a luxuriant state of vegetation upon the great plains compo. sed of alluvial land, or of the tertiary formation.
"It is certain, that in plains the growth of the mulberry is more rapid, and its leaves will be more abundant; but the worms nourished with such leaves, will give a silk that is less strong, coarser, and less in quantity. An exprosure to the south, or to the cast, is generally the best. The north and north-east winds are injurious to these trees; but the vicinity of lakes and rivers, is always a certain element of proiperity for mulberry plantations."

It seems to be admitted, that the various species of mulberry, if propagated by seed, do not give precisely the same kind of tree; engrafting is, therefore, resorted to by skilful culturists. Scarcely fifteen or iwenty per cent. of the morus mullicaulis seed preserve their characterstics.

The muitiplication of the mulberry, by cuttings and by seed, we give at length :
"All species of mulberry may be multiplied by means of cut-tings-taking the most vigorous shoots of one year's growth, cut in pieces of five or six inches in length. These cuttings are planted in a nursery-ground, which is well dug, and dressed wita. well prepared manure, at the distance of two feet from each other. The ground ought to be watcred for fifteen or twenty days after the planting, and every possible care should be taken to guard the young plants from the heat of the sun, by means of straw or
boards, with which a temporary covering should be made. It is also very necessary to give attention that the cuttings are taken from the trees when the sap is already in circulation, and vegeta. tion is in full vigor. This method of muitiplying the tree is, how. ever, only followed in the smaller agricultural establishments.
" Besides that at least one half of the cuttings, which are planted in a nursery-ground. do not take root, and, in a few days become quite dried up and dead-it is a fact, that cuttings furnish always very feeble trees, that do not last long, even in soils that are humid, or often watered, where they prosper best. But the morus multicaulis, which abounds more in moisture, and has a softer woud, is more easily multiplied by cuttings. This is, indeed, the only means of propagating them, without changirg their species. The trials made heretofore of this tree, are not of sufficient duration to ascertain whether the plants formed with cuttings will attain the same size. The seed of the mulberry ought to be taken from those trees that are in perfect health, neither too young nor too old, and let care be taken not to strip the tree of its leaves the same year. It is also a good plan to mix the seeds with fine sand, a little moist, about two hours before planting them.
"The ground in which they are sowed, should be of a light and sandy soil ; and to be as much as possible permeable to the young roots; to the atmospheric gases; to rain and to warmih; it should be dug to the depth of eifhteen inches. Alter the seeds are buried in the earth, it is necessary to press and beat the surface lightly. If the ground is rather dry, it cught to be watered frequently; but, above all, it is requisite often, and with the greatest care and gentleness, to stir up the earth, clearing it from all parasite plantz, which would impede the growth of the young trees. This work requires considerable patience and can be best done by a careful and industrious woman. The best manure is ashes and sheep-dung, well dissolved.
" If the nursery-ground has been well attended to, during the first year, the litule mulberry trees may be taken up, in order to be replanted, ei her in another nursery, in order to become large trees, or in the field, to make hedges of low stature. But if it is preferred to leave them longer than the spring, in order that they may gain greater strength, it is useful to cut these stems close off to the ground. The new growth will acquire additional vigor from this operation, and there will be obtained, the second year, a mulberry tree four or five feet high, and sometimes even more.
"I tried, about ten years since, the rffect of sowing in one of my fields that was well cultivated, and of a good soil, the mulberry seed separately, one by one, in the very places where I desired to have a hedge-row, and also trees of full size. I took great care to keep the ground free from all sort of grass near the young trees as they sprung up, and to have the soil loosened often. The result surpassed $n y$ hopes. At the end of three years, my hedge was five feet high, and very rich in branches and leaves. Those of the plants that I desired to become large trees, commenced in the fifth year to afford me leaves, and they had already attained to a noble height. * * *
"The best manure is dung not too much decomposed, for these plantations; but care must be taken, that the dung does not come into actual contact with the roots, which should be entirely surrounded with good mould. Small pieces of wood or straw, the sweepings of a woollen factory, or woollen rags, and all such like materials, are excellent manure for all plantations of the mulberry. But sheep dung is the best of all especially for cold lands.
(To be continued.)

Fiom the Geniseo' rarmer.

Stoci in the Winter.- What is the expense of keeping atock through the Winter? is a question frequently asked, and the correct solution of which is of consequence to the farmer. I have paid some attention to the subject, and am willing to allow my opinion to be laid before your readers. My hay has been cut and secured in such a manner that its quantity could be estimated with tolerable accuracy, and the manner of its distribution ruther more than guessed at. My horses have eat rather more than 2 tons
each; oxen will eat about the same ; cows a ton and a half ; sheep require a ton to eight, or twelve ton to a hundred; and calves will make way with about half. a ton ench. This I am aware is more than has been usually allowed, but I am confident it will be found rather under than over the quantity required where hay alone is uscd, and it is desired to bring the stock through in good order. Farmers by the use of other fodder, such as corn-stalks, straw, \&c., greatly reduce the quantity of hay fcd, and where the materials are cut, a still further saving is effected. If horses are worked constantly during the winter, they must have at least thirty dollars worth of oats to a span, in addition to thc hay. I am convinced that horses pay the least proft of auy animal whatever in proportion to the cost of raising, and slould be pleased to see shcep and cattle taking the place of those droves of strag. gling worthless colts that swarm on many farms. First rate horses will always commaind a good price ; as the means of keeping at present are, ordinary horses are worse than nothing. Animals with us must be fed fiom the first of November to the middle of April or later, and those which are the must valuable 11 every respect should alone be selected by the farmer, as the subject of such expense. Let every one count the cost of his different animals, and determine for himself.

Advertisements.

TO RAILROAD OR MANUFACTURING COMPANIES.
We ask attention to the following advertisement. The gentieman referred to will be found an acquisilion to any company that requires the aid of a superintendant, professing skill, experience and character-and we shall take great pleasure in being the medium of communiciation to him from those who may desire information. - [Eds. R. R. Jour. and M. Mag.]

F TO RAILROAD COMPANIES.

A PERSON experienced in the construction of Loconotive Enginns (many of his Manafacture being in surcessfut operation on important Railruals in the Uated states) and who is likenise thorouglily acquainted with the management of auch machines, and, indced, the enti-e ordeal of Railrnads, ixdesiruns of ob-aining the situation of General Superintendaut on soma Rai ruad, South or West.
The must satisfactury testimonials of charncter and capability can be produced. Conmunications addrensed to the Editura of this Journal, statipg the location of Road, dic. will meet with prompt atiention.

9t-24

Engineer's Office, Wilmington and Raleigil Rallroad, May, 4, 1837.

TO BRIDGE BUILDERS-Proposals will be received unlil the 301 h Jane, for the erection of Bridges on the Wilmington and Ralcigh Railroad, scruss the Necu-e and Tar Rivers, Con entuea, Swifis, Fishing and Quanky Creeks. The Bridgea will be built on the plan of Town. The greatast span will not exceed lev feet, the frames weatherboarded and cap. $e \mathrm{~d}$ (not rourfed.) The timber will be fuard.
Pur the piers and sbutments, stone can be lad, at the Neuse six milos by water from the bridge site-at Tar River it is fund at the crossing-at Contentnea. the Bridge will rest on wuoden abuments; at Swift's Creck, the rock is situated about 3 miles by whter from the bridge site-at Fishiug Creek it is fould within a few hundred yards of the bridge on the bank of the ereek-and at Qunnky the quarries are sisunted about three miles by land from the projosed bridge. The piers and abuments will in no instance exceed 22 feet in height:- Yor further partuculara, address the subscriber at Wilmington, Norih Carolina.

WALTER GWYNN, Civil Engineer. $2 t-24$

MECHANICS' FAIR.

Notice to Mechanics, Artisans, Manu-facturers, \&c.- The undersigned give no-tice that the first Annual FAIR of the Massachusetts Charitable Mechanics' Association will be held in the city of Bostoil, in September next, commencing on Monday, the 18 th, and continuing at least three days.
The Association have placed at the disposal of the Board of Managers, the sum of Five Thousand Dollars, to enable them to conduct the Fair upon a liberal scale; and they hope to be able to render satisfaction to all who may feel disposed to offer articles for exluibition.
Medals or Diplomas will be awarded to the owners of all articles that may be deem-ed worthy of such distinction; and the Managers intend that the strictest impartiality ard fairness shall be observed in the distribution of Premiums.
The Managers, in furtherance of the snbject they have in view, invite contributions, of articles from every department of indus. try; of choice specimens of A merican ingenuity and skill ; rare
and valuable domestic productions, natural or artificial ; the delicate and beautiful handiwork of fernales ; useful labor-saving machines, implements of husbandry, and new models of machinery, in all their varieties.
Judges will be appointed to examine all articles offered. and the managers will award a gold or silver medal, or a diploma, to all articles that may be pronounced by the judges worthy of reward.

Articles intended for exhibition, must be delivered on or be. fore Wednesday, Septem.ber 13th.

Arrangements will be made to exhibit, in operation, any working models that may be offered, which will render the exhibition useful and interesting, and the managers respectfully invite'cgntributions in this branch. A careful and competent superintendent will be appointed to take chare of all models sent fur this purpose.

Board of Managers.
Stephen Fairbanks, Jos. T. Buckingham, John Rayner,
William Adans,
Uriel Crocker, Gardner Greenleaf,
James I. Homer,
James Barry,
Joseph Tilden,
Ephraim Harrington,
Joseph Lewis,
Walter Frost,
Thomas J. Shelton,
James Clark,
Henry W. Dutton,
George Darracott,
Wm. S. Pendleton,
Charles A. Wells,
Henry Bailey,
Jonas Chickering,
Henry H. Barton, Thomas Boyd,
Wm. Uunderwood, George (G . Smith,
John G. Rogers.
P. S. For any further information ad.dress JAMES L. HO. MER, Corresponding Secretary, Boston.

Boston, March 24, 1837.
m28-ts1
transactions of the institution of civil engineers of geeat BEITALN.
The first vo'ume of this valuable work, has just made its appearance in this country. A few copies, say twenty-five or thirly only, have been sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order thercfore, to place it within their reach, and at a convenient price, we sladl reprint the entire work, with 11 its enagravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to ony part of the Unite 1 States by mail, as issued, or put up in a volume at the close.

The price will be to subseribors thrse dollars, or five dollars for two copies-alvays in advance. The first number will be ready for delivery early in April-Subscriptions are solicited.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotire Engines, with Engravings, hy the Chevalier DE Pambour-150 pages lage octa-vo-done up in paper covers so as to be sent by mail-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts . for any distance exceeding 100 ms.

Also-Van de Graaff on Railroad Curres, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.
Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts. -*** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.
AVERYS ROTARY STEAM ENGINES.-AGENCY.The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving Saw-Miles, Geain-Mills, and other Manupactobies of any kind.
Engines only will be furnished, or accompanied with Boilers and the necessary Nachinery for putting them in operation, and an Engineer always sent to put them up.
Information will be given at all times to those who desire it, either by letter or by exhibiting the engines in operation in thiscity.
Inquiries by letter should be very explicit and the answers shall be equally so.
D. K.MINOR,
80.W. ${ }^{\text {Whet., New York. }}$

TO CONTRACTORS.

JAMES RIVER AND KANAWHA CANAL.

THERE is atill a large amount of mechanical work to let on the line of the James Rivar and Kanawha Improvement, consiating of swaity locks, about une hundrod culverts and sevetal large aqueducta, which will be offered to rospunsible contracturs at fuir prices. The lociz and aqueducts are ta: be built of cut stone.
The work contracted for mast be finished by the lot day of July, 1833.
Persons desiro is of obtsining work are requested tn apply at the office of the undersigned, in the city of Richmond, before the fifteenth of May, or between the fifth and the fifeenth of July.

CHARLES ELLET, Ja.
Cliief Engineor Jas. Riv. \& Ka. Co.
P. 5-Ths valley of Jamos iliver above Richmond is hoalthy.

16-10t

PATENT RAILROAD, SHIP AND
 BOAT SPIKES.

* The Troy Iron and Nail Factory kecpa constantly fur saleavery oxtensive assurtment of Wrought Spikes and Nails, from 3 to 10 Incties; manufactured by tho subseriber's Patent Machinery, whinh aftet five years successful uperation, and now almoss nnitersul use in the United Siatem; (es well as England, where the subscriher obtained a patent,) are found superior to nny ever offered in market.

Railruad Cumpaniea may be aupolied with Spikes having countersink heads suitable th the hules in iron rails, tu any amount and on short nutles. Almost ell the flailruads now in prugress in the United Statez are fastenerl with Spikes maje at the above narard fac-tory-fur which parpuse they are fuund invaluable, as their adhesiun is mure than double any commun spikee made by the hammer.
** AL arders directed to the Agent, Troy, N. Y. will be punctually attended to.

Troy, N: Y., July, 1831.
\& Spikes are knpt for sale, at factory prices, by 1 \& J. Tuwnsend, Albany, and the princips 1 Irun Mer chants in Albany ana Trny ; J. I. Bnower, g2i Waser Street, New.York; A. M. Junes, Philadelphla;
P. S.-Rnilrived Compunies would do well to forthard theif orders us eurly as pructicable. as the aubscriber is desinnus of, extending the manufacturing so as to keep pare with the daily increaring demand for his Spikes.
(1J23ava)
H. BURUEN.

TO RAILROAD CONTRACTORS.

SEALED proposals will be received at the office of the Selma and Tennesseo River Kail. foad Company, in lhe town of Selma, Alabama, for the graduation of the firat forty miles of the Selma and Tranessce Railroad. Pruposals fur the Girst eix miles from Selma, will be received after the first of May, aud acted on by the Board on the 15th May, Pruposale for the ensuing 34 miles, will be received ater the loth May, but will nut be examined until the lit of August next, when the work will be ready for contract.
The line, alor the first few miles, pursuing the flat of the Mulberry Creek, occupies a region of country, heving the repute of being highly healthful. It is free from ponds and swamps, and is well writered The suil is generally in cultivation, and is dry, light ent sandy, and uncommunly easy of excavation.The entire length of the line of the Sel a and Tennessee Railruads, will he about 170 miles, passing generaliy through a rogion as favorable for health ae any eraliy through a rogion as
in the Southern Country.
Owing to the great interest at stake in the succeass of this enterprise, and the nmount of capital already ombarked in it, this work must necessarily pruceed with vigor, and l invite the attention of ment of industry snd enterprise, both at the North and elsew here to this undertaking, at offering in the prospect of continued ermployment, and the character of the soil and climate, wide and deairable field to the contractor.
Propomale may be addratsed either to the subseribor, of to Gencral Gilbert Shearer, President of the Company.
ANDREW ALFRED DEXTER, Chief Engineer Selme, Ala., March 201h, 1827.

ROACH \& WARNER,

Manufucturery of UPTICAL, MAIIEMATICAI, AND PHILOSOPHICAL INSTRIMMENTS, 293 Bfoarlway. Now Yoik, wils keep constantly on haurd a large and general asoortment of Instrume ents in their hine.
Wholemale Dealers and Country Mefehants supplied With SIRVEYING COMPASSES, BARUME. TERS, THERMOMETERS, \&C. \&e. of their own manufacture, warranted accurate, and al lower prices then can bo hed at any olthor establahment.
rastroments made to order aad repaired. 14 Iy

FRAME BRIDGES.
THE undersigned, General Agent of Col. S. H. LONG, to hoild Bridgea, or vend the right to others to build, on his Patent Plath, would respectoflly inform Kailroad and Bridge Corpuraions, that he is preparea to make cintracts to build, and furniwh all materials for superstructures of the kind, in any part of the linited States, (Maryland excepted.)
Bridges on the ebuve planare to be seen at tho fullowing localities, viz. On the main road leading frum Balimore to Washington, two miles from tho furraer place. Across the Metawatilkeag riter on the Mililary ruad, in Maine. Un the national road in Illinois, at sundry polnit. On the Balimore and Susquehanna Rrailrond ut three points. On the Hudson and Patterson Railroad,in iwo places. On the Buewnand Wurcester Kailroad, at several pointa. Ou the Boston and Providence Railroad, at gundry points. Acrowe the Contoocnok river as Henniker, N H. Across the Sunhegan river, at Milford, \mathbf{N}. \mathbf{H}. Acrues the Cunnocticut river, al Haverlill, N. IH Aeroes the Conwocook river, at Hancock, N. Ahtro, Maine. Acrowe
druacoggit tiver, at Turner Centre dhe Kennebec river, at Waterville, Maino. Acrows the Genesse rivor, at Squakiehill, Mount Morriq,
New-I ork. Acruss the Whit Hiver, at Hartford Vew- I irk. Acruss the Whith River, at Hartiond II. Acruss the month of the Broken Strnw Creek, Penn. A cross the mouth of the Catareuguc Creek, N. Y. A Kailroart Bridge diagonally accose the Erie, Canal, in the City of Ruchestet, N; Y. A Ra Irosd Bradge at Upper Still Wister, Oruno, Maine. This Bridge is 500 feet in lengti; one of the spans is over 200 feet. It is prubably the FIRMEst woon: N aripue ever buils in Ainerica.
Notwlithstanding his prexent engagemente to build between twenty ind thirty Railruad Bridgea, and sevaral conmun btidges, several of which are now in progrese of conulruction, the aubscriber will protnptly attend to business of the hind to much greater extent and on libral terms.
Ruhester, Jan. 13in, 1837.
ALBANY EAGLE AIR FURNACE AND MACIHNE SHOP.
WILLIAM V. MANY mannfactures to order. thon daatines for Gearing Milla and Factoriee ol every description
ALSO-Sream Engines and Railroad Cantinge o avery description.
The collection o
The collection of Patterne for Marhinery is not equalled inthe United States.
$y-1 y$

NEW ARRANGEMENT.

nopes for inclifet platite or railrodis.
WE the subscribers having formed a co-parinership under the atyle and firm of Fulger \& Coleman, for the manufacturiug and selling of Lupes fur inclined planes ol railruads, and for ulher usis, offer tusupply ropes fur inclined plancs, of any length required without splice, at short nutico, the malufacturing uf cordage, her etofure carried on by S. S. Durfee doc., will he durte by the new firm, the same superintendant and machinery afe empluyed by
the new firm that were employed by S. 8 . Durfee of the new firm that were employed by S. Durfee a rupes will be shipped to any port in the United Sitates. $12: \mathrm{h}$ munth, 12h, 1836 . Il uduon, Culumbia County Stete of New-York.
33-4f.
ROBT. C. FOLGER
(:LURGE CULEMAN,

AMES' CELEBRATED SHOVELS, SPADES, \&c:

300 dozons Amos' superior beck etrap Shovele.
150 do do do plain do do
150 do do castatoel Shovels
150 do do do castatoel Shovels é Spadee
150 do do Gold-mining Shovels 100 do do plated Spadee
50 do do sucket Shovels and Spades.
Tugether with Pick Axes, Churu Drilla, and Crow Bers (steol puinted,) mannfactured frum Salizhury re fined iron-for sale by the manufacturing agents, WITHERELE AMES \& CO.

No. 2 Liberty street, Now.York BACKUS, AMES \& CO.

No. 8 State atreet, Albany
N. B-Also furnished to order, Shapes of every de anripion. mede frum Salubury refined Iron v4-If

STEPHENSON,

Builder of a superior style of Passenger

Cars for Railroads.

No. 264 Elizabeth street, near Bleecker rtrent, New.York.
RAILROAD COMPANIES would do woll to exs mine these Cars; a specimen of which may he ceen on that pert of the Nnw. York and Harloem Rainoed

TO RAIILROAD CONTRACTORS. PROPUSALS will be recelved, at the offire of the Hiwasese Kairoed Comer in the cown of ATHINe; TE inssise, until sunset, of Monday, Junte 12th, 1837 ; fir the grading, meeonry and bridgoa, on that purtion of the Hiwabeze Raiszoad, which liee between the Kiver Tennensee and Hiwassee. A distance of 40 miles.
The quanlity of excavation will be aboth one mil. ion of cubic yards.
The line will be staked ont; and, logether with draininge end specificutions of the wurk, will be realy tit the inspoction of contractors, on and after the let dey of June.

JOHN C. TRAUTWINE,
Engl.eer in Chlef Hiwasee Railrom.
RAILWAY IRON, LOCOMOTIVES,\&c.
THE subscribers effor the following articles fot sule.
Railway lron, fat bars, with countorsunik holoe and mitred joints,
350 tons $2 t$ by $t, 158$ in length, welybing $\frac{168}{488}$ per Λ.
 70 "1t"t," " \quad " 80 " 21

with Spikes and Splicing Plates adupted thereto. Ty be ould fee of duty iu state goternmentis or incof: puratad companies.
Orders for Pennsylvanis Boiler Iron execused:
Rail Road Ciar aud Locumotive Engine. Tirelh wrought and turned or naturned, ruady to be fitted oth the wheels; vis. $30,38,36 ; 42,44,54$; and 60 iachet alameter.
E. V. Patent Chain Cable Bulta for thailiviy Cat axley, in lengthe of 18 f.et 6 inches, to 13 foet $8 t, 21$ 3, 3t, 34, 3t, and $3 t$ inches diumeter.
Chains for Incliund Plaives, shurt and otay link, manufactured from the E. V.Cable Bolts, and proved at the greatest atrain.
Indie Rubber Rope for Inolined Planow, made froth New Zealand tlax.
Also Patent Homp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt fir placing between the iron chair and ston. bluck of Edge Ra:jways.
Every deacriptun of Kailw
Every descriptrun of Kailway Iron, as n-ll as Lo. cumorive Engines, imported at the ahortent notice, by the agency of one of our pariners, who seaides is Fingland tor this purpose.
A bighly respectable Amorican Enginecr, residea in Eingland for the purpuse of iaspecting all. Locomotives, Aluchinery, Railway fron dec. ordered throagh us.

28 tf
A. \& c. RALSTON \& CO.;

ARCHIMEDES WORKS:

(100 North Moor strect; N. Y.)
New-Yoak, February 12ih, 1836. THE undersigned bege leate 10 imform the proprites cors of Railroads that they ure prepared to ftrmish th kinds uf Machinery fut Ruilroads, Lucomotive Engines of any size. Car Wheele, auch as ase now in sugcess Sul operation on the Camden and Ambuy Ratroad nunn of which have fuiled-Castings of all kinds Whoels, Axles, and Buses, furnished at shorteit notice. 4- 211
H. R. DUNHAM \& CU.

MACHINE WORKS OF ROGERS, ketchum and Grosvenur, Patorron, New Jersey. The undernigned receive ordert for ihe folt luning articles, manufactured by thrm, of the ment anperiur deacription in every. particular. 'I hoir works be ing extensive, and the nnmber uf hetids employod being large, they are onahied to esecute both large and small ordert why protmptnest and deopatch-

RAILKOAD WOHK

Locomotive Steam-Lingines and Tendets; Drit ing and uther Locormutive Wheole, A ales, - pringsame Flange Tires; Car Wheols of ecue iron frum a Te riety of patterne and Chills; Car Whoels of cesstiroth with wrought Tires; Axles of bet American refined iron; Springs; Bozes and Bolts for Certe.
COTTON WOOL AND FLAX HACHINERY,
Of all deacriptione and of the mose imprevid Pith corm, Stylo and Workmanehip.
Mill Geering and Mill wright work ginorlhy; Fly. Jraulic and other Prescos; Preas Scrawe; Callen. dort ; Lehes and Toole of all hinds; Irop and Brast

 AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WFEKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DULLARS PER ANNUM, PAYABLE IN ADVANCE.

CONTENTS.

Hiwassee Railroad: Aldrich's Locomotive ; ctc.,	401
Transactions of the Institution of Civil Engincers.	402
Utica and Schenectady Railroad,	409
Saratoga and Washington Railroad; Morris and Essex Railroad ; Long Island Railroad,	409
Electro Magnetic Machine,	409
Observation on the duty performed by the Cornwall Steam	
Engine,	411
Agriculture, etc.,	413
Advcrtisements,	41

AMERICAN RAILROAD JOURNAL.

NEW-YORK, JULY 1, 1837.

Himasse Railroad. -The following extract from à letter, dated Athens, Tenn., June 15th, furnishes renewerkevidence of the spirit with which the people of the south and west, prosecute their works of Interual Improvement-we need not say how much pleasure such notices aff rd us, nor how deeply we regret the delay which is caused by the present depression of business, upon our own great works. The times must mend, and the works must proceed.

The 40 miles of the Hiwassee Railroad, extending from the Tennessee River to the Hiwassee at Calhoun, have been let out to gool responsible contractors, at prices which ensure their completion, at a cost less than my estimate. The surveys have been extended to near Knoxville, a further distance of 30 milez, with a result equally as favorable as the portion let out.

03 The re-publication of the "Transaction of the Institution of Civil Engineers," has caused delay in noticing several Railroad reports which have been received at different times. We shall endeavor to give them attention soon.

To the Editors of the Railroad Journal.

We give place to the following communication, in relation to "Aldrich's Jocomotive for ascending inclined planes," without stationary power, to prevent any misapprehension from the imperfect notice of it in a recent number.

On my return to the city a few days since, I observed in your Magazine of June 8th, a notice of my model, or mode of asconding and descending inclined planes upon Railroads, with a

Locomotive Engine. I had come to the conclusion to say no more about my improvements (in the manner of gazetting) until they were thoroughly tested upon a large scale. But as you have been kind cnough to notice a model of mine, which is at the American Institute, which is a very imperfect one, it may have a bad, instead of a good effect. The model which you saw, does not by any means contain all my improvements; the bar in the centre of the axle of the driving wheels which you supposed to be fur the purpose of regulating the velocity in de. scending, is no part of my improvements, it was placed there for the purpose of ascertaning the power requisite to overcome the gravity of loads upon different angles of inclination, running upon different sized wheels, the lever to which the power was applied, remaining the same on all the elevations. It is unnecessary for me at the present time, to go into a regular specification of my improvements, but I will merely state what they are intended to obviate, and what to overcome, in the present mode of constructing Railroads, it is intended in all cases to do. away with stationary power, and in some cases to run up an inclination instead of running around.

It would in many cases, require more power a nd time to overcome the extra friction on the length of the curvature around an elevation, than it would to overcome the gravity upon the in clinat:ion, many have examined my late models, and think they will succeed, but the only way to settle such matters is, to test them upon a large scale, or put them into actual use, which I am in hopes soon to accomplish.

> Respectfully, your ob't. serv't., E. F. Ardaica.

Stite Improvements.-The Ravenna Star announces that Governor Vance has subscribed four hindred and fifty thousand dollars on behalf of the State, to the stock of the Pennsylvania and Ohio Canal Cornpany. The money is to be borrowed on the credit of the State. The counties of Portage and Trumball äre expected to invest their surolus in a loan to the State for this purpose. The Bank of Muskingum has loaned $\$ 50,000$ to the contractors on the canalat Zanesville, until the State can procure funds to contirue that work. - [Sciotn, Ohio Tribunal.]

XXVI. details of the construction of a ATONE bRIDGE ERECTED OVER THE DORA ripafia, near turin, by chevalier mos ca, enginefr and architect to the bing of sardinia, \&c. \&c. drawn up and communicated by me. b albano, a. inst. c. E.
This bridge which may be characterized as the boldest work of the kind, is erected within the suburbs of Turin, over the Dora Riparia, a river ordinarily shallow, but liable to heavy floods, during which it becomes extremely rapid, owing to the great declivity of its bed.

It consists of a single large arch of gran. ite, (of which the elevation is shown in Plate XIII.*) resting on solid abutments of the same materials; its hine of direction is in continuation of the axis of the main road which crosses the Alps from France, called the road of Italy, and it has an unvarying surface level throughout its own length.

The foundation of the abutments are laid upon piles headed with cross sills, on which rest the first courses of stone with offsets : over these are placed five other horizontal courses, from the uppermost of which the arch springs, being a segment of a circle, having a span of 147.63836 feet, and a versed sine of 18.04468 feet. These proportions, which correspond to an arc of 54° $56^{\prime} 45^{\prime \prime} 26^{\prime \prime \prime}$, render it, I believe, the flattest arch of this form yet constructed in Europe.

The lightness of appearance derived from the flatness of the arch is much increased by the introduction of two ugnalure, or cornes de vaches, (as the French call them,) which rising from the third course above the springs of the principal arch, form a second one of a somewhat larger span, (os repre sented in the Plate, tangential to the first at the intrados of the key-stone, and having a versed sine of 12.1391 feet.

The sides of the abutments are of a convex form, and thus acting towards their ba-

* It will be observed that, in order to give the engravings of fatl size, we have been frequently obliged to give them in two paits, and on lifferent, but contiguous pages.
ses as cut-waters, give, in conjunction with the ugriatore, a more free and open passage for the descent of the stream in time of floods, whilst their upper parts add elegance to the wings of the structure and increase the width of the approaches: these last are bounded on each side by an advanced body of wall adorned at the salient angle by a pilaster, and terminating at the other end on the banks of the river, thus making the total length of the bridge between these extreme points 300 feet.

The arch is composed of 93 wedges, of which 91, including the key-stone, are of equal thickness,-as seen in Plates XIII. and Fig. 1, XV., whilst the remaining two at the springs are larger ; their thickness being determined by the radius which meets the upper or apparent arch at the point wherc it springs from the convex part of the abut. ment. The key-stone is 4.9212 fect deep.

Upon the courses of the abutment from which the ugnalure spring rest ten other horizontal courses, the upper surface of the last or superior one being level with the extrados of the key-stone, immediately surmounting which is a plain cornice with modillions cut in the solid stone, similar to those round the Timple of Marle Vendicatore at Romè,* (as seen in the cross section of the cornice, Fig. 4, XV.) This cornice is continued beyond the pilasters of the abutments in a plain band without modillions.

The upper line of the cornice marks externally the level of the footpath and centre of roadway; above this is a solid plain parapet rising perpendicularly from its base, and terminated ly a corona; its total height being 3 feet 4 inches.
I'ne roadway over the arch is 40 feet wide between the parapets: of this width each of the footpaths occupies about five feet, and the carriage-way 30 feet; but over the abutments the width is increased to 88 feet by their convex form, and at the approaches the roadway between the parapets of the

* See Palladio, Book IV. Chap. VII. Ed. Lond. 1738.
advanced body of the walls is 144 feet wide forming at each end of the bridge a piazzella or open ornamental approach.

The style of the architecture and the nature of the mtterials give to this bridge a noble and simple grandeur, and a character quite unique ; and as a work of art it surpasses all stuctures formed on similar principles, and is far superior to the bridge of Rialto, built by Michael Angelo, which, though only having a span of 98.6 feet and 23 feet rise, was when erected and long after reckoned a masterpiece of work on account of its flatness.
If I may be allowed to express an opinion, the general architectural appearance of the bridge over the Dora would have been im. proved, if a simple projecting base had been given to each of the pilasters of the abutments, with its summit forming a line a lit. the above the water level. By this addition a better proportion would have been main. tained between the width and height of the pilasters, and a more strict accordance with the cornice that surmounts them. This method is now generally employed, with the best effect, in every great work of the kind, and particularly in this country, which possess some of the most magnificent structures of the same nature, particularly over the river Tisames.
I shall now proceed to examine the particular reasons, which determined the engineer to propose and adopt such a structure, as well as to explain the accurate nature of the processes which he employed for the construction of a work, in which the boldness of the design is equalled, if not exceeded, by the excellence of the execution.

In planning the proposed bridge, the engineer had to keep in view the following points: 1st, That it was to be erected over a river of considerable width, and during fl ods, to which it was subject, of great velocity; 2d, That it was to correspond in its proportions with the main road over the Alps, one of the great thoroughfares into Italy; and 3dly, That it was to adorn the

approaches to a capital city of considera. ble magnitude and beauty.
The nature of the river and the oblique direction of its bed, relative to the axis of the main road at the entrance of the town were the first difficulties to be surmounted, and the engineer at unce conceived the necessity of making a new branch road through the suburbs, and of constructing the bridge of a single arch. He perceived the impediments and bad effects that an ob lique bridge of three sinall arches vould produce, having the piers also oblique to the stream, or even one of a single arch of larger span in a very oblique direction; he felt convinced too that the art, although not of recent origin in Italy*, does not afford to this day proper means of executing such a work satisfactory on a very large scale.

Nor cisuld he adopt the plan of an arch perpendicular to the axis of the stream, without deviating from the straight line of the branch road which he has alrcady projected from the centre of the town, which was disigned to cross the suburbs, pass over the bridge, and continue on the opposite bank; nor without also being obliged to form such angles as would endanger the safety of travelling vehicles.
He conld not therefore adopt any other scheme than the one described, convinced, that where solidity, beauty, and convenience in a wark of public utility are alike required no secondary consideration ought ever to influence any one who undeitakes the direction of such a national enterprise, in which are involved the reputation both of the artist and his country.

The required section of the water way

* The art appears to have been known there as early as 1530, when Nicolo, called "Il Tribolo," erected a bridge of this kind over the river Mugnone, near Porta Sangallo, at Florence, on the main road to Bologna. See Vasari, Vol. XI. p. 308, edizione di Milano, 1811.
having been first established, an arch of the span above mentioned was resolved on, having its elevation restricted to that of the level of the main road. Every part of the structure was then projected on the soundest calculations of strength, and all the directions to be observed during the execuion of the work were specified, so that it might be completed in the most accurate and satisfactory manner, and with the strictest econoiny both of time and money.

Preparatory to laying the foundations of the abutments on the shore, dams were constructed in front of their position, which being first drained by an artificial channel, the soil within them was excavated to 6.71 feet bencath low water mark, and the sur face reduced to a perfect horizontal level : piles of oak, 12 inches thick, varying from 30 to 40 feet in length, and each furnished with an iron shoe of about 16 lks , weight, were then placed from 3 to 4 feet from cen. tre to centre, as shown in Plate XIV., and driven vertically through the strata, after which their heads were cut in a horizontal plane. These piles were driven by a rig ging pile engine, having a monkey weigh ing 8 cwt ., worked by 25 to 30 men, and thus 200 men were employed at the same time on each bank of the river. The depth of the foundations of each abutunent is 40 feet, with a counterfort at the sides 20 feet by 10,-as nown in Plate XIV., and Fig. Plate XV., taken at the level of the spinging of the arch.

Piles were also driven in for the founda tions of the circulat parts of the abutments and of the advanced body of wall forming the approaches, in which a space of 18 feet diameter was left for the construction of an arch, -as shown in Plate XIV.
Sills of oak 12 inches by 10 were then laid down upon the piles in transverse and longitudinal directions, as shown in Plate XIV., and spiked down to them: all the spaces between the transverse sills were then filled with broken ballast immersed in led
moderately liquid cement of lime and ceroso*, in the proportion of about equal partis in weight : this mass filled all the interstices left between the sills, and rose to a lev. el with their tops.
Upon this was then laid the first course of the foundation, consisting of granite blocks 1 foot nine inches in thickness, on which were continued three similar conrses with two offiets of one foot, and orer these were placed five nther horizontal courses, each two feet high, constituting the face of the abutments, and the upperinost forming the resting points of the spring of the arch, lastly, seven ott.er horizontal courses were superadded at the circular and rectangular portions of the sides.
At this stage the masonry work was stopped, and left to settle for a whole season, in order to take the consistency necessary for sustaining the lateral thrust of the intended arch.
In the meantime, for the purpose of ascertaining with great accuracy, the cut of the voussoirs, or arch stones, and the disposition of the timber forming the centres, and to faciliate the work in all its details, a platform of about 5,000 square feet was laid down, its surface being perfectly plane and level; and upon this was drawn the projected segment of the arch, together with that of another arch for the construction of the centres, of which the versed sine was 18.9015 feet. The arcs of these segments were drawn by means of points deterınined on the platform by dividing the respecive chorls into small equal parts, and find. ing the length of their corresponding ordinates by calculated tables. Thus was avoided the inaccuracy liable to arise from

* Ceroso is formed of tiles baked, pound. ed up in a mill, then passed through fine sieves, and just befoes using well mixed with lime in the proportion atove mention.

PLAN OF THE BRIDG ERECTED OVER THE DORA.
Plan of the Superstructure.

the very great length of the radius had they bsen described from a centre.
The centres of the two arches being determined, the disposition of the timber to be adopted for the centering was drawn on the platform in full size, and from these tracings all the timbers were prepared and shaped; the requiste operations for placing the different pieces forming a rib being facilitated by circular wooden rollers of equal diameter which, moving on the platform, sustained the timbers at a certain height above it.

When the timbers had been thus adjusted exactly over the lines drawn on the platform, each was conveyed to its destined place, and fixed to its position by proper mortices and tenons; and while twenty carpenters were thus employed in constructing a rib, twelve others were putting up one already finished and requiring no farther alteration.

Thus was completed in 45 days the whole workmanship and fixing of the centering, consisting of 10 equal ribs, each rib being composed of three courses of timber, bound at the joints by straps and keys of iron.
Two timbers were then placed upright close to the abutments, and three piles were driven into the ground in the middle of the river and crossed by three horizontal ties ; the two upper ones supporting stays which strengthened the ribs. The ribs were bound together by twenty horizontal double timbers, fixed by proper plates, straps, and bolts ; which with all other particulars will be test understood by reference to the first Figure of Plate XV.

Upon the platform was drann also, by means of the tables before mentioned, the segment forming the exterior arch, and those horizontal courses of the abutments with
which the voussoirs are connected ; and in order to obtain the greatest precision in the cut of the wedges composing the two faces of the arch, which wedges harmonize angularly with the horizontal courses, and at the same time to verify their position on being placed, two tables were calculated, in one of which was noted,--first, the exact dimension of the principal arch;-secondly, the abscisses measured on ift chord ;-thirdly, the corresponding ordinates;-and fourthly, the tangents at the extrados of the keystone. The other table contained the same particulars calculated expressly for the face of the exterior or upper arch.

On the tracing of the arch drawn on the platform were constructed the wood models for cuiting the stones, but as the wedges at the imposts and the intersections of the ugnature with the convex part of the abui-

Plate 14.

PLAN OF THE FOUNDATIONS.

ments were to form part of the horizontal courses of the abutments, the models for those could not so well be determined in this manner; these wedges were therefore formed upon a special model made for the purpose, upon a scale of 1 to $33 \frac{1}{3}$. In cutting the voussoirs a small temporary prism was left projecting on the lower face of each, as seen in Fig. 1, Plate XV., so that when placed in their position, the base of this prism was the only part of the stone that came in contact with the centering on which it rested.

In laying the body of the arch, the engineer deviated from the usual practice of setting up a service bridge or gangway upon the ribs composing the centenng, but had small bridges constructed on each side and independent of it, though connected with each other. These bridges were of a width only sufficient to admit of the stones being moved aloang them, and the flooring of each being formed in two inclined planes tangents to the curve and meeting at the centre, the stones were dragged on rollers by means of capstans acting at the highest point of the service bridge, till each stone attained the level at which it was to be laid, and then was suspended by the following mechanism, and placed in its final position.

On the side next the centering of each of the service bridges, vertical timbers were erected at convenient distances, and supported by inclined props or stays, all the props on one service bridge being connected with the corresponding opposite ones on the other by strong horizontal beams that crossed the width of the bridge. Upon these last were laid longitudinal timbers, which served to sustain a moveable beam, that could be adjusted and fixed in a position to be over the place at which each wedge had to be ultimately laid. Pulley blocks were then attached to this beam so that they could run along it, and by means of ropes and a corresponding apparatus of punks, \&c., the wedges were lifted up by a capstain situated behind rach abuament. With such a mechanical power acting from the extremity of the bridge, two masons only on the centres, assisted by a few workmen and laborers acting at the capstans, were able to place, in one day's work, about nine wedges, weighing upon an average 5 tons each, and the whole 651 wedges composing the arch, and weighing together 3250 tons, were placed in the space of 75 days. It should be observed, that the course of the keystone is formed of seven wedges, as seen in Fig. 2, Plate XV., the two outer ones being not less than 8 feet in thickness. Near one-third of the whole number of wedges weighed about 8 tons each, and those composing the first course at the springs, from 15 to 18 tons; and the whole of these enormous blocks were placed without the smallest accident to the workmen employed, or injury to the blocks themselves,

Theory shows, and it has been praved by. trial on a small experimental arch, as well as by observation on the subsidence of arches of limited dinnensions built by Perronet and other scientific men, that in this kind of structure the settling down takes
|Plate 15.
Fig. 1.
Half the Longitudinal Section and Centres.

Fig. 3.
Plan of the Abutments taken at the Springing.

place by the descent of the parts about the centre of the arch, and the pressing of the joints of the wedges at the intradus near the springs and at the intrados near the keystone, and consequently if the general pressure that must ensue on removing the centres, and in the subsequent settlement is not properly guarded against, it'will chip off the edges of the voussoirs, and might very probably be followed by accidents of a far more serious and fatal nature. The engineer Boistard, to avoid those inconveniences in building the bridge of Nemours*,

* Buzani Antologia di Firenze.
which is only $\boldsymbol{7 2 . 3 0}$ feet span, and $\mathbf{7 . 2 0}$ fee rise, had the wedges or arch stones cut somewhat smaller than they would have been, had the intended segments been divided by the determined number of wedges. He supposed that in removing the centres the voussoirs would not come quite close to each other, and directed them to be so placed that the intervals between the joints should vary in the direction of the intrados according to the terms of a decreasing pro gression from the spring to the key, and consequently in an inverse progressicn it the direction of the extrados,

But the engineer Mosca, in planning the
bridge over the Dora, supposed, and with truth, that on removing the centering, the voussoirs should come completely in contact, and consequently he directed them to be cut exactly equal to an arch of the span of 14763836 feet, and a versed sine of 18.04468 feet, and in the framing of $i t$, as we have already mentioned, an arch was adopted for the centering, of the same span, but with a versed sine of 18.9015 feet, and decreasing proportionally to the springs where it intersects with the real segment. He directed also that the joints, instead of being on the projection of the radius to the centre of the arch, as is too generally the

Plate 15.
Fig. 2.
Half the Transverse Section taken through Centre.

Fig. 4.
Enlarged Section of Cornice and Parapet.

case, should be so placed as to have the faces of contact of those near the springs diverging between theinselves at the intrados in a decreasing progression proceeding from the impost, and of those near the centre diverging at the extrados in a similar progression proceeding from the key-stone. It is propor to state, that as the difference between the real arch and that adopted for the centres, was not of sufficient m ignituide to enable the workmen, in so great a number of wedges, to establish the spaces betwoen the joints according to the calculated progressions, in terms that they could physically appreciate during the erection, the engineer adopted the practical means of dividing the arch into three parts, and
directed that in the lower, the joints should diverge near the intrados, that the voussoir: should be placed parallel in the second, and that in the last or upper they should diverge towards the extrados.

During the operations on the platform, the cutting of the arch stones, framing the service bridges and centres, with the superstructure of timbers for lifting and setting the voussoirs, the masonry of the alutments acquired the necessary consistency, and it was then judged proper to proceed with the construction of the arch.
In o.der to be ahle to rectify the position of the wedges by means of the calculated tables, an horizontal beam Has placed below the arch in a steady position, independ-
ent of the centres, upon which were marked the abscisses; and the ordinates of the arch were designated upon two vertical timbers, es:ablished like the horizontal one, in an independent and steady position near the abutments.
The placing of the arch-stones was then begun, and carried on in the manner before mentioned, and with all necessary precau. tions; and besides those generally employed, the following peculiar process was put into practice.
The courses at the spring of the arch were first set; these were connected by crochets to each other, and to those of the face of the circular sides of the abutments which rise above the spring of the priscipal
arch of the faces, viz. up to the twelfth horizontal course; they were then cu't and disposed in such a manner as to form the required angles at the ugnalure, and at the meeting of the convex surface of the abutments with the face of the arch. After each course had been placed with the greatest nicety, their exact positions were verified by means of the abscisses, and the corresponding ordinates marked out on the horizontal and perpendicular timbers, and the inclination of each was properly ascertained. The next proceeding was to place the remaining courses of wedges ; and in order to obtain with the greatest exactness the divergence of the joints between each voussoir, and to bold thein in their required positions till the lowering of the centre s, small plates of lead of a thickness determined by the terms of the fixed piogres. sions were placed between those towards the impost at the intrados, and those towards the key-stone at the extrados, and the exact posiion of rach was verified by means of the practical method established for finding the crdinates. With respect to those voussoirs forming the centre part of the arch, they being somewhat smaller than those of the faces, and of various lengths, sma liron wedges were introduced between the joints to hold them in their desired diverging positions instead of the leaden ones. The work of setting the arch-stones being completed with the prescribed accuracy, and the final position of each voussoir being progressively rectified according to the detailed directions, the intervals left between the wedges were filled with a moderately liquid cement of lime and clean sand, mixed in equal parts, which was retained by a slight stuffing of tow, introduced at the lowest part of the aperture of each joint ; the iron wedges were then taken away, and in order to ascertain the depression which would take place in the arch on removing the centres, another ingenious yet very simple and precise method was adopted.

A horizontal line was drawn over the total length of each face of the arch, forming a tangent at the intrados of the key-stone, and on each side of the key-stone an oblique line was drawn, starting from a common point at the centre, and tangential to the faces of the exterior arch forming the ugnasure.

By means of those three lines drawn on each face of the arch, the least motion of the wedges, or voussoirs, would have been observed and determined, upon referring them to the established points of level near the impost of the arch.

Besides all these precautions, the engineer bcfore removing the centres, directed thal the cement should bo scraped off all the joints of the arch-stones at the extrados as well as at the intrados to the depth of three centimetres, to prevert, in the settling of the arch, any chipping off the angles of the faces of the voussoirs: these spaces were aga n filled at the conclusion of the work.

All these operations being completed, and twenty days having elapsed from that or which the arch had been keyed, the lowering of the centres was begun. On removing the chcck pieces, the 240 wedges supportıng the centres commenced with an almost sim
ultancous movement gliding down uniformly and insensibly, by the effects of the gravity of the arch-stones and centres; and this mo. tion was checked and repeated at intervals, until the arch was left in equilibrium; and thus the arch-stones, elevated 18.9015 feet at the key, descended with the greatest regularity to 18.40 feet in the space of five days, that being the time employed in removing the centres, and a beautiful curve was preserved, leaving at this period the difference of $4 \frac{z}{3}$ inches between the existing arch and the projected one. The engineer, having proved the perfect accuracy of the work and the solidity of the arch, and wishing, moreover, to give it the greatest degree of settlement of which it was capable, and of obtaining a mass absolutely stable, that would enable him to work its spandrill walls, cornice, parapet, \&c., in a perfect level line, directed the arch-stone to be loaded with a mass, formed by a cube of ballast of 1854 metres and weighing about 3000 tons, which was disposed symmetrically over it, and was much beyond what the arch when completed, witio all the additional stone-work and its grcatest occasional hads, would ever have to sustain. This weight was left upon the arch for the space of four months, and the sinking under it amounted only to $1 \frac{3}{5}$ inch (4 centimetres,) leaving the difference in rise above the projected'segment $2 \frac{4}{5}$ inches (about 7 centimetres.)

After this trial, continued through such a space of time, the arch still kept its perfect curve, and not the least alteration was observable in any part of the structure. The engineer, now considering his arch solidly settled, and in a state for continuing the works for its completion, directed the placing of the horizontal courses to be proceeded with, viz. :-those of the face or spandril, which join the extrados of the voussoirs of the arch, and those to complete the abut. ments, which were terminated by an inclined plane of 1 in 35, starting from the extrados of the key sione towards them,-as shown in Fig. 1, Plate XV.

As soon as these operations were terminated it was verified that the upper side of the last course of the faces of the bridge was perfectly level with the extrados of the key stone, throughout the 'whole length of the bridge and approaches.

The blocks of the cornice were then placed in a horizontal position, and the whole surface of the .arch-stones, abutments, and counterforts were covered with a stratum of bituminous cement of the thickness of 0.15 metres; well beaten till it became very hard; then upon this another stratum of 7 centimetres was laid, mixed with fine gravel, and beaten smooih without the least crack; by this coating of $c \in m e n t$ the filtration of rainwater was completely prevented. This operation finished, the space up to the level of the road was filled in regular, and even strata; and when the whole was well settled and re. duced to the prescribed form, blocks for the foot-path were laid down with a very slight inclination towards the roadway, and defended by truncated conical stones, as seen in the superstructure of the bridge in Plate XIV., and the paving was put down, consisting of a stratum of sand and gravel, of the mean thickness of 15 centimetres, and covered with a stratum of sand of 0.05 cen.
timetres ; then were put up the blocks forming the parapet and its crown-as shown in the cross section of the cornice, \&c., in Fig. 4) Plate XV.

It is to be observed that no blocks le:s than from 8 to 9 feet in length were employed for the cornice and parapet, and some of those used in the latter at the abutments were as large as from 36 to 40 feet in length.

When every thing was thus completed, the most minute defects were corrected, and al parts of the structure were minutely dressed; the cement of all the joints of each face, and every part of the bridge exposed to view, was scraped off to the depth of 3 centime. tres, and washed with lime; afterwards, all those parts which had been scraped were filled with a cement expressly prepared, composed of one third part of fine powder of marble, one third of fine powder of the same granite used in the bridge, and one third of iime, with a very small quarvity of iron filings well mixed and rubbed together, till it had acquired a sufficient consistency. As soon is this cement was put into the joints, the masons were directed to apply a straight edge to them, with a groove cut in it just the width of the joints, which were of two millimetres in breadth, and through this groove to rub over the cement with an iron point till it became as hard as the stone itself.

In concluding the description of this work I should mention particularly, that all the blocks of the arcin-stones, the face of the wall and the approaches, comprising the cor nice, bands, foot-path, parapet and crown, are of the best Alpine grani:e, of the quarry called Del Malanaggio, near Pinerolo ; and the faces exposed to view being finely dressed, every other face of contact of each outer block employed was dressed to equal fineness over three-fourths of its surface. A small quantity of granite from the quarry of Cumiana, was also used, but only as back ing, in the foundations and abutments*. The first kind of granite is the best, and is susceptible not oniy of being dressed very fine. ly: but also of being used in very small and delicate work, and takes besides a very high polish; the second kind is harder but more brittle, and contains many particles of iron, on account of which its surface, when exposed to the atmosphere, becomes spotted, which gives it a very disagreeable appear. ance, as may be observed in the bridge near Turin over the Po.

Finally, I have to state that this bridge was constructed in the space of four yearst, under the immediate direction of the Chevalier Mosca, principal engineer, well seconded by

* Cubic specimens of these granites are doposited in the Institution of Civil Engineers with their faces dresscd to the same degrees of fineness as the stoncs employed in the work.
\dagger The above four years was the actual time employed in building this bridge; for the work was abandoned by the contractor about three years from its commencement, and after the lapse of some time, was taken up solely by the engineer and assistants ; and brought to a termination very satisfactory, combined with the greatest possible economy ; the bridge, comprising the approaches, laving cost the Sardinian government the sum of $£ 56,000$.
his able assistants, and with much perfection and nicety, that to this day not the least settling has taken place in any part of the abutments or arch, nor the smallest crack, or chipping of the angles of the voussoirs or of any otber block; and as the whole face of this work has been finely dressed, it appears now to the most experienced and practised eye a single solid mass of granite.

Iadeed it is considered a noble structure and a perfect piece of workmanship by all professional men who have seen it, whether natives or foreigners.

It may be concluded from the foregoing observations, that the results obtained in the construction of this bridge are entirely conformable to those experienced arches of limited dimensions, and thence that it may be frecly asserted, that the theory of the equilibrium of flat arches remains no longer doabtful, and that a sure process for their construction has been sutisfactorily ascertained.

It must be cheering to the friends of Railroads to know, that of the numerous stocks in market, none have been less affected by the present depressed state of business, than the stocks of Railroads in successful operation.
The following report of the Directors of the Utica and Schenectady Railroad, will be found interesting to many of our readers.

Utica and Schenectady Railroad.-The Albany Evening Journal says:
" The Directors of this Road, at their last Meeting, declared in a dividend of 7 per cent. on the $\$ 1,600,000$ and at the same time made a call of $\$ 5$ on each share, or $\$ 100,000$, payable on the first of August."
From a circular recently published by the Company, we gather the following details. The receipts have been, for instalments, on stock, $\$ 1,599,750$, of which $\$ 100,000$ have been paid out of the income of the road; for interest on deposites, $\$ 5,57441$; -miscellaneous receipts, \$999 17; Income of ROAD \$247,938 41, to which may be added moneys actually received but not passed to the credit of the Treusurer, $\$ 9.754$ 12, making in all $\$ 257,69229$; money borrowed, $\$ 32,095$ 12. Total receipts $\$ 1,841,35686$.
The expenditures havo been 1st, on account of construction of the road $\$ 1,708,89404$, the items of which are land for roadway $\$ 282,58860$, buildings $\$ 71,639.07$, grading road $\$ 561$,78759 Superstructure $\$ 515,733$ 57, outfit of Engines and cars \$122,771 58, Engineering and superintendence $\$ 69,381$,51, amount paid for Mohawk turnpike road $\$ 62,500$, incidental \$157,137 40, and stock on hand $\$ 2,33472$:-2d. Transportation account for nine months, ending 31st May last, $\$ 77,753$,08 , Dividend paid $\$ 104,70975$;-making the total payments for the Company $\$ 1,891,356$ 87.
The estimated annual income of the Utica and Schenectady Railroad Company is as follows :
From actual results ascertained from ten months operations on the Road, it appears that the gross receipts for the transportations of passengers dur. ing that period has been

Add for the receipts of the remaining two nonths of the present year estimated to be in the aggregate the saine as for the last two months, say
Total amount of receipts for the present year ascertained for ten months and estimated for two,
Assuming the receipts on the Road for transportation of passengers to be the same for any ordinary year hereafter as for the present current year, they will amount to the above sum of
Add for carrying the Mail of the. United States, estimated according to its weight as stipulated in contract with Post Master General, say

Total estimated gross receipt of Road for an ordinary year,

Deduct for estimated expenses
Leaving estimated net annual income to be divided among stockholders,
$\$ 557,692.20$

62,307.71
$320,000.00$

320,000.00

20,000.00
$\$ 340,000,00$ 140,000
$200,000.00$

The estimate above made does not include any thing for future increare of travel on the Road, nor does it allow any thing for a contingent decrease, unless the deduction of $\$ 10,000$ a year for cortingencies be considered as such an allowance. Many persons believe that the increase of travel hereafter, will produce enough to renew the perishable part of the road, as often as it will require renewal if so, the dividend of profits will be greater than above estimated.

Saratoga and Washington Railroad.-At a meeting of the stockholders of the Saratoga and Washington Railroad Company, held in the village of Watertord on the 5th inst., the following gentlemen were elected directors for the ensuing year : -John T'ownsend, Erastus Corning, Thomas W. Olcott, Lewis Benedict, John L. Graham, George D. Strong, David Codwise, Le Grand Cannon, Richard P. Hart, Stephen Warren, Gideon M. Davison, Thomas J. Marvin, Roswell Weston, John H. Boyd, John B. Borst.- [Troy Budget.]

The Morris and Essex Railroad, we are gratified to learn, is steadily progressing towards completion. The Jerseyman mentions that the whole line is completed to within one mile of the public square in Morristown and the contractors are busily engaged in laying the timbers and rails-all of which are on the ground. The Company hope to open the road to the public on the 15 th September next.

The Long Island Railroad.-Fare reduced.-A trip may be made to Hempstead all the way for five shillings. The fare to the Court house opposite Hempstead is 3 s 6d.

As the warm weather increases there will be a great increase of travel on Long Island. All the variety of incident to render summer delightful may be found in the different villages. Sites may be found airy and cool, with delightful prospects-sportsmen may beat the forest or tread the marsh for game-for fishing there are great advantages, and as the fare of the Railroad is reduced we have no doubt many will take an occasional excursion at least as far as Hicksvile. This place has a large public botel, two stores, and other buildings. It takes its name from its found. er, Mr. Valentine Hicks, the present President of the Raiiroad Company.

Hicksville forms the present termination of the road, and it may be some time before it progresses further eastward.

Whose is the fault ot its discontinuance at the present spot, and of the inability of the Company to proceed further is yet to be dis. covered.

As citizens of Long Island we trust the means may be fuund to render the work of more extensive utility.

From the New-York.Mechanice' Magazine electro-magnetic machine.

We have been not a little surprised, by an article on this sub. ject in the May No. of the Journal of the American Institute, and which we herewith give to our readers.

It will be found very difficult to reconcile the announcement that the article "comes from one of the best informed and most experienced men in the community," with the article itself, showing, as it does, gross ignorance in regard to some of the plainest facts and principles of science.

Indeed were it not for the authority given by this announcement, and operating upon the minds of those who bave not paid much attention to this subject, we should not have noticed a col lection of errors and misrepresentations, sneeringly aimed at Prof: Si liman as well as the inventors of the machine in question.

The writer, in the first place, endeavors to prove that the vacu$u m$ existing between the surfaces greatly increases the apparent power of the magnet itself. Now this argument does not hold good in the case of the large electro-magnets constructed by Messrs. Cooke and Davenport, (if indeed it does in any other.) for they prefer a slightly curred surface for the armature.

The objection as to the "serious mechanical difficulty," to be encountered in performing a rotary motion near to the magnets without touching them, proves at once that the writer either has not seen the machine, or that he does not understand the laws of mochanics.
The several conclusions of Prof. Silliman, are said by the writer to be examined by him. To the first conclusion, viz: that electro-magnetism is adequate to produce a rotary motion, the following rejoinder is made: "So is the slightest breeze acting up. on the boy's windmill, yet its power is of no valuc." This is what "one of the best informed and most experienced men in the community" calls an examination of the conclusion of Prof. Silliman. We would beg leave to ask, what becomes of the power of the slightest brecze when acting upon the man's windmill, is it of no value?
The second conclusion is examined by the following question : "What proof have we that the machine will not become perma. nently magnetised, and come to a stand still ?"
Now this question again places the writer in a dilemna-igno. rance, or misrepresentation, are the only alternatives. In the first place the revolving magnets are neutralized, by having their poles reversed 300, or as many times as there are revolutions per minute. Besides the material used is soft iron, and loses its magnetic property the instant communication with the battery is cut off.

The third conclusion is examined by a quibbling comparison between the renewal of acid and battery, and the supply of fuel to the steam engine. In the steam engine both fuel and water are consumed, and the bare assertion, that the cost of fuel for a steam engine and materials for a galvanic machine, will be equal, is no proof of the fact, while observation, so far, shows that it is not a fact.

The examination of the fourth conclusion contains a very pret. ty piece of advice to Prof. Silliman, in which he is told to wait till "experience" shall warrant him in asserting that the power may be greatly increased, \&c. We suppose the experience of "ore of the best informed and most experienced men in the com. munity" is meant. Long life to the worthy man if he waits such an event.
In several places, the fact that several thousand pounds were " sustained" and not " raised," is hurled at Prof. Silliman with force enough to destroy him and the machine, if said fact had any weight, which, fortunately for the cause of science, it has not. In the instance alluded to, the weight was a dead mass, while in this machine the attraction and repulsion of two magnets is constantly operating. Besides, if a small machine, in which the interval between the stationary and revolving magnets is proportionably very great, can raise 24 lbs . one foot in one minute, may we not expect a very useful power in a larger one, especially when we know that the power of an electro-magnet increases in a much greater ratio than the size of the apparatus.

We must apologise for having detained our readers so long over such a bundle of absurdities,-but we cannot quietly witness an attempt to cast ridicule upon scientific experiments, or upon so bright an ornament to the cause of science as Prof. Silliman,though we are, perhaps, giving more notoriety to the nameless author of it than he deserves.

Notwithstanding the laughable assertion that the writer " does not go the full length with that distinguished philosopher" ! ! !-it must be evident to all having the slightest knowledge of the sub. iect, that he is ignorant to a great degree of the principles of the sciences of the construction of the machine, and of the courtesy and politeness (to say nothing of modesty) usually practised among
scientific gentlemen-however much his attainments in some other line may entitle him to the distinctive appellation of "one of the best informed and most experienced men in the comminity.

ELECTRO-MAGNETIC MACHINE.

We copy the following asticle from the Journal of the American Institute.
The following ccmmunication comes from one of the best informed and most experienced men in this community. Although he does not go to the full length with that distinguished philosopher, Professor Silliman, whose researches and writings have dene so much honor to himself and his country, still our correspondent is disposed to award to him high praise for the benefits his labors have accomplished in science and the arts.

If the electro-magnetic machine fails when put in competition with steam, as a rotary motive power, the experiments made for that purpose may, notwithstanding, conduce to other discoveries of hitherto hidden agencies concealed in the loadstone, as important to the human race as that which points the needle. Mr. Davenport, it seems to be admitted, has found a new path, and gone ahead of others in his experimenta. We hope he will push on, and ascertain where it leads. Every advance into the field of discovery extends the prospect, and facilitates other and greater discoveries. Every rational aid should be administered to Mr. D. by those who are in possession of the means, to enable him to prosecute his improvements to the full extent.-Ed.

In the April number of the American Journal of Science, there is an article by the editor, Professor Silliman, giving a description of this machine, invented by Mr. Davenpurt, which is well calculated to mislead, by its specious assumptions. It is my purpose to examine sume of the Professor's views, and compare them with well established facts, and see how far his opinions in this matter are entitled to consideration. The subtle elements which surround the earth are capable of various modifications, and when acted upon by sudden and violent changes of temperature, we wilness astounding results. The production of steam, by the combination of the matter of heat with water, is among the most familiar and powerful changes produced by a new order, in position of these two elements.
The best arranged steam engines, in England, raise 625 tons one foot high, by the consumption of one pound of coal. It appears that the Professor had seen "twenty-eight pourds raised from the floor," by Mr. Davenport's machine. He says, that Professor Henry has succeeded in "lifling thousands of pounds by a baltery of very small size." If Professor S. will examine the facts, he will find he had been led into a great error when he supposed the thousands of pounds were lifted; they were only sustained, or held in contact with the magnet, and lified by some other force.
In this case, the electric fluid produces a vaeuum between the surfaces of the magnet and the body suspended; thus giving full effect to atmospheric pressure, on the surface of the weight or body suspended. Besides, there is no similarity in the two cases ; in the one, the surfaces come in contact before any sensible effect is produced, and in the other, the surfaces must remain at certain distances from each other, to admit of free rotary motion ; and here comes a serious mechanical difficulty, in the formation of these machines of great magnitude. Great nicety must be observed, to keep the moving electro-magnets from touching the permanent ones, and so close, that they shall not fall out of the sphere of attraction. The natural tendency of bodies is to a comparative state of rest. The electric fluid obeys the same law, however intensely it may act on the nerves of an enthusiast.

The Professor has arrived at six conclusions, after having seen, read, and reasoned about the "electro-magnetic machine." These must be examined, and they are quoted for that purpose.

First. "It appears then, from the facis stated, (in the former part of the atticle,) that" "electro-magnelism" "is quite adequate to the generation of rotary motion."

So is the slightest breeze acting upon the bey's windmill, yet its power is of no value.

Second. "That it is nut necessary to employ permanent mag nets in any part of the construction, and their electro-magneta
are far preferable, not only for the moving, but for the stationary parts of the machines."

What proof have we that the machine will not become permanently magnetized, and come to a stand still?

Third. "That the power generated by electro-magnetism may be indeinitely prolonged; since, for exhausted acids and corroded metais, fresh acids and batteries, kept always in readiness, may be substituted, even wilhout stopping the movement."
So, by keeping a stock of coal on band, and applying it to the generation of steam, the engine may be kept in motion.

Fourth. "That the power may be increased beyond any limit hitherto attained, and probably beyond any which can be with certainty assigned," \&c., "it would appear certain that the power must be increased in some ratio which experience must ascertain."

When the Professor came to this conclusion, it is evident that he did not then possess sufficient information, and had not sufficient "experience" to enable him to give a rational opiniou of the value of this new machine. Hence, as the editor of a scientific journal, he ought to have waited till "experience" had taught him the difference between the suspension and the raising of great or small weights, or the experiment had been fairly tested. * Fifih. "As electro-magnetism has been experimentally proved to be sufficient to raise and suslain seveval thousand pounds, no reason can be discovered why, when the acting suifaces are, by skilful mechanism, brought as near as possible, without contact, the continued exertion of the power should not generate a continued rotary movement, of a degree of energy inferior indeed to that exerted in actual contact, but still nearly approximating to it."

Now, this "conclusion" is sufficiently indefinite, and we are left to conclude what is really meant by it. We see that a continued rotary movement can be produced by "electro-magnetism," and we ure left in the dark as to the amount of power ge nerated, and the cost of its production ; and are asked to believe that it is something very great, without being put in possession of any facts beyond that of "twenty-eight pounds having been raised from the floor," as the foundation of our faith.

Sixth, and last'conclusion. "As the power can be generated cheaply and-ccrtainly-as it can be continued indefinitely-as it has been greatly increased by very simple means-as we have no knowledge of its limit, and may therefore presume on an inde: finite augmentation of its energy, it is much to be desired, that the investigation should be prosecuted with zeal, aided by correct scientific knowledge, by mechanical skill, and by ample funds. It may therefore be reasonably hoped, that science and art, the handmaids of discovery, will both receive from this interesting research a liberal reward."

This last conclusion forcibly reminds us of the practices of our people the past few years, in the pursuit of wealth. They concluded that wealth could be "greatly increased" by very "simple means," and with certainty, and that it might be "continued indefinitely." To our dismay, we have just found out, that like many patented inventions, we had been speculating without "correct scientific knoveledge," or "ample funds" to sustain us in the vain attempt.

We regret to find one who has made a football of pernicious scientific theories, and who, by the force of his facts a nd reason nig, has overturned many untenable propositions, should have relaxed from his usual caution, and have virtually recommended the application of a power of "unknown energy," before having seen anme useful effect produced by it.

The following communication from Mr. J. Perkins will be found highly interesting.

From the Journal of the Franklin Institute:
observations on the duty performed by the cornwall
steam engines.-bi bacob perkins, civil engineer.
read before the institution of civil engineers,
London, february, $16 \mathrm{Th}, 1838$.
Dear Siz-I herewith transmit for your examination, and for insertion in your Journal, should you think proper, a series of three papers, upon the duty performed by the Cornwall steam engines.

Yours, \&c.
J. Perkins.

The true cause of the gr at difference of duty performed by
the Cornwall and the best Boulton \& Watt engines, has been a matter of serious inquiry for the last fifteen or twenty years. But within the last two or three years the difference has been so astonishing as to induce many engineors to suppose that some part at least was owing to trickery.

If we do not admit the fact of the superiority of the Cornish engines, the cause will not soon be found. I must say that after much thought, investigatio ', and experiment, I believe that the Cornwall Engines do at least three times the duy that the best low pressure, condensing, double stroke engines do ; and I have no doubt that I see the reason of it.

Having, in the first place, visited the Cornwall Mining establishments to judge for myself, I very soon came to the conclusion, that the advantage which the Cornish single stroke engine has over the reciprocating double stroke engine is much more owing to the difference in the construction of the engines, than in that of their boilers. Very few engineers know the great value of using high steam expansively, and many of those who admit it, do not know how to apply it properly.

The repeated experiments which I have made have satisfied me that the single stroke engine is far better calculated for taking advantage of the valuable pruperty which the expansion of high steam possesses than the doult stroke engine. The loss from this cause is much greater than is generally believed In the first place, there should be no steam lost bet ween the steam pipe and piston, which cannot be avoided in adouble stroke engine. In the stcond place, at the end of the stroke the steam should be allowed to escape without any re-action, and this cannot take place, when the induction and eduction pipes are used at ench end of the cylinder, as is the case with the double stroke engine.

If the induction pipe is large enough to allow the steam to escape freely so as to prevent loss by reaction, then the eduction pipe would be much too large for the induction pipe, and much high steam would be lost, without having the benefit of expansion. In fact, it is impossible to get the steam on and off soon enough in the double stroke. + It is supposed by some that there is a loss by having the steam on one side of the piston only; it is, however, quite the reverse. It is very well known that the larger the piston the greater is the saving, particularly in the piston itself. To make the single stroke engine consume the same steain as a double stroke engine, the cylinder must be double the area.

If it should be said that much time and power is lost by not having the steam on the piston on the return stroke, it may be said in answer, that if only fifteen strokes are made in a minute, there would be but two seconds between the working strokes; and that the fly, when the fly is used, must be very light indeed to show any variation of speed. When warked in the Cornish fashion, without the fly, no power can be lost between the strokes.

I do not mean to say, that all the gain is to be attributed to the single stroke engine, there is undoubtedly much power saved by dispensing with the fly wheel, where the work to be done is pumping water. This is proved by the fact, that a single stroke, balance bob, low pressure, pumping engine will raise $33,000,000$ Ibs.; while the double stroke low pressure engine with a fly. wheel will raise but $22,000,000 \mathrm{lbs}$. The fly is a power which will not, like steam, wait to accommodate itself to the stubborn visinertia of the water, neither will it accommodate itself to the going off of the steam, consequently much power must be lost. When one watches the beautiful accommodating action of the Cornish pumping engine be will readily see, that there must be great loss in using the ponderous fly. When he steam is first let on to the piston, the pressure, although 40 lbs ., to the square inch, it seems too little for its work, and appears to labor hard to get the water in motion, but at the end of the stroke, although the steam has expanded down to 10 lbs ., to thie inch, the work seems quite light. Here the expansive property of high steam is beautifully exemplified. To begin the litt 40 lbs., to the inch seems not enough, but when the stroke is ended, 10 lbs.; seems more than is wanted. How is it with the condensing double stroke engine? Is not the power the same at the end of the stroke as at the beginning?

I cannot believe that the cnormous quantity of $125,000,000$ of water was raised one foot high with 84 lb ., of coal without the assistance of a little air, which certainly can be used with-
out being readily detected. To show how I learnt this singular fact, I must be allowed to relate' a curious trick which was attempted to be passed off on me in A merica about forty years since. Two honest farmers, one day called on me to see if 1 would join them in a patent of great importance; they stated that the dis. covery would prove that the law was erroseous which stated that water would rise only about 32 feet in a vacuum. I told them that it was contrary to what I had learnt and declined having any thing to do with it; they, however, would not be put off. They said that they had brought with them an exhausting pump, which had raised water 100 feet by rapid exhaustion, and that they would pay all the expenses of fitting it up, and that I could then see who was wrong. One of them averred that he was a ruined man if he had been deceived. I was so satisfied that he had been impozed upon that I readilv agreed to test his pump. I had a leaden pipe attached to the double barreled exhausting pump, and the situation I had fixed upon happened to be 44 feet from the water to the pump. When the pump was put in action, it, to my great surprise, delivered the water at the pump spout. I then set myself to work to discover the cause, which was not ascertained until the third day; I observed that the water appeared full of air bubbles, it then struck me that air was allowed to mix with the water in minute portions, by which means the column of water became expanded? I then placed my, ear close to the pipe and snon discovered a singing noise, and by clisping the tube with my hand the noise stopped and the water ceased to flow. Here was the trick; by examining the tube I found that it had been perforated with a small pin-hole unknown to me, which admitted just air enough to expand the column. I then charged the men with the imposition, one denied it, but the other looked pale, and acknowledged he had done it b ythe direction of the inventor, who said that it must be kept a secret, otherwise the invention would be infringed upon. They were now made to understand that they were duped, and were soon on their return home, minus 3000 dollars.
Having seen that a column of water might be expanded by admitting air under the lower clack, I was induced to inquire, while in Cornwall, of an Engineer, if he had ever known air to have been admitted under the clack; after expressing his surprise at my question he admitted that it was common, but that it was not acknowledged, since every one wished to have it appear that they had done as much duty as possible.

Since the quantity of water pumped was known by the nuinber of strokes per day, and as the contents of each stroke was known by its length, and by the diameter of the plunger, if the air which the water contained was not allowed for, more work appeared to have been performed than had actually been done.

My friend stated that it had been found advantageous to allow air to be admittted in small portions, for it made the pump work more lively in consequence of the spring it gave to the column of water and caused less strain to the machinery, but that he never knew the air allowed fur. Although this circumstance of adimitting air to mix with water serves to lessen the amount raised, yet this cannot, I think, be more than 15 or 20 per cent., and I fully believe $90,000,000 \mathrm{lbs}$., have been raised one foot high by a bushel of coal.

The following statement of a series of experiments which we:e made at Saint Catherine's Dock about ten years since, with a high pressure single stroke expansive engine, 1 think conclusive.

Extract from the London Journal of Arts and Sciences, of July 1st, 1827.
perkins' new steam engine.
"We have the pleasure of announcing that Mr. Perkins has at length, in a very satisfactory manner, proved the euperiority of his newly constructed high pressurd steam engine, by work. ing it against two other steam engines upon the low pressure principle.
"This small engine, which we have several times mentioned in our present volume, has been within these few days set up at Saint Catherine's Dock, and employed in pumping water from the excavation.
"There have been four steam engines engaged in the prosecution of these works, two for excavation, and two for pumping out the water; Mr. Perkins' engine stands alongside a low prea. sure engine of sixteen horse power, which is determined by the area of its piston.
"The diameter of the piston, that is the bore of the steam cylinder, of the new high pressure safety engine is eight inches, and its stroke twenty inches. It was connected by gear to a beam that made sixteen vibrations per minute, and raised two alternating pump-buckets, the diameters of which are fourteen inches, and their strokes three fee: three inches."
"We, the undersigned, certify that there are two low pressure steam engines employed night and day in disctiarging the water which flows into Saint Catherine's Dock from the land springs, \&c., that one of them is a sixteen and the other a ten horse engine. We also certify that Mr. Perkins has recently put up a small high pressure steam engine, the diameter of whoselpiston is eight inches, its stroke twenty inches, and that we have seen this engine pump the same quantity of water from the docks which has heretofore been pumped by the other two.

James Lamon,
 Pearson Woodward,
 Thomas Brown.

"I, the undersigned, certify that I have superintended and put up Mr. Perkins' high pressure safety engine. I also certify that what is stated by the above Engineers is true, and that it was done with only 42 lbs . of coal per hour. Having been engaged 22 years in making and putting up engines, principally in Cornwall, it is not likely that I could be deceived as to the power and efficacy of this engine, and I conscientiously believe that two-thirds of the coals used in this country might be saved by the use of this engine.

Henry Hornblower.
"I, the undersigned, carefully weighed the coals and placed them under Mr. Perkins' generator, that 42 lbs . weight of coal only was used per hour. I also cerify that what is stated by the above Engineer respecting the work done is true.

Willism Hearne.
" Mr. Perkins is of opinion that the two low pressure engines could not have been worked up to their full power, although they used the full quantity of coals, three and a quarter bushels. per hour; but admitting they worked at only two-thirds of the power , there would be a saving of about three-fourths of the coal consumed in low pressure engines, by the employment of Mr. Perkins' new principle."
In the above experiments the difference in favor of my single stroke high pressure expansive and condensing engine was quite as great as that which exists between the Cornish and the Boulton and Watt engines. Does not this prove that the enormous gai \rightarrow is chiefly owing to the great superiority that the single stroke, high pressure, expansive and condensing engine, has over the low pressure, double stroke, condensing engine?

Not long since John Taylor, Esq. published an account of a great improvement which had been recently made in Coruwall. He stated that a single stroke, high pressure, exhausting engine, had been converted into a rotary engine, and that it: was greatly superior to the double stroke engine, so much so that it astonished every one who witnessed its power. I could not at first comprehend what he meant by converting a single stroke engine into a rotary one. I finally concluded that a fly-wheel must have been substituted for the accommodating balance bob used for pumping in Cornwall. This conjecture I have since found to be correct.

Whether the engine uses the steam on one or both sides of the piston, they are both undoubtedly reciprocating engines, and are called by that name.

That the single stroke engine, worked by high steam and expansively, is a very great improvement, the above mentioned experiment fully demonstrates. The fact is, that the higher the steam can be practically used, and the sooner it is cut off, the greater is the economy.

I should mention that at the time these experiments were made at Saint Catherine's Dock, I had not overcome all my practical diffieulties, for the generators would fur up and then burn out. I, however, had no reason to despair, for although the cost of wear and tear of the generators was gleater than the common boilers, yet the saving otherwise was tar greater. I have, however, recently been so fortunate as to remove all objections, by a new modification of the generators. I have good reason to believe that a voyage might be made to India and back without finding the boiler in the least foul, or perceptibly fire-worn.

I have not a doubt that two single stroke, high pressure, expanding engines, might be used to great advantage in steamboats, and that the time is not distant when it will be more economical for merchantmen to navigate by steam than by wind. It will undoubtedly be said by some that the power so applied would be too unequa!. If a more equal, or rather continuous, power is wanted, why do not the barge-men of the men-of-wars gig, have some of their oars always in the water.
I have often been asked, why I did not follow up the patent, If I was satisfied that there was no fallacy in the result of my experiments. My answer has been, that very soon after I had completed those experiments my monied partner tailed and died, and his creditors put the patent in chancery, where it now remains, and I was obliged to turn my attention to other means to obtain a living.

When this experimentel engine was worked with steam at a pressure of between 300 and 400 lbs. to the inch, I believe the induction valve was not opened more than about ${ }_{1} \frac{1}{6}$ part of the stroke, if so, the annexed diagram will show the great gain.

Let Figure 1* represent a steam cylinder divided into 16 parts. Let the steam at 200 l bs . per inch be admitted at the dead point. Now fill the first divisi in, No. 1, then let the steam be cut off and it will at that point be 200 lbs . to the inch, next let it expand to No. 2, it will then be at 100 lbs . the mean will be 150. Again let it expand to double its space and it will occupy two of the divisions and leave off at 50 , the mean 75 lbs ., which amount to another 150 lbs . In expanding to 4, it will leave off at $25 \mathrm{lbs} .$, the mean $37 \frac{1}{2}$, the 4 divisions at $37 \frac{1}{2}$ will give 150 lbs . more; after expanding down to 16 it will be only $12 \frac{1}{2}$.

If the steam had been let into the cylinder at $12 \frac{1}{2} \mathrm{lbs}$. per inch and continued so until the cylinder was filled with steam at that pressure, then the work done would be equal to 200 lbs . amounting to jușt the same weight of steam when at 200 lbs . to the inch in the first division, although the piston had made only $\frac{1}{16}$ of its stroke, the other $\frac{15}{16}$ of the stroke which was acting expansively, was clear proflt.

It will be seen by diagram, Fig. 2* that although the steam on the piston is but ${ }_{1}$ part of the stroke, yet it was acting $\frac{1}{6}$ of the time; but what is the difference in the virtue of the two? it is as 800 to 200. This I do not say is mathematically correct, but I believe it to be near enough to give a pretty correct idea of the great practical advantage of using steam expansively if properly applied. Great credit is due to Hornblower, Trevethick, Wolf, and Evans the fathers of high steam. They elicited the spark which has since thrown such a lustre over the science of steam.

If I have done anything in the advancement of high steam, it is in consequence of witnessing the experiments of my countryman, Oliver Evans, the father of high steam in America.

The Editor has received the foregoing, from his friend, Mr. J. Perkins, together with two other papers upon the same subject, which will appear in the next number. He has also, from the same gentleman, some remarks upon steam engine explosions, controverting certain deductions made by the Committee of the Institute in their report upon that subject, which shall also ap. pear, together with extracts from a letter which accompanicd these papers, but which could not be prepared in time for this number. The letters and papers were delivered to the care of a gentleman, coming to this country, nearly twelve months since, but, from accidental causes, they have but just come to hand.

[^40]
Agriculunce, ©c.

From the Journal of the American Institute.
hints on the cultivation of the mulberar, with some general observations on the ${ }^{\text {production of sile, by }}$ lewis tinelli, doctor of civil law in the university of pavia, and formerly proprietor and director of a filature of silk in lombardy.

Concluded.

"Tho young trees thus planted and manured, ought to be cut
off, even with the ground, with an instrument baving two cutting edges, and made in the form of pincers. At the end cf a month the roots will have sent forth shoots, perhaps two feet high, if the season has been favorable, and rather wet. At this time, the diligent cultivator must watch to see that no parasite herbage grows among the mulberry plants; he will also give close attention to take off with his thumb the young buds that put forth along the stem, which ought to be clear and straight, in order to make a good tree at the age of three or four year. * * *
"When the seedlings of the nursery have acquired the thick. ness of an inch and a half in diameter, then is the time for taking them up, and transplanting them to their destined places in the fields. This operation is performed from the mildle of March till the end of April; and requires considerable diligence, both in taking up the trces, so as not to spoil or damage the stem, and also in replanting them. It is necessary to cut carefully, with a well sharpened knife, all the branches of the young trees close to the stem, without, in so doing, inflicting any serious wound upon the tree. The stem should be cut to the height of about six feet. All the roots that have been a little injured, must be cut off. The trenches to receive these trees, vary from five to seven leet in width, according as the soil is more or less strong. In stiff and argillaceous ground, the trench ought to be larger, so that the roots, finding the earth soft and loosened, may the more easily extend themselves. If the trenches are prepared at the close of the previous autumn, they would be a great advantage. The depth should not exceed two feet, in order that the roots, not being too deeply buried, may feel the influence of the sun's rays. Horse dung, not too dry, and sheep dung, make the best manure.
"The cultivator will do well to put a stake, firmly driven into the ground, by the side of each tree recently planted, and tying the tree to it. The wind will thus have less power to disturb the tree, and draw the roots out of their proper places."

The engrafting by rings, is recommended, as giving strength to resist the winds:-choose a fine day in the beginning of May: select the shoots of the preceding year :-
"The branches from which the rings are to be taken, should be cut from the tree in the first fortnight of A pril, when the sap has ascended to the limbs, and to the very extremities of the branches. After having cut them off, it is the custom to bury them in sand, a little moistened, for fifteen days, in order to render the bark more flexible, and easier to be removed. The operation of inoculating is very easy, and may be learned with threo hours exercise, after sceing it done by an able inoculator.
"During the whole year in which the inoculation has been performed, care is taken not to suffer any other shnots to grow than those which are inoculated, and whith are intended to form the crown of the tree. All the other buds are gently rubbed off with the fingers. The following year, in the month of March, it is well done to cut the young engrafted branches, leaving three eyes between the place of inoculation and the extremity. This operation surprisingly concentrates the strength of the tree, which, the same spring, sends forth very flourishing branches.
"Generally, only three branches are left, which form, with their subaltern shoots, a fine crown or top to the tree. It is always useful to cut off the branches that have taken an ill direction, or become thorny, or too much weaken the plant. This ought, however, to be done only before the sap has recommenced its circulation; that is to say, between the beginning of Fetruary and the middle of March. At the same time all the little branches or extremities should be lopped off that have perished by the cold, or any other accident. Whenever a mulberry tree has become thorny, and languid in its vegetation-producing only yellowish leaves-not a moment should be lost in giving it a renewed strength, by pruning away all the branches, even tho largest, close to the top of the trunk, which will le renewed by this operation, so as to put forth fine and vigorous shoots."

The culture of trees of low stature, are also recommended:
"'This new method is now generaliy adopted in Italy, as the most advantageous under the circumstances. First, because the produce of the little mulberry is much earlier than that of the large ones; for in the third year they begin to gather the leaves from hedge rows, while six years are required before we can
strip the large trees. Secondly, because the low trees, being more immediately affected by the warmth of the soil, commence to put forth their leaves fifieen days ealier than the large ones; which is certainly a very great advantage. Thirdly, the care of the low trees, and the gathering of the leaves, are left to children, which is a considerable saving of expense. The hedge rows, being also less exposed to the violence of the wind, and more within the effects of the manure; are less endangered by frost, and féel less sensibly the extremity of cold.
"The trees of low size, planted in hedge rows occupy the least possible space, while, at the same time, they supply a crop as perfect as those of greater height, and their leaves, extremely agreeable to the worm, furnish a silk of the first quality. For the purpose of making plantations of this kind, young trees of one year's growth are used. The hedges are planted in lines, extending the entire length of the fleld, and separated from each other by a space of six feet, in which it is usual to raise some other kind of produce, as Indian corn, potatoes, beans, turnips, \&c. Each tree is planted at the distance of three feet from the rest; so that, in the space of an acre, or 43,560 square feet, it is practicably to raise two thousand four hundred and twenty of these small trees. They will yield, in their third year, at least two pounds of leaves each; and this quantity will be doubled annually, till the eight year, provided they are cultivated, attended to, and managed, as is requisite.
"Although the young trees, when planted, are furnished with very small roo:s, yet it is necessary to dig the trench, made to receive them, of considerable depth. It is usual to make it one foot and a half deep, and of the same breadth. When the little trees are set in the ground, the stems are cut so as to leave only three eyes above the ground. The branches froin these eyes, are to be eagrated the following year, so as to give the leaves a perfect resemblance in their quality-an essential point which should never be left out of view, if we could wish to have a perfectly good produce.
"If the gathering of the leaves could be finished by the end of June, it would be very advantageous to the trees, because they would then thave so much time, in the period of their second vegetation, to send forth fine branches for the next year's gathering. It is neceissary, also, carefully to prune off all the smaller branches that have been broken or wounded, in the gathering of the leaves."
From Mr. T.'s remarks in his closing article, it would seem that what he has before stated, with respect to the most congenial soil for the mulberry, is not intended to apply to the morus mult caulis, inasmuch as he states, (p .52) that it does not require any particular soil as exclusively suitable to its growthbut prospers even in a wct soil, and puts forth its leaves sometimes earlier than other mulberries.

From the Journal of the American Institule.

slle.-report of the committee on agriculture to the legislature of ohio.-presented by mr. harig.
The committee on agriculture, to whom has been referred the petitions of many citizens of this State, praying for the favorable interposition of the legislature to encourage the cultivation of silk, have had the subject under consideration, and now ask leave to report-
In commencing their investigation, your committee were induced to inquire into the fact, whether Ohio possessed any agricultural productions which, strictly considered, could be regarded as staple commodities, the perinanen! and continued cultivation of which would lead her to wealth and prosperity. Wo find on examination, that most countries of long establislied prosperity, have pursued the cultivation of some one leading article, which has lead its inhabitants to affluence and superiority. China cultivates her tea crop and her silk worms; Java her rice and her spices; Asia Minor, her olives; Turkey, her opium ; France and Italy, their wines and silks; Spain, her wool and indigo; Ireland her flax; Russia, her hemp; and other countries of the old world, those various commodities which seem to be best adapted to their soils and climates. In the new world, Mexico is already famous for her cochineal, the West India Islands for their sugars and their fruits, and in our own happy land, many of these States are celebrated for their leading productions. Tobacco, cotton, coffee,
hemp, and sugar, have already become staple commodities in our immediate vicinity. We are satisfied, that the production of these articles tend to increase those leading articles of food, which are so essential to the support of a population, and of consequence, that those States are the most wealthy who have introduced them. They form a sound basis for commercial prosperity. That naton or State who can exchange the greatest quantity of her produce for the money or produce of other countries, is most sure of a dense and wealthy population; and it is perhaps wisely ordained by Providence. that while the productions of other countries are mado necessary to us for the full enjoyment of our comfort those nations are, in turn, obliged to depend upon us for some articles equally essential to them. In the mutual operation of supplying and of being supplied, lies the principle of commercial prosperity ; and the greater the surplus produce to be exported from a country, the greater must be its wealti and prosperity. It therefore, becomes necessary to seek out and to adoptsome leading article, suited to the soil and climate, valuable in itself, easy of production, and proper alike for home and foreign consumption. Your committee are grateful, that while this State is possessed of a mild and salubrious climate, and a fertile soil, it is surrounded by navigable waters, giving it immense commercial advantages ; that it contains within itself ahmost unlimited sources of agricultural wealth; that there are very many of the boasted productions of foreign climes, which the hardy and virtuous yeomanry of Ohio may, by industry, produce from her genial soil ; and they trust that the time is rapidly advancing, when their favorite State will no longer depend upon foreign countries for many of these commodities. They have, however, looked in vain through this State, for any great leading staple of production, other than those which are intended for food; and in the produetion of these articles, they cannot observe that Ohio possesses adyantages, either of soil or climate, which will, in future time, render her eminently superior to her neighbors; but they believe that the time has now arrived, when many of her citizens, if properly and prudently sup. ported by the legislature, may be induced to commence operations which will permanently establish some of them within your borders. The culture of silk, and of the sugar beet, which are the sources of national wealth in other countries, it is believed, may be successfully and profitably pursued here. Our soil has been found to be peculiarly adapted to the mulberry in all its varieties; and the silk worm, wherever it has been fed among us, has always produced an article equal to the produce of other lands. We consider it as settled, that we may produce silk, in any reasona. ble quantities, and of good quality, without interferng with any other of the branches of domestic industry.

The labor requisite to make the crop, is of that character which has of late become least available in our country, from the rapid introduction of machinery; and we are satisfied, that it is not the least pleasing and valuable feature of this business, that it may be altended to entirely by the females, children, and infirm persons of the State, while the farmer and his able-bodied laborers are attending to their ordinary avocations; and that thus, while all are entbled to do something towards the general welfare, each one is laying up for himself a comfortable independence.

Your committee are satisfied, that this article, when produced in large quantuties among us, as it must sometimes be, will always find a ready and profitable market. The consumption of silk annually, is astonisting, and without inquiring as to the enormous quantities consumed in foreign countries, we think it only necessary to state, that the importation of manufactured silk goods into tiais country during the year 1835, exceeded the sum of 817,800 , 000, while the raw silk, prepared for the manufacturer, and which was the subject of trate to our merchants, was imported to the value of $\$ 10,000,000$. This amount which is annually increasing, is taken from our country either in money or in produce, and might as readily be kept at hoone, if we should raise and manufacture our own articles. In addition to this domestic market, Europe offers a field of no mean importance. Great Britain, Russia, and the other northern powers, from the determined inhospitality of their climates, can produce no silk. Eagland alone manufactures more than $\$ 30,0110,000$ worth of raw silk, raised in foreign countries, and it is stated on good authority, that more than 400,000 of her citizens derive their support from this source. Even Frarce, which is, perhaps, the greatest silk producing district of the world, requires aid from foreign cointries in the supply of the raw material, to an amount exceeding $85,000,000$ annually.

It is found that the consumption of this valuable commodity is increasing every where, as well as in the United States, and it is stated that France, with her immense manufacturing capital and power, is unable to meet the demand of our market alone for the current year.

Your committee have been induced to ${ }^{\circ}$ inquire, whether the citizens of these western States, and of Ohio in particular, are able to compete to advantage in the markets of the eastern or Atlantic cities, wit: eastern agriculturists in the articles which they now raise. They are disposed to take it for granted, that the surplus productions of the west must, in time, seek a marke:t in the east; and they look upon the construction of canals and railroads, by eastern capitalists, as a step to secure this golden prize. It is an unquestionable fact, that much of our land is more fertile than that of the east, and of consequence, that our crops are more abundant, yielding a greater return for the labor expended. But yet the articles produced are all of considerable bulk and weight ; and to convey them to the east, will all the advantages of railroads and steamboats, must ever be attended with a burdensome expense, amounting almost to a prohibition of many of the most important of them. The eastern farmer, with his market at hand, can thus immediately convert his crop into money, and his inhospitable soil is, in fact, made to yield him a greater profit, although a smaller crop, than can be realized by the western farmer.

We are, however, satisfied that the farmers of this State can introduce crops, which are of themselves intrinsically valuable. small in bulk, and easy of transportation, on which the freight would be an unimportant item; and that then the farmer of Ohio, with his more fertile soil and greater crop, maýy compete successfully with the eastern agriculturist. In this view, they regard the culture of silk as eminently entitled to consideration; affording, as it does, a crop of great intrinsic value, and of easy conveyance. The expense of transporting flour to New-York, is one cent per pound; while the expense of conveying silk would be the same, the value of the one being diminished twelve and a half per cent. by transportation, the other one fourth per cent. in consequence of the great difference in their intrinsic value. In this view of the case, which we deem of much importance, the introduction of the silk culture is eminently worthy of consideration.

We are also of opinion, that the introduction of this crop would be further beneficial to the community, by calling into operation, within our burders, capital for manufacturing purposes, now seeking investment in other places. And that very considerable numbers of our population would thus find permanent and profitable employment.

We find that, in several States of this Union, this subject has been considered of so much importance, as to reccive the favorable interposition of several legislatures; and that such aid has elways resulted beneficially to those States, while it has been an incentive to those engaged in the business. Your committee. having in view the large number of petitions which are before them, and the very respectable list of sidnatures to these petitions, have been at a loss how to extend to this business any encouragement, except by proposing to the legislature a bill, offering to those engaging in the business, a small premium or buunty, for n limited time; and this they do the more willingly, as they are satisfied of the justice and propriety of the course, and because they find before them the example of other States, in which this system has become a fixed and determined policy. They are also induced to do so, because they find that investments in the silik culture, unlike most other kinds of agricultural business, cannot be made to yield an iminediate return. Orchards must be planted, proper buildings erected, and other preliminaries attended to, necessarily requiring some few years of time before any adequate return can be anticipated, and this premium is, therefore, asked for by the petitioners, and recommended by your committee, as a small compensation to those who are willing thus to invest'their means.

Bucewheat.-Let no Farmer who has ground to spare, neglect to put in a few acres of this excellent grain; while its flour commands a ready sale and good price, its straw is among the best hay that he can give to his milch cows.

Advertisements.

Engineer's Office, Wilmington and Raleigh
 Railioad, May, 4, 1837.

TO BRIDGE BUILDERS-Proposals will be received until the 30hh June, for the erection \mathbf{o}^{6} Bridges on the Wilmington and Ralcigh Railroad, acrose the Neuse and Tar Rivers, Con'entnee, Swifit, Fishing and Quanky Creeks. The Bridges will be built on the plan of Town. The great. est span will not exceed 120 fret, the frames weatherboarded and capped (hot roufed.) The timber will be found.
For the piers and abutmenis, atone can be had, at the Nense six milen by water from the bridge site-at Tar River it is found at the crossing-at Conientnea, the Bridge will rent on wooden abutments ; at Swift's Creek; the rock is situated about 3 miles by water from the bridge site-at Fishiug Croek is is foutd within a few handred yards of the bridge on the bank of the creek-and at Quanky the quarries are situated about shree niles by land from the proposed bridge. The piers and abutments will in no instiance exceed 22 foes in heighit. For further partuculare, address the subscriber ai Wilmungton, North Carolina.

WALTER GWYNN, Civil Engineer.
$2 t-24$

-5 TO RAILROAD COMPANIES.

A PERSON experienced in the construction of Locomotive Engines (many of his Manafacture being in successful operation on important Railroads in the United states) and who is likewise thoroughly acquainted with the managemedt of such machines, and, indced; the enti- ondeal of Kailroads, is desiruus of oblaining the satuation of General Superintendant on railroadsa is desiruas of oboain, South or West.
The must satisfactory testimonials of character and capability can be produced. Commuaications addressed w the Editurs of this Journal, atating the location of hoad, \&c. will meet with prompt atiention.

91-24
DRAWING INSTRTMENTS.-E. \& G. W. Blunt, 154 Water-street, New-York, have received, and offer for sale, Drawing Instruments of superior quality, English, French, and German Manufacture.
They have also on hand Levels of superior quality at low prices.
or Orders received at this office for the above Instruments.
TRANSACTIONS OF THE INSTITUTION OF CIVIL ENGINEERS OF GREAT BRITAIN.
The first volume of this valuable work, has just made its appearance in this country. A few copies, say tuenty-five or thirty only, have been sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young. Engincers from possessing it. In order therefore, to place it within their reach, and at a convenient price, we shall reprint the entire work, with ll its enagravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to any part of the Unitel States by mail, as issued, or put up in a volume at the close.
The price will be to subseribors three dollars, or five dollars for two copies-alvays in advance. The first number will be ready for delivery early in April-Subscriptions are solicited.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pambour- 150 pages la:ge octa-vo-done up in paper covers so as to be sent by mail-Price $\$ 1$ 50. Postage for any distance under 100 miles, 40 ceuts, and 60 cts . for any distance excecding 100 ms .

Also-Van de Graaff on Raitroad Curres; done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts.
*** On the receipt of $\$ 3$, a copy of each of the above works will ${ }^{*}$ be forwarded by mail to any part of the United States.

AVERY'S ROTARY STEAM ENGINES._AGENCY.The subscriber offers his services to gentlemen desirous of procuring Steam Engines for driving Saw-Mills, Graln-Mills, and other Manufactories of any kind.

Engines only will be furnished, or accompanied with Boilers and the necessary Nachinery for putting them in operation, and an Engineer always sent to put them up.

Information will be given at all times to those who dessre it, either by letter or by exhibiting the enginesin operation in thiscity.
Inquiries by letter should be very explicit and the answers shall be equally so.
|D. K.MINOR,
30 Wall-st., New York.

TO CONTRAC'TORS.
James river and kanawlia canal. THERE is still a large amount of mechanical work to let on the line of the Jamea Rivar and Kanawha Improvement, consisting of twenty locks, ahout one hundred culverts and seveial large aqueducts, which will be offered to responsible contracturs at fair prices. The lucks and aqueducts are to be built of cut stone.
The work contracted for mnst be finished by the list day of July, 1838.
Persons desirolls of obtaining work are requested napply at the office of the undersigned, in the city of Richmond, before the fifteenth of May, or between the fifth and the fifteenth of July.

CHARLES ELLET, Jr.
Chief Engineer Jas. Riv, \& Ka. Co.
P. S -The ralley of James River above Richmond is henlihy.

16-10t

PATENT RAILROAD, SHIP AND

BOAT SPIKES.

**The Troy Iron and Nail Factory keepa constantly for sale a very extensive assurtmentof W rnught Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years succesaful operation, and now eimost universal use in the United States, (as well as England, where the subscriner obtained a patell,) are found where the to any ever offered in market.
Railruad Companies may be supplied with Spikes having countersink heads suitable to the holes in irull rails to any amount and on short notice. Almost all the Railroads now in progress in the United States are fastened with Spikes made at the above named fac-tory-for which purpuse they are found invaluable. as their adhesion is mure than double any common spikes made by the hammer.
.** All orders directed to the Agent, Troy, N. Y., will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
*** Spikes are kept for sale, at factory prices, by I. \& J. Townsend, Albany, and the principal Iron Merchants in Albany and Trny ; J.I. Brower, $2 火 2$ Water street, New-York; A. M. Jones, Puiladelphia; T. Janviers, Baltimore; Degrand \& Smith, Buston.
P. S.-Mailrnad Companies would do well to forward their orders us eurly as practicable, as the subscriber is desiruus of extending the manufacturing so sto keep pace with the daily increasing demand for his Spikes.
(1J23am)
H: BURDEN.

TO RAILROAD CONTRACTORS.
 SEALED proposals will be received at

 the office of the Selma and Tennesseo River Railroad Company, in the town of Selma, Alabama, fur the graduation of the first forty miles of the Selma and Tennessee Railroad. Propusals fur the first six miles from Selma, will be received after the first of May, and acted on by the Board on the 15th May. Proposals for the ensuing 34 miles, will be received after the 10th May, out will not be examined nntil the list of August next, when the work will be ready for contract.The line, after the first few miles, pursuing the flat of the Mulberry Creck, vocupies a region of country, liaving the repute of being highly healthful. It is
free from ponds and awamps, and is well watered free from ponds and awamps, and is well watered -
The soil is generally in cultivation, and is dry, light The soil is generally in cultivation, and is dry, light
and sandy, and uneummonly easy of excavaion.The entire length of the line of the Sel a and Tennessee Railroads, will be abont $\mathbf{7 0}$ miles, passing generaliy through a region as favorable for health as any in the Southern Country.
Owing to the great interest at stake in the success of this enterprise, and the amount of capital alreads embarked in it, this work must necesaarily pruceed with vigor, and l invite the attention of men of industry and etiterprise, both at the North and elsewhere to this undertaking, as offering in the prospect of and climate, a wide and desirable field to the contractor.
Pruposals may be addrissed either to the subseriber, or to General Gilbe Shearer, President of the Company.
ANDREW ALFRED LEXTER, Chief Engineer Selma, Ala., March 20ih, 1837.

A 15 \%
ROACH \& WARNER,
Manufacturers of OPTICAL, MATHEMATICAI, ANE PHILOSOPHICAL JASTRUMEN'I'S, 293 Brosdway. Now Yoik, wili keep constantly on hand a large and general assortment of lastruments in their line.
Wholesale Dealersand Country Merchants supplied with SIIKVEYING COMPASSES, BARUMETERS, THFRMOMETERS, \&c. \&c. of their own marrufacture, warranted accurate, and at lower prices than can be had at any other watablishment.
inetrnments made to order aml repeired.
$141 y$

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build, on his Patent Plat., would respectfully inform Kailroad and Bridge Curpurations, thar he is prepared to make contracts to build, and furnish all materials for auperstructures of the kind, in any part of the Urited States, (Maryland excepted.)

Bridges on the above planare to be seen at tho fullowing localities, viz. Un the main road leading from Baltimore $t \omega$ Washington, two miles from the former place. Across the Metawamkeag river on the Military road, in Maine. On the national road in Illinois, at sundry points. On the Ba! imore and Susquebanna Rrailroad ut three points. On the Hudson and Patterson Railroad, in two places. On the Boston and Worcester Railroad, at aeveral points. On the Boston and l'rovidence Railroad, at sundry points. Across the Contoocook river at Henhiker, N H. Across the Suluegan river, at Milford, N. H. Across the Connecticut river, at Haverlill, N. II. Across the Contoocook river, at Hancock, N. II. Across the Androacoggin river, at Turner Centre, Maine. Across the Kunnebec river, at Waierville, Maine. Across the lienesse river, at Squakiehill, Mount Morris, Now-York. Across the White River, at Hartfird Vt. Across the Conneclicut River, at Lebanon, N . II. Across the mouth of the Broken Straw Creek, Penn. Acrosa the mouth of the Cataraugus Creek, N. Y. A Railroar Bridge diagonally across the Eirie, Canal, in the City of Rochester, N. Y. A Ralrosd Bradge at Upper Still Water, Oruno, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the firgest woouen aridees ever built in America.

Notwithstanding his present engagements to build between twenty and thirty Railroad Bridges, and several common bridges, several of which are now in progress of construction, the subscriber' will promptly attend to business of the kind to much greater extent
and on liberal .terms. and on liberal .terms.
Rohester, Jan. i3th, 1837.
MOSES LONG

ALBANY EAGLE AIR FURNACE AND

 MACHINE SHOP.WILLIAM V. MANY manufactures to order, iron castings fur Gearing Mills and Factoriea ol every description.
ALSO-Steam Engines and Railroad Castings o every description.
The collection of Patterns for Marhinery, is not equalled inthe United States.

NEW ARRANGEMENT.

ropes for inclined planes of railroads.
WE the subscribers having formed a co-partnership under the atyle and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railruads, and for other ust \&, offer tu supply ropes for inclined planes, of any length required withuut aplice, at short notice, the matrufacturing of cordige, heretofure carried on by S. S. Durfee \& Co., will be dune by the new firm, the same superintendant and machinery are employed by the new firm that were employed by S. S. Durfee a Co. All orders will be promplly attended to, and ropes will be shipped to any purt in the United States. 12ll month, 12ih, 1836. Hudson, Culumbia County State of New-York.

33-1f.
ROBT. C. FOLGER.

AMES' CELEBRATED SHOVELS, SPADES, \&c.

300 dozens Ames'
 150 do do do plain do do

150 do do do caststeel Shovels \& Spade 100 do do plated Spades
50 do do socket Sloverels and Spades.
Tugether with Pick Axes, Churn Drills, and Crow Bars (steel pointed,) asannfactinred frum Salishury refined iron-for aale by the manufacturing agents,

WITHERELL. AMES \& CO.
No. 2 Liberty street, New York.
US, AMES \& CO. BACKÜS, AMES \& CO.

No. 8 State atreet, Albany
N. B -Also furnished to order, Shapes of every description, made from Salshury refined Iron v4-If

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads.
No. 264 Elizabeth street, near Bleecheratreot, New-York.
RAILROAD COMPANIES would do well to exa mine these Cars ; a specimen of which may he seer now in operation

TO RAIJ,ROAD CONTRACTORS. PROPOSALS will be received, at the office of the Hiwassee Ralroad Com., in the town of Athens, Te.nessee, until sunset, of Monday, Juise 12th 1837 ; fur the grading, masonry and bridgee, on that purtion of the Hiwasaee Railroad, which lies beween the River Tennessee and Hiwassee. A dia lance of 40 milea.
The quantity of excavation will be about one mil ior of cubic yards.
The line will be staked out; and, together with drainings and speciticatiuns of the work, will be ready for the insportion of contractors, on and after the lat day of June.

Engir JOHN C. TRAUTWINE,
16-6t.

RAILWAY IRON, LOCOMOTIVES,\&c.

 THE subscribers offer the following articlee for sale.Railway Iron, flat bars, with countersunk holea and
nitrell joints, saitred joints,
350 tons $2 \frac{2}{4}$ by $t, 15 \mathrm{ft}$ in length, weighing $4 \frac{18}{180}$ per ft .

280	*	2 "	"	"	3.150	*
70	"	$11^{\prime \prime}$	\because	"	$2 t$	${ }^{\prime}$
80	"	12 "	"	'	$1 \frac{25}{100}$	"
90	"	$1{ }^{\prime \prime}$	"	"	\%	"

with Spikes and Splicing Plates adapted thereto. To be sold fiee of duty to state governments or incor. porated companies.
Orders for Pennsylvania Boiler Iron executed.
Rail Road Car and Locomotivo Engine Tires wrought and turned or untarned, resdy to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 iaches diameter.
E. V. Patent Chein Cable Bults for Railway Car axles, in lengthe of 12 feet 6 inches, to 13 feet $2 t, 21$ 3, $3 t, 34,31$, and $3 t$ inches diameter.
Chaina for Incliued Planes, short and atay links, manufactured fromithe E. V. Cable Bolts, and proved at the greatest strain.
India Rubber Rope fur Inclined Planes, made from Ncw Zealand flax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the ison chair and atone bluck of Edje Ra:!ways.

Every description of Kailway Iron, as $w-11$ as Locomotive Engines, imported at the shortest notice, by the agency of one of our partnera, who resides in Fingland tor this purpose.
A highly respectable Amcrican Engineor, resides in Eugland for the purpose of inspecting all Locomotives, Mlachinery, Railway Iron \&c. ordered thruagh as.

23 tf
A. \& G. RALSTON \& CO,

ARCIIIMEDES WORKS.

(100 North Moor strect, N. Y.)
New-York, F'ebruary $12 \mathrm{th}, 1836$.
THE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furnish all kinds of Machinery for Railroads, Lucomotive Engines of any size, Car Wheels, such as are now in snceessof operation on the Camden and Amboy Railroad, tui operation on the Camden and Amboy Rairoan,
nonn if
which have failed-Castings of all kinds, nonn if Which have failed-Castings of a mles, and Buxes, furnished ai shortest nutice 1-vt
H. R. DUNHAM \& CU.

MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Paterson, NewJersey. The undersigned receive orders fur the following articles, manufactured by thrm, of the most superiur description in every paricnlar.' 'I heir works bing extensive, and the number of hands employed being isrge, they are onshled to execute both large and small orders with promptness and despatch-

RAILROAD WORK.

Locomotive Steam-Engines and Tenders; Driving and other Locomutive Wheela, Axles, Springs asd Flange Tires; Car Wheels of east iron, from a variely of patiorns, and Chills; Car Wheels of cast iron riely of patlorne, and Chills; Car Wheels of cast ifon.
with wroaght Tires ; Axlcs of best Americsn refined with wrogght
iron; Springs ; Boxes and Bolus for Care.

COTTON WOOL AND FLAX MACHINERY,

Of all descriptions and of the most improved Pat erne, Stylo and Workmanship.
Mill Geering and Millwright work generally; HyIraulic and other Presses; Press Screws; Callen tors; Lathes and Tools of all kinds; lron and Brass Castings of all descriptions.

KOGERS, KEICHUM \& GROSVENOR
Pattermon, Now-Jersey, or 60 Wallotreet, 5 N.

AMERICAN RAILROAD JOURNAL, and advocate of inierrall mipotements.

PUBLISHED WFEKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DÚLLARS PER ANNUM, PAYABSE IN ADVANCE.
K MINOR, and
\& Eiditors AND
jur GE C. SCllateffer, \} Prorietorm.]
SATURDAY, JULY 8, 183\%.
NOLUME VI-NG. 2\%.

CONTENTS,

Certain Rewards of Industry, etc.,
Transactions of the Institution of Civil Engincers.
A Solvent cot hitherto used in the Arts,
Tropical Fibrous Plants,
On the Shrimkage and Expansidn of Iton in the prosess of
Casting,
Agriculture, etc.,
Advertisements,
417
418
423
424
425
426
431

AHEIGICAN RAHLKUAD JUUIENAL。

NEW-YORK, JULY 8, $183{ }^{\circ}$.
The following article from the Long Island Star, should be read by every young man who would be the architect of his own fortune.

The certain Rewards of Industry.-We remember reading some time since, the memoirs of a certain booksclle:; named Lackington, who lived in'London. He was early apprenticed to a shoemaker, and indastriously served out his apprenticeship. He pursued this vocation for some time afterwards, working at various places for a bare subsistance, and at length manied a wife as poor as himself. They endured sickness and privation. At length Lackington, who had some penchant for bookselling, opencd a shop in an obscure part of London, with a few books on divinity, and at the same tine wrought at his trade. He made a few pounds, and gaining contidence, entered upon bookselling altogether. He continued to grow prosperous. His store at lengh became immense, he rode in his coach, and died exactly at the age of three score and ten.

The story of Lackington may be of much use to society. It resembles in some points that of our countryman Franklin, but still Lackington was a very different man from the American philosopher. He never would have encountered any hazard in the pursuit of science. "His soul proud science never taught to stray.". He kept plodding onward, in the accuston ed rotine of his business, and leaves his history as an example of the benefits of quietly sticking to the shop.

Of late $y \in a r s$ with us, as with the olden nations, the pursuits of humble industry seem to have been despised. Many have been led to look to sudden means of obtaining wealih, and bave turned from the beaten track of soil, to untrial but more attrac tive paths. Some have been lost and many bewildered, and those who are able to find their way back to the quiet duties of

Abstract

useful stations, will not soon be likely to violate the rules of prudence, for the sake of trying ambitions experiments.

Even in courtres where aristocratic distinctions prevail, great respect is paid to men of substantial character; who can show that by labor, and patience, and self-denial, at the outset; they have at leng:h conquered fortune and acquired the control of wealth. Such individuals, ton, f eel the comfort of that characteristic of mind which is called independence. They have wrought for themselves-they have risen by their own exertion-they sustain themselves upon their own wings. Such independence should be the common exertion.

It is becoming too general with the people of this country. to despise the occupations which require labor. Men would have their children tenth-rate professional men, or mere nullities, rather than turn their minds to uscful trades. We need not enforce the principle, that it is better to encourage humble deeires and more useful aspirations. If the mind, after the body has been disciplined and suitec̈ to habits of patient toil, rises to a different and higher range of duties, the humility from which it arose, but adds to the pride and elevation of its soaring:

The great ain of every man should be, to render himself use: ful; and every man who has the steadfastness which will enable linn to go perseveringly through the labor of a few years, may attain competency almost with the certainty of a mathematical demonstration. In order in follow out the plan, here must be a resistance of all temptation to turn aside, a ready submission to unavoidable disasters, a continual effort to build up and in-crease-in brief, an unyielding desire and effert to do one's duty to society, in the regular purseit of a use ul vocation.
We think it would be of benefit to many readers if a new edition of the life of Lackington, were published; for while the inoral of his industry is very furcible; the moral of some of his errors is not less so. He sulfered from beiny induced to act the politician-he felt the effects of time and spirit sacrificed at conventicles.
The life of Franklin is one not less than his of constant industry, but it is characterized by the further efforts of mind and genius, which, without diverting him from his practical pursuits, enlarged the sphere of his ueefulaess.

Proressor Azelius.-Professor Adam Azelius, the Nestor. of scientific meu in Sweden, died at Upsal, on the 30th of last January, aged 86 years. He was the last pupil of Linnæus, and was celebrated tor his travels in Asia and Africa. His brothers, John and Peter, the first devoted to chemistry, and the second to medicine, are both distinguished for their talents, and have, for nearly half a contury, occupied chairs in the Univervity of Upsal.-[Atherwum:]

A. Basin ; B, Humber Dock ; C, Junction Dock ; D D, Old Dock ; E E, the Old Harbor ; F, Timber Yards ; J J, Warehouses ; Q Q Q Q Q. Quays ; a, Dry Dock ; b, New Bridge ; d, Dock House ; e, Bonding Dock; f, Pond ; g, Ship Yard ; h, Church ; i, St. Mary's ; 1, Salt House Lane ; 2 Gi orge Yard ; 3, Chapel L ne ; 4, Bishop Lane ; 5, Seale Lane ; 6, Church Lave; 7, Blackfriars Gate ; 8, Blanket Row; 9, Myron Gate; ; 10, Postern Gate ; 11, Whitefriars Gate; 12, Dagger Lane , 13, Nawe ; 7, Blackfriars
lington-street: 15 , Nelson-st. ; 16, Castle-st.; 17, Carr Line ; 18, Waterworks lington-street: 15, Nelson-st.; 16, Castle-st.; 17, Carr Lane ; 18, Waterworks Lanc; 19. Waterhouse J. ve; 20, Garrison Road.

TRANSACTIONS OF THE INETITUTION OF CIV L ENGINEERS
XXVII: AN ACCOUNT OF THE IIARBOR AND DOCKS Af KiNUSTUN-UPON HUI.L. BY Mir. TIMPERIEY, R SIUENT ENGINEER TO TIE HULE DOCK COMPANY COMMUNIcitcid by the prisident, james walkER, ESQ. F. R. S., L \& E.

THE OLD HARBOR.

The river Hull, according to Mr. Tick. ell, the historian of the town, formerly discharged itself into the Humber between Drypool and Marfiect, and that part of the present river usually called the Old Harbor, was originally no more than an open drain cut by Lord Sayer of Sallon, for the purpose of draining the country.

This bubo-, from the north bridge to its junction with the Humber, was the original and, previously to the coastruction of the ducks, the only port f.r the thwn; its direction is nearly noth and south, its length from the bridne to the end of $t: e$ Garison Jeity, 2940 feet, and the average width within the staiths; at higb water of spring tides, 165 feel; the area is therefore about eleven acres, and the depth is 22 leet.
As tride and conmerce increased. the harbor becane insuffic ent to contain ill: tie vessels that irequelled the por;, many of which were the reture obliged to receive and deliver their cargoes whilst lyi g in the roads, by means of cralt, and so crowded was it at times, that even up to the period of the Junction Dock being made,* ships have been known to be twinty tides or more in pas.ong from the Humber to the (Ild dock. But the crowded sta e of the hatb.r, and the co.ssequent delay in gettong to had lrom the quays, were not the only in: conveniences; for, from its being an upen tideway, all vessels drawing more than four or five feet water grounded every tide; so that damage was frequently sustained, par ticularly by such as were sharply b ilt and deeply liden. Cúmplaints were also hade by the officers of the Customs frum time to time, of the great risk and difficulty in collecting the duties, wherehy, it was stated, the revenue suffered very materially, and this ultimately led to the formation of the Oll dock.
It should also be observed, that for some hours before low water, the current is s. strong as to be unnavigable for vessel, against the tide, and those passinig with the stream are frequently injured; the fall or declivity from the uutur end of the Old duck basin to the harbor mouth, at low water spring tides, being in general fr.m four to five itet, and sometimes more, a d the velocity of the ebb at such times frum three to four miles an hour.

Before the Old duck was begun, trans. verse sections were taken of the harbor by Sineaton and Grundy, from which we fin that the depth of water is now about thi same as ir whs at that time; but the river imuch narrower near its junction with th Humber; this diani utoo. in the width ha taken place siace the Humber dock wa made, froin the free co rise of the tide, ol, struc' ed and retarded by the projection intt
tiver the of thic quays aud piers of the basin
causing a great accumulation of mud upor the shote for a considerable distance, buth: bove and below the entrance to tha llanl. berdick: and the m uth of the hubor ha: wit oty been nair, wed by these woike, bu has bein. x - nded furtier into the tivab r, and n new direcinn considerably to th. westward given to it.
The harbor is scouted entirely by it: back waters, of which the prinespat supply in sumener is from the river $\mathrm{H}: \mathrm{Il}$, which extends into the Eat Rading about twens miles, and is navigable for vessels of tifi) tors' burden; but in winter, the drainage from the extensive level of the Holderness aid the low land on the west side of the river, has been, for a long time, a very powerful auxiliary in mantaining the depth.

For he ccisvenience of vesse!s crilëring, to dolphins hav been rected uam the Husuber, to the ea-t of the tarbur in wih. the last in conseq ence of this part of the beach saading "p, ns befure no iced; and t:ere is in je ty or small pier with the nece. sary mooing puste; and two transport buoys a latle to the south of the dulpo.ans. In furmer times a chain was stretelid across the entr nce of he harbor, and a mall charge mide for all vessels pa-sing in or out, vu! this restriction and impust have bëen discuntinued for many years.
On etich side ot the ha bor, fur near!y i. 8 whole length, there are staiths of platio: m-, ifteen feet wide, for luadiag and delivering vessels; they are private property, and in arder not to obet uct the free course of the tide, are (in pursuance of an act of parliament) formed of large piles driven firinly into the ground, upon which are laid trans. verse beams, covered with cluse planking. Cranes'are tixed on the e staiths, and on the lown side there is an extenive range ot private warehouses for sufferance goods

The tume of higit water at Hull at the full and change of the inoon, is six o'clock, but the hi hest tid'ss are generally two or three day; aiterwaids; the flow or rise of an average sprung tide is aioout 21 lert at the harbor mouth. anu 17 iet at tue entrance to tive Old dosk; thit il an average neap tide. 12 tert at the haior mowh, an 19 teet uppo ite the OHI dork nirance: but it may b: observed, tha th: ides osca-1.mally rise three to four fee, igher; and sometunes, hough raiely a lit lle more, and ebb somenimes two leet a nore, lower than stated above. It may be roper to nutice also, that when there are nany vessels in the harbur, the ebb is no. , 1 is by nuarly a foot, as when it is clean of shipping. The tule flows abous fir: tours al the harbor mouth, ind four hourind a half at the entrunce of the Old duck:

the olo dock:

In consequence of the confined state of ne old harbor and other inconveniencer tready briefly noticed. application har veen made to goverment. a few years he 1.e ob: aining the Act for inaking the Oll lick, fur a grant of pirt of the King': orks ne tr the Girriton, for the purpus. of enlarging the harbor; but, as a legal 1.ay furuted no part of the scteme, it was pposed by the boand of Customs, and nothing further was done. Eome time after
however, it was intimated to the Collector a nud Comprotlet of Customs at the port; tald if a dork and legal quay wre not natlo, Huht the business wauld be re. (aved to some uher port conn clel with he Humber dispus d to confor it in these rontations; and a we:nstal was in cone -quence presensed by the metchuns of G.inshorotgin. praying that a legal quay a, i tht be e-tabliblieil at hat place:
It was now evident hat: some:hing must ae done to preserve the trade of the port; and it was at lengih resolved that the wishes of government as to a dock and legal quay sloould be complied with; but :here appears to have been great difficuly in obtaining an adequate subscription, and It was some time before this desirable object could be accomplistied. The sharehoiders imployed Mr. Grundy, the engineer, to i ruit disig sand all estinate for the wo k, whis h beag approved of, and the n-ceseary arr uge "uen's couple ed, apulication was made to pillament and an Act armi ied in April, 1774, soon afer which the work was wegun:
A: hat pervol works of this kind were in their infancy, and we must now theneforé o k for the degree of parfection, either in de sign or execu'in, which has disinguish: e. 1 hose of more recent tilues:

The Ol! stock, which apitears to have reee judiciously plamed und baid ont, is Mmataisat of dxak. 1703 reet longr, by 254 feet
wide, so that the superficial content is nearly ten acres, and therefore cavable of conainmor a tandren anderter rirged vessels; it was the liugest dock in he kinglom at the time.

Actorling to the sections Excavation. Actording the the sections
15 feet, the boltom of the dock buing 15 15 feet, the the bell of the old harbior op. pisite the entrance. The soll, "hich was hogetu.er alluwal, was deposited upon land chiefls on the north side, and parily pur: chaved for the p.rpose, whicth being raised hereby abont five teet, and atierwards sold by the Dock Co pany, is now the site of sueral pincopal sireets.
lok witio. Pan The wialls are founded upon
piling of a novel dencripion, but very inulequate to the purpuse: the piles, which are 12 inches wile by 9 inch-e- thick at the top tapering regularly to 3 inches at ith bottum, are driven under the צalls and commenforts, lung̣itulinal sleep. .rs, 12 inches wile by 6 micherdeep, renailed in the pile heads; and 3 inch transterse plinking laid and spiked down on them: he whole ir of fir tusber, and tar I pesféctly level.
The tralls ate whelly of bricks, many of hem. arade upon the spor, coped with Bram: iev. fall sinne, 12 wiches thick, and 3 ceet wide. They were built and groused with nortar made of Warmeworth lime and and, part of which was fresh waier sand, and the rest selected from the excavaliun; he brickwork, for 14 inc!.es in depib, is at right angles to the face, the rest of the wall norizohisl,-a mode of layin by do means o be recommended, as the frupt is theieby completely separated froin the oiber part of the wall, nind the botil, a uost ensential part of all building, thus entirely destroged:

In front of the wall, at intervals of ten feet, oak fenders 9 inches wide, and projecting $7 \frac{1}{2}$ inchès, are tenoned into three oak sills, 12 inches by 6 inches, built in the brickwork, and bolted and further securei to them by oak brackets epilied on each side.

From the insufficiency of the piling, and the foundation, which was only level with the bottom of the dock, not being low enough, the :valls have subsided, and been forced forward in several places by the pres. sure of the earth behind; the greatest de rangement is on the north side near the east end, noticed by Smeaton in his reports as being at that time 2 feet $8 \frac{1}{2}$ inches out of a straight line in a length of 157 yards, and found by recent measurement to be now 3 feet 10 inches out in 202 yrards, or about a foot more than when examined by Simeaton shortly before the opening of the dock: the wall on the south side nearly opposite the above, for 103 yards in length, is also forced forward about 20 inches in the worst place: the rest of the dock walls are nearly as straight as when first built. This wall has given way at different times, (probably from the quays being overloaterl,) and in several places eleven or twelve feet at lop have been taken down and re built ; pilos have also been driven down in front of the wall, and a cap sill with transverse plank ing laid thereon, upon which the new wall has been erected; this has answered the purpose, and as a further security a mass of well rammed clay has beea lately deposited at the foot of the weakest rarts of the wall.

L.ock and bavin.

The original lock was 200 fect in extreme lenghth, and 36 feet 6 inches wilde, by 24 feet 6 inches fleep; there were six rows of grooved sheet piling 14 feet long across the lock, which was founded ors 1245 bearing piles 12 feet long, of a similar description to those for the dock walls, and on these longitudinal and transverse beams were lail. and covered with 4 inch planking, so as to form a wooden floor, which was the customary mode of building at that time.

The lock walls were built with bricks, faced with Mexborough stone, from 10 inches to 3 feet, or, on an tverage, 18 inches deep in the bed, with occasional through stones to bind the work together ; the hol. low quoins and coping were of Bramley-fall stone, the faces of which were set in pozzuolana mortar, as also the front masonry: the gates were made of English oak, in an arch. ed form, and but 12 inches thick, including the planking. There was only one clough or slice, 3 fect by 18 inches, in each gate, which did not give sufficient power to cleanse the lock and baisin, without having recourse to a smail lighter and dr.ıg to loos. en and remove the mud whilst scouring.

There was a common wooden drawbridge on the Dutch plan, over the end of the lock.
The basin to this dock was originally 212 feet long, and 80 feet wide, wit:1 brick walls like the dock, but the wall on the north side, from some defect in the foundation, gave way before it was finished, and was in conse. quence never raised to its full height, a sort of timber platform being erected on it, which remained till the basin was rebuilt in 1535 .

The foundations of the lock walls were also insufficiently piled, as uppears from Smeatons Report, in which it is stated that, " respecting the walls of the lock they have the appearance of being well built; we, however, obscrve some small sets therein which we impute to the want of strength in the foundation timbers." He furthers sivis, "that the floor of the chamber had risen about three inches in the middle, and that of the platform to the gates from two to four inches."
In the course of seven or eight years after the lock was built, the walls had yielded so much as to require to be taken down about 12 feet from the top; one side was rebuilt in 1785, and the other the following year.

> Quays.

The quays are spacious and paved with pebbles from Spurn Point. A legel quay extends on the south side of this dock from the river Hull to Whitefriar-Gate Lock, a leugth of 1558 ft ., and contains an area of 18,160 square yds., the superficial content of the whole quayage being about 29,000 square yards.

Mooring. The mooring posts to this dock were originally of oak, 15 to 18 inches diametcr at the top, 2 or 3 feet above the quay, and 8 or 9 feet in the ground, with two oak land ties, each 20 feet long, the ends of which were sccured by cross timbers, and two piles to each ; the posts are 12 feet from the side of the dock, and 14 or fifteen yards asunder. A very ligh wind arising one night, soon after the dock was made, the ships moored in the evening on one side were found next morning on the other, having dragged several of the mooring posts along with them, a plain indication that these posts had not been very securely fixed. I understand that several of the posts were rencwed about twenty years ago, but there are a great many of the original ones still standing, though the parts above ground are gencrally in a very dilapidated state, and much worn by the mooring ropes and chains. In taking up several oi these we found them, excepting the sap and about an inch of the heart on the outside, very sound and rood, to within two or three feet of the ground; but the land ties, though also of oak, being within two or three feet of the surface, were generally a good deal decayed; some few which were of elm were completely rotteri. In most cases the deeayed wooden moorings have been replaced by stone ones, either of Pe terhead granite, or a sort of free stone from near Rotherham, about 2 feet 6 inches above ground, 18 to 20 inches diame:er at top, and 15 to 17 inches at the surface: by being thus tapered downwards, they have been so weakened, as to he occasionally broken off by the shipping in very windy weather. The part of the stone in the ground is about 2 feet square, and 6 to 8 feet long, set upon oak plank, and secured by land ties similar to the wood posts.
Shedo, wrareheuves
and crajes.
There are two sheds upon the 23 legal quay 13 fect from the dock, 23 feet wide, and together 635 feet long, with doors at regular intervals on the south side, and small openings or shutters for the admission of light; the north side is quite open. The long shed was erected imenedi-
ately after the opening of the dock; the other, several years later.

A little to the south of the sheds, on the xtremity of the Company's land, stands a range of warchouses, 345 feet long, of irregular breadt'is, consisting of three floors besides the cellars, and comprising a space of about 2250 square yards. The cellars are all arched with brick, and there are six cranes to these warchouses, which being the only ones belonging to the Company, are now used indiscriminately for all the docks, a railroad being laid down nearly their whoie length, for the conveyance of goods between the warchouses and the shipping in the dif. ferent docks.
There are six wooden cranes to this dock, four on the south side, and two on the north; the latter are well cranes, very lofy, fixed about six feet from the side of the quay, and calculated to lift four or five tons : the others are of a lighter description, the jibs close to the dock; and supported by frame-work iin the old fashioned way; one of these is worked by a tread-wheci.
Madromet.
Various schemes had been suggested for cleansing the dock of the mud brought in by the tide; one was by making reservoirs in the fortifications of old town ditches, with the requisite sluices, by means of which the mud was to be scoured out at low water ; another by cutting a canal to the Hamber, from the west end of the dock, where sluices had been provided, and put down for the purpose, when It was proposed to divert the ebb tide from the river Hull along the dock, and through the sluices and canal into the Humber, aud so produce a current sufficient, with a little manual assistance, to carry away the mud. Both of these schemes were however abandoned, and the plan of a horse dredging ma. chine adopted ; this work began about four years after the Oid dock was completed, and continued until after the opening of the Juaction dock. The machne was contained in a square and flat bottomed vessel 61 fect 6 inches long, 22 feet 6 inches wide, and drawing 4 feet water, it at first lad only eleven b ckets, calculated to work in 14 feet water, in which state it remained till 1814, when two buckets were added so as to work in 17 feet water, and in 1827 a further addition of four buckets was made, giving seventeen altogether, which enabled it to work in the higbest spring tides. Tho machine was atteaded by three men, and worked by two horses, waich did it at first with case, but since the addition of the last four buckets, the work has been exceedingly bard.
There were generaily six mud boats em. ployed in this duck before the Humber dock was made ; since which there have been on!y four, containing, when fully laden, about 180 tons, and usually filled in about six or seven hours; they are then taken down the old harbor and discharged in the Hurmber at about a hundred fathoms beyond low water mark, after which they are brought back into the dock, sometimes in three or four hours, but generally more.The mud engine has been usually employed seven ur eight months in the year, commencing work in April or May.

The quantity of mad raised prior to the
opening of the Junction dock, varied from 12,000 to 29,000 tons, and avcraged 19,000 toas per annum ; cxcept for a few years before the rebuilding of the Old lock, when from the bad and leaky state of the gates, a greater supply of water was required for the dock, and the nverage yearly quantity was about 25,000 tons. As the Junction dock, end in part also the Humber dock, áre now supplied from this source, a greater quantity of water flows through the Old dock, and the nuid removed has of late been about 23,000 tons a year.
It may be observed, that the greatest quan tity of mud is brought into the dock during spring tides, and particularly in dry seasons, when there is not much fresh water in the Hull ; in neap tides, and during freshes in the river, very litte mud comes in.
towa anor.
There are two sluices in this dock, for scouring the town sewers; both on the south side, one being op posite the end of Low-Gate, the other near the Whitefriar-Gate lock ; they consist of a cast iron clough 3 feet 2 inches wide by 2 feet $1+$ inches high worked in a groove by means of a screw, with a conduit, also of cast iron, 3 foet wide by 2 feet 6 inches high, the botom being about 9 feet below the dock coping.
Dart ofenel. By the Act of Parliament seven
years were allowedl for finishing this dock, but by great exertions the work was completed in four years, and the dock was opened on the 22 d of September, 1778.

Reobulding of hack The next improvement in the dock ; but as an important part of the work connected with the Old dock, namely, the entrance lock and basin, has since been completely rebuilt on an improved plan, it may be advisable to give a brief description thereof before proceeding to the Humber dock.
state ofold wati. This reconstruction became necessary in the ear!y part of 1814, from the ruinous state in which the lock then was. The witer being drawn out of the docis to wihhin four or five teet of the bottom, a coffer dam formed at the outer end of the basin adjoining the harbor, and a temporary dam of clay three or four feet above the surlace of the water, on the side rext the dock, the lock and basin walls were taken down, and it was found that the stone facing was much decayed, the niortar alnost entirely washed out of the joints, particularly above high water of neap tides, and the walls greatly defaced by the coal hooks and stowers used in passing vescels through the lock : below the level of neap tides the stone was in a better state of pireservation, but from its softness was a little worn away by the shippiag; the hollow quoins which had been forced forward were in a bad state, and caused a great quantity of water to be wasted. The piles, sleepers, and planking, in the botton of the lock aod foundations, were all perfectly sound; the nails and small spikes were much wasted, but a great many of the large spikes and bolts were so little corroded, that they were used again in the construction of the new lock ; the foundations had however sunk, by which the upper part of
the wall was bronght forward, and the timbers of the floor were several inches higher in the middle than at the sides.
The gates, which, when rew, were much too slight, had become actually dangerous, athough there had been new head posts to them all : and when they were taken up, the morlices, tenons, and iron fa-tenings were so bad, that they literaliy dropped to pieces.
The basin walls nnd foundations were in much the sanie state as the lock; but the front piles were pressed down by the guperincumbent weight, in some places is inches lower than the back ones, and the top of the wall bulged out in consequence. The ground in this part appears to have been particnlarly soft.
New. lock.
The ground having been clear-
ed, the rebuilding of the lock was begun in May, 1814, from the design and under the direction of the late Mr. Rennie, Mr. George Miller being the company's resident engineer. This lock is 120 feet 9 inches long within the gates, 24 feet 6 in ches high above the pointing sills, and 38 feet wide at the top, being 18 inches wider than the criginal lock: the foundati m and walls are nearly the same as in the Hum ber dock leck, which will be more particularly described hereafter; but it should be observed that all the old piles remained to strengthen the foundation. The inverted arch is bult with bricks set in pozzuolana morrar, as also the side walls, which are faced with Bramley fall stone, the first or lowest course being all headers 4 feet in the bed by 18 iuches thick; the hollow quoins caine fiom near Rotherham, nind are set ia the same mortar; the backing or body of the wall is brick work, with one entire through course and occasional through stones besides, set and grouted in coinman mortar ; and the coping is of Brainley-fill stone, 4 feet wide by 15 inch. es thick, joiaed together with stone dowels. This lock appears substantally and well built.

The gates, except the planking which is $2 \frac{1}{2}$ inch fir, are all of English oak, and are each 23 feet wide, 24 feet and 3 inches high above the pointing sill, 16 inches thick at the heel, and $14 \frac{1}{2}$ incles at the head, including the close plankiny: there are ten bars or ribs of a curved form, the versed sine of which is 12 inches in the inside, tenoned into the head and heel posts, and further secured by wrought iron straps and screw bolts in the usual way: the two gate slaices of cast iron are 2 feet 6 inches square in the clear, and are worked by a wrought iron screw and brass nut, with bevel gear at top. The gates are moved by machinery on the side:of the lock, turning a cast iron roller, round which the chain revolves ; these chains are all. inf in inch iron, and are fixed from two to four feet above the bottom sill for shutting, and 7 feet for opening the gates, the latter operation being assisted by a counterbalance weight to prevent the chains from running off the roller. There are one horizontal and two vertical rollers fixed in the front of the lock walls about ten feet above the sill, with another large horizor.
tal one at the foot of each wall, round which the chaius turnin working the gates. A cast iron socket in the bottom of the heel post $3 \frac{1}{2}$ inches diameter, by $1 \frac{3}{3}$ inch deep, turns upon a cast iron pirot fixed on the platform ; and a friction roller of brass (by which the gate moves on a cast iron segment in the botton) 10 inches diameter by 4 inches wide, is fixed in a cast iron box or frnme near the meeting post, with a wrought iron regulating rod reaching up to near the tcp of the gace, for adjusting the roller to the proper height. The gate is secured at top by means of a cset iron anchor with wrought iroa, coilar in the common way.
From the frequent wrking of the gates the pivot and socket on wish tiney turn at the bottom wear away, in which cave the gates are occasionally lifed up a little by screws, and a piece of hard brass about an inch thick is niculy fitted into the sucket, to restore the original height.

Tl.e b:idge over the lock is of ctast iron, on the lifting principle, and 15 feet wide, the carriage way being 7 leet 6 inches, and the foot ways 3 feet 6 inches each; the whole length is Si feet. The bridge consists of sir ribs, $1 \frac{1}{4}$ inch. thick in the plain part, and 3 inches at the edge or flanch, 9 inches deep at the meeting or middle, increasing, though not regularly, towards the sides, and it turns on a cast iron shaft or main axis 8 inches square, with four round bearings working in pluminer blocks, fixed in cast iron carriages, bulted to the insisonry of the lock. When the bridge is to be opened, a cast iron flap. turning on an axis $4 \frac{1}{2}$ inches square, is lift. ed by a lever, in order to give room for it to rise : this flap :Crms at the sanne time a guard or barrier against passengers, and atier the bridge is lowered into its place it is let down and fcrms part of the roadway. The bridge is covered with 3 inch oak plank laid across and bolted to the ribs; in the carriage way the planks are, for preservation, overlaid with $1 \frac{1}{2}$ inch fit or elm boards which are renewed from time to time, and the foct paths are covered with similar boards on oak joists, elevated about five inches above the carriage way, with a cast iron curb on each side, and wrought iron stanchions and chains as a fence on the outside. In lowering the bridge, when first erected, one of the outside ribs was broken by striking against the under side of the fixed planking at the outer end; this was re: paired by bolting a cast iron plate to ono side, and fro: greater security all the ribs were afterwards strengtnened in the same manner. It will be understood, from the principle of this bridge, that as it is raised, the outer end descends into a quadzantal pit or cavity, which, to ensure proper workng , it is essential should be kept clear of water. The machinery is similar to that of the Junction dock bridges, which will be more particularly described afterwards; one man can raise or lower each leaf in half a minute, but two men with the greatest ease.
From a small yielding of the walls, the bridges was forced from its bearings on both sides, by which the weight of the carriages passing over it was thrown upon the
main shaft; this has lately been remidied by cranping wrought iron plat s , $\frac{3}{8}$ inch thick, to t e bearings of each rib. This bridge, the first of the kind erccted in Hull, was cast and put up by Messrs. Ayden and Etwell, of the Shelif Iron Works ne:r Bradiord, and weighs, exclusive of the wood work, about eighty tons.

The entrance basin is 213 feet long by 80 fect 6 inches wide at the top, 71 feet at the bottom, and the same depth as the dock. The walls are of brick with a Bramley-fall stone coping, a throug:t cuarse 14 feet from the botom, and oak fenders on the same plan as the Humber dock; the wa!ls are supported at fuof by means of brick inverted arches across the bottom 6 feet wide by 18 inches deep, with spaces ten feet wide between, and the whule is covered with earth te near!y the level of the lock sill-.

Roopeosd.
This luck and basin were finished and re-opened on the 13th of November, 1815.

With a rising tide, it is usual to begin locking when there is a dept'i of 6 to 7 feet oal the sill, and wien re quired, five pens can be made before thrwat r is level inside and out; the gates are then all ojened, and large ships passed at the top of the tide, after which they are again closed; but the penning is frequentl! resumed, until the water has fallen to aboui 7 feet on the sil, by which time five pens more have been made. Seven or eight hours a tide are thus occupied in locking ; and ohen business presses, this is done dur. ing both tides. It there are many large: vessels to pass, it is sametimes found necessary to draw off the waterone or two feet. so that the surface on the two sides may becone level sooner, and the gates continuc longer open, of wich advantage is also taken to, pass craft without the labor and de. lay of lockage; but this practice is never resorted to, except in cases of necessity, as the deposite of mud in the dack is much increased by it, the water absiructed, which is comparatively pure nom time having been allowed for subsidence, being replaced by the very muddy water of the tide. In bus.! times, tie gates have also sometimes to b. kept open for q ghort time after higu water. and in neap tidegdoing so is unobjectionable. but in springs it ought to be avoided, as irom there being then a considerable curreut through the lock, when the tide has begur: to ebb, there is some difficui y and risk in shutting them.
sweofdeck wall. Before conclyding this brief
acce,sunt of t e Old dock, it mas not be deenjed irrelevaut to point out the state of the wails and loundations, as found in executing the Junction Dock, when they were takendown, at the western ext emity, as far as the norih gates of the Whi.efriarGate Lock.
The turber and planking of the foundafions weie perfectly sound, and the spikes al. 0 g mirally in a good state; but the rak fendels w.re decayed and a goud $d x$ bruised and worn away at tho upper puit by the vessels; new tops had been searvid to many, but the part of the fenders L_{0} low an average tide, say eight or nine feei under the copirg, as well as the sills and
brackets for securing them, were generally sound, the sap and a little of the outside excepted.
The front of the wall for about the same depth had but an indifferent appearance. the bricks being in places much decayed and rubbed away by the vessels, and the mortar washed out of the juints ; but below this the bricks were generally in a much better state, and the poiating nearly entire. It has been befcee observed that the mortar for this wall was made partly from sand dug oul of the dock, which was far from being of the best quality; the interior of the wal! was grouted, and not very sparingly, as in some places the mortar was found nearly as thick as the bricks. The mortar in the inside of the wall varied very mush in qualty according to circunstances; wh re the "all was solid and undisturbed, it was very haid, requiring picks, and in many placo. sledges and wedges, to take it down; but where the wall had given way er been ctherwise disturbed, and cracks and cavit:es thas caur ed in the inside, the murtar was in genital vary solt. 'This was observed in a variety of places, and it was not uncommon to see the mortar in one part of the all exceedingly hard and gool, and within a few inches from it, where the uall we: open and the water had found its way, quite $\mathrm{s} f \mathrm{a}$ and bad, or but little harder than when first built. From this we see how essen tal it is, that building in water should have a substantial and inmovable toundation, and that the walls should be completely solid and imperviuss, particularly where a goud water lime cannot sasily be obtained.

From the front of the wall not beirg pruperly bonded to the back, the parts are not wily unconnected. but in many places entirely" separate, so that a rol may be thrust duwn many fert between them. It was observed also, that where the wall had given way, it was com letely separated from the counterfort:, to the extent, I understand, of one to two feet or moret in the worst places, whereby the strength of the wal: has been greatly reduced.

the HUMBER DOCK.

Before the Act was cbtained for making the Humier duck, the OId dock anid harbor were fiund insufficient or the shipping and uncreased business of the port. 'I'his want of accommodation had been felt and complained of for some time, and various plans and schemes were proposed for the in;rovement of the port, all having in view uncreased dock and quay ro m. Oue proosal was to make anuther dock on the east side of the olld harbo., and connected herewith by a suitable lock: anot er was to convert the barb-r itself into a fluatung dock, by an entrance l.ck ngar the Humber and ancther lock near the north bridge; and to excavate a uew channel for the river Hull from ab. ye the proposed dock, to the Humber, eastward of the Garrison : but forrunately for the port, weither of these plans vas adopted.
The Dock Company, in order to obtain the best advi e on a matter of so much ian, irtance, ca!led in the able ass.s ance of the late Mr. Rennie, who. wis afterwards joined with Mr. William Chapman, of New-:
castle-upon-Tyne, on behalf of the (orporation of Hull. These gentlemen furnished ihe plans for this dock, and the work was carried on and completed under their j int direction : Mr. John Harrop, an old servant of the company, (who had done the carpenter's work of ihe Old dock, was the resident engineer, and was assisted by Mr. George Miller, af erwards his succes sor.

The Act of parliament was pasised in 18.2 , and the work was begun early in the following year.
area of dock. The area of this dock is seven acres and a half, and will contain seventy square rigged vessels, with ample room for moving them ; but there have beon a hundred sea-going vessols, besides thirty or forty smaller craft, in it at one time.
Cofis dam.
The coffer dam at the south end of the lock, for keeping out the tidal water cluring the execution of the works, was 280 fect span, and the versed sine 140 feet ; thensisted of two concentric rows of close Danzig piling, 13 to 14 inches square, and 7 feet 6 inches apart, well bolied ar.d braced tonetber, with a trunk and shuttle in the middle at the bottom, the internal space being filled up with bricks laid in sand to above the level of high water. This dam was firmly and judicious! y constructed, but having sometimes a perpendicular head of water of nearly thirty feet against it, showed signs uf great weakness during an extrantdinary high tide a little befcre the work wa: complete.1; being however promptly secured by shores and braces, no fuither damage ensucd.
A steam-engine oi six horse power was fixed upon the east side of the lock, and warked two 11 inch pumps, for keeping the works clear of water, and also at the samo time, two 7 cwt . rams for driving the piles of the coffer dam.
Excaration:
The excavation of the dook was 24 feet deep on an averace, all in alluvial soil; the upper part for about five feet in dep: h was goud clay, of which a great many bricks were made for the use of the works ; and the rest of the soil was used ta raise the grqualland form the quay and roard on the west side of the dock, and also the beach or shore of the Hunber from the moulh of the old harbor to some dig. tance above the lock; on part of this ground, several good streets have since been built. No hwithitanding the imniedia'e contiguity of the dock to the Humber a fine fre; h water spring was found is the epcavation of the lock pit, which was sp powerful, that the stopping of it was attended with considerable difficuity and expense. The bottom of this dock, for rea. sous not very obvious, is not so low by ten inches as the lock sills.

The site of the basin, being outside the coffer dam, and overflowed by the Humber every tide, was excavated by tide work. Part of the soil was removed by horse rins, to rai-e the ground near the lock, and the remainiler conveyed away in ballast igt!ery, and discharged in the Humber.

Ta be Continued.

I'h substance des. ribed in the following paper promises to extend the usefulacss of Caoutchouc, or India Rubber, which ha already become one of the most uscful mat rials of modern man ufacture.

The remarkable property of dissolving copal and other sub. stances used in paintng and varnishing, will cause Cuoutchoucins to become an article of constant employment. and its manufactur profitabic to the maker and consumer. It is worthy of the earnest attention of practical and scienific men.

From the Loundon Journal of Arts and Scicnees.

A SOLtent not hitherto dsed in the arts.
A patent was granted to 1 illliam Henry Barnard, of the city of Loudon, for his invention of "a solvent not hitherto used in the arts."-[Scaled 20th August, 1833.]

My invention consists in an essential oil or liquid, which I obtain by the distillation of a well known article of commerce, im ported into this country from Para, Valparaino, Sincapore, and other plares, under the title of caoutchouc, or India rubber, which is to be performed in the following munner:
I take a mass of the said caoutclouc, or Inclia rubber, as im. ported, and having cut it into sniall lumps, containing about two cubic incires each, (which I rrefer,) I t.yow these lumps into a cast-iron still (which I find adapted to tie purpose, and a diayram of which is annexed to, and forms part of, tivis my specificatio.s, with a worm attached as in the figure :
A , is the still ; B, the cover ground to a metallic fir, and leld down with cramps and set serews; throug. the cover there is a hole with a pling ground to cit, to adnit of a thermometer to take the temperature ; C, the fire-place; D, Ash-pit, E, the wormtub; F, the brick work of still; G, a roller and carriage, in coasjunction with a crane, or other means, to raise the cover to take out the residue, and to charge the same; I, the chain.

I then apply heat to the still in the usual manner, which heat is increased until the thermoneter ranges at 600 degrees of Fahren. heit, or thereabout.: And as the thermometer ranges progressive ly upwards to ' 00 degrees Fahrenheit, a dark colored oil ot liquid if distilled over, which I claim as my said invention; such liquid being a solvent of caoutchouc, and other resinous and olea ginous suhstanees. When the thermometer reaches 600 degrees. or thereabouts, nothing is left in the still but dirt and charcoal.

I have found the operation of distillation to be facilitated by the addition of a portion of this oil, either previous or subsequeut to rectification, as hereinafter mentioned, in the proportion of one. third oil to two-thirds caoutchouc, or thereabout.

I afterwards subject the dark colored iquid thus distilled ovel to the ordinary process of rectification, and thereby obtain fluids varying in specific gravity, of waich the lightest litherto has nol been under $\mathbf{6 7 0}$ taking distilled water at 1,000 ; which fluid 1 also claim as my said invention.

At each rectification the color o. the liquid lecom s more bright and transparent, until at the specific gr vi y ut 680 , or thereabcuts, it is colorless and highly volatile.

In the process of rectification (for $t \mathrm{c}$ purpose of obtami ig a barger product of the oil coomoss.) I pur atoun a se-third water into the stiil. In each and every stute the 1 qud is a so'vent of caoutchote, and several resinousiand oreng icus substarects, and also of other substances, and (such as copal) in combinatioa with every strong alco ol.

Having experienced much difinuly in removing the dire which adheres to the bottom of the still, I throw into t.ee still lead and tin in a sta e of alloy (commonly called solder.) to the de c_{t} of about half an inch; and as t.is beconcs fused, t.ee di.t whic.s lies on the surface of istr ore casily remover.

Objections a ing been inade to t.ae smell of this liquid, I have found such sma:ll semover by mixiag and thatiing up t.e diquid with nitro-muriatic acid, or ciflorinc, in she !, mportion of a quar. tor of a pint of the aci.l (of the usta! commercial strength) to a gallon of the liquid.

And whereas I claim as my invention, the said solvent or li. quid when first distilled over, and in each a:d every shage of its iccification.

The discovery of the chemical solvent, whieh forms the subject of the patent abuve described, has excited nonsi' erable intere-t in the philosophte wo dot ouly tom its exensive usatithess as a new artice of commerce. bat also fion two very extraodiany characteristics wic. it is fimod io posse.s viz. : that i., a liqud state it bas less epecific glavity than any o ser liquid knowa to c. emists, being consideraby tug or than suipunte æt:er. s.nd in a state of rapor is incarhr than the most poaderous of gasses.

The properties of tinis singular production are yet but in asmall degree developed. Di. F'araday, of t.re Roval latituion, aud Dr. Huc, ot St. artuolonew's Huphital, have boh tirected t 1 . ir astention to the subject, atd have given to tie solvent te ileriomitation o: canuchou ine, as the listlied pro 'uct of caoutchoare, the elastic gum, hawn uatert e common name o I dia rubber.

This elastic gum is pro'ured by a variety o: trees, and is fo ind in all counties at or near the Trojics. Thr Heavn Choutcinuc (wnevec tue bame) giows in South America; the Urecola Elas.

 liuit-tree) in the West Indies-we hive it also from Alinea, but from a variety of trees Those above eamuratel are charly o totally different descriptions, sone growing as climbing plauts, some as forest trees. T.ese trees yicld the fluid in iminense quantities; it is said, in some instances, as much as two thirds the weight of the bo ig.s whence it is drawn, an I w ren ex nausted by repeat d tappings renew the supply edter a few nontin' e est

Dr. Farsd y stated the componeit parts of a diuastity of the fluid he had iualysed to be as kllf.: s : -

Caoutch us.	, $31 \% .0$
Albun.i. ous matter,	19.0
Azovic, utier coloriug matter,	7.10
Wax,	1.3,
Solutle substance,	290
Water, acid, \&ce,	, 533.7
	1000.0

Iis clements-
Carla:
C. 812
8 proportions.
Hyuroge ;
1:000
7 propotions

There is not a particle of oxygen in the fluid afer distillation, wheu in its must highly-rectitied form, and it is capable of preser. ving otassium. It mixes readly with pure alco ool, lut refuses to . 0 so as :oon as its specific graity increases. We do not know it what exact weigat a separatiua takes plac? bat imagine, nom rep. rted experiments, that at a specific giavi \cdot of 0.75 , it will no loager uni e witis alcolool. Tas fluid is obs, ined at all t.e intermediate gavities between 0.68 and 0.85 . Peranps if taese operations were condueted with very great niccty, an! the caoutcnouc could be procured, livest ed oi all foreign matter and impa. rities, water, \&c., we shoul! obtain by cistillation the precise weight of flud fur the weight of sulid operated on.

Concluded in our next.

We give another portion from Dr. Perrine's interesting communicacion, and will give the remainder in our next.

From the New lork Farmer.
tropical fibroús plants. Continued fiom p. 330
I am however pleased to say, that their success has been as great as could be reasonably expected. As the Agaves and Bromelius prefer the most arid sand and sterile soils, it might have been rationally inferred that they would inevitably perish on the rich marshy banks of the Mississippi. I had sent from Cam. peohe four distinct species of Agave, and though all planted in the open air are still alive at their roots, and two have leaves from two to two and a half feet above the ground. The growth of the Jatter, since I have been here, appears to be greater in a given time than in Yucatan, "Sut what has pleased me still more is the discovery that there are various plants of a fibrous leaved species of Agave, which have been growing in this neightorhood several years. The Convent, or Young Ladies' School, is about four hundred yards from this farm, and near the Levee, in a yard a little distance south-west, is growing one Agave whose leaves even were not affected by the winter. At the garden of a respectable planter, Mr. Mather, about four miles below, are five Agaves which have been growing several years, and of which only a portion of the leaves were deprived of their vital powers last winter. I say depriyed of their vital powers, because the word kill would be rather too strong, it would generally imply that they were de. stroyed, or rendered useless. But I believe that so far from it, the misfortune of having the leaves frozen may be turned into a benefit, as it renders their dressing much easier. I go farther, I believe it will render tree fibres much whiter! Several of the leaves of my plants on this farm have become completely bleached.

This reminds me of a fact which occurred in New. York during my visit there in 1831-2. In the winter I was at the seed-store of Thorburn, and was told that he had an Agave from St. Domingo, in the back yard, which had been frozen and was cut down.I went back and found the central cone of rolled up leaves, which were all of a beautiful pearly white. At that time l supposed that the whiteness depended on the exclusion of light, as exhibited in the internal layers of cabbage leave. I however paid a boy to carry the mas: to Peales' Museum. The froze: cone was put in a cold spot behind the Museum, and the leaves were taken off day by day; as needed for my experiment. The cuticle would sepa. rate so easily that I could blow it up with a pipe stem; and was so impervous to air, that by stopping the hale it would remain in. flated like a bladder. One long broad leaf, thus inflated, was hung up in the shop of the chemist George Chlton, who was asked what sort of a fish that was; and it indecd excited the curiosity of all who saw it. Of other leaves the fibers were exposed with the greatest facility, and they were left at the Museum for the inspection of the public. But it is getting dark-my head aches greatlymy thoughts become more and more confused. Farewell till tomorrow.

0 o'clock, P. M.
As I cannot sleep, I get up again and continue. The subject of fibrous leaved plants is too important to omit details, especially in the dearth of information to be obtained from books, and from the fact that what little is published contains so many errors that readers are rather prejudiced than benefitted by the perusal. Originally misled by Hurnboldt every body exclaims American Aloes or Agave Americana, whenever they sec a mass of thick broad succulent sword shaped leaves, with thorns ar prickles on the edges or at the points; and if they have read or hcard what he wrote about it, in his Essay on New Spiain, they corclude that they know all that can be known about this kind of plants. In many numbers of your Farmer I have endeavored to communicate ad. ditional and very important information. I have shown that tl.e Maguey de puique, or the Agave, which yields the celebrated drink of Mexico from its developing stalks, is only one of mary species of the Agave : that Humboidt himself tacitly admits that fact, that he even confesses that the Maguey, whose juice is principally used for distilling the Mezcal, or ardent spirits, ap. pears to be a different species. It is but natural to suppose that a plant which yields sap so abundantly, should be very succulent in its texture, and that as it peculiar function was to secrete juices, it
would not estrange itself so far as to divide a part of its vital pow. er in the labor of forming fibres. The inference is supported by the fact that the leaves of the true pulque Agave are nearly as brittle as the leaves of some true 1loes, and hence no doubt the popular name of A merican Aloe first originated from observing this internal analogy confirmative of its external appearance.Indeed so few fibres, and so feeble, exist in the leaves of the drink producing Agave, that they are eaten by cattle, both in America and Europe. The very fibrous leaved specie of Agave are in a very dlfferent condition. The vital powers of the plant are not diminished by forming juices for secretion on centrevard, but on the contrary are employed altogether outward in fabriciting fibres longitudinally and parallelly throughout the leaves. I think it would try the strength of a very strong man to breal:, a.crosswise, a full grown leafof the really fibrous species. and that if cattle should ent and sucallote such leaves, they might next be turned to pasture on mature bempstalks. For the purposes of this communication however, it may be advisable to omit all tedious botanical details, and to consent, that tor the present, all the drink secreting Agaves shal be known under their Mexican generic names of Maguey, and under the botanical name of Agive Americana: and we will treat of the peculiarly fibrous leaved species under their Yucatan generic name of Honequen, and under the botanical name of A gave Sisalana.

We are now ready to proceed, premising still further that we must consider as varieties of the two agreed species, various Agaves, which are likely distinct species of iwo subdivisions of that genus. We have seen then that Humboldt admits that there is at least, one variety of the Maquey in Mexico dedicated to distilla. tion of ardent spirits, which differs sensible in its appearance from the Maquey de pulque used exclusively to produce the fermen. ted drink of that name. I now add that in Yucatan there is a thirt variety, which so much resemtles the others, that it is there called Maguey del pais, (of the country,) and that the highland soldiers in the garison at Campeche, have, in a few instances, made some bottles of Pulque from the juice, to please the appetites of their officers, who longed for a taste of their accustomed beverage. The product, however, was said to be much biferior in quality to the pulque made from the Maguey de puitque upon Mexico. Now mark the fact, that one of these Maguey de Yucatan is growing in the gardon here ; that its leaves were nat all deprived of vitality by the winter ; and that it is now vigorously pushing out bath new leaves and the older ones, whose upper halves were nipped by the cold.
I have already given in the Farmer the history of four plants of the real Maguey de pulque, which were brought down from Mexico to Yucatan, and plantod in a lot in the suburbs of Campeche. These plants seryed me as a standard of comparison. Tho plants of the Maguey del pais, 1. e., uf Yucatan, resembled so much those of the true Maguey de pulque of Mexico, that I coald not readily distinguish the differences when they were apart or so distant from each other that the cye could not rest an bath at tho same time

When, however, brought close together, even an unpractised eye could discover that their general appearance was distinct, al= though it might be difficult to describe the difference in precise words. One striking circumstance was the relatively muoh great: er thickness of the leaf of the real Maguey de pulque.' In their internal structure too, a difference was readly scen. The fracture of the leaf of the true Maguey de pulque exhibited a mare transparent gelatinous character, more nearly resembling tho fracture of a leaf of the true Aloes; and although the fibres of the lcaves of the Maguey de Yucatan are neither abundant nor good enough to be extracted for practical use, yet the fibres of the Ma. guey de pulque were still fewer, finer, and feebler.

Nary mark also this fact, that one of these Maguey de pulque de Mexico is also growing in this garden, in as goad a condition, if not better, than the Maguey de Yucatan. I may possibly be mistaken in comparing them at their present height; but I do not think so. They may both be the same variety; but I do not be. lieveit. Climate may nave already madified each; yet 1 am willing to let my discernment be tested by their future process.
Hence, at all events, we have at least a variety of the Agave Americana sent from the tropical climate and dry sterile soil of Yucatan, and growing in the cold climate and wet fertile soil of Louisiana,
(To be concluded in our next.)

From the Loudun Mechanicy' Magazine.
 ON THE SHRINGAGE $A N D$ EXPANBION OF IRON IN THE PROcess of casting.

Sir,-A short time since I was favored with the loan of the 18th vol, of the Philosophical Magazinc, on account of its first article, Which treats at some length of a subject on which I have before addressed you; (see vols. xvi. and xvii. pp. 108 and 61) and although I agree with the author, Mr. David Musshet, as to most of the facts therein described, I differ essentially in the more material point, viz., that of accounting for them.

In his preamble, Mr. M. says, "When the object of experiment is exposed to a heat sufficient to fuse it, it then becomes subject to new lawz as a fluid, and exhibits phenomena entirely different. By not taking the change of state, from that of a solid to that of a fluid, into account, some writers have given an awkioard and unsatisfactory account of the lavos which regulate iron in these two different states. Hefure I proceed to detail come experiments inade upon the subject, I shall trace out the different states of shrinkage and expansion, as observed in cast iron. In doing this I shall divide shrinkage into two distinct operations : 1st, Shrinkage, properly so called, when a mass of iron diminishes or shrint:s within itself, and would actually displace a smaller quantity of vater, and when no degree of heat short of fusion rould nake it occupy its former bullic or rolume."
"2nd, Contraction, or that diminution of superficial measurcment which any body undergoes by evolving its caloric." A unique division this, and very explicit-shrinkage diminishes a mass of iron, making it occupy less space, while contraction only lessens all its superficial dimensions !
"In casting pleces of ordnance we nre enabled to judge of the conjuint effects of shrinkege, contraction, and expansion.We shall suppose that a gun mould of any given length is filled with fluid cast iron, not subject to these laws; then the size and shape of the gun, when cold, would eorrespond to the dinensions of the mould. But finding that the piece of casting was considerably altered, that it had shrunk interiorly, was diminished in point of length, and had lessened its diameter, we must scek for a solution of these facts, in explanation of the causes respectively."
"Frst assuming, what shall be hereafter proved by direct ex, periment, that cast iron occupies less volume when fluid, thawhen solid; that in the act of the arrangement of the molecules towards consolidation, it occuptes a larger bu'k than at any other period; and that when cold, and in proportion to the absence of the heat, so vill the volume be diminish ed."
"1st, then, shrinkage appears- to be dependent upon two causes; the gravitation of the fluid metal, and the expansion of the mould. The latter, I conceive, acts n very powerful part : the immense quantity of caloric combined with the iron, is in part easily and almost instantaneously communicated to the iron box; this creates a disposition to expand, in which it is greatly assisted by the great pressure of the fluid iron." I cannot possibly see what this disposition to expand, has to do with this division of his subject; but however the iron box may be disposed to expand, sand being a bad conductor, no actual expansion woild take place (unless in some extreme cases) while the iron was in a fluid state; and unless the box would resist the pressure oi the fluid metal under all circumstances it would be entirely useless. "That portion of the metal in contact with the interior of the mould is the first to lose its fluidity, and is acted upon, and forced to give way, in the same ratio of expansion, before the more subtle and denser fluid." This is downright nonsense, for the fare of the casting is formed by the metal losing its fluidity in contact with every part of the mould, and if then forced to give way to the hydrostatic pressure of the more subtle and denser fluid, it must be in cracks and fisures, which of course would render the casting imperfect.
"2nd Expansion. Of the extent of this operation we may judge from the following facts:-All pratterns of castings are made somewhat largeratian the piece of goods is wished to be : in common cases fth of an inch to the foot is allowed, but in many cases the allowance will be ${ }^{3}$ th of an inch." (A curious fact this to adduce as evidence of Mr, M.'s 2nd, or law of expansion.) "In the case of the gun, therefore, the mould would be plus the allowance upon the pattern, what space are gained
by beating the pattern to lonse it from the sand, and all the extra space acquired by the increazed volume of the consolidating irun. These, taken collectively, may amount to $\frac{1}{4}$ th or i^{5} ths of an inch; and so much less will the diameter of the gun be found when cold, to that it would have measured at climax of its expansion." So fur we have no proof of this, but a positive statement that it may amount to half an inch in the diameter of the gun ; now this expansion, taking place in tie same ratio in every direction, must amount to three, or even four inches in its length! Now as cannon are cast in dry sand, I would ask, under such circumstances, what becomes of the iron bor? Λ s it cannot be expected to give way in the same ratio of expansion, nothing 'an prevent its being barst, by this, Mir. M's. unaccomituble lavo!
"3rd, contraction immediately takes place on the metal ceasing to expand: to its effects are clargepble the reduction of the increased diameter of the gun, and which scems merely in consequence of the escape of the culoric."

Thus djes this nice observer of the habitudes of metal, coatinwe to heap contradiction on contradiction, not in the clumsy areleard manner that some writers would have done, but with a degree of neatness, freedom, and self satisfaction peculiarly his own. He first assurres, what we shall piesentiy examine his proof of, viz., that cest iron occupies less colume when fuid than when solid: then, that a trifling lass of caloric produces shrinkage, which dimanishes the mess, so that no degrec of heal short of fusion would make it occupy its former bulk of volume. He then says, a further loss of caloric just sufficient to convert the fluid metal into a solid, causes a inost startling degree of expansion, varying from a 50th to a 25 th of its dimensions: and then again, by the dissipation of the remaining caloric, it not only loses this immense increase of volume, but also the usual allowance of $\frac{1}{6}$ th or ${ }^{3}$ ths of an inch to the foot on the pattern; at once proving, in my humble opinion; that the simply evolving its caloric, reduces its vo'ume less by this allowance, plus the loosening the pattern, than when in its fluid state!
"To prove that cast iron is derser in the fluid state, several pieces of iron may be put into a ladle, and hot fluid iron poured upon them; they will immediately rise to the surface, and expose a considerable portion of their bulk above the surface of the liquid iron.: This buoyancy diminishes; and as the pieces of metal apnroach more and more to the state of fusion that exists in the lade, they gradually sink, till they disappear entirely under the surface; they then rapidly dissolve, and form a part of the fluid iron."

This to me, is any thing but suffisient proof of the superior den. sity of iron in its fluid state for the known and acknowledged laws of expansion, are directly opposed to the gradually sinking of the solid pieces as they get hotter and hotter: but what a decided contradiction is this to Mr. M.'s great 2nd law ; indeed he must have totally forgot it when he stated that the pieces of solui metal sanh and reliolly disappeared belozo the surface of the den. ser metal, at the very climax of their expansion! The solution of this phenomena mast therefore still coatinue to puszle our judgonent, and perhaps elude cur sagacity after all.

Nuw to the proof of his assumption. "That cast iron occu. pies a greater bulk or volume iminediately afier it passes into the state of a solid. If a shot mould is carefully separated at a certan period after filling, a metallic crust is formed, more or less thick, which is the natural progress of consolidation, but which is at present an envelope to a considerable portion of fluid contents. In this state the expansion in the shot and mould, is nearly the. same; the former is easily extracted from the under and upper parts of the latter. In about two minutes after, however, the expansion of the shot is more rapid than that of the mould, and at this period is difficult to disengage. As the heat is communicated to the mould, its dimensions enlarge, and the extraction of the shot is attended with less violent efforts. The mould is always filled by the shot till cooling has so far taken place as to rcduce the'shot mould to its former diameter ; beyond this, however the shot still continues to lessen its bulk, so that when cold, it will be found to have left its mould by nearly $\frac{1}{6}$ th part of its diameter."

This proof is of equal value, with the rest, depending entirely as it does, on the solitary fact of the shot sticking in the mould at a certain period after casting. Now it appears to me, that the shot, instead of alveays filling the mould, as above nsserted, can
only be said to do so at two definite reriods: first, while every particle of tuo netal continues fluid; which will only be until the mould carries off so much heat as to reduce the fluid metal in immediate contact with it, to the state of a solid, and this operation is attended with a certain amount of contraction, as is fully proved by the shot at this moment freely lraving the rnould ; and second, at this moment expansion proceeds in opposite directions, for the mould negios to expand wita the first increment of seat it extibits, but until this heat is diffised throug:out its w ole ma s, the expansion can only tend to lessen its internal dimensions: the caloric contained by the still fluid part, is at the same time g ven out, and is freely taken up by the crust with w.ich it is enveloper. causing its expansion as a soiid, in a ratio commensurate with its accession of heat. Another proof, if another be still wanting, of the contraction of iron on becoming solid, may be had, by break. ing a common shot, when the centre of it will be found spongy, which could not be the onse if any expansion had taken place.

I remain, Sir, Yours respectly,
Trebor Valemtine.
Derby, April 6th, 1837.
Cements for Cisterns, \&c.-Common rosin 30 pourds, meit it and take off the scum, then add very fine vellow sand $45 \mathrm{lbs.}$, Spanish Brown 2 lbs', mix the whole tnoroughly with an iron sho. vel or other instrument.

Dynamometric Check.-A committee of the French Institute, composed of Messicurs Arago, Dulong, and Poncelet, has gone through a series of experiments on the "dynamometric (or power measuring) check," an instrument invented by Prony, and lately improved by M. de Saint Leger, unining engineer at Rouen, for the purpose of measuring with accuracy the power of steamengines and the quantity of fuel they consume. A la:ge partr of members of the lustitute and the Ciainber of Deputies, of profes sors, engineers, \&c. wats present at the investigation, which took place on the loth of March at tlic machine manulactory of M. Pauweis at Paris. Tue ubject of the experiments was to ascertain the practical exactness of the apparatus, and for this purpo e a steam-engine of twelve horse powe; of M. Pauwei's matufacture was made use of. 'Tue result appeared to be perfectly satisfactory, and the scientific world now waits, with some interest. the report of the committee of the [nstitute. This new in. vention may, perhaps, supply M. Arago with less disputable grounds for claiming for his countrymen a share in the honor of improving the steam-engine, than he has been able to supply in his two disingenerously national essays on the subject in the French . Innuaire for 1828 and 1837.-[London Mechanics' Mag.]

Agriculture, \&e.

Frum the New-York Farmer.
The following communication should be read, and practised upon, by every man in the Union who keeps a sheep. It establishes bejond controversey, the importance of sheltering them during winter-and furnishes the proof in a shape not to be questioned. Our readers will, we are sure, unite with us in an expression of thanks to the intelligent writer for what he has given us, and a re. quest that he will pursue the subject, as his avocations will permit. until he shall have convinced the unbelieving, and effected a reform in this importait branch of husbandry.
the management of sheep.
No. III.
Messrs. Editors.-I ain happy that my communications are acceptable to you. I have not exhausted the above subject, and shall therefore continue it. But, if I had anticspated procceding thus far, I would have endeavored to have treated the subject a tittle more methoricaily. However, farmers ure not practised in arranging their thoughts for the press, and this, in a measure, must constitute my upology for any want of order or method. For all my facts and deductions, thus far, 1 have drawn solely upon m! own experience; and what has fallen under personal observation, and for the present, shall continue to do so,

As my principal aim has been, to direct attention to the vast im. portance of protecting siseep during the winter, and having but one more point to dwell upon, I will so far recapitulate as to name the advantages resulting therefrom, and which my experience has fu'lv confirmed, viz., saring of life-prevention of disease—and the improvement of the quality of fleece.

I am highly gratified in being able now to add one more, and especially in a pecuniary point of view, of the highest importance, viz:-increased vocight of ficece.

All my sheerings previous to that of ' $36, \mathrm{my}$ sheep have yield. ed, only, from $2 \mathrm{lb} .7 \frac{1}{2}$ to 2 lb .9 oz . per head. Tais variation, I discovered, was to be attributed to no other cause than the difference of wiuter seasons, being colder or milder. When the latter, an increased weight of fleece was a certain consequence. The winter of ' 36 my sheep were duly protected, and the yield was an average of $2 \mathrm{lb} .10 \frac{1}{2} \mathrm{cz}$. per head. notwithstanding, 300 of the flock were yearlings, which,all wool growers are aware, on account of deficiency of size, yield but light fleeces. But this so much exceeded any former yield, I was well persuaded it was to be ascribed to warm shelters. I forbore, however, to mention this in my last communication, prefering to wait until the present clip was off, but fully confirmed in the belief that my hopes would be realized of an increased average weight beyond that of last year. I am happy to say, that my hopes were well founded, and have been more than confirmed. Tise number of my flock, sheared, amounted to 1751 , and the entire product is $5082 \mathrm{lbs} .$. making an average of over 2 lbs .14 oz . per head. With all those, doubt. less, who are inexperienced in growing of fine shecp, this may seem not an extraorlinary yield;-but those who are, know that it is, and, that fiae flecces, and light, go hand in band. At àl events, taking into view, the same number of sheep, with the same proportion of yearlings, viz. 470, and the quality of wool, of which some ju lgement can be formed from the price it has commanded n the Bostoa market for cash, and stated in a former communi. cation-I challenge any wool grower, either in the State or out of it, to go beyond it.

But, a few words here as regards the weight of fleece of Saxony sheep, in general, may be considered in connection, as apposite.

I have been informed by Maj. Grant. of Walpole, N. H. who has as fine, if not the very finest flock of Saxons in the United States, that the average weight of his clips is but $2 \frac{1}{2} \mathrm{lbs}$., and some years is scarcely beyond $2 \frac{1}{4} \mathrm{lbs}$ per head. As regards the flock of Mr. Grove, of Hoosack, which is exquisitely fine, it appears from a statement of his, that the average of his sheep is nearly, or full 3 lbs . Corsidering the quality of his wool, it is a most extraordinary product. But the system of management; of those gentlemen, is perfect. Their sheep are closely housed dur. ing winter, and if I mistake not, are not exposed al all. In this particular I differ from them;-a space of some 8 or 10 feet wide is always open to admit of mine going in, or out, at pleasure. now call upon the doubtful and sceptical, to appeal to these gentle. men, and all others, whose system of management are similar, and ascertain what would now be the condition of their flocks if they had not been adequately protected, and also to decide the point I have endeavored to maintain, viz: whether protecting sheep will, or will not increase the weight of fleece. I will pledge myself to say a unaninous affirmative will be the an. swer.

But the all sion to the above gentleman, and the remarks connected, is only for the purpose of settiug the inexperienced right in tegard to the general weigit of flence of fine wooled sheep; what has been written will answer as a reference, although rather a digression from my subject.

In erder to save your readers any trouble, I will get at the cream of the advantage of sheltering sheep, so far as increase of flecce is concerned, by figuring out my own gains, and most sincerely do I hope the time will tot be distant, when theirs will be likewise. With the same management of their flocks throughout the year, I will guarantee the result will be the same.
I have already stated that when my sheep were exposed, the highest average yield was 2 lbs .9 oz.,-the winter of '3 6 my sheep were sheltered, and the yield per head of that year, was 2 pbs. $10 \frac{1}{2} \mathrm{oz}$. Here then was a gain in the aggregate of 141 lbs . producing the snug little sum, at the price sold ot $\$ 104$. But the pres ent clip comes up to the purpose exactly; the average as stated is 2 lb . 14 oz ., therefore giving ah aggregate gain of 547 lbs., and peradventure my wool sells at prices of last year, would produce the sum of $\$ 400$,
And now Missrs Ediors, I have done with this branch of sheep hashandry. I have developed my private affairs not a little, in order to furnish proofs of the great advantages to be derived from affording adequate protection to sheep duriag the winter scason. I have not only urged the importance of attending to the subject gn the score of bumainity, but leave it, scattering dollars and cents in the path I have marked qut, which only needs to be followed, to find and gather up.
I stall endeavor in my next, to expose some of the sins of omission and commission in washing and shearing of sheep. M,
Lansing, Tomprins Co. N. Y.

CITY, STREET, AND FILTH BOLICE,

We published in our last number, a compunication and letter in relation to Night Soil. We have since received from the Editor of the Fariners' Register, Edmund Ruffin, Esq., in reply to a letter addressed to him for information on the subject, the following important article, which he was then preparing, for that valuable publication, which he has raised mainly by his own untiring efforts, and for which Virginia is more indebted to him than she would be if he had lead armies to victory.
The present depressed state of every kind of business, and the importance of improving the agricullural condition of our country, has induced us to investigate the ralue and mode of preparing this rich and valuable manure-and it is our intention to pursue the subject until a fair experiment is made of its value, as compared with the best manures nove in use in this country; and if possible to effect an entire change in the mode of disposing of the vast quantites now waited, and wo se than wasted, in this and other large cities, - we ask Ibeteturc, of those Editors with whom we exchange, and our readers especially, the fivor of such information as they may possess, in relation to its preparation and use. Its general use in the vicinity of large ciries, will certainly be protuctive of much good, in the reduction of the price of vegetables-but more especially in cleanliness and haalth. Every individual in community is more or lens interest. ed, either on the score of health, or economy, and we are sure that reason will take the place of prejudice in a matter of so much interest.
We have omitted No. 1, or the first of these valuable papers, not, however, from any want of concurrence in its reasoning, but for the purpose of coming directly to that part of the subject which relates more especially to cities and large tovns.

Frum the forib-coming Number of fle Farners ${ }^{3}$ Regisiser,

No. II.

the police of filth in towns, and its bearings on comfort, dpcency and health.
The delightful season of opening summer has arrived, and the face of the earith, as formed by nature, and not deformed by
man, is seen in its fairest aspect and brighest colors. Every thing shows life, in youth and beauty, and nothing jet exhibits indications of dec.ty. Every feature of the naural landscape, in every region however varied, is beautiful to the eye. The most barren and worthless of our lands, though the must wretched in appearance afier cultivation, before being touched by man, are covered wht magnificent forests. Nature has not made a scene that is displeasing to the eye; and even this granite region, barren and unsightly as much of it now is, was once one wide scene of universal beauty. It is man that wastes the beauties and blessings of nature, and deforms and defiles whatever he touches.

The opening of summer in our towns, presents a very differ. ent aspect, and is accompaned with very different associations. It is irue, that some beauliful gardens are seen, in which the hand of man (or more generally of woman) has improved on nature, by bringing logether, in numbers, nature's choicest ornaments. But the e are exceptions to the general appcarance. The broad sloppy flats, receptacles of collected rain water and ooze: from hill-sides, which dusing winter and sping merely barred the way or walkers, or, at worst, gave them wet feet, and colds and pleurisies, now are drying up, without the Corporalinn being put to the cost of the sriall amount of disching that would have kept the ground dry at all times. A" green mantle" oversprads the standing pools_and all will soon becone a naked: ugly, and foul-scented mud. The thickly settled and commercial parts of towns may, perhaps, have nothing visible worse than men and merchandize, brick houses, and pived strects; but all the onf-skits and vacant places are full of abomisations to cleanliness and heath, and of offence to the nostrils as well as to the eyes. The commencement of warm weather gives activity to decomposition, and the soft air is redolent of its products : and in sundry different spots of every town, the effluria arsing from filthily kept yards, of s'ables and hog-styes, of privies-and sometines the breezes tainted by a dead cat, or, if without the subirbs, by carrion of lirger kindare offered to our sense af smelling, in doses of various degrees of intensity, and in every varrety of combimation. We become accustomed by the habit of enduranee to these, as to all other evits, and in time, are scarcely conscious of the magnitude of the nuisance. But its ofiensiveness is estimated at the true value, by visiters fresh from the pure air of the couniry.

Now approaches she ume when the Police, and the Board of Health will begin to bestr themselves to abate nuisances of this kind, bat in such a wiay as to effect no manner of benefit.Their operations merely consist in moving decomposing matter, or its sources, from one spot to allother, there to proceed as be-fore-and by thus moring and dispersing filh, to hasten its de. composition still more, though rendering its products less evident by their being more widely diffustd. But the total amount of the production of such effluvia is not the less in quantity, nor the less hurtful, because, by being more wide-spread, and dilitted, and by coniaminating more of, the atmosphere, the scem is less concentrated and offensive. All the operations of the most industrions and zealous Board of Healtin do not lessen the amount of decomposition within the limist of a town, unless the purrescent matier is actually thrown into and floated away by a rapid river, or otherwise conveyed away to poison the air some where else, where there may be fewer perple to breathe of it. Every removal, and exposure of new surfaces, scrve, only to quicken the progress of decomposition.

It is not a little remarkable that this general state of filthiness is caused and maintained, in a great degrec, hy the fastidious or squeamish nicety of our people. It is almost universally considered that it is quite too dirty a business, too offensive to the imagination, as well as the senses, to use carrion and human excrement for manure. If this silly prejudice did not operate, a d if proper econ my were used to collect, preserve. and app.y these rich and most decomposable substances, the profit whic, they would bring as manure, would far more than pay for the expense of the proper procedure to preserve the matters, and at the same itme to ma.ntain eleanliness. But it is not only that the contents of privies are suffered to accun ul te, by c.use of their ung $\mathbf{L O}$ profitable demand for them, (as c ists in countries where the worth of manure is better under:tood ${ }_{2}$) but there is that want of accom. noodation in the number and siuation of privies, which operates
to the injury of comfort, of decency, and in many ases, dircetly as well as indirectly, to the injury of health. We are so exceedingly nice, or proud, that we desire to conceal the existence of such humiliating necessities of our nature ; and no conveniences for the purpose are provided, and kept in proper order for public use: and the privation is a matter of extrenc inconvenience to all decent visiters, to a town, who have not aequired a knowledge of, and a right to use, some such places. The same morbid feel. ing of shame, that prevents on the one side the accommodations being afforded, also prevents on the other any complaint of the want of them. But the ground for complaint does not the less exist-as every countrymen can testify, and even every townsman, when visiting another town than his own. So nice and squeamish are our piople on such subjects, that to treat of it by word or writing, would be considered by very many as both ridiculous and offensive; and when one ventures sill farther, as 1 shall do, to recommend modes of removing the nuisance, and converting it to profit, there is much ground to expect that nothmg will be excited, except a sense of the ridiculous in some, and a feeling of disgust in others. But I have never been deterred from urging what was deemed highly expedient, by the dread of being laughed at, and as to exciting disgnist, it is just what is desired, provided it can be directed against the habits which are held up to condemnation.

In large cities, necessity has compelled the adoption of means to get rid of excrementitious and other filth, by a general sys. tem of sewers, or subterrancan passages, into which all such matters are thrown, and by the flowing of water through, in abundance, they are washed into the adjacent river. The sewers of some great cities have been constructed on a plan so vast, and at so much expense, and were so excellent in their operation, that they have been considered as not less worthy of adiniration than their magnificent temples and palaces. If the only object was to cleanse the town, and there was sufficient command of water, and of money, there could be nothing to object to this plan. Certain. ly the expense of constructing the sewers would be an object tion not worth notice, when compared to the value of their intended effect. But if the system were not perfect, and the supply of water always ubundant, the evil would be made so mach the greater by being concealed from observation. There is another objection to this plan, in its contaminating and corrupting the waters of the rivers into which the sewers empty; and it may well be daubted whether water so defiled, does not itself throw off deleterous effluvia, and is not rendered mere liablo to cause decomposition in whatever decomposable matter it may reaoh : and thus that the waters are not only made to stinix, but also to poison those who have destroyed their purity. But the greatest objection to this plan, is the utter destruction of so enormous amount of rich manure, which if properly preserved and applied, would soon make rich and fruitful the poorest surrounding country.'And to properly accumulate and preserve all this manure, and prevent its being offensive to the seuses, or injurious to health, might in most cases, (and certainly on all the castern coast of the southern States,) be effected not only at less cost than by a pro. per system of sewers, but at less than the present wastoful and expensive system of employing laborers, under direction of the town police, and boards of health, so to stir up and move about the excrement, as to produce its most speedy decomposition, and total passing off into the air, and thereby to give the full benefit of its evo'ving effiuvia to the nostrils of the towne-people.

The remedy is that which has been proposed in general terms in the preceding part of these observations, to provide calcareous earth (either marl, or whatever other form may be cheapest,) enough to cover every spot in the town, in which decomposable filth can accumulate; and this to be renewed from time to time, as needed. The calcareous matter would form a chemical compound with the putrescent, so as to preserve the latter from all waste, and from giving out any offensive olor; and once a year (when in situations not convenient at all tmer,) and in colly, weather, the accumulations might be removed to the country to be used as manure; and the richest as well as the most permanent manure in the world, this compound of animal and calcareous matter would be.

The object would be to accumulate, as much as possible, instead of dispersing, the most putrescent matters. And for this purpose, as well as to afford the general accommodations now 20 much required for cornfort and for decency, and also for
health, there should be large and well constructed privies erect. ed in suitable situations, and at convenient distances apert, throughout the town, free for the use of all males without ex. ception. The pits should be large and sufficiently deep, but accessible to carts, to bring marl, and to remove the contents.At the expense of the town (as the whole system ought to be,) there should always be kept a heap of rich marl near to each pit, and a sprinkling, once or twice a day, over the excrement, would effectually secure it from wasting, or being offensive.By such places of accommodation being furnished, and kept in the neatest condition by regular attendants, there might be, and would be abated many of the small private receptacles, which necessarily (ás now managed) are more or less filihy nuisances. And the buckets which now are at night emptied on all vacant and forbidden spots, (and requiring the uneasing activity of the Police and Board of Healin to attempt to prevent, would the then emptied into these pits, with certainty; simply because they would offer the nearest and most convenient places of deposite. There would then be no inducement remaining for the defiling of every spot of vacant ground ; and such places, instead of being abominations to the senses and the minds of all decent observers-and absolutely forbidden to the footsteps, and even to the distant view of modest women-would be clean and lovely grass plots, serving to refreeh and relieve the eyes tired of sceing brick walls and stone pavements. I will touch but gently on the moral nuisance that exists in so many cases in every town, where these vacant spots, the only public places " of ease," are overlooked by the back windows of the houses of respectable families, the members of which, though at considerable distances, are nevertheless unavoidably subjected to witness indecent exposures, still more offensive to the mind than to the eye.

In addition to tho public and general accommodations proposed, there should be a certain and sufficient quantity of marl carried at certain intervals of time, to every private lot, (unless the occupant took tneasures to provide himeell with it,) to be used as wanted, for similar purposes. This would prevent, what is almost impossible now to avoid, there being offensive accumulations, or still more offensive remorals and dispersions, of focal matter on private lots.

It would be impossible to approach the truth in estimating what would be the expense of such a system in any particular town, until it shall have been tried. I But there can be no doubt but that the benefits would far overbalance the cost. Many expenses and evils, mach worse to bear, and now continually encountered, would be, by these means, aroided. Such of theseas bear on private individuals, I pass over without notice. For one itern, the public would save all that part of the labors of their police, which is now most unprofitably devoted to this object.

But even if it is admitted that the means proposed would be as effectual as I imagine, in preserving cleanliness, and cutting off sources of disease-and that the compound formed is of all the supposed value as manure, still it may be objected that it would be lont before prejudice and incredulity will be so removed as to make this manure an article of sale-and consequently, that all expectations of returns from sales must be visionary. Even if there should be no sales tor two or three years and if the manure should be merely taken lor the trouble of carrying it away, the expense would be well afforded as a mere matter of police. But two years' use would make manifest the value of this compound manure, and the demand and the price would afterwards gradually increase, until it would nearly or quite defray the whole expense of the plan.

But the town of Petersburg has at once the best pussible custonner for all that the plan would supply for some years, in the farm of the Poor House, belonging to, and cultivated at the expense of the town. To this land, now much putrescent maners is carried, remaved by the Police from the town. But except is winter, or at the rare and short other periods when manure can be (or is) at once advantageously laid ou the field, these supplies are heaped up for future uso, and of course, rot away as rapidly as possible, and give ten times as much of their products to the air as to the soil. Besides-even if there was nut necessarily this great waste from the decomposition of manure altogether putrescent, when moved and heaped in warm weather, there would be very little profit from its application. The
lands lying over the belt of granite which passes through Vir. ginia, and. which forms the falls of the rivers flowing to the Atlantic, are, naturally, among the most destilute of lime, ard consequently are among the poorest and the least capable of retaining putrescent inanures when applied to them. Such are the lands surrounding and within af few miles of Richnond and Petersburg, and probably all the other towns at the falls of our rivers. Particular individuals, by lavish use of the cheap and rich manure of the public stables, hare highly, though but for a short time, improved some of these lands, and reaped heary crops, and, possibly, made great profits. But still the demand for such manure by the hungry, yet wasteful soil, is continual, and if it is not frequently repeated, the original poterty soon returns. But few persons have used these means, to much extent, and most neighboring residents are satisficd that the town manure i.s too costly to be carted to their farms.

Yet though the richest stable manure, (richest because it is principally of animal matter,) may be bought from the tavern and livery stables at $12 \frac{1}{2}$ cents for the largest aingle horse loads' (20 to 25 bushels,) it mostly rots away in bulks in the stable yards, for want of regular purchasers even at that low price. So it is however-from the little town manure carried to neighboring tarms, the little permanency of effect ot what is used, and the general impression that it is not worth using-it resuits that inost of the lands, lying even within the shert distance of a mile from the towns, are wretchedly poor, and yield but little for the support of the town, either in grain, grass, or garden vegetables for market. Indeed it may well be doubted, whether a large proportion of the population of the vicinity do not buy (or obtain otherwise) from the town, as much provision as they sell to it. This state of things has continued, with but little actual improvement, as long as these towns have stood; and it may safely be predicted, that unless calcareous manures are used to fix the otherwise fleeting value of the putrescent matiers, that the general condition of things will never be much better. Is it not then strange, that with the neighboring farms so poverty stricken, the town markets should be badly supplied, and at high pricer, with all the small artucles of daily purchase and consumption, which, though small, make up the greater part of the comfort, and (at usual prices) cause the greater part of expense of living.
Just let the reader imagine what would be the difference in these respects, if the lands surrounding each town, for as much as six miles distance, were as rich as they well could be, and produced in abundance, clover and other grasses, a full supply of garden vegetables and ether small articles for the daily markets, besides their large crops of groin and other staple products. The comforts of all the persons living in town, so far as they depend on food, would be greatly increased, while the expenses of living would be made less than at present-and yet the suppliers of the market would be better rewarded than by the present miserable system, because rich land and good farming can always undersell the poor and unproductive; and at a market generally well supplied is a more sure, and therefure a better place of sale, than where demand is irregular, and, of course, prices irreguiar, though often very high. It will be under such a state of improvement that market gardens and market faims will be profitably kept-and the towns will be abundantly supplied, and from their nelghborhood, with milk, cream, butter, eggs, fowls, and fresh meats of fat young animals, as well as with vegetables. The surplus product of hay, grain, and other field crops, of such lighly enriched districts, would make no small addition to the sales and the export trade of the towns, and would serve to increase their population, and thus furnish a still increased demand for the products of the neighboring lands: It is also probable, that if the fisl, of the rivers which flow by towns, were not driven away by the filthiness of the water, that their numbers would be greater on account of the neighborhood of a town, (and the abundance of food thrown into the water,) instead of being reduced almost to nothing, as is notoriously the case. Even the shad, and other fish of passage, wbose instinet strongly impels them to seek the higher waters of rivers, to deposite their spawn, are mostly deterred from passing through the flood of filthy water that a town supplies; and the people on the upper waters suffer thereby a privalion, as do the townsmen
by the driving to a distance the more fixed residents of our fresh water rivers.

It may however be reasonably objected, by those who have not stindied the qualities of soils and manures, that too much value is counted on from the use of this proposed compound matter. It would be unnecessary here to repeat at length all the grounds on which that estimate is founded. For the amount of early and annual increase to be expected from marl on naturally poor soils, and for the permanency of its effects, I refer to the reasoning and the facts prescuted in the Essay on calcareous Manures. and also to the opinions of the hundreds of farmers in the lower Virginia who are now thus improving their lands. For the chemical power of calcareous earth in combining with, and preserving from waste, putrescent matters, I refer to the general reasoning on this head in the Essay, and the statements made in the first of these communications. As to the euriching value of human excrements, it is known in Europe and in China, that they are the richest of all. In England, it is stated in agricul. tural books, that two waggon loads is a sufficient dressing for an acre-probably because more at once would be hurtful to the crop.

In France, there are in operation regular establishments set up by private adventurers, for desiccating, and thus preparing for use, the products of the privies and public sewers of large citues; and sufficient profits are made to support these evtablishments, by selling the dried manure (poudrelle) to the farmers. Its great richness, in small weight and bulk, makes it well suited for distant transportation, and extensive sale. From the accounts that I have read of these establishments, it may be inferred that much previons decomposition, waste of value, and extrication of offensive efluvia, must take place in the material, before it is brought to the desiccating estabiishment-and that both the previous and subsequent manual operations rust be highly disagreeable and disgusting. Besides, the desiccation seems to be sought more by mechanical than by chemical means - and any dry pulverized earthly matter is used to absorb the fluid and make the mixture dry. There does not seem to be much choice in the earthy substances. Thus they propose gypsum, and burnt earth, and quickline, as well as chalk, rubbish of demolished b.ildings, and coal and wood ashes. The first two of these substances, according to my views, would be of but little effect, acting as they do only mechanically; the quicklime, (which it seems is preferred,) would be decided'y injurious; and the mild calcarcous character of the latter substances would render them, only proper for the desired results. The profit of this business in France alone, would be sufficient proof of the greater value of the lar more simple, economical and effectual andeleanly plan which I recommend, and which is also perfectly in accordance with the chemical propertics and action of the substances used in the compound. I annex the only known description of the French process, below, in the application for a patent by the inventor, Donat, and which was communicated, with the introductory comments, By the Board of Health of Philadelplia, to the Agricultural Society ef Pennsylvania.
(To be continued.)
From the Journal of tho American Institute.
We give the following tabular view of the import of foreign wheat, from the Courier and Iaquirer. "A large portion was Ainerican bonded wheat returned to us, and to be perfect, the table should embrace it. It presents a curious q'estion, wheth. er those who have sent us the werewithal to prevent a famine in the land, are to be deprived of remittances in specie, should they have so ordered it, as is frequently the case for the purposes of commerce. A combined voyage, as the mercantile phrase is, is often made up; that is, a vessels starts from a given point in Europe, with a cargo of grain, or other articles that are supposed will command a ready sale. The consignees are ordered to invest the proceeds in dollars or doubloons, and to send her to Cuba or Rio, for a cargo of sugar or coffee. How is this to be done in the present state of affairs? Send the specic we cannot, and the voyage must be defeated, and probable loss instead of gain be the result. Every way in which we can turn the question, it presents difficulty and distress; our whole commercial systen is out of joint, and our country, like a bad manager of
his nutulal conceins, beicoming in evil repute with foreign n:ations."
import of foreign wheat, Into the City of Neic-York: 1835. Oct ber,

From Ensland
17,000 bushels.
1,200-'Total, 18,200
34,000
$2,000 \quad 36,000$
42,800
March, April,

From
Holland,
1836. Feburary, England, England,
Germany, $\quad 33,000$
Austria, $\quad 3,000$
$\begin{array}{lr}\text { Austria, } & 3,000 \\ \text { England, } & 17,500\end{array}$
France, $\quad 9 ; 000$
Holland, $\quad 4,500 \quad 31,000$

England;	$\mathbf{8 , 8 0 0}$
Holland,	$\mathbf{7}, 800$

18.600

8,200
3,600
July,
August,
Septemb
September,
E.ngla E.ngland,
$1,6,0 \quad 17,200$
44,700
24,700 69,400
November

	Russia,	3,300
	Gerinany,	53,400
	Hollaind,	$6,500 \quad 109,800$
December,	England,	62,500
	Germany,	51,600
	Austria	2,000
	Ituly,	1,500
	Holland.	$2,500 \quad 120,100$

493.700

Total import for 1836,

1837. January, From	England	49,000	
	Germany,	75,100	
	Holland,	7,500	
	Deninaik.	1;000	132,600
February,	Germany,	76,000	
	France,	25,200	
	Holland,	8,000	
	Russia,	22,000	
	Austria,	5,100	
	Italy,	7,600	
	England	32,900	176,500
March,	Geruany,	85,200	
	England,	146,400	
	Holland,	90,600	
	France,	1,300	
	Italy,	84,800	
	Sicily,	5,400	413,300
Up to the 19th April,	Russia,	14;000	
	England,	2,500	
	Italy,	59,100	
	Prussin,	8,000	
	Germany,	23,000	
	Holland,	28;400	185;000

854,000
1,365,900
VAlUE of the imports; Of wheat, Potatoes, and Coal, from all parls of the world, for

$i x$ years.			
Year.	Wheat.	Potatoes.	Coal.
1830,	\$492	\$9,159	\$2C4,773
1831,	685	7,518	108,25
1832,	1,151	18,436	211,017
1833,	1,606	18,356	261;575
1834,	1,213	15,942	200,277
1835,	18,647	67,901	143,46
	\$23,794	8127,642	\$1,120,353
Average,	4,133 $\frac{1}{2}$	21,273 ${ }^{\text {f }}$	188,215 ${ }^{\frac{1}{3}}$

Frum the Farmer and Gardenef.
turnir culture.
An opinions prevails among thany judicious thinking farmers, that if turuips are got in from the 20 of August to the 1st of Sep. tember, that there will be time enough left to mature the crop. In the present changed state of our seasons, we believe that either of these periods, or any time between them is entirely too late, if it be desirable to grow a remunerating crop. To be sure, if the object of the culturist simply be to raise turnips for his own table use, it may be well to delay sowing thus late; for, of a certainty, the turnips so raised will be sweeter; but wherever profit forms the object of the crop, the seed ought to be sown from the 15 th to the 25th of July, by which, besides getting a greatly increased product, time will be allowed to resow if failures, proceeding some: times from defective seed, and at others, from destruction by the turnip fly or grass hoppers, should occur.

From the Maine Farmer

duestions and answers:
What is the average crop of Ruta Baga, to the acre, on land well manured and taken care of, in Maiue?

Answer. 600 busicls-each busat:l weig'ing 64 pounds, after being well cleared of tops. dirt, aild small roo's. Much greater crops have often been produced ; say from one to two thousand bustels to the acre, or at that rate on smaller lots.

What are they worth, ton for ton. or pound for pound, for stock, compared with good English hay, corn, potatoes, apples, \&c.?
A. When properly fed out, they may save hay, pound fur pound; because if given in any considerable quanties, stock may be kept in good condition, if poor hay, or even straw be added. They are worth more than potatoes in equal weight ; and as much as apples, and less liable to decay. To keep a creature in decent flesu, with hay, five bushels of Ruta Baga are equal to a bushel of meal.

What kind of stock is it best and most profitable to feed them to?
A. All kinds : horses and swine not excepted. If they re: fusc them at first, let them become hungry, and they will sonn eat them well. I have wintered swine on them, in a raw state: They are worth for them certainly as much as potatoes-and are most excellent for sheep.

What is the cost to raise them, per bushel, compared with potatoes.
A. Much less: as they yield much more on a given quantity of land ; their seed and planting cost less ; their hoeing more; and their leaves pay the harvesting.

Are they not more exhausting to the land than potatoes, or most other crops.
A. They are; as much more weight is taken from the soil than by most other crops. I think no one ought to object to having a large crop, becuuse it takes more from tue soil than an infe. rior one; but it should be known tuat Indian corn will nöt grow well the next year after a large crop of rüta baga, as each requiro from the soil similar qualities.

More hereafter, in relation to Ruta Baga, froim
A. B.
N. B. Sow from the first to the middle of June.

the prospects of the crops.

It affords us much pleasure to be able to record the frequent notices, published in different parts of the country, of the promis. ing appearanee of the crops, notwithstanding the cold and back: ward scason thus far.
"The Eastern (Pa.) Whig hys information thatt the whea fields through Western Pennsylvania, promise an abundant yield."
The Northern Pennsylvanian says,
" Luzernc, Susquehanna, and Wayne Counties, never present: ed, since our recoliection, so pleasing an aspect. Grain, Grass, and cevery pariety of vegetation, have assumed an appearance nitherto unprecedented, and should no. unpropitious event transpire to blight the prospeets of the Farmer, abundance will crown their efforts."
'The Poughkeepsic Telegraph says :
"An every thing relating to the $\mathrm{c} \mathrm{o}_{0}$ s excites much interest " bave taken some pains to enquire of our Farıners respecting t is of corn, of which an uncommonly large quantity has been plante in this county. We understand that it has come up remarkabl well, that with the exception of a few pieces. it is undisturbed b. worms, and is very thriving. The start is good, and if the sea son continues favorable an abundant crop may be anticipated.The grass, oats and barley, are alsj very promising, and the crop will be abundant."

The Onondaga Standard says:
"Within the past two weeks the face of nature has put on a moresmiling aspect, and promises abundant returns to the cultivators of the soil. The change extends over the whole country, from every part of which we see lively hopes expressed of a plentiful harvest."
poundette, or kight soil manure.
Measures are now in progress, and in an advanced state, for the purpose of preparing this valuable maeure-which has done so much to improve the Agriculture of China, France and Belgium, and in the vicinity of Landon.
There is a vast quantity of material to be had in, and about, this city ; and there is now to be had, on very favorable terms, the necessary experience in its preparation.
The necessary capital to gu into the business on a proper scale is pautly provided-there is, however, yet an opportunity for a few subscribers.

Those who take an interest in the commencement of the business, to the amount of $\$ 500$, will enjoy superior advantagus in the use of the manure, which is esteemed more valuable than even Lime, Plaster, or Bone Manure.

Further information wili be given on application at the office of the Neiv-York Farmer, 30 Wall-street, Busement story.

Adyertisements.

G TO RAILROAD COMPANIES.

A PERSON experienced in the construction of Locomotive Engin ss (many of his Manufacture being in successfut operation on important Railruads in the Unted -tates) and who is likewise thoroughly acquanted with tho managemeut of such machines, and, irdced, the enti e ordeal of With tho managemeut of such is detrous of ob aining the silluation of General Superintendant on Railroads, is deteiruys of ub aining
soma Railroad, Sou'h or West.
The' most satisfaclory testimonials' of character and capability can be produced. Commanaications addressed th the Edit ors of This Journal, staing the location of Road, \&c. will meet with piompt at.ention.

91-24

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engravings, by the Chevalier De Pambour-150 pages la:ge octa-vo-done up in paper covers so as to be sent by mal-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts. for any distance exceeding 100 ms .

Also-Van de Graaff on Railroad Curves, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts. *** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.

AVERY'S ROTARY STEAM ENGINES.-AGENCY.-

The subscriber offers his services to gentlemen desirous o: procuring Steam Engines for driving Saw.Mills, Grain_Mills, and other Manufactories of any kind.

Engincs only will be furnished, or accompanied with Boilers and the necessary Jachinery for putting them in operation, and an Engineer always sent to put them up.
Information will be given at all times to those who dessre it. either by letter or by exhibiting the enginesin operation in thiscity Inquiries by letter should be very explicit and the answers shal be equally so.
D. K.MINOR,

30 Wall-st., New York.

DRAWING INSTRTMEN,S.-E. \& G W Blım1, 154 Waier streel, New-York, have rfeencd. and cfter for sale, Draw mg Insimunents o superior qualuy, Euglish, Freuch, and derman Manufucture

- Trey have also on hand Levels of superior quality at low arices.

Orders received at his office for the above Instruments.
transactions of the institution of civil engineers of great britain.
The first vo'ume of this valuable work, has just made its ap. pearance in this country. A few copies, say terenty-five or thirly only, have been sent out, and those have nearly or quite all been disposed of at ten dollars each-a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order therefore, to place it within their rrach, and at a convenient price, we shall reprint the entire work, with II its enagravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to any part of the Unitc I States by mail, as issued, or put up in a volume at the close.

The price will beto subseribors thece dollars, or five dullars for two copies-aluays in advance. The first number will be ready for delivery early in Aprul-Subscriptions are solicited.

MECHANICS' FAIR.

Notice to Mechanics, Attisans, Manu-facturers, \&c.-The undersigned give notice that the first Annual FAIR of the Massachusetts Charitable Mechanics' Association will be held in the city of Boston, in September next, commencing on Monday, the 18 th, and continuing at least three days.

The Association have placed at the disposal of the Board of Managers. the sum of Five Thousand Dollars, to enable them to conduct the Fair upon a liberal scale; and they hope to be able to render satisfaction to all who may feel disposed to offer arti; cles for exhibition.

Medals or Diplomas will be awarded to the owners of all arti: cles that may be deem-ed worthy of such distinction ; and the Managers iitend that the strictest impartiality ard fairness shall be observed in the distribution of Premiums.

The Managers, in furtherance of the enbject they have in view, invite contributions, of articles from every department of indus. try; of choice specimens of American ingenuity and skill ; rare and valuable domestic productions, natural or artificial ; the deli.. cate und beautiful handiwork ol females ; usefu] labor-saving ma, chines, implements of husbandry, and new models of machinery io all their varieties.

Judges will be appointed to examine all articles offered, and the managers will award a gold or silver medal, or a diploma, to all articles that may be pronounced by the judges worthy of reward.

Articles intended for exhibition, must be delivered on or be. fore Wednesday, Septem-ber 131h.

Arrangements will be made to exhibit, in operation, any work. ing models that may be offered, waich will render the exhibition usctul and interesting, and the managers respectiully iovite contributions in this branch. A careful and competent superintendent will be appointed to take chare of all models sent fur this purpose.

Board of Managers,

Stephen Fairbanks,	Jos. T. Buckingham,
John Rayner,	James Clark,
William Adams,	Henry W. Dutton,
Uriel Crocker,	George Darracott,
Gardner Greenleuf,	Wm. S. Pendleton,
James L. Homer,	Charles A. Wells,
James Barry,	Henry Bailey,
Joscph Tilden,	Jonas Cnickering,
Ephraim Harrington, Henry H. Barton,	
Joseph Lewis,	Thomas Boyd,
Walter Frost,	Wm. Uunderwood,
Thomas J. Shelton,	George G. Smith,
John G. Rogers.	

P. S. For any further information ad-dress JAMES L. HÓO, MER, Corresponding Secretary, Boston.

Boston, March 21, 1837.
in:3-tsl

TO CONTRACTORS.

JAMES RIVER AND KANAWHA CANAL. THERE is still a large amount of mechanical work to let on the line of the James Rivor and Kanawha Improvement, consisting of twenty locks, about wue hundred culverts nod several large aquedacts, which will be offesed to respunsible compractirs at fair paice. Tho locirs and aquaducts are to be built of cht stone.
The work contracted for mnst be finished by the lst day of July, 1838
Persons desirous of obtaining work are requested to apply at the office of the undersigned, in the ctty of lichmond, before the fifteenth of May, or between the fifh and the fifteenth of July.

CHARLES ELLEI, Jr.
Chief Enzinver Jas. Riv. \& Ka. Co.
P. S-The valiey of James Kiver above Rich. monci is healthy.

16-10t

PATENT RAILROAD, SHIP AND

BOAT SPIKES.

** The Troy Iron and Nail Factory heeps conmantly for sale a very extensive assortmentof Wrought Spikes and Nails, from 3 to 10 inches, manufactured by tho subscriber's Patent Machinery, whinls after five ycars successful operntion, and now aimost universat ase in the United Siaten, (as well as England, versal use in the United Siaten, (as well as England,
where the subscriber obtained a patent,) are found where the subscriber obtained a pate
Railruad Cnmpanies may be *npolied with Spikes having countersink heads suitable to the hules in irun rails to any amount and on short nutice. Almost all the lkailroads now in progress in the United Sintes are fustened with Spikes made at the above named fac-tory-for which purpose they are found invaluahle, as their adhesiom is more than double any common spikes male by the hammer.
villं be punctuallyatten to the Agent, Troy, N. Y vill be punctually attended to.
Troy, N. Y., July, 1831.
** Spikes are kept for sale, at factory prices, by 1. hants in Albuly and Trouy the principal Iron Merchants in Albahy ana Mroy ; J.I. Brower, 22e Water Janviers, Baltimore; Degrand \& Emith, Buston.
P. S.-Railraad Companies would do well to for ward their orders tus eurly as practicable, as the subward their orders is eurly as practicable, as the sub. as to kecp pace with the daily increasing demand for his Spikes.
(1)233u)
H. BURDEN.

TO RAILROAD CONTRACTORS.

SEALED proposals will be received at the office of the Sclma and Tennessco River lailroad Company, in the town of Selma, Alabama, for the graduation of the first furty miles of the selina and T'ennessee Railroad. Proposals fur the first six miles from Selma, will be received after the first of May, and acted on by the Board on the 15:h May. I'roposals figr the ensuing 31 miles, will be received after the 10th May, but will nut be examined uniil the lst of August next, when the work will he ready for contract.
The line, after the first few miles, pursuinz the flat of the Mulberry Creek, vecupies a region of country, laving the repute of being highly healthful. It is free from punds and sivanips, and is well watered The soil is generatly in cultivation, and is dry, light and sandy, and uncominonly easy of excavation.'The entire length of the line of the Sel a and Tennesuon Railruails, will be about 170 miles, passing generaliy through a region as fayorable for health as any in the Southern Coumiry.
Owing to the great interest at stake in the success of this enterprise, and the amount of capital salready embarked in it, this work must necessarily proceed with vigor, and 1 invite the attention of men of indus. iry and edterprise, both at lie North and else where to this undertaking, as offering in the prospect of continued empluyment, and the character of the aoil and clinate, a wide and desirable field to the contractor.
Proposals may be addressed either to the subseribor, or to General Gilbert Shearer, Presidens of the Company.
ANDREW ALFRED UEXTER, Chief Engineer
S'elma, Ala., March 20ch, 1837.

ROACH \& WARNER

Mannfacturers of OPTICAI, MAIIEM ITICAI, AND PHILUSOPHICAL INSTRUNENI'S, 293 Broadway, New York, wilt kcep constantly on hand a large and general assortment oi Instruments in their line.
Wholesale Dealers and Country Merchants supplied witb SURVEYING COMPASSES, BARIMMETERS, THFRMOMETERS, \&c. \&c. of theiz own manufacture, warranted accurate, and at lower prices than con be had at any other establahment.
anstrnments made to oider and repaired. 11 ly

THE undersigned, General Agent of Col. S. II. LONG, to build Bridges, or vend the right to others to build, on his Patent Plath, would respectfully Inform Railroad and Bridge Corporations, that he is prepared to make c.ntracts to build, and furninh all materials for supersiructures of the kind, in any part of the United Siates, Maryland excepted.)
Bridges un the above planare to be seen at the fullowing localitics, siz. On the main road lealing from Baltimore to Washingson, iwo miles from the former place. Across the Metaisaukeag river on the Malimary road, in Maine. On the national roed in Illinuis, at sundry polnts. Onthe Balcimore and Susquehanna Rrailroad at three points. On the Hudson and Paterson Railroad, in two places. On the Boston and Worcester Railroad, at several points. Ont the Boston and Providence Railroad, at sundry points. Acrose the Contoocook river at Henmier, N H. Across the Sulltegan river, at Milford, N. H. Acruss the Conneticut river, at Haverlill, N. H. Across the Conwocook river, at Hancock, N. II. Across the Androscoggin siver, at 'lurner Centre, Maine. Across the Kunnebec river, at Waicrville, Maine. Across the cienesse river, at Equakiehill, Mount Morris, New-York. Across the White River, at Hartfurd Vt. Across the Conneclicut liver, al Lebanun, N. 1I. Acruss the mouth of the Broken Straw Creek Penn. Across the mouth of the Calaraugus Creek, N. Y. A Railroar Bridge diagonally acioss the Erie, Canal, in the City of llochester, N. Y. A Kalroad Bridge at Upper still Water, Oruno, Maine. This Bridg. is 500 fret in length; one of the spans is over 200 feet. It is probably the FIRMEST woond N aridue ever built in Ainerica.
Notwithstanding his present engagements to build betweell twenty and thirty Railrond Bridges, and several common bridges, several of which are now in prugress of construction, the subscriber will promptly attend to basiness of the kind to much greater extent nnd on liberal terns. MOSES LO:VG

Huliester, Jan. 13in, 1837.

ALBANY EAGLE AIR FURNACE AND MACHINE SHOP.

WILLIAM V. MANY manufnctures to order. iron castings fur Gearing Mills and Factories of every description
ALSO-Steam Engincs and Railroad Castings o overy description.
'I'ho collection of Patterns for Machinery, is net equalled inthe United States.
$9-1 y$

NEW ARRANGEMENT.

a for inclined planer of rallaond.
WE the subscribers having formed a co-partnership under the style and firm of Fulger \& Culeman, for the manufacturing and selling of Ropes for inclind planes of railruads, and for oilier usis, offer tu supply ropes fur inclined planes, of any longth required wihhout splice, at short notic e , the matufacturing of cordage, heretofure carried on by S. S Durfee d Co., will he done by the new firm, the some superintendant and machluery are employed by the netw firm that werc employed by S. S. Durfee \& Co. All orders will be prompaly ntiended to, and ropes will be shippedt to any port in the United Siates. 12 th inonth, 19:h, 1836. I Iadson, Culumbia Cuunty S:ate of New-York.

ROB'T. C. FOLGER.
33-tf.
libURGE COLEMAN,
AMES' CELEBRATED SHOVELS, SPADES, \&c.
300 dozens Amcs' superlor back-strap Shovels
150 do do do plain do
150 do
do Gold-mining Shovels do Gold-mining Shovels
50 do do sucket Sliovels
Together with Pick Λ xes, Cluurn Spades.
Bars (steel puinted,) nsannfactnred frum Salishury re aiaed iron-for anle by the manufaciuring agente, WITHYRELIL, AMES \& CO.

No. 2 Liberty stroet, Nev-York BACKUS, AMES \& CO.

No. 8 State atrcet, Albany
N. B - Also furniahed to order, Shapes of every de arription, made frum Salohury refined Iron v4-tf

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads.
No. 264 Elizaboth street, near Bleeckerstreet, New-York.
RAILROAD COMPANIES would do well to exs mise these Cars; a apecimen of which may to seer on that pert of the New.Y Yurk and Harlaem Railroed
now in creration

TO RAIIAROAD CONTRACTORS. PROPUSALS will be received, at the offire of the Hiwassee Kalruad Com., in the cown of Athens, Te nessee, until sunset, of Monday, June $12 \mathrm{th}^{2}$ 1837; for the grading, masonry and luidges, on that purtion of the Hiwasske liailroid, which lies betweell the River Tennessee und Hiwassce. A cls: rance of 40 miles.
I In quantity of excavation will be about one milion of cubic jards.
The line will be staked out; and, logether with Irainings and Eptcitications of the wotk, will be raly for the inspection of contractors, on and after tbe list day ol'June.

JOIN C. TRAUTWINE,
Engiteer In Chlef Hiwassce Railroad.
RAILWAY IRON, LOCOMOTIVES,\&c. THE subscribers offer the following articles for sale.
milway lren, flat bars, with countersumik lioles and mitred juints,
350 tons 24 by $1,15 \Omega$ inlength h_{i} trelghing $4 \frac{68}{100}$ per $f t$. 280

$\begin{array}{llllllll}80 & \text { " } & 1 & \text { " } & \frac{1}{4} & \text { " } & \text { " } & \text { " } \\ 90 & 1 & 1 & 1{ }^{\frac{25}{105}} \\ 4, & " & " & " & 7\end{array}$
with Spikes and Splieing Plates adapted thereto. To bo sold fiee of duty to State governments or incor porated companies.
Ordera for PennsyIvania Boiler Iron exccuted.
Rail Road Car and Locomolive Eingine Tires wronght and turned or ninturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 izclses oiameter.
E. V. Patent Chein Cable Bulte for Railway Car axles, in lengthe of 12 f et 6 inches, to 13 feet \dot{z}, 2 3, 31, 32, 34, and 34 inches diumeter.
Chains for Inclisied Planes, sbort and stay links manulactured from the E. V.Csble Bolts, and proved at the grentest strain.
India Rubbor Rope fur Inclined Planes, made frum Ncw Zealand tlax.
Also Patent Homp Cordage for Inclined Planes, and Canal T'owing Jines.
Patent Felt fir placing between the iron shair aud aton. bluck of Edge Ra:Iways.
Every description of Railway Iron, as $\mathrm{N} \cdot \mathrm{ll}$ as Locomotive Engines, imported at the shortest notice, by the agency of one of our partmera, who resides in Fingland tor this purpose.
A highly respectable American Engineer, resides in Lingland for the purpose ot itspocting all Locomo tives, Machinery, Kailway Iron \&c. ordered itrruugh
A. \& G. MALSTON \& CO.,

23 If
Philadelphia, No.4, Suuth Fro:itat

ARCHIMEDES WORKS.
 (100 North Muor street, N. Y.)

New- Yors, February 12th, 1836.
THE undersigned bege leave to inform the proprie. tors of Railroads that they ure prepared to fornixh all kinds of Mrchinery foi Liailruads, Lucomotive Engine of any size, Car Wheels, such as are now in surcessful operation on the Camden and Amboy Railroad, none of which have failed-Castings of all kirds Whoele, Axles, and Buxes, furnished ai shortest nutice 4-vu
H. R. DUNHAM \& CO.

MACHINE WORIS OF ROGERS, KETCHUM and GROSVENUR, Paterton, New: Jersey. The undersigned receive urders fur the fol lowing articles, manutactured by thrm, of the mosi superiur description in every particular. 'I heir worka being oxtensive, and the nimber of hands employed beigg large, they are onabled to executo buth large and smali orders with promptness and despatch.

RAILROAD WORK.
Locomotive Steam-Engines and Tenders; Driving and uther Lucomutive Wheela, Axles, Springk and Flange Tires; Car Wheels of east iron, frum a variety of patterns, and Chills; Car Wheels of cast jron, with wrought Tires; Axlos of best American refined iron, Springx ; Boxes ond Bolto fur Cars.

COTTON WOOL A.ID FLAX MACHINERY,

Of all descriptions and of the most improvid Patrne, Style and Worknanship.
Mill Geering and Millwright work generally; Hydraulic and other Presses; Prens scrowe; Callen ders; Lathes and Tools of all hinds, Iron and Brass Castings of all descriptions.

FOGEHS, KETCHUM \& GROSVENOR
famerson, Niow-jerzey, cr 60 GROSVENOR

CONTENTS.

Editorial Notice ; Communication;
Railroad ltems,
Utica and Schenectady R. R. Co. ; Practical Mechanics, Transactions of the Institution of Civil Engineers. A Solvent not hitherto used in the Arts, Agriculture, etc.,

AMERICAN RAILROAD JOURNAL.
NEW-YORK, JULY 15, 1837.
Complaints.-This is the age of complaints-some people complain because we send them a circular, a "dunn" as chey call it, after sending the Journal several years, without payment, as though we could live on $\boldsymbol{P i}$,-others, a small number it is true, complain because we omil to send our bills when due, according to the terms, in advance-as they wished to discontinue it, but forget to what period they had paid-others complain that they do not get the work regularly-as though we were Amos Ken. dall_or not at all, having removed, and omitted to give us notice to change the direction of the Journal-indeed these are only a few of the complaints which reach us, in these times of "shin plas. ters," and depreciated currency, we like to have said "of beiter currenc̀y"-whilst we, in our turn, contribute our share to the general stock of grumbling, by saying that those who ,have so many causes of complaint against \boldsymbol{u} a and the Journal will soon have their troublee, on that subject at least, removed by its natural death, unlcss those who are indebted for it soon pay the amount due.
$0 \int$ The present list of payments, during the last four weeks. shows 35 names, a mounting to about $\$ 175$, whilst our bills for labor alone, to those employed, exceed that amount. Who then is to pay for paper, ink, rent,-and what is to us of equal importance, as hard as the times are,-for bread and beef, to keep our locomotives in operation? Do not complain gentlemen delin. quents, if we do remind you of the searcity of fuel, as without it, the best made Locsmotives will not traverse the inclined planes with short curves of the present state of affairs.

Those only may complain, who, through accident or error, are not credited when they have paid, of which we regret to say, there are a few instances, by miscarriages of the mail, and the errors of collectors, clerks and editors.

There is; at all events, one class of friends of whom we shall not complain-viz, those who remit the amount due in the best currency they can obtain_-as it rests with them to say whether the Journal shall complete its present colume.

The report alluded to in the following communication has remained with many others waiting its turn. Its very great length will prevent us from publishing the whole-the part relating to the mode of construction we shall give in our next number. It may be well to remark that the same plan has been proposed for several other roads.

To the Editors of the Railroad Journal.
Gentlemen.-A few days since, I met, aecidentally; with a very extraordinary report on a railroad in Canada, called "The great western railroad," written by Mr. E. Johnson (not E. F. John= son of the New-York and Erie Railroad.) Among other curious things, this report contains on new system of constructing railroads, the merits of which I propose to investigate "pour passer le temps" in these "piping times of peace."
'The superstructure consists of vertical posts; 2 feet in diameter, placed 5 feet from center to center transversely of the road; and 10 feet from center to center longitudinaliy. On these postz are placed the ties, 15 inches diameter, and 9 feet long, notched as usual for the rails, which are 12 inches square or largis enough to square that size, with a strip 3×4 placed on their upper spuare, with its least dimensions vertical, on which the iron is laid, and both are then secured to the rail by seven inch spikes.
The ordinary wooden superstructure corisists of contintois longitudinal sills, from 4 to 6 inches thick, and 10 to 12 wide; to these are spiked the cross-ties, 6 inches diameter; and 3 feet from center to center, rails 6×6 inches, and then the iron plate: This is the lightest and cheapest superstructure in use; where locomotives are required.

Now the stiffness of the superstructure, depends 1 st . On the firmess with which the posts in the one case, and the sills in the other, resist the tendency of the train to press them into the ground; and 2 d . On the deflexion occasioned by the weight of an engine acting in the one case, on a rail 12×12 and supported at intervals of 10 fett, and in the other, on a rail 6×6 supported at intervals of 3 feet. For, if the posts or sills are passed into the ground, the track will be out of adjustment, no matter what the stiffness of the rails may be, and, on the other hand, if the posts or sills rest on solid rock, and the rails bend betweez the ties, the firmness of the posts and sills avails us nothing.
The area of the ends of the posts may be averaged at 3 squars
fet exil. 'lucese pints rist on the natural gromed, and each post (ot 3 feat of heari ig surfa e) sulparis 10 fee of track. In the or matm modes, the sil is cuntinions, and 'o each rom of track we base a fos, or nente a foo, of bermer suface 3 th ies more han mithe turmer case. 'This, howprer, is not n',
 sutilen deprissions in be roal, whils, whth :heromtumue sill. this sinking inust ve grablalal anl companatively pasy The effect of his camut lie diricily ealinated, but all proct cal men will see this sumeriotity of a sall fiom 20 to 40 feet long, over detach d stlls of 3 feet in long h, which are jist equal to the posts. We bate already seem, that the common suprestruchure hats 3 times the areat of bearing suffice m the new, and, consideang the wan of cmanexion in the prots of th: latter, we hat! saf. ly suy, that the fomed ton of the old plan is 5 times firm e e than that of thas improwed s.s.s pm.
'Tue co up rative aliffiess of the rails, can, however, be stated with accuracy. Dednciligy from tach intirv $/$ hise dimeter of the ite, we have in th onectse, a hata: $12 \times 12 \times \sin$ ang a distance of 87 , teet in the cho.r, th the oher a bran 6×6 ant a s_{p} ain of 2.5 feet in the char. Accodng 10 the primerpl is di. munstrited by Balow, 'liselgold, Dupn, etc, the relatise sluffnoss will be, ats 1 to 2.7 very nearty, or the comonn rail will be nearly 23 tumes stiffer than the new. With a rail 5×7 and bearing 2 tieet in the eltur, it will be very n nurly 7 to 1 agamal Mr. Juhnson's plan, yet I know from exprifence, that eren these danemsons are barely sulficient to bear the acion of 8 ton En gines.

Suppose the embank" ent to be 15 fret high, then for each 10 leet of ruat, we have 30 fict of poss. On the old piace we tho bill have 20 f.et for sills, a a d 10 feet reman ine for an mitermediate tie-the sills woild give 3 thines the bearing surfare of
 the rial uorethanx.ines, anl all this with tine satine quantuy of muthats. Wh.n the beisht is arreater, the result is g it more armang, for besides makimir tho rosd many times siffer, there will remath a saphisi of thaber.
Mi. Juhusun will richly Heserva he thanks of tha Engineer. ing world, shs,ill at ever proluce as clos. un apposimation to thi witat woject of in ehameal scemes, "a masimum of effect

 and ts a rale unation of the plan adapel by Mr. H. Allen on the Catreston saifoed, o antine howser, one of the most in protunt purts-a 1 ranswirs sill unier the posts.

Mr. Johnsim is evilenty uriler tise mpesesion, that the giomil in ins natural state (sont of course removen) o..ers the best
 gular coipo ill tue Un eil siame, thil the ruls keep in adj is -
 on the nuturil surticc. i' 1.2 or rat tomdanom un the of plan i. tharefors the hest in $!$ is, or, i, ennnow enis on the nan plan we hate no veiler iv.........a han matime on the gial

 know well huw has will wok.

A fitte "xpenthce will c.m....ice Mr. Joh ison of the tru h of these ronaris. Soouli hiy in the mem bue, mee the eye of the siuckaultere, and mad ee thear to take protessional alloc. before irymir an ", ap ramell, "winch w.ll inev.lably to tor her.
 and pros, en y, I feet sery sine, diey will ever buar in reme.. brance has coammanation, fom

> Your hu .nble serv't.
Q.

Now. Yo:k, Jủly Sib, 1837.
At a gencral mee'irg of the stock'ol lers of the Rith no :d. Frederick uuig aid truounac Rahoad Com,any, held at Ricir. moad last weik, Cu.avay Rubiason. E', q., was unammously reelected President orthe Comprus. Mi. K, has tendered his ir signation, but t.e siockuolers "de med bis co tinunice w. President o. tae co npany, impostuni to its best interests," and he wan acconlingly re-elceted.

Baston asd Providence Railerad.-The fillowing gont!r men ha ve b en e'ected Direct rs of this Company, viz.: W. W. Wont ey. John F. Loring J. W. Revere, Josiah Quin'y, Jr., B. R. Nichole, C. H. Rinssel and F.. Townend.-Officeis fur the ensuing year: W. W. Woolsey, President, John F. Lcring, lireasurer, B. R. Nichols, Clark.

The Andover and Hayfrhill Railfoad.-The reccipts of this road to June $24 t \mathrm{t}$, amount to $\$ 25,907$ C0. The road "ill, in all pro'sability, be finished to Haverhill in the month of August next.

The Western Ralread will be located on the Nor'hern Ronte, bv way of the Pontoo-uc Turnnike, through Westfield, Chester, Himsdale, Dalion, Piatsfichl, \&c.

Rairmoan.-Stnck to the annoint of $\$ 3,500$ was subscribed un Mon ay last by the citizens of this place, fir the purpoze of ronstucting and continuing the Railroad from the upper town to its terinimetion at tho foot of Lagrange strpet. It is expected that the work will immedrately commence.-[Toledo Gaz.]

Who, in 1830, anticipated the construction of such a rcad, in so short a time? Who now can duly estimate the amount ?

One hundred and sixty-eight passengers left Toledn on Monday mornugg list in Railroad Cars, wtil inuch baggage, merchandise, ele.

Seven teambonts of the largest class arrived here yesterday, six of wheh cane dire tron Buffilo, and landed upwards of one thonsand passengers. Most oi these passengers lefi yestrelay a.dd this morning in the Railruad Cars.- [I'oledo, Ohio, Gilz.]

THE TVESTERNANDATIANTIC RAILRCAD.

The Stallart of Union of 2)th inst suys-"We are much Irmuluid at h wing it in our power to lay before our rea lers, exrestef fion several letters writien by Cul Long, the Siates Enainer, to the Guvernor, upon the subject of the contemplated Ra Irvarl fon 'I'ennessee to he Cattalionche.
Fro 11 he opinion; expressel by Col Longr, in regard to the practucability of ihi great work, so tar a: the has examined the cmantry dirough which it is destined to pass, every thine is enrourasing, anil no do sbt remans upon our minds of its ultinate succe:s.

We quote the following extracts from Col Long's letters tha: our readers in ty posisess as early as practicable, correct informa. tion on the suliject.
"Scudders, May 19th, 1837.
Dear Sir.--I have the eatisfaction, 10 apprise you, of my arriVI at this p ace last wemmg, having suiceealed in finding a route fro.n we Chatahooc!r, : hi her, wtich 1 regard a very pood one, vuisly mole farorable than any I expected to find between the "mo mers."

"Allatoonee, May 28, 1837.

Since the date of my last, it Sandionn, I have traveised the commery beiwera hat place and Campbellion, \&c.

On iny arrival heir, I me. Gea. B ishane and Mr. Stock on whu have carelully explured the couniry between the Chatlahwaise and sereral sonices of Litule River, and report two romes ;racticitbli, b.e h of which will require an instrumental survey, "11 ordur to ietermine their relati.e meriss, \&c."

Cassvilee, June 11, 1837.

During the last week. I have exaund the country, hy the io hawn- ionles-viz: C wasville to Route, thence viai. Armit(ay, sec, to Russville-hence via. Th! lors g.p to Chatuogata ar p- Heluce hiough the willeiness iu Pigr on's Ferry—hence havigh ih : valley of int O healoga, and lownward in the valley of tho Conasee Creek; and thance in a direction towards silly Hughes Ferry.

My obeevatulls hate confirmed me in the opinion before adranced, :hat we canfinlatruie fron the Chittahooche, to the 'lemmssee lin, without exceeding an ascent or descent of 30 feet per mile."
" 'I hree parties of Engineers will be in the field in a few days
for the purpose of commencmg instrumental examnations of various ruutes with a view to ascertain the most favorable, a:ld from the known energy and caparity of Col. Long, and the ability o th is: as oslated wita him, a speedy location of tile road may b anticipated.

On the part of our Governor, every thing dependirg upon hin has been promptly done, tunds have been advanced, and ceve y tit aility in his power, afforded, to advance the progress of this important unaertaking."

Froathe Oswego Pallatium.

utica and schenectata railroad company.
We find in a circular, recently published by the Directors of this Company, the following highly interesting infornation-it least, to those who take an inserest in this disc iption of public improvements. The success of th s company and its h:nd. one dividends, will no doabt stimul at ; our citiz :us, oal the first fiviora ble change ot mosey matters, and price ul provisions and laboto fisisa, wit.! as little deluy as posible, the Usicego and Utica Railroad, by whicl, wit a tie l,ake, we shall be conmected witia tie Gireat Westeın Railroal, taro igh Canada, and which m.kes this soute, to tue hoit western Lakes, Sti.tes and Territories, tne shortest, cheapest and moit ex redirious, and will no doabt receive t.e patronage of the travel ing public. We undsrstand, that Mr. J. D:na dillen nas completed surveys o: several lines from O. wego by Rom: to to Utica, for a location of the U. \& U. R. R. Tue distance is less than tite present travelled mail route, (seventy five miles.) The grades. curves and distances on direct mes are e jua! to any R. R. in the U.uted States. This ro id uas an udvaitage and privilige over tise Etica and Senenectada R R in its charter, viz: to carry freight. Besides this, it has anotacr a lvantage o ver tie U. and S. R. R. -tue right of c.oice of ro ates. 'Tue land on the O. and U. R. R. is generally givea, waite the ot.aer Clo., by reference to the ducan sut abjue mentionel, prit \$ 83,05320 for land, and $\$ 32,5 \mathrm{JJ}$ to te Monawn Tarnpike Co. -otal, \$3ti, J3s bj! It was lumited to tie norta side of t.e Murawk, and had many difficulties to encounter. The expenditures, o.1 account or the co.istruction oi t.als read, to the 3 sto May, were $\$ 1,7 \cup 8,894$ u4. T:ce items of when, are first, los rigit o. Way, as abuve, $\$ 345,08860$; grading ruid, $\$ 5061,757$; superstructure, $\$ 115,733$; englues and cais, $\$: 22,771$; vundurgs $\$ 71,033$; engheering and suntilitendence, \$j7,381 ; inciiental expenses. $\$ 109,472$. 'T.at hicumic o. the ruad ducing tue last ten, muintus, fio.n the actual receipts tiou passengers, is $\$ 2.57,65220$. A.id for recepts of the remamug two nouths, Jui.e ans July, es thinated to be in the angregate, (hie same as tue last two noo.t.us, April and May,) \$62,3.ر7 71; toial 10 the ycar, \$319.999 9.. Assumng the recipts of the ioad tor tratospoithig passedugers, only, to ve ture same tor ally orullary pear bereatter, as the jercsent curreat year, t.eey will amount to $0.32 j, 00 \mathrm{~J}$. Add tor c.arry. ing the U.ated Siates Mall, its stipulatiod in coatract witat te Pjut Muster General, $\$ 20, i, 00$, and t.ce gioss recelpts o. hais road jur an ordinary year, is $\$ 340, j J u 0$. Deduct for estunated expenses, $\$ 40,0 v j$, reaving au anmual meom:, to be divided among stuck. holders, oi \$2Je, vis. 'Tins teslinate dues not iaclude a cent jos future mincrease oi travel on tats road, nor duess it anlow any thang
 gencles ue coasidered as silcallawance. Many fers ins beltev.
 n.w the perlsable part of the ruid, ás vitcon as it whil requate re newal; in so, the dindead o. protiss will be g.eatert tan the aoove estunate. 'I'se divi.end deciared to: t.e last six mo thas, is 7 pue, ceat; and if wa recolicet rig te, it was-ior tale soar ins.atas privi-ous-S'ep:., UCl., Nuv., utu Dec,--5per ccat. This ceriamy ed-

 land and iu tuls ceuntry.

Lime. - Lime is said to be an excellent remedy for burns of scands: equal proporauns of hat, water, and a y kind of oil, mado into a than paste, and unmentatey al plied and repeated; molstente, will specinly remuve the enliect ot a burn; and.. appised latci, even wheu the blister nas risen, the remecy uevt. falt. Ihds pasie bis ween kauwat, aup effusiuns oi bivod. when almost every thang else has satiod. Dry line tiruwa inu a flosh wound is always bouling.

OUTLINES OF
 Practical mechanics.

1.

OE Machines.

1. Machincs, in their practical appuiation, may be considered as too's iaterpoced between a natural agent, or worker, and the task to be perlormed, in order to rencer that work capable of iscing executed whic'1 would have been diffizult, if not impossible, without t.e aid of some such instrunent.

2 We interpose machines between the agent and the work to be per:ormed, for the following reasons, viz.:
(..) To accommodate the direction of the moving powar to the resistance ;
Tuus, when a man has a weight to raise to a considerable height, he may do it more coavienentily by tive aid of a single pulbey, even if tue weig.at be nut greater than be can lift by his own duassisted strength.
(2.) 10 render an agent hnving a fixel and deterninate velocity, cfficacious ia pertormug work witn a given veloenty:
Chus, water gives to a w.seel, waen working most advanta. geossly, a purticular velucity, waile tie wo.k which is to be do se is best perioumed with some otuer velocity. Machinery must therefore be interposed to convent the velocity o: the wheel into tuat demanded by the wo k .
(3.) Tu euable a nalural agent, having a given intensity, to overcame a force on obstacle, whose intensity of resistance is grate :
'I'uis, a man may wish to lift a stone, or other weight, so great that it cantot be moved by inis own unaided strength. In this case, by laying a prop i.po.s the gromul, on waich a strong bar of wood v_{i} irmin is caused to rest, he coistructs an extemporancous lever, by the aid of which he can move what would otnerwise have requircal the united otreagth of several men.
3. Tue machines waca are used in proctical mechanics may be cituer simple or compond. "Tue simple machines are six in number, and are cailed the mee.ranic powers. Compound ma--hnucs are male up of the mecuaiic poviers, combined wita each ot der in van ot; ways, and noo lified in various manners. In these co:mbinatio s auere ns uo: ouly a change in the intensity and in t.se cirectio.a o. t.ee forces, but the character of the motion may be cnanged also.
4. Os tue lines whic.' any point of a machine can describe, the simalest are t.e straig at line and t. ac cicle. It tie points continue co insve .u.warus matue sane staig.t titie the motion is said to be continums rectilineal. O. tus we have no instance in the parts of machates $t .1$. m elves, but it is often found in prime movers.

It t.ee poi..ts, af er uaving described a straigit line, return along that luse to tue place waence it first set out, the motion is said to bo reciproatitisg resti ineal.

1. tic pulat destibe an entire circle, turning continually in the same d.rectoon, t ee inotion is sail to be continuous circular.

If tiue ponit move tarough an arc, or po tion of a circle, and retur. a ao:gt at are to the place oi eginning. the motion is said to de reciprocaing circular.
5. Amolg t.ese inu kinds of motinn, taken by pairs, ten post sble comonations exit; but two oit tese never oucur in prac. tice. Macinues nave tarertore bee , diviJed i to eight series:
(1.) A ciniti,uous rectiluieal motio: may be converted into anot..er of we same deacriptoo. but different in direction:

Ins ance-a simple tixed pulley.
Fig. 1.

(2.) A continuous rectilizeal may be converted in to a contin uous circular motion, or a continuous circuler motion into a continuous rectilincul notion.

Instance 1-à wetcr-wheel.
Fig. 2.

listance 2-a well-liggers windlass.
Fig. 3.

(3.) A contimous rectilineal motion may be converted into a recerocating circular notion.

Instance-the machine used for crossing rivers, and liwown under the nane of the llying bridge.

Fig. 4.

(4.) A continuous circular motion may be comuerted into a reciprocating rectilineal motion; or a reciprocating rectilineal inotion into ia continuous circular motion.

Instance 1-the heart wheel.
Fig. 5.

1 istance 2-the crank of a horizontal steam engine:
(5.) A continuous circular motion may be converted into another of the same kind, but opposite in direction.

Instance-Toothed wheels and pinions.
Fig. 6.

(6.) A continuouscircular motion may be converted into a re. ciprocating circular motion ; or a reciprocating into a continuous circular motion.

> Lustatice 1-The scapement of a clock.

Fig. 7.

Iustance 2-the crank of a spiuning whecl.
(7.) An alternating rectilincal motion may be converted into an alternating circular motion; or an alternating circular in an alteruating rectilineal motion.

Instance 1-The working bean of the usual form of steam en. gines.
Instance 2-The brake and rod of a pump.
(8.) An alternating circular motion may be converted inıo another of the same description but contrary in duration.

Instance-Toothed segments.
6. In every machine there are three motions which require to be particularly considered:
(1.) The notion of the moving power itself;
(2.) The motion of the parts of the machine which is immediately acted upon by the moving power. This is called the inspelled point of the machine.
(3.) The motion of the part of the machine by which the work is performed, and which is called the working point.
7. The moving powers, or prime movers employed by mechanicians are all natural agents. The most important of these are :
(1.) Tine forec of gravity, acting through descending weights;
(i.) The elasticity of springs ;
(2.) The strength of men and animals;
(4.) Water ;
(5.) Wind ;
(6.) The force of the elastic vapour of water or steam.

Indadition we use in a few instances the explosive energy of gunpowder. The attractions of electricity, magnetism, and affinity, are also capable of setting bodies in motion, and might therefore be applied to drive machines. But the sphere of action of these forces is so limited as to render it improbable that they can ever be applied to any useful purpose, with the exception of the electro-magnetic influence. Of this an application has recently been made which promises to be effectual.

Thare is also in the coatinually varying pressure of the atmosphere a source of power which might be applied in some few instances, and it has been used for winding up clocks. Before machines were invented, or while only those of the simpler descriptions were known, ma.l could apply no other prims mover but his own strength. The introduction and improvement of complex machines has enabled him to call into his service the great natural agents, water, wind and steam.
8. As no motion can take place without the application of an adequate force, so no machine can act, unless,driven by som, natural agent. Neither can any machine loug continue to work after the prime mover ceases to act. Hence, machines w'ich shall keep up their own action, and which have been soug!t under the name of perpetual motion, are impo sible.
9. The action of a prime mover depends not only on its own energy or intensity, but on the velocity with which it tends to cause the impelled point of a machine to move. The proluct of these two quantities is called momentum. The work done is also to be estimated by the quantity of resistance overcome in a given time, or by the momentum of the resistance.

Under the term resistance are incladed not only the useful work performed, but also fricion, and all ohier retarding forces, such as the action of gravity, the resistance of the air, or other medium in which the inotion is performed.
10. When the momentum of the prime mover exceeds that of the resistance, the machine is set in motion, and will move from a state of rest with acrelerated velocity. If the prime mover be an attractive force, which acts with equal intensity upon a body whether it is at rest or in motion, the tendency to acceleration will continue. But if, as is more usually the case, the prime mover acts more forcibly upon bodies at rest than upon bodies in motion, the rate at which the impelled point of the nachine is accelerated will diminish at each increase of its velocity. This diminution in the action of the accelerating force will continue until the momentum of the resistance becomes equal to that of the prime mover. The motion of the machine then becomes unform or will vary only within certain limits. It is said to be in a state permanent working, and equilibrium exists among the moving and resisting forces.

This species of equilibrium, which occurs in the motion of a machine, is called dynamical.
11. When the prime mover is of such a nature as to act more forcibly upon a body at rest than upon a boly in motion, a machine impelled by it may cease to do wo:k from two causes; it may be loaded with such a resistancs that it can no longer move; or it may move so fast as to receive no new impulse from the prime mover. Between these two states, there will be a velocity of the impelled point with which the greatest possible quantity of work will be pertormed. 'I'inis most advantageous velocity of the impelled point is, in most cases, one third of the greatest velocity of which the prime mover is capable; and the resistance which will be overcome at this velocity is four-ninths of that which will stop the motion of the machine altogether.
12. It is in most cases important, that the work of a machine shall be done with a motion of the utmost regularity. A tendency to irregularity may arise from two canses.
(1.) The prime mover may act unequally upon the impelled point of the machine, and yet vary wihin certain definite limits.
(2:) The prime mover may have a tendency to increase or diuninish in its mean intensity and velocity, or the resistance may be subject to variation.

Each of these cases has its appropriate remedy. The fi st cause of irregularity may be counteracted by a fly wheel; the second by a governor.
13. A fly wheel is a heavy circular disk, usually of metal, to which a great velocity is given by the action of the prime mover, transmitted through the machine. This wheel like all other bodies, is possessed of inertia by which it resists the action of forces, tending to accelerate it, and tends to continue in motion when the action of the accelerating force ceases to act. When iherefore the action of the prime mover is maore than equal to the resistance, the fly wheel opposes its inertia, but still gradually acquires an increased velocity, and corresponding momentum. When the action of the accelerating force diminishes, or even ceases altogether, the fly wheel does not at once lose its velocity, but parts with it gradually, distributing
through the other parts of the machine the excess of momentum it had previously acquired. Although a fly sequires a part of the moving furce to set it in motion, and thus in fact adds to the resistance, it notwithstanding frequently enables an irregular force to do work that it would otherwise be incapable of performi"g. Thus, although a man is capable of exering a force equivalent to raising seventy pounds, yet when lie turns a winch or crank, there is a part of the revolution, when his utmost force will balance no more than twenty-five pounds. It theu the resistance exceed the latter quantity, he will not be able to make the crank perform an entire revolution, and consequently can do no work at all. If however a fly be applied to the crank, he will be capable of working throughont it.; whule revolution, with a force equivalent to the raising of a weight of flirty pomats.
'The effect of a fly whect, is proportioned to its weight, its diameter, and its velocity.
14. Some engines require no separate fy wheel, as they themselves, or some of their working purts may aet in the mamer of a fly. This is the case in tie water wherl, whicl, will regulate its own motion, and that of the inachinery it drives.

The principle which is employed in the fl, wheel, is also used for the purpose of accu:nulating ithe force derived from a long succession of impulses, and discharging it at once upon a given object.

The most familiar instance of this application of the principle is to be found in the coining engine. This is a screw-press worked by a long lever, the two extremities of which are loaded wilh heavy weights. A rapidmotion is given to this lever by the power of men, who abmen it a short time before the die is carried down to the coin. At the instant the die strikes the coin, the whole of the force which has been commonicated to the weights is discharged, and thes a deep impression is produced.
15. When the intensity of the prime mover is subjert to variations which are not confined within fixed limits, or when the machine may be required to perform very different quantities of work, the action of the prime mover atself is regulated by an app ratus called a governor.
A governor consists of two heavy balls susperded by means of bars from a vertical axis. Each of these bars is connected with the axis by a hinge. These lars form a part of a system of levers by which a collar may lie made to move upon the vertical axis. The axis denives motion from the machine, by which a centrifugal force is communicated to the batts. This centrifupal force may acquire such intensity as to cucrcome the gravity of the balls. They will in consequence move onwards, and thus communicate motion, through the system of leverx, to the collar upon the axis. Whel the velocity diminishes the balls fall inwards, and thus move the collar in an opposite direction. The collar acts upon an apparatus by whith the intensity of the prime mover may bo varied. 'I'has, in water whels it opens or closes the shuttle by which water is admitted to the whel; in steam ϵ ngines, it works a valve by which the area of the steam pipa is increased or diminished.

One of the froms which the governor frequently assumes is represented in Fig. 8.

Fig. 8.

TRANBACTIONS OF THE INSTITUGIGN OF

 CIVIE ENGINEERS.AN ACCOUNT OF THE HARBOR AND DCCKS 4 EINGSTO V-UPON HULL.
Contilued from p. 422.
The foumbla inns are all piled winn a row of 6 inch growled?
iles in fron ; the bearing pil:
Cock-welly, Fas sheeing piles in fron'; the bearing pil:
are 9 inches, the counterfort piles $8 \mathrm{~mm} h$: are 9 inches, the comberfort pies
diameter. They were nll driven with a ringing enyine and 2 ram of nearly 4 cwl . worked by fifteen or sixteen inen; these piles proved to be too short for an lofty a wall, where the ground in general is so sof and compressible. Longilitinal sler per of half limber were boled down upou th beads of the bearing piler, the sheeling piles epiked 10 an inner waling of the samu scantling, and the whole coierrd with 4 inch it nsverse close planking, on uhich the wall was raise.t. The limber used wous Memel or "Vanzig, excep'ing the pile,s which ale chiefy of Norway fir.

Tue doc'z walls are all of brick, with the exception of a stone throush course s.t the bottom of the fenders, thrte courses of stone on the level of an average tide, and the co ping. The mortar was made of Wurins. worth blue lime, and sharp fres'i water sat d only ; the lime, having been ground in its dry state in a mill worked by a steam enlgine, was mixed wita two parts of sand, to the front work, and water having been add ed, the whole was gronn again, and the mortar used inmediacily aiterwarls. winils hot and fiesh. Tue backing mortar was composed of one part of unslacked lim . tu three parts of sand, mixed and tem ered in the usual way. T.re brickwork of t.ee liont and back was aid n mortar, tue rest gront ed every course ; part of tus. was seing built a little before winter, tite frout murtan was affected by tie frost, but the jon.ts were afterwards raked out and pointed with poz zuolana mor ar. Tise th.ough course it the fool of the fenders is of Barusey stone, 15 inches thick, tuose in waich the fenders are fixed projecting a little from tis face, and having a dove-tailed groove to receive each fender; the threc courses atove are also of Barnsley sto:e, tile lowest being a through course: these stones are all propery squared and dress ed and the front bosted. The coping s of Bramley.fall stone, 4 feet wide and 15 inches thick, squared and dressed, the from and top well bosted, the arris rounded off and the joints secured by stone dowels.

Before the walls were raised to their fuli height it was found that they had been forced forward on the east and west sides, near thomiddle, two leet from a straig.it line, carrying the foundation piling along with t.ent As a security, a quantity of eartn, about tel feet high in the centre, diminishing gradualIy to six feet at each end, was inmediate'! laid in front, where it still remains; a lengti, o the upper part of each wall was also ta ken down and rebuilt in a straight line. Some time after the dock was finished. tise water having been drawn down to witiir tiirteen feet of the bottom, for ths purpust of making a level bed for the counter bulance weight of the gate chains, the east wall again gave way a little, but the movement coased on the rising of the tide. The cir-
cumstance operated as a warning not t^{0} Iraw tice water so low in fiture.
All round the do*k, to protect t'e walls. sere are oa's fenlers 12 inches square. If t I inches into the brickwork. and proiecting 3 inc es before the face. duvertaled in'o toide rorb ls it fort, as b:fore m " tiosed, z.d ser ured by ock iles wit.t w oug it iron istenings arar the to, which is covered vith a ca-t i:o.l cap. 'lhere are al o two ows of ho izostal fir fenders, 7 incues square, let ints the uprig it 0 It's by short cenons, with ingle pincers to prevent vessels catc.ing underneath or riding upon t.aem, as he tide riors and falls.

Tif entrance lock is 158 feet long witulis. the gates 42 feet wide at the top, and 31 fiet high alove t :e ointjug s.ls, on winch the ivvange lept! is 26 "ect at high w ter of suring, and 20 feet at that 0^{6} neaplides.

The foundiation consists of four rows o: waring pies, 16 to 19 fect long, for eac. wall of tue camber, ind two row for the co mterforts; oa the heads of tuese, longituditial sleejers of half timberi are bolted. ranse rie sleepers of the sume scontling ;laeed o.s edge securely fixe 1 to them, and b. e w .ole is coverel with 4 inch clo ie plank. ng, t e interstices bing filied in solid with mickworls, oi waica the inverted arch and side wails ure built. T.sere are five rows of ; inch grooved s eeting piles, 16 to 20 feet oug, driven acros eac.l platiorm, t ie bear. ing pilos for whish are 3 to $4 f$ et apa t eic, way, and carry longitudine.l sleatpers 12 inches square, wit 1 two co irses of clu.s transversc skepers bolted thereon for 1:3 fee a lengtia from the main sills, 0 : whicu t 1 ointing sills are fixed. T 10 remainder of t te platforn is cove ed wit. 10 inch clm close plarking, 0.1 wincil cast iro. segments arr laid for the gates t') truverse upoin. '['inere' is an upron or pl tform at the tail of this lock, about 50 icet in lergt'., covered wit. 4 inc.l pluking spiked to transverse sills, w.ach are bolie I down upo.s t.ee heads of t.ie bearing piles, with a row o. six inch grooved s.recting piles at the outer end. The piles are of Norway timber, tie sleepers and pianking, except for tate platiorms, principal. Iv ot Danzig fir, and tue pointing and main ills of linglish o.sk

Tise side walls are 6 feet 9 inc'res wide at rop, and there are six cou ter.o t; 0.1 a sidc, eacll 6 feet square; besides tuc foundations or the bridge, winc.a stand 9 feet nigater tua. t.ee rest. 'T.ese walls and t.ee invert are of orickwori, faced witil Brumley-fall sto.se. The front was set in mortar comjosed of urree parts of ground Warm.swo th biue lime, two parts of ground |ozzuolana, and ive paits of s.ıarp firesa water s.and. proare y mixed and screened, and well tempered; lais work was done by men wita bacers the the erection of the mill i., which the mor tar was afterwards ground w iolly, an I use. 1 mmediately; the rat o: the whew sel and grouted in common mo.tar, composed of one pari of unslacked Wanmsworta lime to three par's ol sharp fresh water sand. nived and screened, und tempered in the usual way. Tae nollow quius are of Dun. lee sionc, well squared und dressed, sct is ozzilo.aria noitur, with cluse beds ant jounts, the paris in waich the gates turn beung well rubbed to a smooth surface, so as
to be water-tight; this rery hard durable sone heing of a fine grit. do's but lit!le in. jury to te heel post, ard is therefore very pioner for holloiv quoins. The south wing wills nre al-o faced with Pundee stone for a fiol? length The ropirg is of Bramley. fall tone, 4 feet wide. by 15 inches thick, ingged tuget or in the same manner as tant of t te dock walls.

Caisema. It the masonry at e.ch end of the lock. there is a chase or groove 12 inches deep. 21 inches wide in tue front. and 15 incies at the back. for re. ceiving a caisson o- floating g'te, waich was originally buit as a preventer dam at the south end du:ing the execution of the wo:k, and was afterwards usell to keep the tidal water out ol the lock in repairing one of the gate chains ; but having gone to decay, it as since bean b oken up. The keel was m:de to fit the 3to te groove so ns to bo vater-tig'st, nind abont ten feet above the bo'to n, there was a cast iron cross cylinder, ? feet dinmeter, communicating with t'ie vater on eituer side, by means of four aper. ture;, 9 incies diameter, fitted with brass ligs worked by screws and rods, reaching to tie deck, by waich the water was admit. ted to sink the cilisson in its place, and let Out at low water wien no longer wanted, so that, the plugs being inserted, tue vessel rrise iy its own buoyaricy tite succeeding tide. $\Gamma_{\text {sis }}$ gate or vessel being very deep, and on. y $2:$ leet 6 inches in beam, was kejt in a verticel position by about thirty tous of bal. last.

The lock gates nro all of English oak, excejit the planking, which is of fir; tacy are 31 feet 4 inchs h:gh abcre t ic jointing sills, and 25 feet 0 incines bioad, measured in the curve line, the camber being 144 inches; the t.ickness is $16 \frac{1}{2}$ inches at the heel, and $14 \frac{1}{2}$ incles at the head. the 3 inch close planking inclu ed, Each gate qriginally consisted of twelve bars framed into the head and heel, and fur. ther secured by wrought iron straps and bolts; but a few years after they were put up, several of the lawer bass being braken by the grent pr ssure of the w ite: and t e heavy stroke of tise sea in stormy weather, t.ry were replaced by new ones, and seve: ral additio'ıal bars inserted, so that the gates are now a solid mass of timber (excepting t.se clouglis) for ten f el from the bottom. Taere are two cast ircn sluices to every gate, each 3 feet square in the clear, work. ed by a wrouglit iron screw, with a sluice rod reaching to tire top. The machinery tor opening and slatting consists of a 6 inch inion, working into a cor.whee 4 feet dia. meter, on the axis of which is a cast iron roller 2 lect 9 inches long by $0 \frac{1}{2}$ inches diuneter, for t.ze gate chain to wind on. The otser parts of the gates and their appendapes are so much like those of the Old dock lock, that it is deemed unnecessary to repeat the description.

Before t:0 piers of the entrance basin sere erected, the waves from the Humber ometimes forced open the outer gates a little dotwillistanding the great pressure oif water sehind; and t.se violent concussion in shit, ing fractured the lower burs, as alroady nentioned, and would in all probability soon uave destroyed the gates had they remained
much longer exposed. Since the erection 0 - the piers the swell is much diminshed ; but even now, with strong gales from th sjurh, it is dangerous to :ttempt to open or s.ut the gates by the machinery, and at such times rerourse is bad to blocks and tackle provided for the purpose. When t.ar gates are left ofien after high water also, the current out of tinis lock, in particular, is so strong as to require great caution in shut ting them; this used to be done at snch times by what is termed back handling, that is, the gate-men standing at the machiners for opening, keep a tiglit hand upon it, to prevent the gates from closing too forcibly : but recently a safer and more simple ilin has been adopted, namely, Ly a rope hooked to each gate head, and taking a turn rou.d the modring posts on each sidc of the lock. by which the gates can be eased to with t.re greatest safety.

Over the centre of this lock there is a swivel bridge, 12 feet 3 inches wide; it is 81 feet 9 inches long, and composed of two parts, which, meetrirg in the middle, form a segment of a circle.The bridge consists of six cast iron rib-: about 2 inches tiiick in the plain part, and \sum_{2}^{2} inches at the lower edge, connected toget.، er by cast iroun braces, and planked wit. $2 \frac{1}{2}$ inch nak. waich is protzcted by a coverime of $1 \frac{1}{2}$ inch fir. The foot-pat is, each 2 fee 8 iuches wide, are slightly raised above the carr age way on oak josits, covered with fil boards, and have cast iron curbs next the ruad way; a wrought iron railing, 3 fect ? inches ingi, runs aloang each sile. Oa eac side of the lock, in the stone coping of a laige brick pier, there is firmly imbedded : cast run circular plate, 11 feet 9 incines diam ter by 6 inclies wide, with a cross and pivoi m the centre, al:o securely let into the m.sunry, and worliing in a socket under neath t.e bridge, witis twenty conical co! lais, 6 inclies wide, by $10 \frac{7}{z}$ inches diametr at oile end and $9 \frac{37}{4}$ iuches at t.ee otier, finte in a frame, and revolving between tie circu lar plate above mentioned and a similian plite in the under side of the bridge. 'T... ends or meeting paris of the bridge are no described firon the centre pivot or axis of moto , but from a point a little on one sint thereof, wherebr t.ese parts, in sluutting into a tongue and grooved juint, do so: conne into actual contact till the bridge is sllut : it is then completely fast. being closely wedged to the abuiments on each side and kept in. place by two keys at the meetung, thus making the whole firm and secure. Tue macunhery for opening and shutting the bridyc, cur, s:sts of two 8 inch bevel pinions, th ourt of w.ich the handle is applied, and at tie but om of the vertical slaft of the other i-
 wiseel, 4 fect diametir, on the axs of wile. is antuluer pinim, 12 inc.ies diameter, whic.. turns t.ee bridge by means of a tootued seg ment at the uu:er e..d. Oie man can opect. or s.ut either part of the bridge wit., ease i_{1} ha fa minute. Mrssrs. Ayden and E.well alieady named in the account of the Oi. dock, constructe:t this bridge also.
seato whle. The walls of the entrance ba. sin are so much like t.ose of t... dock, that a very brief descriptio. 1 in of sut fice. They are ten feet wide at the botton. by 6 feet at the top, fronted entirely witu

Bramley.fall stone, and having two through courses, and a stone coping, si nilar to the "osk; the rest of the wall and co inter.ort st of brickwork; fie froatt ma*o ry, an Iso the back o: the walls, are set in jom zuolaua mo tare the remaind r in conmon motar, ot the same propo tio s and mixe is for the lock. Tisere are three rows of sto:t pining, 16 to 18 feet lo:g, under tho walls, and a row of 6 inch grooved sheeting piles, 16 feet lo f , in fromt, witis trans. verse sleepers, and rlo ie planking over all: the coanterionts are piled and planked in the same wiy. There w is also a quantity of Hessle.cliff stone rammed betwern $t: 1$ roundation timbers. anl ahnat t.ro foyt in width beaind the w llks. This wall. oa $1 \cdot \ldots$ vutside of the cojer-dam, wis wiolly o cuted in tide wark.
The quars are paved wit
spura pebbliss ; the cast side, uns: the south up to the lock, firm a legal quav upwards of 1000 fect lons ; t.e drainage i into twe sewers by gratings every twen'y fi.e yards.
Movilug. Tise mooring posts are about 10 yard; apart, and 4 yards from the side of the duck : the y are of wo 1 , iro 1 . und stoue. The woolen oases are simply ound ouk trees, 18 incones diametor at t.e O, , drive.s firmly into tie gro and by pilc. ayges. and having two sore, a little be ow the surface of the gromen, albutimg o. we back of tee with, by w it:., the strain of t.e suippugg upoa t.ece posts is trausferred th t.e wail; a plan that canot be rerominend d. Tae iroan posts (welve pounder can ron) are 9 or hate fug the breceh o. uwer e.dd being het in o a stoue block, ann ecured thereto by w:ullat iro. straps and rolts, and also built reund with brickiwo.k u. -u near t.e surtace of the ground. I undertand that some of thees poits are st cerced sy land ties, but meneral tere is o.dy a urge stone laid to twe back of the copinge als turowing the strain upon the wation oticed above, in the case of the woole nuorings. The st me posts are of Peterread granite and Dandee saild sto .e. of sim lar dmensions, and sec ured in like manner, w those at t.e Old dock : but from the, , .eing ton inucir tapered near the groind several tave bien broken by the heary strain in windy we.t. er.
'Tare are f,ur dop'pins in thi, dock, each coassistay ot fiv. ales, the centre one perpendiular and standing above t.le ot.jers, which are b:ittr ring, and t te who's secured together bs iwo thers of cross braces, and planked ove, in top and side., for 11 feet. Trese dol minins were erected at the tin \in the Junctio. lock was made, for the purpose of warpins vessels in t.eieir passage to ond from tua lock, as well as for t.e mose convenien. noorings of ships on tile west side of the Old dock.
shed nad Crane
A range of sheds 750 feet long 25 feet wide, and 15 feet from thi ide, ext"nds along t.ee legall quay on th. cast side of the dock : they ure princi all. of fir limber, curcred with weather boar: ing and ence.oed w.tis large doors oa t
 .eed at t.te sout.a end, waic.a is all enclose. with large dours on each side. The rooli i covered with blue slate, and the floor form.
ed with 6 inch lags for a widn of 15 reet, he rest being paved witis spurn pebilos:
Th re are seven cust irolcraves to t is lo.k, fiur on tic enast and turce o it te west ide; the lange ome mear the mon west orner is a well crane, e le lallated to lift 10 to is ; the vertical shant is 5 feet 3 inches rom thee side of the dock, and its foot 15 ieet below the coping, the jib is 19 feet 3 uncles high to the under sire o? the pulley, and projects 22 feet. Tue other six cranes ve al oi tie ; illar kind and calculated to if 3 to.is. The pirlar is six feet high, und ixe fat a distance of 's fet fiom the dock, it a so ket int teechtreof a ca tirm eriss, erary buled to tero, ing. T.e jib is 10 an (6 petws high provets 15 feet. an 1 is ar she ont te pillar by a pixut and sócket we tuj, and a cast ino.a collur faced with orss at tic bow
T.ure are fiar w.oolen cranes to tie hassin, three of t.ewn well cranes calculated to if 3 or 4 toss, and the other, wiich hans jeen recently put un, a pillar craie for 2 to ns; the jibs of all project about 20 feet, or 13 feet byoud the basin wall. These cranes are principally used for steam packts.

Thiis dock was not cleansed for three years sud a builf after it was rened, the druglgi ig mic ine and mud bo ts .or being comploted u til t.en : ard suca is se impurily of te water in tie Hanber, It during this tinne the mad had accumulaad to the .e.eigit of twelve fiet at the couta sud of the duck, and three fert at the north, (o) that de thylalein ve:s ls were prevented, thrap the's, from entering or going out.
 ed by a steturnengine fixed on trord a square flat bottoned vesel. 80 fect ong. 2 J feet wide, and druwing 5 fiet water. the engine is f th se power, and works a : feet stroke forty strokes per minute, giving n.titur, by mealis of a bell crank, to fo:ir og w.reets, oat the axis o. the upper of which is a square tumbler, wit. one corresponding at the lower end of the bucket frame.Round these the wro.g.it irm buckets, 29 in number. revolic by ail endl.ss casin, and t.ee mul is discharged over the upper tum. b'er into a spou leading into lignters lying . Irngside ; tae ladder turns on an axi* at the upper cund, and the lower end is raised si lowered through an opening in the midlle of t.e boat, uy a crab und ticesling fixed driectly over he, by wilical tue bu kets are ddupted to the p. oper level for tiking up the nud. The vessel is drawn to is work by means of a cable revolving roind a roller .tauc:ed to the engia , and from it by two nen at a crab in tue stern; there is also a onlrival.ce for moving it sidewise when equired. It is usual in inland navigations wid canals, wheie the dredging machue has 0 pass througin locks and br.lges, to have re buckets in the middie of the vessel, as in ie present instinuce ; bun in docks, harbors, ec., where t.ere is no want of roun, they re mu.h better oa the outside, as there is Usi waste ma dise.rarging t.ee mad into the giters, aud tiere may be a double set of ickets, o.re on eac. 1 in le, if necessary.
Fur men, inciuling the engin e kecper, e required to wurk t.is machine. and two nore to attend tie lighiters. The work has or a short time been upwards of 2 tons per
minute, (or twelve buckets' of 4 civt. each,) and where the mud is in plenty and there is po, impediment, 60 tons per hour may easily be raised; but the ordinary work is aboul 45 tons an hour, or twelve boats containing from 500 to 550 tons per day of twelve to fifteen hours.
Mod boot. Frao. The mud boats are flat bot. Noon post. Pua. tomed and sharp at each end, and draw, when fully laden, about 4 feet water. Six of them, which were formerly used exclusiyely for the Old dack, are 4δ feet long at top, 17 feet 6 inches wide in midships, by 5 feet 6 inches deep, and carry 40 tons on ap average ; the six Humber lock boats are rather larger, carrying 48 tons each. They are ceiled inside in a sloping direction like a hopper, with two trap doors in the bottom, through which the mud is discharged, the water rising in the boat to the same level as on the outside, bur the cavity between the cealing and the bottom preserving the buoyancy.
When laden, these boats are linked to gether in pairs, six usually forming a set, which require ten or twelve men to work them ; they generally ga out of dock when the gates are all oper.f,l, a little before high water, and are warped 100 or 150 fathoms from the pier-head, where the mud is discharged; the empty boats then return to the dock, the time occupied being usually from two to three hours, according to the rapidity of the tide, and as the passage is more or less clear of shippiug.

The quantity of mud taken out of this dock, was about 36,000 tons a year before the Junction dock was made ; since then it has been about 30,000 tons, the diminutionn arising from the water being now in part supplied from the river Hull, which is much purer than the Humber.* and having also to flow through the Old and Junction docks, where a great part of the mud is deposited.

The tide-basin being cannected with a river highly charged with mud, it was necessary to make provision for clcansing it, The head or north end of the basin, is partly scoured by water from the lock, conveyed 130 feet in two cast iron pipes laid close behind the wall, and 4 feet diameter next the lock, diminishing to 2 feet 0 inches at the outer end; these pipes are in 9 feet lengtlis, each 30 to 35 cwt., with flanches at the ends bolted together, and resting on a cap-sill, supported by two piles at each joint. To these mains, at equal distances, are connected ten 18 inch pipes on each side of the lock, which discharge themselves througl the basin wall, about 5 feet above the level of the sills, on a wooden apron 40 feet wide, laid in front to prevent the foundations from being undermined. Two other mains, also 4 feet diameter,are connected with the dock, one at the south east, the other at the south west corner, terminating at the south-east and south-west corners of the basin respecfively; their bottom being about two feet above the level of the lock sills, and aprons placed at the ends, similar to those at the head of the basin. These pipes were intend-
*The respective quantities of deposit of
the two rivers are found, by experience, to the two rivers are found, by experience, to be nearly as one to three.
ed to scour away the mud along the inner sides of the piers, and also to assist in preserving a deep channel between the heads. There is a vertical cylinder, 4 feet 6 inches diameter, to each of the later pipes, near the corner of the dock, with a cast iron sluice at bottom for opening and shutting ; the sluices for the scouring pipes at the head of the basin are in the face of the lock wall. in the gate recesses; they are all worked by wrought iron screws with handles at the upper end of the sluice-rod. Several of the pipes from the dock to the basin, from being too slight, fuiled before the dock was opened, and were replaced, at great labor and expense, by new ones; others, which were less fractured, were repaired and strengthen ed by ribs in the inside.
'To show the effect of these sluices, I would state that the four from the lock, and the small ones at the head of the basin only, when all open, lower the water in the Humber dock a foot in four minutes: the latter, with the two from the dock, are generally worked at low water, twice every spring. tide, and notwithstanding their great power, only scour out a narrow channel at each place, sufficient for the steam-packets and small craft to lie in ; but being assisted by the sluices of the gates, the main channel from the lock into the Humber is cffectually scoured, and maintained to nearly the depth of the sills. Over the rest of the basin the sluicing has no power whatever, and the mud deposited there has been removed by manu al labor, at greut expenṣe ; twa mud lighters having been, til! within the last two years, almost constantly employed upon it singe the dock was opened.

It having occurred to the writer of this, that the water wasted in locking might be beneficially used in cleansing the basin, he recommended a new scouring pipe to be laid at the north east corner, on a much higher level than the other pipes for the purpose. A new 4 feet pipe was accordingly put down in the spring of 1831 ; from its junction with the old pipe to the outlet in front of the basin wall is 18 feet, and the bottom at the outer end is 10 fect 6 inches above the lock sill. 'There is a s'uice, worked by a rack and pinion, at the top of a brick shaft or well, to stop the old pipe and divert the water through the now one, when in use ; at other times, this sluice being drawn up, the water is discharged as before. At the outer end of the new pipe is a wooden spout, 18 fect long: turning on hinges in the wall, so as tu be reared up against it when not in use, and to the end of this another spout, 85 feet long, is connected, which can be turned so as to ecour in almpst any direction. It should be observed, that the largest quantity of mud is deposited on this side of the basin, and that, before the making of this sluice, it had accumulated to a great height, and become so exccedingly hard and tenacious, that it was found necessary to remove it into the stream by workmen with spaddles. In this manner about 12,000 tons of mud were removed in eight weeks after the sluice was set to work. Since that time there has been only one man to attend the sluice abont three or four days every spring tide, except when clearing away the mud alongside the east wall and near the east pier, which cannot be done by the scouring
power alone. The new sluice, when in full operation, lowers the water in the thres docks about 6 inches an hour, and usually runs about three or four hours each tide.

The sewers are all of brick, and are 3 feet wide by 4 feet high ; that on the east side commences at the end of Myton-gate; at a depth of 8 feet 6 inches below the dock coping, and termin. ates at the north end of the basin 4 feet lower, the extremity being closed by a flap, opening outwards, to discharge the drainage water and shut out the tide. This sewer was formerly cleansed by manual labor, but is now scoured by a sluice constructed for the purpose on the east side of the Junction dock. The sewer on the west side dijcharges itself into one in Kingston-street, which leads to the general outfall into the Humber, at Limekiln Cieek.

There is an iron sluice at the north east corner of the dock, 7 feet 6 inches below the coping, protected by a wooden door, worked by a screw, and having an iron conduit, 2 feet 6 inches wide by 2 feet high, leading from it to scour the town sewers.
Dock opened.
The water was let in on the
3 d of December, 1808, and the dock publicly opened for business, with due honors, on the 30 th of June, 1809. The expense was defrayed by the Dock Company, and the Corportion and Trinity House jointly, the two latter contributing one moiety of the expense, and the Company the ather, for which purpose sixty new shares were created, under the authority of an Act of Parliament.

The piers of the entrance ba.
 sin were begun soon after the dock was opened : their construction will be better understood from the drawings than by description. They are wholly of fir, of the scantlings stated on the plan No. 7, and the filling up or hearting is of Hessle-cliff stone; the sheet piling on both sides was grooved. The passago between the heads is 105 fect at the top.

Ta be Continued.
Yaluable Invention.-It is remarkable that an invention far more valuable to all who travel upon the seas, lakes, and rivers of this great commercial country; and more important, on the score of humanity, than any other devised by human ingenuity, should remain in comparative oblivion and neglect. We allude to that beautiful preparation of pulverized cork, for seamen's and passengers' mattrasses and beds, Will it be believed that a mattrass made of this material, weighing only twenty-five pounds cannot be sunk by the weight of seven men? and that one or two persons might float on it in the midst of the ocean, with as great security from drowning, as is he were on board a ship? Yet such is a fact, as demonstrated by experiment. The beds, cushions, \&c., made of this preparation of cork, are more elastic, soft and comfortable than those of the best hair, and have the superior advantage of never becoming matted. Every ship and steamboat should immediately substitute them for all othere, and even passengers going to sea should purchase one.-[New Era.]

From the Londun Jurnal of Arts and Sciences.

 a Solvent not intherto used in the arts. Concluded.The speedy evaporation of the caoutchoucine, of course, produces intense cold; it has been found to reluce the thermometer 10 degrees below zero of Fahrenheit, from 60 degrees above, in a minute and a quarter. At about 10 degrees above zero, a very remarkable concretion takes place resembling snow on the bulb' of the thermoneter, termed by Dr. Faraday the Bicarburet of Hydrogen; and it is believed that this is one of the new products allurled to, as discovered by Professor Mitscherlich.

Dr. Ure first exhibited this experiment, which may easily be repeated by tying round the bulb of the thermometer a piece of thin muslin, and blowing upon it with a pair of bellows while the fluid is dropped upon it.
If a currert of hydrogen gas be made to pass through the higly rectified liquid, it will carry up with it a considerable portion, and become an illuminating gas of great brilliancy aul beauty. This experiment was tried by Dr. Hue at the Hospital laboratory, and the combination of the two vapors remained perfect several days, though the application of greater colld might have caused them to separate.

If the hydrogen gas and the highly rectified fiuid could bo cheaply procured, a most excellent portable light would be the rezult ; but the expense of both is at present a bar to such a plan.

This new material is a solvent for all the resinous gums, particularly for gum copal, which it lissolves without artificial heat, at the ordinary temperature of the atmosphere; a property possessed by no o!her solvent known; and herice it is particularly useful for making varnishes in general. It also mixes readily with oils, and will be found to be a valuable and cheap menstruum for liquefying oil paints; and, without in the slightest degree affecting the most delicate colors, will, from its ready evaporation, cause the paint to dry almost instantly.

Cocoa-nut oil, at the cominon temperature of the atmospinere, always assumes a concrete form; but a portion of this caoutchoucine mixed with it will cause the oil to become fluid, and to retain sufficient fluidity to burn in a common lamp with extuaordinary brilliancy.

The importance and singularity of this new material has induced Dr. Faraday to bring it under the notice of the menbers of the Royal Institution, before whom, in a very interesting liceture; he explained and exhibited many of its properties; and we cannot better close our observations on this subject, than by giving a report of the Doctor's lecture.

The lecturer commenced by describing the process adopted by the patentec for decomposing caoutchouc, and convering it into thẹe new spirtt or material denominated caoutchoucine; and observed that those who are not acquainted with the very extensive work.s erected by Messrs. Enderby and Company, at Greenwich, in whom the patent right is vested, it may be interesting to know, that the preparation and manufacture of the New Zealand flax, for the production of ropes and cordage, has been a principal object of their exertions; and that in prosecuting this inanufaciure, in which they have spared neuher talent nor expense, in order to render the ropes impervious to water, and preserve then from the destructive effects of damp by saturating the filures in a solution of India rubber, they have been lead to the discoyery which formed the chief subject of the lecture.

The great urbanity and freedom with which Messrs Enderby have shown ihis establishment to their numerous scientific visiters, is a feature so different from the usual calculating secresy of mercantile houses, that we deem it right to notice the circumstance as an orien of a more enlightened age, wherein all shall be willing to impart those seeds of knowledge and of truth, which, while they do not injure the parent tree, become the prolific eource of benefit to the public at large.

After exhibiting living specimens of the plant from which the caoutchouc is manufactured, of the sap, which appeared like cream, and of the various forms in which the India rubber is im. ported, the Doctor alluded to its first introduction into commerce about 70 years ago, when it was sold by Mr. Narine, the mathematical instrument maker, of Cornnill, in cubical pieces of about half an inch square at ' $3 s$. each, which he recommended as a convenient means of destroying the traces of black lead pencils; whence it derived the name of India rubber, which it still retains.

Such a linited application of caoutchouc continused until within a very few years of the present time; but latterly it has been found available 10 a multitude of purposes connected with manufuclures and the mechanical arts, so much so, that we learn the guantity now imported in+o this country excelds the enorn:ous sum of 200 tons fer annum.*

Mesars. Euderby have at this time more than 100 tons actually in process of operation at their manufactory, where it is used, when melted with tar, for dressing or paying, as it is calied, the ropes and cordage, manufactured by them from the New Zealand flax, and also for the distillation of the caoutchoucine spirit above alludel to, which is coming largely into use fer the various purposes staied.

In the proluction of light about 1 guater of the caoutchoncine dissolves the cocoa-nut oil, and forms an excellent fluid for lamps, one of which (at French Argand) was exlabited on the lecture tible, and burnt with peculiar brilliancy. Dr. Faraday then alluded to another application of this spirit to the bamps invented by Mr. Beale, who was present and exhibited their action. This lamp, which has been made the subject of a patent, we shall probably describe in our next.

After briefly adretting to the various important applications of caoutchouc by Mesers. Mice Intosh, Hancnck, and others, to articles of domestic and surgical clothong, beautiful specimens of which were exlribited, Dr. Faraday proceeded to the more immediate object of the lecture ; and in speaking of the composition of cioutchouc, particularly adverted to the extraordinary quantity of carbon contained in it; namely, 68 of carbon to 10 of hydrogen; forming what is termed a hydro-carbon. The lecturer then placed a very small quantity of the cream-like sap in a capsule over a spirit lamp, by which the caontchouc was coagulated into a solid substance, and appeared in surprising quantity, more especially as the sap had already deposited an immense ganntity of solid caoutchouc in the botle from which that small quantity was poured. Dr. Faraday then remarked as an extraculinary fact, that the composition of the eaouthouc did not seen altered, alhough its properties are completely changed when, by me!ting, it is converted into a rizcill inatter incapable of again coagulating ; and when, by a still higher heat it is distilled over into the spirit termed caoutchoucine (10 parts of which are obtained from 12 of solin, eaoutchouc, and when rectified has a specific gravity of .080 , being lighier than ether, and presenting a most rernarkable instance of the quantity of solid matter that can be suspended in a liquid form.)

What is most extraordinary in the opinion of the Ductor is, that this very liquid is itself a solvent for caontchonc in a na:ural state, and deposites it on evaporation unaltered, afforlung a grand desideratum in the arte, and promising a most abundiant source of useful manufactures.

Caoutchoucire is extremely volatile; and yet its vapor is so exceedingly heavy that it may he poured, without the lifuor, from one vessel to another like water. A portion of the vapor was poured into an open giass vessel, which, of course, scemen to contain nothing, and yet, when carried towards a laurip, placed at the extremity of the lecture table, and then inverted, or rather the vapor poured out into the flame of the lamp, when it imme. diately inflamed, and thus most satisfactorily establishing its presence in the open glass vessel; and consequently its weight. which had prevented its escape through the wessel had been removed, affording a most satisfactory proof of these facts, and of amusement to the spectators gencrally:

[^41]Wilmington and Susquehana Railitoad. - At a ineering of the Directors held in the e.ty of Wilaingten, on Mondiny last the following persons were elected to the offices that precede their names :
General Superintendent-George Craig,
Agent at Deput-James Fiazi r.
Super.ntendent of Motive Pawer-J mes Elliolt.
Superintendent at Elkton-Zebul,n Rudolph.
Superintendent of Locomotives. Willians Huston and Ellicot Hewes.

Conductor of Trains-Robert M. Hill and Caleb T. Swayne. -[Delaware Gaz.]
The Delaware Canal- We published in our lact that io was rumored that the business on the luwer section of this canal would be suspended for a week or two, in order to repair the aqueduct over Hough's Creek, which gave way on Saturday aweek. The damage sustained was not so great as many feared, and it is with pleasure we state thit the supervisors had the aqueduct thoroughly repaired, and the whole line in full fluw oi business in a few days after the accide it happened.

The officers who have this important br inch of our interral improvements under their charge, are the right kind of men fior such a service. When breaches or other injury takes place on the line, they are at their post night un I day-rain or shineand having a practicul knowledre of cannalling, they are enabled to accomplish in days what under other circuinstances would require weeks; thereby adding thousand of dollars to the fund. of the Commonwealth. - [ass on Whig.]

The receipts of the Bostun and Worcester Railroad, lapt week, amounted to nearly $\$ 5000$.

Agriculture, dec.

short notice of a new manuige [made of human exche. ment] much used in france, and a proposal fur its introduction into england.
「The following article was found in our latest received British periodical, after the last of the foregoing numbers on "In" Police of Healih" was in type. Thas turnishes buth newer an I more particular evidence of the value of the kind of town ma nure under colnsideration.-Ed. Far. Reg.]
Meesrs. Payen anil Burın, o Paris, having diseovered a corrposition which disinfects human excremen', an! all anumal sub stances, and renders thein the inost fertilizing manuie, prrien tly free from any obnoxious odor, ant win a pilverized siate, now manufacture it on a lirge scale m France, where it is getue ally used. Some individuals, who have purchosed the nuthe and taken out a patert for the insemtion on the Bri ish Empire, pur pose manulacturi.g it in this commry; to iffeet which ojject they are desirous that a few aphatisis, mure parlicularly luove who are interested in Agriculture, should junimen in raising the sm:ail sum which will be requred fur th.it purpuse.

Allowing amply for all conlingencies, it is estimated by competent jersons that $£ 6,000$ will be required for establehing " manufactory fur the above manure; $\boldsymbol{x}_{1,000}$ of which hats betu already subscribed, and on which it can be shown, by a mot erate. calculation, that fity per cemt. annsal prufis can safely he auticipated.
The following taldes show the comparative expense and advantages of the oll and now systems of manure, as tried upon two separate arpents (1 acre 2 rodis $3,6.131$ hs peaches $;$) of the \$ame soil in the neishoorhood of Parla, by an experienced practical agriculturist, one being inanured accur ung to the usual castom of the couniry, atal the wher with the insproved manure.

OI.D SYSTEM.

Expense of Manure.

3st year, twenty cart loads suble ilung,
ait 6 frs. ($4 s 9_{d} 1.7 d$) a load, which
h.tsis fur three years.
sad year
3od year

1 st year scuen setiers (30 bush.) of corn, at $2: f$ (15 s 10 1.2d)
2nd year, five setiers on's 21 bush. 1-S
pk. at 1Sf. ($14 s 33.7 d$
140f. $5111_{3}^{\frac{1}{3}}$
90f. $3115 \frac{1}{7}$
3rd year, green crops

$$
9 \text { if. } 3115 \frac{1}{2}
$$

320f. $121311 \frac{1}{2} \frac{1}{7}$

NEW SYSTEM.

Expense of Manure.
1st year, eight hectolitres (15 cwt 2

40f. 1119
2nd year, lo.
3rd do., no manure
40f. 1119
of $0 \quad 0 \quad 0$
80f. 336
Proluc: of Crops
1st year, seven setiers of coln (30 bush.) ai $2\left(f f\right.$. ($\left.15 s .10 \frac{1}{2} d\right)$
2 nll year, siven sellers (30 lush) of do. 3 ral year, five setieıs (21 bush.' 18 pk.)
of oats at $18 f$. (145 $3 \quad 3.7 d$
140f. $5111 \frac{1}{3}$
140f. 5.111t
90f. $3115 \frac{1}{2}$
370f. $14137 \frac{17}{4}$
Fron which it a ppearz that with a reduced expenditure of 40 frs . ($£ 111 \mathrm{~s} .9 \mathrm{~d}$.) all intrease of $5(1 / \mathrm{fcs}$. ($£ 119 \mathrm{~s}$. 8 d .) in the value ol ihe crup was obiaine ', hertby grillg a gruss total ad. vantage in three years of 90 frs. ($£ 311 s 51-7 d$) in the new -ystell over the whl system, or al the rate of 30 fruncs (per F'rench arpent,) of e $2-s$. pei Enghish ncie per annum.

We are also informeal by the same individual, that the new manure posiesses the following desirab'e quidi ies, viz: the decideal improvennent of the land, economy in the conveyance, cleanliness in the crups, freedom from weeds, the produciiun of a stronger ear of corn, atid, lasily, that long-sought for desidera. tuin by the farmer, the destruction of lhe fly.

Exiraces fiom the reports of the diff rent learned societiez and the public jounals in Franre, which have expressed the highes: opimon ul this successful dircovery, for wh ch ine inventoincental fiom the Arademy of Scinuces in France on the bil Sep eniber 18:4, a prize of 8,000 franes:-

Asriculdual sucrely of ih Seine and L'Orse.
Exiracts foun remarks on differents soris of manure hy M. de Cauritle. Thw society has voed the insertion af this piper anongsl is mennerr, with the hope by this means of in fucung agru ulturalists to repeal the experiments of Decauvile.
"A.s.migst unanures there are eeveral new ones; but many farmers, not knowmg heir value, hesitated to use them, and hus deprive heanselves of valuable resuurces. Having this year theil some experments upon several of them, I nave now the hotior to con wumime to sou the iesult.
"In a piece of clayey und chalky ground of the extent of thinteen Fie ich ancres (neally eleran Enghish) which did not possess much fertilit, I had some bately sown atier iwo ploughmuss, ald at the same time, 1 spread the following manires. On the first part the hinert marmise made by Mr. Derosne ; on the second, the mimmlized black (inade by Messrs. Payen and Buran;) on the third, the disimf cled suil [hmanan excrementr] of Messrs ayen and Buran; on the fourth, the Laine manure; on the fifil, be Boulogne sull.
"In oider to ascertain the duration of the different manuree, 1 zowed sume lureme amengst the barley, and the following crops served to show ihose which act ti.e longest on the soil; three farmers were chusen as julges, one a member of this society, who were ignorant of the nanure which had been employeil, and the following is their lecision. All the manures produced sume effect, compared with that part which had no manure, the inost efficacious was the disinfeciel soil; the second, the animaized bluck; the third, the blool manure; the lourth, the soil of Burlogne; the fifih, the Laine manure"

Extraci from a repurt of Mr. C. Branne, director of the model farm of Giignon, 20th Srptember, 1834 :-
"In a course of expenilichits, I nausured abont one hundred acres of rye and wheat with anmalized ulack in the departwent de l' Aube, at forty leagues from Grignon; although the season
wa not favorall?, one can inquire of the people of the country, if they have e er seen a finer crop in the world."

Exiract frow a repor made to the Hurriculural Society of Pari-, by the Viscount Debonnaire ile Gif.
"The result of iny examnation of the effece produced by this new manme in horicultural proceedings is this: thit thi i pil verised compound appears to hatien the develnpinent of vegetables, and consequenty accelerates their frucification; that it dies not possess the bad quality of containung the seeds o. weens ; that it impro es by digrees the soil, an. 1 podinces more abundant crupe ; and it can, consequenly, be applied to garden planis, which exhaust the soil, nor does it impart any disayreainble flavor to fruits or vegeti.bles. It likewise aulis con iderably to the growth and b auty of the dahlia, and o her bulbous roots. The facility of its cunvejance is also a great recommendation."

Several attestations of persons, who have witnessed the disinfecting process both in France and England, are in possession of the individuals who propose to introduce this manure into Eng. land, and may be seen at T. G. Margary's, Esq., solicitor to t.ie patentees, Quality court, C.ancery-lane, from whom any furtaer juformation can be obtained.
N. B. Many preparations for night soil have been ased for some years, botu in Eugland and France, but none of t.eem are al. luwed to possess the superior qualities of the one waich it is now proposed to offer to the Britisin jublic.

Bone Dust.-Upwards of 10,000 bushels of bone dust were sold at Maduff, Ivernesshire, on Monday s'unig"t, many people have come upwards of thirty miles for it. It is supposed t iat there could rot have been fewer than three hundred carts in town ; and a greater bustle was never witnessed by the oldest inhabitants.

From the New-York Farmer.
Poudrette, Frenth mode of Preparalion; its calue in France, \&.c. \& c
We are enabled by the politeness of an intelligent French gen. tleman, to g ve us liul into mation in reat on to the mode of pre. paration, in Paris, oi this valialle manure.

Tne material, the contelts, of priv es, is taken beyond the lim ts of the city, into a large enclosure, with "eservoirs into which t.se solid part is put. to the depta of 18 to 20 inches. whein from ore tenth, to one eighth in quantity of dry earth is mixed with itand then the mass is left to the influence of solar eva!oration. The length of time required in carrv it tirrough the process of preparation varics from one, to two, and sometimes even to three years-whicuranders it both tedious and ex;ensive; yet so highly is the article valued, by the agricultural community, that the privi lege of the monopoly, is sold by the city, to tue highest bilder, for periods of nire years each; and comi anles are tormed, consisting of intelligent and weallhy men, waich compete for the privilege of monopoly. The present company pays to the city of Paris one hundred and thirty thousand dolla, s, for the exclusice privilege of removing and using ti:e contents o. t Ie privies-i.se rompany, of course, have the rigat to charge the proprietors a certain price for the removal.

Tue estimated value of the article may be readily understood by the prices paid in Paris, and the distance to waich it is carried. Tue price varies from six to eight francs the hectolitre, w.ich is equal to about $3 \frac{1}{2}$ cubic fect, or to two and eight-tenths Wiich-s. ter bushels; which will give about an average of 47 to 50 cents per bushel-and tien it is transiorted from 6.1 to 100 miles from Paris, and even expurted to tire West India Islanls.

Chaptal entertained a hig opiaioa of t.ie value of this ma. nure, and speaks of it as follows t -" T is pulverulent product is sougit for by our Agriculturists, who acknuwle lge its good efficts; let us hope, tat becoming more enligtenad. they will employ te fecal matter itself, as being more ric.ı in nu ritive rr nciples, ald abounding equally with salts; thiey can casily govern and moderate the too powerful action of tuis, by fermentatio., or what is better, by mixing with it plaster, enrth, and other absorbents, to correct the oJor." "Tise sugges'io s of C.aptal induced a distin. guished ciemist of Pa is. in connexion wit a friend of his, o un. tane a series of experiments, to ascertain w.ether Poudrelte co sld not be made, of equal quality, witiout t e necessary delay o' solar exaporation, as in France ; or by artijicial heat, as in London,-
which experiments were, we are satisfied, altogether successfula ad the cordju'or and friend of that chemist is now in this city, and will undertake the superintendance and managenent of the s ientifir rnd mechanical department of a company in this citr, for its manucacture, a; soon as fiee thousand dollars more are subscrib. ter, to provide te necessary outfit and buildings.

Ti.e general buvitess of the company, will lie urder the super. int \cdot n!'ance ard managerent of an active business man, who will give in forma'ion. and receive subscriptions at thes office.

It has leen ascertained that from one thousand fire hundred, to two thi usand busl els may be made per day. in this city. frmm the materials which re nor thrown aveay-and that it would be wint's froin tivelve and a half, to tueenty:five cents per bushel. Taking the lowest quantity and price, it woull be worth over one hundred and eighty dollars per day, for at least $\mathbf{2 5 0}$ days in the yenr, the average working time.

Of the improrid process of preparation, we will say that it is simple when understood: it is complated in from tucelve to forty. cight hours. by the addition of a preparation, or compound of r. getable substances, which disinfects it of, or allays the odor. vith. out deteriorating the quality of the manure; aided by machinery which prepares it for use, by dividing it into particles while drying, from the size of a mustard secd, to that of a hens erg -or it may be reduced to a powder and put into barrels, or made into cakes of any sze and Iried for transportation, and then cround for use.

The entire cont of outfit, includirg teams, apparat"s, machinery, and buildings, for preparing fifteen hundred bushels per day. will be less than fiteen thousand dollars: and six thnusand dollars will commence it on the scale of 500 bushels per diay. The capital to be entited to one-third of the profits, which will he over four per cent a month—and subscribers to the amount of five hundied dollars to have the privilege of usi-g u.anure a. half the market price.

When in successfill operation in this city, measures will be taken to give other cities, and large towns, the bencfit of su valuable an inprovement in city and agricultural economy.

Any inform tion in our pussession will he cheerfully communi. cat d, as our desire is to contribute all in our power to the cause of agriculture and heaith.

Beckwheat.-Let no Farmer who has ground to spare, negleet to put in a few acres of tais excellent grain ; while its flour comm inds a reidy sale and gool price, its straw is among the best hay that he can give to his mileh cows.

From the Former and Gardener.
We have upon repeaterinccasious urged thie chuture of Millet as hay, upun the consid re sa of our readers. and we are ning i-y to know, that tiose recomamendations have had their effect ia nu. merous instances. Encouraged by our success, heretotore, we take t:e liberty of again respectfully urging upon suctiof our sub. scribers, as may apprehend siolt crops of hay. to devote a tiw acres to its cultiva:io.s. Its rapid growth, great yield, and the ease witn which it may be cured, are qualities waich certainly commend it to favor. In six weeks trom tiae time of sowing last ycar, we committed it to the hauds of the mowers, and never suw a larger o more nutritious boJy of hay gannered from the same quartity of an ! in oar life.
O. good giound, or tinarily manured, we have no hesitation in sayng that it will y eld rom 3 to 4 tons to the acre; oa gosd grond without mature, it will bring at least 2 tons to the acre, aid last, hough not least, it is so easily cured ; half a day's exposure in the swarth to tie sun, being all that is required; after whicin it should be cur d in cocks; turuing these once a day for two or three days, waen it may sajely be put away; but if it be desirable to make it acceptable to the stock, it stould be salted when stowed away, in the proportion of one peck of salt to the ton. By using salt in this way, it is not necessary to give that condiment to tue stock fed on it.

We have heard it urged against the culture of Millet, that it re. quired rich ground ; now we wuuld ask, can any reasonable man expect large product of any thing unless it be placed oa soll competent to p.oduce it? If tinere be such, all we have to say is, that they are unreasolable beings, and require more than common sense would justify them in asking. But we maintain, that mulet

Coes not require such extraordinary strength of soil. We raised ten tons last year off of two and three-guarter acres of ground, which was not originally rich. It is what farmers call kind land; a deep sandy loam. It had, to be sure, been rested, as the phrase luas it, for sevoral years, and depastured by cows. But we dial not put on it a single ounce of manure of any kind: we plonghed it twice, harrowed it an equal number of times and then sowed it with millet, at the rate of half a bushel to the acre. We directed a bushel to be sown, but one half of the seed we gave out were not sown; had they been, we have no doubt a larger yicld and better hay would have been the result.

Again,-we have often heard the objection made to Millet that it made a coarse hay! Now this is an evil, if it be one, that may very readily be remidied. Millet will only grow rank where extra space and aliment are present to push forward its growth., If an extra quantity of seed be cast on the earth, the consequence is, that a sizable grass will grow thercon, which, while it adds to quality, in its superior fineness, increase the bulk and weight.

We have heard it stated too, that it is a great exhauster ofland, and so far as theory and philosophy may go, it is very natural to suppose that like all other rapid growers, it is an exhauster, for it is consonant to reason to presume, that any vegetable that comes to maturity so carly must necessarily draw upon the soil for its support, with no very stinting hand; but then, we bolieve that, from the rapidity with which it covers and shades the soil from the in. fluence of the sun, th at it not so exilausti.g as many other crops. In corrcboration of this opinion, we would offer a fact, afforded by the ground itself. The lot on which we grew our Millet last summer, we put in Rye the last winter, without giving to it a grain of manure, and have now standing on it as fue a crop as we could desire, without subjecting ourself to the imputation of being avaricious. Now, if the Millet was rcally as exhausting as represented, could the rye have so successfully grown on it under the circumstances that it has? We think no:.

If we were asked what quantity of Millet seed we would sow to the acre, we would reply, that never les.s thun three pecks, or a bushel where we wanted the product for hay, and half a bus!el it for sced.

Horses and stock of all kinds eat it with avidity, and it may be set down as a propositiou perfectly def. nsible, that two tons of goos Millet hay, contains as much nutritive matter as three of 7 iomd. they.

There is another reason of no mean importance why Millet should be cultivated. It is beyond all question the best crop that can be put in to prepare ground ior 'Tanothy ; its rapid growth, entirely suppressing that of weeds of cevery description, and leaving the soil in that wholesone condition when nothing is required, but to harrow in the sced, to insure a good and well set crop of 'rimothy, without any additional trouble ol' expernse of'after ploughing.

From the Genesee Farmer. :
is farming profitable.
We ask for the following communication, an attentive perusa?. It set.s forth a few of the advantages of agricultural pursuitsand should induce many, who are useless drones to become use. ful members of socict.', by tilling the soil, from whence they may always draw a competence and independance.

In prosecuting the business of life, it is very desirable to do it in such a munner that, so far us regards temporal matters, competency at least may be secured; and the way in which this can be done the most easily, effectually, and with the least probability of reverses, becomes an inquiry of considerable interest. We speak now of the ordinary means of obtaining a good living; of the regular pros, cution of professional business, of the usual results of trade, of money at the legal rates of interest, and farming as it has been on the average for the last five years. Now in some respects, the "times are out of joint;" all the customary modes of doing business seem to be broken up; men are in haste to be rich; and the opportunities for speculation, and the success which in some instances has attended it, appear to have had their influence every where-loss perhaps ámong farmers than any other class of citizens, though even for them it will not do to plead entire exemption. Many have sold their
firms, and after spending months in looking for others, have come again and consented to pay roundly for the privilege of getting on to the " old place" again. Other farmers have sold out, and without personal investigation, have at once started for that earthly paradise the far west. Disappointed, they have returned, and after having lost most of their property in the expenses of removal, are content to again commence a gradual accumulation of property. But a great majority are still working on, sowing and reaping, and it is a question which should be solved, whether such are not on the whole making money as fast as they probably would with the same capital in any other legitimate business. What we mean is, can a man with five or ten thousand dollars, roalize as much from it by investing in a farm, as he could by loaning it at the legal rate of interest; and will it support himself or his family as handsomely in the first way as the last? 'lo contribute our mite towards answering these questions, is the object of this paper.

The man who expects to get rich at once by farming, must expect to be disappointed; but in this matter he is no worse off than he who has ouly the same moderate capital in cash, and uses it in a legal way. In both cases the addition to the capital stock, can consist only of what remains of the income after all demands upon it are met. We will attempt to illustrate this. 'Two men, A. and B., are about to commence life with the same capital, say five thousand dollars in cash each; and their personal expenses are also the same. A. invests the whole of his in a farm, and stock, and goes to work upon it. B. is appreheu. sive he could not live so, and invests his cash in stock which yields him seven per cent., and determines to do enough to pay his way, so that the interest shall be clear; now which of the two are the most likely to possess. computence, if not actual wealth, at the end of ten years? Perhaps a majority at first thought would say B. certainly; but we think differentlv, and imagine that the chances are altogetlice in favor of A., and hese are some of the reasons for this opinion.

In the first place his occupation is favorable to health. The life of a farmer is one of labor, it is true ; but labor, urless carried to excess, if far from bring prejudicial to the body or the mind. Vigotous exercise, such is the law of our natures, is necessary to the full developement of either our bodily or mental powers, and unless this necessity is forced upon us in part, we are apt to evade it, and we suffer in consequence. The maxim, that every man naturally is as idle as he can be, we da not dispute; acquired habits, induced by the necessity for exertion, are suffi ?ient to account for any seening exceptions to this rule. Hence the probability is, that A., having before his eyes the necessity of labor on his farm, will perform the labor, and reap the double benefit in his health and in his purse ; while B., whu cannot expect to feel that necessity, will of course be less active and industrious, will become less and less inclined to labor, and will eventually feel the effects of this disinclination in diminished health and decreasing profits.

Another reason why the prospects of A. are better than those of B. is to be found in the habits that persoral industry is almost sure to creatc. Experience and observation both assure us, that the man who has any means of living beyond what depends on his own exertion, is very apt to, acquire contemptuous ideas of economy, and whatever may be his original intentions, sooner or later finds himself trenching first on the interest of his capital, and then on the capital itself. There can be very few instances found in the country, where the sons of rich men have not diminished the inheritance received from their parents, and the examples are still more rare in which the second generation bave not succeeded in scattering the descending property to the winds. A pride, as false as it is in;urious, makes those who can live upon their money, dislike exertion, until this dislike becorres a habit, rarely shaken off, even after its effects are staring the individual in the face.

But the most sufficient reason of all why A. will succeed, while B. will probably fail, is found in the fact, that money invested in farming is far better than money at 7 per cent. This we think will be questioned by few who have been in the habit of observing what passes around them, or examining the reports made of particular farms which have from time to time appeared in the farming journals of the day. In all such reports it is evi-
dent, that after deducting the expense of working, a certain per cent. for the wear and tear, and the necessary repairs, and the interest of the capital employed, the remainder will be clear profits. The amount of this profit will depend on circurstances. The expense of working a grain farm will be greater than on a grazing farm, but the capital employed in stocking is less, and the profits usually much higher; the returns for labor sa quicker, and the procceds accumulate in a compound ratio.

There have been quite a number of farm reports given to the public through the agricultural journals, but we do not recollect one in which the expense of working was given with precision. The value of the products of the farm have been stated, and the reader has been left to form his own estimate of the amount to be deducted for the items of expense mentioned above, and in most cases the amount of capital employed has been left to conjecture. How then shall the actual expenditure of the farmer be estimated ? - for unless this can be done with an approximation to accuracy, it is evident the clear profits of a farm can not be knowí.

We have been convinced by observation and experience, and by estimates made with as much care as possible, that one-third of the proceeds of a farm will amply suffice to cover all the ordinary expenditures, or in other words, will pay for working, keep the farm in repair, and re-place the interest on the capital. We are sustained in this position by a communication from Dr. Beeknan, the Secretary of the State Ag. So., addressed to the editor of the Farmers' Reg., Petersburgh, Va., in which he states, that except in extraordinary cases, one-third of the products will meet all expenses, leaving two-thirds as profit.

Mr. T. S. Vary, of Kinderhook, made a report of his farm for the Cultivator, in which he estimates the proceeds from 145 acres of land at $\$ 2,285$. Deduct one-third of this, and there is left $\$ 1,524$, which is the interest of $\$ 21,772$; Mr. Vary did not state his capital or the valne of his land, but the profits would pay the interest on 145 acres at $\$ 150$ an acre-probably more than double itş actual price.
Mr. Carter, of Champion, Jefferson county, has furnished Judre Buel a firm report, which makes a total of \$1,639 from 100 acres. 'Among the items is one not usually found on farme, viz: mulberry trees, and which to Mr. C. are quite a source of poofit. 'This amount, less one-third as expensez, \&c., would leave $\$ 1,093$ as profit, or the interest on a capital of $\$ 15,600$, which would fix 'Mr. Carter's 100° acres at $\$ 156$ an acre-a price which would make the good farmers of Jefferson county open wide their eyes.
We have been furnished by a friend with two farm reporte, which, though more full than the foregoing, as they state the capital employed, are still deficient in not giving an accurate account of the expenses of cultivation. The first report is fiom a farm on which 86 acres are under cultivation, and the capital, incluling farm and stock, is estimated at $\$ 4,500$. The proceeds of this farm are given as follows :

Making a total of $\$ 1,442$, after leaving many minor sources of profit out of the account, such as two or three acres of poor corn, and other things of which the value was not ascertained. The crop of wheat on this farm was reduced at least two thirds by the severe winter, yet after deducting one-third of the whole, a profit of $\$ 962$ is left. This sum would be worth the interest of $\$ 13,742$; or in other words, the capital in this case pays an interest of 21 per cent. The cultivated land of this farm at legal interest, would be worth \$159 an acre.

The other report is from a small farm, 40 acres under cultivation, and the capital in farm and stock cstimated at $\$ 1,600$. The following is the list of the items, with their value; and it should be added that the report is for 1835 , when farm produce, as will be seen from the prices, was from 10 to 20 per cent. befow its present value.

Deduct as before one-third from the abore to:al, and we have $\$ 567.66$, as the profits of 40 acres. 'Ihis would be the interest of $\$ 8,100$, or on the value of 40 acres at $\$ 200$ per acre. This farm pays 35 per cent. on the capital at the above estimates of expense and profir, a fact which goes far to prove the conclusion often advanced in this journal, that small farms yield a greater profit than large ones, as they are in general much better cultivated.

But it is rery possible some will contend that jne-third of the produc:s will only pay for cultivation and repairs, and that the interest of the capital employed should still be deducted in order to give a correct view of the comparative profits of A. and B. We will do this, and it will be seen that the farm which is cstimated at $\$ 4,500$ pays 14 per cent. on the capital, and the one estinated at $\$ 1,600,28$ per cent. on the sum invested. These two reports bave not been given because there was any thing extraordinary in the amount of their prodicts; of the contrary, we imagine there are few good farms which might not equal or exceed them. Our object has been to call the attention of farmers to a proper estimate of their advantages, and show that money might be safely and profitably invested in the business. of cultivating the soil.

List of Subscribers to the Railroad Journal that have paid. Continucd.
D. H. Sclumidtt \& Son; City of Ncw-York, Jan. 1, 1838 M. Braem,

Benj. Chapman, Trenton, N. J.,
Junc 17, 1838
Jan. 1, 1838
A. Munson, Utica, N. Y.,
E. F. Cushman, Troy, "

Oct. 1, 1837
R. M. Boughton, Poughkecpsic, N. Y.,

Jan. 1, 1838
H. S. Dexter, Rochester,
J. P. Jackson, Newark, N. J,
J. C. Cabell, Richmond, Va.,

June 1, 1837
Jaı. 1, 1838
S. S. Baxter,

Ezra Walker, Charleston, Va.,
Owen P. Owens, New Albany, Inda.,
S. Breese, Carlylf, Ill.,
E. B. Talcott, Chicago, Ill.,

Wm. Gooding, "
A. M. Jenkins, Edwardsville, Ill.,
M. Tuomy, Littleton, N. C.,
D. Griffin, Macon, Geo.,

Gen. L. L. Criffin, " "
F. H. Petrie, Natches, Miss.,
W. Petric, Jackson, "

Howland, Ward \& Spring, Charleston, S. C.,
H. H. Gird, Jackson, La.,

April 1, 1838
Jan. 1, 1838
J. Nichols,
S. McCaleb, " "

Rer. J. Sharmon, " " . "

Pontchartrain R. R Company, New.Orleare, Lo., Jan. 1, 1:38 J. B. B. Vignil, J. Fowl.r, Jr., W. C. Claitorne, $61 \quad 4 \quad 6$ F. B. Le Bean, John Hewlett, P. Guesnon, S. W. Oakey, H. Turner,

New- Sork, June 15th, 1837.
third annual fair op the mechanics' institute of the city of new-pork.
The Fair of the Inistitute will be held at Niblu's Garden, commencing Mondiny, sipti mber 25th, 1837.
To sender this exhibition worthy of the arts and of the ingenuity of the Mechanics of our co intry, the Man gers hipp intud to conduct the approaching fair have determined to nake such liberal arrangements as will insure to the comtributors a fair upporiunty of exhibiting their prod..ctions to the gitatest advantage.

The ohject of Exhibition Fairs is to present to the members of the Inetuteand their lellow citize us who are + ngaged in the Mechanic Arts, the means of makng their skill an ingeumly known in a way no other facilities affurd: the many thousands who visit such exhibitions have a much better opportunity of judging of the merits of the various productinus, han they wisuld have by a mere verbal or ne:s spaper description, besiles the advantage of seeing brought togther, in one vast collection, the products of the skill, in_enuity, and industry of our country.

Paemiume of Medals, Diplomas. \&c. will be awarded for all worthy or meritorious articles exhibited, either a $:$ it respects superio: workmanship, machinery wherein the operations are wew, interesting or important, where inge nuity is displayed, or taste manifested, and particularly for all sew and useiul inventions.

You are respectfully requested to send, for competition or exhibition, specimens of the articles you manu'acture; and you may be assured that the strictest impartality will be observed in the distribution of the Preniums.

Steam power will be provided ior the acconmodation of those who w:sh to exhibit Machinery in operation; an experienced Superintendant will take charge of this department, and contributors in this branch are particularly invited to s ad or bring their Machines or models as early as possible, on the 23d September, that the necessary arrangements may be made in relation to shatting, puilies, \&c.

The Managers, in conclusion, cannot but express their betief that this 'Third Fair of the Mechancs' Institute, will exceed in \mathbf{v} ariety and beau!y of disp.ay, all previous exhibitions of the kind.

N. B. All articles for competition must be delivered to the Committee at Niblu's Garden, in the 23d September. 'I hose for exhibition only will be received any day dusing the Fair, before 10 o'clock A. M.

roles and regulations.

1. -The Garden will be opened for the recrption of Goods, on Saturday, 23d of September, from 6 o'clock A. M. until 9 o'clock P. M., and it is respectlully urged thrt all ariitles intended for competition may be se t in early in the day. Those articles intended for cxhibition only will be received ony day during the Fair, before the hour of 10 A. M.
2.- The Fair will open for visitors on Minday, 2Eth Septen.at 10 o'clock A. M., and continue open every day of the exhibition till 10 o'clock P. M.
3.-Competent and impertial Judges pill be appointed to ex-
amiae all articles presented and premiums will be awarded on nll such as thall be declirnd worthv.
4.-Ther (numittre on Pien iums, and all firms or parinerships in which they may be interested shall te excluded from competition or the allard of any pro mism.

5 - All persons deposiling aticles, cither for competition or exhilution, must nttend to have them ugistered by the Clerk, at "hich tume thry will recrive a certiticate, which will be required of them "hen the articles ure returued.
6.-Prool' of crivin must be fumished if required, for any specimen offered for Premium.
7.-Depositors will receice a tirket from the Clerk, which will admit them and Ladips durivg the Exhibition.
8.-Arrangements will be m de t exhibit, in operation, all working mod is that mav be deposited-contributions in this brauch ure invited-a compe ent person will take charge of all models sent fior the above purpose.
9.-'The morning of each day, until fifteen minutes before 10 o'clack, shall be appropriated exclusive'y to the Judges.
10. - Men burs wil receive their tickets of admission by applying at the Iis tute: Rooms, any time in the week previous to and dur ng the rxhihiti:m.
11.-All articles offered by ${ }^{4}$ pprentices, will be receiven, and adjuiged as the produrtion of Apprentice:- they must furnish a cerliticate of I ame, are, with whom, and the time they have servid as apprentires.
12.-Ar icles subje:t to injury by being handled, should be secured in plass case4-and contributors are requested to have a persinn to take charge during the hours of exhibition-in the interia.s, efficient measures will be tuken to protect property.
general committee.

George Bruce	Tubin Ridley,
Johil M. Loold,	Silits B. Simenson,
James J. Mapes,	Thomas F. Peers,
'I'honas Ewbank,	Thomas G. Hodwkins,
Wm. Everdell,	George L. Spencer,
C. Crulius, Jr.,	Peter Wenimell,
A. J. Mason,	Richard Brngaw,
This. W. Baritolomew,	Ab'm Peitch,
A. Storme,	Wm. H. Hale,
Wim. Ballard,	Wm. J. Mullen,
Henry Cuntingham,	James Thomson,
John Harold.	Abner Mills,
Josiph Treuch,	L. D. Chajin,
James D. Phy e,	A. Cammeyor,
John H. Mead,	Hiram J'upper,
John Counroy,	It. B. Robertson,
Jordan L. Mot',	Jumes Thomas,
Samuel arter,	H G. Stetson,
George F. Nesbitt,	Ferris Owen,
Henry Worrall,	N. Berry,
W. B. Worral',	O. Whittelesey,
James B. Cummings,	M. W. Emmons,
Jaines Frust,	J. S. Anderson.

Advertisements.

If any of our citizen:, who have encountered a d survived the storin, desire a comfirtable residence on a productive farm; in a bealthy part of the countiy, we would invite their attention to the ad ertisement of Mr. John White, in this number. His farms, we have season to believe, are well worthy of notice.

GREAT BARGAINS.

THE subscriber offers for sale 322 acres of Land, known as the late Cook \& Hatier Faıms, in the beautiful valiey, near Munli.s Cel.tre, in this county - the linestune creek runniig through it, on which are ihrce Dwelings, three Buıns, gocd Orchard, 21.0 acr. 8 un ler guod mprovement, the stumps out. and weil calcuiated tor two sa mis. The 1 rie canal in sight, suuth. and the Siyrisuse and Uti a Railroad locatid and leing node about 20 rois from a. d parallel wi h the rorth line and wheto is to be the firet watering piace and station from Syracuse for tak-
ing in passengers \& c . from Fayetteville, the fouthern and north.
ern villages, \&r. For grain, or grass and grain, for the Sugsi o. Root husi.ess, a bet er soil cannot he found in any coun ry. When this railroad is completed, filte n or twer:ty minues ob Sirarn e, two hours of Utica, a tew hours of i.ll thie river cities and New-York; indeed, when the railro d now making from Bo:ton to Albany is rompleted, within a few hours of all the principal easteru cities. Upon these great thorough fal es, and all these adrantages, surrounded by flourishing villages, stiong competioion will always secuse on the premises, the highest prices for all its products. This is one of the most splendid f.rms in the state.

Aiso, for sale - 120 acres of Land on the Oswego cenal betzoeen and iminediate y at the junctions of the Seneca and Oneida Rivers, embracing the ate wi low Eno Plat, Tavern stand, \&c. \&c. The meeting of these splend rivers, convenient habbor, the ranal-one of the great travell:rg ard commercial thorough liares, in the west, the be uty of the spot, surrounded by a lertile country. indicate his asa favorable spot for a firurishing village, or tor a resitence, farminy, gardrning, proflt and plensur=; no sitution on the \mathbf{N}, h River c in be inne deaira-ble-the favorable spot for the stations lor all the Parket and Line Boats-for a public house, in rcantile establish nent ${ }^{\prime}$, aad where every thing raised can 10 soid at the highest priee-.

Also, a farm of $160 \frac{1}{2}$ acres, boundrd on the west hy the Chittenango river, and $\cdot \cdot \boldsymbol{n}$ the $n \boldsymbol{n}$ th by the flurishing vilia_e of Bridepo t , or "the Rifts," two miles south of the Oneida lake, on the northern aml short st travelled \mathbf{r} ad tron Utira to Roshester, cultivatel. and the stimps out of n arly a hundred actes, fertile and beautiful lan ', enough of whirh may be sold tor sillage. luts ial a few years to pay fur the whole. A the head of navigatooit, at this village, are quite ex ensive hydraulic advantages -mills, carding and dressiag, tanncry, stores, public houses; schuis, \&c. \&c. comining titender th s a very de.iratle firm
Al:o, a valuable Cedar Lur about two and a balf mi'es north of Chitıenango.

- Also, as Agent some very valuable Farms in Onundaga and Madison counties.
I'he above mentioned Farns will be sold on highiy advantageous terms.

John White.
Syracuse, Onondnga, Co. Nerv-York., June, 1‘\$7. 10-m4
AVERY'S ROTARY STEAM ENGINES._AGENCY.The subscriber offirs his services to gentlemen desirous of procuring Steam Eugines for driving Saw.Mills, Grain-Mills, and other Manufactories o: any hind.

Eugines only will be furuisied, or accompanied with Boilers and tize necessary Nachinery for puttiag them in operation, and an Eugineer always sent to put t.ien up.

Infornation will be given at ali tunes to those who destre it, either by letter or by exnibiting tile engines in operation in thiscity.

Inquiries by letter should be very explicit and the answers shall be equally so.
D. K. MINOR,

30 Wall.st., New York.

FOR SALE AT' 'HIS OFFICE,

A Practical Trealise on Locomotive Engin's, with Engravings, by the Chevalier De Pambour-150 pages la:ge octa-vo-done up in paper covers to as to be sent by mal-Price $\$ 150$. Yostage tor any distance under 100 miles, 40 cents, and 60 cts. for any distance excecdiug 100 ms .

Also-Van de Graaff on Railroad Curves, dono up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts.
*** On the receipt of $\$ 3$, a copy of each of the above work. will be forwarded by mall to any part of the United States.

DRAW ING INS'TRTMEN IS.-E. \& G W Blınt, 154 Water-street, New-York, have received, aud offer for sal Driai ing Instruments o: superior quality, English, French, and German Manufacure.

Puey have also on hand Levels of superior quality at lcu priees.
W. Orders received at this office for tha above Instruments.

MECHANICS' FAIR.

Nolice to Meshanics, A tisans, Munu-facturers, \&c.-Tise undersigned give nuice that the first Aurual FAIR of tate h :s s.chusetts Charitable Mechanics' Asso"iatioa will be hel! ias the cit: of lioston, in Sepember next, commencing oa Monday, the 1stio and continuing at least tiree days.

The Asson ia in have placed aht tire disposal of the Board of Managers. tie s im of Five Twousand Dollars, to enable them to co:iduct the Farr upon a liberal scale ; and they hope to be able to render satisfaction to all who may feel disposed to offer articles for ex'inb.tion.

Medals or Diplomas will be awarded to the owners of all arti. cles that may be deem-ed worthy of such distinction ; and the Managers,-intend that the strictest impartiality and fairness shall be observed in tie distribution of Premiums.

Ture Managers, in furtherance of the :nlject they have in view, invie contributions, of articles from every departinent of indus. try ; "of cooice specimens of American ingenuity and skill ; rare and viluable donestic productions, natural or antificial ; the delicate and beauliful handiwork o! females; useful labor-saving ma, chi.es, implements of husbanary, and new models of machinery in all their varieties.

Judges wil be appinted to exmmine all articles offered, and the managers will award a gold or silver medal, or n diploma, to atl artucles that may be pronounced by the judges worthy of reward.

Articles intended for exhibition, must be delivered on or before Weduesday, Septem ber 131h.

Arrangemelits will be inade to exhibit, in operation, any work. ing molers that may be offered, w.lich will render the exhibition usetil and interesting, and the managers respectlully invite contributoas in tans branch. A careful and competent superintendent wall be appointed to take chare of all models sent for this purpose.

Board of Managers.

Stephen Fairbauks,	Jus. T. Buckingham,
Jo in Riyner,	James Clark,
Wi liam Adams,	Henry W. Dutton,
Uriel Crocker,	George Darracot,
Gardner Gireenleaf,	Win. S. Pendleton,
James L. Homer,	Ciarles A. Wells,
James Burry,	Henry Bailey,
Joseph Tidlen,	Jonas Cuickering,
Epiraim Harrington,	Henry H. Barion,
Juseph Lewis,	Thomas Boyd,
Walter Fiot,	Win. Uunderwood
Tıomas J. Sucl	George G. Sinith

P. S. For any further in.ormation ad dress JAMES L. HO. MER, Corresponding Secretary, Boston.

Bustoin, March 24. 1®37.
m28-tsl
thansactions of the institution of civil enginiers of great britain.
The first vo'ume of this valuable work, has just made its ap. pearance in this country. A few copies, say ticenty-five or thirly only, have been sent out, and those have nearly or quite all been disjosed of at ten dullars each-a price, although not the value of tae work, yet one, which will prevent many of our young En. gineers from pos,essing it. In order therefore, to place it wittoin therr raca, and at a convenient price, we shall reprint the entire work, .with II its enagravings, neatly done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to my part of the Unite \& States by mail, as issued, or put up in a volume at the close.

The price will be to subseribors three dollars, or five dollars for two copies-alcays in adeance. The first number will be ready for delivery early in April—Subscriptions are solicited.

W TO RAILROAD COMPANIES.

A PERSON experienced in the construction of Locomotive Eingius (many of his Manafacture bring in surcessful uperation on important Rairrua is in the Unt-d -tates) and who is likenise thoroughly acquainted wiht the manaremeut of sucti machines, and, indeed, the eutu acquainied of rsuiltrads, jx d y irsulus of ob anning the onluation of General Superintendant on -uIna Rai road, Sur'h ur We.i.
The must satisfac:ury tesiimonialu of character and capabiiny can be produe d. Comnur:icatiunx oddrensed ho the Edmure of thin Joumal, staing the tocation of hoed, \&cc. will mett wuh prompt atiention.

PATENT RAILROAD, SHIP AND BOAT SPIKES.

**The Troy Irnn and Nail Factory keeps conslantly fur salea very extensive assortment of W rought $S_{\text {pinces }}$ and Naids, from 3 to 10 inches, manufactured hy the subscriber's Patent Machinery, whieh after five years successful uperntion, nud now aimost universal use in the United States, (as well as England, where the subscriber obtainod a patent,) are found superior to any ever offered in market.
Railroad Companies may be supplied with Spikes having conntersink heads suitable to the hules in irou rails to any amount and on short nutice. Almost all the Railroads now in progress in the United Slates are fastened with sikes made at the above named fac-tory-for which purpose they are found invaluable,
as their adhesion is more than duoble any conmun spikes made by the hammer.
*** All orders directed to the Agent, Troy, N. Y. will be punctually attended to.

IIENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spikes are knpt for sale, at factory prices, by 1 . \& J. Townsend, Albany, and the prineipal Iron Merchants in Albany and Troy ; J.I. Brower, 2i2 Water street, New- York; A. M. Jones, Pliladelphia;
Janviers, Baltimore ; Dcgrand \& Smith, Boston. Janviers, Baltimore; Dcgrand \& Smith, Boston.
P. S.-Railruad Companies would do well to for-
P. S.-Railruad Companies would do, well to foracriber is desirous of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes. (IJ23ana)
II. BURDEN.

TO CONTRAC'CORS.

James river and Kanawila canal. TIIERE is atill a large amount of mechanical work to let on the line of the James River and Kanawha Improvernent, consisting of twenty locks, about one hanired culverts and sevepal large aqueducts, which will be offered to responsible cuntractors at fair prices.

The luclis and aqueducts are to be built of ent stone.

The work contracted fur mnst be finished by the Ist dny of July, 1338.
Persons desirons of ohtaining work are requcsted toapply at the office of the undersigned, in the cuty of Richnoad, before the fifieenth of May, or between the fifth and the fifteenth of July.

CHARLES ELLET, Jr.
Chief Engineer Jas. Kiv. \& Ka. Cu.
P. S -The ral

16-10t
'TO RAILROAD CON'IRAC'「ORS.
SEALED proposals will be received at the office of the Selma and Tennessee Kiver Rnilroad Company, in the town of Selma, Alabnina, for the graduation of the first forly nules of the Sclma and I'ennessee Railroud. Pruposals fur the first six miles from Selma, will be received after the first of Mlay, and acted on by the Board on the 5 the May P'rojersals for tho ensuing 31 niles, will be received after the loth May, but will nut be examined until the Ist of Angust next, when the work will be ready for cuntract.
'The line, after the first few miles, pursuing the flat of he Mulberry Creek, occupies a region of conntry,
having the repute of being highly healthful. It is having the repute of being highly healthrul. It is tree from ponds and swamps, and is well wntered -
Thic soil is generally in cultivation, and is dry, light nime sandy, nend uncommonly easy of oxcavation.The entire length of the line of the Sel :.a and Tenncsace Railroads, will be about 170 miles, passing genemaliy through a region as favorable for luoalth as any in the Soutliern Coustry.
Owing to the great interest at stake in the success of this enterprise, nad the amount of capital already embarked in it, this work must necessarily proceed with vigor, and 1 invite the attention of men of indus-
iry and enterprise, boith at the North and elsewhere Iry and enterprise, both at the North sind elsewhere
to this undertaking, as offering in the prospect of to this undertaking, as offering in the prospect of
continued employment, and the character of the soil coutinued emplsyment, and the character of the soil
nad clinate, a wide and desirable field to the coutractor.
l'roposals may be addressed either to the subseribar, or to General Gilbert Shearer, President of the Company.

ROACH \& WARNER,

Manufacturers of OPTICAL, MA IHEMATICAI, ANU PIHLOSOPHICAL INSTRUMENY'S, 293 Broadway, Now York, wilt keep constantly on hand a large and general assortment of Instruments in their live.
Wholesale Deslers and Country Merehants supplied with SURVEYNNG COMPASSES, BARUMETERS, THFRMOMETERS, \&c. \&c. of thei: own than can he had atany other establishment.
ansu can he had atany other eslablishment.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridgek, or vend the right to othors to build, on his Patent Plau, would respeotfully inform Railroad and Bridge Corporations, that he is prepared to make eontracts fo build, and furnish al materials for superstructures of the kind, in any part of the linited States, (Maryland exeepted.)
Bridges ou the above planare to be seen at the followirg localities, viz. On the main road leading from Baltimore to Washington, two miles from the former place. Across the Metawamkeag river on the Military ruad, in Maine. On the national road in Illinois, at suindry points. Onthe Balumore and Susquelianna Rrailroad at three points. On the Hudsun and Patterson Railroad, in two places. On the Buston and Worcester Railroad, at several points. Ou the Buston and Providence Railroad, at sundry points. Across the Contoocook river at IIenniker, \mathbf{N} H. Across the the Contoocook river at llenniker, N H. Across the
Seuhegan river, at Milford, N. H. Across she Connecticut river, at Hnverlill, N. II. Aeross the Con toocook river, at Hancock, N. II. Across the Androscuagin river, at Turner Centre, Maine. Across the Kunnebec river, at Waierville, Maine. Aeross the Genesse river, at Squakiehill, Muunt Morris, New-York. Aerusa the White River, at Hartford Vi. Aeross tho Conneclicut River, at Lebanon, N. II. Across the mouth of the Broken Straw Creek Penn. Across the mouth of the Cataraugus Creek, N. Y. A Railroas Bridgo diagonally across the Erie Canal, in the City of Rochester, N. Y. A Ra lroad Bralge at-Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is prubably the firmest woould eridge ever built in Ainerica.
Notwithstanding his present engagements to build between twenty and thirty Railroad Bridges, and several common bridges, several of which are now in prugress of construction, the subscriber will promptly attend to business of the kind to much greater exten nd on liberal terms.

IOSES LONG
Ruhester, Jan. 13in, 1837.
4-y

ALBANY EAGLE AIR FURNACE AND

MACHINE SHOP.
WILLIAM V. MANY manufactares to order, iron castings for Gearing Mills and Factories o evory description
ALSU-Steam Engines and Railroad Castings o very description.
The collection of Patterns for Maridnery, is not equallerl int he United States.
$9-1 y$

NEW ARRANGEMENT.

ropes for inclined planes of railroads.
WE the subscribers having formed a co-partnership under the atyle and firm of Folger \& Coleman, for the manufacturing and selling of Ropes fur inclined planes ot railroads, and for other use s, offer to supply ropes fur inclined planes, of any length required without splice, at whort notice, the matufactaring of cordage, heretofure carried on by malufactnring of cordage, heretofure cartied on by
S . S. Durfee \& Co., will he done by the new firm, the same superiutendant and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be promplly attended to, and ropes will be shipped to any port in the United States 12:h munth, 12ih, 1836. Hudson, Culumbia County S:ate of New-York.

ROBT. C. FOLGER,
33-t f .
(iEURGE COLEMAN,

AMES' CELEBRATED SHOVELS, SPADES, \&c.

300 dozens Aincs' superior back-strap Shovels $\begin{array}{lll}150 & \text { do do do plain do do } \\ 150 & \text { do do do castrtel Shovels \& Spades }\end{array}$ 150 do do do eaststecl Sho
150
do
100
do do
do plated - mining Spades $\begin{aligned} 100 & \text { do do plated Spades } \\ 50 & \text { do do socker Slage }\end{aligned}$
50 do do socker Shovels and Spades.
Barether with Pirk Axes, Clonrn Drills, and Crow Bars (steel pointed, mannfactured from Salishury refined irun-for sale bythe manufactoring agents,

WITHMRELLL AMES \& CO.
BACKUS, AMES \& CO. New- Iork.
N. B -Also furnished toorder, Shapes of every de. scription, made from Salshury refined Iron v4-if

STEPHENSON,

Builder of a superior style of Passenger Cas's for Railroads.

No. 264 Elizabeth street, near Bleeckerstreet,

New- York.

RAILROAD COMPANIES would do well to exa mine these Cars; a specimen of which may he seen on that part of the New. York and Harlaem Railroar
Jow in cperasion

RAILWAY IRON, LOCOMOTIVES,\&c. THE aubscribers offer the following articles for ssle.
Railway Iron, flat bare, with countersuink holes and raitred juinte,

$\begin{array}{rllllll}280 & \text { " } & 2 & 11 & 1, & " & " \\ 30 & \text { " } & 11 & \text { " } & 1 & " & "\end{array}$
70 " 11 " 1 , " " " $2 \downarrow$
$\begin{array}{llllllll}80 & \text { " } & 1 \frac{1}{4} & t_{i} & \text { " } & \text { " } & \text { " } & 1 \frac{25}{160}\end{array}$
with Spikes and Splicing Plates adapted thereto. To be sold fiee of duty
purated companies.
Ordera for Penmsylvania Boiler Iron execnted.
Rail Road Car and Locomotive Engine Tires, wrought and turned or unturned, rrady to be fitted on the wheels, viz. 30, 33, 36; 42, 44,54, and 60 iaelies ainmeter.
E. V. Patent Chain Cable Bolts for Railway Car axles, in lengths of 12 feet 6 inchea, to 13 feet 21,24 $3,31,3 \downarrow, 3 \ddagger$, and $3 \ddagger$ inches diameter.
Chains for Incliupd Planes, short and atay links; manufactured from the E. V.Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Planes, made from Ncw Zealand flax.
Also Patent Ilemp Cordage for Inclined Plänez; and Canal Towing Lines.
Patent Felt for placing between the jron chair and stone bluck of Edge Ra: Ways.
Every description of Railway Iron, as w-ll as Locomotive Engines, imported at the shorteat notice, by the agency of one of our partners, who resides in Fingland lor this purpose.
A highly respectable American Enginecr, resides in England for the purpose of inspecting all Loromntives, Machinery, Railway Iron \&ec, ordered through us.

28 tf
A. \& G. RALSTON \& CO,

ARCHIMEDFS WORKS
(100 Norch Moor street, N. Y.)
New-York, February 12th, 1836.
TIIE undersigned tegs leave to inform the proprietors of Railroads that they are prepared to furnish all kinds of Machinery for Railroads, Locomotive Engines ful operation on the Camden and Amboy Railroad, none of which have failed-Castings of all kinds, Whaele, Axles, and Boxes, furnished at shortesi notice. $4-\mathrm{vti}$
H. R. DUNHAM \& CO.

MACHINE WORKS OF ROGERS,

 KETCIIUM and GROSVENOR, Paterson, NewJersey. The undersigned receive orders for the following articles, manulactured by thrm, of the most superior deseription in every particular. 'Their works bcing exlensive, and the number of hands employed being large, they are onahled to execute both large and small orders with promptinssand despatch-RAILROAD WORK.
Locomotive Steam-Engines and Tenders; Driving and other Lacomotive Wheels, Axlee, Springs and Flange Tires; Car Wheels of east iron, frum a variety of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of beat American refined iron; Springs; Boyes and Bults for Cara.
COTTON WOOL AND FLAX MACHINERY,
Of all descriptinns and of the nost improved Patterns, Style, and Workmsnslip.
Mill Geering and Millwright work gencrally; Hydraulic and other Presses; Press Serews; Calleh. ders; Lathes and Tools of all hidds; Iron and Brass Catings of all descriptions.

KOGERS, KETCHUM \& GROSVENOR
Patterson, New.Jersey, or 60 Wallstrea, N. 51tf

TO RAILJROAD CONTRACTORS.

PROPOSALS will be receired, at the nffice of the Hiwassee lailruad Com., in the town of Atirens, Teinessee, until sunset, of Monday, Juue 12 h , 1837 ; for the grading, masonry and bridges, on that purtion of the Hiwassee Rallroad, which lies between ofe 40 miles.
tance of 40 .
The quantity of excavation will be about one milion of cubic yards.
The line will be staked out; and, togrther with drainings and specitications of the work, will be ready for the inspection of contractors, on and after the lst day of June.

JOHN C. TRAUTWINE,
Engir eer in Chief Hiwatige Railicad.
$16-61$.

american rallegod Journal， AND ADVOCATE OF INTERNAL HMPLROVEMENTS．

PUBLISHEU WFEKLY，AT NO． 30 WALE STPEET，NEW－YOIRK，AT FIVE DULLARS PEIK ANNUM，PAIABLEAN AUVAMT．

CONTEN＇S．

Report－To the President ad Drectors of the London and Gore Railroad，
Transictions of tiac Institution of Civil Engincers， Krusite，
Agnculture，etc．，
Advertisements，

．LW－1 UKA，Jt Li＇22，1s：7．
In giving the extract；of the following reaort to our reaters， we beg leave to state，that it is utierly out of our power to pab． lish the whole of the ducusien，（ 36 p．uges）particularly as much ot it is matter of local interest ouly，and conaining inu－ formation and advice relative to the or amzation und uperations of the Oumpany anl shgmeer Department；hiehly useflul to those to when the report is addressed，but a mater of every day business with our readers．

The impossibility of separating the two sorts of information gives an unc mnected appearance to the portion pablished，which we the more regre：as it coes nut emales us to do justice to the research displayed by Mr．Jubuson，nut orly in the protes－ sional details，but also in those porious relating to the＂ecuno－ my＂of ralruads aml internal narigation．
REPOLT：－TO THE PRESIDENT AND DIRECTORS OF THE LO：－ HON AND GORE RAILROAD：
In executing tite mportant trust rupose 1 in me，ns your chiet Engateer，I cansider myselt iontubate in the selfetion of persons e．sployed to ad ane．My jrincipal assistant，in the la－ burs of exploratin has béen Mr a rncy McCracien．supphrd with all the nee itul mstruments and in seiect pa．ty of assistints and labuiers．Mr．alce＇rake．a thas pro．econted the prelimm，ry surveys，with gieat indastry and perseveramee．He has t．aber－ sed tue fue of country non Hanintes is Chatham，runnun． dupuble lines，sone poithan of the distance，cxa．nitugg wi h mur－h care difficult points i the rou e，and tatiun partail viens of the cunntry irom Hanilton to Quenston，and rona Chathan to Sandwich．＇These services thavo becil mpeded by a partal out fi，by un．avorable weaher，by all the oustructhons of a vilder ne－z ancst of the way，and．aloug the valley ot tbe＇I＇hames，thy the nacessity of muving thoir bagg ige and provisinns diswin th river in a bual，while inour line of uperatuons day tro＂two tos sid miles di．tant．Ihoir wi．k cum seuved tae twe．s y－soventu day of July，and Ibeir tield nort clueed tho tirst d．y ot Nuvenber．

In calling your attenti in to the Lomsfou mod viore Ralroad， and ！o the phith ol uny profie：sional du ice．I propose to divide the lase intu five princip：al divisiuns，as tullows：

The tirst divisiun will extend Irrmi Burlingtor，Bay，at the villane of Hamiton，in a westerly direction alog the slope of the grent terrace，ten miles and six chains，to a dividing ridge， butween th．bisin of Laks：Outario and the villey of Giand River．The rlevation ot this ridgre is 575 lect above the lake． It is neally breken through at this point o：intersection，beintg not mose than one－limsth of a mile across and composed of said laying with a stcej declivity tu the east．Is western declivith is broken by ravin．stomed by tite land drainage into the Wel－ lind and（irand Riret：At une p：nint，this ri！ge is reduced by a nurrow difi e and depression of iorty lert．Here ne propust to pass the rationd m an excavation of thiry－three leet and wenty－seven on e hund，cidth；arving us at the place of passage； an e．evation a ove our starimg point ulive handred and one feet and seventy－threc one hundreuths．＇I lus beighth nay be attain－ ed by a unicorm grade，of for $y-1$ ine feet and eighty one hun－ drid．h．jeer unle，subject to moie than ord nary expense of grade in passing one mife non th edere of a perpendicu ar rock ternace， and passbig two principle ravines．It will requite extra cuting at，a． \ln near the summat．
＇I tee second divi ios extends from the ridere to Rirand River； a distance of thiteen niles and 40 chains，to the b．idge at Branttord．Grand＇River is here four hand id and ten feet above tice waters of Burli gton Bay，an \rfloor we disign to cress it thuty feet ibove the stream．Ihis will give the road a descent in tins division，of．s．sty－one fict and seventy－thrie one hun－ diedh，averaging foir leet，at d fity－seven one hundiedths per mile．It is propused 10 lay this porton of the rad straight， from the past end to a point opposite He Mubank village and fromi there nearly stright t．，Bratlond．This divi－inn i inter－ sected by Farr hilds＇cietk，ruaning in a deep ravine and by at ve al sinaller crecke，requiring embankmint－or bridges．It abound；wath Pi．ce a d Onk timber．and has a clay soll，with oc－ casional lipuosits of sumd above the elay．

Tuetaird divi；un sirctcses fiom Grand River to the summity dividing its waters iom those of the east branch of the Tuanes． Tas summit is seven fuadred and twenty．six fert abovo the waters of the Pay，And talerinth of t．re rivisions is tweuty one miles and tuirty－five chanas．In this durision our line rises two hundred and sxty－five feet，allowing ior an eicavat of of twenty： o．e feet，at the summit ；nod would require an avoiage riso of twelve feet and thirty－six aite hundredtis per mile．

T．e only ub truct，oin to the economical grading of this rivis on occurs in passing（irand River valliy，and reac：jug the Burfond piails，wiaich are cne hundred and eigutcen fert above the rivur crossing，and will require a rise of thity feet per milo，in a diroct
line. The residue of the ascent to be overcome, will require a grade nearly uniform of eight feet and forty hundredths per mile. eighteen miles may be a straight line. This division is composet of sand and clay containing (lak and Pine timber, with some beech and maple, near the summit.

The fourth division connects the summit, which lies in the town of Oxfurd with Loncon, being thirty-two mlos and fifily claairs in length, and requiring a descending grade. King.strect in London is five hundred and forty nine feet above Lake Ontario, which deciucted from the heighth of the sumnuit, seven hundred and five feet, leaves the whole descent one hurdred and fifty-six feet, averaging four feet and seventy-eight one lumdredths per mile. The line on this division is mostly straight, with a few easy curvatures. This portion of the road must cioss the enst branch of the Thames, and several minor streams, where bridges and embankments will be required. They will all be situated in plices favorable to their construction. The tinber here is chiefly pine, some beech and maple und white cedar. The line passes near Woodstuck, Ingersoll.-ville, Beach-ville and ahrough an old farming district in the viciuity of those places.

The fift division extends from London to Chatham, sisty-four miles and forty-two chains. At Cinatham, the land of the village is twenty feet above the water of the river and tirree hundred and thirty one feet above Lake Ontario. This division descends tho hundred and eighteen feet, which giver, in the average three feet and thirty-eight oue hundredtls per milc. A level grade will be continued the first eleven miles, from London, winch deducted, will give an avcruge grade of three feet and tinely-tliree, one hundredtis per mile; and will in sio place exceed ia maximan grade ol' seven fect.
From Loudon the first ten miles, in leaving the bounds of the vallev some curvaturc occurs, the residue of the distan:ee, a straig at line may be selected. This divis.ou presents a surface remarkably favorable. Thie east braich of the Thanaes requies to be erussed at London. On this divisions the tun.ber is ouk, beech, maple, whitewoud, and black walunt rising out of a clay soil.
The whole lengtin of road is one tumdred ald durty-two miles and thirteen chains.
Whole ascent westward, first and third division seven hundred and sixty-six feet und seventy-thece one hundeeiths. Eastward. second, fourth and fifth divisuln, wur sunded and thirty-five feet and seventy three oue nundredus.
In reterence to the revoluthen of your Board requiring an examination oi the conetry from Chathan to Sandwien ; ailso fromi Humilon to Queenstun, benty purallel lines witu steam havigation I would resplecillully state hat Euch exam natious have been made. and ties subject or your inçury connceled t.erevith duly considered, and the resull is and I ann maply mis statiag, that either of these divisons present very fiverable ichatures. I mave disige nated that portuon hom Chatuan to Danuwich as tie exth divisora in the tabuar estmate ner:with coninceice, and tiat fortonn trom Hamilton to Queenston as the screntan divisoo..
The country from Chathen atoug the Twancs, Lake St. Clair, and the Detroit Ruer, rises to a sught cicvition above those waters, and is mitrisected by extensive marsites on a lower level. A line nom Cinatham may be tricedin one colunued drection to iutersect the Detroit River at any point; or it may fulliow the border of the Rivers and Lake w.th.out depparting materiahy fiom a dircet lize. No. gradng wilh b- required otwer than to ine.ose the timber work, und no stream wid be pansed requiing any cxpense oticer thail to leave a .assuge of tiet tiood waters.

The eseventh division on t.e hiop. ctou on the map presents the foute from Hamiton to Queenston. Tals may be passed in nearly a direct line winen approalenes the take s.iore fir sevent miles in the vicinty of tive T'wity Mite-Creek. Fron a poon.. east of Port Daliousie to Queenstia, between the Ridge Roan and the lake the country deseends gradtaily to the s.over of the lake wiere the bauk is low. Fiom Humlion custward, tie sur. face is of the same charuct r, leaving abuut nue miles in extent along the shore that is obstrueted by a tigh table of tand juttine down from tie mountam, and formenty bunks fionn furty to tiity feet above the water. This tabie ol land is broken through bj deep ravines near the Twelve und 1 wenty mile creeks and otce. maller streans. The several diffitutes existing oin the gleal highiway passing a hitte in the interion, for the foctuou of a Ranroad to not show themselves near the Lake s.ore where tie several medeatutions: occasioned by streans may be easily passed by
bridges twenty feet above their waters. Reference is had to the tabular estimate for furtier particulars and to the general remarks upon imfortunt coninction:s of gieat public: thorougifiares.

Ralroads are constructed in virious forms, to:h in Euglandand the Uuted Sates many experiments und nuch science and ingenuiry have been applied to t.sis subjeet, as well as to all the machiinery to be employed 川on t.cm. The relative value of all the forins adopted, is well uaderstond by proessional men. You en. joy the advantages derived fiom their experience, and may therefore more safely purceed in your great enterprize. It is the part of practical wiscom, in every undertaking, to adopt its exertions to circumstaices. In a new country where the sctilements are diviled fiom each oti.er ly extensive wood lands-where stone is to be found in bit one location-where capital is scarce and the rate of interest high-and where the eurrh, on which the works must rest, is slippery and sofit with few exceptions, prudence dictates the adoption of difierent metion's fiom those which may be most suitable under dilferent condilions.

Having retired for lifteen years from the professions of a Civil Eng.uteer, (in consequence of extensive engagements in active enterprise in We:ten Ncw-York,) 1 an pracipailly iiduced to resume the profession, fiom the exctement incident to the intro. duction of rulroads, wh.cla is an item in the many impoltant im. provements of tice age, and which has very much engrossed my thoughts for several years. I have compared all the forms of constuctiug then, which have corme to my know.edge. After dingent enquiry, with much solicitude, in referenice to the cardinal fouts of ceniomy in their constricion, durability and efficiency, and as your Eighter, I the leave to recunaned one, which I wave adiopted, and brlicve most applicable to your views. It is of the folowing descrijption.

1st. Blocks of reind timber, from 18 to 24 irches in diameter, saweal with paralicl ends, at right angles with tieir length, are pluced wh un uprigit position, with one end resting firmly on solid -arth, hom whica all roots and top soil are catethy ien.ovd.Uf tuse blocks there are two lines, 5 feet apart, fiom enntre to eentre wectosstan road. These b.ocks will wary in lengh according to the su.tice of the grouno compared with the grade level.
i2l. Thaber 9 fect lung, o:ie fivet in ciame er, spoted on the ander sde wacte hecy are to rest on the biocks, and cat down six menes deep, in a anteia 15 inclecs wide, above the blocks where tury are to recese t.e string-pieces. These are to be placed ateloos the roan fiom block to ulock, eacli end exiendiing outside of tae brecks upwads of one fiot.
3u. Dirlug-pieces firum 18 to 14 inches in diameter, and either twenty or thrity fect in length. These must be squared at each end, vae foot square atid at each intemnediate ten feet where they are to rest upu. the cro,s turbers above t.e blocks, and parallit wita teicu viucr, in two hnes lengthwise, of the road. They must be weal uewd on the upper side and firmly keyed into the cross tumbers.
ct.1. Scantlug 3 by 4 incl:es, square, placed on their broadest side must be extended along the to, of both lines of string ficees, parallel with eaca other.
5L.1. Above the scanting, in exact parallelism, are to be placed two ranges of irmi bars five or six-uggits in tuickness and two and a çurter niches wide; and then, thic inoal bats; and the scantling ate tim. y sechred to the string pieces, by ap.kes seven inches luag driven tirrough them botiand into the stiving pieces.
Alier the ruad is lucatect, and the grade line cstablished, the t niber work is csullited, o.a all parts of it requiring emba. kment and hot subeet to ucting of hore than two ket in depth. Λ kind of wuikang car is t.en used oi simple construction, with four, six or elght winclis, having eitier of t em four boxes; so contrived, as to cischarge hillit.eir conce.ts betwein tee two line of string in, eves, anu lia f wit..out the m, and carrying a cubic yurd of earth ts eacia waecl, and tals tie embankment is made. Where the cultug is deeper, these carss advance oie or two inundred feet, on renporary ways, tremg moved by h re power, and as the excavanou proce eus the permaneat timbers are all duly placed and secureu, und the road completed. The timber work is all covered by earch witinin t.e grate to the surfuce of the ion except room .us the llange of the wheel. Aty kind of timber may be used for toce vuckeks and cross timbers; the string-pieces should be made of itie best timber affiorled by the line of tive road, or the adjacent iorest.
'Ihe earth for cmbankments, and in excarations, stone and
lime for culverts, sawed scantling; iron, \&cc., are all moved on the line by cars. Fórests, defilcs, marshes, and inaccessible points, where teans could not penetrate, are accommodated.

The ondinary mode of constructing wooden ronds, is to lay two parallel ranges of sillis or string-pieces, kengthwise of ha road. six inches by six inches aquare, or fiur incones by six on eigst square, or plank two or three inches by nine or twelve inches, siwed timber with cross pieces laid it rigit anghs with those placed, from tirec to five feet apart, eight fer Muse a d
 iron tests, being six ineares syare or five by soven man"s, inti the iron coasisting of bars five-cights by tarce foutas me acs wide. All this structure is placed oa t.1e surace oi the grate, and filled in with earth between t.ae raages of sills so as partially to cover the cross pieces, for a horse path. Oa some roads we wooden ra!l has been secited by chars er castings, to stone blocks placed in deep beds of rubble or pounded stone.

The more expensive and substantial roads of stone and iron are of varions furms. The edge rall resting in choirs on stone blocks of various patterns is used in some cases; and in others the I' Rail resting on cross timbers bedded even with the surface of the grale, and placed three feet apart; with splicing chairs : and in other cases sull, the 'I' Rail resting upon st ne'blocks; or in place of cross umbers, split stone seven feet long, ithout one tuot square, resting on a bed of stome eightern melaes in depth, the whole width of the track. The exumse of constructing these several forms of ruad, vailes from afteen to fif. y thousand dullars per mile.

The expense of some of these forms of railroads, constitutes a fatal objection to their adoption in the Piovince, and under present cucumstances, ought not to be incurred, if capital wur ever so abuudınt.

1st. Expierience has shown that the sawed timber roids are objectionable, when appled to such sui s as belong to your route. because the timber work has not a sufficient bearmg surlace to resist the action ot rain:, whien settle them into the grade ; and they cannot sustain the pressurs of locomutives wi.h heavy trans.

2nd. The timber work is placed in the most exposed situation possible, and the furm of preparing the cross timbers subjects them to the most rapid decay.
3rd. 'lue tumber is too light, yielding under the weight of the ongine. This yieldng and the setuling tozether of the joints formed by the crosis imbers in herizontal sections of the road offer an obstruction to the passage of the wheels equal to a stight aseending grade.

4th. In our clunate the winter fros s prod ce great iniury on all such timber roads The cross umbers being cuverel with earth, when this earth freezes, (which is the inoit exposed pait of the surface) the cross timbers are rat from the sill-, and thus a derangement begins, which spreats ant becomes corsid. erable every year, especially in wincers of great severity.

As the evils disclosed thembelves to my observathons, it becaine at great object to con rive the uie.uns of a voiliner the n, an a introducing improvenents combining durabiluy strength ant economy. These are prquisites of espectal importance in new districts; and difficult of atiamment in sols rich and deap, and liable to hard frosts.' 'They resialt in an eminemt degree, from the method of construction which I have recommonaled. Th II meihod finds most of the naterals on the spot in the heary forests which encuinbers the soll, and which uray be truighi into and constitnie a principal pirt of the structure, at an expense scarcely greater than would be incured in remoning it out of the way. 'I'ais very valuable fetture of my plan, adapts it nose happily to your road, where upan the old methud, the hinber could not be sawed and delivered withont exorbut. n. cost ; and where there $1 s$ umber standuge within the limits to be clear ed, sufficient to answer all the demands for that article. Using large tinber in iss roughest form, saves the great labor of scoring and hewing it, gived unyiel ling firmness to the trane work in the grade and proviles ample strength for the transit of any anount of tonnage. The size of the timber and coveing it, (except the top of the scantling) with earth. seeures its sount. ness for a great length of time. My examinations of tumber in similar situations convinces me, that in clowe or clayey solls that
it will endure trom thirty to fify years, except the scantling, which is but litle expensive and may be easily renlace.l when it docayz. Pacing the timber woik so entra ly under the grade,
 Le" at serere wimts, un fursefn mates of the 'lonatwanda Rail.
 snb-thate for some binks, "Ilase ate so coned as to be dura-

 are requan sol d. $\%$

The sca thing a ind iron plate tarorpo atel with the large string
 bearing w..ich wi.l! tot perm t tuem to setle at a f foon the grade line before or under the whe ts of the engine, thus leaving the lo. connotive its utmost power of traction, and compared with stone en: iron roads lias that medium of clasticity most favorable to the durability of the Engine, and ca:s. Experience has shown, that the great difficulty of keeping in exact adjusimes t the several parts composing a stone and iron roal, criates a serious tax an. nuaily, in the destructionand wear of is machinery.

This plat of cons sumb materithe reiuce; the time and expents of the Enimer lep.r ment** The line is fir-t locaned by tansil centres, on tand lil lines, an I bench spaced by the test level. Tins prepars the wy for the linbur woik This being completel, he Resuthent Earincer grives the luels upon the crose tumber, and sam-fers the pants of curanare fom the tancems, prese wing the momments on the stanght lines, and drectiag the several riud ar pir tes tu form ther slupes, as they proced whithe cacavatoms and emban antents.

It arouds the ted ons detal of staking out the work for the conaractor or supermenden, replacang tion tim; the stakes lost by the cuthiar, wubine, enbaknents, \&o, and requiring all to be surveyed and stak: d anew wh nthe tinh ror otone work in the ondmary made is reudy to ber pliced upon the _ rade.
abridged tabular estimatz fur a railroad from bu, hington bay in the gore mistaict to chatham in the west. ern distr.cf.

Division 1st, 10 miles 6 chains.
From B :r'myso. Biv to tuce sa 1.11 it between the valley of the Mes. Laze and Grand River.

Sec. 1	11	S Cuting	5109 J	yards,	63.	£1277	50
	$1 \frac{1}{2}$	Etmbankment	10.0	"	،		00
2.	31	Cutting	333000	"	"	825	00
	312	Embaukment	21109	"	"	527	100
3.	5680	0 Cuttug	257000	"	- $7 \frac{1}{2}$	8968	150
		Eimbanment	1507.J0	"	5	313011	118
		Rock C'utting	5: ${ }^{\text {a }}$, 0	"	3s.	7950	00
		2 Cunverts	59689			400	0 0
		IG Bux do.				200	00

Fi. Divisioa 2d, 13 $\frac{1}{2}$ miles.
Miles. Froin tue summit \mathfrak{l}., B andford a: Grand River:
Sec. 1. $8 \frac{1}{3}$

134 Division No. 31. 21 milles 35 chains.
From Brantord to summi betwren tue Grand and Thames Miles.
SEc. 1. 4
$\left\{\begin{array}{l}\text { Cutting } \\ \text { Enbaukment } \\ \text { Eutas Cutting }\end{array}\right.$
2. 17 3د-8utas Cutting

$112,5.30$	yards,	61.	£ 2812	10	0
$13 J 600$	$"$	$7 \frac{1}{2}$	4081	5	0
160,340	$"$	5	3340	8	4
203,110	$"$	6	5077	15	0
Grand River,		3750	15	0	
			750	0	0
			.490	0	0

$21 \% 5.80$ the
230301 184

- Remarlis.-Least radius of Curvature 10,000 feet. Greatest anyth of contm ous straight line $64 \frac{1}{2}$ miles. Refercme is had th a general map showine locuities, and to part colar un ap and p oufiles of line surveyed accompanying this Report.

Important scientitic results and have explanation would accompally the minute details on a tinal location.
Recomberance of Division No. ob and 7, and comparatively estimated as follow:

$$
\text { No. } 6 £ 1250 \text { par nile, } 50 \text { milez } £ 62,500
$$

The expense of con-ructing the timber work, acrording 10
 in atl its detaii. From the p cultar form of construction, the econo.ny of dome the work by the day, in I the vituied character of the work in diff rent sthations. Perlaps it maty be best ascertained by the following divisons into piriculatis. A greas proprotion of the wiy, the gr ide line of your soml may conform rery nearly to the natural : urface of the ground; in which case it will be ratied two teet athere the suface; and repare 1 la standing trees to be car, nearly even with the surface, to the whith of ih roul bed atmui 14 fees; the large wees sataling in the side di.ches miss be grubbed; and thuse oursile of the ditches cut down wi h the nenal heyrlat of s unps-occupying n the rod hord, the di.hes, and the chopping on boih sules, it widis of 100 feet. A male of roal will require 1036 blorks iwo feet in leng h, and from 18 to 21 inches in dametir, and 10,560 feet of string pieces, running ineasure, 18 to 24 inches in diatm eter, and mpieces 20 or 35 fert long each. All luntrer in the line not wanted for the above specifications must lie placed out silt of the dilches. To complele the timber work, on a mile of road ut this descrip ion, within one inon h, allowing 24 working days, will require the services of the tollowing parson 2 , who will live logether in a shantee on the line, and find all their provisions catle, forage and implements, :o wit:

Such is the amoun of labor, ant cost of prepiring the timber work to recerve the sawed scanthy, and the iton, involving an expenze for mechanical labor of caly £24.
I hive winlessed the cxecution of such a work costing $\mathbf{x 9 5}$ per mile.

A mile of such roasl woald contain 12 eighty one hundred hs of an acie, which to clear and fence, and prepase tor a crop, at
 amonat required to clear awity and prepare the timber in the form proporid.

I'u prepare the groding of this maic, the broad bed being 14 feet wide, and the earth having a slope one and a half foot base 10 a foot rive, and corering the timher to is upper suiface, requires the excavation of diches $2 \frac{1}{2}$ fiet deep $p_{2} \div \frac{1}{2}$ feet wide at buttom ind 10 f.et widn at top with a slope tis above, this con:aining 6104 cubic yands of carth which at 6 d . per yad amonnt 10
And to this the cost of timber work as above
E152 120

And he aggregate is

£291 70
Whare the crade line adopted requires 3,4 or 5 feet cuning and embakment the expmet of grading would be greater, thongh insuch casps the ditiches wonlil only be reguired in the chung, and le of less dimensions, to answer the purpose of drainage.

In gar drsine to illustrate and erforce these facts and principles, we have some fiar, that we may be thought to have trespasted upen that resigect, which is juslly dibe to the high authorinties of the Province, and the distineuished individuals engaged in vinious laudab'e echenes, for its internal prosperity. If in any degree we have secmed to commit this error, we feel that it would be unjust to suppose it intentional, and we hope to take shel er under the injunction of the warthy company in whose service we labor, to probe the subject submitied is us, in all its bearngs ant to state our facts and convictions, with perfect ingenuonsures.

The Creator of ibe worid has stretched out between the Canadas and ile Unired states the most magnificient arries of intermal waters, that any where adorn His tontstool. From these waters He has, for agos, sent lorh His dews atd His rans to clothe the vast interior with lavish fertility, and in the course of His good prividure, He has recomly spread along bo h their shores, liee guvernments, and a pepuation eminently capable of underetandug and educing the means of individualand national advancement. You are an important part of tins po ulation; and you occupy a mozt important position. Can you duubt or hesitate as to the task assigned you? Were the richest bounties of the physical woild desigacd to go forever uniniproved, and unenjoyed by him, tw whom dominion is given "over nll the world '"" 'The: spirit of Interial Impoovemen', with a gigantic arm, his be in long cugnged below you, and beside you, in turning ite tands an I waters of wide reginns into effective minister: of luman good. You are evidently delighted with the spectacle, ind you feel the ganeral impulses it impints. Then cherish he spirits which exhibits it. He is knocking at your doors for 1 er mission twenter and pervade every department of your Provi ce. Give him welcome admission. Assist his bere. ccent purpares. Let no unaginary feare, no li cal views, no na:row competiions come in Letween yon, and the mos: vigorous prosecutinn of your truest inter sts and your highest honor.
All o." which is most respectfully subintted.
Elisha Johnson, Chief Engineer.
Engitecr's Office, London and Gore R. R. Co. Dec. 4, 1836,

AN ACCOUNT OF THE HARBOR AND DUCKS
AT KINGSTON-UPON HULL.
Continued from p. 410.
stip way.
 slip, for ropuinher the mill bot it and the lozid gates, were built of tic wes sile ol the e.tre mee basin, ablating u_{1} ou th Hanber. Tic lengt. is 6 ; leus, t o widt 23 teet 6 incues, and tae dope. 11 fieet att t lower end, dunnisuiisy u_{j} wardi in th: pro port.on of six horiz o.tal to o.se vertical ; th side walls are ai binswork, wit.s sto.se eu ping; t.se buttun tone is cuvered wita 3 inch tir plank, spiked to transverse sleepers. suppoited upon pilss. T.ee cosing and fru.t brickwork ware set wit 1 Pupher's ce-
 proportio.ls, a.ld alt 10 ar. 1 exposed to t.e praves and swell of the Hamber. have s ove lnthertu wat.a scarcely a failing joint.
Lockage.
Whath secn said on thi head respecting the ald dorls. appliesalso inagreatineasure here. Locking is begua when there is ibsut te as ane a pill of water, but the sill b-i,ig 6 feat laver th.m in taat dack, t se, wors cala be cirrind oll buager, an l tourteen or tituren we:s:
 g sing vessels have p issed this lock in at tote, thirteen of t:ae largest whea the gates were osea tor assat an ioser at high waier, aud the rest by penamg.

Ihere are usuilly three inen th open or shut each gate, whicia they los in two mnutes to two inau es and a halli; but ir quently tw, in in du the work. With 6 or 7 leet of water on the sill, in average tides, the lock can be enntied or tilled in about eight mantes, with all t ie sluces; but this is seidu.n dane, no inse than twis slumes being generalty opeaded, for fear of danage to the shpplis or the wurks from the great agitation of t.se warer: with two sialees. the thate is about 14 mm , utes. It anay bo observel, 'that two ulen cala easily ruse or lowei u:ls of tase sl nees, with it iull he.ad of water, in tive amates.
state of wad.
In coacludiag this account of the Hunger duct, I wosid as: before, brieify advert to the state of the walls and ticuadation i, as to and when taken down in execuatig the Ju.iction docir.
fine tanjor hatae fuadatio is, wanch was all tir, was, with tiae exce,tion of the elip, inrar.ably as sorund and goodins whon tirsi pat duiva; the wate ie.siders, cosisthatiy un der water, were als! 111 a g.jus.l st t.e, b, 1 the upper part of many of tiac.n veghathis to decay, and a few actually rottea; ins were the armiz.ntat tir teaders, and the onti
 irva vaised coasiderasly: in so.ne plices the spines in the tuandathsis wale y.l.te fiesh and govd, in ot.ers a litete currojen. and win oners alinss. rusted a.vay.

D'aremortar generally very sut., bui n_{1} wide parts, and especially the fuuar latson ot the o.d cunna duc.atio i at siyt.n gate, so mach so, that it might have vecin vea up whout a drop of water, ard ased agai..
lat the par's wear the 1.1 the par's near the top of the or all nots much exposed to damps, the mortar wa tolerably und ; but 1 saw none, excopt the inreited auch of Nytui-gate old co.n munication, that would bear any compart-
son with that of the Oid dock; the inart in that invert, which was made from grounc inne, mixed with a proper proit rima

 1.2. Wed ses tonseparale liarm 'llue in or a an the froat of lac w 1 had hateh the same ippearatas: as that of the Olit du:k, bem: \& li a.ll very metis out of the j in.ts fin ine or teal levt lion the: lojp bu luw tha the joi.at; wee e ant wisied, bui had brow ui a su t of sitahate or caccareou; incrustlime thit eathrely cavered the lace of the wal. Nistahsta d.n- the su't stat: o w: mortar i.a these walis, I em of opunio. ion ther berag ta genemals s well dustmet If giouted as to be i.npervi us to water. hatt if will ult.matel, a quare cons dera!ht
 vatrs. 'Ihis 1 mifer frum tiae siate of the in rear in the O!d deca and sleieral other wal; that I hiveladian opporthuty of u!nserving, built with nendy the same kon! ol li:ne.
lac pazzwlana mortar, were alway: wet, or were wet :und dry aternately, ind $11 \mathrm{~s} . \mathrm{where}$ constatiy dr:, was linad in gen ral excerditaly harl wemg b.the mo Aurdise ges alld culor vcis in :ch ike a we!! surat red breck. Phos mettur usually adheres very weil t . tac birck; bat somithmes at so well to the st me, puty perh fo, fion he st ane heiag set tou dry, wath is conan on'y tate case in sumaner, an I partiy irv:n a jucserty peculiar to unortar made ir in minnestan stme, of eafelliag or throwing the lane to the outside, enther in a Iry state, like flour, or where the walls are wet or dam.), luke paste; but whether arishig trom these causes ur not, thas want on id sesion detr.cts very mu:h from its uther - x :ellem! gulanes as a valable mortar ion "I tatce buh.dargs.
lire stane wats found in a very good tate, pitatieal illy the Dinulee a d darn le? it ade, a fittle ajove nall below hegh watte. ov is ats place. sonewhat wated und decioyed, but in ali othe; pirts sumed and gowa. separ of loekgues. 'I'he gites aidd nuliori qus. n. of the entrance lock, hatwing lately uadergone so.ne alterations and rearirs, it may be proper ath th place to nuuce liseir shate a.l 1 as le ot ref eralion.

Fron a deact not u.s゚on no.1 in ar ati ial! - mud sisn:, the lock walls had ub-ideda the, ind esucurer a wat thre: iniches on stion silue at het p, the eby con rac 1 g th ack stx meates, winch caued the grtes to joun dal shat b.adly; vale of the gates la s.rrticular requred jur men to W.nk it.

Mr. Wraker, who was thea engeged in h: coastrnction of the June un locor, wa. called tos idvise on the su jec, arad resomnended tant theseg tes should the t. sten us. the hohow quilus brought to a ver wal ime, an I a.terward; secu.ed by land 1e:. .'Ine gates were a cordingiy lifed m be sprin of 1830 , by means of two powrinl crabs, and tive seis of stuat treble mocks and palleys, with a 5 the a al, vile-- ur being anpiced at the hrad, the wher at ise heel oithe grte, and the waule suspend. d trom the buit eads of two lake ark rees, raised tive feet ubove the coping,
with the inucr end rastirg on ihe ground. and kept down by two large st:n"s, near arm fons cocin: the chatus to whin the

 +115 phaced betwoen eath bur upat.d:, the berter to sust.an the be eight of the gate. Bomy h.os propher!, the sate, weighing -huty turs, was lilted uth ut ei-lit ton t, by a to of men at cach crab, when to take the thain fff the blocks and tackin, a chain wing fasod surerill times mund the gricsire ind the tives on the wall, she blucks were eased i! the chains bure the proncimal part ot the werght.
The huilo quins were ti.en dressed to a thue parpendicular. and attern ards firmly ot thed hy latad tese, aten!ly sill ilar to theso of tue Junction dock, whict will le hereafter nore part culariy describud. Thee quans it the north grose could not be dresied dowid, on account of the wher in the dock, bui wee securely land-tied in the samo anmacr as the whters.

- h: timher in the gates were all sornd; but the bettoan bar, froun the great pessure a ramst the sill, was wonn atwiy upwarels of an buch in d.p:li, adid the hads and herels were alio rubined a latte; t.ee luophs at the iont us the ne thay-pusto were cus away ant Huch or 11 , re by draninizg u_{j} on the traver-o rais. The wrourel.t irula straps innd bolts weic mand corrudid, and cande off by a tap wi h a ha muer in thack flakes; the cast iroa sluce's and trames were particularly -olt! or abrut ati eeglat of an meh on the utside, and might be cut with a loni e, like lead; the cast ron plates of the pointing ills we.e very rungh, or in holes and furMiws, as if eate: away.

A ter the sepiurs were all completed, the ghtes were lowered into lhir places. 'l'ne nome occupied in perlorining the whole was abo.1t theht week:, during which there was very little interrupton to the shopiing.
the juictron dock.
It ap rears that a shurt tine ufter the du.nber d ek was niace, so desirable was a ju.s ti n of the tws doclis conidered, hat at teng, mary catal wat proposed to etect it ; thes wald no diubt have been of sreat service, is at that time duck room wis not so much wantel as a sale and exredthous pussige between the docks, viac. 1 such at caital wruld thivegiven. This schene, as we! its the mure ellect al one $\because i$ it new junction duck, war, huwerer, Diom oate callse or utler, de.erred till lurther celly would have becen highy mijurivus th the connmerce and trade of the lown as well as to the butcrests of the Dock Comsany.
By a clause in the Humb-r Dock Act, the L'o patay were reqaired to mase a third duck, wherever the fhipping fircquenting he part sttained a certan amount of tonale therr'n specitied, provided a onviety of the espe. v : Was lurushed them for the pu:pose. Sone d.fficultics having, howver, tisien place in raising itie stipuiated sup; les, the company, impressfd with the wgent necessity ot making another dock, resinlved, much to their humor to esecute it sulely ai their own expense, and the necessary arranjements having been completed,
the work was begun in October, 1826, according to the desizns and under the direction of Mr. James Wilker, Civil Fngineer, assosted liy Mr. Thomas ! Durmon, he then re-ident e gineer of the Coon my, as anpermbement of the wook. in whirh affere he was succecedte in the monith of July following, by the wr ter of this acroum

It is proper in this place to state, that in the early part of the year 1826, Mr. 'Mel ford wis emideyed by the lixcheques Lill Loan Commirsiunchs to sariey and report upon the promeed wor s; and the Dock Company being desirous of havine the best advice, avalld themselves of the op portunity of takiug the opmion of that dasfinguished engmeer. His report ingermeral confirmed the plans of Mr. Walker; the principal altenation recommended was the substitut ng of a lock at each end of the dock, for an entrance with tidal gates'only, and it was adopted.

This dock is six acres in area and is cap.ble of c antaining sixty square-rigged vessels, with roum for passing to and from the other docks.

The first preparatory works wre the two e ffer danne, which w re cönstructed puncipaly of Afemel tumber; the south dain, or that nest the Humber dock, was the largest, heing 220 feet span, with a versid sue of 61 teel. The space between the two conerntic rows of close pilin_, which were 6 ter at;art in the clear, was filled to the la wel of the dork copling with lay publie, the mad in bic bottom having been pieviou-ly well deans ed out ; these piles worr about su) feet long and 13 to 14 inches square. 'The guage piles in front, fortotwo in number on cuct side, were about the same dimensicns, and had tws rows of wale pieces, 13 by 8 inch. es, between them and the cluee piling on
each side of the dam, all propetly framed and bolted together. The close piling was connected regether by an inmer wale and reosz braces bear the top, and wronght ron tion ruds lower down, atid was fin there - Hongthe ed by a mass of loarny carth and Jonse bia kis thrown in at foret.

On the conewe sitis of this dim, and connected wi ht, was the ternpurary bridge. The road way, 24 feet wide, was supportei by three rows ai whole timher ples, braced :ngether, and romuct 1 with the cofferdan; and d, the ir heads were ransverse cap sids, cerryiar the bening juists, wheh we e conred with 3 ineh planking and paved, a cluse boarded fence, six orseven fret high, was fixad an cach sode. From the ercat height of the daur, and there heing at times a pressure of 28 feet of water -gainst it, some of the piles were a little bent, and in very high tiles the water fooind its way through rather ferly near the top, particularly along the upper cross braces, but attention being given in time, no detriment to the works enstod. It was found in the repaire, that the pulde had settled fiom 6 inches to a foot lelow the cross braces, and tha this was the principal rause of the !eakage, as the canth for the puddle was guid, and the work appeared well doue.
 preventer dam wade aft wards made acress the centre of Myton-g te lack, in the form of a scgment of a circle, the conves side iscing tiext the Humber dock. This dan was chilliy conposed of tenaciess earth well ramuse ", "ith a dry brick wall on earh side, 6 feet think at fitton, dimi"rshuy 10 2 lect 6 inches at top, and inclading the walls was 30 fieet wide at the benton', and 8 feet at the top; it was carried to the height of the copang of the lock.

The gates also to both lock:, after being
lung in their places and finished, were well shored and braced, which turned out afferwards to be of the most essential setvice.
'ilhe unth coffer-dam. at the we:t end of the Old dock, was 115 fert epan, and theversed sine 14 feet. The plan of this dam and temporary bridge, and the scantlings ot he timber, wese similar to those of the other dam. excopt the piles, which were tive fett shonter, the d.pth not being so gres:t as in the Humber dock. This dam atood remarkably well, though there was sonntimes a small leakage during very high tides near the walls ind upper parts.

I hele we re two cast iron pipes laid atong this dam for supplyng the town with water while the works were in progress.

Two steam engines. six horse power each, we:e used for clearing the works of water ; that at the soutil end of the dock was erected about the same time as the coffer-dams, and was also occasionally employed for grinding the przzisolana; the other was put up in the end of 1827, at the enst end of St. John's church, and was p.incipully employed in punping the water out of the Whiteriar-gate lock and the north end of t e dock; it was also sometimes used for prigging-mortar. This engine was taken down some time before the wolks were complitd; the other remained witil they "erp finished, a nine-inch pipe for conreying away the water having previously be n laid through the west wall of he dock, and stcurely plugged atter the engine bad done workng.
waer in the worke. Tlie water that arose in the excavatuon was not considerale; it was nearly pure. its stightly saline taste being caused, it is imayined, by its passing through the allavial soil, which no domint had been formerly deposited by the tice. '

HULL DCCKS.
Plate 17.

a, High water spring tides. b, Higb water neap tides,

Plale 18.
HUMBER DOCK WALL.

Plan.
a, High water spring tide. b, High water neap tide.

Plate 19.
HULL DOCKS. HUMBER DOCK MUD BOATS.

Elevation.
Plan.

Kreosote.-For several years past, the dry distllation of organic substances has eng ged the a tention and exereised the interest of Eur pean chemsts. This process consists in sub. jecting them, when deprived of moisture, 10 a high iemperature. By this means the elementary principles of the body are acted an ; they enter into new conbinations, so that the producis ate the result of its destruction or decomposition by heat.

In 1830, M. Reichenbach, a chemist of blansko, whale eng ged in the investugation of this curius and interesing suliject, discosered kren oits and five other substances, all of more or less value in medicine and the arts, and all produc sof the acstructive distillation of vegetable matter. Kreosote, however, is by far the most i inpurtait of all these prod cts, both on account of its chenical properties and its numerous practical applications. It was tirst discovered by Reichenbach in impure pyrolignequs acid, and alierwards in all the tars. Its name is derived from the Greek creas, fl.sh, sozo I save.

It is an oily, transpareat flaid, and when pure, perfectly colorless; its odur is very similar to that imparted to meat by woud smok , varying, however, according to the species of tar used in its manulacture. It is readily combustible in the at:nosphere and burns with nuch smoke.

Kreosote his been successfully applied to the preservation of fresh meats, and hence may becume an impotant article in domestic econsmy. The meats intended t, be preserved shimid be imnersed in a solution of ono part of kreaso e in a hundred of water. Here they shuuld remain from tivelve t, forty-eight hour:, according to their size, when they are to be dited, either in the sun or thelore the fire, and afterwarls set aside for six or eight days, at the end of which period they will be found to have acquirel the consistence, appearance, smell anl taste of the fillest s.noked meat.

Kreosote is probably the most efficient substance yet discovered tor the pre erviti in of deal bodies of whatever kind. Birds poisoned with it resist putelation lor a great length if time. and the bodres oc animals in ty be munifue, so as to keep them sound for in indefinte period, by mmersing them in an solution of kreosote in wa.er, or by mjecting a mixture contaning kreosote into the blood ve;sels.
Ant in .ee I from recent meve tigations, it has been ascerained, beyond a doubt, that the tarry and re-inous substances ti. m which kreosote is chiefly manufactured, we.e the very art.cles used by the ancient Egyptians in the process of embillining, and br means of which their mumaies have been handed down to after ages-mernentos of the science and skill ot that giffed people, as inperishable and as wo. derlul as the pyramids themselves.
It is stated in the Asiatic Journal for February, 1S36, that Lieut. Cul. M. C. Bugnol presen ed to the Royal Asiatic Sorciety a tiuman hand and a piere of beel", preserved by means of a preparation of vegetable tar found on the borders of the Red Sea, in the vicırity of Morha. The Bedouin Arabs wi h whom he conversed on this subject, were of the opinion that this vegetable tar, calied i.t their language Katran, was the article chiefly depended on by the ancient Eigyptions un t e proce s of embalming. Tliey alsu beleved that large qu utities of camphur, mirrh, aloes and fiankincense we e used, but these are evidenti'y not essential, : s the tar alone penetrat 's and is scolors the bone. The oul / use dow made of thistar is as a plaster or ointment for the sore backs of horses and catnels, ro: in she ep, and lastly, in the preparation of thr heads of criminals sent from the distunt provinces to the seat of government. The tar is obtained from the branches of a small tree or shrub, which is fụunl in most paris of Syria or Arabia Felix.

Tne process by whici kreosote is procured is complex and difficult : that of Reichenbach has been sim, lified and improved by other chemists. The following is the mode recommended \mathbf{i}. the ". Innales de. Chimie el de Physique" of July, 18:35, by M Koene. Tue tar derived siom pit cuat, is distilled in a retort provided wita a long tube, having a large inout... Un ler t.iis is placed a receiver. Tis oil waic.a coines over first swims o water ; and it is necessary to reinove trom tia..e to time t.e products of t.e distillation, t.ll an oil is obtained waicia sinks i.a water Wuen tais is lound to be the cases, the proluct is collected. Tra heavy oll obtaned during the distillation condenses not only is. the receiver, but also in the tube of the retort, where it unites
with the naphthaline. forming a buttery substance. By miplying a gentle heat, the mess will drop into th.e receiver. The product is now allowed to remain in a cool place tor some hours, after which it is pressed. The expressed naphthaline still contans oil, which is separated by heating it with its own weight of acetic acid till it melts. Alter allowing it to coo', the erystaliized naphtha is jussed; and tise acil adierin of to the kreosote is saturated with sub-curbonate of potasth. Tine kreosote is bow to be shaken for a quilter of an toour with phosphoric acid. the proportions beung hat an onnce of the acid to iwenty ounces of the oil. The maxiure ought then to be agitated with its volume of water, and alterwards distilled with a graduated heat, care being taken to separate the oil whech floats on its surface. The rectified oil is now to be diswoved in its own volume of a hot solution of caustic potas'a of tae specific glavity 1.120 . When it has bern allowed to coul for hall in hour, tize oil upon the surface is again removed, and the heavy oil agai, treated with the caustic potash, only a fouth fant, lowever, o. the solution being this time employed.
(In untiug the soiutions of jotash, a' slight excess of diluted phosphoric acid is added, and the free kreosote which fioats on the surfuce is separated. It is agrain rectified; and the first product which is chuefly water, being rejected, the kreosote comes over quite pu:e.

Kreosote has now benn a sufficient length of time before the public, to enable us to ascertain pret!y; certainly and aceurately its real valuc as a remedral agent.

R-icienbach, amo. g his first experiments, applied the kreosote to sligat scalds, in wisien the found it eminently beneficial. In the treatment of burns it ias been employed in France, naving, it is sail, a rem.rkable teadency to cause the so.es to cicatrize from the circumierence to tale centre, thas preventing tiose irregular conatractions, waici often paluce permanent distigurement.
'T.sere is scarcely any disease, in whica, according' to the concurrent opinio.s of nunerons phy-icians, kreosote has proved mure benefivial than in tire too:hache. It has been employed on the coatinent for lats purpose, ever since its discovary; and for t.e lust two years, it has been prescribed very extensively in Eliubargi, and 1r. Cormack, says, wita great success. But unless tuere be a cavity ma the toon through which tae k cosote may be applied to tac nurve, as a gencral rule, no advantage will be denved fromit. Where the pain is merely rheumatic, a solution o: krcoso.e and water is higaly uscful, relieving more speedily, certainly, and for a longer time, than any other remedy-

Various explanations of toe operation of kreosote in these cases have beell offered, but none seem entirely satisfactory.

1. It has been supp.osed that the remedy produced its effect by destroying tiee nerve; to this it has been objected, that if the nerve were destroyed, the pain would never retiurn, whereas, in most cases, tite pain returns atier a considerable lapse of time. But the destruction of the nerve, it may be rejoined, may be partial ouly, suthecient to paralyze its sensibility for a whike, but not sutficient to prevent a return of tais sensibility.
2. Tue kiosote may unte chemically wat the albumen of the fluds, wilic., are aways exubing from a carious tooh, and thus form a crust to protect the nerve from the action of the atmos: pucre.
3. It inay perhaps afford relief by stimulating the loaded ves. sels of the bevve, causing them to contract and expel the blood wita whien they are sureatarged.

The best metnol of introducing the kreosote, is by means of a camel's hair pencil. Alter this has been don-, the cavity sloould be filled witin cotton saturated with pure kreosote, care being ta. ken, if pussible, to prevent any adaermg drops from touching and irvitatug the adjacent soft parts. If tusi should happen, however, tue pain is but monientary, and is not attended with any scrious co.sequences.

Dr. Elliottson has published several interesting cases of cutanoous diseases, in winich the kreosote has effected a cure after various otwer means had been tried in vain. It has also been recom. mended in chilblains. Dr. Halm, of Stuttgart, says, that whether Laey are ulecrated or not, be accomplishes a cure in the course of a few days wita a sulat.ois of krosote in water. Several caui.0.1s samald be borne in mind, it: tie application of kreosote to ulcers. It is oc: great mootance in regrlating the strength of t.re sulutia.1, to remember that water dissonves olly one-eigatieth part of its weight of kreusote. It a small excess of kreosote be present, it will float oa the surface in the form of manute globules ;
and, of course, when the lint or brush is dipoed in the solution, these globules will adhere, and thus a much stronger preparation than was intended will be used.

Of all the beneficial effeers of kreosot, however, there is probably none more important than its power of allaying the imotebility of the stomach, and of enntrolling the mo:t obstinate cases of nausea and vomiting. lis power. in affections of this character (says [)r. Cormack,) exceeds all other known remedies; and Dr. Elliottson says, thot he never knew it fail to arrest vomiting. proceding fiom functional derangenent merely. Dr. E. also prescribed it with great advantage in a case of vominig from arsenic; and several times successfin ly for "sea-sickness."- [Amcrican Journal of the Medical Science.]

The Rich and the Poon -The fillowing excellent senfiment concludes an article hy Professor Hare, on the causes of the present pecuniary embarinssinents, and the remedy therefor.
"Never was an error more pernirious, than that of supposing that any separation could he practicable between the interests of the rich and the working classes. However self th may be the disposition of the weallhy, they cannot benefit themselses withoat serving the laborer. Let the rith proarietor inprove tis land; let him build houses or ships ; he must cmploy the poor, and while it is thus certain that the rich cannot serve themselves without serving the laborer, it is evident that when'ver the rich are injured the laborer must suffer. It the lahoring ciasses are desirous of having the prosperity of the country restured, they must sanction all measures tend ng to reinstate our c minercial credit, without which the wealthy will be impoverished and the needy be renderid still more necessitous."

Agriculture, \&c.

Useful if true.-" We every day liear complaints abo at watery potatoes. Put into the pat a piece of lime as large as a hen's egg; and how watery soever the potatoes nay have been. when the water is poured off, the potatoes will be perfectly dry and mealy. Some persons use sillt, which ouly lardens potatoce." So says one of the foreign journals, and we idvise thase who are compelled to use watury putatoes to try the lim. 'Iatere is we think some philosophy in the recommendation, as the alkali of the time may correct the tender cy to acidity always manifest in poor potatocs. By the way experience teaches us taat good ripe pinl:eyes, well st cured in tl.e ground through the witter, and kept dry till wanted, will keep till July or August, without becoming watery. --[Genesec Farmer.]

Lime. - Lime is said to be an excellent remedy for hurns of scalds : equal proportions of lime, water, and a y kind of oil, made into a thin paste, and immediately applied and repeatedl. moistened, will specdily remove the eflect of a burn; and if applied later, even when the blister has risen, the remedy never fails. This paste has been known to stop effusions of blood, when almost every thing else has failed. Dry lime chrown into a flesh wound is always healing.

Effect of Chimate and Cultivation on Vegetabrifs.The myitle tric, which, wht us is a smali slirub, giows in Van Dieman's Land to the hright of 200 feel, and has a tumk tiom 30 to 40 feet in riscumference. 'The woud risembles cedar. -- The Chinese have an art by which they are able tu produce min. iature pincs, bearing a peifect resemblance to the gigantic spocimens of our countiy, and only five or six inches high.

From the New York Farmer.

tropical fierous plants.

Continued fiomp. 211

100° cioch A. M., 16th, 1237.
I have passed a very restless night yet will eadeavor to pro. ceed.

We now turn to the pecu'itrly fib o is leaved Agaves, known in Yucatan under ti.e common generic name of Yucatan, and in my writings under the botunical appellation of Agave Sisabana.

I have often stated that there are two distinct culticated varicties in Yucatan, designated by the Indian names of Yashqui and Sacqui. To shcw a! one viow a great specific difference be-
tween the Henequens and the Magueys, or between the A. sisa. lana, and the A. americana, suffice it to repent that the Yashqui varicty of Henequen is entirely destitute of spines on its edges, while all the varicties of Maguey have many spines projecting fram their edges. To :epeat in other words, the leaves of Yash. quil have smooth edres, the leaves of the Maguey have spiny edges; although both have a thorn at the extremity of their le:ves.

The difference between the other variety of the Henequen, the Sacqui, compared with some varieties of the Maguey, is not so casy to describe in worls, because the Sacqui has also spines on its edges. I have not with me the book in which I have noted down the minutix, hut I can convey a general idea of one difference very notable to the sight between this and all other varie. ties of Henepuen compared with the varieties of the Magucy viz. : the relative narrowness of the leares. Cut a leaf of any va., ricty of the fibres producing Λ gaves, and cut another leaf of any of the drink prodicing Agaves. but let each leaf be of the same length. Let the two ieaves lie together, and that leaf which is pronounced to de no:ably broatler than the other belongs to the Maguev. So striking is this difference, that I have tefore me a winter bleached leaf, of both the Sacqui and Maguey, each 22 in ches long, and while the width at the broadest part of the Sacqui is scarccly $2 \frac{1}{2}$ inches, the width of the Maguey is fully 5 inches, or doub'e the breadth. It is true that the same disproportion will not exist in all leaves at all lengths, yet in all the difference in breadth is sufficiently notable to strike the mo t careless obser. ver. I dwell on these f.acts at the risque of being tiresome, becanse I am convinced that ere long they will be deemed of high importance by all "intelligent friends of the Union." Mark then further the fact, that both the Sacqui and Yashqui varieties of the Henequen of Yucitan or Agave Sisalana, are still existing in the. garden of this model faxm.

8 o'clock, P. M.

It is in vain to struggle against sickness! My exertions are protructing my convalescence. I will nevertheless endeavor to finish this page. To slow you how vague and erroncous are the ideas concerning the Agaves, take up a Spanish Dictionary and look at tha definition of the words Pita and Cabuya. You will find that both are used as the names of plants, and the names of fibres extracted from the leaves of those plants, and yet both are included unice the Botanical name of Agave Americona. Under the term Pita you learn that the leaves are eaten by cattle. Un. der the title Cabuya you are told that the foliaceous fibres are made into ropes. Indeed so common is the fabrication of these fibres in sume parts of S_{j} ain that the manuficturer has acquired the special name of Cabuyero-i. e. manufacture of the foliaceous fibre called Cabuya. As the Spaniares manufacture the tough grass called by them Esparto, (Spartina tenacessima) the manufacturer himself is called Espartero, the wrought fabrics Esparteria. The fact of the invention of the names is the best evidence; of the common existence of the things, and processes they represent. So the terms Cabuyero and Cabuyeria imply that in Spain foliaccous fibre is well known. The only rational influence to be drawn from these fucts is, that in Spain various species of Agave are acclimited-that they not only have the juice producing Magveys or varicties of A gave Americana, but that they also have the fibre producing Henequen or varicties of the Agave Sisalana.

If then in Sy ain where the Agaves are so numerous, and where even fibrous leaved speries furnish products for common manufacture, the ignorance of the books is so manifest, it is not so astonishing that the writers of France should have imperfect notions on the subject. In the latest Agricultural work, the Maison rustique, published in 1836, and designed to be superior to the Ag ricultural Encyclopedia of London, there is merely a short article on the Agave Americana, by A. Poilsau, in which he follows the ervors of his predecessors, but which we must suppose contains a compend of their actual knowledge on this topic. I have copied it and intended to send it with this communication, but as I am too exhausted to accompany the requisite comments, I must break off until health permits me to address you again from some station ruritg my : \mathbf{r} wels. My present intention is to proceed as soon s I am ab.e to New Orleans, Havanna, Key West, Cape Florida, Charleston, \&c., to New.York.

Respectfully,
H. Perinine.

CITY POLICE－Night SOIL MANU：EE，\＆C．

We continue，in this number，the article from the Farmers Register，on City Police ；and divote m：ch space to the subject deeming it one of great import mee ；first，in point of cleanlisess and comfort in large cities；secondly，as a means of li．rgely in． creasing the poluctiveness of the soil，in the vicinty of larere ci－ ties，ond of coure of increasing quantities，and roducing prices，o vegetables，and thirlly，it is very important to the cullivator of the soil，who，though he may sell at less prices，is sme to re－ alize larger prostion hini labor，from the increased quantities．

We ：k the attertion of our ratuers to the subject．
FRENC！METIOD OF PREPARING IICLDLETIE AND URATE FOR NA． NURE．

To the Pennsyluauia Agricultura！Society． Co：scluded．

＂The attention of the Philadelphia Board of Health．has been carnestly directed towards discovering some mode of disposing of the conterts of privies，which wouli remove trom the precincts of our city，where the deposites are made，a \mathbf{n} isanuce at present of a very formidable character，ard which must necessarily in－ srease．In pursuance of this olject，the board has ca cluded， that an effeciual remedy for the evil is 0 ly to be sougitt in tie conversion of the offensive sulistance jnto inodorus manures，after the methots now successfully practised in muy parts of Europe， and especially in the cities of Paris and Loadon．
＂Tue principle by which this object is effected，is simple，and consists mothe drying or desiccition ol the minary and foecal matters，eitler，aprart or togrther，by the addition of ce rain ab－ sorbent subitances，suc！as phister，lime，chalk，uslies，\＆ic．It is probable that the ashes of the Lehiorh and Scluy kill coal may be thus usefulty elisprosed of．The mature prepared from tioc foecal or more solid contents of privics，has long been lanown，a nd high＇y esteemed by the girdeners and agricutualists of France，bander the tiane：o poutirette．Tuat prepared from t＇s urino＇ss portion is comparatively of mudern inventio．，and is c．lled vraie．
＂A warn tlat such a plan is not to be carricd into off ct uncer the suecial direction of either your socinty or their own bo ly，the board lays the subject before you，in the inope that its advantares will be properly investigated aid made known，so as to lead to use－ ful results；for surely，nothing can be more worthy oi senemal and speci I encouragement，than a plan not only calculated to po． mote the health and confort of our large comenunity，but to jon－ der essential inssistance to the most inforiant of the useful arts，in－ suring at the sume time liberal profis to those actually engaged in jts excution．
＂Tnat your socicty may be placed in possessicn of more par． ticular information relative to tae subject under coisideration，tue board would refer you to numerous ligg lly favoruble reports and interesting proceedings of the most respectable assucintions esta． blished in Europe for the encourngement of agricultural and use－ ful arts，amoner which we would espocially call your at：ention to those of the French＂Royal and Certrul Agricultural Socicty＂ and the＂Suciety for the encoungement of National Industiy；＂ during the years 1818－19－？0．
＂The following translation of a French documer t ，furnislies an accurate deiail of the process by which the urate is manufictured， and throws mich important light upon the subect generaliy：
＂Certificate granted upon the application for a brevet［p：atent］ of invention，to M．Donat，（Joscph Etienn豸－Victor－Gubricl，re－ siding at Paris，department of the Seine．
＂Tise Ministerial Sccretary of the Siate，for the department of the interior，cons＇dering the Memoir of M．Donat，proprietory，re－ siding in Paris，Rue des Buns．Eıfuns，No．2S，in which he states his desine to enjoy the proper rights secured by the law of the 7th of Jantary，1791，to the uuthors of inventions aud discoverjes in all kinds ol isc＇ustry，and to oltain in consequesce，a brevet of invention for fiffeen grass．for the sudden diying of the urinary fortion，and manipulision of the concents of provies，within tue twenty－four houss succecding tlecir reinoval；a＇l by parifular means and processes，of which he declares himself the author，as it aprears fiom the verbal piucess addressed at tle time，to the depot of documents attached to the secrearysi．ip of the depart． ment of the Seine，the 19th of January，1E13．
－Considering the designs of the apparatus，and the descriptive membir of which the following is a copy．
＂I bave contrived a plan which affords me the means of ex． tracting from urinary and foenl matters，a manure very superior to those hither o known．Wesirous of securing to myself the ex－ －dusive em joyment of uy inveration．I lave made application to the prefecture，depmoncst of the Srinc，conformably to the laws of t e 7 th of Junuary mus 2．⿹勹th of May，1791，for a brevet of 15 bears，for the complete and immediate desiceation of feecal and mi aty maters tort ter，or separately．by meatis of absorbents whichl add，swor in linm．phisicor，chilk，marl，ashes either natu． inl or tameral．stech is are tation from the different ash mines． Suiktunces haviner coleatrooes bases may be calcined forthe ab． vorption of a greater quantity of licaud，at lcast wien the high price of ste cunnhmable，or the low price of the absurbent，do not oftr greatur edvintages in using it direchly from the quarry．
－＇Tins varicty of absorbent sulstances，assures to every coun－ try the means of manuficturing a very abundant and active ma． 1，ure with limen drjections．The froluct of my operations is inodorous，for two reasons：The first is，that when urine is cm－ rikyed．it gives out no odor after the absorption of its moisture： Tuc serond is，when the feecal matters are sufliciently mixed with the absurbent，I bury them at least 18 inches deep，to prevent the disengagement of the o for during the fermentation necessary to the srool quality of the manure．
＂I give to the manure made with pure urne and one of the a．oresad substances，the name of urale．I believe that this com． postio＇，mixed or com＇inet with that resulting from the combina． tion of foacal matters with a certain quantity of one of the afore－ sait ab；obent maters，proluces a manure of great activity．The only difficult point is，to ascertain the proper proportions for the adminturc．
＂For the manufacture of the urate on a large scale，it is ne： cessary to coastruct at least six basins，iu form of a watch glass inwerted：They s＇rould hold ahout 12 bectolitres，（about 300 gal． lons，）of winich there will be six of urine and sis of the absorbent matter of oue of the kinds formenly designated，freshly cal． cinet．
＂The cask or vessel holding the urine，is to be so placed that it will enpty itsell throagh its hung into the basis．During this operation．One worknan is cmiloyed in pouring in the plaister， another in maxing it in the bisill with a ratic or scraper．
－When the minture is finished the operators pass to anotherf and so on to the sixth．＇Tien the first is emptied for the purpose of commencing operations ancw．The mixture is finished by fupher drying in t．e uir．
＂At the end of tie day，the quantity of urate which has been made since morning，is to be bigisen down by means of a cast iron cyliader rolled over it；after which it is siffed，（passee a la double ciaie．）and then immediately stored or packid up，to pre． vent the ab＝orption of maisture．
－By this combination，the urine being dried by its union with the absoubent matter，wish is itself a manure，unites all the ve－ getative powers of its two component parts，and will constitute tire most prodnctive of all manures，in consequence of the very small quantity that is recessary to empioy to procure the best re－ sults．
＂I have designated six substances as being proper to absorb the superabundant water ol urine，and I have only mentioned them without ponting cut any particular one，as I thought that no country is without some one of them．But in case I am mistaken in this opinion，very great advatituges may still be derived from uriucs，by mixing them with burnt earth，（that of heath soil is to be proferred，）or wath natural ashes（cendes nalurclles．）I only estimate the value of this mixture as a means of obtaining all the salts of uriue in a solid state，which will facilitate its transportation and employment in agriculture．
＂The ancicits coasidered urine as the most powerful of ma－ mures．＇Ilisis is not thereiore the end of my inverition，which con． sists alone in its sudden desiecation and solid．fication，and the draming or diying up of these infectious defositories of the sub－ stance to be inct wita in the cavirons of large cities，where they turnisa inex raustible soarees of un tealtay exanations．
－I leave it to thsucarised socicties to express their judgment upon the qualities of t ．ee urate，atsd restrict inyself to the applica． t．on for a brevet of invention，for a metnod ol preparing it inme． diately，so as to destroy at the same time the odor sf the urine．
（Signed）Donat．
＂Paris，January 19th，1818．＂
["Here fullows the cortificate granting the brevet or patent to M. Donat. for 15 year.s, signed by the Ministerial Secretary of till interior department, Count Deenzes.]
"Signed for and oa besalf of tho board of heath.
Samuel J. Rozbias.
Attest, President.
Thos. A. Ritcuie, Sec.
Philade!phia, Januar｣ 16/h, 1356.!"

However beneficial may be this plan both for cleansing a cityand for forming rich mure, it is evident tatat tite prosess is no conducted upoa u iform, and rarely upos correct principleswhica I consi ler are only conforms it wan the absorping mat ter used in so ne forn of mill! calcareo ss earth. By c deming this material, as the iaventor recoun neals, a de it ructive, i.aste .d of a peserving ingredieat is foms l-a a 10 se waic a bever s soa'd be used to mxix wi il feesl oor o: fer animal mitter, if the value of
 French in thol is that waica has beea in use time out of mind amoag the Cainese - i peoale, w.on however une.ligite:aed in science, are in advance of most otiser nations ia the means for pre serving and iucreasiug the fertility of the cart.s. Travellers have informed us, that in that country, hum on excrements are mixed with clay marl (doubtless rich in calcareous earth) 'Tae mixture is made u_{j} in the form of cakis, w iwa atter being dried, are fies from all o Feasive odor, and indeed give to the seases no mdica. tion of their composition; and they are ex osed in quatity is

There is an obvio:s o yjectio I to. a. giound to duabt, the cffects imputed to decom:osing filta as caasing discase, in this well known fact, that in spite of tiis and all otner sources of disease, our towns are more frec from autumnal sickuess, (tue effi cts a! malaria) than much of the neighborng and surrounding comenry; a.d tatit the towns have all bsenn: more nualt yy, as tuey hav:s iacre is ad
 correct, but the inforeace from them is deaiel, an the following grounds.

In the first place-bill as may be the effects oif the grecous o: aerioun proluetsoa anin patrutaction, it is well kuowa that they are maza less proluctive of milaia t ana are t. 10 :e o_{i}^{i} vege. table putrefaction. 'T.is ! believe is a well establis.red and universally received inedical fact. And as our police of health in the country is at least as bad as in the towns. (thoug: the nuisan. ces are of a different character, it may well napene, t.at the vast quantity of decomposing vegetable in ther in the wouls and int ie fields, where there is no calcareons. ingred.ent in the soil to combine wit , products of d compositisa, and to fiy t sem taere-to. gether wita the pestilential eflavia from tae numerous mill poads, which more or less affect injuiously nalf t se places of rusidence in lower and middle Virgina-may poluce more mataria and disease, than the decomposition of anaual filt.a in the towns. Bessides, there are counteracting agencies always operating to lessen the ill effeets of deconposition of filta in to wns, t.ong isuch oneration is netier inteadel, nor uaderstoal, by t.ose w.o protir by it. From varios; surcest te cale areade eart in town is ulw as
 nisa a large and rich supply-aid t loug 1 t tese are some imes coaveyed away for munure, still tae fiar greater part is scattere」 abo.t the tow. Cual ashes, in a mucaliss darree as to strengt.1, also add to tae stock. 'T.se waste oi lime, and te old cemp:at of buildings repaired or denolisis! all iurais a calsareou; matter, and all, though witt:out its being de-igised. are in time spread every waere. But tae buraing of a town, or a large portion of it. as stated in the first part of these papers, furuishes the great supply of calcareous matter-enougı indeed to give a very heavy dressing to the whole space burnt over, and inuch mor--and to serve to combine with all tie animal matter fur a number of years, and to give permanently to the soil of the town, tuat valuable quality which is entirely wanting in that of the surrounding poor country.

There is one still more foul abomination in our present system which has grown out of the whut of proper public accemmola. tions, and tae extreme diftivulty (not to say indicency) of duily remsals of uncom'ine.la ad unce.tanged excrenents lis.n private houses. The practice alluded to belungs to the most crowded
parts of cities, and has prosend ad from them, and tron Euroje. to this country, where as yet it is but little used. Where space is very costlv, lenp pits are dug beneath privies, from which the -o itsints are nut removed for yoars togetier, and nute probably never. Tay do not lecome full (or at least very slowly,) and t.e"eby compel their being einptied-because affer a certain buik of the hig ly putrescent mitter has beea actumalated, the waste by deconiositio: goes on nearly or quite as list as the inercase trom te additio ss of material. If quickline is added, this decom. posit o: is hastened, an! a differe:at, though but little offensise w. lo. is sub tituted. Bat whether these depositories are cleaned out at long intervals, or not, t ere can be no questio: but that nincten. tweutieths of the whole mass gocs o!l by decomposition, and is mixed wit', the atmosplare; and however diluted, or however alo tered by mixture, helps to form t se airbreathed by the ianabitants of towns-who are too de'icate, and too fastidnous, to have all sic inuisances prevented oy projer, gineral and public regulations. We have not yei been enough crovded in our towns for the last moutioned practice to have gone to muc.s extent. But as it is the resut in (suppoied) necessity, it will increase with the growth of the towns; and as such receptacles will be of course concealed as mach as possible from observation, their existence will not be k:nown, nor the extent of the evir estimated, and scarcely ceen sus. pected.

In Frince, in past times, when there was neither the refineinut of nanners, nor the knowleilge of the evils produced, that now woull lorbit the intiod te ton of such a usitue, lage ant deep cuvered pirs, or vaulis, to privies, weie common in the stnaller towns, and which were by no me.ns kept for priva's use In such public places (fosses deaisance) the rapid accummla ion male it absolntely neessary to remove the mater somebines, hangh very rarely; ant a description of the staie of things at such tirres, und the effects prodaced on healith, and even the necessity of guardmengainit hem, witlserve to show to our citizens, who have never thonght of any evils except that of offen-ivenes to the senses ant to derency, that \&ffivit, al. why hur ful an I sonesimes deally in effict, are actualy evolvel. Aind it sh wh be borne in mint, that the saine offliva unist be exricated foum simitar accumulaions also, thongla the eff cte are diminished accorling to the siraller amount and more gradnal extrication, or more diluted state of the doses inh.le I by the surounding pupulation.

There is another and still more diagnsting, an I still more evident effect of accmmulations of putrescent animal matters in lowns, presented in the infittration of the flud parts tho gh pervions sirata of farth, and the consequen! admixture with the water s pplyiner spring. and wells. This part of the subject mity be resinnel, int trated more at lengit in a future number
 ion of the effec s of gaseous or atelforin prolucts of accumulations of pu'refying unimal mathers.

No. III.

the police of filth, in toins, continued facts and opinions un the subiect fiom frenchauthorities.
The following article, whirh I hase ransla'el from Rozien's "C urs C:mplet a' Agriculture "etc. (Paris edition of 1815, will serve to present in a stronger pomt of view the dangers to heal h caused by accumulations of fecal inat ers in towns. The realer may be instructechby it : faces and reazoning, as to the importance of the subject to health-anal he will also be anmusel by the di play of techmeal terms, and form of scientific arrangement and clasification, appherd to such a su juct. But this inauner of the French authur, nerertheless, lurnishes additional evidence that the sulject has been longs slulied in his country; an I therefore, that the results obtained, and the opinions derived, are the more emitiled to respect.

It is proper to premise, that in France, and elsewhere in Europe, the poorer cultisators and inhabitants of the country do not generally have suparite amb isola ed dwrllings, as in the Unitell Stater, but ire colleclel in villages, or hamets which are surr un led by the fiells which the inhabitan's cultivate, and the pastures on whin their catule giaze. This state of things, which was originally required for mulual securiy, and which old habits still retain in use, has no existeace in the Unit-
ed States, except anong some culivators of French descent, on the Mississippi, and the laborers in cotton or or her large factories
 fers, in the fillowing prete, when spraking of the "county;" and the "fosses d"aisunce" of which he treats were comm 11 " the use of many pe:soms. 'the mjurio is effecte descritiod, that the circuinstances which produced inem, are al-o (as y et) without pratlel in this cominty. But we hove no nght thence at suppose that our differen: habies lead to no danger, wr to mucl. less evil than the deep and large va.llet "fosses d'uisan, e." In the later, asdescriberl in the French account, the accumulation frecal mater, and the concentratio: of the energy of it: poisonous products, serve to exhibit its worst virulence Learing: upon a sinall space, and upon the very few persons most exposed by nearness, or uctual contact. Bat if the matter was mif. fused, as by the practices and b thits of our p pulation, the same kind of fermentation would proceed, the same priducts be ex hated, and as much deadiy aeriform puson be evolved and breathed, but rendered scarcely sensible ini fffec, by being wilcly ditfused over much space, greally diluted, and thus divided aunong a much greater number of persuns.

['iranslation.]

Fosse d'Aisance. This elldject relates directly to agricul. ture, as furmishing one of the ino t excellent manures, at the same tume that it in erests the hralib, and even the Ife of the culavator; for, how many casuallies occur in the couniry [rilligea, by the emp ying of these pits, for wimt of knowing the means of freventing them!

We shal not speak of lieir construction, which makes an esseminal part of the art of binding ; but we are poing to enter upon sume details in regard to the various subitances which cumpuse the matter, or comente, of the pits. We bave net io fear exciting the disgast of the cultivator; accostomed as hi is to excrementitious maters, he will consent that we shatl instruct hin concerning that of which the is less informed.

These subatances .tre distinguished by the naines of the crust (croute) hecate, vanne, anl scrapiags (gralin) The crust his often sufficien thickness and timaness 10 susian the weigh: of the laburers walking on its stirlicee! The hecate is the pyramidal heap. The vanne, is the l.q it par, liewally of a yreen cols.r, and is corruped (infecte) 'lhe scrapings are the parts adliering to the walls, n...t to the botron of the pit.

I'be crust is sumetines pushed up (from the mass below) by a sufficiently volummous later of mephinc gats, ro as to mituce the belief that the pit is full. In this case, tue empying of the pit may be put olf to at future time, by merely oprong into, and facilitating the escape of the imtermedary layer of gas, and therrby lowering the crust.

We pioceed now to the accidents uccasionel by the emp' ying, and ulien even by the mere opening of a (coverell) pil. Frefluent as such accidints are in the ci. ies, they ate much more so in the comntry [rillages.] in consequence of the linle experience of this operation. I'ne two only means of perenturs them are, quicklune and fire.
'lias article, in Rozier, occupies much extent,* and contains n Menoire sur les !osses d'sisance, which I had prepared when I was engaged in investigatiag the subject, in concert witia Laborec and M. l'armenticr. 'Pae employnent of quick lune consists in slaking it to put it in a state of puwder, or to make at fluid by mix ing it with very little water, and tu introduce it into the coatents of the pin, by strring it with a pole ; t.ien the mephitic exhalations are destroyed or contived. Pue projortion of lime requireti, depends on the mas ot matters, and the cessation of the existence of mep itic gas, of whica we may be assured by letting down a light. ed can le to the surface. If the thane is extingulshed, or even burns dimly, there is s'll mephitic air undecomposed, and more quick lime is to be added.

As t., fire, tiaere are many modes of applying it. Either a cha-fing-dish of burning coals is placed in t.e pit, and left there to burn out completely, or ury straw is lighted on it. It is useful to m.ke (in the walls) air holes; they may serve fir the escape of the ligatest gases; but how little do they draw, when the atmos-

[^42]phere weighs on their orifices! For it is of the fosse d aisance as of the barometer-or rather it is one of the most faituful of baromters. The weather will cominue clear, ins long as, from the oles over the pit, there arises amnonia, that purgent odor so senwhe to the eves, rud to the smell.
The crust is sonctumes firm enough. I have said, for the workmen, without inconveniener, to walk upon its surfice. This surbice is commorly covered with sulphur, as is aloo often the vau't (or arched covering) of the pit to whicin tie sulphur sublimes, a:d fixes on. Sulphar is a very abuadiat prodact of tie fermentation of aumal substances: under these cricumataces it is formed in the humid inode. Whest charged with the excavation of the half moon of the gate of Suint.Antoine, which, from a very remote period, liad been made a cominon receptacle of filth, (roirie, i was strick with the elormo s quintity of sulplur with which the eatil was impregnated. It is to this sulphur, or rather to the sulphuretted hydrogen gas, which is formed in the pits, and is the most mephitic of kiown gases, that are principally owing the accidents produced by the operatio: of emptying these receptacles. M. Dupuytrein has thrown much light upon the different gases held by the matter of the fosse d'aisance. At the time when 1 was occup ind in ti.is unestiga: on, Lavoisiar, the Abbe Fontanes, whom I hat invitcd to refee:t or examine t.ee experiments, cculd not pro:onice ufon divi rsitv of eminent gases; of which one kind, the mitte [as vulgarly termed,] which limits the eflects to causing to the workima a nomentary blinducss, seeming to affect meroly the system of optic nerwes-whist the other occasions the priniter's co'ic. and cu:ducts its victim to the state of paraly sis, to asptyxia. and finally to lealh. The experiments of M. Ilupuy: trein, though interestii g in their re'at:on to science, have changed 1 olling in the preservatse means wheh we have stuted, to wit, quichlime aud fite, as tiec destuctive or ventilatigg ageuts. It is to the vegligerce of these means, I refeat, to which is to be attributed tl.e anccidents that occur fiom time to time
L.me is the most energetic disinfecting agen:. Throw it into t:: f futrid fludf (ranne) of a fosse, und it becomes instantly itodoveus; it fixes (enchane) it decon poses ail the mephitic gases. It i - tiaus, that wiren thrown reto a fosse, it sus. fends the extrication of infuctious cmanations, at the same ume that it arresis the tumescence ard lermentation of the matter, which is lower d, and the space of time belore the emptying becomes. bsolutcly necessary, is thereby prolonged. It is recommended hy masy to tanow snow into the pits, on the pretence of its t conomizng ihe emptying, becruse, as it is said, the smow consumes the excrementitious matter. If the soil in woich a pit is surk is so pervious as to permit the in filtation of the liquid portions of its contentr, then the adding oi" snow (that is, water,) by giving more fluidty, will facilitate the imbibing by the suil. But It tue pit is well and sol dly constructed, and luses nothing by filtration, the addition of show dires but augnent the mass, and hasten tue tine of emptying. It is tilus thit prople assert every Lany, because diey believe every thang-and ugorance toves best that when is the most improbulte.

Toure is a pheromenon which it is suitable to mention in this articie, as sumet mes causing accidents. It often happens that children thow ligited papers down through tac orfices of the seats over tue fusses. When our barometer-fosse, in place of am:nonii, exhales sulphurcited hydrogen, t.e gas, the most combust.ble of all, takes tive, with explusion; and il a sufficient quantity of sulpuer is firmed upon tue crist, or upon the arched roof, tie busting of the roo" of the pit may be the result. This gas of josses is almo met with in milies, and takes fire there from the lam, ${ }^{\prime}$ sul the workmen. But in tire mises, the explosion is seldom attended with in.jury, bec.. use tuere is communication by galleries, or by t.ce cealng, with tue atmosplicre: th: workman throws nimsell flat on t.ee floo", and it is as much if his hair is singed by the meteor-inke fire, which burns but hitle, and very rapidly.

But why should fosses be permitted to exist, when their contents occasi 11 so many accidents. The r cleanngg out is the proiession the most alyect and most disgusing ; and it is difficult to cuncerve how men can d vote themselves to it voluntarily. Certainly, humanity would not permit that a legislator should ascribe such a punisbment on the penal code. The werkmen employed in this wretched Lusiness, raises the stone that serves to close the entrance to the vault, and otten there imunediately exbales a mofelte, or ga: dangerous or mortal.Another mofelle is found under the crust into which be cuts,
which escapes at the first stroke of the hoe. He puts down his laddre, and descends into this gul!: he makes the reign of the cross, asking the protection of II anven. IIe draws out the putrid fluid; at the end of some minu'es, it is the zailte* whirds reaches him ; he is struck wi h bladaess; the is driwn ont, i not blind, a! least deprived ui sight lior more or les time. O: perhap; it $i=$ the $p^{\prime \prime} m^{\prime}$; ; his kneea fuil, he sta werere, ind has a universal trembliar, coll sieze.3 him, he brea lues whth d ti mity, and he is combucted to the hespital io atwat the comine uf eonivalsions, violent colac, and betwer pains, and paralysias which ofton becoses permanent. Anothrironk mins suce de the first; tue has a rope fusterned arourd his boeast and beateath his arms. while the other cal is held hy one of his comrarls above, who follows hin with his eyn, and is realy to diaw him np, if he plunges into the vanue, or fills extended upion the more soid mass, struck by asphyxia, (fainting) if not by dach. It was doubtless, the existence of fosses d'aisance among the Grerks, which has furnished grounds lor the fable of the months of Styx and the Cocytus. The noted (irotto del Cane (of Italy, does nothing but produce asphyxia - that is to deprive of the signs of life, which are restered monediately by the subject hoing mhinged in the water of the neighboring lake, Agnano. But it is not the same with asptyxia ocersioned hy the empt, ing of fosses d'aisnuce. The sulphuretted bydreger gas is quite another thing to the carbonic acid gas.

The numerous accidents necasioned by the emptinite of fosses d'aisance were among the first objects which cxercised nus zeal in the carecr of public utility to whic'. I have cron ecrated my labors. In consequence, I enlisted the solicitude of government, and proposed to it o mite inyself with Laburie and M. Parmentier, for continuing the researches which were alike interestiner to humanity, to science, and to agriculture. Chemistrv hidd analsad the excrementitions matters ; it had commenced to analyze the gases; but it hod not pe etrated int: the interior of the fosses d'aisance, the only liboratory in which to exaroine the phenomena which the most putresrout subitance prisents.From these researches, it has resulted, that no workman who will take the precaution which we hise proposed in the nie of quicklime, and of firr, ought to perish in cepaning out fosses or wells; or in the excavation of mephitic soils, to which I have applied, with no less efficncy, these rautionary means against death and asphyxia.

Solt stone (pierre tendie) slould be used fror the construction of forses d'aisance; hard stone has nut sufficient resistance. The gases the most active, the most solvent, exhaling lirum the exciementious maters which are underioning an uninterupted process of fermentation, tend to sutien the stont, which they penetrate to a great thackess. I luave seen walls of extrems solidity, of which the surtice might be crumbled by the fingers -not anly the wall of the fosses, hut those at the body of the [upper] ouilding forming the privies; whilst the soft strue permits the penetration of the viscous fluid, whach thas forms a coating that prevents infiltution.

The circular form is so much the morc necessary, ns I have seen [square] fosses of which the cleuning catuspl ino acciden s to the moment when, the centre being emptied, the comers were commenced upon. Nothing is more dangerons than to meet with bunches of straw or hay, which hate been thrown into the pit ; it is rare that they do not conceal a mofette, or mephtic gas. In general, all forengn substances add monch to the dan: gers of emptying ; it $1 s$ thus that soap waters [which have been used for washing,] mity cause a fosse to be fatal to the workmen engaged in emptying it.

I will observe that pits for farm-yarl dung, ought to be consilered as true fosses d'aisance, in regard to the r purid fluil part, the mephitic gas which they evolve, and consequently, of the accidents, which are of simular character, which attend the emptying of fosses of farm yard ding ; so that the means indicated as asfe-guarls in the one case, suit also for the other.

[^43]third annual fair of tife mechinccs' :nstitute of the city of Nfw-YORK.
The Fair of tre Institute will he hell at Niblo's Garden, comineuriver Moblay, Erne nuber 25th, 1837.

To :ender this exhibition wortly of the arts and of the ingemuity of the Mecla ics of our cointry, tho Managers appointed to conduct the apprathong Fisi, have determined to make such libera! arrangements as will insure to the conri intors a fair opportunty of exhibting their productions to the greatest advantatre.

The nhepet of Fixhbition Finis is to present to the mempers of tho Institnteandlacir fellow citizons uho are potared in the Mechanic Art:, the mears of making their skill ant ingeunity known in a wav no other ficcilities afford: the many thousands who visit such exhibilions have a much better opportunity of judging of the merits of the various productions, than they would have by a mere verbal or newspaper description, besides the ad. van'age of sceing brought together, in one vast collection, the products of the skill, ingenuity, and industry of our country.

Puf.muns of Medals, Diplomas. Scc. will be awarded for all worthv or neritorinus artieles exhibited, either as it respects superio * wrimunthi, muhinery wh reintite opprations are new; intrereting or importint, where ing nuity is displaved, or taste manifu'sel, and particulariy for a'l new and nse'ul inventione.

You arp respectiflly requested to and, for competition or exhibition, sperimens of the arti-les on manurarture : ard you may he assured that the strictest impartiality will be observed in the distributun of the Premiluns.

Stean power will be provided or the acconimodation of t'ose who w sh to exhibit Marhinery in operation; al experienced Superiutendant will take charge of this department, and contributors in this branch are particularly invited to sund or bring their Machines or mulels as eirly as possihle, on the 23d Septrmber, that the necessary arrangements may be made in relation to shafting, puilies, \& c.
'Ihe Managers, in conclusion, ranunt but cxpress their belief thet this 'Third Fair of the Mechanics' Institute, will exceed in variety and beau'y of dsap aty, all previous exhibitions of the kiad.

N. B. All atticles fur coupetition must be delivered to the Committee at Niblis's Garden, no the 23d September. Those for extibitıon onty will be received any day during the Fair, be: fore 10 o'clock A. M.

rules and regulations.

1. -The Garden will be opened tor the reception of Goods; on Suture'ay, $23 d$ of Scpteniber, from 6 o'elock. A. M. until 9 o'clock P. M., and it is respectfully urged thet all articles int nded for conpetition may be se t in early in the day. Those articles inendrd tor catilition only w ill be received any day duriog the Fair, belore the bour at 10 A . M.
2.-The Fair will open for visiturs on M. nday, 25 th Septemat 10 o'clock A. M., and continue open every day of the exhi: bition till 10 o'clock P. N.
3.-Competent anil impartial Juders will be appointed to examiae all articles presented and premiums will be awarded on all such as shall be doclared worthy.
4.- The Conmittee on Prenitims, and all firms or partnerships in which they may be interested, shall be excluded from competition or the award of ariy pri-mium.
5.-All persons depositing azticles; cither for competition or exhibition, must attend to bave them registered by the Clerk, at which time thry will receive a certiticate, which will be required of them when the articles are returned.

6 - Proof of crimin must be furnished if required, for any specinm offered for Prenium.
7.- Depoitors will receive a tirket from the Clerk, which will admit them and Ladies duri g the Exhitition.
8.-Arrangements will be made to exhibit, in operation, all working models that may be depnsited-contributions in this
branch are invited-a comperent person will take charge of all models sent for the ahove purpose.
9.-The morning of each day, until fiften minates before $1($ o'clock, shall be appropriated explusively to the Judues.
10.- Me ubers wi I receive their tickets of a lmission by ap plying at the Institute Rooms, any tuae in the week previous ${ }^{1}$ and durur the exhibition.
11.-All articles offered by Ipprentices, will be received, and adjudged as the production of Apprentice:-they must furaish a cerificate of name, age, with whom, and the time they have scrved as apprentices.
12.-Arricles subject to injury ly being handled, should be secured in glass caseq-and contributors are requested to have a person to take charge during the hours of exhihition-in the intervals, efficient measures will be taken to protect property.

ruce,	Jubn Ridley,
Johin M. Dodd,	Silas 13. Simenson,
James J. Mapes,	Thmmas F. Peers,
Thonas Ewbank,	Thamas G. Huditkins,
Wm. Everdell,	George L. Spenter,
C. Crolius, Jr.,	Peter Wemmell,
A. J. Mason,	Richar 1 Bragaw,
Thos. W. Bartholomew,	Ab'm Peitch,
A. Storins,	Win. II. Hale,
Win. Ballard,	Wm. J. Mullen,
Henry Cumeingham,	Jame: 'Ilumson,
John Harold,	Abner Mills,
Joseph Trench,	L. D. Chay in,
James D. Phyfe,	A. Cammey ${ }^{\text {ar, }}$
John H. Mead,	Hiram Tupper,
John Conroy,	11. B. Robertson,
Jordan L. Mot,	James Thomas,
Samuel C'arter,	H G. Stetson,
George F. Nesbitt,	Ferris Owen,
Henry Worrall,	N. Berry,
W. B. Worrall,	O. Whittelessy,
James B. Cummings,	M. W. Eirmons,
James Frosi,	J. S. Anderson.

MECHANICS’ FAIR.

Notice to Mechanics, Atisans, Manu-facturers, \&.c.-The undersigned give notice that the first Anual FAIR of tare Massachusetts Charitable Mechanies' Association will be held in the city of Boston, in September next, conmencing ois Monday, the 18th, and continuing at least three days.

The Association liave placed at the disposal of the Board of Managers, the sum of Five Taousand Dollars, to enable them to conduct the Fair upon a liberal scale; and they lope to be able to render satisfaction to all who may feel disposed to offer articles for exhibition.

Medals or Diplomas will be awarded to the owners of all articles that may be deem-ed worthy of such distinction; and the Managers intend that the strictest impartiality ard fairness shall be observed in the distribution of Preniums.

Tiue Managers, in furtherance of the sobject they have in view. invite contributions, of articles from every department of indis. try ; of choice specimens of American ingrenuity and skill ; rare and valuable domestic productions, natural or artificial ; the deli. cate and beautiful handiwork of females; useful labor-suving ma, chines, implements of husbandry, and new models of machinery in all their varieties.

Judges will be appointed to examine all articles offered. and the managers will award a gold or silver medal, or a diploma, to all articles that may be pronounced by the judges worthy of reward.

Articles intended for exhibition, must be delivered on or before Weduesday, Septem bor 131 h .

Arrangements will be made to exhibit, in operation, any working modes that may be offered, which will render the exhibition useful and interesting, and the managers respectfully invite coitributions in this branch. A careful and competent superintenden will be a ppointed to take chare of all models sent fur this purpose.

Board of Managers.

Jolm Rayner,

Willinm A fams,
Uriel Cowter. Gardieer (ireconcur, James L. Homere James B rev, Josepuin Til! 'en, Epurain IFwringon, Joseph Lewie,
Wralter Fiot.
Tiomas J. Si:citon,

James Clark.
Hepry W. Dutton,
George Darracott, Wim. S. Pendloton, Cumbes A. Wiclls, Henry B silny, Jome Cuickering, Henry II. Barton, Tlumas Bare!, Wm. Uunderwood, Gicorge (r. Sminth; Join G. Rugers.
P. S. For any furtiver in'ormito: ad dress JA MES L. HO: MER, Corresionding Secretary, Boston.

Boston. March $24,1 \times 37$.
m28-tsl
thansactions of the institution of civile engineers of great beitain.
The first vo'ume of this vailuable work, has just made its ap. pearance in this country. A few cojies, say tuenty-five or thirty oaly, have been sent dit, and tose have nearly or quite all been disposed of at ten dullars cach-a price, although not the value of the work, yet one. which will prevent many of our young En: gineers from pos iessing it. In order therefore, to place it within their reach, and at a convenient price, we shall reprint the entire work, with II its enagravings, neatly done on wool, and issue in six purts or numbers, of about 48 pages each, which can be sent to any part of the Unite I States by mail, as issued, or put up in a volume at the clo e.

The price will be to subseribors three dollars, or five dellars for two copies-ahays in adrarce. Tie first number will be ready for delivery early in Aurl-Sabserptions are solicited.

AVERY'S ROTARY STEAM ENGINES.-AGENCY.The sulseriber offers his services to gentlemen desirous of procurigg Steam Eigines fur Iriviag Saw. Male, Grain-Mills, and other Manifactinieso any hiad.

Engines only will be furaished, or accompanied with Boilerg and twencessatry hachenery for putting them in operation, and an Eugiacer always sent to put tem up.

Iaformation will be given at all times to those who desire it, either by lifter or by exinbiting the engines in operation in thiscity.

Inquiries by letter should be very explicit and the answers shall be e pually so.
D. K.MINOR,

30 Wall-st., New York.

FOR SALE: AT THIS OFFICE,

A Practical Tiratise on Locomolive Engincs, with Engravings, by the Chevalier De Pambour-150 pages la:ge octe-vo-done up in paper covers so as to be sent by mal-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts. for athy distance excecding 100 ms .

Also-Van le Granff on Raitroad Curres, done up as above, to be sent by mail-Píce $\$ 1$. Postage, 20 cents, or 30 cents, as above.

Also-Introduction to a view of the works of the Thames Tunnel-Price fifty cents. Postage as above, 8 cents, or 12 cts .
. On the receipt of $\$ 3$, a copy of each of the above works will the forwarded by mail to any part of the United States.

DRAMING INSTRTMEN:S.-E. \& G. W Blunt, 154 Water-street, New-York, have received, and offer for sale, Drawing Instruments o: superior quality, Euglish, French, and Gerinan Manufacture
'I'uey have also on hand Levels of superior quality at low priees.
are Orlers received at this office for the above Instruments.

$$
\mathfrak{\sigma} \text { TO RAILROAD COMPANIES. }
$$

A PERSON expersenced in the construction of Locomotive Engin s (nany of his Manufacture being in surcesstul operation on imporant Ratrua Is in the Unted -tates) and who is tikenise theroughly acquainted with the mantugement of such) nuachines, and, inderd, the entio eordeal of with the matrugement of buch nachines, and, inderd, he ente eordeal of
Kaitruads, is datirnus of of aming the situation of Gereral Superintendami on sualle Lai ruad, Sollh or West.

I'le must sutisfactury testimonisle of character and rapability can be produc. d. Communtulions addressed to the tdibuss of this Journal, stifing the lucation of Roud, \&c. will meet with prompt anenlion.

RAILWAY IRUN，LOCOMUITIVES，\＆c TIIE subseribers ofer the following articles to Railsay Iron，flat bard，with countersunk hulea ant halifelf jullis，
3^{3} ！by $1,15 \mathrm{n}$ in length，woigling $\mathrm{t}_{\text {fifis }}$ per f_{1} 230
70
－ 11 t，
$\begin{array}{llll}80 & " & 1 t & \\ 90 & & 1 & 1 \\ 9 & & & t,\end{array}$
with Sjikes and Sjplicing Plates adapted thereto．＂T， bo suld itin of daty to State guveramenta or incur poratad cumpantes．

Orders ior PeansyIvania Builer Iron executed．
Kail thad Ciar and Leroullotive Enogin－Tires， wroughtand turned or unturued，ropaly to he fitted on the wheels，viz． $30,33,3 \dot{u}_{3} 42,41,5 \mathrm{i}$ ，and $6 \mathrm{v} i \mathrm{isc} \mathrm{li}$ es aiameter．

E．V．P＇atent Chain Cable Bultes ior R uilway Ca axles，in lengths af 12 li et 6 inches，to 15 titet $2 t, 21$ 3，34，32．31，and 32 inclises dinueter．
Chanas lior tuchand rla ues，shofit abal staty links， manuisetired trun．he E．：V．Cable Bulls，and proved at the greatest atralli．
India tivaur oh，ef for laclined PI ines，made iruma NLW healdididix．

Alyo Hatent loonp Cordage for Inclined Pla rea， and Cunal I＇uwars lalles

Patent tidt wor plactig terweell the mon enarr an stun bluck oi Eidje tha：Iwayy

Eivery destriphun ui Liulway Iron，as in Il as Lo－
 the agency of unt of dar partheis，wilu reades bin Filglans tior this parpenese．
A whsity respecione Amaris．an Elnoinser，residea in E．oglasal fort he parpose ol a：s preethig alt Laremue u＊．

23 if
A．\＆G．JiAl．STON \＆CO．

ARCIIMEDESWURKS．
 （ 100 North illuors sireet，N． 1

TIIE undersigned bega lease to inarut the proprice

 of any size．Ciar Nheels，sucil as are now ha sumadors． nuint in which isave linked－cuathyg of ull hims，
 1－vil

 Jersey．Lithe uadersloghed recelve arders liar ilis dua－

Rils．Ev．iU WVikn．
Loromutive ste．un－cidgbites and lienders；Driv ing ambl wiltur Lacoun whe ovineess，i xlex，Syrmi，whd
 will womgat dir ó，Aalus ul úcsl dallericun reliard irou，Sprhig＊，buses ahal bullo ful Curs．
CUTRUN WUUL A．D FLAX M．ICHINERT．
Of all destriptanns a：d of she tuost improv a Pat serns，stylo and Wurkimanshap．
Mill cidermgand Mhliwright work genarally；Hy－ drauice and ubter Presses；Press serews；Ciallea dors；Latnes and touls of ull halds，Iroll aned brase Casings of all descrpuiulta．

Pallefsua，don．jeri＇s，ur tou W allawe， $1, N$ ．

TO RAII，ROAD CUN I＇RACIOR＇S．

 PROPOSALS will be rerenel，at the olliers of the
 1337 ；lur the gra．ing，masonry and tuilgea，wis thai
 preen ths liver l＇chicmee and Hiwassee．A als． rance of 40 miles.
＇litu quanity uf excavation will be about one mil－ ton of cubic yards．
The line whl bo staked unt；and，tog ther，with drainguge and sp culiceliulls of the wu k ，will be realy for the inappo

JOHN C．TRAUTWINE，
Engineer iu Chief Hiwassee thailroad．

FRAME BRIDGES．

THE undersigned，General Agent of Col． 11．I．（）VG，in bul 1 ！Bridges，or vend the right 1 ＂＇

Bridgex wh 1h－ahwe phath are fio be eecon at the ful－

 in IR railronal at three pointa．Un lhe IIudsun ana Huternun kailromd，in two places．Onthe Bowthanaul Wurcester Kairouad，at severul points．（It the Bus－ on anil l＇rovidence．Káilrond，it simidry poills．Alruss the Collworwh river at Henmker，N II．Auruss the Eothegan river，nt Milford，N．It Arross the conl－ inctiout river，at Haverliil，N．II．Aeroas the Cont uroveh river，at llancock，N．II．Across the Allo Irosellgha iser，at $\$$ urner Cenire，Mane．Arross
the linnebee river，at Waierville，Maine．Acrass the lismebee river，at Waierville，Mnine．Acruss He tienesse river，at Equaki hill，Munat Murris， V_{1} ew－）urk．Acrose the Whin inver，at harimird II．Across the munth al the hroi－n Nirnu（；eek，

 Canal，in the City of liuhthener，N．S．A ka lraal B．Ifoe at Lippiet still Waier，Utonoo Maine．＇I＇hos
 aud feel．It is prohably the firasest woo．d shidie ever buill in Inicrica．
Nulwithstandiug lis presed t ellgrige ments to build betweell wenty nad thir！y lailrond Bridyes，und se－ －eral cumnom britges，st vinalal whech are min ill
 atkend to bistiness of the had to tuuchar atcrextelit ind un litural terms．
Ruhester，Jan íth，18：7．•Mーy

ALBANY HAGLE AIR FUlR VACE AND
 Macilline silup？

 aron cistinas fur cicarin！Malls and tracturies oi every das ripulient
Aisu－stenin tinyines and Railruad Castings ， सvery lest i！unn．
The vollectho：of Paterns for Marlinery，is wh equatled thine untiod sitates $y-1 y$

NEW ARRANGEMEN1＇．

ropes for inclined planes of railroids．

WE the subsirabers havimir lurmed a co－parmershy undet the style and hiru of rolecr

 mashouachlifing in chrdage．heretofirp rarried un by S． 5 Darlied ©io．，will be dome by the new hran，hie
 dse 11 Whi．math were empluyd by S．S．Wiriee a

 S ate of liew．l orn
33－1f．
KOBI＇．C．folfifR．

AMES＇CELEBRATED SHOVELS， SピALES，\＆c．

300 duzuna Amex＊
150
150
150
10
sujpriur ba：k－strap Shovels
i5u to du do easssteel shovels\＆Spade
ins do du Gold－mining shovels
${ }_{50} 50$ du du platel spardes
So tho du sheket shoveds and Sjades．

 WIPHEKELA，NMES \＆OU．
Nu．\＆Liberty atrcet，Nov－Fork
BaClíus，AMtis \＆Cu．
Nu． 8 State street，Albany
N．B－Also furnished tourder，Shapes of ever y de arnntion．made firum Silstbur；relined Irun v4－if

STEPHENSON，

Builder of a superior style of Passenger
Cars for Railloouls． Cars for Railroads．

No．26s Elizaberth stre t ，rear Bleeckerstredf，

RAILROADCOMPANIES would do well us exb cune these ciars：a aporlinell of whidin was he siel mithat part of the Now．York and Harleom hailruac：
nuw in uperatic．
J25l！．

PA＇CENT RAILRUAJ，SHIP AND BOAT SPIKES．
＊＊Thn Troy Irun and Anil factory kecpencon．

 by hls－antistriacers J＇al in M！ar－himery，whir－f alter

 anp．erar turny ever cifer a ins mashot．

 ruils flusiny aumint und on ahors husice．Almoel all
 litst Hell will Spiker mitie at the above minad face． wry－lior whis h furpose they are found invaluahlo： as thei：miliesjont is mare thon duuble any comumun spikez mall－hy the huminer．
＊＊＊Allorders dir cried tu the Agent，Troy，N．Y．， will be punctuall！altenued to．

IIENKY BURDEN，Agent．
Truy，N．Y．，Juls， 1831.
＊＊pikes are k ．pl for sale，at faitury priers，hy I． \＆J．Tuwnspnd，Abaly，and the principal Jrenl Mer－ clanits in Allmy ath＂I＇roy ；J．I．Brower， 222 W＇ater arert，Nrw－jork：A．M．Sules，Ploitadelplita；＇T＇． Jaikiers，ISaltimore；IIcgraind \＆Eimith，Rusian．
l＇s．－R Raile and Cimpaniis womld sin woll io fur－ warl their urid rs us virly as practicable．An the sub－ serihr is it sir：us of exthuling the manufacturnig so an to kerep pace will the dails increuring ald mand tor his Spikew．（1J：3：an，

11．blkUF：N．

＇JO（ON＇TKAC：I ORS．

JAMES HIEK ANU KANAWHACAN IL．
Tut．kli；is s i！a large ain：ubat of merchanical wor 10 lit un ife line ol the James Rivor find Runsuha
 humired colveris anisw ial large aqueducix，whirh
 shane stunc
II h

I hu work cont acted fur mast be finished by the lat diys if Jily， 1038
Pr rauns tereros of obmiling work are requested Wappty at the other of the und roighrd ill int eily of Ilielimumi．beiure the filis enthou May，or between the fif．hand the filtern．In of Jilly：

CHARI．ES ELIL．ET，Jr．
Chuef Eingil er Jav．Kiv．de ha．Co．
P．S－Th．raliey of Jahns hiver alove kich： mund is la ：idily．

16－10t

I＇O RAILROAD CON＇TRAC＇TURS．
 SEALED pruposals will be received at

 rean Lu川！a！y，in he cown of s．hua，Alalmuna，fur
 and I＇thrsone hailroal Prupurass firr the firs six min＇s Irmm Srlma，will ber reesced ufier she first of a a．，aninf at lefl on by llice haril oll 11 e 15.1 Mlay． Irommsals hirr he ethaibs 34 miles，will be tectued after the 10.1 M Ma．，bit wiol in．t be examine d mill th．Ist of allguat n．x＇，＂hen the wurh will lie ready for combarl．

The lisil，nfier the firal fow miler，purbing the fiat of he Malbir y（re h acropies n iegunt ol roumtry，

 Thes sonl is gen raily in cillivatus，und is cry，light

 ernl．y through a ruglon as ialorab．e for healli，us aily i1）the Suuthroll C．uin ry
（lwing in the great interest at stake in the surcess －thus ri wr rumep，mid th－micumit of capital alieady ntharkid intit，thi－nu k tucst nece alling prorsed

 It this undertahing，as oftering th the pinsteet if and elimate，u wide mud debrabice field to the con－ tracior．
I＇rupusals may he addryased elither to the subseri－ －r，if to（iv＇bucra！Gi．bcit Slı arer，Presidun．of the compu！y．
ANDIGEX ALFRED UEXTH，R，Chef Engineer

ROACH \＆WAKNER

Manufar irrerab UP；iCAL MAMHRA．ATICAL （Ni）PHILUSOPUlCiL JNS＇JRI Mr．NH： 293 srua way，Now loik，wih kiep cunstanily on hand liurose und general usisuriment os lisisuzentw in this
Who＇esale Dralous and Comriry Mu roliante sappliad ing siliVEIING CONPASAF：b，kisMt．－

 susirnmenis nacie io gruer asse refeirid．
$143 y$

PUBLISHED WFEKLY，AT NO．EO WALL S＇TREET，NEW－YORK，AT FUVE DULLALS PER ANNUM，PAYABLE IN AUVANCE．

CON LENLD．

Report of the Auburn and S．sucus R iirod，

Econony of M inufacture；
Transactions of the Iustitution of Civii lingincers，
Advortisements．

NE゙W－IOKK，JI LY 29，133゙7．

AUBURN AND SYRACUSE Rfildoad．
The reports of Edwin F．Johison，Esq，Chief Engineer of this road，together with a report is a committee of the Buard of Directors，have been received by us，and are given at length in this number of the Journal．

Of the impurtance of this road，no one acquainted with that sertion of the country，can entestain a duubl．Diverging，as it d es，from the Erie canal at syrucuse，and being a link in the great road from Albany to Buffialo，it must become an immense thuroughfare，both for business and travel－and the period is not distant when therc will be a railrord from Albany to I haca，thus connecting at Oweg）with the New－York and Eife road，antd becoming the great thoroughfare between the northern part of this Stato and the Canadas，and the coal region of Pennsylvania．

In referring to the report；we find that the freight is put down at $\$ 15,000$ and the passengers and mail at $\$ 45,00$ ，per annum； an estimate，we are confilent；very far wilhin the truth，as，by a cureful investigation two years since by a committee，it was as－ certained that the freight carried to and from the Canal at Weeds－ port and Auburn，excee led 10,000 toms，which at present prices； 8 cents per hundred，exceed；$\$ 16,0 \mathrm{j} 0$ ，－and it can har． l y be doubted that the business for other places will equal，if not ex－ ceed，thit of Auburn．which will of course be greatly inc．eased－ by the increased facilities；－cousequ ntly the estimated receipts for transportation should be at least duubled；which would give $\$ 30,000$ ．

The importance of this road has noi been duly estimated，or it would have been no：in successful operation．

The intention，we understand，is to complets it this fall，if the becassary funds can be procured，which we trust will be readily ecomplished．

TO the difectoas of the aubury and sylitcuse rallroad company．
Tie Committee to wion it was reicref to ciamine and report to your B．trd the preseast situation and prosipeots ol talis Comsany， submit tae follo．viag repo．t．

Tunt tise Report of the Chief Engincer，Mr．E．F．Jo＇unson，to the Board in A_{i} pril 1333 ，showi．gg u_{j} to t．at time tise progress of the work is lereto innexed．Mr．Jo．mson has furnisiced u ；with a further statement wisicis we also anmex，and to winch we reer without repeating its statcments or conclusions．

In estinating tise probable ruture income of the Company zil． lowance should the madu for the rapid a lvance of ths country in population and busiacss．Tac furtile rearions of the West，are raphdly filling with an enterprising pooulation，and increasing in their b．siness，wants and capacities．＇T＇re Auburn and Syracuse Railroad forms an inportant link in tine chann．of ralsay com－ munication already estatulished，and in a train of exceution， between the watcrs of t．te Athantic and tue．Western Lakes；and waile New．York as the cuinnercial emporiun．furnisales to the Westera St．tte；bordsring o．i the great lakes，and to the Vallies of the Onio and Missisippia commercial mar，the railway from A．buny to Buffalo mast furibisu a t．ioroug．afare for travel and freg．it．unequalled in alvantages cither to tat traveller for pleas． ure，or to the man of b．siness

Tar consequence inust be，that whon the wiole line is comple： ted，the ain sunt oi bustues；do．se mast far surpass any calcula． tions to be mide upu．t the lacts as t．eey have heretufore extsted； and we have no besitation in saving tuat taken in connectio．s with the lacilities turnished by tue Erie Cua，for the transportation of heavy insechand．z：and proluce，and ruaning throag．s the sanie great valley betweea the Western Lakes and t．se Ocean，tusis rail． way will naturally become t．se greatest tuoroughfare between tase Atlantic st nes a ．d the West．

To the stocinholders oithe Company it will be gratilying to learn that while t．ii：road whil probably cost less per m：le．（alt．rouga a muca more dificult route）tau the Uica and Seacnectady road， they can depenf upo．s tue following estimate of tae incone of this road with reasonable cert inty．

From a report $1: c$ n： l y is＇s ed by t．ie Usica and Sshenectady Rail． road Company，it appeurs that tue estimated annual receipts for the coaveyance oi passengers and tue mal upoa that road ampunt to．
$\$ 340,000$
Tue expenditure for transportation during the same time，amount to
$140,0.30$
Leaving an annual income of
2200,000
2..e Cititur oi t.c Auburn and Syrarne Rminond Company allows he same charge per mile, viz: four cents. A:suming the receipts and expenditures upon that to correspo id with tiee Utica aud Selenectudy Rail ond, the nett annual iscome tron bassengers and the mails will amount to part of the san Scenectady Railroad. If pusition ior concentrating the travel and busiliess of the country is believed to be a qual if not staperior to any ot ier position of tive same face, uiless the Utiea and scleen ectaly shall the dec"ned to surprass it in twis resp"ct.

It is frequentiy ohserved that the travel upon the Erie Canal is much greater Eant of Syrucuse than West, and tin incerence has been drawn that such monst be the case upon the line of the mil way. But it is believed tiat the long level upon the canal between Uica and Syracuse has increased the travel on that portio:, and that hereatier as formerly passengers will leave the cana at Syracuse, and find thennselves better aecommotated on the sailway.

The divergence of the Auburn and Syracuse Road from the line of the Canal, and pussing as it does timrough a rich agricultural and manufacturing tistrici, and terminating at Auburin, a large manufacturing town und a place of deposit tor a large amount of merchandize and protuce to be transpoited to and fiom tiee Canal. give it a gieat advanage in the carringe of ireight. $\mathrm{U}_{\text {G }}$ on the E istern portion of the line u.on the Uuca an a sehenectaly and Utica and Syracuss Roads ieight can ot be carrid, and these poitions of the me a.e conse puenty deprived of one great source of profit, which exists in th: casce of the Anburn and Syracust:
 ting the Nortaern and Sout arn truvel, or tiat wac! takes place between the Camadas on the vie hand and the central portionso. Pennsylvanis, sia the Susqu manmah Valley on tue utnce. It has through the Auburn and luaca Railioad iow chavtered, and the Wistem road and the Cenyuga lake, nad the Owrgo and linaca Railioad a direet communication witis t e Now Yoik and E.ii. Ralluad, this furnising additional soances of busine es and consequent re:enue.

By means of a branch to the village of Skamentel.s. and thr works of the tuburn and Uwasco Canal Company, tire regi us bordering uon the Skimeateles and Owasco likes ure orened io the advantages of this road, and will connribute their quota to it. anual business.

With these views of the subject, it is believed to be a safi estimate that tue tett receipts for tae carriage of passengers and tue mail ufon the Auburs and Syracuse Road, will certamly equal ia they do wot tur exceed zeo thirus of llie amouat nbove stated as the corrapo..cing iec pts uponts Uhica and Suacinectady Road, more capecta y as i.e e ipts wil, be andually lecreasing wita the iucr.ased jo tul tion add sinesiol t.te country.

This wil' give and adnual suan of
\$45,000
From nur knowledge of the anounts annually paid for ture transfontation o. merchandize and proluce to and rom the Canal for the town of Aubirn aio.ie, and other soure s, it is believed to be a sule estumate to coasider the nett receipts from the conveyance of freight equal oone third the anount derived ifom passengers and tise mal,
'The line of this rond runs tirough inexhaustible beds o: gypsum or Piaster, and there is t:ow excavated and ufo.1 the road belunging to the Company ready for transportation, 40, uno tons of this utt cte, estimated to be worta atier deductugg a cost oi traus, bitution, sec.

15,000 Bish ait nish an alnost unfalling rource of profit to :he company.
The uhove essmate gives to the company for the first yent afiter the ruad siall be put in operation, the sam of \$95,10 or nearly sisteen and a half per cells up,n the cost of the tuad. tuppoing that to be one third as much as the Ulicu and Scl:enecmaty rablrout of winch it is about one thirel the le grh

It appems by the last report of the Chiel Engile.in', wh ch is minneaed, that the grading an is superstruciure o piete for a single track, will not vary much fron $\$.5$, va0 per muthe, makins u tutal of
hie must be underatood to include iron for the rails.

Muking a $0^{\circ} \mathrm{at}$, exclusive of buillings and omfit for tran-poriation of
$\$ 485,0 c 0$
Estimatinis of the cost of buillinger and ounfit, for Immeiontsinn upen the same scale as tise Utica und Schenectidy railioar, and it anowns to

60,000
makng the toal cost of this road, including buildings and unsfil,

545,000
The cost of the Utica and Schenectany railrcad for the sane dislance will be fund to be about
\$570,600
It is in b understouif, huwerer, hat the expense of car louses, cars and locunotwes upon this toad will be nuch less, or the featon that no permanem-erections for car-liou=es will be made at the exremuses of the road, un:t the same are made jomly with the Litica ant Syracuze iond at Syracuse: and the Aibminn and Ruchester road it Auburn, and tha: an arrangenem will duutriess be made wi.h both of theze Cusipanics, alvanagevus in this Compmay, in regad to cars und lucumotives; by which the cost will ive diyuled uetween these Companies.

Yuur Commaire bave exammed inso the condition of this ro d 10 ascertan at what period of tiase it can be μ ut in overaloun, in the theaprest mather fand they ellentain no doubt that It may be pua in operation by the first day ot Uelober nexi, provited lhe Comparay cal. have the sum of $\$ 3 j, 600$ m cash, placed an themr depusal ammediately.

I'he praj:ch to to albaitute valk ribbons for the iron plates for the prebent, and to use horise power, untal aron tor the salls can be ubtumet.
'I'te: expense of preparing the Superstructure for the use of bolse puwer will be:

$$
\begin{aligned}
& \text { Fur the oak robbois anil horse track, } \$ 5000 \\
& \text { 'I'O, thes alat to alathuin. tol gradng \&ec as abore } 390,000 \\
& \text { Civst of hand, \&o., and Lugherngr, de., } \\
& \text { 92,300 } \\
& 4 \text { リv,uUU }
\end{aligned}
$$

Deduct cost of iron, included in the total amount of \$s is,ưU, estabated at

50,000
$\$ 44 \mathrm{u}, \mathbf{0 0 0}$
Your Committee also state that a credit of one year

And your C' mantle belneve hat a crellt uponzeme porion on the cost of lated and grablag as well as for be cart, what a sullicient oullit call be fad tor one year, to he amonnt of
$\$ 02,000$
which will enalle the Company, without ennbracing the I'buster in the calculansit, to pat the ivan in uperation for the Capial Dituck, pronded \$30,wu of the siock in casin is momediately obiancel and the rasilue ot the siock is pathil up or arranged in suchs a manmer as to meet the demands of the Coupany, when cultath upon to p.ty the ovilgat tons whith they have micuried.
'The hapor.ance of punting the soad manceasacely in uperation is forcobly urgeti, by the lact that the i'mater now Ig hity upion in - romi bed, valued as above stated at $\$ 30,000$, may ihus be suon nvallable to pay the posiponed debr.

Wi.h has flatlenns piospect before us, your Comanittee hope ant hust, hat every ettort whl be mate oy the Company, to banir the woik to a speedy cluse. It has huherto progiessed atman ditheculates und embarasimems unjnecedentel, but with an energy which not even the umurnamate stmation of line counary couth depress. Yuur Comanimee leel contideni, that when upened, lise caad will, in the great benctic condared upon the public and upun-ibe share cwats, realize the must bangume expectationts of is friends.

All which is subnitted, \&c.
Auburn: July, 1837.

> E. Milier,
> S. A. Gondwin.

Compittee:

REPORT.

OF E. F. JCHNSON CTITF INGINEER TO THE AUBURN ANT SYRACUSE RAIGROAD COMPANY, APBII $1 \subseteq 36$, WITH A STAT. MHNT OF THE CONDITION OF THE WOHK UP TO JCNE $18: 37$.
To the President, Directors and Company of the Auburn and Syracuse Railruad.
Gentemen.-In compliance wih instrucions. I present herewith it statement of operations in the Eurineer Department of the Anburn and Syracuse railroan for the jrast year.

The Engrineer Department of the Auburn aidil Siracuse railroad was organized, and surveys commenced in April 1835. The measurements, eximinations, \&c., preparatory to the final locition, occopied the succeeding six an on his. On the 15 ih dity of October 1835, propoials were receivell fur the grathing, brilges: and culverts, ncluling the linhor and ma erials of eveay deacription necessary to compleve the road bell.

In December anil January, the excavation was commencel on a few of the more expensive secions, with a view of alluanc. ing the work upon them, and to aroid thereby any delmy in the opening of the road, which would resul fiont those sections not bemg completel in the proper lime with the oiners.

The advinteges anticipated from this course have not, in con sequence of the extraonlinaty deep snows ant severily of the pist winter, heen fully realized. Much work; however, has been done. The fist payment to contraciors was mate on the first of Jannary, since which sirne three successive payments have bern made. The work is now rajidly prugressing on most of the sections. The remainder will he conamenced its soon ats the company have acquired a tille o he lant, which it is b:leved will not be long, as the legat ueasures lur efecung that ohject, rende:ed necessary in those cases where the parites fal to effect a compromise, are in a train of execuion.

It is proper to state, that tie sections of the row on whici t're work is tot now progressing, are wit, fuw exceptio is, of the lighter and less expeinsive character, and te lel ty in obtaiaiag tre land will not t terefore prove a; serious an inc.savenience as it migut under diffirent circumstances.

T'he contractors are efficient, business. men. of muc'i experience iaticir prolession, and well recum nended upo:n the works wisere they have been engarged.

In Jarfuary list, propo, ,uls were received, and contracts made, for the dedivery of the timber for the ralifity or superstructure. sufficient to construct a single track. These contract; weme m.ide on favorabie terms, and it is believed w th res,onsible ine.i, and no appreseasions oi failure are entertained.
W.ate cedar, and red or Norway piase, is t te timb ar proposed to be used. 'The rail timbers are to be exciusively of tae latter ma. terial.

Tue width proposed for the ruil track is the same as upot the Utica and Sc.uenectady, and Monawk and Hulso:a Rairroads, a grouter widts was deemed desirable, but as the Aubsin anfi Syra cuse road, is to be a link in the same chain wit: the rauds mentioied, it was co:silulel to adoit tae standard waich had been established on those roads.

Tue timber lor the railway, is to be delivered, the most of it, the coming fall, and the balauce eary in the seaso.n following.

Tue aistance from tae principal depot, in tie Village ot Auburn to tie site of the contemplated depst in the Vilage oi Syracuse, is 25.73 miles.

The total descent in that distance is 271 feet, making an ave. rage descent, supposing the inclination of the road to be uniform, of 10.54 feet per mile:

Tue muximum inclination of the grade line, is 30 feet per milc. Tuis extends only 8,6:10 feet, or. $1 \frac{8}{2}$ miles, and oceurs o. 1 the wist side of tue valley of tue tine mile creck.

Tuere are in tof whole lengt.s of the roid, 31 cianges in the inclinution of the grade line, to adapt it in t.se best manuer to t.ic shape of the ground. Tuose changes vary from a level to tue maximum above st:ted.

Tuere is in general the saine average descent on all portions of the lue. This appears from the inct; that the grads line of the road does not depart from a line of uniform inclinat on, fartuer, on the average, tuan 10 feet, the maximum being precisely 24 fiet.

The several consecutive inclinstions, are united by verticial
corves, of a large radius, to renter the transition of the engmes and thear ramias, irom oife to t.1e oincr, as easy, and wit. as little resistuce as possibe.

Puciot al amonet of straight lines and curves is cexhibited in a tabular torm as cillows:

	miles.	
Straigh lite,	15.976	
Curves to ralits 10.000 foet and orer,	0.379	
5,000 It to 10,00')	2.673	
3,10. ${ }^{\text {a }}$ 5,030	2.394	
1,500 6 ، 3.010	3.167	
1,000 * 1,500	1.248	9.758
Total,		
		25,734

Comparing this wit's t'וe Uiica and Se'venectaly Railroad, w.ach is anno.g tine: most favoinble in respect to staightuess, and tho rosult is as !ullows :

It appears from the abose, t lat aserrly two therds of the whe extent of t.e Auburn and Syricuse R itronl is a straight line, the relative anou it of straight line being 12 per cent le s than u_{i} on t ic U :ifa anl Schencetaly mal. The minimum radius of

 inclinatio: of t.ee grade lise is greatest, curves of a lester radius .ave bee.s aroided.
 st.all of being male as uiual, by asi iglearc oin a circle, nas ai general been effected by :.nes no more ares, tue radio the extreme arcs being greater taint a inilde or mtein :date ofes. Tais gives an approximatinato t.ee eleptic or parabolic curve.

Tise engme and tran on entering a turve $\mathrm{o}^{\text {: }} \mathrm{t}$ tis description; encounters the resistance caused by t.ee exange in direction grad. u.tly, b :ing less liabic to be turow is tron the thack, and oaleaving the curve tas acceleration in t.ie inutio.a oa beng released from the resi-tance, is likew.se rentered mare gradual. The mistuod ado, ted in tracing the enrves, rendered this arrangemont perfectly feasible. and allorded a dise aggeral better adapted to the shapie of tae grou.d.
T.se principal dejoot in Auburn is situ ted near the site of the State Prisoin. This 10 is isvor ably located for miting wath tide co temp ated road ruaking west to Rusuenter and Batfalo.

From tais depot tue rord is to be exteaded to t.re termination of tae A.burn and Owasco canal, to accommulate the nydraulic power waic. 1 will soo.i be created at t atat prat.

Ia proceediug firon Auburu ra terly, tav hue of the road passes at the distant e ot 5 milcs near tae village of Butus. At the distance oi $8 \frac{1}{2}$ miles it crosses the ontet oi Skaneuteles lake, $4 \frac{1}{2}$ m.les nuetu of Skancuthes vilage, and 17 miles muth oi the vil. tage of Ebidge. At tue disamee of 15 miles aro.n Ausura, and 10, in miés tron Syracuse, it crosses by an cmba ikmeat tue valley of the Nime Mile creck, at a pociut 3 miles uorta of arcellus vil. lage.

From thence it passes along the east sile of the cre k, intersec. ting tue Suneca turnjike wear the village oi camillus, and thence oeilupy.ng groand milway hatween the turajike and tace Erio canail, turv.g! the villuge of Geddes, to its termmanon or the sout.a side oi tie canal 14 t.re village o. Syracuse.

Tne difference in tie distance iron Auauri to Syracuse, bo: tween the Bulruad and turnplke, is less kian hall oi a mile, tha turnoike being the shortist.
Li.e gio ind on waica tae railro d is locater, was selected with the greatest care, and it is col.fidenty inserted t at un otier railrad \mathbf{c} ill be made betwecn the sam. exreme ponts whicel can comp te u th th on equal temon ait er as it regards t.te Cust o const uciin or epexnse of trat.spontation.

I he scet.on oi countiy betwi ch Auburn and Syracuse is pro bably as unfavorable for iffecting a grod location tor a railroud us any equal portion of tue route betwer Albany sud Buff: ilo.

The st eams which are lumerous, ill run lortherly. The ridges and vallies of coaree lie in tae same direction. The pecuhar formation of the eou thy, as it precluded the passibiliy of for. lowing t.e course of the vallies (t.ee direction of t.10 road beng nearly east and west, ad led inu (an the d.fficalty o. fixing upon t.e best locatio... 'ladeste diffioultics it is bol.evel ave all been
 led, will bear a lisurable compariso.a wit.a other portions oi t.ce lise thom Alvany to Butfalo.

The descent upon tae railroad being towards the east, at a nearly uniform rate of $10 \frac{1}{2}$ fect per mike, wiil livor the exp nse of trans, urtation, the preponderance of trade being in t.at direction.

If locomotive stcam engines of the most mproved description are used, similar to the beest recently constructui lor the Balninore and Onio Railroad Compa y, or tho e manulacture \mid in Puiladel. phia, a single engine will b: compitent to convey liom Auburn to Syracuse in tues space of two howris a hett loud io 1.50 to.is, and to re urn in the same time with a nett load of about oue thid that amount.

The dfference between the average and maximum inclination of the raltroad being but $19 \frac{1}{2}$ feen,wil sot exeeed(.11ovided a suitable reducton is made in speed on the heavier grades, the range of the power of the best engines

Truis diffurence is no grater than upon the Utica and Selsen. ectady Railroad, and is mucal less than the sume ditherence: on the Camden and Amboy, Neweastle ano Frenchown, and Providence and Boston Liatroads. Trese rouds have t eir extremes nearly upon tae same level. Tue inas mum difirence on the fiot is 4.9 feet, on the second, 30 teet, and 0,1 mic last, 37 fiet per mild, t.de latter a xtending 5 miles. It is less, likewise, t.ans the sime uffer. ence on that part of tace Baltimore and Uano Railovad, between Baltimore and tace Purr ridge.

I're average inctination siom Auburn to Syrachse is the starse with what is termed tae level portion of tac Monawk and Hudsu.a Railroad, situated between tae melmed planes. 'The greatest deviation oi tue grade line in tue tatter cose, rom a hat of untiom incemation, is ou fect. Upori the Aubarn and Dyakuse soad, it does not excee 1 , as a arcauty stated, 24 neet.

The ground on a very considerabse porto.s of tie Auburn and Syracuse Ruilroad, is exceedngy well hataped to iv:nhay a fi.m and substantial road, behng coindosed pracipaly of gravel and loam, and loose saell rock, wacos is generatly of casy excavation. On that portion of tise lane located u_{1}. on the ende bili aloeg gise valley of tue Nute Mde creck, tor adistance of to ir miles, cuypsinn and Plaster ot Parts is found an tue excaration, in coastucrable quantuies. Nearly all the sollid rock wanch is requred to be excavated in formug tine road bed, appear's thus far to be of that material. This is ueemed very faviabee, as the value of the Plaster, if di-posed of at the usual pricest, will cover the cost of ats excavation.

Tue cost of constructing the road cannot now be correctly stated. 'The general rise m the value of lavor, ratrond ion, provistous, \&c., which has taken place durang the past winter, w!! have atendency to enamee the cxpense

From the facis beture me, it is prububle that the cost of grading. masöry, \&c., for a double track, together wita that of a super structure complete for a single track, whll not exceed 12 to 15,000 doliars per mile.

It is contemplated to form the road bed in a sabstantial and permanent manuer. Limestone is the material princ.pully used in the various structures, a.d is obtamed in any quantity in the v.cm ity of all parts of the line, of tue best qually. 'The bralges are few in number and oi ery $^{\text {erymined spans. }}$

The total value of perrs table inaterlais used in forming the road bed, will not probably exceed for the whole road, the silin 0 . \$3,500. Ithes, it is belered, will have an impostant and fuvorable mfluence in the cost of repairs.

In the loca ion of the railroad taroughout its whole extent, par. ticular regard was had to the prospect of its becoming a portion of r.tions of a mi or and mercly lucal c aract:r, were made to yield to this one paramnat objoct. To te liberal and enligntened vews of the Bo urd of Dirctors in tais respect, the pubic will hereufter be greaty indebted.
'Tue rond will be conal tel and may ba put into operatio", it is coiffently believed, if no uncxpected differutios occur previous to the monti of S ptember, of next year, in time for the tall busis. : Real ectuily submitted,
E. F. Johnson, C.inef Engineer.

Au'urn, April. 183fi.
Since the preceeding report was rendered, a period of fourteen moiths has clapsed, and tae undersigned is emable I to state, that totwitist inding, the extruordinary advanre in the prices of provisons. labor \&e, bi wac a the periol mentioned has been distingush a, ind the combir ra sments under which the Company have liboed from oticer canses, the expense of constructing the Au. burn and Syra use Railioad will 1.ot miterially exceed the limits anticipated in that report.

The road bel being now neuly completed, and the contracts for tied delivery of the timber for a single truck of superstiucture nearly fullilled, it may colfidently be asserted, that the tutal cost of coastrueting the road, meluding clearing the ground, grubbing aud ditening, excavatioa and embankmet, also the masonry and timber fir the various st"uctures connceted wit. the formation of thes ro ud bel, inclu ling strean and roadway reulverts, roid, farm and railwy brilges, alo, the sup erstructure coniplete for a single trick, w.ll not vary nuch from $\$ 15,000$ / cr milc, making a total of
\$393,000
The expense of lands. land damages, costs of ap. praisemblts, dunage to and removal oi buil.hags and ic..ci g , omounts as I mm informed by the Agent to

70,000
E.aghecrinis and superintendence. ceitimated at

Making a t tal exclusive of buildings und ontfit for transportation of
$\$ 485.000$
In cxcavating the roadway, an amonnt of gypsian or Piaster of Pais estmat d at $40,(0,1,10,15$, mas b en obthued and is deposit. ed upo:a the liue oftice ro d. Mure will probably lre oltained befire t se grading is comalcted. This as considered by competent ju lges to be worth in the ag gregate $\$ 35,000$. Sinuld this sum be eirrred to the credit side of the grading account, which periapis would iot be improper, scering thit it is saved tiom the proceeds of tuc excavation, tue actual expense to t e t ompany of grading, masenry and superstructure, will be reduced to \$358.1100, or per mue $\$ 13.770$. It may be remarked t.at tise iocation ol the railto 4.1 is suc., that the gypsum is exposed at various points in the excarations for a distathee of 5 or 6 miles. In some 'ew flaces tue bud of tuse r inroal is composed clatrely of that materal.

Ui the whole anount espended in gra ling and masonry, nearly one It ilis abso. bed by the four sections in tie vicinty of the Nine M.le and Ciapenters' creeks. The Nine Mle creek is passed by a long combankment sixty teet in heigat, pierced by turee arenes of masoinry, ol twenty feet chord each.

Tue embankment an Carpenter's Creck is twenty five fect in height and twelve hundred liet loig, and is also pierced by theee a.ches or cuiverts of six, eigit and twenty feet chord each.

Tue passager of the deep valley of the Nine Mile ereek constitutes tue most formidable obstacle encountered upon tine winle route. 'This obstacle was one which could not have been avo ded. The most prominent and feas:ble of the expedients, devised for lessening the exjense, consisted in thesubstitution of a brigge for the embankment. Had this plan been adopted, the elevation of the bridje must nave bean not less tiran about eighty feet, as the surface or grade line of tue road was depressed sone twenty five or tairty teet to obtan material from the banks on either side to form the embankment.

Had tie pian of a bridge beell adopted at this place, something migat have bëen saved m the first co.st, but tron its great leugin and elevation there is reason to apprehend that it would always have been a terror to travellers, tie average annual cost ot repars, misurance and depreciation would have bar exceeded the interest upon the exira expense of a permanent structure of earth and stane, and the Company would not nave derived the collateral advantage resulting from tue Gypsum obtained anduncovered by the exca. tions.

This work is now nearly finished, the masonry is completed, and the foundations have passed unhamed the ordea' of the heavy spring flools. The enbankmmot uron ose side is completed anil upon the other is now raised to within a few feet of the grade line.
Of the whole number of sections, into which the road is divided for contract, one half will be ready for a final estimate, provided there is no interruption in two to lour weeks, one third in six to nine wreks. and the remainder in ten to twelve weeks.
Should it be the determination of the Company to prosecute the work to a completion the present season, it will be necessary to commence laying the superstructure without liurther delay. Tuis may be done upon those sections, which are now finished, and the embarkments properly settled, and prosecuted to keep pace with the working of the sections.
By adopting this course, it w:ll be perceived that the laying of the superstructure throughoat will be efficted in a very shoit time after the last estimate for grading is rendered.

The total cost of huilding the road with all tile necessary appendages for transportation will, it is not befieved, vary materially in proportion to its length from the Utica and Schenectaly roail. The result thus far sl:ows that the grading exceeds, but as other items are less. the total cost may now be estimated to correspond very nearly with that road. Hall the prices of labor, \&ze., vemained unchanged, and the Company experienced ro enbarras ments, the anticipations at first entertained would have been fully realizod.
Comparing the Anburn and Syracuse with the Utica and Sçuenectady railroad, it appears that the Capital of the latter announts to
$\$ 2,000,000$
and that the Capital of tire former, which amounts to only $\$ 400.000$, had it been in the same proportion would have amounted to
\$670,000
or sixty seven and a half per cent greater than it now is.
Froin a statement just received, for watch I am indebted to the Treasurer of tue Utica aul Schenectady Raitroad Company, it apppears that the total cosi of that road charged to "emint.uction ac. count" (includes building and the necessary outfit for transpor tation of passenger;, up to the 31st May 18:37, is \$1,70s,894

In the saine proportion tise expenditures upon the
Aubur.a and Syracuse road would amount to
570,000
or $\$ 175,000$ more than tive Capital.
I do not believe it will be necessary to incur this expense to put the road fully in opreration wit., loconotive steun, power, part c 1 larly if such arrang-ments are made as I anticipate will be found both politic and practicable with the Cimpnaies Enst and West.

It slould be remarked that the amount above quoted, as charg ed to "construction account" upon th: Utica and Scijencelady railroad, includes a portion of double track superstructure not contemplated upon the Auburn and Syracuse road.

Tois, however, may be considered, when viewed in reference to the relative advantag's presented by t.ae two roids for a permanent investment of capital, as comiterbalaneed by the grester exposure and greater amount of peri-hable material, whien enters is to the formation of the road bed of the furmer, (t,e ratin beiing as: 6 or 7 to 1 in favour of the Auburn and Syracuse road,) w.ıc. 10 render it equally permanent. so that the ammal expense tor repairs, insurance and depreciation sall be the same jer mile upo.t each, would require, it is beleved, a turther investmest of lixed capital over and ubove the annount of $\$ 1,7115,894$ above quoted o. not less probibly t:an $\$ 15 \mathrm{~J},: 6 \mathrm{i} \mathrm{J}$.

Several circumstances may be suggested from which it mig t reasonably lave been expected, that the Auburin and Syracuse road would have cost more than the Utica and Scilenectady. O... ing. to the peculiar sha, of the country as descrined in tae preceding report, the average number of cubic yards per mile, ot naterial to be excavated and removed in forming the road bed is much tue greatest upon the former. The gradiag and mechanical work upon tive former was inost of it executed duriug the past year, waten tue prices of labor, jrovisioas. \& L., ranged some twens. ty five per cent higher than wha the latter has constructe 1. The expense of buildings and fixtures. Stc., at the terniaii, and other arrangements for transportation, it will be casy to under. stand, are necessarily greater in proportion for'a short road t.ran a long one. Tise relative expense aloo for engineering and superintendance is grater.
Although the work has not advanced as rapidly as cuuld lave been wished, upon the Auburn and Syracuse railuoad, yet it has
progressed steadily ouward. and should no uniorsecn clicum. stances oecur to prevent, will be accomplished within two years, from the period of its commeneement.

No occa-ion has yen existed. in the exmention of the wark, noither is any anticipated, for varying either the original plan or de.
n of the rond, or of devating fiom the line of lowat on as the same is established and flaced upou record. Every day's exp rience serves to confirm, that in the choice of ground for its loza. ton, and of the general plan o: consruetion. the best selection was made.

The inechanical st:uctures, which are now motly completed, are all ciected in accordance with the plans and specifications as originally prepa ed.

Mucia expense has in consequence been saved in the construc. tion, and in avoiding those controversies which invariably spring out of a deviation from, or an infringement of, the terms of a contract.

F:xperience thas far also has shown, that the peculiar method adopted of plar-ing the work under contract has fully answered the end intended, preventing ail interference among contractors in the execution of their jobs, and collision amony labourers, and so arranging the compensation for work dunc as to correspond more nently in every instance with its actual valu e, thas saving the Com. pany from tise payment of extrar.agant preces for labour, while up. on the other han the hazud of luss on the part of the contractor, rusulling from error in ju!gment is materially lesse ned.
T.erer has been. it is believed. thas far no misapplication r waste of labor. No worls has been so injudiciously execu el as to require to be revised or execute a second time. Tie material obtan diom the exeavations has all beon, with few excep. tions, profitably dispused of in corming the embankments. No failures have occa: red in any of the structures, and the mechanicai and other work has been exceuted in a saperior und workmanlike inanuer.

Fortus suce 3 sa atte iding the prozre is of the work, both in re. ferenc : to teentier su voy, an! subsequeat oparatioas, I am greaty i.s de'stel to the fithiul and elficient aid derived from my two Assistants. Messers. L. Williams and H. Lee.

It gives me pleasure also to state, that the contractors, as a body, have exibited a commealable disposition, fathifully to fulfil the spict as well as the letter of their coatructs. Tais is the more praiseworthy, is th y have hard dfieuties to contend against from the oat set of a ye y diseuraging c naracter.

It is houel that the embarrassments undier which the e mpany labors, resultung from the recent suilden reva'sion in :he redits and currency oi the comery, ansl waich are experienced in an equal degree by otner similar companies in the country, will not objige them to suspentl eutirely tarir operations. A step of this deserription in an rearlier stage of the work, wonld not have been so objectionable, but it cannot now be adoated, without incurring a sacatice, wate it is exceedingly destrable to avoid.

The road is now so nearly comileted as to present little or no inducement to roatractors i i case of a sus;emsion, to return and rosil ne their work, bat would it is fuared. by generally aban loned, and a deinaind in cen equence be made for a fi.sal settlement, w.ich und-r tie circumst nees, could not coisisten ly be refused. To complete tite work ut a linure time, new contracts or arrangements must be made, inctaring all the extra expense of new fixtures, toots, \&., with th: hig der prices whic. invariably attach to ighter jo:s. The Company must in tie mean t.me suffer a loss of interest on the la ge amount waicin has already been invested, and whatever might be derived from the reccipts upon t.ee road, by sooner putting it in operation. Otwer difficulties would also occur, ahke sermus in twer n ature, which it is prompis unnecessary at t.lc present time to meation.
T.e grading of the road being now so nearly finished, it is hopel, that no effur wil be spire 1 to complete is. T e timber for the superstruetuce a; altelly stat d, is m sitly deliverel, and the remainder is o.1 ths way to t.es line of the road. It is not How tos late with sutable means at com:nand, to put the road in o_{i},urat on, in time to mect any expectations which may have been raised, by the encourugement given ial t.e precediag repo.t, that it wo ald be in readuess in tiinie to accermnodate the $\overline{\text { Full business. }}$

Resjecetully submited,
Euvin F. Jonvson,
Chief Eligineer,
A. and S. Lialroad.
Auburn, June 1837.

COLOMBIA - हैALLROAD.

Amonnt of the following artirles arrived it and cleared from Philadelphia, by the (columbia Railroad from the lst of Janary, to the 30th June, inclusive.

Penssylvanta Canal axd Rallroad Tolls.-Receipts for Foll on the State Canals from 1st Novlast up.
to July 1st. 1837,
Railroad Țulls,
Motive Power,
ع274,673,17 160,045,,(2 119,768,31

Total amout,
\$500,457,17

ECONOMY OF MANUFACTUEF.

It sometimes happens that when theoretical laws, holding good to a certain extent in practice, are carried to extremes, the result is very different from that practiced, if rot entirely the reverse.

Ans one who hás carelully noticed the prices of various articles: daring the lost thiree or four years, camnot have failed to remark several anomalies in the relations usually conceived to exist be-
tween the plenty or scarcity of money and high or low prices. It is true that some of the ee are oally apparent, but stll we are inclined to think that the test of. the "extreme case" will do"mlish muny of the commonly accepted principles of Political and Manufacturing Economy.

Our attentio: was drawn to this subject whie reading an article in the last No. of the American Journal of Science and Arts, on the sult works of Zipaquegra near Borota, in New Gramada, by J. H. Gibbon, M. D. This paper contains not a little amusing in. formation in rogard to the manufacture of salt.

We refer however to the annexed extracts, in which the writer seems to think that want of civilization and improvement counteracted the expected results. We, however, are inclined to think that results not very diferent might have been obtained earer home.

The first instance related, the Company were producers, and the prople consumers.
"T Tie misses of salt are dug from the rock by means of crow bars, and in its impure native state, is bought by the pcople of ceitan di-tricts of the comntry, w oo thus prefer it; while others will purclase it oaly after bring purified and hardened by calcina. tion, although the price for both kinds is now the satne. The consumption of grained salt, made in pans on calderos, is very tri. fling ; the s:lt undergoes t is process of crystallization before it is calcined; and it was supposed that the ability and desire on t.se part of the Cumpany to sup!ly grained salt at a lower price would increase the consumption of it, especially in the vicinity of the :vorks. But "ancient custon" has still more influence with these prople than any arguments of special or political economy. and arraugements whicit are well appreciated elsewisere, have ofiten so sort of influence upoa their minds, in comparion with former prepos essions. Some years ago the price of the rough hatural rock s itt, in the state in w.hich it was dug from the moand tain, was suddenly reduced, the expense: of cutting it out being trifling compared witis that of the process of calcmation. As one po.tion of the populatio! gave it the preference, it was presumed the consumption of it mighi be augmented in other d strets ; but the poople wio tad tomerly purciased, this kind in preference, coubll toit understand the sudden decrease in its value, and were prejudiced to believe that the salt was "rotten," as tisey said, or that there was some peculiar cause rot apparent to them, and therelore saspected way the reduction took place; so that the Company found it better to keep the price at tie former ratethere was then no duninution in the consumption. The abstract reasonings of tolitical economy, it appears, must have reference always to the ceridition and intormation of those among whom its prineiples are to be appled."

In the next the order was inverted, the people preducing, and the Company consuming.

We think the padre desorved much crectit for his knowledge of "political economy" and still more for his knowledge of "hu. man nature" the study of wisch, by the way, is the true basis of all political econony.
"Upon one accasion there was a great dernand by the conpany, who wished to ex end the re cperations, for the earthen ware pots in which the salt is calconed; these ure made altogether by the ludaus. The gentleman who had charge of the works, in ord :r to eff et the supply, as he thoinght; offered double the u-ual price for t ese necessary articles; sitill there was a great deticiency. In this dilemma he upplied to the pricst of the parish to ard hin with alvice. and to know what plan he should puisue to obtain the required number of pots for the work. 'The padre, having heard the lact of the payinent of an increased price for the puts, shook his heal, and ubservid, that since the people received so much more ma ney than formerly for their laburs, they occupied their time in spending it, instead of making more pols. He adrised that the price, which wa originally three uedi ss (183 cents.) lor each p t, anid hid litely been mereased to three reals, ($37 \frac{1}{2}$ ce its.) should be Inwered cu thrie quartillus, (9 rents.) The plan was tried, and the stores were soon found filled with a superabundance of earhen ware."

AN ACCOUNT OF THE HARBOR AND DOCK

AT KINGSIO :-UPON HULL.
Continued from p. 456.
'I'he exctvation of the dor anil lock pits co.nm.ineed so after the cuferelitans; the proncipal pa of the in aterral, over all I abole what w_{c} n.cessary for bicking the walls and for.a. ing liae quays and rnata to the hilge wit used to raise the aljoming I w grom. ant as billast for ship,unce. "I'he suis a thedick were cut to a slope ot about un horizuntal to one verical, and the lock pt abo tt one and a half horiz n al to one ve tical, aal formod in steps, 3 feet wi.le, roceire the bicking The t,p for 4 or feat below the sufface, was at stiffish clay of which a great many bricks "ere mal for the use of the works; belww ihis, to th botion of the dock, was sili, or a mixum of mud and sand, evilently left by ibe site froin the small sliells and other exiritneous matter intersparsed in it ; this soil become. exceodingly firm anil solid vory soon after remival. Several slips occuriel boith in the dock and lock pits; one on the cast sille of the dock, near the sout heml, (probably car 13:1 by ithe old forsificaltons or towit ditches,) waz aboit 9J yatrl; lonr, aum exten led hack to the builling-, sereral of which gave way, and hall 10 be rebuils sonme of the fo m lation p. 1 s ne.n the somb east corner of the dock were also force forwari. The ground was it rond dea cracked in other places on this side, bu! further damage was prevenced by shormer wi:h timber; anil the sinaller slips that took place, purticuluty in the locis pits, were alten led with no furlie: inconven jence than the expense of their remoral.The averagedep h of the excava'ton of the dock was 19 fect, that of the lock pits $\mathbf{6}$ tu 7 feit more; the quntity of excalation was about $3.10,100$ cubic yards.
Pliling oi Tounda-
Lioar.
The beariner piles were chielly square; the shee ini piles of Meint fir in:hes thick with 3 piles ol Hemel 1 , in hes spluare; all were trwen willow sho:s, but the heat; were in tenmal hoop ed, 10 prevent spining. 'I'he pilang cunmencel in the dock wall on the east site, the first pile being drisen near the sunith. east corner.
Rus divivag.
In all buildings resting on pilng, it is imporlari that the pales should be driven, ss as in carry the weig 1 of the superstructure, anl also to resist the lateral pressure, which in dock watls like the pre ent is veiy consilsable, and in al livial solls 0^{*} a lo se and yelling buture, inore thon nolinary strengh is n cessaty in this direction Such being the case, and having before hin the eximple of the othe. two dioks, the walls of which hidl tooll giveit way, Mr. Wa!ker was particularl. diesirous that the piling of the Jumenion doc's should be e.fectitilly done; anil fou 'this en 1 , reftested to have an aces) mit of the Iriving from tine to ti ne, anll where the ground proved sufter that ordmay, longer pil-s were used; in fuell, the lengh an l sizs of the piles wers adap ed as umch as posisible to Itie nature of the soil, varying in length from 10 to 18 feet in the docs
alls, ant in the locka sonte of them were \& feet lonar
Much irregelarity prevails in pile-drivine - netunes a pile will irn down at the lot t oke more thin it dul at the thate 0 - arth, thourb the f.ll of the ram and the - Isity of the ground tany be ne.n!ly the - $n \cdot$, an the friction of course greabr. lence we proeive how uncerian all theies inust te whirn pufe-s to ascertanli I: actual weight a pile will bear, by hw 1: given dre weight of the ram, the fith, al the depth mocen at at stroke. There in be no lombt hat a gireat leal depeids por the state of he h ald anll pime. for vhan theseare sombl and pallect, in: pile vill penerale much dreps by a ex.ven :roke, then when soil and bruisel! fils rell known to pledricers, for fied milli. rhen the pule moves a litile or none, by awng or even paring off a limle of the leal, it will g: down itrain freely: also, if the weight falls exactly in the direction of he pile, and striks the head faily, sothat he two boties come in 0 armal con'act in svery mart, the pile will roformber at a bluow han when the stoke is oslique a:al th. heal only p (rimally struck hy ihe ram.

The shoe:ing piles ind"r th. from of the dork wall: dr veu ber it crab angine. wath is $10 \frac{1}{2}$ cwl., irg.t ratn, h, fall varying foms 8
 lown, al the en I, abant inninctat a strote; he bearing ples, orb a 20 fort averater f.ll, abour $\frac{10}{3}$ unch, except in partirnlarly barid gromnt, where they dul not go dwin nore than halflle above al a stroke. Tue piles of the dock walls all battered about $2 \frac{1}{2}$ inches to it fost.

I'he bearing piles ir the foundations of the lock: were driven with a ratu of $1: 3 \frac{1}{2}$ cwt., and the arerage depth per strokto. when tully diven, was about 2 inches, wi h a 24 fete tall. 'The shect piles, driv, n with i rain werghing $11 \frac{1}{2}$ cwl., Went own $1 \frac{1}{2}$ inch with a 17 leet arerige struke.
There is areater regularity in the driving of p:lss liy the rincing thet the cral) ell silue, which is attributed priacipally to the head and point being much lass injured, in consequence of the shorter liall ol the rian, and lis lieing of wood; but as the crab has the advantage in point of economy of working, the ringing engine was but little used, and that ouly in the dock piling i'le bearing ples driven by it went town on an average $1 \frac{1}{2}$ inch in thirty strokes, with a 6 leet fill, when frlly driven; and the sheeting p^{2} les, 1 io $1 \frac{1}{2}$ inch with the sane fall an 1 number of strokes. The ponts of all the bearing piles were very whtuse, ta cering not m re than 12 inches, the b :tter to support the weig! at of the walls.
It is well known that in piling, the ground, parricularly ii s.sti, becon.es much cons lidated, the first pilas droving anore e asily than thase a.ter; on thi account it was found advisable to drive the sheeting pile, ir.st, as they then we at easier an I were truer than when driven alter the brariug diles; an this was more partirularly the case in the lork pits, in sune part.s ol which, espectially under the platforin:. where a great number of piles are inserted in a small
space, the ground with the prer, a-t easy were drivell, abse thergethe nevelal th. lin s. Under the-dick walls theire art 2,411 bearmes pilco. contininge 18,500 cubc feet o. tulber, and 2,140 inmoal teet ot shect patago, 12 lett longe, centaming $12840 \mathrm{cu}-$ bic ceet. Intave Miten gate lock there are 923 ue rug plsis, conataming 10,126 culve teet, and 510 lue I leet at sheeung piles, 16 leet 1 hifg, (except tise ruw bext the tlumber dock, wiuch is 20 :eet long, cinntamurs t.g. ther 4.440 cubie liot. In the IH liteir ateigate lock the eure 9 besarng phes, conathung 9,56s cubic feti, and 60

It maly we useal tuknow the inctual weight susthined by so.ite of these pleses. the uri iges reeach suppoited toy about twentyreght 16 teat piles, and sise : uiverncumbent mass of masuary antit iron being about 600 toas, broe is a load of upwatils of 20 tons vir each pile; thas is borne watb settlement.

In var able ground it is non to be expected that will the piles c.th be equaliy wall drivea; but it miy be stated, b it wie maly y,ednag on iseaved ta tie whire of tiats wiak, Was. at tate projectaig eorncrs on the ionk. adj, inn g tue ducs walt, where a shall catk, isuat tate thack.ess ot a kne bl d.,
 low hat coplig. cadsed, is it tobei.ved, nut by tale sianiats vi he phes, but by the aceral pressure of the riarta vehul i, inl a part whacu tru:n it: coustruction is necessaly werif.
Duck watis. Pian, We proceed nuw to the duck walls, ia the toun ations of which all arangencut ui the piling soancwhat aiferent lionn that a prevomus use was adapt. ed. A row of bearnig !iles hatving been riven outide. a wal:, 12 by 6 uches, was b.fled th 1 , an It th, shect pilng diven bemiad and s,med to this wa.e. 'I'he back pite having also been drivan, thasverse sheprers of hat llanour are tixed on the pue heads, aid over thein were laid thee ivaglludial platik; 12 by 4 inches. E゙xespet the inam puts, the whole as of Meanel than.s, wat well spused tog staer.

The siace for 10 mitaces below the slepers is till d up with bick ru bish, or Hessice clut stuite, puedined in with hut lime and sand, and a shamar conciete is lad at tue fioot of the wal, and coveied with enrta as an adistavial prutection to the luundatust.

The wall is of brick work, faced in part whit sluat, dad buit in marar consisting, for the vacking, of one part oi uaslacked whe Whams worth ur Weldo.1 line tu taree parts aiad a nalt if sharp, cleat, tie h water sand, abin, tor the tront, two paras a.nd a balf 06 silld ; but al great pillt vi the outsid:, or theing, was sut i.t tae martar hereabter de. =crund tior the s onework.

Tae state facmy, wheh extends for a heigtt ol 11 fec: 9 ilt hes front the tup of tie wall, is of Bramley-fill stone, in 12 inch courses, exce, t the lowest two cuurscs which are ot Barnsley and Whiby stone, 15 mones thi. k; the ci pung is also 15 inches thech. 'I'he work is laid with one neader to two stretchers, the be ders being 1 luot 9 inches to 2 feet 3 incles on face,
by 2 feet 9 inches to 3 feet 3 inches in bed, and the stretchers 2 feet 6 inches to 3 leen 6 inches long by 18 ine es in lied, except at the corners of the dock, where they arr 2 feet deep. The joius are champheres! in front, the four lower conrses are hamuer dressed on face, and the rest neatly bosled. The coping, which is 4 feet wide, is secured by a 4 inch square dowel at each joint.
All the mavonry, except the hollow quoins is set in mortar, compoied of two part: of unslacked the Warmeworth or Weldon line, one part of finely ground pozzuolana. and four parts of clean, sharp, fiesh water sand, tempered in a pug-mill; the mortar for the hollow queins was composed of one part of line from Haling near Rochester, one part of gronod pozzuolatia, and two parts of sand. The whole of the mortar ant grout was used in the hot or canstic stand

The walls, except near the church. are curved horizontally, (7 feet on the east and west sides,) a mode of construelion which, giving great additional strength, is advantagenns in all situations, but more particularly in soils like those of Hull docks.
Cock. Plana, Noos.
The locks are 120 leetlong within the gates, 36 feet 6 inches wide at top, and 25 feet high above the pain ing sills; the construction of the twn bring, with so:ne trivial exceptions, alike, a description of one will suffice: we take the first begun, viz. that at Myton-gate.
The construc ion of the timber work of the foundations, is believed to be in sume degree new, and appears to connect 1 le dif. ferent portions together more effectually than the ordinary mode. The piling is in lows driven at the intervals shown by the sections, with aldi'innal piles under the hollow quoins and traverse rail, the beter to support the weight of the gates. Longitudinal sleepers of whole timber are laid upon the pile beads, and over them transver e sills, 12 by 6 inches, and a foot apart in the chamber. and 12 inches die square, close together, whe water-tight j^{\prime} ints, in the platorm, in laying the sills of the platiorin, the last, which was about the middle, was made :aperreg, anil driven down by a pile ensine. whereby the joints ware wedged up. Thes sills and sleppers are all of Memel timber, but coully clin of the requisite lengthe and scantlings have been procured in suffein n ! quantities, it wonld bave been ureternlule, as spikes hold much better in it, nad drice withult sphting the tinber. The platiorms are covelted will 6 inch olm planking. laid upon a bed of tarrelf felt, firinly spiked with clos. water-tight joints. 'I'hos platforms of the reversed gates were done nearly in the same man ner, but without tell, ard the transverse sills are laid about nine inches apart, the interstices being filled up with brickwork For ec nomy, the foundation. of the liridgese were not laid so low ns the rest of the low k, but pirticular care was bestowed on the driving of the piles, which are 22 feel loig, by 11 inches sjuare. The sills genemill! are spii ied down, but in the platioms the: are secured by iwo : ogs to each pile.

The pointing sils, were not fixed til: the lock was nearly colnpleted. Tlie principa paes are of African oak, 18 inches die
square; they were sunk $1 \frac{1}{2}$ inch into the planking of the platform, strengthened iy, nak clents abunting on the back sill, and thi whote secured by jagged bolts, straps, \&e A cast iron plate, about 12 teet long hy 5 urches wide, was sicured to the top of eacl sill near the middle of the lock, to prevent injury from depply laden veszels, and as a further security, there is a strong sill at each end of t.e lock, land leve with th. pointing sills. The reversed printing sills are 14 inches square, and are secured nearIy in the same manner as the principal ones.
The ground was taken out to a foot below the heads of the piles, anid the space filled with Hessle-clif stone. flushed wita soft mor tar up to the top of the longitudinal slecpers; the interva's between the trmsverse sills are made up with bricks as a flooriag for the inverted arch, which in the chamber of the lock is emirely brickwork, except the sto:e quains at the ends. Tue invert consists of three srparate rings of headers set in fozz. 1 . lana murtar, tie w.ork behind bsing laid in level courses with common mortar and well groited: the s'ort inverted arches batweon the direet and reversed hol:ow quoins, ape chiefly of Mcxborough stone, boited on face and radiated in the joints; the facing over them is likewise of stone, as also that of the wings bevond. Tue work of the sille walls of the loik is generally of tie same character as those of the dock, except that tue tones of the facing are of somewhat larger dimunsions and greater deptib of bed.
The hollow quoins are of Dundee stone, 5 feet 6 inches long by 3 feet 6 inc ues wide. and in 12 incin cranses oo correspond with the ashlar facing. luid header and strete.ser altermately, witi two cast iroal hollow dow (ls let into the beds of enc.) juint to unate al, firmly togetuer, and the part in w ich the 3^{\prime} cl-pust of the gate turns well rubbed to at smooth water.tig t sur ace. Tite revesrseer tallow groms, so calliced from being intended to receive the gates in a reversed position, are of lirumley- fall stone, dressed and set in 1 k : manrer, but without d wels.

Tau toundations of the bridge are brough solid tu tue proper level, and t en diviued in par ition walls of stonework into to ar pits, racal about 4 feet wide, to rece.ve tiee end or tails of the bridge when up.
iock gates. Fana,
No. 11. Tue lock gites are paitly of Eaglish, partly of Atricaun sak. from the ditiiculty of projuring t., formea timber of the reguisite carve and sizsThey are framed and secured toget.er it the usual way, with 3 inch fir plauking closely jointed aid caulked on one side, and $2 \frac{1}{2}$ me iender planks on the otanr. The gate. were completely firted on siore, and havilhg been taken aprart, were reframed in the bot. om.
Each gate is hung at top with a wrougin ron collar ma cast ron anchor het in ot.ue wo ework; and fitted to tac lower extremi ty of the heel-post is an iron socker, wh... urns oll a bra-s pivo: fixed in the plaforn .he outer end of t.ie gate being suaprorte iy a brass roller, 12 muches dameter by 5 .cehes wide, litted with an adjusting screw evo'ving on a brass sennent let into a cas 1 :oun one serewed cown to the platiorm; the wecket and shoe at the foot of the hecl-pos being of cast iron, a brass circular plate, $1 \frac{1}{4}$
inch thick, is let mito t.se vollo.at us... o protect the stone from injury and provent kuge. 'Tus gangway or footpath is sup. orted oun cast ion brackers, and has a chain and stunchion fence on each side.
Tue machinery for working t^{\prime} le gates, viich is fixed in a cast iron box ou tile side of the lock, consists of a 7 inch pinion work. ing into a spur wheel 4 feet diameter, on the axis of wheh is a cast iron roller, 3 feet long, and varying from 12 to 9 inches in diameter; round this a $\frac{3}{4}$ meh chan winds, and passing under a roller at the loitom of the well, and ovor a another similar roller in tlie fuce of the wall is secured to the gate. There is also a counterbalance weight and chan, as in the otaer locks.
Tuere are two sct of sluices to each gate, with three doors in each stt, working on brass facings, in iron grooves, and so constructed that one set is raised whilst the otner is lowered ; winch is done by the sluice rod connected with the screw at top having a rack upon it that turns a spur wheel working into another lack at c ed to the other sluice-ro I. By the d.sposition and mude of adapting the sluices to the spaces between the bais, a capacious openng is obtained without weakening the gates, and ore man can periorin the work of two in the ordinary way, in less than hali the time,-an important cousideration waere ceonony and des. nate. 1 are required. Tue mac in ry ought to be compleiely enclased, to prevent caips or other fluating matter getting inside, for waut o' waicu, o.ie of these racks was broken swon afier the dock was opened; and tiere strould also be a stoj to keep tile sluices from falligg into the booton ot tue lock in case of accident.
Ewh gite complete, it is calculated, wemhs upward; of 20 tons, or each pair 40 tons; the whole weight resting on the platlirm, which hats not, however, settled in the least, but is now as level and periect is when first completed. Thi., it need hard: be rbserved, is a most essential point in the working of large gates that anceve on friction rollers at the bethom. "s is als) the perpendicularity of the liollow quoi.s. 'I'O effectu. dly ensure the latter point, Mr. Walker juldged it expedent to have all the hollow quoms securely land. tued; this was d ne by pulting a 6 inch lianding, or flag, about 12 feet long by 8 ir II leet leep, vertically bei.ind the walls at the hollow quoins, with thiee 2 inch tie rodt, let through and secured to the fling by weans of nuts and screws and a wrought aron plate extendug its whole length, the other ends of the rols taking hod of the anchor mud being cramped into the stonework. Thiee similar the rids are secured in like manner to the landing on the reverse sidr, having a connecting riug at the outer end by which they are united to a single tie extendi ig to a row of piling about filty feet rum the side of the lock, like that for seruriug the mooring riags in the dock walls lit with shorter ples.
Reveriag gate. 'l'he reverse hollow quouns and poinung sills, alluderi to thove, are fur faciltating the repairing of he lock when necessary; in which case he gates will be reinoved imo these quoins,
the lock for the repairs, without interrup ing the business of the doeks. Thas jum was first adopted by Mr. Walker at ilt Comenercial Ducks in lan lon, whare tho gates were lifted by baiges, and rem sed 1 a wertical pusition into the resese gnoms. and were realy fur enp yons the lock in, one time. The arrangement is simple, andi atiented with but litile extra expen*e, points that cannot fall to reconmend its adoprion.
nridger. The bridges over the locks are on the balinnce or lifing principle, and consist of eight cast iron rib; 9 inches deep at the centre or meeting by $1 \frac{1}{2}$ meh thick in the plain purt, and 2103 melies. at the edires, connecied terether uy two sets of cast iron crosses to each half or leal, the lowest being close to the abutement, by hollow pipes and bolts nearer the mintdie, and by the meeing plates, which fit togellier with a tongue anil groove. When the bridge is down, the under side or solfit of the ribs forms an atrch of 300 feet 6 inches epan, and is feet 6 inches rise, resifing on cast iron abument plates fixed in the in tsonry at the sites. From nfar ibe axis, the ribs curve down below the fixed part of the bridge, an I terminate in boxes filled with ken.lidge, hy way of counterbadance, each box being altached 10 two ribs. The axis on which the trifge turns is 9 inclu:s square, with five turneil baaronars worliner in priminer blocks bediled on the stonework, tlue centre being 5 lee: 3 in.ches trom the sile of the lock 'I'he fixed patt of the bridge is supported by iron joisis resling on the rlivision walls of the pils abore descijb. el. The roadway is formed very much as in the brillse over the Olll dock lock.
'I'he brulge is lified by meins of four criths, two on each sule; the handle is applied to a 6 inch pinion, which works into a spur wheel, 4 feet dimmeter, hwing on its axis a 12 inch pinion, which works ino a! toothell seyment, 5 feet 9 inches radius, fixel to the outer rio of the brillire.

When the bridge was a arly firished, it was fuand that a variable coun erbalance weight was necessary in aldition to the kenmidere, o render it ncarly on a eq inoise in all posiaitus; this is efferted by hook. ing to the tail two ch:tins, which pas ing over pulleys fixed in the stone work it the batck, and from thence over two o her pulleys "n the dock wall, are aitached io a chain, composed of heavy 0 -xible: links, hansing into the bridge pit; when the bridge is up, the chitin is just clear of the bottom, and assists by its cravity to dian it lown, and as the bridge lescen is and less balance is required, the weight of the chain, by falling on the hotlown is relucel accoldingly, li.l the kenilidge alone acts. In raising the bridge, exactly the reversa 0 : this takes place. 'The u eight of ench bri lge is abont 100 ton; ; one hialf or leaf is u:ctally opened or shus by riaree nen in h ilf a minute, but in an emergency two can to the work.

In comparing the balance with the swive' britge, it may be observed that ilse forme will work longer without adjustinent, an is also stronger, from bearing more firini upon its abimments; but it is nore affec ed by the wind, the original cost is greater
and donble the number of men are require work it.
The bridgres and lock gates were c.n ruciel by Messis. Hunter and Eouglisu WIlwrigh:s, of Bow, Lombon, wha desm redit for the canalse anl workmanak mamer in which hey execnied then cos. ract; the ironwork. Was cast at Alfe:on Derbyshire.

Quay. I'he part of the backing sor wid'h of a yard next the lock ant lock walls is composed of the best cliy o. loamy earth, well rammed, so as to be war ter-tight, and the topuf th- qual afterwatd. levelled and mimmed, with a leclination ot $\frac{3}{1}$ inch in a yatd from the sida of the rback coverel for a foo in ihichness with Hessle cliff slone and slangle gravel, rabil hat ving a pared chimnel :owards ihe ointsile, wi \bar{I}_{1} proper grates for the rabis xater The quay is nearly level whith the sireets, on the eas: side of the duck, but six or seven feet above them on the west sille, where it is supportal for a considurable disiance by a setaicing wall.
'There is a post and chain fence round the dock, atrout 15 feet from the side, and a radway is laid outsile the east quay, with in 5 feet of the foo path, 10 comriect the railways of the Old and Humber dock, as alieady noticed.

Mooring. Plan, On the east sin!e of the dock,
No. s. at interials of about tweary yard:- there are wrought iron moong rines, fixed in front of the wiall andernearb the coping, and coupled to a wrongist uron tie rol, the onfer rat of which is secured to a waling, behind a row of piling driven at so:ne distance back. The ring is prevented from beingr lified, by a wrongla uron vernical plate sunk in. and secureli in the stonework by means of hiee dove tatiled surew bo!ts, le, in o the wall. 'This mane being convex, and projecing a litile frow the wall, at the same time answers in somb ineasure the purpose of it febler. The rings make very durable and excellen' monings, und have besides the advantage of ketepurg the quatys clear of rupes and chains, which are always in annoyance to business.

The moorings for the other parts of this dock, in consequence of the Cumpany haviing liad timber on hand, are oak posts, aboit 18 feet long, and 15 tu 18 inches in hameter near the $t p$, fixid about 12 feet , roan the side of the dock, and secused by iwo Me.nel land ties, 9 by 6 inches, about $3 J$ leet lang, and diverging outward.s, like the letter $\overline{\mathbf{V}}$, so as to be about 10 yirds apart at the outer end, where they are buit ed to a sit behind piling, nearly in the same manner as the ring morings. 'The timber uiderground is all charred, fur preservation lhe muorings to the locks are eitner of imall cannoi or of Bramley-fill stone, 2 eet diameter, and are 3 feet 6 inches hish.

> Buoyr.

There are six buoys for warp
ing and mouring vessels in the lock; they are 6 lét 6 inches square, by s iet 6 sciesileep, made solid of mem-l \log, with a casing of 3 inch ir plarsking rpikec in tarred woollen felt, and the joints caulksd. 'lhe ring is securud to a wrought irou llooll driven through the centre of the buoy;
nderneath hang a shackle and chain yards ng. the lower end of which is fastened to strong timber framing bulted to iour pi is. 0 icet long, driven below the buttom of the ack.

There are two main sewers for draining the quays and some urts of the town adjacent; that on the cast ide of the dock is 9 fee: bilow the coping, und extends trom Whitefriar-gate to Mytonsate, where it joins the Humber dock sever. The uther conmences at the west ille of Whitciriar-ctrate bridge, and joins the inwn sewers near the Dock Compar.y's workshops on the west side of thie dock; its butiom is 12 to 13 feet below the duck coping.
'Ihe sewers for draiting the brilge pits re 2 feet wide by 3 iee lugh in the middle; tie pits on the east side keing 2 or 3 fiect below the bottom of the sewer, the water has to be pumped out occasionally : but on the west sids, the draiaage by the new sewer is effectual.

A scouring sluice near Postern gate cleamses the sewer on the east side of the dock, and another near St. John's church, that on the west. These slusces are both aldse, and of cast iron, 3 feet 3 inches wide by 3 leet high inside, slidıng in a cast iron groove in the face of the duck $n \mathrm{al}$, and worked by a screw: their totoms ure 9 feet beJow the coping, in I there is an oik frame w.t.l oiding duors on the outside to protect the sluces, which communi ate with the mai.i sewers by a culvert, 3 feet square. The sewer at Pustern gate tw provided with two of these sluicter, hy opening one ard shuttinf the other of whish, the scour is to the vorth or south as inay be required.

T'ue sluice ut the east end of St. John's Church was buill a the expense of the comunissioners under the My.on Improveinent Act; the water, atter passing alung part of the Cumpany's sewer, cleanses several others i!: Myton, and proceeding still furth r westward, dischargi s itself into the Humber at the general utiali in Lome-kiln Creek.

The pipes for supplying the town with water, which formerly were across the site of Wuitefrar-gate lock were removed while the works weie in progress, and laid across the cotter-dan., as noticed before. In luilifing the lock, a cavity 2 feet 9 inches wide by 15 inches deep, was firmned in the lace of the stonework, across the bottom and up the sides to the level of high water of utap tides, and in this cavity two 8 inch cast iron pipes were laid, and secured to the stonewark by a flanch cratnid down at each joint ; the space roun.l was then filled in solid with brickwork, and covered with cast iron plates, boited to the masonry. There are two bonnt p:pes at the niddle of the invert, made a litte deeper than the rest, to c ntain any sediment that may remain, and so furmell that the top can be talsen off and the pipe clea:sed by means of the diving bell; but to prevent any great accuinulation, there s a sinall chail inside t e piper, by drawing which backwards and for wards it is sup. pused the sedinent will be disturted, and carried away by the force of the water. From the level of high water of neap tides,
the pipes are buil inside the wall, and ear ried up in a sla tiane direction to the heipl of the under side of the coping, n-ar whithey are joined by the resular in ins liadin from the water work: int the town. Befin these prpes were used, they wer - prowed b
 to a pressure of upwards of 20 J feet u water.

Gamplpon. About the end of 1823, tho Hull Oil Gas Coupany r quest ed permission to lay a gas pipe uncer each of the Junction dork lurks; this wa granted them on certain condtions, aul the Dock Comping misu resulved til lay twi pipes in each place att t eir own expense. in order to prevent the possibility of a m , noply, and so at all times secure to the town and its environs a supply of gas at a reasonable rate: as the lock; wer: at thas time nearly completed, the work was atteniled with some difficulty, and inuch greatet expense than i it had been dune at an ear. lier period.
The provision mode at the two locks wanearly the same; we shall describe tha a Whitefriar-gate. In the first place, th re was sunk, on each side at the north end wo the lock, a shat or well 30 leet depp. steined with brickwork, at the buttom ot which an apertice was mad: muter the foundation of the walls (1) 1 c ceive the pipes; a trench was then eut ocross the butlum, and two row: on piles, 9 feet asunder, drıven down 4 fete belw the decksills; tiall.verse cap sills were next buited oll the ple head:, and blocking sills firmly spiked to them, on which 10 inch pipes in 9 fert length=, with s;igot and tiactit j ints, were, after being proved, land with a declivity o. 12 inches from side to side, to alluw the sediment from the gas to run to tar cisterns. provided at the bortom of the weils; the cistens that belong to the Dock Co ny.uly beng on one side. "nd the (i, Cimp.unt's on the other. In o.der tughat the pipes from injury, two lonyiturlmal sills. 9 in"turs wids by 17 inches desp, anl ex endur from wall to will, were fived, one on eatein side, out h: Hansverse sulls, and brickwork
 der side of the piper, which were then sur rounted with a $4 \frac{1}{2}$ meld brick rang set m Pallker's cemen', and the rest buil up with brickwork to the nonder .ide of the dungitudi nal sleepers, which were contected toge ther at topby conss ties. 'Ther whole was aff terwards covered with earth to tha? level at the lock boto:n, the openings unter the walls rlosely bricked up: anl the we.l coped and covered with oat plankmg. Tı, tar cisterns ware laid on large 6 uch fly and hid short preses at thes sile and top in unite with the horizontal anl fermcal get pipes; these pipes not having yot beell wanted, are sill unconnected with the stree pipes, but this can soon be done whear rt quired.

Breach in cofficrdam.

It has been before observed
that a preventer dans wat made across the Mylon gate lock pit; fir further securily, as soun as the suuth gate were hung, they were orlered to be se curel: braced, 10 prevent any iriupton water from the Humber into the new doc" The coffer-dam at the Whitefriar-gate lock
-ing lezs extersive, wis consiterenl safer
 grabes might be dispensed whh, but ha arate ir baving proaturely bega, o re

wibt t. texpedtle the complation it
orth, the coffir dita, beins: comed there \therefore ab was placed mbopardy, and it becam cesary that these grates stomill also of senrely braced. Thas precantion wis soo: sina.d to he of the uthosi advantage b.al , the work and for the safely of the shig, ng.
Thise followiny spring tites, in the mon ur oi 21 si Marelh, 18:29, tuere appeared ana! leakige whiter the cast end of thr uffrdan, w ich it wis attempe ! to sto, oy trialmes in at quatioy of tempered clay rit w.thun succe.se, as the lenk still con Inlien, anml in thee nours there were sever. 11 feet of water between the dann ind tho uck gates; the leakuge then moretse eery rapmilly, and tille. line above space so asi, that tor the sitlety of the grates, 11 w is nough alvisable to ilraw the slaices amil lat the wa er flow into the do k : abo. it in
 sere also spencal, 10 loner the water th wall dock, then about 19 iect deep on the ack sillis, III urler to raduce ine pressure (pon the Juacison duck giaes; but the o.each under the data soon atter b:cameso extens.ve a; to milermine the Old dack wall, and in the colnse in the furenson a rength of atho 1160 teet of at fill duxa. Thas in -ande mensure stopped the loak, and th: wace rose mure luily aferwirts; bal ha succoedurg thle it wats leaty on th.

Happenaige as it di, hear the con lasion if a areat wor: thit 0, ! besla so lai suc sesifulty carried ona, this in catent is io be re-

 of the temporaty bridge a wedk or t:o Inger, when the trorks would bave be: Il
 obe tilded with water in the regultir way; -e. lue dan ag: magh have beell minamely tre.z er, had not the Junction duck gates Nen ellosed and secured periolsiy to th: acend ut; it was this, iuleed, that pro remed the dima fion benar bluwn up 10 ogther, in what cise, frou the ircmenhou rish of wa er thr ugeh the lock, tu. consernencestuths patiol the work wond an all probability h we been :noil dianstrous, whate the shappuge inth. Oll dock at ar the lan mat ine nably have be enswen with rolence mo the luck, and mont sermua I Inatge been the result.
Oat weing aporised of this necilent, Mr. - Vaiser riphired to Hull wa haut luss a nige, und tim har the works so tarallancen hat they migh becompletel with the lis n! trelh, adsised the manedate removal o! wh cotfer-dans and temporaty bolilge and that he inat eibilis lef in the bsitom , 1 we luck anl locks should be whell oat b he bellat the same bine. He also teconi anded tha the Oll dork wall should b abilt up n pile., abis.11 11 feet beluw th少 of the wall, hatoge a yow of ciuse pi ig with a substamin. 1 wale in the from vell land-ued, whin crose sheppers ath planks over all; this was accordingly done,
ind a soone string course lad on lhe t. wit ing, uno whin the buck wall was - ecied mithe comse of hre or four weeks.
nem real of crapo
rury wous. In remoring the sen:porary irilges and coffer. iams, the piles litre puncopally drawn by we engine crabs, whith doble libeks and h.tin3, and so firmly dit they hold, that w.ne of them requirel sixteen inen wih mor crabs to move tiem, bu: in general ralf this power was sufficient; afier the mes were slarted, one clab with iodr men asisted thy-the hoyancy of the veter) ac. sumplath the busmess. I'he power apdied to some of these piles was rot less hata from filten to twelly tons. There beng occation in the course of the woik to draw severnl of the sheeting piles in the - bitefriar grate lock pro, a 4 inch ecrew wis usen, und one of the piles, 14 feet long oy 12 inches wide, requised, on the insit no! lerate calculation, a power of 18 tun; to draw it, the soll being nearly a puic sand; inother piece cold nut le drawn by even a gienter furce, mal a hole was dug round ir, bill the ollhers, bellig in soiter gemr, noved more ewily.

In examiting the sheenge pies when draw:, we formd the 10.1n!s (inone of which were slio.l) g neraly in ago d stace, a few, whach were dinem wo a sheer black s.mal, brusel a linke, in I some of the gruove , orginally 2 inches wide, increased 103 inches, fron háving been furced outwards by the tonirue in the had soll.

Afrer the dan ant hiilge piles were all diawn, an.l the part of the pudile above atiter removed, the remanimer of the pmilile and he ear.h at th: foot of the danis were lanen up by the iliedging inachines.
'I'he duck was publuly open. ed on the Jst of June, 1829, being litile more llan Iws years and a hald fion the commencenent of the work.

The Warnoworth haliar been reprosented the a good woter lime, the work was hegrun with inorlar malle fro.n it and salnd onty; bun from the bult state of similar moilar in the Hum. ner duek walk, when baken down, and from sonn: experiments, the lune "ppeared not to (1)swer the lescaphion given of 1 t . and Mr Wialker recommended the tront of the dor k in! lock walla, to be sel in pozzuolana nortar, which was accordingly done. At his lime the greatg part of the east wall of the duck, and a patit on the south side of Si. Jolun's Cnurch, were us high as the - Inder side of the stonework, anl it was ob. eerved that, now whthanding the thickness and the solulity of the walls, the water in ary wet wenther found its way through, of ihat they were exceedingly damp even i1) fromt, aid in several places ilhe water Herally ran down the face of the $n ;$ this vas ascribed to the uortar and grom not lardening sufficiently, as in all cites where tie front was s.t in puzzuol.ma mortar, athourh the walls were a linte danp in slaces, the water n-ver peatrated through. It may be proper in this place to state ry briefly the result of some experments "I various kimis of mortar, which were tade by the writer at Mr. Wilker's reHest. The sjuerunens were in small flat cakes, dried for a few days before being put
in'o water. Wib respect to the quality of is a course sand-stone. or mill-stone git, o' the line, but litle diffirence was fuand benwern the Warmsworth, the Wrlton, and Parburne; none of them mised on'y wi h sand ever hurdening in wa'er, but on the cou rary, dissolving quate in the cours of a few weeks. Exprimens were alsu mide with these limes mixid wilh stut an! pounded bricks or brick dnst: will sand and minion, or pounted iron scales; and with sand, pounded seates, and bricks, in varions praportions; bit none of thes. different compositionsshowed any tendency to hecome hard in whter, and were inde il little be ter than lime and sand only. S.voral specimens inade with the sane kinits of iinge mixed with simd and pozziolana in varions propartons, were then tried, and it was found that one of li:res, one of pozzus o'ani, and two ot sand, made an excrill nt morar, either in or out of water; bus, for ecunomy, a mortar conposed of two of lime, one of pozznolana, and four of sand, wats afferwards adoped, which, aldhongh it did not inllurate quile so soon, retained nie hardness in the water, and was b it very latle in e ior to the tormer. Some expert me its were also made with mort ir of Hat. ing lune and sand on'y, which, thon_-1 superior to that inade wi h the Warmswort? or Weldon lime, was by no means to be compared with the pizzurlana inortir, and as the expense was nearly the samue, there was no hesit.tior. in giving the latter the p.e er nee.
stone.
A few words d seriptive of the slone used way n t be i.t.pouper The Bramley-fill, got rom all exiensive quarry on the side of the Leeds and Liver poul canal, atont lour miles west of L_ed=,
is a course sand-stone. or mill-stone git,
in excellent quality. and in durabili y as buildi.g stone in a!! situatione, pret aps in ieniar to nume in thic comitry except sranim Kuk-tall Abluy, wheh is incar sesen ced turats oll:, is bult of i, and alltough t nuilding is now a ruir, the stunt general is very perfect and entire: The Old brillo of Leeds is buit of a similar ston ; thi: s ru to e has been twie wider e.l, but Il, origual part is very ancient, and still in: good sta e of preservation ; as are als. som \geq of the locks on the Are and Calde Navigation, which have been erected prar. than lity years. The B rusley and Whitby are buth tine sand-sones; the former a sharp grit, inuch in use lior grind-stones: they ire general y uned in their immediat nelehborhoods for budtling in water and atherwise, and som beds of each are very urabie; but they are tuth much interior in this respect to Bramley-fill. The Du:die stone used in the hollos quins is a fin graned close stone, very tard and durable, thongh on account o. its lammated s ructur, improper lo cup ner, and ii quitrri dalite betare or during winter timlable to be rent by the irust. T. ene wele several other kuds of ston brought on thice ground, naticularly the Mexboro gh, l.nt being of inferior quality, they were only usid in the invented arches of the locks and other parts constan ly under wa (.r, Wh:l tupon his subject. It uay be proper is observe, tha by fronting the wal's wilh stone alove: high water of ne p ides, bey na e bee: render d exceednyly thababla ins compar d with a lorwk lia ing. whout ti.ncertaliy adding to the experese.

Locke .
The pascige of a ship through the lock, including the cyening ad shating ot the irndere, usually vecupers bont live amintes, but liequenly bitle ore than halr that lime; six to a ieh heary uden shups, bereides small erati, have passd through Whelriar-tate lock in an hour, noj er time heiny also all wed lier the passugars and tuatic ovel the bridge, wh.ch is are very grear.
In stating the w ste of water, or leakage, t should be noticed that there are seren conring sluices besides the eight sluices of the ntran ce lor k gates. From a scries oi obeervations made on Sunlays, when there is no waste b locking, the leakage of t.ie thise docks is about three quarters of an incls per herur in spring tides, and half an inch in neaps.

Mud.
 The accumulation of mud in

the Junction Duck has hitherso been very hette, cerlaiuly not more than it the rate of an iuch a year; so that the total quan ity of innd in the three docks now, is wot st gieat as in the tuo dorks beretolore; alld as the steam dredger has now a ready communication with the different docks., it pertiorms tl.e whole work, the horee machme having been altogether dispeased with since 1829.
Sts:e of walle.
Having before described the
slate of the incrar in the Oid and Humber duck walls, I shall here give a very briff description of that in the Juncii a dork. 'Jle common tram merta , elecially that used tate in autumn, all sultiren more or liss injury from irust ; and ure pario it, so far as tice re has beell opportunity of exumining, has h therto, where

SECTION C. D. PLATE 20.

List of'S bscribe:s to the Rairrad Jourasl that have pil Continue
A. A Anord ff, Oxforil, Mass,
(O) Ji Garsom. Charleston, S. C.

J S Berbee, I:hic i, N Y.,
J M Birhour, Bertrand, Mich.
Fity hu in Coyl: C muherlind, Md.
J B. Arimib'e. Bozion, Miss
J R. Aliam:, Eust Brookfield, Mass,
J F. Hillyre, A h:ns, (ipo.,

Julv 1, 1832
J in 1,143
Ang. 1, 1837
July 1, 19:3x
Jan. 1, 18:38
J Iv 1, 13 Р8
Jaı. 1, $18: 38$

Agriculture, \&c.

Dis. H. Perrine. - We have again the pleasure of recemmer a letter, from Dr. Perrine; is is accompani-d by a circular anil \mathbf{r} solutions of the A gricultural Society, and Legislature of Luis :na, approbatory of his untiring efforts, in the catuse to whi h he has for many yearsi woted hir self, which we lay before our rea lers, in the hope that we shall thereby aid hi.n in his efforts.

We ask for the subject, the fitarable consideration of the members of the ensuing Congrress.

To the Euiturs of the New.Yor's Farmer.
Key Wesc, Thopical Florida, 23 h Jine, 1837.
Dear sir.-I lefi New. Orleans on the sth inst., reached Havata on the 1 tith, left that Patalisitical sie on the: 5 h, and arrivel at this calu.nniaed Istan I, on the 17 h , whall the speds and vegetable prod icts hrongit by ine, from Campoche. I inten led to poo:ee.! direcily io the vicinity of $C_{\text {If }}$ e F ori !a, in order tosow and pl.nt a preparatory nursery; but the news of the recent treach ry of the silvage seminoles, detained me here, and ther hosite apiearance all ilons the colst, from Cape 心it ble to Capd Cinaveral, renlers it inpossible to effect a location, so long as our government con inues to leave 'lropical Flarila inan entirely unprotectel con lition Thesub soll of has 1 land. appeins t, be co uposel of solat limestone:, and is soil of caleareous puwil r, colored by vegetabe moull. Clly y and sand, -ren for masonry, I ain ioll, bas to be importerl. and ver the smface of the Key is coveren with a vigorous growih of wool:, ennbracing varums vatua le to.e. lifees The celebral d Habi, or Cimpeach: 'Trak-a specie of l'iscidia, valned more highly in Yucatan, for the con itruction of vessels, than even the hee Oaik of the U. i e. 1 states, was one of the first which agreecinly excited my sumpree. But I will enter mot) details at an ther oppormaily. The principal obj cet of my pesent moldress is to transini you a copy of a i ircular froin the Piesident of : he Agricultural society, to the Agricultural sucie ies of such Southern States as hive one organize l, and to the G wernors of the remainder, which I beg you will publish in your next number. Daring a corre.pundence of several years fioul Campeche, and durng :ny recent visut of several months to Nex. Otlean: the Ex.Governor Roman, nas hal an armple opportunity of apprecialing :he value ot my suggestions, and of iny services, und I respectully hope that ail parrotic ve:'eculluralitis, wi.l confi.le in his testinony, and initate his example, by contributing their syrupathy an I iheir assistance towarils an enterprise, to which, unaided and alone, I have sacrificed the last ten years of my life.

Very respectfully. your
ob't surv', Henry Perrine.
tropical plants.
We are pleased to find that Dr. Perrine, late Consul to Cam. peche, has found able advocates of his praiseworthy iffurts to ac climate tropical plants in Florida, in the Legistature and Agricul. tural Society of Louisiana. The fullowing circular. to other Ag. ricultural Sicieties, and resolutions passed by the legislatur.; should meet with a hearty concurrence in cvery State in the Un-ion.-[Ed. N. Y. Farmer.]

New.Orleans, Junc 1, 1837.
Sir-I respectfully inv e your attention to the following resolution of the Agriculi: ra Suciety, over which I have tire honor to preside, and also to the a, pended resolution of the Legislature of this State, which were presented by a director of the Society. -

The preamble to the resolutions of the Legisiature expresses our motives for $\mathrm{t} u$: indeavoring to facilitate the persevering enterprise of Dr. H. Perrine ; and I may add, that my personal know!ed.re of himst If and services, induces me to hoje that the Agricultural Socety and tue Legislature ol your Siate may render uim some issistance, at least iowsirds the pissage of tase Bull all luded to, during the ensuing season of Congress.

Very respectully,
Your obt. servant.
A. B. Roman,

Pıest. Ag. Soc. Louisiana.

"Resoived. That the President of the Board be, and he is hereby autiorised, to make suci arrangements, as he may deem proper, with Mr. Perrine, for the publication, at the expense of the Socicty, of such part of his writings as may promote tie interests of Agriculture ; and to procure fron Hivalla, and other parts, t irough Mr. Perrien, such plants as in his opinion may be acclimated here."

The foregoing is a true copy from the journal of proceedings of the Agricultural Society of Louisiana, at its metting of the 7 th of March, 1837. N(w Orleans 27th of May, 1837.
(S.gued)

Eug. Linesseau,
Sec. Ag. Soc., Louisiana،
(No 90.) Resolution. Whereas, in obedience to the Treasury Circulat, of the 6 th Sepi. 1827, Dr. II Perine, late Americat! Con-ul at Cannpeche, has been distinguished by his persevering exertons to in: roduce tropical plants in the linited States; ant in hereas, the Committee of Agriculure in Congress, on the 22ll of April, 1832, did report a Bill to encourage the iniroduction and promote the cullure of sropical plants in the United States, by cunveying conditionally, in said Perrine, and his assuciares, a T'ownship of Land in Southern Florida; and where. as the graulual acclination of tropical plans in all the Southern and Southwesten S ate, may be better acrotsplished by their imunedate donestication in the tropical dietrict of Florida.

Sec. 1. Be th therefure resolied, by the Senate and House 0 Representantres, of the State of Lousiana, in General Assernbly convened, that our Senators be insiructed, and our repr.senta ives requested, to procure the passige of said Bill into a Latw, under such conditions as may beat coinport with the pub. lic good.

Sec. 2 And be it firther resolved, that the Governer, be in structed to forwarl at copy of this res lusion, to each of our 3.0 mators and k presentalives in Congioss.
(Signel)
Alcef. Labrancue, Speaker of the House of Represen'atives.

$$
\begin{aligned}
& \text { (Signed) President of the Senate, }
\end{aligned}
$$

Approved, March 11th, 1837.
(Signed)
E. D. White.

Guvernor of the State of Louisiana.

This being about the proper time for sowing Turnips, we ask for the following article, particular attention.

Frum the Gene.oo Farmer.
the turnip culture.
All Brittsh writers agree, that the introduction of the turnip culture into Grcat Britair, which is of comparaive recent date, hats contributed more than any other improvement in rural economy to the advaucement of agriculture. This culture is of very recent introduction here, and indeed may be said hardly yet t, have ubtained a iouting anong us. Yei fron the finited ex. periments which have been made, and from the rapid extension of the calture sithin the last two gaars, we have rea on to believe our climate and soil are well adafted to the growth of this rout; and that although it requires sume extra labor to secure the ciop fir winter and sprong use, it may nevertheless be cultivated herc to great advantage.

The benetits that result to the farmer from the culture of turnips, as a field crop, are three-fold, viz. 1. 'lhe, serve to ameliora.e the soil, and are excellent as a green crop, to alternate with grain and grass. 2. They afford the most animal tood, at a given expense, on a specific measure of land. And. 3 They
return the gieatest quantity of manure to the sonl. The turnip like tue conver and root crops genemalls, not only cxhmust the soil least, but make up for ths exhamstiol', it at nie sinte, by di vidng ind pulveazmg the sul, and fremorg it irom weeds. Althungh 20 tuns an acre bay le derned a buremaee crop, the
 come muse at a seasum when succuant to id is most m demand they are esten by itil kmla uf farm stock, inl constitute, In Brıtan, the proncipal materal fur wister filtening beef and in tona, It wall br seen mour March nu.nber, ilat turnip lieed is estimsted to add one quarier tu tae dung of the catte yird. 't hese consideratoms induce us to add to the licts we have already pablishe, in regard to the turnip culture, such others as maty iend to increase thear grow han olig us.

Soil - l'ae soil best adıste.l ℓ. t turaips is oí a dry brtomed, free nature, of so ne dejnis and lertilit. ; but, although dist.nc. tively tirned "turnip land," It yei comprises every species of
 vided it be ligat, dry and rial.s: conseq bintly extlusive of uranvy clayi. It must, now iv.r, be majerist od, thit alth meth the csunin root can se grow.l ou the μ imest salls and gritvels, yet taere are sulle arscie. w ilth requre stronger sols- even ri'r iree luanz; at they ail deamal viry carm ul cut are, with an abund unt su,ply of inanure. The plast delirhts in a "coul, tengorat: and noist chin ite," and thereiore will thrive best in the nurthern se. tion of the ualival and in elevated dis riets.

Species-Ilthough thiv varn.tes ure nu ne ods, the Brutish writers class the.n a.der tho hoals of white a id yell iw species, and Swedish. The latter his yaind a derolel preierence, on
 us alfordin; eirlier feed, and as e.adoling th.an t) nesterve the Siveles thll late win or and priseg tae ex easwe tur up arawers in Eiurope gencrally cultivates alsos the whate at yedow. The wh.te turmp:, -the wh.te ghone is pre erred -ate led tirs:; the yellow which ure richer, alld keepr onger thitl the white, particularly the A serdeen yellow, atre led next, anit the ruta bitga last. The ruots of the Siwedian are at least one thard heavior th a t.ie other species, and their tep, are so in.ich more palititble, that caste after beiner fed u_{p} po. thesm, wall not eat the comnon kuids, unless Inpell.:d by namger. In'y are heades in re harl! - a large quemity hivus stus sil the severo winter of $183 \mathrm{j}-\mathrm{j}$, in the
 tioned tait they were sown way hate, an I hil mot atained their na.ural gruw.h. They difel in ansutaer respert ti ma .13s. other ruots- the lirger they grow, the areater is thear specitic weight an」nutritive properties. We will add an:ther reaark-there vareties of the rita buga differng greaty' wexcelience. 'Tno true sort bas ye lowish flesh, a glohular shipe, and is without a stem, but it is apt t.s degeserite by we flesh wenoning whte or by the rrown ranning up into a stem of more or less iength. None but the trus kind should be emoloy. d or seed. Besid s, tho speci.s reguires a ricter soil than will srow the wher kinds.

SEed and Sowng.-I'te time of s swagg s ould vary accode ing to the kinl and eiinate. It has unen suggested, tinat if the white aud yellow were sown in April or May, as an Bratain, they
 and October. We do mot know tal t.se expermanthas bunn tricd, but w : doubt its saccess, $0: 1$ uccount oi the heats of our summer being unfavorable to tueir growth. From several years experience witil all t.ec kinds, we recommend for tais latitude, from the 20th June to tide 1st July for the mitu bagia; trom the 5th to tue 15th July for the yelluws and globe, and trom tue 20 tis to 3 ith July for the flat red and green top; the first of t.iese perio Is for cold soils, and elevated districts and the latter for warmer sit. uatious. For table use, where large size is an objectio 1, th:' Swedes miy be sowis in the carly part oif July and tae flat kinds early in August. Half a pound of good secd w.ll give plants enough for an acre, put in with a drill harrow ; yet as may seeds will not vegetate, and as the plants are lable to be d.stroyed by the fly, we generally allow a pi.und ot sued to tue acie, and some give double this quantity. Tise weel should b: full bolied ans black, the green and yellow ottea proving ubortive.
Culture. The dril culture is decidedly best for the Sivedes, and for the other large varieties, on account of the greater facility of cleaning and stirring the ground with the cultivator amang them. The British writers recommend plorghing directly after
harvest ot the preceding y ar. This woud be a waste of labor and of groanl bere. Liarly southern elovir miy be cut is tome to put in ev.:at t: S.ve lis sere, allo ir an all grain is oll the field If ere gracrally in thas: to sow to white a if yollow as a seco id
 tillas land, the inore recent the plougning and barrowing betore nowirig the better. It sowil broulcast, the ground siould be alierwards rollel, and tie crop tiand hoed and thinned us soon is t e plant; have will pat forth their first ruugh leavies. The man. ur:, whech should alw sys be apolied to this crop, is differemly applied. If long mumue is applied, we would prefer to hare it siread and coverenl with the plungh; though if it is applied moist or is inmediately after covering siturated with an abundant rain, it in ty be a wnitageonsly applied in tue d-ills. 'Pinere is a greater proprety in anplyi.ser sont manure, or bone dust, in the drill to this cros, t.antis to al:nost any utner, as the rosts gataer theif fóod witıun a lanied space. We have seen stort muck applied as a top dressing to the co mon tu onip, whe' sown broadeast, with the best effect. When exiltivated in the drill stem, with tie man. ure dejosited in the drills, the usual distance between the rows is twonty-serell to thir y inciles.

I sow hy, the drill hariow, of wioh several kinds are now for s.le, is t te best imptement to use. A man walks briskly forward with one o. t,sese betire h.m, projelle.l lake a w.seel-barrow.T.se drill is made, the seed sown, covered, and by some the ground rulle: as ne advances. Where this imphement cann ot be had, a small im,lement iom d like a pepper-box, with loies at o.re end, and listened to t.se end $a_{i}{ }^{\circ}$ a walking stick, and follow, d hy a min with a rake to cover the seed, may be substituted. Now $\mathrm{u}_{10} 0.1$ the fircosil stirred soil.
'Ihe lo!lowing artiole from the locing Island Star, should be read by every young uan who would be the architect of his onn turlane.

The certain Rewards of Industry. - Me remember readurg sonse time since, the inem ifs of a cort in bookselle.; naned Lickingron, who lived in Lumdon. He was eatly apprenticed to a shemaker, and indisinitusly strved eut his appremueshup. He pursued this vocation for some thme alt. r" a ds, working at vaiuus places lor a bare subsistance, and at length mariced a wite us p aur as hinself? ' They endured sickness and privition. At length La kington, who had some penchait fon book-ellin!e, opelied in shop in an obscure part of London, with in fow buoks on divinity, and at the sane tine wrought at lis trade. He made a lew pounds, and gaining connidene, enterel upinn bokseling alto ether. He coninued t., grow prosiero is. His store at lengh becante iminense; he r.de in his coseh, and died exactly at the age of three score and ten:

Lhe st iry of Lackington nay he of much tise to society. It resembles in some points taat of our coustr. man Frauklin, but stalı Latckington was u very differe.t man from the American phalusupacr. He never wisula bave encountered any hazard in the pursuit of sciesce. "His soul proud sidence never tanght to stray." He kept pludding onward, in the accustinn ed rotine of his bu iness, and leaves his history as an example of the ben: chis of quetly sticking to the shop.

Of tate y (ars with us, as with the olden nations; the pursuits of hunble industry steem to have been despised. Many have been led to look to stideten nfeans of obtaining weal h, and have turned from the beaten track of soil, to untrial but more attractive path.s. Some have been l.st and many bewillered, and thuse who are able to tind their way back to the quiet duties of useful stations, will hot soon be ikely to violate the rulcs of pradence, for the sake of trying ambitius experinents.

Evenin countries wiere iristucrainc distinctions prevail, great respect is pai! to men of susstanti.! churacter, who can show that by la.ur, and patience, a d seli-denial, at tie outset, they havo at leng h vonqueted fortune and usquired th. contril of wealth. Such indinduals, to , feel the contort on tiat chiracteristic of innd which is called independen e. 'They have wrought for them elves - they bave risell by their own exertion-they sustain theisselves upon tivar own wings. Such independence should be the commun exertion.

It is becoming too general with the paople of this country. to despise the occupations which require labor. Men mrould hsvo
ther chiddren tenh race prifersional men, or mere nullities, rather than furn their munds to uselul trades. We need no: epforce the principle, that it is better to encomrage humble deore: and innre useful aspiration. It the muid, :fter the body habeen disciplined and suited to habits of paticut toil reses to a different and higher range of dities, the humility tron which it arose, but adds to the pride and elavation of its coariug.

The great ain of every man shuuld be. to render h mself useful; and every man who has the steadfast ess which will enalle him to go per everingly throngh the labor of a few year , 'inay attain competency alucst with the certaindy of a mathemalical demnnstration. In oider tof follow ou the plan, liere must be a resi-tance of all temptation to turn aside, a ready subussi- n ti) unavoidable disasters, a continial effort to build up and increase - in briefi, an unvielding deaire and effict to do one's duty to society, in the regular pursuit of a use ul vneation.

We think it would be of benefit to many ruaders if a new edition of the life of Larkington, were published; for whle the moral of his industry is very forcible, the moral of some of his errors is not less so. He sutforrd from heing mdused to act the puliticia:s-he felt the effects of time and spirit sacrificed at convénticles.

The lite of Fraskin i= one no less than his of constant indusiry, tiut it is characterized liy the firther offint- it mind and genius, which without diverties him from his practical pursuite, enlarged the sphere of his u efulness.

Ramisnes. - This root bring lablie to be paten by worns. the following method of rasing them is reccmenended in the Farmiers' Assíitnnt: "Take equal quantities of buckwheat bran and fresh horse rlung, nud mis them well and plenti ul y in the soil by digying. Suddenly atier this, a great ferinemation will bir produced, and great numbers of toad stools will sprı gig in fortyeight hotirs. Dig the ground ever a;ain, and sow the aced; and the radishes will grow with great tapidity, and be free from the attacks ol inserts. They will grow ur.commenly large."[Broome Co. Couricr.]

Adyerifements.

MECHANICS' FAIR.

Notice to Mechanics, Aitisuns, Manu-facturers, \&c.-The undersigned give notice that the first Ammual FFAIR of tue- Massachusetts Ciharitable Mechamics' Association will be held in the city of Boston, in September next, commenciug o:s Monday, the 18t i. and continuing at least three days.

The Association have placed at tie disposal of the Board of Managers, the sum of Five Tiousand Dolurs, to enable them to coaduct the Fair upon a liberal scale ; and they hope to be able to render satisfaction to all who may feel disposed to offer articles for exhibition.

Medals or Diplomas will be awarded to the owners of all arti. cles that may be deem-ed worthy of such distinction; and the Managers intend that the strictest impartiality ard fairness shall be observed in the distributioa of Premiums.

Tin Managers, in furtherance of the -nbject tiey have in view invite contributions. of articles from eve. y^{\prime} department of indus. try ; of choice specimens of American ingenuity and skill ; rare and v.luable donestic productions, natural or artificial ; the delicateand beautiful handiwork ol females; use.ul labor-saving ma, chines, implements of husbandry, and new models of macninery in all their varieties.
Judges will be appointed to eximine all articles offered.and the managers will award a gold or silver medal, or a diploma, to all articles that may be pronounced by the judges worthy of reward.

Articles intended for exhibition, must be delivered on or be fore Wednesday, Septem ber 13 th .

Arrangements will be mude to exhibit, in operation, any work. ing models that may be offered, waich will render the exhibition useful and interesting, and the managers respectfully invite coatributions in this branch. A careful and competent superintenden' will be appointed to take chare of all models sent fur this purpose.

Board of Nanagers.

Stephen Fairbanks, Jos. T. Buckingham,
P. S. For any furt ier in'ormition ad dress JA MES L. HO. MER. Corresponding Secretary, Buston.

Buston. March 24, 1N37.
m29-tal
thansactions of the institution of civil engineers of great britais.
The first vo'ume of this valuable work, has just made its ap. pen ance in this cuuntry. A few coijues, say hrenty-five or thirly only. have leen sent out. and t .ose bave nealy or quite all been lisposed of at Icn dullars cach-a price, altiough not the value of the work, yet one. wiach will prevent many of our you g Ea; gineers from oosessing it. In ordurthereiore, to place it wit is their rach, and at a convenient price, we shall reprint the entire work, with Il its enagravings, neally dune on woot, and issue in six parls or numbers. o: abont 43 pages each, which can be sent to Tuy part of tie Unite I States by mal, as issued, or put up in a volunie at the close.
Tue price will be to subseritors flirce dollars, or fire dollars for two copice-ularays in adrance. Tre first number will be ready for delivery early in A rul-Subscriptions are solicited.

AVEKY'S RUTAKY S'EAM LNUINLE.-AGLNCY.The subscriber offers his services to gentlemen desirous of procuring Stean Eugines fur driving Saw. Mals, Grain-Mills, and other Manufactunieso any hind.

Elugines ouly will be lutuis:ed, or accompanied with Boilers and t.senecessary Machinery for putting them in ojeration, and an Engineer always sent to put t.sen up.

Intormation will be givn al all tuncs to those who desure it, either by 1 -tter or by exinibiting the engines in operation in thiscity.

Inquiries by letter should be very explicit and the answers shall be c fually so.
D. K.MINOR,

30 Wall-st., New York.

FOR SALE AT' 'THIS OFFICE,

A Practical Treatise on Locomotive Engin's, with Engraving:, by the Chevalier De Pambouh-150 pages lage octa-vo-done up in paper covers $=0$ as to be sent by mal-Price $\$ 150$. Postage for any distance under 100 males, 40 ceuts, and 60 cts . for any distance excecding 100 ms .

Also-Van die Granff on Railioad Curves, done up as abore, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as abole.

Also-Intruduction to a view of the works of the Thames Tunnel-Price fifty cents. Pustage as above, 8 cents, or 12 cts.
*** On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mal to any part of the United States.

DRAWING INSTMHMENIS.-E. \& G. W Blunt, 154 Water street, New-York, have received, and offer for sale, Drawing Insirminents o: superior quality, English, French, and German Manufacture

Tuey have also on hand Levels of superior quality at low prices.

0 . Otilers receired at this office for the above Instruments.

C- I'O RAILROAD COMPANIES.

A PERSON expenencerl in the construction of Locomotive Engin s (many of his Manufacture heing in surcesstul uperation on mporiant Ruiruals tht the Unted Intes) and whis likenise Hroroughly acquained with the manarement of snch nachines, and, indeed, the rnlite orthal of Ruilroads, is d rirnus of esb aining the shuation of Geseral Superintendant on soune Rai ruad, Sou h ur Weal.
The most satisfactury tes'imonials of character and capability can it epo-duc-d. Connmuaicalinns add ressed to the Ediurs of this Journal, nativg tie lucation of Roed, \&c. will meet with prompt atiention.

RAILWAYIRUN，LUÜUMOTIVEs，\＆c． TIIE aubscribers offer the following artictrs 10
Railiway Irun，flat bare，whth cauntersunk holes ant salured jumts，
3^{50} tons $2!$ by $8,15 \mathrm{ftin}$ length，weighing $4 \frac{1050}{\text { inio }}$ per ft 250＂
70 ＂ 11 ＂ 4 ，
$\begin{array}{llll}80 & " 1 & 14 & \\ 90 & \text {＂} & 1 & \\ 90 & t,\end{array}$
with Spikes and Solicing Plates adapted thereto．Tu bo zuld fien of Juty tu slate govermaeats or incor porated companies．
Orders iur Peansyivania Builer Iron executed．
Kail Rnad Cur and Lorcunative Eingins＂＇I＇ires， wronght und turned or unturned，r．ally to be fitted on the wheels，viz． $30,33,36,43,44,54$ ，and 60 i aches ainmeter．
E．V．Patent Choin Cahle Bults iur Rilway Car axles，in leugth of 12 li．et 6 incher，to It litet $\%$ ， 21 3，3t，34．31，and 3z inches hl waeter．

Chainy for laclonal Mla ned，shores nud stany links， manuiactired tronase E．V．C＇able Bolts，ant proved at the groverest stram．
India Rlubaer thpre for Inclined PI anes，mada frum Ncw לrealaind thax．
Also Pateut IEmp Cordage fur Inclined Planes， and Canall I＇oving Lines．
Patent Fell urr plachug hetween the iron shair and ston bluck oi Edge Railwuy
Every descriphium of Riliway Iron，as n ill as Lo－ comotive Engines，impurted at he sthertest unoice，by the ayency of vise of oar parme ${ }^{2}$ ，who resides in Figland for this purposie．
Ahshly respeciabue Amorican Eingincor，resides in Eingland for the purpose of ta ipecting all Larco．nne tives，Machinery，lial＇ivay lrom stc．urdered ilarough ns
23 if
A．\＆r． $1: 11.1^{\circ} O N$ \＆CO．，

ARCHIMEDESWORKか （ 100 North Mour streel，N．Y．； New－Yивк，rebraary leth， 1836

TIIE undersigne． 1 begs leave to inourm the propric－ tors of Railroade that hivg are pre，raped to thrabsin ath kinds of Michinery for itaitruals，L Acumative timgin＇s
 fal uperationan the Cuahten ann A Amboy katroad， mone of which have banked－C＇asinggs ut a！binds， Whaels，A xles，and Buxew，idenisited aisfortestantic？ 4－ 111

H．R．UUNHAM \＆CU．
MACHLNE WMRKS OE ROGELS， KETC＇HUM ．．ND GRUSVEiNUR，l＇meram，New Jersey．The andersighed recenve orde pa fur ine ful－
 superiur descriphon in every paracuar．I heir works beng extensive，and the uninoer ul hands＂hpluyed being large，they ure mathed to excecuse boht harge and ainall urders with promptncsa ant deapatch．

RAILiday WURに．
Locomotive sieam－ビughes abs l＇entlers；Driv． ing and other Lecomative Wheeix，Axdes，Eprmis and Flange lires；Cur Wheela of rust iron，hum a va riety of patterns，and cinlly；Car Whe ts of castirsm． with wanght lires；axles of best a merican refured irunt，Springs；Boxus usu Bulte tur Curs．
COITSUN WUOL A \D FLAX MACHINERY，
Of all descriptions and of the nusz improv d l＇ab－ tarns，Stylo and Workmanship．
Mill Geering and thllwright work generally； H_{3}－ draulic and uther Presates；Press screws；Callene dors；Lathes and l＇uols of all hindy，Irull a！nd bra：a Casuingy of all descriptionz．

KUGELRS，KEACLIUM \＆GRUSVENOI
Pallersun，Nenadersey，or 60 Wallatre． $1, \mathrm{~N}$ ．

＇TO RAIJ，ROAD CON＇RACIORS．

PrOPUSALS will be receiced．at the nifire of the Hiwass se Railrous Cuhle，in die thwn of A Thens， Tg Nessee，muil sunsel，wi Muiday，Juno lith． 1837 ；for the grasing，uasoury nud bidgax，on tha purtuth of the iliwasske kailugid，which ing bu
oween tho Hiver L＇eniessue and Hiwassee．A dis－ twice of 40 miles．

The quantity of excavation will be about one mil． ipn of cubic yards．
The line will be staked dut；and，logether will draininge and spacilic．atiuls of the wo k ，will b ret ly for the inupec
the lat day of June．

JOHN C．TRAUTWINE，
Engineer in Chief Hiwasuoe Railroad．

FRAME BRIDGES．

TIIF，untlersirined，General Agent of Co！ 2．11．I．ONG，to buill Bridiger，or veml the eight fil
 mbiom thailooal atid Bridge Corporations，that he so
 watorials for supersirneme s olih kimb，oll any pars wi the mated suates，（Maryland vareplod．）
Bradges on 111 －whose phanare to lev scen tu the pil． luwi ghlosealities，viz．Ont the naini roaill leading rom Halamore us Wialung：na，twes miles fronn ilie firmer place．Arrows the Methivamieng river on ：he Mati－ kary r－uall，in Halle．U i the namonal ronal in llinois， as sundry piinte．Onthe B． I^{1} imore and sitsquehan－ ina Itrailronal at threo pointa．Un ilie lludroun am Pamesman Radrind，intwonlaces．Onthe Burthanal Wurcester Ruilroud，at several points．Un the Bus－ lon and I＇rovilencer Kailroad，ut stindry pinins．Acrines
the Cinnuw
 thecticut river，at Haverlitl，N．II．Across Ihe Conl－ urerouh river，at Hsweck，N．II．Aeross the Au－ drumengin iiver，at I＇urner Cerure，Mane．Acrass the lismmebee river，at Waierville，Maine．Across
 Yew－York．Acruss the Whithere，at ha foril 11．Avruss the manha of the lsrux́en stran（jepk，

 Brifge at Upper sill Water，Uronu，Maine．Thu
 20J feet．It is probiably the
skiocis ever buill in tuericu．
 betwe：n twenty and thiry liailruad Bridera，nad se－ varal comanus bridges，netwial of which are nuw in progress of comsirnction，the subscriber witl proniphly－
 and on libral terms．
Ruhealer，Jan．13：1n，18．37．

ALBANY EAGLE AIR FLRNACE ANU

 Macifine sllur．WILLIAM V．MANL manuficitures to order iron cistings fur tiearing Mills and liactorien on every deseriphion
ALSU－Stemn Engines und liailroad Castings every lesprophion．
＇Ihe collechon of Patterns for Marhinery，is mu equalled mathe thited Situes

NEW ARRANGEMENT．

ropes for ticlined́ planes of railruads
WE the subsicribers having formed a co－parinerahip，mider the style and firio uf Fulger \＆Colenili，for the mannfateturing and selling of Ropes firs ineliu d－plan－s ot reilroads，and for oblier usis，offer tusupply＇ropes fur inclizeci planes，of ans lengih required withath splice，at shart notice，the mathufacturing it curlage．heretofure carried un by same aup rintendant ant machinery ure enuplayed by the new li in hat were empluged by S．S．Dirfee \＆ Co．All urders will be promprly att niled to，and ropes will ise shippen to any pura in Ilie United Mates．
 Sate of Nuw－lork．
$33-18$ ．
ROBT C FOLGER．

AMES＇CEIEBBRATED SHOVELS； S＇＇ADLES，\＆c．

300 dozens Ames＇supetior back－strap Shovels
$\begin{array}{llll}150 \\ 150 & \text { do do do plaiil do do } \\ \text { do }\end{array}$
150 do do do eastateelShuvels \＆Spades 150 do do Gold－mining shovels 100 du du plated Epalies
50 to do sochel Sluovels and Spades．
Tars steel with Pick Axes，Churn Urills，and Crow Bars（steel bointed，naminetur－l from Salivhury re Wiatm hythe manufnciurng agrint，
WITHERELAL．ANES \＆EO．
BACKUS，AMt＇S \＆CU．
N．B－Also furnished tourder，shapes of every de． srripion．madefrom simishury＇refined lrun v4－if

STEPHENSON，

Builder of a superior slyle of Passenger Cars for Railroads．
No． 264 Elizabeth strect，near Bleeckeratreet， New－lurk．
RAILROADCOMPANIES would do well to exa mne these Cars；a specimen of which may le spell
inn that part of ohe New．York and Harlaem Railroad now in operatios．

PATENT RAILROAD，SHIP AND BOAT SPIKES．
＊＊The Troy Irun भnd Nall factory kechespon． santly fur nule il wry pxt usive aesurmadmol hrought Fifics and Naids，frollt 3 to 111 inches．manufneturd by the wutuseriber＇s l＇atu Ma Mitury，whelh atser live gears encreastiul＂pingion，anil hin nimsas uni－ versml use in bloe（＇niled stater，（an wellan linglanil， wh re tho dubserim 5 ohained a pateut，）use fulsid suparmir tu saty ever intler．d in markit．

 ruls lu any absunt and om atosi motice．Almon wll the Kuilfonte nén in pringrise ill the timited siatis are last ned wilh spikes umide at the above manard fac ury－lur which purpuse liey are fuund invaluable as their aliliesion in saure than duuble any conama spikes mall－ly thr hammer．
＊＊＊Allordirk diricted to the Agent，Troy，N．Y． will be punctually attemird to．

HENKY BURDEN，Agent．

Troy，N．Y．，July， 1831.
＊＊Spikes are k．ph for sale，at factury priers，hy I a ．Tunnsernl，Abally：And the principal Iren Ner

 waril ileeir orders us rasly as practhable．ax lie sub－
 in tu hrep pare with the daly increaring de rand bio bis Spikew．（IJžu日）II．IITKUEN．

IO CONTRAC：I ORS：

JANIES KIIER AND KANAWHA CANVL． Tht．kt：is sil！a large antumb of mecharical wor
 hoprowempht，cosisisulug of twenty lowhr，ahout－＇tie

 T＇lic lucks and aquiduits aie to be lovili of ent shane

I he work cont acied for unnst be fimshed by the Ist Nlay－f Jily， 1838
Prerouns derirs s of obtaiting work are requested ＂uapply at the ollide of the unireraigurd in shere enty of Kiclimunl．betur．＇＇the filis enih ol May，ur belween the fifith and the filieenth of duly．

CHARI．LS EILLET，Jr．

$$
\text { P. } \mathrm{S}-\mathrm{Th}
$$

Chef tingin＂er Jas．Kiv．d ha Co．
raliey of Janes hiver alove kicho munc is hoaldiy．

16－10t
＇IO RAILROAD CONTRAC＇URS．
SF：ALED proposals will be received at he uffice of tite Selina and＇l＇mnessee kiver lanil－ road Complang，in lie town if Sit lma，Alahuna，for
 and Tenhesse Railroad Prupesals for the firs．rix
 Iroyiosals liur hie ensuing 3.1 miles，nill be reancd after the toih Mav，nut will mit be exnmined mutil th．Ist of allgust nexi；when the wurk will he ready or cuntract
The line，after the first few miler，purnuing the fat of ilie Mulbur．y Cret k oceupien a tegion of conntry， lonsing the repute of bring highly hearintia．It is free frulll pronds and swamps，and is will watered－

 The ellire tragth of he line of ihe Sel a und＇Jen－
 eraliy thruugh a region as isviorab．e for health as any in the Suuthe in Cuntary．
Owing to the grat interest at stake in the success ol this enterprixe，und the momomit of capial alicady mbarkid in it，thix woik ranat nece－saily procted whitidur，an ilinvite th a athenion of raell dit indus－ iry and elle ruiser，beth at ile Nurth and alst where

 cenimimed ell pioymem，and ine rhaiaclir of the sult
and climate，a wide and debirable lield to the cunt and rlim
traclur．
raclur．
Prupusiln may be ajdressed either fil the suhseri－ bir，ir to Gencral Gi．bert shearer，Presiden：of the Compasy
ANDKEW ALFRED UEXTYR，Chief Engineer． Si Ima，Ala．，Ma：Ch 20hh，J8：\％．

KOACH \＆WARNER，
Manufarturepsm OPIICAL，MAIHEMATICAL INI PHILUSOPHICAL INSTRIMMENIS， 293 lis raa way．New Iork，wiln krep constamly on hand
a largo und general assoriment of lnotruments in their W．
Whulesale Dealprsand Courtry Mi reliants sapplied with si liVEYING CON1PNSAES，$B+K$ Kintr TERS，THLhNOMETHRN，\＆ce \＆e．of theit Own mannfacture，wurranted accurate，and at luwer pricea han cau he houl atany uther extablusbruent．

A THRICAN RAMLTOA
 JOURNAL. AND ADVOCATE OF INTERRAL IMPROVEMENTS.

PUBLASIEED WREKLY, AT NO. 30 WALL STREET, NEW-YORK, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVANCE

CONTENTA.

Keport of the Tonawanda Railroad. . . 43
Report of the Vandalia Railroan, 454
Communication on Preservatios of Dead Bodies, . 485
Minagement of Sheep, 48^{5}

Tpopical Platts;

Usclul Educution
Specification of Patent ; \&r. - . . 487
Bartram Botanic Gaiden, - . . . 487
Practical Draining. - . . . 490
Ques inn respecting the Fecnomy on cutting up eor, \&c. 491
Communication on Poudrette, - - 472
On an improved method ol making cldver-hay ; \&c. 403
Itrms,
Alvertisements, ! - - . 4 ? 5

SMERICIN It:HLIROID JOTIRNIL.

NEW-IORK, Δ L'G ST 5, 1337.

We in end do to have complet d. in this nu nber, the long article un the "Hirbour aad Du:ks at Karston up in Hull," but hive been disarpoin:ed in the engratings. It will be coucluled in our pext.

Tonawanda Rareroad, or as it might, we think, more anpropriately be called; the Rochester and atlica \mathbf{R} tilr nad. Wn puilish in this nu n'er the rep irt of a commmitee to the sturkholders of this road. This is one of the several reads, or coulions, which are to constinute tho great thoroughfare letween the Hudson aud Iake Erie. That part of the roal be tween Rochester and Ratavia has been complet d and is now in uise. We ask for thi- ropitt an atteative perual, a; $h:$ ras 1 has been con-trucied by, and on the plan of, Mr. Elisha Jubason;
 number of the Journal. We hava receivid, from Mr. Johnson, a reply to thoje strictures; loge her wih the lliztrations of hiplin of construction, which we shall publish in the number if week aftor next. It is clelayed un il then that we may complete to our next number, the long article tron "the transinctious" on the Hull Decks.
aEPORT \&C. TO THF BOARD OF DIR. CTCRS OPTHE TONAWANDA ralleroad company.
The Committee appointe.t, at the last meering of the Board; oreport upon the prosent sitution and probable prospects of :his c rpuratioin and the woik in which they are engaged, sub:ail the follosingrs statement:-
The Tonawand, Rallroad Coztpany wis incorportled by in Act of the L gislature of the State of New-York, passed April 24:h, 1839 . It is withorised " io consiruct ame, during ins exis ence, in min:an and continue a fallom with a single or doulte track, wal whith such appenl.ggse as may be deemed nees-ary fo: the cmarment $u \in 0$ o the same, conmencing at an elapble p milli wi th the vilatge of It sehester in the cuinty of
 t uno g the valley of hie: To saws s la to A'tea in the counts of Ge.ses e.; The durat on oi 1 is charter is fifty yeans from the day of its passage. T.re: capital siock is five huudred thousaud dis ars, diviled hito s arares of oak hundred dolla s each. Tue
 this Stitt-avorable from its. daratom, and from its entire fireedonf from any re licit.ous as to carryong proluce, o. the price for c.rryine produce or passengess. The book, lor suberytion to t © ciphial stock or tuis co.n, nany, were onenel by tac Commis. sumers apponted un ler he cantiter, 0.1 t wionteentu day of Au: gust. 1-i33; mid, o. t tat day, tae w.ole of hue eajpital stock was taken by nimety-six subscribers. No effort was made to procare sub.scriptio is to t.se capital s:oek, fron abroad. Individuals resicti.g in the section ol coantry itl witic. 1 it was coatemplated the roil would ine located, knowing tae importance and leeting confident of the success of t.se e.tterprise, duternined to take tie whole azard oi the oxperiment upoa taernselves: Tiey justly t.ought taat they could turus, thin better evidence to distant caiphalists, w.o. ic and t.rey migit whut, of the value oi tae stock; thath by suca maniestatio.1 oi t.eir ava confidence in it ; and it is writt of remark, t.at tais w ole stock was readly takea in ä single diy, and aiter a very s.iore notice, by perso.is w.ou had tae
 mediatc vainity of t.se work.

Immediateiy ufer thit: distribution of the stook and the election of the fint Board of D.rectors, Bing neers of skill aut experidece were employ d to suiv y and rupurt uion t ie ino theligibie rodte
 As the line of tae road was wot uteined, in tite charter, wint any particularity, a wide and amj le field was lefi opua for tue selecwora of the mo't advautagrous iouie: This gave risi to tie necessity of several survers ind estimates, und lurainhed grod ad for aome iifferences ol upinio. a as thtae proper roite; but afier the ree: orts und estimates of the d.ffer at tonginmers were carviulty ex: anined by tue Bourdj tieu lute oi tue route was finully acitide in
 for the acquisition of title to the necessary lands for the construc tion of the track of the road; and, this having been accom;hished the construction was commenced laic in the year 1834, and vigor ously prosecuted during the two following years, and finally opened to Batavia in May of the presert year. Elisha Johason, Esq. of Rochester, was selected as the Chief Engineer, to direct the construction of the road in that capacity; and ths track of the road was mude upon a plan believed to be heretofore untried, which wasinvented by Mr. Jonnson, and adonted by the Boardo Drectors. His plan consists in making a frame work of heavy timber to stistain the grade of tion road and support the embankments, upoan which frame work the eath for fill ug the grade was transported. Large posts of twenty four or thirty iaches in dia meter, were placed upon each side of the track, opio:itc to each other, so as to sutaial the eide timbers of the track. These poits were permitted to enter the carth so as to stand firm upoa the hard ground, and were scuared ot the top. Wach of these sets of posts was about ten feet apart. Upon the toj) of these posts, were laid transversely sticks of timber twelve or fifteen inches in diameter, morticed on the upper side, near each end, so as to receive the longitudimal timbers. The longitudinal timbers -being from sixteen to twenty inches in diameter, smoothed only upon the uppdefides, and intended for the support of each of the rails - were let into the mortices of the transverse timbers, and supported by them and the p.osts. This, where an embankment was to be made, prescnted a substantial frame work of the proper grade. Upon the top of the longitudinal timbers, proper wooden ribands, as a substitute for iron rails, were laid. Railroad cars were provided to carry earth, with four different boxes eaci, turuing upon hin. ges attached to the car frame so as to discharge the earth both between the rails and over the outside of each rail. These cars were loaded with earth nt places where exeavations were necessary, and transported by horses upon the railroad track, and emptied, withont any delay, to make the einbankment. 'The same frame work of timber, with the exception of the poots, was laid where excavations were to bo made. When the road was fiually prepared for operation, pine scartiing, of the ustual dimensions, was laid ufon the longitudmai timbers, and the iron-plate rail up. on the scantling, and ell securcly mailed togetlier by ineavy spithes seven inches long.
We have reason, from experience, to be very muc:a gratified with this plan of construction, es simple, economical, anl durable; and we cannot but feel very much indebted to Mr. Johnson, the Engineer, for the ingeruily manifested in its successful application. In a country like ours, abourding with timber, it seems peculiarly applicable. The removing of tho earth upon the raitroad itseif, was a greit saving in the expense of team; ; and the facility and ease with wiich it could thes be transported consideable distances, caused the excavations and emibankments both to be made with as expense very liate enbanced fiom what either would have cost, if inade in the usual mode. Tie whole timber wor k , with the ex ception of the pince seantling, is covered with cauth, whiels will prevent it from speedily going to decay; and as the frane work and embankments mutually support each oflher, it must add mi terially to the strength of the rual. Much of this road has stood the test of two wiiters and has exhibited the effects of frost much less than the common wool roads; and we are satisfied, from t:is experiment, that the plan adopted is preferable to that of any road not made of more durable materials. The sume experic::ce has enabled us to pronounce. with great confidence, that the yealy expense of repairs will be mucia less than upoa other roads, while the danger arising fiom cars ruming off the track, is nuiuch dimi. nished, oy the tact that it will, in suich case, have a sinooth road ot eartu to run upon, unobstructed by any cross timbers atore $\mathrm{g} 0 . \mathrm{n}!$.

The construction of tice road was commer:erd nt Ryelester and finished through to Batav.a, so as to be put in operation for the whole length of tue line between those two, laces, in the month ot May last. Tho length of the ioad is a fractio: over thirtyone and a helf miles. Thue line oo the road is nearly straight, su nearly so that the track of the rod between the two plates, is shorer in length than any travelled ioad which was betore usei for commusication between tiee tivo points." "There are but fe* curves in tile road, and thóoe are so sl git as to bo scaicc iy percep. tible. The arerage asceni is about tícive fest to the nile. Thie grad- has tren of comparatively casy constuation, excent in the
se sto: near Batava, waere two heavy excavations and two considerable embankments greaty retarded the completion of the wori. Seventy diollars per share have been paid in upon the stock, making in the wiole the sum of three huidre 1 and fitty thoozsand dollass. Thiere have been expended by the Company, re urly three hundrej and seventy five tl:ousand doliars. In addition to the expenditures upon the rond itself, the Company have purchase 1 lands in Rochester and Batavia for the necessary purposes of the road, to the amonnt of about twenty thousand dollars. They have erected an engine house, machine shop, car houses, s'uops for makiug cars, and other buildings in Rochester. They have a ware liouse ufon lards purchased by them, and also occupy another ware hoase hired by them. They have two locomotive engines, ten passenger cars, and a large number of freight cars. Since the opening of the road, the loco-motires make two trips daily betwcen Rochester and Batavia each way, with passengers and freight. The passenger and freight cars were made in tie Company's shops. In their shops are also now manufactured wheels, spipnings, and other artieles for furrishing railroids; an lit is not improbable that this Company will hereatiter manafacture all such articles for railroads west of us.

Your committee have endeavored to make an accurate estimate of the cost of the railroad, so far it has been constructed. It is imposibile to bo absolately precise; but the whole expense of acquiring title to land for the road, and of constructing the railway and fistures thereon, is something less than ten thousand dollars per mile. Though this amount exceeds the origina! estumate of expe:sse, yet tue rond has been constructed in a much more permanent marner than was originally contemplated; and when we comparo witit the cost of otner roads, we have muen reason to be satistied with thas resul'. A careful examination of the road since is rompletion, and attention to its construction while it was in prozress, united to the testimony of the Eigineers who run it, as well as witnêssing ourselves its oneration, enable us to report with contider: ?, that tue road is well aind substantially co.istructed upon e:n improved plan, calculated to last for years without any coissiderathe ex;ense for repairs, and runs as well, as easily, and as safely as any other roat we have ever examined: 'Thus muci we have thought profer to say ing relation to the prescint situation of the roat.
fit is to be regreted that the name adopted for this corporation, is not more siguificaut of the locality of the road. It is now uttet!y inpossible for any persoin n:ot acqnaited with, or informed of, the locality of the road, to acquire irom the rame of the corpo. ration any idea of the part of the country in whels it is sieuated, or the towns through which it passes. Tre uane of a a ailroad shoutd be signiticant of is route, so as to convey a distinct and correct idea by its name alone. Tonis, unfortunately, is rot the case with ours, which renders it hiecessary to explain for the information of thiose unaequainted with its location. The Tonawanda S.ailroad commences at the city of Roeltester, on the (renesee river, and runs almost in a straigni: liae fion that place to Batavia, a distanco of nearly thiriy-two milcs, to which phuce it is completed, and is now in daily operation witn locomotive enginics. A glance at the map of westeru New-York, will stiow the urportance o' the route: Thie entire travel which throngs through tie western part of the state of New. York, nuw eittier passus througi Rochester, by the canal or stage, on one route, or througi Lo Koy and Batavia, by stige, on another rouie still farther scith. This railroad passee from an important puant on one raute to an impo:tant point ou the uther, and comect:s the two. It nast, consequently, by reason of iduitionial spect, secure the thave of both. Agant this railroad is's a con necting hink in the great ct:am of railroads from Albany to Buffalo, completed now itom Ilbuny to Utica, in projrcss of com: pletious from Ut ca to Auburn, and now beng suiveyed froin Auburu to Rochuster where the Tonawanda Rainoad commences. Lha. ters have beci grauted and arringements made for filing up the eurive line "roon the Iludson to the Lakes, with ruitroads, in a. very s.ort time ; or wisich the 'Tonaivanda Raitroad constitutes: a necessary aud essential linke. Thie land has been purchased and the routerunvej ed tor a railroad from Batura to Buffalo, and the work will be swon commerced." This is a straight line for the whole distance, and the descent is uniform dud does not averago more than cight feet to the mife: When this is completed, the whole fine from Rocilester: to Buffalo will be nearly straight; and the distance less tian sixty-scren miles; while the distance betwren the two phares, Iy tie preeent eravelled road, is seventy-
four miles, and, by the canal; nincty.three miles. The railroad can be traversed in three, or at the most. in four hours ; while the stages consume fiften or eighteen houirs, and the canal boats twenty-.our hours, in passing between the two places. Who, then, can doubt that this railroad will take the entire travel which passes through western New. Yyrk? 'It does not require that the Auburn and Rochester road should be fiuished, to reap these fruits. Before the completion of that work, all the travillers westward, either by stage oat either roate, by tha canal, or by lake: Ontario whose steamboats touch at the poit of Rochester, will almost necessarily take this railroad at Rochester ; and travellers eastward will also avail themsclives of it. And how great is the amount of that travel? See the numbers thronging the railrond caris on the Utica road, the numbers crowding the stages and canal boats farther west, and the numbers duily landed from the lake Erie steambonts at Buffalo, and we can begin to have some ideca of the amount of travel through this section of country. We have hardly sufficient data for calculating the precise number of persons thus transported each way, but we can approximate to it. There are, we think, on the roads running from liochester tirough Palmyra, from Rochester through Canandaigua, and from Canandaigua through Le Roy and Batavia, no less than sisteca daily lines of stages, computing those which rua each 'way. In the fruvelling season, thesc are gencrally full, and many extras are pu: in requisition every weck. On the Erie canal which passes through Rochester, there are three daily lines of eastern packet boats which arrive and depart thrie times every day, besides the vast number of line boats, many of which carry as many passengers as the packet boats. The steambiaats on lake Ontario touch at Rochester on their trips, and leave some passengers. A great majority of these traveller's. except emigrants, will almost ndeessarily take the railroad; and it has beien computed, and we believe the estimate is not over the mark, that in a season of busy. travel. ling, from eight hundred to one thousand persons pass daily through the country by these difficent conveyances, or from four to five hundred each way. To fortify the computation, we have seen it stated repeatedly in the prints of Buffalo, where all the above routes end, that an average of about onc thousand persons passed through that place daily, during the travelling season last summer. From returns kept al the Canal Collector's office at Little Falls in 1835, it appears that seventy-six. thousand four hundred and sixty-three passengers passed that office ou the canal (which is but one mode of travelling) in that year. The statistics of the Utica and Schenectady railroad show an average of about five hundred persons passing over that road daily. This result brings us as nearly to an accurate estimate, perhaps, as any other, for we are satisfied, fiom obseryation, that full as many travellers pass through Buffilo, upon an average, as through Utica. The diminution occasioned by leaving the route at or west of Utica, is about compensated by acquisitioas from lake Oitario and the morth, and from more southern routes and local travel.

From calculations drawn from all these facts, and after making deductions for emigrants who will continue to travel in a great measure upon the canal, we think we are not too sanguine in assuming that, afier the railroad shall be completed to Buffalo, from four to five hundred persons will pass over the railroad from Rochester to Buffulo daily, during the travelling season of the year; The price of passage from Rochester to Batavia, is $\$ 150$; tirom Rochester to Buffalo it will be $\$ 300$. As the whole road will be run, it is contemplated, uader a single arrangenent with one set of cars and locomotives, the expense of runaing cannot be very considerable, uot greater certainly than that of the Utica and Sohenectady road, while the yearly expenses of repairs to the road itself, we are also satisfied by experience, will be greatly less than is common upon wooden roads. The cost of constructing the eatire road and finishing it fuily, with cars, locomotives, depots, ©c., canno: es eed the sim of $\$ 700,000$. A slight calculation from the above data, wll show how great must be the income, tiven after making every allowance for expenses. If wo suppose the receipts to be 81,000 per day (which is less than the above estimate would warrant) for two hundred and forty days, it would give for receipts, 8240,000 . If we suppose the expenses to be $\$ 200$ per day for the sané time, (wiciais nuili greater thai our present expenses would justify,) it would give for our expenses, $\$ 43,020$, and the golance or profit would be veeariy $\$ 200,000$, Whe h, upo. a capital of $\$ 700,000$, woild be nearly 30 pees cocnt.

The construction of the track from Batavia uron the Tonawanda creck to Anica, thelve mitios, will cont mbot $\$ 100,000$, and will of course, add that amomint to the eapital. Λ; this extends into the fertile country soith of Pataria, it may be fairly considered that this part of the road will at least support itself. But if it should y:eld notiang, the income from the main track will be, by the ab ive calculation, about 25 per cent. cpoa a capital of $\$ 800$,004, a a theis for rassengers atbec.
The Company, in chlition to the carrving of passengers, have rio restriction upon the curyiugor prolace and merchandize upon tecir road. Indecd. this wis considered one of the important ob: jects both to the sto:khol lers nad the country: A glance again at the map of westera New.York, will show the importance of the road in this respect. We caal sce, by such inspection, that the railroad from Roc:lester to Batavia and Attica, diverges from the canal. and passes through the most fertile and productive of the wheut-growiag regions of this Sta'c; Tive parious and abundant produce of all this region, has heretofore been transported by teams to different pointson the canal. The whent from the differ: ent towns and the flour fions the numerous mills in this section, has been carried on in this way to Albion, Holley, and Broch por't The merchandize for the supply of this wealthy and populous seetion of the State, has in like manner been transported from thesb different points on the canal, to the sceveral towns and viliages in this region. It is now apparent that cll the produce of the rich towns through which the railroad passcs, and of the fertile towns soath of the railr rad, will seek the railroad as a mode of convéyance, and by it be transported to the canal at Rochester. It is equally evident that the merchandize destired for this whole re; gion, will be recaived from the casal at Rochester, and delivered upoin the railroad to points nearest the places of destination. Tht facility and cconomy of transpoition ufon thr rethiroad, forbids any competition from teans; and the delivefy of the produce and the recoijt of the mierclindize upon the cand, at à point nearer to the tide waters, increases this nidrantage. The amount of this branch of business, is hatdly stusceptible of computation. The business of thiis kind done upon the road last fall, when it was o:lly in partial operation. show that it must be very large, and will require at least one hundred freig'te cass to perform it, drawn by locomotives. The towns thus within the infuence of the railroad, are known to be anong the most productive of oar wheat grow. ing towns; and a calculation miade witia care, predicated upóa the crops of two or three years, siow an nverage yoarly amount of crops from those towns, of nearly fifteen hundred thousand bushels of wheat. All this amount not wanted for consumption at home or fur sowing, must find its way to Rociester upon the railroad, either in the s'ape of wheat or flour. The other pro: duce of this region, the simaller grains, the pork, the asies, and the lumber, must seek the sams mode of coaveyance to market. The marchandize, the salt, the iron for this same region, must also be transported into the coantry by this same mode of conveyance from Kochester. A computation of the amount of business trans: acted at the different mercaitil? establis.!ments in this section; will give an aggregate freight, of this kind alone. of more than ten thousand tons aunually. When we reflect that the city of Ro., chester contains now eighteen thousand iahabitants, that part of the county of Monroe west of the Genestee river more than thirty t.lousand, and the county of Genesee more than sixty thousand inhabilants, all iminued with the spirit of enterprise and cultivating a fertile soll; the magnituace of this domestic or local business with appear i., its true ligat. The transportation of produce and merc.landise is attended with considerable expense of labor in tho hand'ing; but the rates of freight enarged are such as, from tho last year's experience, we find leaves the Company a reasonable protit, and such as to mike it no inconsiderable object to transact this species of busiuess. It will at any rate, aid in defraying, if it uoss not quite defray, the expenses of the passenger trains, and leave almost the entie income from passengers, a clear profit.
In conculsioa, your committee cannot but congraulate the Board upun the Hattering prospects whish their enterprise-so botilly undertakea and so uearly completed-holds out. The ex:pense of construction being oally one nalt the expense of the con: struction of other roads not more perinanonr. the probable expense of repairs being greatiy less, and t.ee probuble income being equal to other roads of double the capital, this work must affard dividendes whicit will amply remưnerate the stóktioldérs for their en
terprise，and handsomely repay capitalisto who may make iave：t． ments in its stuck．

Dated Junc 16， 1837.

$\left.\begin{array}{l}\text { P Whittlesey，} \\ \text { David Scott，} \\ \text { Jonathan Child，}\end{array}\right\}$ Committce．

APPENDIX．

present officers of the tonawanda raileoad company． directors．
David E．Evens，
Trumbull Cary，
George W Lay，
Abraban M．Schermertorn，
Frederick Buslmall，
Thomas Kemps iall．
David Scoit，
James Brishan，
Daniel II．Ciandler．
Jonatian Cinild，
Frederick Whittlesey，
Josína Latarop．
Jonathan Child．Vice－President，
Abraham M．Sculrmerhors，Treasurcr，
Frederici Whittlesey，Secretary，
David Scott，Superintenlent．

The present number of Stockhotders in said Company，is sixty．
From the 11 inusis Journal． BOARD OF ICCBLI＇：WOHK＇S REPORT． To the Governor of the State of Iltinnis

> State of Illinois. Vavialia，June 5， 1837.$\}$
Sir，－The ulidersigned，Commissioners of the Board of Public Works，in obedience to the law of the last sessio：，entiter＂An act to rstabish and maintan a general system of internal improve－ ments，＂have the hor：or to lay br fore $t^{c} \mathrm{e}$ Governor a report of the procendings had by them under the provisions of the said act．

At their first meeting in Apral l ist．the Bo ril wis organized by the unanimous choice of Williand Kinney，commissioner of tix secoad judicial circuit，as President of the Board，a．ld by the ap pointment o：Gen IV．Carruthers．as Secrehary．

The ss veral proccedings of the lioard in ti．e dar ton ond orga． nization of a platl for the contucting of t e sysicm of in ruved
 eitending over so many different portosis of our sithe，will ae company tuis sepurt＇Tueplanalopted by ite Boud was t．e best that could be devissil by it ；anll altang i it is sot wit seat its o！） ject on，it is believed that no better system could convenient have ben prencuted for the phir，ow，it ise nu ub：r anf ext ont o the works to be s．rreyed and pusceuted shall be poozenly con sidered．

The short perio I which has clapsed since tie organiz tion on the Buari＇，and the difficulty witen presented in tive wisict of obtain－ ing competent engineers，and the necessary instrunents for taeir use，will in some clegree account for a want of interest in the pre sent refoit．

Soon a ter the aljourmment of tio Legislature．，James Bucklin， Esq．by the private aill of so：ne oc our citizens，who belt an in． terest＇Il the progre s of the system．was employed to proceed to some of the e stern cities，for tepe purpoic otprosurngtic neces． sary instrumetits，for four e．gincering parties；and since his re－ turn the surveys of several of the roads directed by the act have been commencel．

The Nortiern cross railroad and the road from Mount Carmel to Alon，and alon the Central raiload at two different points，have alrady been placed under survey．

It was the intertion of the Buard to have piaced an additional engineer upon the Central railroad，at its northem termination but contrary to the proniscs whech were held out to the：Buan at its first meeting，it is found upon inaking mquiry at the oh：－ of the Secretary of State tait t ae relinquisament of tac chart． granted to the corporation of tue Cemral Ruilro ud Company ha not been filed；consequently it becomes the duty of this B ard t ． cease all further operations upon this important improvement Tue delay w．ich has occurred in the relinquis．an at of tais chai ter，renders it somewhat doubiful whether any such relinquisimes， will be made，must of course be the occas．on of recgret to all t．10 Who desire the prosperity of the Statc，and who wish to winess developement of itw resources，since it is evident that a work o．
 prosent a－pest of affurs，be poosecuted witu any ras o able cer－ tainty of a speedy completion by the meaus of a private company． ＇The prospe．ity of a large portion of o ir State is intimately blencled with tilis work whic，was lesigned to be a great artery for the dis－ tribatio．s and extension of all t．10 ie import nut benefits waich result rom a coatinuoas and casy li ic of comatication from t．ue extre－ mitess of the Siate；and it is therefore with regret that the unter． signed feel constrained to divert that nttention from this wo：k w ich they were equally urged by inclination and duty to bestow uponit．

The Buard has also been embarrased in its proceedings，finm the delay whieh has transpired in t．ec relinquishnent of other ehar－ ters ；and this delay w ll be more severely iujurious，as the sir－ vays procee d，since it may be nee ssary to retain Eagine ers in the enniuy o：the Sthe to aw it the tardy action of thos：interested in their respective charters．In tive number of these the Boird w_{1} I include the Alto．s and S．awneetown railroa＇I．It would seem that some of the in．abitanis intercsted in tiils road are exceeding－ ly eager to wituess a surver ot it，and are complaining of a want of diligence and attention on the part of the Board；witle it was impossible fo－the Board to proceed until the stockholders s．all have relinquished tisie charter．
There are already five enginecring parties in the field actively employed ；and it is confidently experted that there will be sixad－
 oi t ee easuing seasa，enable hie u．idursigned to co ro，lete the sur－ veys of a greater prosorton it not all ter ralroils provilel for in the law．Eivery exertio．will be male to proceed wita the sur－ vey of all the roads wita a due．regard to utility and economy，and since it was im；osisilf，ever to close the survey of ally of t ．e roads ualess a commencement should be made upon sone of them，and since no particular preference to any coall ide g vel，witan in－ carring c aisure from te parsons interested in t M prosecati）of

 ties for a sine dy com noncem？at upo them would in tioir estuma－ tiua best advanee the generul interests ot the Sthte．It is tae in． tention of the Buard to proseed as speed．ly as a prudent regard to circumstatuces will pernat in the survey of the roa st and rivers， and they will i_{1} all probabilty have portions oi all of taen ready to be placed ander contiant，as sso．1 iss，if not before，the Fund Comanismoners w．ll have provided suflieiont means ior that pur－ posie．
Tie pec niiry diteres whe＇r prevails in the ot ier Siates，and

 hい位：る bal poo writy．

Cae certinty tit we shil hive a lorge and valuatle acces－ si in to，ore p pulation is st engihe red．from the kna．sledre that o ir State is misen larratied，ind thit lomin will in dus thane be effected，t：prosecure our several works of improvesne．t；the endily，ne it these will afford，with the sti nuln，which they will necessiarly give to agracultural industiy，will be a sure inean；of adv neing the pro．perity ot all clases wi our citizen ：，aid c on－ seque．tily of piacing our State upon that evilted emmence monge her si ters of the Union，which her many supertor ad－ van ages entitle her to ciaim．

The embartassment wheh is felt in most of the eastern and southera States，hats not yet been visited upon this Sta e．Tho hmi．ed bankng capital of this state has prevented an accumu－ lition of ia lea．edness；the value of our lands his hereiofiore induced large invest neats of easterin capital waich his general－ Iy resilted or the beactit of our citzens，and there has been con naratively but hittl：oier－trainar in o ir commercial commu－ maty：con erjently that de ponleacy，which is hanging over wher states，is not sericusly feit in this；theref re we may rea－ s．mably gather contidence，that il our several public work shall be prosecuted with zeal，that the evils which are mourned over n the oider Sta es，will w．ark to our goid，anp prustace perma－ in ant and sal itary benefit to Illinois，and th ugn we may lanent the：m sich ef and ruin we could not avert，we are not tu be cen－ sured because circumstances render it necessary that we should profit by the distr：ss of others．

Owing to the recent organization of the aeveral enginmergai
parties, and to th-incomplete arrangements lior those about to take the field, and to their remoteness from the respective commisisimers, the Boorl regret that they cannot show s.eculically the a:nount expended by the different members of the Board, up) to the present date; but belor: their aex semi-annual report, such an organization will have heen made, as will reuder it morcasy t, comply with the requisitions of the law in this behal ins nearly as can be as.ortuned frum the poit of the respertie
 circnitz to aten.l the present meting ; the entir! amoun expended did no' exceed seven thomsand dollars, but the expen diture for the ensuing months, incluling camp equipar and c quip nents, an the conpens timat one a Idai, nal nginerers and their parties. will necessarily pexcered that of the past. Not withstan ling which, from the information ubtained from the Fund Conmissioners, the Buard of Public Works is cuafid: nt that with a he legard to econony sufficient means will he provided to ensure a successtul prosecution of the several improvements contemplated by law, and so ardently desined liy the people.

Signed

Wm. Kivyry,

M. Mc Consi
E. Willard, le,
M. K. Alexinder,
J. Wri iat,
E. Рecis.

Vandal:a, June 6th, 1837.

Frum the New-Yu:k Mechanirs' Mazazi ci-
S.r,-I see in your No of the 1st inst. an article firum the London Mecnanics' Magazine, relative to the discovery of M. Ganal, of Paris, for the preservation of dead bodies and the study of ana. tomy in summer as well as in wiuter time. Alow me to correct the assertions of t ie writer.
Two years agre If Gamal submited to the Roval Academy of Medicine in Paris, a preparation of his for the preservation of dead bodies to facilitute the resoarches of anatomy. I have seen at the Hotel-Dieu. bodies that had alvendy been kept for neally five months, without the least decomposition, wiile the limbs and Resh retained tie sume elasticity, whic'? they had immediately after death had occurred.
The body miken out of the conpound could be placed upost the table, ready for the scalpel, and could again be placed in the conpound to be re ained for future dissection. In this case l. e compound should always be weakenca.

The preparation is very simple, consi ting of different substonces in certuin propmrtions-and the cost is very smal. 16 pence being sufficient for the preservation of a human body.

But it is nit injected ints the reins nor into the carotid arteriy as the English Journal asserts. If inded, this were tie case woul I not the scalpel release the fluid, and then what woull be. coine of its virtues.

Not long age a man by the name of Tarquinia, I belicve, plysician in ordinary to the King of Napl s , discosered a mode of ${ }^{\prime}$ preservation, and M. Gunal mity have been in luced to makesome further experiments upon the preservatio: of anatomical spicimens for mus ums, but this discovery inust not be comfounded with the otaer.

The process of the Nuapolitan Doctor consists onlvi of ursen:c dissol. ed in water, in the proportion of 2 prounds for a human body, and injected into the arteries by a small pmmp. This process however, has been found deficient, the body under ${ }^{2}$ oing no appa, rent alteraion for 5 or 6 months, but after thit time it becomes very hard and dry, the skin turus yeilow, and in less than a year it is converted into a complete mumny.

Of the lust process of M. Ginul I know nothing, but I am con.
fident that it as nothing to die with his otl:er method, useful both for the preservation of suljects in the amphitheatre, and for their transpurtation to a distance for the purpose of dissection.

An Amateur.

Fuom teh New-York Farmer,

MaNagentent of sheep.

No. V.
Mcssrs. E litors,-In my last communication I endeavored to mainain, that in cleansing and putting wool in the best condition for market-honesty and inter:st went hant in hand.

The promosto a was rully demoastrated so far as my experieace has carried me. I stall not now add further proofs, but murcly make one or two more suggestions in regard to making use of vals for wishing of sieep.

I could fill my sicet, if it was necesiary, wit'l affidavits of my neighbors maintaining the vast superiority of vats over poels, or in fact, any other mode in use.

There are few streams bat that afford a needitil supply of water, and also a sufficient fall. Wiere the latter is not the case, it is oaly necessary to excuvite a place near, or oil the margin of the brook, sufficently large for tha adnuissio:1 of the vat and platferm. A fall of taree or four fect is of tie greatest conserpuctice, as without it, it is impossible 10 g . in the ful adsanatage to be derived from valts. I mentio:ad in melast, that it was my practice to have my sheep, first soaked, (as we wol growers call it,) after which, they are removen under the spouts atid the witer tailing ti:e above mentioned dist asee, separates the dirt more effer tually, and in a much slonter time tian it caup posibly be done by squeezing. A fe et, it is out o. the question to fet wool white and clean by squeczing, utiless an much lutger in \mathbf{e} is then thau usual, and after the grcatest pains, its inpect is a ngy.
ut, believing tiat those of yo ar ruiders who are practical farmers, can readily appreciate t erat system without any further efferts of minc, I will osly say a word or two as regards expense of construction. I have already stated that the cost of mine, including platiorms and all other appendages, was only seven dollars. Now I will recommend, if so small an expense will deter any individual, that some half dozen fiurners, or more, club and fix on some eligible site, and cac.a coatribute uis pro rata of expense.

My neignbors, have. for years past. brought t.in flocks to my place or washing:-1 cuatge them totaing -t.ey are pereetly welcome-ant happy am I. tian I am instrumental in puting them in the way of doung the clean thing.

In evposing the slovenly practices of oar farmers relative to shearing o shicep, and maters connected thenwhith, waut of time will con, el me to be brief.

G onerally sp:zaking, shearers are too inuc! in haste to get off the fleece; and, her.ce, ats my honest neig.bor Per. Rugers says, "they not o:, ly take of woul, but enougin o. hide with it tor modera esizedleatier apioin." This is wrong-it is cruel:-but arises altorether from haste and rarmlessness. There are shearens, w.u w.ll s.cear from 50 to 80 siceep per day-such however, are rarely found:-11 gerneral, no man cau silcar vegond 30 or 40, and jeriorm nis work as it snould be.

There is an inhuman | ractice of sharers, which every wool grower oug th to discount, rance and correct-if it was not so common I woud not allude h, it -ud tat iss, ot cyeffig and kicking sieep to make them lay still w.en shearing. Ino e wo are ac. quainted wita my ways inow better than to exercise t.is foolish and brutal spite tuus.

It is almost univer: ally the case in this quater, t hat, in putting up a fleece, a band is iwistel of wool to bind and scenre it. I can inform tiose: who co this, that munufacturers din not approve of it; and, or the rason, t.aiai it causes mucia trouble to the s'apho; in untwini,g a d ee, arating t ie different qualit es of wool, of w. ic । the I and inay conis:. 'The beot way is to secure we feece with twine.

Connected with the subject of shearing, pounding or yarding sheep is suggested to my mind.

Nine times in ten, when ready for shearing, a temporary yard is built of rails or poles, for the reception of the flock, wisich is alvays too small, and of course the poor animals are almost suffo cated:-losses have indeed, occurred in this way. But this is not all:-when so many lare confined, much filth accumulates, which, readily, finds its way on the floor of the sliearer, and some bow is very apt to go still farther, viz: inside of the fleece.

I experienced many of the evils attendant upon pounding sheep, in the usual way for a length of time :-but a nuinber of years since were obviated by the erection of a shearing loouse, with all the necessary pounds, which are constructed of posts and boards, and of course, firm and durable.

I herewith, Messrs. Editors, present you with tie outlines of the whole with the necessary explanations. I do not dquat but tiere are many whose establishments of the kind are superor-if so. I'am g'ad of it. But to those who are not provided witi any, I can recommend ny own plan as affording not only great ease and facility in yarding of sheep, but every other convenicuce desirable.

A Large yard, some 30 rols square.
B Large pound, 50 feet by 15 feet.
C Sinall pound, 15 feet square.
D Shearing house, 36 feet by 18 feet- 14 feet posts.
1 Represents gates and doois.
Pound \mathbf{B} is amply large for 400 sheep:-the small one C , has abundance of room for 80 , but when shearing, 1 never permit more than balf that number to remain in it :- the residue of the flock are tet out to roan in the large yard A. Nothing is permitted to run in this yard previous to shearing, which is at all times thickly covered with grass, and consequently, is a very suitable plan for shecp to lay down upon. Tae small pound as Ben. Ro. gers says "is a grcat thing, as you nced'nt run all 'oper" creation to catch a shecp."

My wool is stored in the second loft, in the floor of which is fixed a trap door, and from this is suspended the sacks whon' packing.
1 close this communication, now, with regret, as much else could be added in reference to shearing, \&c., of sheep-but my sheet is full.

Yours,
"Lansing, Tompkins Co., N. Y.
M.

From the New-Yorit Farmer.
Kçi West, Tropical Florida, 12 h July, 1837.
Dear Sir. On the 28th ult., I addressed you a few line with a circular from the President of the Agricultural Society of Louisiana. The bearer of that letter was A. A. M. Jackson, Esq., Clerk of the U. S.' District Oourt whose address, while in your City, will be at 273 East Biond way. Wm. A. Whiteh sad, Esq., the Coliector of this port will carry the present brie corn. munication, and his adir ss cuing the summer will be at Peth

Amboy, New Jersey. Having now been twenty-five days un this Inlet, during the worst season of the year, I can declare that I have been agreeably disappoin in the character of its surface, of its climate, and of its inhabitanis. I had anticipated a barren bank of saml, but found a verdant woods on a limestone base. I expected to meet with stagrant ponds of putrefying materials exhaling pestilence .nd death, 1 find ruming in. lets of the sea as pure as the waters of the deep ocean itself, which are sources both of health and wealth. I was told that the moschitos and sand-flies were so numerons that the inhabitants could scarcely breaih without swallowing mouthfuls of these insects; but of sand-flies I have not yet seen or felt a single swarm, and of moechitos I can truly say that of these ae never more than I have seen or felt duyng this worst seaspn for them. Key West may challenge comparison withany equal surface on our coast, from New-York'to New Orleuns. But as I have not taken up my pen 10 give a detailed description or history of this Island, I will be as brief as possible in what I have to say. The whole Ialand, including the salt pond, contains only 1975 acres. The salt pond has a suiface of 340 acres. The town at the N. W. extremity of the Island is in $24^{\circ} 25^{\prime}$ N. L. and $8 \varepsilon^{\circ} 04^{\prime}$ W. Long. The subsoil of the I ε land is limestone, (not coral rocks, and the soll a calcajeous powder, (not siliceous sand,) colored by regetable mould. This soil is said to be expausted by two or three years exposure to the sun, so that garden vegetables are no longer cultivated. Sweet potatoes, hovever, and pumpkins contintie to be very productive." Siliceous sand and clay would be very valuable here, is even the quantity requisite for masonry has to be brought from grepat distances on the mainlanid. Blit the greatest defect on this Islanil is the want of water. The rains are so few and so little, tha: they do not suffice for agriculture, and the wells do not furnish either the quantity or quality of water necessary for artificial irrigation. Nevertheless the vegetable growth on this Key demonstrates that there are valuable vegetables adapted to flourish in even this moreland soil and atmpsphere. I therefore annex a brief list of the plants both indigenous exotic that have already fallen under my observation.

Indigenouis.-The wild fig, the manchineel, the Campeachy teak or Jamaica dog-wood, the Gumbolembo or Almacigo, the mockernuts, 5 species of Cacius, the wild Papaya and it is said the Salinwood iree, \&c., \&\&. I will give the botapical names in my nex!.

Exotic.- Terminalia Catappa, (or Indian Almond, the poinciana pulcherrima, (or Chansiquin of Cainpeachy,) the moringa pterigosperma, (or oil of hen tree,) Serbania picla, (or Guacamaya, Cicca racemosa, (or Gooseberry tree,') red Mulberry, wild lume, moncecous Papaya, Pride of China or Indra, the W. I. Tamarind and the Cocoa-nut palm,

The Cordia sebostena is by sime said to be indigenous and by others exotic. But as I have arrived at the bottom of my page, I close for the present by subscribing myself rery reepectfully your ob't ser't,

Henry Perrine.

useevi education.-'The following excollent article from the Cultivator upon useful education should be read by every parent. It shoald ha printed in letters of gold and be born constantly in mind by those who have the charge of chaldrea.

what is a useful education?

We put the question in referance to the great body of American outh, who are to carn their bread by the sweat of their brows, and, under Providence, to wield the future destinies of our country. Two principles should govern: Teach them to provide for rhemselves honorably, under any ordinary contingencies, and qualify them to become USEFUL To soeiety. The times, as well as universal experience, abandantly adnonish us, that however thec children of wealth may indulge in indolence and dissipationwhile their means last,- the great mass of America youth must, and ought, to depend upon their labor fo their for t unes and tiei r
usefulness. Fortune is at best precarions ; patrimonial derendance is uncertain, and rolinne? upon the friendshup on chatity of the world, or upon office, is frail and o.ten debasing. .S.Sif.defiendance is the only sure stay.

We arc ever most villing to he'p those tho help theinselves. Proluctive labor is the legitima'e source of all our wealt!, individual and mational ; and this lab:us is profitable to the milividual and to the natio: , in proportion to the oneasure of intelligence and scientific hioutledre u'inch suide at od direct its operations. Hence it is of prinary imporiance, tint our youth should lie efficiently taught to lahor, and that their minds should be early imbued with that kind of kיowledqe which will instruct them in the principles of their busine:s, render it !o:orable, and make them iodepeudent in conduct and in fortune
"e have, to be sure, colleges and academies ia, abundazer, more than can be well supported, or that can be made economical and useful. But these are in a meastre eossecrated to the leamed professions-to the privileged few-for they are privileged, inasmuch as they are the exclusive recipients of publ:c bomnty in the higher branches of learning. Proluctive lizoor derives little or no advantage from their teachings. Fuw of the youth who cinter their halls ever seek for a livelibood in the libbring arts. They learn to look upoa labor, as scrvile and demeariing, and to seclitheir level in what they consider the hizgier classes of society. They do not go to these schools to leam to work, or to leam to live by work,-in the common manang of thess terms-but to lcarn to live wethou! work-above worh. They are virtua!ly withdrawn from the producing classes. Flose young aspirantis flock to the learned professions, and the gented employments, as the avenues to honors and office; and notwithstanding that labor is taxed heavily, in one way or another, to sapply their real or imaginary wants, yet the genteel professiona lave become so over. stocked, and the threshold of power so thronged with supplicants, that hundreds and thousands are thrown bark, as parasit:es. uno society, cxhabiting the melancholy spectacle of men, borin to, bu useful, but unable, or unwilling, fiom the bius of a wrong elucation, to become so. Had these men been taught to look u;oa labor, as it truly is, a necessary, healthful, independent, and ho:orable employment, and been ins!rucled in its principles and its practice, while young, they would have cherished its interests, respected its virtues, and cheerfully shared in its toils and its pleasures. We seek not, by these remarks, to pull down that which is, but to buill up that which is not. It is hot that we love a past less, but the whole more. We would raise the standafd of lator, wi hout depressing that of Iterature.

We have common schools too, munificently endowed, where all may acquire tie ruliments of knowledge, but the rudiments only. They teach nothing of the seleuces waich are necessary to the successful prosecution of the arts-and grive no instructions in the best models of practice. They neither learn the boy how to provide for himself, nor fit him for extensive usciulness. They lay the foundation, but they do little to build up aud beautify the temple.

We find in the London and Westminster Quarterly, in ait article on the means of lessening the evils of pauperism, some very apposiie remarks upoa this subject, which we here transcribe :

We advocate," says the Review, "' 'Jath for England and Ireland, the necessity of a national provision for the maral and industrial training of the yourg. In the old we cannot hope for much improvement. But the new rencration springing up might be modelled to our will. Schoo!s are wanted; but not sucia as are now spreading over the country, to teaci, a little reading and writing, as if that embraced the whole business of hee, and the whole duty of man-schools in which both boys and giris should learn to employ both their heads and their hants-in whic.' they should be taught practically the use of various toals, and in witich. such general information should be imparted, relating to different branches of industry, (the rights and duties of citizens,) and the resources of o:her countries and their owi, as would enable them to begin to mount the uphill path they would have to climb in after life, with a heart full of hope, and with a spirit of energy and in. telligence which no difficuities would overcome."

Who will tell us why it is, that classic schools, available oaly to those who design to live without labor, are made the special and exclusive objects of legislative bounty, in regard to the higher branches of instruction! Why is it, that six or seven thousand youths, which is about the number in our colleges and academies, should receive gratuities from the public treas:ry, till the aggregnte
exceeds three millions of dollars, to chable to hive without work while half a millic n of other yoath, with like capacities sud like clains, destinied to labo: atd to augment the resouces, the wealth and the happiness of their countre are denicd a miserable pitance, in the higher branches of knowledge, to qualify then for their more imporiant dutics in socicty? Is mo! knowledge as beneficial to the arts of labor, as it is to the learned professions? Is it not as $\boldsymbol{e}^{\text {f- }}$ ficicatly and bencficially apilied in developing the riches of the earti, in perfecting time mechanic and manufacturing aits, and in atmmenting the proticis and poofis of lator generally, as it is in the warfure of perty politics, in the chic unery of the law, and in prolonging unprontabla debue in orr legitatie holl= ? Wuy not natital scifnce he as proftably stadied anl appliedion tho farm, where nature is constanty presenting now stobjects of illustration and appliance, es in the town or in the closet? Is mot chemistry, which instructs us in the nature and pepertios of ail holies, as useful to the fermer, in aeceraining the qualitics of his soils, and their allptation op proculur crope, ant in regulating the mubifarious oprations of hatataley -ant o the artizan, in managing his various proces es, $-a s$ it is to the lawyer, the statemman, or the diviue? There is probably n. employment in lifo that cmbances so wite a scope of useful s:u:ly, as thut of cultivating the soil. The great use and end of science is to improse ari, to impres.s us with a sense of our obligations to God, and of cu: duiy to man. In trath, science belongs $t n$, and constitutes an integral portion of the arts, and cannot he divorced from them withont throwing us back into at state of semi barburiom, such as now: di bades at great portion of the population of the old comincon. Why than each science cyclusircly to the few, wo have comparatively so lithle use for it, and withhold it fro n the many, to whon it would be a belp and a gaide?

We look to Eurone for nrecalen:s, anl blindly adont some that are prejidicinl, as well as many hant are good. We forget that we are a new papple in govera!nent, maners and laws, an I that there is no county whel will serve us our model in all cases. The education bestowed upon the working classes 1! Eurpe is destyne: to qualify them for the subordinate stations in society-for labor ant oberlience, as subicets. There govern. ments recognize a privileged class-who are the owners of the soil, and live upon the labors of the tanay. The work!ng chasses have very litile 10 do whith the aftars of government. Hete all are professedly upon a footing of equality. All enjoy politiall righ's, and lave political duties to perform-and alt should be equally fareral, so far as the pahlic boun'y is dispense. in the means of obtaining useful knowledge, and of acquiring wealth and honors. We should take care to have gool farmers and gool mechanics, as well as grood lawyers and good doctors. We want not only good subjests, but iniclligent freemen-bighmindet, indepentent fremen, "who know their rights, and knowing, dare maintain them." We wish to keep the fountains pure, that the sircam of power may not become defiled, We wish to base our political and social fibric upon a rock, steadfast and sure-upon the intelligence, industry and moral rectitude of the great working community. When this class ahall cease to excrt a healihful and controling influence in poli*ical affairs, our boasted freedom will be at an end. A privilegel chasz, whom the bounty of govemment has assisted to arta with excl sive power, will consol and direct the political machine, as may best subserve their aggrandizing views, with out regard to the common weal. Ambition is the same in all ages and coun'ries. Man loves power, and is corrupted by it ; and in its prolonged excrcise, the sersant will ever swell into the master. Our freedon can only be securely guarded by the vigil ince of an enlightened, independent, prosperous yeomanry.
Men have tried all sorts of expedients. for thousands of years, to obtain weal.h and happiness; and after all, it has liecome pretty eviden!, tha: th re is no course that wears so well-that is so self-approving-hat is so certain in its success; that gives so much health, ententment and independence-ilie substantial elements of happuneso--ds hamatial industry; ie s.pered and d. rected by a culurated mand,-ie it in the learned or laboring professions. The conscionsness, that we are not only proveding for ourselves, and those naturally dependeni upou as, but that we are doing gool to sociely, and thereby tulfilling one of oar highe st moral obligations, is a rich source of enjoyuent,
which the imolemt ant diagipated must ever remain ultan stranger.i.

Wesiny, therefore, that we wan: schaols of reoral, industrai an! scien ifi: msi uction for the working drases of society-
 ment wo If con luce allase is the pirkipenity of the country, atri to the perjectuty of our phirical and religisusfreedom

Frum the Mechanice's Magazin.

ma. burdenagain.
Nature appears 10 have invested few individuals with that quantity and kind of iniellect which is necessury to invent useful improvements ; and the time and study of inventing and parfecting, and often the pecuniary expense of puting them into practice tua frequenty subject ineir imentors, though the most useful chass of people ta jureity; and ungrateful neglect and coll conte:mpt are ofien the rewarl of the person whoze talents have conferred more benefit on mankind than could have bell iffecied by the bathl habor of housamiz or periaja): miltions. Thase circunsialuces ciamol iail an b. at subject of regret to a person whose mind is capable of apprecia meg the value of tho-e services, and it is, herfore, co mensurately pleating to meet with the rate oceurrence of int inventur of th. first oider, wha has the aleat to commant from the puthe, the rem neration, boh in muney mand respect wi.th is no justly his due.
Such is he individual whose narme is at the liealif thes ar. ticle, whit his not desigued $=0$ innch 10 gratity his indepo ment mind as to enco arate o theis to mmate his exillipie. Whan int very moderale p.cmany circumstances, hi: mveminn or ak ing wrought irnon spikes, when be put in inmednate prace ice
 wi.b his usually industriou \rightarrow application to businss, ratsed hum in a short time, not only abure wam, but to a handsume degree of ind penilence.

But not.whsmating his neceseary attention to an ex'ensive business, he fonmd time to ment and arrange ita plat of a boar which he was envinced would effect an inp atime inupruve. pent in sieatn navigation. Insiopal of watuge this the vijject of stock jobbing and hollow speculation, he deterimind to test its value at his own co t and risk, though it would incur an ex. pense beyond the ordmary means of a common indivitual, It Wian viguruply anl somoffected, and on expernuent bid bair to realize his sirongest andicipuions. But an unforeseren itazaster. arising fruan at de.ect in has hoal, in a mament de strosed it and his hypes together. But he had the prond salisfaction, Hat the disaster involvel no one's interesi buthis own, and hat he wats able to pocket the losi, withous any eacrifice of wedn.

In a sho.t if ne, he astonished the pubuc, an I eren the wodn, wi h his marhinery for making house shoes, "hich in the stion spice of a few hours, converied a ton of rou in o tuose aphicles of very superior quality, and which has, probibly, alrealy much more than remmerated nis loss, as it is not only supplj. ing his own comiry whh horse shoes, but the inven lon is al. realy successfully esabhlished in achal use in severul colutries of Eirrope.

But as the mind is naturally inclinel to rew it to the source, where it eustanned greal loss of suffered any serere dienster, the subject of s eam mavigation, no douht, prezeruel itself at frequept intervils, in all the chapes which all inventive imagination cuuld suggest. He is nuw once inose belore the public with a sleamboat on a plan entirely origimal and differing altugether froun his former boat and from any other in operation, and whatever mupr defects fulure experience may discover, it is certuinly passessing many and inporant atvanages over any orher boal herelofore constructed. It will possess lar greater strengih than cou'd be o! sained by timber or any other thatersal lyy any o her marte of connhination. It will draw less water, mobibly by one third, in prsportion t its lensth and buriben than nny other boat in use ; and its c pacisy for the accommoilathom of passint gers will be at least equal to is inprovements in ob ber r. spect:It is now af at on the water and will probably in a shors tine b_{3} in vera son, finisted ant traishod in a sijl. wurth! 0 : chafacter, is a des erphon of the principles and forat vif his
boat, in ins present state of adrancenent, woult pe baps we consileted premature, it will not be attempled; at a proper tine showh an oppormunty occur to examine it, unless previously given by sonse abler pen, it will be torth coming from

Archimedes.
Extract, the specification of Edward John Dent, of Lordon, for an improvement of the balauce springe of Chronometers.Mode of preserving them from rust.
specification of the patent granted to elward john dent, of the strand, in the county of midelesex, chronometer maker, for an mprovement of the balance springs, and their adjustments, of chronometers and other time. keefers.-sealed april 23, 1831.
It is well known that the delicute spiral balance-springs of chro. rometers atid other time-kpeprers, and their adjustments, are ex ceedingly liable to injury from oxidation or rust, both during tie promress of their matuacture and w.en in use, nel whereby they are net o.sly sut!ject to decay, but their rates of ; iving or necuracy a: performanace i- very consderathly varied foum time to time. Nuw this said oxid tio. 1 or rust may either be caused by the n:oisture ordinanly contained in the athosplare, especially in the in the sea air in voyage., or in comatrics particularly exposed to its action. Nor arre caronometers oaly liable to suff rirum these caus:s, but also from the prerspired matter nun tive breati) of the workmat daring the progiess of their manafacture. . Now it is the cancf o^{1} jject of my imventio.s to prevent, as far as po.sibit, the s.if oxidition or rusi, by coating or defenting t ose delleate parts of cianometers wita a coathig oi varnish, suffici-ntly flexible to allow t.e erriect tree actioa of it bilance-springs, and yet capable of provonting the action of mo sture or saline and ot ef vapo:s to w.ucut try art liable to be ex osed. And liereby clam as my iaveution, ind the oujee of tais pateat, the use and application of any fit and pioner flexis e detimsive co ting or varnish to tate more c. Fe, tual preve. tow of oxidation or rust in the balance spritgs and adjusiments of ciarowomet ters and otier time-kiepers. In order, lowever, to allod an example of tue best means I am acquainted walh for carrying my sadd iavention into cffect, I will desaribe tise composition oi'suc a varn su or coating as I have fund to answer the jurpose eumpletely.
"I take hali an ounce by meitsure of pure spirito of tarpen. line, and pit to it for y graias of camphor, und also add ten grains of brusied gum copai to the sand maxture ; I then heat it nearly to is bouling p , int, aid kerp it in that state for two hours. 1 then tilter the mixtu e through cottun, or other proper substance. This varmal should be kep in an air-tight bottle, clo-
 adnit the b,laticc-s,ring and its adjustment, wasch are to be put into tue butte in a diy state, and liree from oil or grease, and ifter beag cumpletely iminerged in tee varnish, are to be carcfully druined befure tacy are remuved fiom tie bot le. The bsplancespring and its adjustmant must then be placed into a temperature Iru:n 2.10 to $3 J u$ dogrees or Fa, rembeit's thermometer, and be kept tiecrin from sis to eight hours. I woul I remark that in place: of angy pure spirit of turpentine and camphor. I prefer to use half an ounce or a.s oil tound in portab c gas ris.rvoirs, when tast oil can be ubtaned; but as purtable gas is now but little em. ployed, and is going out of us, the m terials I hav above de. scr.bel will be fourid to answer will, and may be readily obtained fron c.semists, care being o'served in o'thining pure spirits of
lurpentue. turpentue.

:From the Genesce Farmer.)

bartrani botanic garcen.

Mr. Tucker,-In conformity with my promise to you when at Rovhester in the month of May, I purpose occasionally sending iur your pag.s suct matter a- I may deem wortily oil tiotice. I Hatter mrseif the foilowng observations respecting the first boia. nical establishment ever attempted in Amernc , its founder and his successors, with its present state in ti.e scale of Botany and Hort,culti:e, will be accep table to many, particuarly the gardening júrtion o: our readers.
B.utram Butause Garden is situated on thes west barks of the

tablished by that venerable and ent usiinstic natur.ant, Joha Bar tram the eider, in the year 1720. The wortily fominter of tacis gardens discovered in lins early youtil a love for piilo ophy ati natural history in general. He was however particulaty draw.a to t te study of botany fiom considering the impotance of vege tables in tine practise of medicine, anal their indispensable use in varous depratmeats of hum nu economy. Bat at that tims bsia ny was but lithe attended to in A nerics, an lis the oll woild the works of t.e great Linneus had not appeared; he had tececfore po ather aid in studying the great book of nature than inis owa persevering genius. His view in tie establis.mment of the gar "den was to imke it a deposit of' the vegetables of t.re Uuthed States, (then British Colonies, as well as those of Europe and other parts of the woild, that they might be more conve.nent fur inpostigation. He soon furnis.ed his groands wit.a t.e carions and beautiful veget bles in the enviroas, and sy degroes wha those more dist int. which were arranged accordng to t.wir na tural soil and situation, citier in the garden or on mis plantation, whe'r consisted of between 200 ano 30., acres of land, the wavie of which he termed his garden. Tise novelty of this hoiticultupal scene atte: cted the nutice of t.o ingenious a nd curiods, and coming to the knowledge of Europeans, several scte:tulic men ia E.ggland, particulirly of te Roval Saciety, uaited to e..courrage the founder to undertake jormies towards the wentern frombes, in order to discover und colle et various nom-discript product ons in mature, parti ularly vegetables, that t..cy mignt ve sem to Euroje.

 mar sait in ous oi ais letters, that we (Mr. Battam) vas tis greatest natural bot taist an tho worid. H: enployel ata oi ais
 Oatario ta the satrec of tat river Ste Juan ial Last Fiorada. He w.ts appointel Inericem Bat tinst to ins Brinaic Maje ty George
 1777, in tic zith year of nis age. Mr. B. was a llative of De-
 fither as prajiricior of t.ee K.ugses; Butaic Gurdens, but tey were chiefly under tice subertatende ace vi dis brutarer, Mr. Win. Butran, ell known in the literary woid by his travel. ia E Ett
 panied nis fitter 0.1 many of is ext i.sive boinucial turs, and
 pareity for that sublime science. The fame oi t is geatleman cs.
 usenh inen in A nerica; hi knowledge was acquirc! by incessart bo lily labor; the fiells of natural séience ha the days werunexplored, and he resorted to the study of mature wiere sae unfolded her works to the seases as the only trite so arce of kuowledge. To tir's grathenan we are indebied fur the discovery of
 Altanaha, (Gordonia pubesésas,) a beauitul tree so called at
 celebrited Di. Fut ergill of Lindoat, he inde excursims to the Floridas and to the western parts of Curolian and Georgi., in searei af rate and usefal proldetions of nature, bat catedy of the vogetable king fo a, to whing geat eman he semt his colldethoa of plats, driel speemsess and drawari. The work alresty ato luded to was the result of tuese tr..vels. This work was published almost sinaltaneou ily ia Germa:yy, in Dublin, (treland, ans the United States.

A few minutes before the death of this enthusiastic admirer of nature, he wrote an article on the natural history of a plant, and in rising froin his desk to take a morsing viev of the butanic groun is, he uad only proceeded a few steps from the doon, waen b: burst a blosd ve.ssel, w.iie.a suddenly closed his useful hife, July 22,1823 , in the $85 t a$ year of his age.

Tue girdens ars now in the po asss sion of Col. Carr, to winose indeiatigable exurtions, aidel by that of Mis. Carr, t.te garfons owe their present celebrity, for they are i.te admiration ot very Visito:, whe .eer natice oi lureguer. Mrs. Car is the cialig ter si Jom Butram the younger, bat to speak in just terms respecting her entusiasm for piants, (w ich i; o.sy equaled by uer succes in t.eir cultivation,) is a task I am incompet aut to perform, or I am not possessed oi words wa ch could coavey in the most remsite degree the passionate fondness with waich she toils among the
plamts, and in every deparment, from tide earnest .nww., uanl dirliness renders fur oprations impracticable. Mrs. Carr's botanical acquirments plate for in the very first rank among Americarabotaists. Her knowledge of A:i erican plants is most extensive, not suppassed, if equaled, by any one in the United States, But to this lady and ner U.ele, Mr. Wm. Bartram, the world is uader anotuer deep debt of gratitule, for it was to the friendly conversations and instructive cmmunications of the latter that tlexander Wilso i, my countryman, first imbibed, or at all events carried his passion to such in extert for the native birds of America. To t.e former (Mrs. Carr) he was principally indebted for this knowlulge of and ais proticency in drawing. 'To their combiaed etforts we are indebted for his American Ornithology.

In examining Butram Bonauic Garden, ote characteristic feature will be obvous to tic most inatteative observer, viz: the large specianeus of v trious tre es planted by Jo.m Bartram, the elder, and his so.1 Win. Burtram. W.ils on a visit to the. garden in the innontio:" November, 1S31, I was forcibly struck with their magnitude, (see Loudon's Loidon Gardener's agazine, vo!. 8ih, prge 284.) but turn. and on several succeeding visits, I could not ded cate tane to ascert in their exact dinensions ; however, with t.e assistance of Mi. Carr, Ji., I have recuntly been enabled to gratify myself o.s tuis point, having accurnt ily measured thirty distinct species, tac dimensions of whica were as follows:

$0-5$ Coose marked with an asterisk were measured round the branc.les, and the wale tor the circumberence were measured about 6 feet from the ground.

As b:fore mentioaed, the gardens are situated on the west banks of t'le Stauylkill river, absut 3 miles from 「, illadelp'ia, and con. tain about eight acres of ground, compactly filled with the choicest ornamental trees, slarubs and herbaceous plants, properly located in their natural soils and altitud sas as practicable. The iminsion and g.een houses stand on an eminence, from which the gurden shescends by gentle slopes to the river. From the mansion are distinctly seen tise windiug courses of tie Schuylkill and D. $\boldsymbol{N}_{\text {: }}$. ware, with the broad siread of meadows and cultivated farms up and down those streans. Heyoud these there is an interrupted visw of the Jersey s.iore, from tile eastern to the southern horizon. T.se w ole compreaends an extensive prospect, rich in the beauties of its scenery and endless in diversity.

The exotic department in the garden is very extensive, and comprises t.uc fo!lowing houses.

1. Green house.
2. Orange house, \&c.
3. Geranium house,
4. Propagating loouse,
5. Rose house,
6. New Holland arid Stove,
7. Geraniuns, roses, \&ec.

8 and 9. Rose Pitts,
10. Cactus house,

Lenatin.			Width.	
fect.	in.	fect.	in.	
59	0	30	0	
30	0	15	0	
65	0	11	6	
21	6	11	10	
49	0	13	6	
63	0	14	0	
23	6	10	6	
63	0	7	0	
29	0	8	0	

No expense is spared in procuring every desirable notice for the exotic department, and in the Geranince, Camellice, and Cac. teæ, this garden is par icularly rich. Indepondent of the Dotanic Garden, there is a very extensive Nuseery connected with this establishment, occupying upwards of 12 acres, compactly tilled with choice fruit trees, ormamental trees, shrubs, \&c. Col. Carr has, by the most indefatigable exertions, imported the choicest varieties of fruit trees from the different horticultural estabiish. ments in England, France, Germany, \&c. Col. C. not oaly imports scions of all that is rare and valuable, but also trees for im. mediate sale, the demand for fruit trees in the western country being much greater than the existing establishments can supply, The unwearied zeal of the proprictor renders his nursery inferior to none in the United States, as respects the variety of fruits, ornamental trees, shrubs, \&ec. The whole establishment does great credit to the owner, who is universally respectel, but not more esteemed for his laudable exertions and correctness in the various department of his establishmeat, than for this umenty as a gentleman.

Immense quantities of seeds collected in this garden from the old specimens are annually exported to Europe. Tne grarden is the resort of the Pinladelphiaus, the casull visiter, and in fact of the tourist in general-they command universal admiration. In fact, the great variety they contain of the choicest American shrubs-the enormous magnitude of many, and the extensive cullection of exotics, must prove as a source of attraction to the amateur, and an interesting field for the scientific. But to convey an idea of the cstimation in which these gardens are held, 1 may here mention that the Piiladelphia and Baltimore railroad, now constructing; as originally planned, would have gone through the very center of the gardens, and sacrificed the most splendid of the specimens, but the railroad company, with a desire to preserve them entire, altered the route at an additional expense to themselves of 10,000 dollars. Such a magnanimous act was highly meritorious, and deserves the gratitude of an American public.

Col. Carr corresponds with many scientific gentleman in Europe, and in North and South America, consequently the garden is a depot for all that is rare and valuable.*

I am, dear sir, yours very truly,
Aiexander Gordon.
Piiladelphia, July 3, 1837.

Abstract

* It is I understand the intention of Cul. Cari to dispose of the gardens, green houses: \&c. Should he meet with any genileman who would preserve them entire, or if the Philadelphia Hor. Soc. woald purchaso them, he would make a considerable sacrifice. T'o any gentleman devoied to Botany what an opportunity here presents isself, and it is sincerely to be hoped that either the Society will purchase them, or that some amateur will step forward and possess himself of this rich and charming establishment. A. G.

practical draining.

In this coun'ry, bu! little and very partial attention, has, as yet, been paid to the important subject of draining lands. The loss from this neglect, would, in a single year, be found to be immerise, even in our cultivated districts. Lend having an excess of water is comparatively good for nothing-all grain crops fail, and grass, however luxuriant it may be, is of inferior quality. This is the scason of the year in which drains should be
made. Information oa this subject is much wanted. To supp!y this in part, I would direct the readers of the Railroad, to the 6th and 7th numbers of the Rural Library, published at 79 Barclay street. In these is published an excellent work, entitled The Practical Drainer, whth Directions for straightening water courses protecting river-banks, ald embanking. By George Stephens. The work contains numerous engravings. I make the following extract

From the Practical Draincr.

draining.
The importance of draining, previous to the com nencement of any other improvement in agriculture, being acknowledgad by every cultivator of the soil, it is of the greatest consequence that these undertaki ges should be conducted on principles which will insure complete and perman nt succes. The lull adsantages of this primary i nprovement can only be oblained when it is well done. It is, indeed, the mother of all other inprovements in land; and, to make it effectual, it is necessary that the qualities of the soil, the nature of the ratification, and the laws that govera the rising and runai is of water, should be taken into coas.deration. Any drainage, not condacted with dua regard to these, however apparenly successful at firs', will, in the end, turn out a complete failure If the work is executed in an insufficient manner, it will often be att :nded with more expense to remedy the evil than the first sutlay, and the operations being concealed under ground, the defects camot be discovered uatil a great loss has been sustained.

If' landell proprictors were alive to their own interest, they would assist their teaants to ang reasnnable extent, in draining on the best principles and in the most substatial anner; for, when properly executed. it is equally as aduantageous to the proprietor us to the tenant; and it must be of the highest inportanco that the interes of both partie.s should be combined, by performing the work in a complete and permanent manner, as land that is imperfectly drained can never produce crops, either in qua tity or quality, equal to land that has been properly dried."

general principles of drainiag.

Wetness in land procceds cither from rain water lodging on the surface or from subterrancous water coalfined in the bowels of the earth, wheh, by its own pressure, forces itself to the surface in the furm of springs. On tenacious clays turat aro nearly level, wetness is often praluced by the first of these causes, but it much more frequently proceeds from the latter. It is necessary to be able to distinguish from whicil of these causes tise wetness pro. ceeds, to ensure success, (ior surfuce draning, when the water is subterrancous, can only alleviate the effect, in place of removing the cause.) to accomplish waich, requires no small exteat of knowledge of the nature and source of springs.

The earth is composed of strata of very various kinds, which, when appiied to draining, may, without regard to their other chanracteristics, be divided into two classes, viz., porous and impervinus. All those kinds of strata whose less coherent essential parts recaive water frecly, and tirough which it runs with ease, such as rotten rock, gravel, sand, and loamy clays, are called porous.Oa the other hand, tenacious clays, and a certain kind of gravel, having a proportion of clay in its composition which, by binding the small stones togeticer, rendersit equally as imporvious as clay itself, and such rock as is of a close apd compact nature, without any fissures in it, are the principal strata that resist the reception of water, and are tinerefore called impervious. Springs undoubtedly originate from the rain and snow water subsiding through porous strata, till it mects an impervious stratum that prevents an obsiruction to its further descent, and here forming a reservoir or con siderable collection of water, it is thus forced either to filtrate along such a substance or rise to the surface, where it pozes out in tiose different ways that are so frequently met with. When tine stratum which coutains the water composes part of a hill or rising ground from waich thos water has descended, it will force its way to the surface wherever it finds the easiest passage; this is sametimes by a natural oatlet, but often this is not apparent, and it is confined so near the surface as to injure it by constant moisture, or by oozing imperceptibly through any such pores in thp soll. The great object, therefore, in draining is to cut off entirely the source of the springs of subterrancous water, which
causes the wetness, by flowing over the surface or being confined beneath it. This was discovered by Mr. Likiugion, whose leasing principles are, first, to find out where the water lies in different soils and situations, and under what circumstances ; second, to lay put the drains so as most effectually to remove the water; third, to make the drains the most perfect for his purpose, either by digging alone, or by digging and afterwards boring in their bottom; with an auger-the chief object being to dry the ground aflectually and at the least expense. When the subterrancous water lies at such a depth that the level of thr outlet will not ad. mit of a drain being cut so deep, or where the expense would be too great, the anger is used to make bore-loles in the bottom of the drain, through which the water rises by its own pressure. 'I'se truth of the principles of this system of draining has been proved by the extraordinary results which have attended it, not only in this country, but in others, as will be scen by the annexed account of draining in Sweden. By it not only the land that was jintended to bedrained, but rilso springs, wells, and wet gromed at, a considerable distance, with which there was no apparent communication, have been made dry.* As, however, the whole de. must be oltained before any of the operations are commenced, which will be fully explained in the following details of the different cases.

DRAINING HILLy AND SLOPING GROUNDS.
Before commencing any operation on land of the abore description, it is necessary to examine the quality and inclination of the strata of the adjoining high grounds, and the connection they lave with the iand to be draiced, in order to judge where the wa. ter lics. The best way to ascertain the inclination of the strata is, by examining the beds and banks of the nearest rivers, and any old pits and quarries in the neigborhood, ahd then sinking pits or boring in the ground to be drained. Rushes and other aquaiic plants appearing on the surface. may facilitate the inyestigaion, but these being also produced by stagnant water on the surface, where there is no spring, cannot be depended on in cases where more minute precision is necessary.

If the inpervions stratum immediately under the porons onse lies horizontally through the hill or bank, the surface of tho ground below the level will be wet on bot'h sides of the lill, and the upper side of the wet surface will be found noarly on a level all tise way round. When this is the cass, and the hill or bank is conmosed of gravel or rotten rock, a drain properly conducted along one side of the hill will carry of the water that breaks out and causes the wetness oh both sides. But if the stratum of wheh the \%ill or bank is composed is a substance of a less porous rature, such as very fine sand, through which the water requires a considerable time to filtrate, the drain must be carricd round the hill, near the upper side of the watness, otherwise a complete draingre will not beobtained in wet scasons, when every part of the porous stratum is full of water. (See plan 1.)

It very frequently happens on sides of hills and sloping grounds, that several lines of springs break out and cause wetness to a considerable distance below, with intermediate spaces of dry land between them: in such cases, it is of the greatest consequence to

Man 1.

*The author experienced a case of this kind lately ir draining some fields for Lord Willoughby de Eresby, in Larolnshire, where a well, in the possession of the tenant, about a mile distant from the operations, was completly drained.
pends upon the situation of the ground and the nature and inclination of the strata of the adjacent country, a knowiedge of these

Section.

cents from the sume stratum or from severl distincistrata. If it is from the first of these causes, whic! is very sellom the case, in billy lands, the greatest quan:ity of water will issue from the low ascertain whetlore the water causing these lines of wetness est springs, and in dry season the upper ones will be dried up; in this cose the drain should be directed along the lower lrne of springs, as sluewn in plan 1 . which mist be made of sufficient depth to cut off the water from tue lind below. When, however, the springs cone from different strata, having no communication with each other, which most frequently is the case, a drain untist be carripd along the upper side of each li ie of springs, as shown in plan 2, deep en ugh to cut through the porous stratum, or to

Plan 2.

free the land from supefluous moisture to such a depth ns will prevent it injaring vegetation. Sometimes the upper line of springs causes the who.e of the wetness below, by the water, after having ram over the surface, for some distance, sinking into the soil and breaking out again farther down the declivity, or where from the inclination of the ground, it may collect itself. When this happens in a stzep bank, and the water gets into the loose earth, it causes the bark to slip, and it therefore is of the gravest impuitance that this fact should be ascertained before the comancucement of the operations, as when such is the case, the drain must be made across the slope, further up than where tha water makes its appearance, in the sound ground that has undergone no change; and, if it is made deep enough, the real spring will be intercepted, and the baik secured from slipping.

From the Genesec Farmer.

QUESTIONS RESPECTING THE ECONOMY OF CUTTING UP CORNtopping cornstalks should not re practised.
It has we think been sufficiently ascertained, that when corn is injuied by an early frost, cutting it up contributes nothing to its relief, and nothing to its subsequent improvement. It is we think better, in such cases, not to molest it, for unless the frost be a very deadly one, the corn will still derive nutriment from the stalks and leaves. There is another question related to this which we think merits the attention of agriculuralists. The question is this: Is it, in general, good practice to cut up corn at all, or to cut up the stilks while the ears are atached to them? We are not for war, and if we were disposed to answer this question in the negative, we should scarcely dare do it, knowingeas we do that ihis would bring us into conflict with almost universal opinion. We will, howerer, suggest certain
considerations, und leare the guestom to be idflidicated ant settlel by our readers.

1 Cutiong up corn at any lime betore the 'caves are fill: deal, does umboubtedly injure the crop in some degree, affect. ing it probably bo:h as to quantiay and quality.
2. When com is cut up, ant the stalliss secured in the bes manner they can be, it ravely fils that sowe of them get down, and thas both the corn and stulks are ditmaged by exposure 11 the weather. If it were not so, the large buits and steins of t! e stalks are of little value for folder, for no surt of stock will eat them, unless compelled to i by dire starvation.
3. If the stalks be loft slunding in the field, cattle will consume quite as great a portion of them in the field after the corn is gathered, as they would if they had been cut and gathered to the barn.
4. As maierials for dung, stalks cannot be disposed of in but ter advantage than to be allowell to remain where they grew, und there be mixed with the soil, as is usually done by sub sequent tillage.
5. Cutting up and securing a well grown crop of corn, is a heavy and toilsone labor, involving, togeiher with the subsequent inga'hering of the stalks, no trifling item of expense.

If these things be true, is it, in general, gool praclice to cut up corn at all? In limes of threatened scarcity of winitr feed for stock, it may be, and prubably is, wise and prtident 10 do it. It may too be profiable to do 11 , in the vicinity of cities and large villages, where foddre commands high prires.

In agitating the quesion hus fir, we have supposed that the stalks, if they were cut and githered 10 the bitu, were to be given to stock, without lurther cutting, or any other preparat:on. In the case of firmers who have gonl cuting machmes, and intenil b; cutting to preprare their slalks for the use of animals, the question may assums an entirely varied a-pect.

With a few occasional exceptions, mir practice for several years hats been, so let our corm remain unamoles:e. $l_{\text {, until the time }}$, of harvesing it. Sometimes we have cul up and gathered the stalkz, afier the corn had been separited from them. This, when corn is harvested early, can be done to adrantage, und if culting be pricticed at all, we think this is the better waty. More ge nerally we hive left our sialks to be depasturel in ;he fiedil where they grew.

The uidvantuges of practicing as we have done, are supposed to consist, 1st. In a greater quant!y and better gualny of corn. 21. In exemption frum anuch tuilsonne and expensive labor. The only losis known to reault from this prentice, omsista m the inferior quality of the stalks tu be consumed as fodder. It dues not appear that, as to quantisy, there is any loss, for cattle will consuine as gre.t a portion of the stitks, while depatsturing in the Geld, as they would il they had been cut, its is nsmally practiced, an:I given out in the barn yard. Neither does it appear that any thing is lost, in connectou with lle eronnsuy of ma. nures. Or if there be any loss in this urticle, certainly it is very small.

We offer these reinarks for the considerations of lariners. The question is, are the advantagea which, in urifnary cases, resuli from cutting up corn while yet in a state of implerfect maturity, sufficient to balance the dannages which it does to the crop, ami the expenses of rloing it?

Hitherto we have satd notting rela ive to the practice of top. ping comstalks, which lummerly prevaical almust universaliy, and prevails now to so:ne extent. 'I'he peonoury of this practice has been the subject of so many experiments, and so much / gh: in regrard to it has of late been gained, nud dissemmated in in public journals, that sceins scaterly n cessury to reitgitare the subjer t. By many well conlice ed expermarn's, it bits ween proved most conclusively, that topping the stialks of corn, while as green as to be worth toppin ?, essentially injures the coop, wten cusing a reiluction equal to one fif.h of fus value. Auming enlightened farmers, the piactice of sopping has fallen into te. neral disrepute, and as it is most clearly an unprofi nble prnctici, it shoul. I be entirely a!ban loneri.

Dan Bradley.
Marcellus, Feb., 18:27.
From the Now Yurl Fariner.
I have read with much atte ation ind pleasurs, the use.ul information contained in your sate No., relative to pousir.de. In

France it is nı. us un fre t v..luc, and a source of muc." profi ${ }^{\text {t }}$ 10 the compani :s ves ed with the exc usive right (disposed of at aution) of cle biag the 1 rivius in large cities.

Some sixty years ago. Paris war lit a stiti of shocking filthi. ness, and the poliec by nu nu-a is as well directed as at present. Fountains fimbishing throug' cut the day, streams of pure and Irash w ter-scwers of ample dimensions (6 feet deep and 5 feet wile,) enptying into the liver ; companies appointed to sweep and clean the strects every evening before ten o'clock, and to make a proper disposi.ion of the manure, were not then in ex s. tence. The streets were narrow and badly ligned, and that part of Paris, yet called the City*, would give but an imperfect idea of wisat te whole metropolis was belore the revolution.
M. Bonisault, who haul been unsuccessiful on the stage of one of our minor theutres, was the first man who entertained the idea of regulating and improving the administration of this department of the poltece. He solicited fiom tuc Corporation the use of a Diece of ground, where the diily produce of the city might be reposited until converted into good manure, his plan being founiled npon tree ventilation and iction of the sun, required a large space of gromurl. He was authorised to use the Petit Pantin bet. tor knuwia iss Mont faucon iud tuat place bas sine: buen ue rentezvous of al manalacturies o. dingerons and disayrecable nature, lusist: and dos slaugiter-inouses, \&e.

For scveral years M. Bunsanlt carried on his business to the general satis"ac ion, and to the benefit of agriculture. lie made an inmense fortune whica be used nobly. The garden of his Hutel in the faubourg Poissomuere, is one of the first in France, and contains a çllection of roses superior to that of the Royal Garden of Plants. Open to all strangers and amateuns it is as well known as the Hutel itself, whose saloons are fiequented by the most agreealhe socisty.
M. Boursault is now 70 years of age, and is yet very active and boralthy. He still retums his carly tueatrical predelictions, and is one of the most constant visitors oal the st uge of the Pneatre Fran. cais and at the O_{i} era.

If the Corforation thought it just and fair that he who had b a berefacior to the city s.ould be allowed to enjoy tie profi the business lie had so well organ zed, it was ruasoiable that is profit shoull not pass entire to his successors, and since M. It in. sault has left the manggement of the general ceansing of Pa . is. t is every vear g.ven to the ligg.ust biduer as you term a, and is not leit to idventurers as the Editor of the Furmers' Register states.

But as in socioty we coustatity aim, at pericction, the process which has been found so useful for 40 years, thas become insifficient, and a positive nuisance. While the Corporation looks for another and more remo:e location, science lias been consuited fur a piocess that would dispense with so many reservirs, tue em nations of which are very disagrecubl; il i,ot daugerous, and even i.juriuus to the manure preprared.

Long ago, M. Cisaptul endeavored to remedy the mode of evaporatio in the sun, but tue suggestions of that great caemist were then only purs:ued in their application to the arts and manutactures, wh:le his ideas on agriculture, twoug ! considered grool and advantageous. were not so gencrally adiaitted into prnctice: But the benefits of 20 years peace, and tire gencral injorovement anvo set many munds to work, and Ciaptal will be jound onee more a bene:acior ol inankind.

You are perictly correct Mr. Elitnr, when you say that a F*rench chemist has found in a vegetable matter, the means of drying and pulverising in a tew mours, tue coutults ot privies. 'liae contracts tisat exist between tue Corporation o. Parls and uee bi Jders of the general cleansing of the city, prevent the imnedia \mathbf{e} a!plicatio. 0 t.14 ןrocess-but as no sucit obstaclé exists in New. York, I tai..k you deserve credit. e.couragement a d protectuñ, tor your effis, ts to toan! in four caty so desirable an establs.ament'

[^44]
Thas late perio 1 of r.cerimg o ir fuelgr [Pardicals prevens u from mating further exiracis for this number.
on an mproved method of making clover hay.
by Mr. John proudfoot, invellesk.
[The E litor salys inat hay making is p thap the worst ron ductud operamon in Scontish busban Iry, and the object of the Society in offermg prommans for Essilys on the besi uie hat of making boih claver and meddow hiy, is to urge the gen • ral adoption of a superior managenent in securnser be crop of that valuable and nutritious witier proventer. It is to brhoped that the success attianed by the writers of the following e-says will proapt other hay makers to idupt the practice described by them. A 1 remum of 'I'en Sovereigns was awaided fur this essay.]
The oresent praclice of making hay in the neighbarhoorl where I resile (amb, I believe, it is muth the same mroughom: Sco. land) is liable to many objections. 'I'ze chirf of the e are. 1st, Thal of allowiats the "grass to be "to.s ripe," as it is gene rally called, before it is cut. 2d, Allowing the g ais to be: on the ground till it either be rottel wih batd weather, dreached with rain, or drie.l up by two long exposure to the sun.
The metho I I nave adupted for t.le last tarce years is very simple, but, in my opinusa, a very secure one for our changeable climate. It is as ollows:-Tai, year (18:36) I commenced cutting a field of grass of ten acres, on the 1st of Juiy, j ist when the flower was going off the rye-grass, whicu I conceives to be the t the criterion for cutung. ' 'linis fi ld was sown down with 12 lb . of the best Dutch red clover, and 1 lb . of waite dito, wit. $2 \frac{1}{2}$ pecks of best Ayrsiaire anmuall rye-grais per underal dere. It wa; a most exc Il.nt coop. and, as quick a; five men could ent it. down, wo men put it uip close be nud them in the following manter:-taking hold of the grass by the $\mathrm{t} \mu$, and placing it neatly ronitd t.se lefi fout, kecping the foot stealy in the neart oic tale madiul, t , en tying a little band round tae top, to areep it staraty ia the uprigat conica position, an I waten the fiout is removed t.ee uper'ure se ves fime a ventilator. Taus nearly all the surfac: 0 . the grassi is exposed to the air, and if tue nolluw cones ane neatly put up, they will be a host safe from the weatacer, as, in case of raia, it runs off as fast as it falls.

If tie weather is at all Cavorablo the conical handisls will be ready, in wenty-four hours. for turning out, and pu ti ig up into smail cocks the sanse day; but they may, with greater saffey oe allowed tremain in the fir.t pusitum intil ready for putting up int, large cocks. I an of opaion that the lesis turniise cliver hiy gets the betier, as the oltener it i . furned its saiue is deteriorated, mure esperially after getting rain.

On -hall of the fie!d was turned out of the han fuls, the other hali allowed to remain until it was ready for being put into cocks an I my manner of maki ig cocks is this:- 1 man st inds it th cock, to whom the women bring the hatiluls, when be puts ncatly up, alvays keeping the tops of then to the c. ntre of the cock, in a irecti in sloping upwards, iroin hi..n, so as the lope may in ow off the rain. In thus ca: efilly constructing the cocs litt: vacuities will be left betwe en the handiuls to act as ventilators, the mfluenee of which will very stoon render it proper tu put the hay into larger cocks. In one week I had all the hay of th ton acres put into ricks of 130 or 140 stones, in which state I conceived it to be proof agam-t any kind of weathe, -i ideed. wase in nit that purchasers were expected to take it "off the rick," it might have been put into the stack. I may mention, that the rain fell less or more almust every day, "xcepting on Sunday the 3d, and Monday the 4th, but on the 5th there was at severe thunder-storm, and. notvo.thstundiag this most u ipropitious weat ier, I ma le nearly 4000 stones of hay in the finest condition, ia one week from the lime it 10 is cut; and as to its quality,* I think I am n,t tos boll voien I sty, that I am not affivaid to. challenge the county of E:linburgh.

The great advantage of this systen over the common one in a lad season is, that one hour's sunshme will have more effec: in drying the hay than a whol day! I have this year seen hay

[^45]lying on th. gr und lior weeks to petier, in: l the a terin th growng up thromgh it, whica is dearrusive b th the have and the second coop; but it the syite.n waich I have lescribed be follone o out, I wi venture tis say that the h iy wli mot conly be intinitely superio, but ia the end will be pat ", at less expense thath in the odd syste a, under the in ist ta arabie curca nstame

I have ano caverted th sucond cryp int, hay over the same gromand with + qual success, unwoth at nding the b id weather, and al the obstacles incidemtal to making a second crop of grod hay.

how to improve a poor farm.

Richard A. Leovard, of Midilhitown. N. J. has furnished us an interesthar account of bis man eer ol inploving a worneout turm, and of the sale ot" its prolucts t.e last year; and we regret bat from the great acceianulation of mither oal hand, we calluot give his letter in dela We are obliged to colitent ourselves wit a a brief abstract of intteri,d fucts.

Mr. Leonard cam: mto foisessim of 90 acres of cultivated but ex.musted land, in $\mathrm{M}_{1 y}$, 18:33. In t.at year the sale of its prolucts amo ate 1 to $\$ 55 J, 83 ; m 1834$ the sale amomited to $\$ 718,05$; in 1835 to $\$ 1,125,04$; and in 1836, wotwithstanding the untavirable seanon, and the fuilure of most of his staple crops, ts $\$ 1,166,13$-thas inore than doubling its products, by judicious management, in three years. His expense during the last year, tor labor, duag and lisight. anonited to \$:54.72-thes leaving hum a nett profit on tare firm, of $\$.310,41$-ur mare than $\$ 10$ per ucre per .ul..um. We will quoie Mr. L's. stiteme.t of the means

"My liar.n," says he, " was in so low a coadition that it would not proluce moce than ten busials ot rye, or twenty of corn per acr: ; and is 1 as 1 no uticer licome but what I could make upo.s has poor firm I set aboat armang in earnest. I found it was in v in to attem, t improvement whionat manure, so I contrived to get about 400 loads a ycar, 3 JJ oi whica 1 mate matine fotiowing manuer. I natse mari, t.ong.a o. very inlerior quality. 1 cart about 100 loads of t.is thto my barn yard. and by yarding my catte tepon it through ure scuson, coantive to increase it to 200 lu ds. I also ceat iblout 50 loads to my hog pen, on which 1 keep my hors the ycar rouud. In this way I got 100 loads more, waical is exceilemt for putato sis, corn, \&ec., and as my faim is situatencert ec bay, I outuntiom N.w. Yo.k, unnually, liom 50 to 7.5 loads 0 t.e best stame diage, at about \$1 per fo don deive-
 By this treament I tind my land improve rupid!y, and toy inconse ial like profortion. But I am sorry to say there are many tarmers among is w.o are stil parsaing tai old land-killing system, scarcely in iking bot.s cads meet. il migat say sometnang concerning t.se b metician results on uader ratumg, and of lune as a manure; bat I coacluade for the present.

Tors connuaicaten atfords a worthy example of prudent indusiry and good management, and suians that even a poor farm, wen inanaged, inay be readered more proluctive than many a good firm now is under bad mamagement.- [Cult.]

ROot cuiture.

The root, and particularly the turnip culture, which has been exiolleal as the basis of improved hutosul Iry in Great Britain, is rapilly extembing imong us; and we confidenly antucipate from it the best praclical results. Five years ago there was not protably two hunalred pounds of ruta baga seed sown in the stite : thas yrar tons of this seed have beets sown; and the culture oí manguld warizel and carrors, has been also greatly rx ended. Une scerlstian has noported 26 cwt . of ruta baga serd, and thrs protubly his not been mure than a quarter, or a third, that has been sown. The supply has been exhausted, frein B.lumore 10 Buston, and yet the demanil has not been suppled. O ir neiglibur, Thorburn, has suld this season 1,500 Ibs. ruta baga seed; 150 lb .s. carrol to. ; 100 lbs parsnip do. ; and 150 lbs. manguld wurzel do. ; and, as ind.caning the ex. tended culture of roote, and the nilsance of agricultural improvement, we add, hat he has also retaled seventy cultivatore ; eighly dilli-barrows; and seventy-five of Green's straw-catterp. We recor I thes facts as uffording, in our mind, substantial proois of a propitious change, and of the efforta to improve, which a:e
now wang in.matiosed in our agrialtural comanity. And from the spirit of inquiry which is abroad, and the general circulation of agricultural periodicals, we hazard little in saying, that the rising generation will be better farmers, and more enlightened men, than their fathers have been. Let every young farmer ponder upo.l these facts, and to stimulate him to honorable exertion, let him remember, that he who aims to excel, will at least attain mediocrity; while he who rims at mediocrity, will generally fall short of it . Cultivate the mind, as the sure means of increasing the profits of the hands.-[Cultivator.]

(From the Cultivator.)

the wool manket.
As clipping time is near a: hand, I have thought some retmarks on the subject of wool would not be uninteresting to those who are engaged in sheep husbandry. I am largely interested myself, and with a view of learning the actual state of the market, I have just sisited many of the manufacturing towns of Conuecticut and Massachusetts.
In consequence of the extensive failures or suspensions of many of the large commission houses in New-York the mantfacturers were more or less embarrassed. The losses of some were so great as to cause a failure, while others, witnessing the the storm around them, immediately slopped their mills and discharged their hands. The great majority of woollen mills are of this class, who stopped from expediency, more than neces. sity. They have worked all their wool and finished all their goods, and only wait for a change of times to start their machincry again.

Nearly every mill has on hand the cloths manufacturel in the last four months, and they will not be sent to market till the fall sales commence, when fair prices will doubiless be obtained.

The stock of domestic woollen goods in Philadelphia, New. York, or even in the country, is not large. There is no difficulty from an over supply. It is well known that there will be few or no woollen goods imported this season, and our own manufacturers will have the entire benefit of the market.

The present state of affairs prevents the importation of either wool or woollen goods. The duties are-required to be paid in cash, when imported, which now amount to alinost prohibition. Indeed, since the bursting of the credit-system, as practised by importers, goods will hereafter, from necessity, be imported for cash. cash.

All these things will eventually help our manufaciurers, by giving them the market of this country, quite as effectually as by an extensive tariff or ditics.

June, 1837.

> Yours, \&c.

Ostego.

From the Cultivator.

The Harvest Prospect, has brightened surprisingly within the last six weeks. In the valley of the Mohawk, througis which we have recently passed, we never saw crops look more propilious to the hopes of the farmer, than they now do, considering tne backwardness of the season. The wheat, there, stands pretty well, and were it not for apprehensions from the grain worm, the prospect would be that of a good crop. Many of our readers abroad identify this insect with the hessian fly, and others with the wevil. It is neither. The hessian fly preys upon the stock of the wheat; the wevil upon the ripened grain, in the barn or in the bin ; the grain worn destroys the wheat in the germ or milk. The spring grain and grass look very well, where any attention has been given to draining; and even Indian com, though yot in late, has come up well, and is of a good color. There has beea an abundance-an excess of raia; and although "spring lingered long in the lap of winter," yct the warm weather in the last of and first of Junc has caused such a lusuriant growth, that if the coming month is favorable, and the nipping frosts of autumn are delayed, the corn crop will yet be a tolerable good onc. The prospect of the crops farther west, we are happy to learn, is epually fluttering. Abundant crops will do more to mitigate present evils, than a hundred baniss. The truth is, that as a national fanily, twe bought sixty-four millions of dollars inore last year than we sold-and the sixty-four millions balance must be paid before we can have easy times--mist be paid from the profits of agriculure. Banks enrich individuals-good crops the countrythe whole country. - Then tet tis "speed the plough," and hopor and instruct those who guide it.

Poudrette Company, or Cleanliness, Health and Licunomy. A Company will be organized in a few days, for the purpose of preparing this valuable manure. One of the main objects of the Company is to introduce an ingroved, or fat less offensive mode of enptying sinks in this city.

The im rovement consits in removing the contents withoul exposure to the atnosphere. while on the way from the yard to the cart, or to the place of depusite-and also avoids. and will prohi. bit the present practice of throwing 40 or 50 loads of filth into the river every night.
Siares in the Company are Onc Hundred. Dollars each.Every Subscriber will be entitled to áppropriate as many bushelis of manure anuually, at haif the market price, as he may sub. scribe dollars.

Those who may prefer not to subscribe to the company, and yct desire to contribute to its success, can do so by depositiing ten or tiventy dollars with the agent, which amount will be placed to the creait of the depositor, and entitle him to the services of the company in emptying sinks, at five cents the cubic foot, until the amount is thus balanced.
Information will be given, and subscriptions received, at the ofs, fice of the NEW.YORK FARMER, No. 30 Wall-street, base. ment story.
$0<$ The Company is now organized. The chemical, and manufacturing depaitment, will he under the care of Peter Bart thelemy, Esq, who introduces the improved plan. The busi ness generally, will be under the care of D. K. Minor, at the office of the $\mathcal{N e w}$. York Farmer.
** The last few nuinbers of the New-York Farmer contain several articles in relation to its use and value in Europe.
D. K. MINOR.

New.York, July 19, 1837.

Adventisements.

GEORGE MAIUL.-Information is wanted of George Hall of the city of New York, who left Newburgh last September; if this should meet his eye, he will hear of something to his advantage, by addressing a letter to his Sister Jane Hall, 46 Oak strcet, New York.-Any information concerning him, will be thankfully received by his Brothers and Sisters as above directed.

New- lork, June 15th, 1887.

third annual fair of the mechanics' institute of the CITY OF NEW-YORK.
The Fair of the Institute will be held at Niblo's Garden, commencing Monday, September 25th, 1837.
To render this exhibition worthy of the arts and of the ingenuity of the Mechanics of our country, the Managers appointed to conduct the approaching F'air have determined to make such liberal arrangements as will insure to the contributors a fair opw portunity of oxhibiting their productions to the greatest advantage.

The object of Exhibition Fairs is to present to the members of th? Instituteand their fellow citizens who are engaged in the Mechanic Arts, the means of making their skill an I ingeunity known in a way no other facilities afford: the many thousands who visit such exhibitions have a much better opportunity of judging of the merits of the various productions, than they would have by a mere verbal or newspaper description, besides the advantage of seeing brought together, in one vast collection, the products of the skill, in_enuity, and industry of our country.
Premiums of Medals, Diplomas, \&c. will be awarded for all worthy or meritorious articles exhibited, either as it respects superio: workmanship, machinery wherein the operations are new; interesting or important, where ingenuity is displayed, or taste manifested, and particularly for all new and usetul inventions.

You are respectfully requested to send, tor eompetition or exhibition, specimens of the articles you manulacture; and you may be assured that the strictest impartiality will be observed in the distribution of the Premiuns.

Steam power will be provided ior the accommodation of those who w!sh to exhibit Machinery in operation; an experienced Superintendant will take charge of this department, and contris. butors in this branch are particularly invited to send or bring theif Machines or models as early as possible, on the 23d Septembe
that me neecessary arrangements nay be made in relation to shafting, pullies, \&c.
The Managers, in conclusion, cannot but express their belief that this Third Fair of the Mechanics' Institute, will exceed in variety and beausy of disp.ay, all previous exhibitions of the kiad.

$$
\left.\begin{array}{l}
\text { George Bruce, Chiirm. } \\
\text { Wm. Everdell, } \\
\text { C. Crolius, Jun. } \\
\text { Thos. Ewbank, } \\
\text { Richard Bragaw, }
\end{array}\right\} \text { Executive Commillee. }
$$

N. B. All articles for competition must be delivered to the Committee at Niblo's Garden, on the 23d September. Those for exhibition only will be received any day during the Fair, before 10 o'clock A. M.

rules and regulations.

1. -The Garden will be opened for the reception of Goods, on Saturday, 23d of Scptember, from 6 o'clock: A. M. until 9 o'clock P. M., and it is respectfully urged thet all articles intended for competition may be sert in early in the day. Those articles intended for exhibition only will be received any day during the Fair, before the bour of $10 \mathrm{~A} . \mathrm{M}$.
2. -The Fair will open for visiturs on Monday, 2 ;th Septemat 10 o'clock A. M., and continue open every day of the exbibition till 10 o'clock P. M.
3.-Competent and impartial Judges will be appointed to examine all articles presented, and premiums will be awarded on all such as shall be declared worthy.
4.-The Committee on Premiums, and all firms or partnersnips in which they may be interested. shall be excluded from competition or the award of any promium.
5.- All persons depositing aiticles, cither for competition or exhibition, must attend to have them registered by the Clerk, at which time they will receive a certificate, which will be required of then when the articles are returned.
6.- Proof of erigin must be furnished if required, for any specimen offered for Premium.
7.- Depositors will receive a ticket from the Clerk, which will admit them and Ladies during the Exhibition.
8.-Arrangements will be made to exhibit, in operation, all working models that mav be deposited-contributions in this branch are invited-a compe'ent person will take charge of all models sent for the above parpose.
9.-The morning of each day, until fifteen minutes before 10 o'clock, shall be appropriated exclusively to the Judges.
10.- Menbers will receive their tickets of admission by applying at the Institute Rooms, any tume in the week previous to and during the exhibition.
11.-All articles offered by Apprentices, will be received, and adjudged as the production of Apprentices-they must furnish a cerlificate of name, age, with whon, and the time they have scrved as apprentices.
12.-Articles subject to injury by being handled, should be sacured in glass cases-and contributors are requested to have a person to take charge during the hours of exhibition-in the intervals, efficient measures will be taken to protect property.

George Bruce,	John Ridley,
Johin M. Dodd,	Silas B. Simenson,
James J. Mapes,	Thomas F. Peers,
Thoinas Ewbank,	Thomas G. Hodgkins,
Wm. Everdell,	George L. Spencer,
C. Crolius, Jr.,	Peter Wemmell,
A. J. Mason,	Richard Bragaw,
Thos. W. Barkolome	Ab'm Peitch,
A. Storms,	Wm. H. Hale,
Wm. Ballard,	Wm. J. Mullen,
Henry Cunningham,	Jamos Thomson,
John Harold,	Abner Mills,
Joseph Trench,	J. D. Chapin,
James D. Phyte,	A. Campieyer,
John H. Mead,	Hiram 'Tupper,

Johai Comroy, Jordan L. Mot ${ }^{\text {, }}$ S imuel arter, Gearge F. Nesbitt, He.ry Worrall, W. B. Worrall, Jame: B. Cummings, James Frost,
11. 13. Robertson,

Jimes Thomas,
H G. Stetion,
Ferris Owen,
N. Berry,
O. Whittelesey,
M. W. Emmoos,
J. S. Inderson.

transactions of the institetion of civil enginerrs of great britalis.

The first vo'ume of this valuable work, has just made its ap. pearance in this country. A few copies, say tucenty-five or thirty. only, have been sent out, and those have nearly or quite all been disposed of at ten dollars cac! -a price, although not the value of the work, yet one, which will prevent many of our young Engineers from possessing it. In order therefore, to place it within their wase, and at a convenient price, we shall reprint the entire work, wit! 11 its enagravings, neally done on wood, and issue in six parts or numbers, of about 48 pages each, which can be sent to any part of the Unite 1 States by mail, as issued, or put up in a volume at tle close.

The price will be to subscribors three dollars, or five dollars for two copics-alicays in advance. Tie first number will be ready for delivery carly in April-Subscriptions are solicited.

AVERY'S ROTARY STEAM ENGINES.-_AGENCY.-

The subscriber offers his services to geutlemen desirous of procuring Steam Eagines for driving Saw-Miles, Grain-Millof and other Manufactories of any kind.

Engines only wil! be furnished, or accompanied with Boilers and the necessary Nachinery for puting them in operation, and an Engineer always sent to put them up.

Information will be givnn at ali times to those who destre it, either by letter or by exhibiting the enginesin operation in thiscity. Inquiries by letter should be very explicit and the answers shall be equally so.
D. K.MINOR,

30 Wall-st., New York.

FOR SALE AT THIS OFFICE,

A Practical Treatise on Locomotive Engines, with Engraviags, by the Chevalier De Pambour- 150 pages lage octa-vo-done up in paper covers z o as to be sent by mall-Price $\$ 150$. Postage for any distance under 100 miles, 40 cents, and 60 cts . for any distance excecding 100 ms .

Also-Van de Giaaff on Railroad Curves, done up as above, to be sent by mail-Price $\$ 1$. Postage, 20 cents, or 30 cents, as abore.

Also-Introduction to a view of the works of the Thames Turnel-Price fifty cents. Postage as above, 8 cents, of 12 cts.
*** * On the receipt of $\$ 3$, a copy of each of the above works will be forwarded by mail to any part of the United States.

DRAWING INSTRTMEN I'S.-E. \& G. W. Blunt, 154 Water-street, New-York, have received, and offer for sale, Drawing Instruinents o. superior quality, English, French, and German Manufacture.

They have also on hand Levels of superior quality at low prices.
or Orders received at this office for the above Instruments.

G TO RAILROAD COMPANIES.

A PERSON experienced in the construction of Locomotire tingines (many of his Manufacture being in surcessful operation on jmportant Rair roais in the United states) ant whe is like uise thoroughly acquainted wiith the managemen of such machines, and, itdced, the enti- ordeal of Railroads, is dutirnus of cblaining the stuation of General Superintendant on soine Rai road, South or Hest.
The most salisfactury teslimonials of charncter and capabilizy can be produced. Communications addressed to the Edithrs ol this Journal, staing the location of Road, \&ec. will meel with prompt atiention.

$$
9 t-2 i
$$

VHE NEW.YORK FAR UER AND AMERICAN GAR: DENER'S MAGAZINE.-Is published semi-monthly, at No. 30 Wals-st., bascmant slory, at Three Dollars a-year, in advance, by D. K. Mivor \& Geo. C. Schaetfre.

RAllowat IRUN，LUUOHOMVE：© 1＇ale subseribers orer the follonving artieles to salpo
Lisilway Iron，llat bard，with comateranti holes ant tallireiljumts，

with Spikes and Splicing Plates adaptet thereto．Th be suld time of duty to Stato govermments or inemp poraled companses．
Orders tior PonasyIvania Builer Iron excentud．
 tvroughtanil turned or antirned，r．ady to he fittal on the whels，viz $30,33,35,12,+1,51$ ，and bu i achera ainueter．
E．V．l＇atent Chain Cable B．Its or R ilway Lar axker，in lengths of 12 lie et 6 inchers． 10 Is lieet id． 21 3，31，34，31，and $3 t$ inslhes dhaneter．

Chans for lielmad lla tes，shiof and stivy links． manusactured from ithe E：．V．Ciable Bolts，and pruved at the groutest stram．
 Ncw Loraland Ilax．
Also Pabent Ilemp Cordage for Inclinen Pla．ses， and Canal Towilly lanes
Paten Fell tor placting between the aron anair and tun bluck of Eidse Ra：lway
Every descriphon of Railway Iron，is $\mathbf{N} \cdot \boldsymbol{l l}$ as Lo comotive Eingings，inaported at the ahortest monce，tiy the agency of one of oar parneis，wilu resddes in King mad lior thas parpuse．
hishiy roxpociaste Amaricun Euginecr，resides in E．igland for the purpose ulisaspectang all Leromu－ tives，machatery，ical＇way irom se．urdered hirungit 4

23 if
A．\＆6．HALSTON \＆CO．，

ARCIIMEDESWURKS

100 North Huor street，N．Y．j
Nки－Yots，rebruary 1：1h， 1336
TIIE understgned begs leave to inturn ille propric． turs of Railroitus that thoy are prepared tu birminti all kinds of Mrehinery loo thalruads，to wanmive tingin＂s of any sice，Car Wheels，suctu as are nuw ha suceersi－ ful uperathom the Camden and Ambuy hiailroan，

4－vil 11．IK．UUNIIAM\＆CU．

MACHINE Wi）RKS OF R（）しiths KE＇TCillim ．．nd GaUsVriNuR，Patersum，New Jersay．I＇lu anderatgued rcerive orders for ilir ful－ luwhy artheles，manmathed by th m，of the mest
 billg extenstre，and th．ninder ol lams employed bend large，titey are andnad to cxeeute buth targe and s．aall urders sth promptuess and despateh．

RDllatuan WURM．
 ing and uthor Locum hive Wheeis，I Ix es，surn，$;$ and Flande l＇ires，Car wheuls of east Irun，trum a va． riely of pateras，and cinills；car Who．ts of cast Iront． with wionglat lir：s，a sles ol best American refised iron，Sjprings ；Buxes ana Bults Jus Cars．
CUTTUN WUOL A，D FLAX MAEHINERY，
Of all descriptions and of the must improv d Pab ern＊，Siyle and Workmanship．
Mill Gearing and Miltwright work，generally；IIy disulic and uther Presses；Press screws；Callen ders；Lathes and l＇ouls of all hinds，Iroll and Brass Castings of all descriptions．

HOGCLRs，KEICHUM \＆GROSVENOR
Patterson，Nou－Jersey，or èu W allstrea，in
3116
TO RAIJAROAD CONTRACIORS． PROPUSALS will be received，at the office of the Hiwanses Llanlruad Conu．，in the hown of Atheng， TENSESBEE，until sunset，in Monday，June l：3h． 1837 ；for the grading，inasunry and brilgea，onl that purtion of the hifassee Kailruid，which lies be－ wweon this Hiver Tenucssee and Hiwassee．A dis tance of 40 moles．
The quantily of excavation will be about one mil－ ion of cubic yards．
Thy line will by staked out；and，logether with drainings and sp－cificatiuns of the wo＇k ，will bi rea．ly for the inspoction of cuntraetors，on and aftel tre lat day of June．

[^46]
F゙RAME BRIDGES

TVIE molersis aed，（reseral Agent of Co
II．I．OVG，th haill Rriderom，os venif the sight th
 whem dailrosta ad lisidse liorpara ions，that lie

 ＂the rai pol water．（Hatyland xformet．）

 Bahamere th ifoshragen，iwa bailes from doe dirmar

 at Rrailroind it three paints．Un he lluilsoll an
 Wurcestur linihoad，at severplpoints．Onthe Bus－

 hourouh river，at Hanroch，X．II．Worsiothe An－
 the lisnalebec river，at Waserville，Naine．Across The ！ienesse river，at－पinhithil！，Monnt Morro，
 V_{1} ．Across the tionler in ut liver，an bebmant，N

 ．1．A Rairuad Bily，alingmally ace us the Erie Camal，th the cily ol Rumenemer，N．I．A Ratra Bafige at Up，et still ilazer，Uromu，Maine．M＂ha
 200 feet．It is prubihly the tirabst woos BRid：as ever mith in tmerima
 hetwent twenty mut thry liaitrond bridece，ind se－ varal eominus brilges，nivinal ot whach are nan in

 III I On lit ral ：erms．MUSEN LO！is， Kohesalur，Jau i！！！in，18：\％．4－y

LLBANY FiAglet alR FURNACE ANI）

 MACIINE；SHOPWILABM V．MaNE manuathires to orler Rese corines fur ticaring silla and F＇actorien every daseripuliull
Al．SO－senun finpines und llailruad Castinge tery despiiphun．
I＇lie colleriman if Patterns for Marhinery，is mat
and 15

NEW AHIAXGEMENT．

kopes for inclined planes of ratlrusds
Whe the subserabers havinr furmed a co－putmership undes the style and firm of folger d Cink mosh，tor the manatheluring and soliting of
 Usis，ulfer husupply ropes fur ucliisecio plates，of nus Iengh reppured withent splice，at shirt notice．the manalarcharing ：I cardnge ：feletutior．＂arried on by S． 3 Dirlie dic o．，will he donte by the new liran，hise same sup rimululan abat mathanery are empluyed by
 Cor．All waders will be promp：ly ath niled to，and ropes whilise shippetlonny furl th the United slates．
 ath of New．
33－1r．
ROBP＇C．FOLGER．

AMES＇CELEBRATED SHOVELS，

 SPADESS，\＆C300 duzens Amos superiur back－strap Shovels
150 du du do plaill
 100 do do Guld－maning shovels 50 do do sucket shares
50 do do sucket Shorels and Spades．
Tougether with Pirk Axis，Churn Drills，and Crou Bars（steel puinted，）natultavtur－d from Salishury re－

WITHEREILL AMES \＆CO．
BaCKES，ADESty struel，Now－York
No． 8 State street，Alhany
N．B－Alsa furnished tourder，Sliapes of every de rintion，made frum Sulshury refined Irun v4－I！

STEPHENSON
 Builder of a superior style of Passengev Cars for Rcilroads．

No． 264 Elizaboth strect，near Bleeckerstroel， New－lurk．
RAILROAD COMPA．NIES would do well to exi＂ une thowe vars；a specimen of which may hie stet ni that part of the Ncuy Yorta and Herlogm Ruilronc
inw In oreration．
－IIFNT RAHLROAD，SHIP AND Po i＇I sPIKES．
＊＊＇ilho＇Trey Irun and Nall fiadory keeps eon－
 pinges and Naips，Irime 3 tu 10 inches，mathufarmind y 11 ．－sulsertiber＇x l＇ot th Maelhinery，wheh allere

 uperser tu suy ever obler dint marhit．
ifrilruad Compani－may be amplied with spithes

 ory－lior which furpuse they are dunad intraluable； is lleci：nifiesion in more tholl double any common ＂pihex mall foy the linmmer．
＊＊NU．Nderx dire cted to the Agent，Troy，N．Y．， will he pumetuall！attenued tu．

If ENiRY BURDEN，Agent．

Tros，N．Y．，July， 1831.
＊＊spites are kopl for sale，at fartory priees，hy ${ }^{0}$ ． J．Fowns nut，Albaly．alm the priwepulitren Mer hrmis it！Ahbly aflu I＇riy：J．I．Browre，st2 Wmer sire．4，N．W．York：A．M．iomes，Philadelphia；＇ 1 ＇．
laiviers，Imaltinure；Degrand \＆Einith，Jusion． lanviers，Inatimure；Degrand \＆Sinith，Busion．
P．S．－Raile uad Companies would dio，well to for： wrol their ord rs us eurly as practicable．an the sub－ serober is l_{s} sirs ths of extending the manufarturing so is to kerep pace will the dally increuring de mand tot his Spiki＊．（1Jzzata，H．blilivisN．

I＇U CON゙TRAC＇IURS．

James hlver and kanawila Cunul． Thtikt is si！！a lurge anionth of mechanical work io 1.1 on the line of the James Kiv．r buld Kunan ha Improw intoln，consistung of lsenty locke，about sue

 ＂The luce：s und aquaterts aie to be buils of cut stone
the work ront actud fur innat be finished by the leb day a 1 July， 18.18
（herty is of ubthining work are iequexted wardy at the othe of the und rxignod in th：entr of Kn－limenal be．or：the fills ellihoi May，ur belwetll the fif．It and ihe fitieron．If al dily

CIIARI．ES ELLET，JR：
Chef Bingin et Jas Liv．Atha Co．
P．S－Th．raliey of Juhues thver alove hich－ nun．is hosilily．

16－10t

TO RAILROAD CON＇TKAC＇TURS，

SF：ALED propusals will be received at －－oflice of the Siltum und＇lishlesee kiver onil－ he gear ultuti ol he firsi le，ly mies of the Setme atul＇I＇Marbote hailruad Prupnsals furp the firs six wite＇s Irum Eeflua，will bee rectibd after the fist of uas，and mied on by the l d．and on the 15 ．h May Fromsaly fir the ensums 31 milay，will be tecane
 ih ist of a ligulat m．x ，wholl the work will he ready or conitruce
The line，alter the firt frw miles，pureving the flat ol he Mubtory Cre k．uccupies a regron on country laving ith repute of ba ing linglily healhtib．It is iree tratap peris and swinpr，and is w．Il nitered The sunl is gent raily in cultivantun，and is ary，light and＝a dy，mul uncumbunly eung ol exiavallua．－ l＇he enire lemgth of the lue of ilie sel a and＇litn－
 eraliy thruagh a regon as suverabse for health us any II the Suuthe ral Comery
Uwilly to the great joterest at stake In the success the enterprise，and the monut of capital alteady mbarkid in in，this wo k mist nece anilly prorted

 ${ }^{(1)}$ this unde．taking，as offering in ito pospect of antmmed on ployment，and the chamactir of he sual and crinate，a hide and desirable lield to the cont unctior．
Ifripusiths may be addressed either to the subseri－ －r，or to lirneral Gi．bett Shrarer，Presiden：al the ompany
ANUKEW ALFREU UEXI＇ER，Chsef Engineer．

IROACH \＆WARNER

Monvacturers os UPAICAL，MA，HFMaTICAL

 ANI HIlLUSUPHILAL INS＇RIMI．N＇IF， 293 rua．．way．Now louk，will beep conseasilly un hand a large and general owisurt mont os lasigumenes in the ifWhulezale Dealersand Cuuriry MI rehaores smpplich ith Si AVEIING CUMPADSES，15An MAF－
 anufucture，warrupied arcurate，and as lower prived bun cest be hat al asy culer tolabisdimatel
matraments mate ：o erder and ropeircd．Iy it

AMERICAN RAILROAD JOURNAL， AND ADVOCATE OF INTERNAL MIPROVEMENTS：

PUBLISEED WFEKLY，AT．NO． 30 WALL STKEET，NEW－ẎORK，AT FIVE DOLLARS PER ANNUM，PAYABLE IN ADVANCE

AMERICAN RAILROAD JOURNAL．
NEW－YORK，AUGLSTV 12，1837，

\because CONTENTS：

Communication，	497	
Patent Office，	498	
On an improved method of making meadow－hay；	498	
Transactrons of the Institution of the Civil Engineers，	499	
Circular to the Farmers of Massachusetts，	510	
Advertisements，		511

The following communication gives us what we desire to re－ ceive from every Engineer－precise information in relation to an important work；，which will be useful to many of our readers． We are truly obliged to \mathbf{W} ．，and desire him and others to repeat such favors：－

To the Editors of the Railroed Journe！：
Thinking it probable that a description of the Tunnel on the Philadelphia－and Reading．Railway might prove interesting to soime of your readers，I have drawn up a statetnent of the most important facts relative to that work，which is at your secrice should you deem it worthy of a place in your bournat．
This tunnel is on the line of the Philadelphia and Reading Railway，near Phœenixville；in Chestef County，Pennsylvania， and about twenty six miles north west of Philadelphia．－The total length from face to face is 1932 feet；width 19 feet，and height 17 reet．The sides of the tungel are perpendicular to the height of 10 feet from the boltom or grade line；－above which is a semi－ellipse rising θ_{10}^{3} feet．At the north face the Hepth of open cutting is 47 feet，and at the south face 54 占feet： The excavation has been driven from the two ends and from fite shafts ；these shafts are 7 feet in diameter，and their depths from surface of ground to grade line of tuntel are－as follows， viz： 116 各 feet， 139 告 feet， 138 in feet， 100 侖 feet；and $82 \frac{1}{10}$ feet．The shafts are niot placed as customary over the centre of the tunnel，but in such a position that the side of the tunnel forms a tangent to the circumference of the shaft；in conse－ quence ρ f this arrangement，very little if any danger is incurred by the men below from the accidental falling of any thing in the shaft．The distance between the 2nd and 3d，and between the 4 th and 5 th shafts is only 100 feet ；the advantage of thic is ob－ vious；very，litile orror can occur in working out the short drift between the two shates，as soon as this is aecomplished two cor：
rect points are obtained in the tunnel 100 feet apart；and the long drifts are worked with certainty from the range of thèse points． During the progress of sinking the shafts，acominon windlass was－used worked by hand，but as soon as turnelling was com： mericel，resource，was had to a gin worked by two horses；at first one guy placed between two adjacent shafis was sufficient io remove the material．excavated from both drifis，a single rope being used so that．one bucket would be up，while the other was down＇；but as the drifts becane enlarged and the number of miners increased，it was found necessary to put upa separate guy with two buckets for each shaft．

The method of removing material is sinple and expeditious； a temporary failway srack is laid in the drift from the foot of shaft，and another from the top of shaft elevated a few feet above the surface of gfound ；on each track a small car on low wheels is kept．；the bucket being placed on the．car below and filled，is pushed by hand to the shaft；attached to the rope and draivn up；then the car above is run under the bucket which has a false bottom secured by a hinge and bolt；the bolt being knocked out，the material falls＂into the car，is conveyed away， and thrown out by tilting the car．The bucket used is $2 \frac{1}{4}$ feet in depth with a average diameter of 2 feet 4 inches，being rather smaller at top than at bottom and holds about＇ 9 ．cubic feet of stone；the rope is $1 \frac{1}{2}$ inch in diameter．

After the shafts attained à depth of about 70 feet，and until a connection was effected between two shafts，it was impossiblo to proceed withour adopting some artificial mode of driving out the impure air anid smoke caused by continual blasting．

Several plans were tried，but none proved so effectual as the following：a wooden pipee about 4 inches inthe clear was passed down the shaft terminating below in a piece of canvass pipe； （which could be removed during the blasting，and having the upper．end secured to a fanning machine constructed expressly for this purpose；this machinie；when worked by one man， forced down sufficient good．air to drire up the smoke and bad air from below．

Bosh the shafts and tunnel have been excarated for their whole length through a very hard siliceous slate rock，which； although difficult to be worked，affords an excellent roof．No arching for masonry is required，except for a few feet at each end in connection with the facing of cut stone．

This work was contracted for on the 2 1st of October 1835 by Mr．James Appleton who had previously completed the Por： tage Tunnel on the Pennsylvania Railway．On the 30th No－ vember；the excavation of shafts was commenced，and in De－ cember the deep cuts at the ends of tunnel．On the 8 th of March 1336，the first tunnelling began，since which time as large a force as possible has been kept at work，day and night，the number of men employed amounted at cne time to about 450 ：

At thi: date the runnel is open from end to end, (the last junction having been effecid on the 7ih of July, about 11:0 feet is ex cavated to the full wize, and the remaimler, is in such a stase of forwardness as to warrant the belief that the entire excatation will be completen by the first of September, being leas then two yeats from the date of its commencement. V. July, 21st, 1837.

New Propeleng Power.-Some account has been given here already of an invention by Francis B. Ogden, Esq., our Consul at 'Siverpool, for the gro uision of vesselat by a far simpler and er eaper method than has lacen heretolire practised.We have not yet obtainal any detaile, or any clear inderstand ing of the means used, but we believe the system to be all that it promises.-The power may be u-ed in separate vessel for towing, or it may be cimpoyed in a sailang vessel-rigged in during fair weather, or employed daring coltn, or in gettiag off a lee shore, Sc.-It will occupvan constherab'e space in a ship, and its aid may olten be inv iuabe. As yet it has becnonly employed for towng ofter vesel, tut the packet ship United States will probably be fitted out w th an engiace before she returas. One is in propuration dir her. The power teed we understard to be stean.

A letter b:fore us to the eaptain of one of our crnck packetships, clated May 27th, says, " we are now inaking the nost triumphant experimeit with our little beat, (45 feet long, 8 teet heam.) We lave the Toronto in fow, and the pilot and mate, (the captain is not oit beard,) heside that we are making good four nile through the water, This diecides the gileztion beyond the pessibility of a doubt, and your shapmaters neod not fow be atraid of stenemats as rivals on the occan. - We can putan engino on buarl your shap that will wot weigh ton tons, and yot will drive her five miles an hour. We shath ga to work at once on an engine for the ship Unised States. - We are now going full five knots." - [Bnl. Guz.]

Patent Office,

Washineton, Ju'y 13, 1837.
In consequenee of the destructions of the recerds of the patent Offiee by fire in Deceniber last, Congress prowiacd by lay for recording all patents dacas ; and no patent can he given in evidence atatil the same has been recorled again in thas office.The law provides for the record oi all patents which have been issued, whether the same hive or have not expired. Such, record, it is believed, will be honorable io -invent:rs, and highly wasfal in the future mangenent of the iatent Unice. Arangemerts are accordingly hade for recornimz ail paients anete in this ofice, expectiag that persons hulturg pathets whit prompty comply with the law in ths reepect. It "i h haped none will delay transmitting patents because the invention nay to decmed animportant. A copy of erevy patent issued is desirahic, as the best macuns of preventing imposition. Many persons have al: ready coniphed with the haw, and their patelito have heen record. ed and returued to them ; and all who have omitted to forward their pajers are requested to eend them to the office by mail, with out delay. In this mode patents will be zerured from infringement, and useful inventions perpetuated. Papers forwarded will be safely liept, und speedily returned. Tranefers or assignments of patents are in lake manner required to be recorded anew. Publishers of newspapers will promute the cause of science, as well as oblige their custumers, by publishing this notice.

> Henry 1. Ellswortis,

Comaissioner of Patents.
Imparant to Sitem Macmenery. -It has been discovered in France, ly M. Chas, that the incrustation on the inside of the bolers is totally prevented by mixing clay with the water. The government has rewarded the discoverer with twerty thousand irames.- [Baffalo Journal.]

ON AN MPROVED METIOD OF NAKING MFADOW-HAY. BY MR. JOHV IEVING, FARLU-OVELSEER AT CLOSEBORN IHALL, DUMFRIESSHIEE.
[The Society's Silver Medal was awarded for thi Essny.] It is ton mueb the prevailing opinion in Scotland, that meadow-
hay cannot bo secuied there as effectually as it is in England. The cause of this prevalent opinion, it is apprehented, is the want of knowlerge ia the nit of making meadow-hay. The usual practhec of making every kind of hay in Scotlund is, to allow the grass to stand too long before it is nowed, and in the case of meadowhay until August, when the seeds of the grasses are neaily ripe, and the staks have lost almost all their succulency; and to allow the swath to lie some days till a considerable part of its moisture is evaporated. The cut crop is then shaken out and turned over when it again lies for some days till it is thourgit sufficiently dry for putting into large cocks. The hay frequently remains in th ese cocks, in the fwid, for two or tipree months. It is then carried and made into a stack, when it is expected that no ferme tation will thice place, Scotch farmers imagining that fermentation in hay should always be avoidect.

A method of making hay similar to that practised in Englana has been adopted by C. G. Stuart Menteath, Esq., of Closeburn, by whom I thave been employed ior some years past as farmoverseer. This metliod practised over an extent of water meadow chicfly consisting of peat-moss of 20 feet in depth, and upwards, of 100 inperial acres in extent, is to cut the grass as early in July as the waticer will permit. The grass mowed in the morning before twelve o'clock, i: carefully shaken out upon the grouad hy hand, and that mowed after twelve o'clock is allowed to remain in the swath till next morning, when it is likewise shaken oat. If the weather. is at all dry, the hay that has been shaken out is always put into small cocks for the night, so that the ground may be somer dry the next morning to receive the hay for its exposure to the sum; and after two dry sumy days' exposure, it is frequantly, and always upon the thrd day, carried to the hay bam, where it undergous a trifitig formentation, which is a desirable rrocess when hay is mated with its natural juices. If tho Wetther prove rany, the hay shonld remain in the small or hand cocks till a dry day, allow of its being shaken out, and, in the evening, carried to the hay or Duch barn. This barn is formed of larch poles, set uprigit, 15 or 18 fect in herght, including a space of 15 feet in breadti, aial go feet in length, and supporting a light roof of thin boards, or a slight eovering of straw sitched upon the iafters. No person who expeets to have good meatow-hay should be witliont such a Dutch bam. Sult is generally eprinkled amongst the hay when it is packitug tip in the hay ban, in the proportion of about 10 l l . to the ton; and, should the iay have been exposed to much wet weather, a double quatity will be advisable.Hay has thus been made here, under my dircetion, for many years, withoat a single ton ofit erer having been spoiled.

nounty on wibest.

A dete act of the legisluture of Maine, sivisa a hounty of lwo rloliares to twe person wato raises id busiols of well cleaned wheat, and six cents fer bushel fur all over tillty batsocls. This is a goal cheouragem tht, and we hope it will be tio means of arousing our fimacers to do tient best.

With our matul alvantiges, seconded by industry and enterprise, with improvements that are making the the introduction of raluable hinds on sced, new noctiods of caiture und new macuines for threshing, winhowny and cleansing grain, and with the spur to action now giving by the bounty, we believe that every farmer among us will endcavor to excel in rasing wheat, and we shall no loiger pay inllioas to otner states for breadstutf, and use furcign grain raised in a climate less congenial to its growtin than our own. - [Yankce Farmer.]

Ludwia Lorne.-Ludwig Burne, the well known German writer recently died at Paris, where he has long resided.

Wimte Weed - What benefit is white weed to the farmer? One would be led to suppose, from witnessing the great amount of this artuele growing over many fields, that it was some valuable thing, suffered to grow und'spread itself, or carefuily cultivated, until scarcely a blade of grain can be seen without a very cloze inspection. What benefit is it? We never heard any person (save one) say it was grod for any thing but to poison and root out every thing valuable from the ground. We never heard one speak of it, but to scold that it should have existence ; still it is suffered to keep quiet possession. If it is a noxions weed, why not destroy it.

AN ACCOUNT OF THE HARBOR AND DOCK:

AT KINGSTON-UPON-HULL

Continued from p. 456.

damp, acquired any conssiderablo degrce of hardness; nevertheless, as the wails are all substantially founded and solidly bailt, it is confidently exoected that the mortar will continue to iadarate till the whole becomes one compact body. The pozzuolana mortar in the front of the walls, even before the water was let in, was in general hard and good, the only defective part being in the west end of the dock, where the wall was damp in consequence of being backed with wet soft earth; some par- of this mortar, being used late in the year, was a little prerished by frost, and required fresh pointing, but the front of the walls has been frequeully examined since the dock was opencd, and the joints found every where as perfect and entire as at first. Ia some part ; of the work, accidentally imuared by the shipping, and taken down and rebuilt, tine pozzalana mortar was found in a good state, althoug' not so hard in the interior as in the froat; the inortar in the beds of the stonework, aljo, was more inlurated than in the vertical joints, and for the most part adhered much firmer.
T Tyawnild
In the coursc of the works for of the Junction Dock, a part of the old fortification; on the east side was cut through and taken. down; from their antiquity they may be deemed not unworthy of notice. The walls are said to have been originally built of stone in the time of Edward the ${ }^{\text {Seconl, but repaired and }}$ strengtieael with bricks is Richard the Sevond's reirn, when the att of.brick-making was revived in this country. . The bricks were about 11 inches long by $5 \frac{3}{3}$ inches wide, and $2 \frac{1}{2}$ inches thick. "The mortar was of two linds, one composed of line and sand only, the other of lime and powdered bricks or tiles, with very littie sand; both were, with a very few exceptions, extremely hard, the latter being the more so. The mortar appeared to havo been used in a very soft state, or as grout, but by no means well tempered; smali lumps of pare lime, resembling hard tallow, beng intersipersed in great abundance. In three or four of the bett in courses, and nine io eighteen inches in width at the back of the wall, where it was in a damp state, it had not set in the least, and at the bottom in particular, appeared like pure sand, whi!e the neighboring p irts', being dry, were particularly hard, and united together like a rock. It is a generally received opinion, that the extreme hardaess of m utar in old buildings is owing entirely to its having been much better temp.red in ancient than in modern times; although there is no doult that this is a most esseatial point i : all kinds of mortar, it is conceived that the supe iority is caused chiefly if not wholly by time, and that mortar continues to harden in certain situations probably for centuries. The foundations were eight or ten feet under high water, and in some parts
were on small piles, the rest being on th natural ground. The pile' wese \bar{y} or 0 ieet long, and 6 or. 7 inches dianeter, some of oak, some of fir, and the hearts of both kinds quite sound and of a blackish color. but the sap much decayed.

It wesexpecteid when th

Tider and eviricents in dockin.

 Juaction due\% was a ead that it would, wacemat of its sithantim. be in a great measare supplicd wilh wate rom the Humber, bat the contrayy ha been the case, the principal supply bein ertainly from the river Mul, as is proved by the altered quantities of mad deposied in the Oid and Humber docks already noticed; there being an ammal increase of mud in the Old dock of about 4,030 tons, and a decrease in the Humber docit of about 6,000 tons, singe the Junction dact: was opened, as comparel with formur years. This also sh avs, twat even the Humber dock is in part supplied from the purer source of the Huil.As a further elucidution of the nature and course of the tides since the Junction dock was openef, th following observatious are sobmatted. During the night tides and on Sundars, when busines3 is done in the docks, the ILumber dook eates are secured fast togrther, in oider to shot oat the mally waters of the Humber. On one of these oceasions, very som afur this contrivance was afoated, I noticed that, the water being level on the tao sides when the gates were thus shut, the flow was fister in the side nest the Hunber for the first quarter of an hour, at the end of which the diffreace was at its maximun of about three inches; the witer on the opposite ides began to approximitu again, and at the end of fifteen minutes more it was again exactly level throughout. This observation has been since repeated with nearly the same result, though varying a little, according to the state of the tides, and as there may be freshes in the river Hull ; in one instace the difirence of level was as much as four inches. It a :pears, then, that the principa! supply from the Humber is in the first half hour after the iidal water arrives at the level of the water in the docks, and his agrees with the current or course of the tide through the different locks. I have frequently set off from the Oid dock look at the time the tilal water opened the gates anil began to flow into the dock, and have aralited slowly on to the Witefrar-gate lock, where the water had just commenced running very gently into the Junction duck; proceedinz Corward to the Myton-gate lock, I have g-a nerally found the wat istarmane, but in the course of a few minutes there appeared is very slow motion towards the Humber dock, and by the time I hive arrived at the Humber lock, or aboat half an hour aftel leaving the Odd dic: lock, the water was running gen:ly towa:ds the Humber. It should be observed, that in neap tides thi the above currents through the locks arr always slow, but in spring tides, and whet there are freshes in the Hall, the velocit? is often as much es three quarters of i

Ple cant int into the oil lowin harough the - wtane lock is also considerably increasd siace the Junction dock was made; from obzervations soon after the opening of the latter, as to the exact level of the ile at the entrances to the Old and Hamber mocks, it was fund that, on a average of scifral t des, the gat's if the former were opened by the risiag tude about three ninutes beioco thase of the Humber dock.
Befure leaving the sultiject of the tides, 1 may notice a curious fact, founded uponi repeated observations; viz., that about three hours bofore and after high water;' there is sixtern feet water on the Humber, and only ten fuet on the Old dock sill:

Conclasion.
Having thus endeavored to give a concise account of the Harbori and D cks at Kingston-upon Hull; witi reference to thas lepartment mote immediately connected with the object of the Institution for which this paper hasobeen drawa up, I cannot conclade without again brefly adverting to the grea and impor: tant induatage the town and port have derived from the inprovements described.

It is but litle more than half a certury since the first dock was coupleted; before that time, the river Hull below the bridge was the only safe harbor in the port, and in this narrow coulfined space the shipping and smali craft were so ctowded together, that it was often with great difficulty they could have access to the quays to take in or deliver their cargoes, and damage was sustained by ti.c larger vessels from groundarg cvery tide. It also sometimes happens that the harbor was incapable of containing all the shipping that frequented the port; ia which ease they were laden and delivered in the Humber by means of craft, at the expense of mach delay and considerable additional charges. These inconveniences, and the want of a legal play, with the complaints they gave rise to on the part of the revenue officers, at length led to the formation of a dock, whi!! in time was followed by another. But extensive and commodious as were the Old and Humber docks for want of a ready passage between them they were still incomplete,the Junction doek has perfected the communacation; and instead of being surrounder, as of old, by fortified walls and deep ditches, which (their occupation being gone) had latterly become stagnant pools, the common receptacles for filth and nuisance, the town is now encircled by the rivers Humber and Hull, and three spacious and commodious dock3; improving the public healith by the assistance afforded to drainage through the liberality of the Duck Cumpany, and rivalling in convenience for the mercantile men and facilities iur the despatch of business, those of any port in the kingdoin. These, and the means of inland coramunication, enjoyed or in rospect, with a district peculiarly rich in 1 a erials and manuactures, added to its -ituation on so noble en estuary, and its oritiguity to the continent, cannot fail to nainlain the eminent rank Hull bat hitherin hold among Brijish ports.
noshs．

Old Dock， Humber Dock， Junction Dock，	Lenth． Feet． 1703	Bredth． Feet． 254	Acres．Roods．Toles．		$\left\lvert\, \begin{gathered} \text { Nu. of } \\ \text { Ships. } \end{gathered}\right.$
			$9 \cdot$	3 29	100
	914	342	7	$0 \quad 24$	70
	645	407	6	0 0	60
			23	$0 \quad 18$	230

BASINE．

	Length．	Breadth．	Area．		
	Feet，	Feet．	Acres．Roods．Poles．		
Old Dock．	213	80^{2}	0	1	23
Humbe Dock，	267	435^{2}	2	2	27

EN゙KRAX゙CE LOCKS

	Length．	Brea	Dept！of W Neap Tides	Spring Tides．
	eet．In．	Fect．In．	Feet．In．	Fert．Tn．
Old Dork，	$120 \quad 9$	$33 \quad 0$	140	20
Humber Dock，	1580	42	200	26
Junction Dock＇．	120.0	36	140	20

BRIDGES．

	$\left\lvert\, \begin{gathered} 1 \% \mathrm{ch} \\ \text { Footway. } \end{gathered}\right.$	$\begin{gathered} \mathrm{Ca} \mathrm{i} \\ \text { way } \\ \hline \end{gathered}$	Width inside Railiug．	Total width outside．
	Feet．In．	Feet．In．	Feet．In．	Feet．In．
Old Dock；	3.6	76	14． 6	150
Humber Dock，	$2 \cdot 8$	611	123	12－6
Junction Dock．	4 0	153	23.3	24

－WAREHOUSES AND SHEDS．

	Length．	Breadth．	Area．
Warchouses，Old Dock，	－Feet．	Feet．	$\begin{gathered} \text { Super'lYards. } \\ 2,251 \end{gathered}$
［Sheds，．．．．Díto．	$\left\{\begin{array}{l}143 \\ 492\end{array}\right.$	$\left.\begin{array}{l}23 \\ 23\end{array}\right\}$	1，623
Sheds，Humber Dock．	754	25．0．	2，095

QUAYS．

Legal Quays．	＇Totals．
Squarc Yards．	Square Yards．
18,160	19,600
8,830	17,639
\bullet.	15,613
.	8,419
29,990	$\mathbf{7 0 , 7 0 1}$

Plate 6 ．
HULL DOCKS．IIER HEADS OF BASIN AND ENTRAN゙CE OF HUMBER DOCK，

Plate 7.
IIULL DOCKS. PIERS OF HUMBER BASIN.

ELEVATION.

PLAN.
scanthings.
Main Piles : 14.14
Outer Wale 14
Inner Walc $12-6$
Cap Sill . 12-10
Joists $\quad 7$ - 4
Ties
Sheet Piling $\quad 6$ in. thick
Planking 3 in. thick

ABOVE FOOTINGS.
Plate 8.
A'T COPING.

Plate 8.
cross section.

Plate 9.
Plate 9 is a representation of the Locks of the Junction Dock. This plate is given in full size and divided into ihree parts, or paro of this reprint.

Plate 9.
JUNCTION DOCK.
,

OLD DOCK.

Plate 10.
LONGITUDINAL, SECTION.

TRANSVERSE SECTIONS THROUGH C. C. AND D. D.

Plate 11.

Plate 10.
'transverse section through a.a.

SECTION.

Plate 16.

ELEVATION.

ORIZONTAL SECTION.

TRANSV ERSE SECTION.

REFERENCE.
a. a. Sawdust and Ashes.
b. b. Internal Tubes.
c. c. Feed Pipe.

Ihe folldwing circular, addressed by Mr: Colman to the Farmers. of Massachussets, evinces a determination to enter thoroughly into the búsinese, for which he was appointed :-
Sir,-Having been appointed by the Executive of the Cominonwealth, under the provisions of a Resolve of the Législature, passed at its last session, Commissioner to make an Agricultural Survey of the State, I take the liberty of addressing this Cir. cular to several gentlemen of intelligence and respectability in the different towns; yourself among others, with a yiew to ob. tain their advice and co-operation in accomplishing such survey:

You will allow me, then, to point out the general objects of inquiry ; and to solicit particularly your attention to them; that when I visit you ${ }_{i}$ as I shall ask the pleasure of doing, you will be able to give me, in respect to those which have been the subjecte, either of your experience, inquiry, or observation, the desired information. By the Resolve it is made the duty of the Commissioner : To collect accurate information of the state and condition of the Agriculture of the Commonwealth, every and subject connected with it; point out the means of inproveinent ; and make a detailed report thereof, with as much exaciness as circumstances will admit." From the terms of the Resolve it is apparent that the duty is very comprehensive; as it embraces every subject connected with the agriculture of the State, and the nieans of its improvement. The more full however it is, the more useful it is likely to prove; and exactness in the information obtained is obviously of the very highest importance. I will now point out some of the objects to which inquiriez will be directed.
I. The nature of the Soil, in different parts of the State; and particularly in reference to the crops cultivated.
II. The Climate, with reference to the crops grown; the usual time of ploughing; planting, and harvesting; the occurrence of early frosts; the length of winter ; the average temperature; and the quantity of rain and snow in any year.
It is desirable that meteosological observations should be made in different parts of the State.
III. I. The Number of Acres in any town cultivated or in any form productive.
2. in wood, timber, \&c.
3. capable of cultivation but unproductive.
4. waste or irreclaimablc.
IV. Products.

1. The amount raised in any town in any given year.
2. The average yield in any crop per acre.
V. Crops cultivated ; anong which are the following :
Wheat. . Hemp. Herds Grass. " Potatoes

Indian Corn. Flax.
Rye. .. Tobacco.
Burley Hops.
Oals. Broom Corn.
Buck Whear.
Pe.ıs
Beans Madder
Tares. Satfron:
Lupins. Rape
Minto. Foul Meadow. Garden Vege-
Grass for Bonnets.
Mulberry for Silk.
Simflower for Oil.
Poppy for Opium.
Mustard.
Succury.
VI Wher Products.

Wool.	Beef.	Muton.	Cheese.
Silk	Pork.	Lard.	Butter.

VII. Rotation of crops.
VIII. Modes of Cultivation.

1. Soils adapted to particular-crops.
2. Preparation of the soil by ploughing and manures.
3. Seeds; selec ion; change of seed; quantity ; prepara-
tion; steeps for soeds; preservation of seed from worms, birds,
and rermin.
4. Care and management of the growithg crop:
5. Harvesting Time and manner.
6. Use and application of the product.
7. Labor required; and general expenses of a crop
8. Value of the crop for use or sale.
9. Marketing of the product:
IX. Diseases ol Crops. Blight ; mildew; rust ; curl ; \&c., \&cs X. Weeds, and Methods ot Extermination.
.Thistles;. Canada thistles; brake; laurel ; ox-eyed daisy or white weed; rannunculus or Butter cup; wood wax ; pineweed; St. John's wort ; charlock and cadluc; sorrel ; cockle ; tares; chess or cheat, \&c., \&c.
XI. Refuse of Crops. Preservation; value, and use for fodder or manure.
10. Value and use of the Stalks and Ifusks of Indian Corn, and how preserved.
11. Value and use of the Stalks and Husks of Broom Corn. 3. " " of the Straw of the Wheat, Rye, Oats and Barley.
12. Value and use of the Haulm of Pease and Buck Wheat. 5. " " of Potato Tops, Sic., ©́c.

It may be useful in this place to give an outline of the manner in which it may be desirable to conduct the inquiries. I will take for examples, Wheat and Indian Corn.

Wheat.

1. History of its Cultivation in the State.
2. Kinds; bearded or bald ; flint or soft skin; red or white ; sniminer or winter; where obtained; by what name or quality designated; average weight per bushel.
3. Amount of any particular crop; extent of land sown.
4. Condition of the land; nature of the soil ; whether newly cleared; burnt ; swarded; or how used for two or three years previously; how prep.red for sowing.
5. Kind and quantity of manure; use of lime ; plaster, or any enmpjst manure.
6. The quantity of seed to an acre, and preparation of the sced; advantages or evils of steeping the secd.
7. The time of sowing ; week and day, if possible to be ascertained. The importance of such an inquiry as this will appear for the reasons which follow :
It is strongly recommended that wheat should be sown before the 14 th of September, so as to be well rosted before winter; thus affording a beiter protection against frosts. Or else so late as not to germinate before spring; this method has been tried. Or frozen in water in the autumn and kept so until the spring, which experiment is reported to have been successful. It is often desirable for wheat to follow Indian corn; but Indian corn in general cannot be taken off in season to get the wheat sown. The discovery of any mode, such as the above for example, by which the necessity of this early sowing could be ob. viated, would be of great advantage. -

Wheat sown eirly is more likely to have passed beyond injury from the hot, damp, stewninir weather, which occurs in July and occasions rüst. Qury ; whether late sown whea is not likely to pass beyond that sruson befure i . gets inio a condition to be injured, which is while it is 10 ihe milk

Late sowing of wheat, is in some cases the last of May and the first of June, it is stated, has carried the season of flowering beyond the time of the wheat insect, and the crop has been saved.
8. The diseases or accidents, if any; whether affected by rust, smut, or mildew ; and any circumstances of weather, sitution, or particular condition of the plant connected or contemporaneous with such occurrence. The situation or exposure of any blighted field, whether high and airy, or low, damp, and confined.
9. Whether or no" affected by the vicinity of barberry bushes.
10. Whether winter killed or not; under what circumstances as it regards the forwardness or lateness of the plant; and how affected by the suow.
11. Whether attacked by the Hessian fly or other insects; and preventives, if any.

Wheat is, in many parts of the country, subject to injury from an insect or worm, whose appearance is comparatively recent; and whose habits are not well ascertained. He is making dreadful havoc in the wheat regions, producing in many cases, an en.
ire destruction of extousive fields of the most promising appearance; and has advanced at the rate of forty miles a year. The same insect, it is believed, though the identity is not perfeetly ascertained, has attacked barley, rye, and oats with alarming success. The cultivation of harley has on this account been abandoned in some parts of the State; and so has the cultivation of wheat in what have heretofore been deemed some of the most productive wheat regions in New-York
Inquiries and experiments on this subject nre of immense importance. A perfect preventive or security would be worth m:llions to the country.
12. Remedies or protection against blight, or other accidents.
13. The extirpation of weed 3 particularly injurious to the wheat crop, such as tares, cockle, chess, garlic, and the Canada thistle; and any machinery by which the grain may be cleansed of "foul stuff."
14. The experience of farmers in the cultivation of wheat crops successively on the same land; and in sowing clover with the wheat with a view to ploughing it in as manure for a succeeding crop; and whether cusion rily ploughed in with the stabble, or depastured; or mowed for one or more years.
15. The general subject of sowing grass wit') grain ; and the value in such case of a stubble crop for winter fodtcer.
16. Harvesting.

Time and state of cuttian ; and whe her early or late cutaing be preferable; the time, in the opinion of some persons, making a material difference in the anount and value of the coop.

Modes of harvostiny ; reaping or cradling; and cost by day or piece work; average amoint of a day's work.
17. Threshing and Cleauise.

Threshing Machines. Wimowias Machines.
18. Mandectue of Flour. Various qualities. Number of bushch required for a barel. Miller's charges and profits.
10. Construction of Mills and floung Machinery. Water, steam, and wind puwer. Donestic Mills.
20. Value and uses of bran.
21. Value and uses of Wheat Straw.
22. Value of a wheat crop compared with chere ciops. Averayse yeld.
23. Capacity of the State to Cutaish it own wheaten bread.
24. Experiments and observations in regard to tiais crop. Causes of its generd bilus.
25. Sone general estimate of the quantity and co:t of impor:ed flour consumed in any village, town or county.

Indian Corn.

1. Kinds. Gourd seed. White soft Corn. Sweet Corn. Flint Corn.
2. Varieies of Flint Corn. White ; yellow. Weight per bushel. Comparative amount of cob and grain in different varicties.
3. Soils most suitable. Preparation of land. Crop, if any, which it may best succecd. Fall or apring ploughing. How uften may it be repeated on the same land.
4. Manuring ; kinds ef maune most suit ble h, quantity in the acre ; how distributed-i: hills, driils, or spread-applied green or rotte?
Lime; its ralue to Corn-how applied.
Typsum; its value to Corn-how applied.
Ashes; its value to Corn-how applied; crude or spent.
5. Seed-how selerted; effects of selecting in iucreasing the crop; how saved; steeped or sowed dry ; yarious steeps ; copperas water; lye ; rollhg in tar; coatıng with gypsum or ashes ; quantity of seed.
6. Time of planting; modes of planting-in hills or drills; distance of plants ; protection against vermin or birds.
7. Cultivation. Weeding ; ploughing or harrowing among corn; use of a cultivator; number of hoeings; h lling or earthing up. Topping; suck ring ; stripaing; with the elfects upon the crop.
8. Value of the cora stallis and leavez when taken green; and mode of curing.
9. Alternate rowz of corn and potatoes. Planting pumpkins or turnips among corn. Sowing grain among corn for a suc-
10. Harvesting. Gathering by the ear; or cuttine up and stacking in the field.
11. Preservation of the Grain: Construction of Granaries.
12. Preservation and comparative value of the stover or dried fodder.
13. Mackines for shelling.
14. Average yield per acre; value of the crop; cost of cultivation from beginning to readiness for the mill. Kiln-drying.
15. Value and uses of Indian Corn-for Dairy Animals.
for fattening stock.
for swine.
for horses.
for distillation.
for extraction of oil.
(Too be continued.)

faverisisements.-

CROTON AQUEDUCT-NOTICE.

SEALIED PROPOSALS will be received by the Water Com. mixsiuners of the cily of New- York, untit the 5hh day of Seplember next, at 90°. berch, P. M., at their oflice on the eity of New-York, for the Excavalonli; Eimbankinent, Bank Filling, Foundation and Protectuon, Walls, Muns:ls, several iarge amis small culveris, and an Aquedinct of stune and lirick masonry, with other incidental work on that portion of the Croton Aqueduct which is embrac-
 eid msecilon sections 27 to 53 Inclusive, being the whole of the vd Divisiun.
The prices fur the work nust include : he exiense of materials necessary for the coinpletion of the same, necu.ding to the plans and spectications that witl be presented fur examination, as hercinafter mentioned.
The work so be completed by the \pm st day of Uclobert 1810 .
Security will be cqured for the perfurmance of coniract-and propositicns sluould be accumpanied by the names of resionsible p rsons, sig. oin ing their nss:mb to beeume secuities. If the character and re-punsibilities of those propusing, and the sureties they shall offer, aco not known tu the Commisisters or
 signd by the firdit judge or clert of the cunnty in which they beveraly reside ${ }_{t}$ sigh by by firb
will be rquired.
N.) transfer of contracts will be recognized.

Thn ine of Aquevitct will be located, und the map and grofile of the same, together with th. plans and specificaiions of the materats and manner of cunstruction, will be ready fur examination at the uffice of the Eugill er, at the village oi Tarrytown, on the 19h mstan, and the Chief or Residen Engineer will be in alteadance to explain the plans, de., and lo furnish blauk propasilitons. P'ersung proposing lor more work than thor wish to cuntract tor, músi specily the pramily th y dexire to take.
The finit names oi all persins that nee parties to any proposition, must be writich oul in the sigmature fur the same.
The parises to the proposition which may be accepied, will be required to cmer ints contacts, iam diatcly after the acceptance of the same.
The undersigned reserve to themselves thu right to accept ur rej:ce proposals thet many be officed for the whole or any part of the above des. ubed work; as tucy maj, coasidur the paialic cinterest to require.
New-York, August 8th, I837.

 reccived at the oflice ot the Chtion and Port Hudsoa Ranlroad Company, in the town of Jackoon, Lousiana, uattil the first of November next, for the completion of tiue balauce oi tac Člintoa and Port Hudson Railroad, beng aoout 21. miles. Plans, profles. and sperfications, givas all the neesesary haiormation, may be examined at tat ofilice of the Engruecr in tho town of Port-Indson.

> A. G. ThiORN,
> Ched Engiaver.

Port-Hudson, July 13ih, 1837 . $^{\circ}$
t-s\%. jst inov.

WICKSBUR(A AND JACKSON RAILROAD.-NOTICE TO CONTRACTORS.-Persons disposed to cuntract

 for and give personal attention to the laying of the supersiructure tor the Vicksburg and Jackson Rairoad, about 45 males in length, in the Stato of Mississippi, may receive all necessary information to enable them to propose by applying to the suoseiber at the office of J. R. Van Rensistluer, E:q., 21 Wall Street, until the first of September next.> R. S. Van rensselaer, Engineer, V. d J. R.K.

New'Tork, Ist August, 1857.
t—32. 1st S

GEOIEGA MAIS.-Intormation is wanted of George Hall of the city of Now York, wa left Newburgh last September if this should maet his eye, he will hear ofsomething to his ad vantage, by addressing a letter to hiṣ Sister Jane Hall, 46 Oar street, New York.-Any information concerning.him, will b. thankfully received by his Brothers and Sisters as above directed

New- York, June 15th, 1837.

third annual fair of the mechanics' institute of the CITY OF NEW-YORK.
The Fair of the Institute will be held at Niblo's Garden, commencing Monday, September 25th, 1837.
To zender this exhibition worthy of the arts and of the ingenuity of the Mechanics of our country, the Managers appointec to conduct the approaching Fair have determined to make such liberal arrangements as will insure to the contributors a fair opportunity of exhibiting their productions to the greatest advantage.

The object of Exhibition Fairs is to present to the members of tho Instituteand their fellow citizens who are engaged in the Mechanic Arts, the means of making their skill an i ingeunity known in a way no other facilities afford: the many thousand: who visit such exhibitions have a much better opportunity of judging of the merits of the various productions, than they would have by a mere verbal or newspaper description, besides the advantage of seeing brought togeiher, in one vast collection, the products of the skill, in_enuity, and industry of our country.
Premiums of Medals, Diplomas, \&c. will be awarded for all worthy or meritorious articles cxhibited, either as it respects su-perio:- workmanship, machinery wherein the operations are new, iateresting or important, where ingenuity is displayed, or taste manifested, and particularly for all now and uselul inventions.

You are respectfully requested to send, for competition or exhibition, specinens of the articles you manufacture; and you may be assured that the strictest impartiality will be observed in the distribution of the Premiums.

Steam power will be provided for the acconmodation of those who w:sh to exhibit Machinery in operation; an experienced Superintendant will take charge of this department; and contributors in this branch are particularly invited to send or bring their Machines or models as carly as possible, on the 23 d September that the necessary arrangements may be mado in relation to shafting, puilies, \&c.
The Managers, in conclusion, cannot but express their belief that this 'Third Fair of the Mechanics' Institute, will exceed in variety and beauty of dispay, all previous exhibitions of the kind.

N. B. All articles for competition must be delivered to the Committee al $\mathbf{N i}$ lo's Garden, on the 23d Septenber. 'Those for exhibition (n ! , will be received any day during the Fair, before 10 o'clock A. M.

rules and regulations.

1. -The Garden will be opened for the reception of Goods, on Saturday, 23d of September, from 6 o'clock A. M. until. 9 o'clock P. M., and it is respectfully urged thet all articles intended for competition may be se. t in early in the day. Those articles intended for exhibition only will be received any day during the Fair, before the hour of 10Λ. M.
2.-The Fair will open for visitors on Monday, 25th Septemat 10 o'clock A. M., and continue open every day of the exhibition till 10 o'clock P. M.
3.-Competent and impartial Judges will be appointed to examine all articles presented, and premiums will be awarded on all such as shall be declared worthy.
4.-The Committee on Premiums, and all firms or partnerships in which they may be interested, shall be excluded from competition or the award of any premium.
5.-All persons depositing aiticles, either for competition or exhibition, must attend to have them registered by the Clerk, at
which time they will receive a certificate, which will be required of them when the articles are returned.
6.-Proof of crigin must be furuished if requized, for any specimen offered for Premium.
7.-Depositors will receive a ticket from the Clerk, which will admit them and Ladies during the Exhisition.
8.-Arrangements will be made to exhibit, in operation, all working models that mav be deposited-contributions in this branch are invited-a compe'ent person will take charge of all models sent for the above purpose.
9.-The morning of each day, until fifteen minutes before 10 o'clock, shall be appropriated exclusively to the Jindyes.
10.-Members will receive their tickets of admission by applying at the Institute Rooms, any tome in the week previous to and during the exbibition.
11.-All articles offered by Apprentices, will be received, and adjudged as the production of ippreuticez-they must furnish a cerificate of name, age, with whom, and the time they have served as apprentices.
12.-Articles subject to injury by. being handled, should be secured in glass cases-and contributors are requested to have a person to take charge during the hours of exhibition-in the intervals, efficient measures will be taken to protect property.

general committee.

George Bruce,
John M. i) odd, James J. Mapes, Thonas Ewbank, Wm. Everdell,
C. Crolius, Jr.,
A. J. Mason,

Thos. W. Matholomew,
A. Storms,

Wm. Ballard,
Henry Cumningham,
John Harold,
Joseph Treuci,
James I. Phyfe,
John H. Mead,
John Conroy,
Jordan L. Mott,
Samuel arter,
George F. Nesbit!,
Menry Worrall,
W. B. Worrall,

James B. Cuinmings, James Frost,

Jobn Ridley,
Silas B. Simenson,
Thomas F. Peers,
Thomis G. Hodekins,
Grorge L. Spencer, -
Peter Wemmell,
Richard Bragaw,
Ab'm Peitch,
Wm. H. Hale,
Wrn. J. Mulien,
Jame: Thomson, Abnor Mills,
J. D. Chapin,
A. Cammeyor,

Hiram Tupper,
II. B. Robertson,

James Thomas,
H. G. Stetsion,
'Ferris Owen,
N. Berry,
O. Whittelesey,
M. W. Emmons,
J. S. Anderson.

TRANSACTIONS OF TIE INSTITUTION OF CIVIL EVNWA.VEMS OF GREAT ERITALI.
The first vo'ume of this valuable work, has just made its ap. pearance in this country. A few copies, say ticenty-five or thirty only, have been sent out, and tirose have nearly or quite all been disposed of at ten dollars cach-a price, altiough not the value of the work, yet one. whicil will prevent maty of our you.ng En. gineers from possessing it. In order therefore, to place it withil their reach, and at a coavenient price, we shabl repriat the entire work, with 11 its enagravings, neatly done on wood, and issue in six parts or numbers, of about 43 prages eacis, which can be sent to any part of the United States by mail, as issued, or put up in a volume at the closc.

The price will be to subseribors three dollars, or five dollars for two copies-alvays in advance. The first number will be ready for delivery early in Aprll-Subscriptions are solicited.

ω TO RAILROAD COMPANIES.

A PERSON experienced in the construction of Locomotive Eingines (many of his Manafacture being in successful operation on important Railroads mithe Uuted Siates) and who is likenise therougly acquainted with the management of such machines, and, indced, the entio ordeal of Railroade, is deviruus of oblaining the stluation of General Superintendant on some Rai.road, South or West.
The mosst satisfactory testimonials of character and capability can be pro. dnced. Commuaications addressed to the Editurs of this dournal, etating the location of Road, \&c. will ineet with prompt ntiention.

9?-24

RAILWAYIRON, LOCOMOTIVES,\&C
THE subscribers offer the foHowing articles fo sale.
Railway Iron, flat bars, with countersunk holes and mitted joints,
350 tons $2!$ by $t, 15$ fin length, weighing $4 \frac{1 \mathrm{bs} 8^{\circ}}{100^{\circ}}$ per ft. 280 " $2 \cdots t$, ". ". " $3 \frac{50}{100}$. "

with Spikes and Splicing Plates adapted thereto. To be sold fien of duty to State governments or incor porated companies.

Orilers fur Ponnsylvania Boiler Iron executed.
Rail Rnad Car and Locomotive Engine Tires, wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 igches ciameter.
E. V. Patent Chain Cable Bults for Railway Ca axpes, in lengths of 12 fuet 6 inches, to 13 foet $2 t, 2 t$ 3, $34,34,31$, and $3 \frac{1}{2}$ inches diameter.
Chains for Incliued Planees, short and stay, limks, manufactured from the E. V. Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Mines, made fróm New Zealand flax.
Also Patent Hemp Cordage for Inclined Planes, and Canal Tuwing Línes.
Patent Felt for placing between the iron chair and stone bluck of Edge Ra!lways.
Every descrption of Kailway Iron, as woll as Locomotive Engines, imported at the shortest nutice, by the agency of one of our partuers, who resides in Fingland for this purpose.
A highly respectable Amorican Engineer, resides in Eingland for the purpose of inspecting all Locomotives, Machinery, Railway Iron \&ec. ordered through ns.

28 if
A. \& G. RALSTON \& CO.,

ARCHIMEDES WORKS

100 North Mour strèet, N. Y.)
New-York, February 12th, 1836.
THE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furniwh all kinds of Machinery for Railruads, Locomotlve Engines of any size. Cine Whants, such as aro nowin successful oppration on the Camden and Ambey Railroad, Hone of which have failed-Castings of all kinds,

MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Paterson, New. Jersey. The undersigned reccive orders for the following articles, manufactured by them, of the most suporior description in every particular. Thẹir works being extensive, and than iumber of 'hands einployed being large, they are nnahled to execute both targe and small orders with promptness and despatch.

RALLKOAD WOLEK.

Locomotive Steam-Engines and Tenders; Driv. ing and uther Lucomutive Wheel, Axles, Sprimexand Flange Tires; Car Wheels of east iroln, frum a variety of patterns, and Cinills; Car Wherls of cast iron, with wronght Tires; Axles of best American refiued iron, Springs ; Boxes and Bolts tor Cars.
COTTON WOOL A, D FLAX MACHINERY,
Of all descriptions and of the must improv.d Patterna, Stylo and Workmanship.
Mill Geering and Nillwright work generally ${ }^{*} \mathrm{Hy}$ draulic and other Presses; Pross screws; Callernders; Lathes and Tools of all kinds, Iron a!d Brass Castings of all descriptions.

ROGERS, KETCILUM \& GROSVENOR
Patterson, New.Jersey, or 60 Wall streets, N.
TO RAIJ, ROAD CONTRAC'IORS. PROPOSALS will be recelted; at the office of the Hiwassee Kailroad Com., in the town of Atuens, Tennessee, until sunset, of Monday, June ieth. 1837 ; for the graling, masonry and bridges, on that portion of the Hiwases Rall load, which lies be-
tween the River 'Tennessee and Hiwassee. A distween the River
tance of 40 miles.
The quantity of excavation will be about one milion of cubic yards.
The line will be staked out; and, together with drainings and specifications of the work, will be
ready for the inspection of contrators, on and after tho Ist day of June.

Enginer in C. TRAUTWINE,
16-Ct.

FRAME BRIDGES.

THE undersigned, Genëral Agent of Col: S. H. LONG to build Bridges, or vend the right to others to build, on his Patent Plat, would respectfully inform Railroad and Bridge Curporations, that he is prepared to inako cuntracts to build, and furnish all materials for superstructures of the kind, 10
Bridgnited Siates, (Maryland excepted.)
Bridges on the above planare to be seen at the fullowing localities, viz. On the main road leading from Balumore w Washington, two miles from the forme place. Across the Metawankeag river on tbe Military poad, in Maine.. On the national road in lllinois at sundry points. Onthe Baltimore and Susquehanna Rrailrond it three points. On the Hudson and Patterson Railroad,in two places. On the Boston and Wurcester Railroad, at meveral points: On the Böston and l'rovidence Railroad, al supdry points: Across the Contoocook river at Henniker, N II. Across the Suluegan river, at Milfard, N. II. Across the Connecticut river, af Haverlill, N. II. Across the Contoocook river, at. Hancock, N. II. Acrose the An Iroscoggin river, at Turner Centre, Maine. Across the Kunnebee river, at Waterville, Maine. Acrose the Cienesse river, at, Squakiehill, Mount Morris, New-York. Across the White River, at Hartfurd Vt. Across the Connecticut River, at Lebanon, N. II. Across the mouth of the Broken Straw Creek, Penn. Across the mouth of the Cataraugus Creek, Canal in the City Bridge diagonally ncra ha rie Bridge at Upper Still Water, Orono, Maine. This Hridge is 500 feet in length; one of the spans is over 200 feet. It is probably thie FIRMEST woodt N aridge ever buile in A merica.
Notwithstanding his present engagements to build between twenty and thirty Railrond Bridges, and several common bridges, several of which are now in progress of construction, the subscriber will promptly attend to business of he kind to much grester extent nnl on tiberal serms.
Huhester, Jan. 19th, 1837.
ALBANY EAGLE AIR FURNACE AND MACHINE SIIOP.
WILLIAM ${ }^{\circ}$ V. MANY manufactures to order, rRon castings
every deacription.
MLSO-Steam Enginea and Railroad Castings o every description.
The collection of Patterns for Manhinery, is no equalled in the United Stites

'NEW ARRANGEMENT.

kofes for ficlined planes of ballroadis.
WE the subscribers having formed a co-partneruhip under the style and firm of Folger 8 Coleman, for the manufacturing and selling of Rupes fur inclined planes of rnilruads, and for other usi s, offer tusupply topes for inclined planes; of any lengih required without splice, at shori notice, the masufactaring of cordage, heretofure carried on by same superiptend., will be done by the new firm, the stmes suppiotendar and machinery are employed by
the new firm that were enployed by S . S. Durfee \& Co. All urders will be promplly attenden to, and ropes will he shipped to any port in the United Afatea. 12 th dnunth, 12th, 1836. If udson, Cólumbią Cotuty State of New-Iork.

ROBT. C. FOLGER,
33-tf
(iEURGE COLEMAN,

AMES" CELEBRATED SHOVELS,

 SPADES, \&c.300 dozens Ames' superior back-4trapShovels
$\begin{array}{ll}150 & \text { do } \\ 150 & \text { do }\end{array}$
do plain do
150 do do
do castateel Shovelsis Spadea
do Gold-mining Shovels

30 do
30 do do sucket Shovels and Spades.
Tugether with Pick Axer, Clurn Drills, and Crow Bars (sitéel pointed,) namnfactured from Salohury refined iroh-for sale bythe mamufacturing agenta,

WTMHPLEILL, AMES \& CO.
BACKUS, AMES \& CO.
No. 8 Smate atreet, Albany
N. B - Alao furnishedituórder, Síapes of everyंde serintion, made from Salshury refined lron.

STEPHENSON3

Builder of a superion silyle. of Passenger Cars for Railroads:

No. 264 Elizaboth strect, near Bleeckeratreet, New: York.

RAILROAD COMPANIES would do well to exa mine thase Cars; a specimen of which may be seen on that part of the New-liork and Hsrlaem Railroad now in operation.

PATENT RAILROAD, SHIP AND

BOAT SPIKES.

* The Troy Iron and Nail Factory keepacon sfantly for sale a very extenaive aissortrientof W rought Spikes and Nails, from 3 to 10 inches, manufaotured by the subscriber'e Phtent Machinery, which after five years successful operation, and now aimost universal ise in the United States, (as well as England; where the subscriher obsained a patent, are found superior to any ever offered in market:
Railread Companies may be supplied with Spikes having countersink heads suitable to the holea in irun rails to any amount and on short notice. Almost ill the Ruilroads now in progrese in the United States are fastened with Spikes made a the above niamed fac-wry-fur which purpuse they are found invaluable, as their adhesion is more than double any common spikes made by the hammer.
** All orders directed to the Agent, Troy, N, Y., will be punctually attended to

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831,
** Spiker are kept for sale, at factory prices, by I. \& J. Townsend, Albany, and the principal Iron Mer: chants in Albany ana.Troy ; J. I. Brower, 222 Water street, New-York; A. M. Jones, Philadelphia; T. Janviers, Baltimore; Degrand \& Smith, Boston.
P. S.- Kailruad Companies would do well to for: ward their orders as eurly as practicable, as the subscriber is desiruus of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes.
(1J23am)
H. BURDEN.

TO CONTRACTORS.

JAMES RIVER AND KANAWHA CAÑL.

THERE is still a large amount of mechanjcal work. to let on the line of the James River and Kanawhe Improvement, consisting of twenty locks, about une hundred culverts and several large aqueducts, which will be offered to responsible contractore at fair prices:
The lockz and aqueducts are to be buils of cut stone.
The work contracted for innst be finished by the Ist dny of July, 1838
Persons deajrois of obtaining work are requested toapply at the office of the underaigned.in the city of Richmond, before the fifteenith of May, or betweer the fifth and the fifteenth of July.

CHARLES ELLET, JR:

Chief Engineer Jas. Riv, \& Ka. Co.

P. S-The raliey of Jamea River above Richmond is healthy.
$16-10 t$

TO RAILROAD CONTRACTORS.
 SEALEDD proposials will be received at

 the office of the Selma and Tennessee River Rail road Company, In the town of Selms, A labams, for the graduation of the first forty miles of the Selma and Tennesisee Railrond Proposala fur the Grst six miles from Selma, will be received after the firnt of May, and acted on-bj the Bbard on the 15th May; Proposals for the ensuing 34 miles, will be received after the 10th May, dut will not be examined until the lst of August next, when the work will be ready for contract.The line, after the first few miles, pursuing the flat fite Mulberry Creek, occupies, a region of country, having the repute of being highly healthful. It is free from ponds and swamps, and is well watered. The soil is generally in cultivation, and is dry, ligbt and sandy, rind uncommiotly easy of excavation.-
The enilre length of the line of the Sel a and Tennessce Railruais, hill be about 170 miles, paseng gen eraliy througb a region as farorable for bealth as any in the Southern Country

Owing to the great interest at Etake \ln the succesi of this enterprise, and the amount of capital alread \dot{y} embarked in it; this work must necessarily proceed with vigor, and I invite the attention of men of indus: try and enterprise, botli at the North and elsewhere to this undertaking, as offering in the prowpect of continued employment, and the character of the soil and climate, wide and desirable field to the con ${ }^{2}$ tractur.

Pruposals inay be addressed either to the mbaeriber, or to General Gilbert Shearer, President of the Company

ANDREW ALFKED DEXTER, Chief Engineer
Selma, Ala-; March 20ih, 1837.
A 15 tf

ROACH \& WARNER,

Manufacturers of OPTICAL, MAI HEMATICAL AND PIILUSOPHICAL: INSTRUMENTS, 293 Bruadway, New Yoik, wilt keep constantly on haud a large and general assortment of Instrumeme in thoir line.

Wholesale Dealers and Country Merchantes supplied with SLIRVEYING COMPASSES, BAROMETERS, THFRMOMETERS, \&c. \&c. of their ovid manufroture, warranted ascuraie, and at lonitr prices han can he had at apy other eatablishment.
Instrnments mado to ordor and rejaired. ly 14

AMERICAN RAILROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTS:

PUBLISHED WREKLY, AT NO. 30 WALL STREET, NÉW-Ydrḱ, AT FIVE dÓLLARS PER aNNUM, PAYABLE in advance

CONTENTS.

Report of the Niagara and Detroit Railrords,513Circular, (Continued)Transaction of the Institution of the Civil Engineers,519
On Manuring
Rémarks of Manures in Generäl,521
523522
Items, 524
OM,
Advertisements;

AMERICAN RAILROAD JOURNAL.

NEW-YORK, AUGLST 19, 1837.

In presenting the report of Elisha Johnson Chief Engineer on the "Niagara and Detroit Rivers" Railroad; we would remark that the poftion relating to the proposed peculiarities of colastruction is the same as in the report recently published: Being illustrated ky cuts, a better idea can be obtailted than from verbal description. We make this republication accompanied by the cuts, at the request of Mr. Johnson, in consequence of the strictures of our correspondent \mathbf{Q}.

We have alṣo received a communicution in answer to Q. and also a copy of the report for Q.
repollt to the president and directors of the niagara and detrott bivers railroad compant.

Gentlemen, - In making a report, as your Engineer, I would first ask your attention to the ample provisions of your charter which accompanies this report. This provides for the construction of a Railroad from the town of Burtie to the lown of Sandwich, with very favorable provisions in the details of the charter. By am act passed in March; 1834, a charter for a Railroad from Hamilton or Burlington Bay, to Lohdon, and from Londan, to the navigable waters of the River Thames; and to Lake Huron, was granted. On the last mentioned rdad, I had the honor to make a survey and report, voluminous in their details, with a view, on the part of the company, to amend their charter; and to present to the Government facts and reasons to induce them to ajd the work.

During the progtes of Parliamentary enactments, connected with that survey, I havi further had the honor to be selected by yda, to make a survey under the provisions of sour chatter;
and the work has bicen in prdgress during the sitings of your Parliament. At the period of making this report, Government have completed their enactments, and extended liberal aid for the promotion of Internal improvements in the Province. They have amended the charter of the London and Gore Railroad, and under the title of "The Great Western Railroad Company." authorised negotiations with your company, under certain provisions; and the issuing of Debentures in aid of their work; confining their appropriations to the distance between Hamilton and Woodstock, and providing for the final location of its western termination, by Engineers to be appnoited by the Go-yernor-thus giving it the character of a public road for the promotion of general Provincial interests, and of course expecting its location will be such as will best promote that interest, and attract commerce and interceurse most extensively to her capital and commercial cities.

This is a subject of great importance, and will address the hopes and feelings of many with considerable effect. The location of roads through a vast extent of fertile country, con rect: ing all its population, business and intercourse in the most fa: vorable general arrangement, is one of difficulty and of great importance.

The foregoing details of facts may be thought, iy some, to constitute serious impeciiments to a faithful pertormance, on my part, of the duties of your Engineer, To me it seems other. wise. It is impossible for the iufiormation of an Eugineer, on all subjects relative to the topography of the country, in the neigbor. hood of which his professional labors are engaged; of its popu. lation, their wants and wishes, of its means, resources, plans; purposes, improvemtents, connections, and means of intercourse, to be too extensive. If ine be a man of probity, experience, and skill, the more he has of such inforriation tue better; for it will enable him, with greater success, to adapit his services and recommendations to the profit of any work with which he may be charged. The exertions I have been culled to make in the Province, have brought me into useful communication with many of her worthy inhabitants, afforded me opportunities of understanding her soil, ber tiniber, her streams, her minerals, her settlements; her agricultural, comnierctal, and manulacturing facilities, and hei actual intercourse and micans of prospective advancement, better than I could dtherwise have done without much longer enquiry: And I am conscidus of very strong convictions in favor of the importance of prosecuting Internal Improvements in the Province; with the greatest vigor, upon a scale so large as to embrace the interests of all:

It dught not to be expected of an Engineer, that he should bie so absorbed, by devotion to any sectional interest, as to be insén sible of the value of other interests, and the power by which they are likely to be adranced. Such an absorption would subic ct ihim
to criors equally dimoputable to hinh, aad injurious to his om. ployers. Eicempt himself from the bias of special pecuniary in. terest, ia the result, the elevation of his views, and the co mpre. hension of his kewowlelye, gruided by long experienes and habitual mediation, upoa such subjects, onght to enable him to judzem se safely whatiners, for the mterest of the Stookhoiders. ITe should certainly be cautiods of giving hasty anl inconsiderate opinions; bat when properly called upon to express his views, should be prepared to present facts and plans collected and matured, with all the indastry and abilty of which ho is mater, and cumbined un. der a deap serse of all the objects o." his trust. In his reommen. dations, all the eapitalists, was min. investments in the work, to which they refer, ure intersted to huldhm, an they staald hold him, to ma sligit accon anability.

The object of yourcompany is groat, in all its duaings, and I am satisfes', is entirely toasible, and you expect much from a professional seport upon it. This expectation is natural and reasonable; but it canaot be met withoat fearinl responsibiy, ona the part of your Luguser. A prolinary survey, carizd on with rapility aad under dian lvandeous circunstancos, through a conatry pic. senting a wideexteat of wi durness congured wit 1 setted porions, to eluelate a vase ma of inamenent, in whea every sitle. ment alroaly fomst focls a lively concema, an every now-conos fiads the prineigal motive to determine his individual residace, involves in every step of tha progros, maeh. care and nawiety, and thase are rendered still more grave, when the survay is looked to, for elicitirg facts, and sugrestisy plans, which sha! lead to large invesments of rionog fue stoch, alrenly in part subseribel. for, and for opaning satis expanaive mons and faciitics of iuteraal commanication, as will strikingly advance private interest, ath the gearal prosjerity. Under suca circumstunees, it is due to those interested in the s!rvey, oa citier side of the proposed lines, as well as to myself, to say, that lhave been compelled to coafise my instrumental exunination to a single liae. This acomulsion has been tine rusult of limitel approprations to moet expease, and the shortacis of time, after tim suivey wes commencel, beforo uacontroliably impediments ivoll anise from the approat! of Spring.

The comatry to be triversed by your roxi , on whici the location is to besituated, is a bly fron rive to two.ty mile: wils, cxopt at or near the teminating points, extending from Nagura to I) troit rivers, along the rowth shore of Lake Erie. This belt is bounded on the north by the river 'inanes-a range of higa lands stretching from Westminster easterly beyond Norwicinand the Welland River. Fron the Niagara westeriy the most fa. vorable lozation is found in a direct line near he latos. 'To this tine our work is confinef, by catersive bow lands and swamp, furtior north, discinorging iniu Wealin \mid river. It is expalient to avoid the southerly bend oí the? Wolland Canal feoler, whet requires passing aloag the sonta side of Boxl Crecti, both of waisea objects may be ansivered, by a continuation, on favorable gronad, of the same direct line to Cirand River and far begon!. Tais location is very fortunate, in all respects, as the surface which it os. cupies is unbrokea by water consici, and rises but littio above the Lake levol. From Black Cieck to Patterson's Cewolk, thare is but onc direction, in which an uniform and easy grate ca:a be sccured, in rising from a loworr to a higher table of cowstry. And 20 this direction falls in with a continuation further westward of the same straight line with which we commenced. From Graud Liver to Black Creek, the table lands are cvery where of easy passage. But the valley of this Creck, as well as that of Patterson's Creek, present increasing difficultics, at every point, approaching the Lake, which, with the projection of a high ridgo from the north as fur down is the village of Simeo, designate that as the most eligible, for the lucation of our linc. From Simeo westward, the geiferal elevation of the cointry is two haidred foet above the lake level; and the streams by wisich it is intersected, plow it into ravines, deep, wide, with abrupt banks, in proportion to tho length of their progress from their sourcas. Bc. sides, the drainage of the country, in this section, originates longer water courses than exist elsowhere on the route, in consequence of the greater space between the various points of its dis. charge, into the 'Thames, Grand River, and the Lake respectively. These circumstances result in offering diminished lifficulties, oi a route further from the Lake shore. On such a route the difficulties may be confined to the crossing of Big Creck, Otter Creek
and Kottle Creek, which drew their supplies 1 rom a higher rango of coantry lying in bitwea the Thanes ind Grand River. This presonts the posibibity of findare a lina farther north, bat north of
 tho streans, cratug al iasease of sumnit, and pr ducing ine paltios o! surfice ta tein more unfavorable.

On the Otter Cushe tron tha proposed line southorly to tho lake, greater dificules prizont. The surtee is diversifiad by numarosis ridgos an 1 ravinss, bold and doa, many of them lying at aa angle of nsesat verticuly of 33^{3}. 'I'ne soil is sun' and clay, greatly in luratel, and coverel by extensive fousta a pine. Oa
 Catish Creak and Kistte Ceok, along the line of Talbot street. These heig the will refuire the carro waich mast be adopted in pursuiag our coarso wostariy to ba establishod in the vicinity of Katho Creck; wase tic fiat arraggmant of the curve, and eonaeetion of the tan somis, eanast be puliciosily determined, without cxtensive and caruful surveys. The valley of this creek, of. fers difliulties not to be encountere bslow St. Thomas.
From St. Tuomas westeriy, the hig'a lovels of sand formation coatinus ia a narrow belt terminating at tha O . At this poiut and Thether aloag tha Lake slome, tho waters of the Lake have eviloatly encroched upa, and worn away, the dividing ridge, fion when the draingro paises northorly into the Tames. This trase is brsea by hamsroas s'ort and deep ravines, and inter: sucted by sin ill rilgos of saal in a patt of its surface, making it ualiavonthe, and ia places imarathe ble to locate a liace upon it.
Betvesa this and Betweon this and the Thamas the land is lower and of a more fiverable deseription. Portions of it in the vicinity of the dividing rdga are cacanjored by swamp, bat nearer the river, and yet above the sho:t ravines exteading sontherly from it, is a very fuouble line ou cusitity, tice soil boing elay covered with oak, maple, black walnat, an l other variaties of timbor, and gradually descending toward the west, to a low lerel occupying the whole distancs betwoen the Leke shore an! the Thams. West of the O and Caatinu, tin samo level without ravines or undulations continues to the Betroit river.

The sottemat; on the lake shore hwe been fostered and will esatide to rely ehifly upoatice comarere of the lake. They will besomewhat afecied by the location of our road, but much more conernod to encosago fuctitios of comm mieation extending at
 t:ese alone will interior prolustions coms dowa to thom, and the domands of tha country for marchandize, salt, and other articles from abroxt, be nate conducive to the increase of their trade and walth. Bat there are several impoitant settlenents more inlant, which cannot fuil to le greatly, nud most of them; bencficially interested in your enterprise. Simeo, situated in what has been long known as the Long loint Settlement, is now designated as the centre of the new district, and growing in importance. St. Thomas, 2 flomisuing village upoa inette Creek, at the crossing of 'Talbat street, C latham, ovenuies a point of mach promise at tha heal of steam navigation ou th: 'Wumsz, and is pating forth iaudaber efforts to cail oat all of tie advantages of her position: Damille, on the Gran I River, at the point ware the Welland canal intersects it, is seeate of a rapid augmentation of population and business: This water power proluced here, by the dam erected for feeding the canal, with the navigation of the river above and below it, and of the canal itself into lase Ontario, and by means of the Ciapparia rivar, into the Niagara, make its advantagos conapicuo ls. Already ia has beco ne the site of extea. sive limmar establishments; wihich are beginning to turn to good account the valabibl forests extending for and wide within its rench. Tine denands for lumber are greatly increasing upon the lakes Exic and Uatwio ; an lthe ease with which saw logs may ba brought to Darvile fron large and uncullel rerions, and after being manufactured there, sipped at the mills, for cither a sou. thrra or northern market will first call. into activity large ambunts of capital and enterpriso at this point ; and they will be augmented by every opening of the auljazent country to other brancics of productive labor, and by a growing commerce with the Lakes in other articles.

The residue of the belt, being a great proportion of its en. tire exteat, is yet so little settled and known, as to leave important positions for towas, (between the Grand River and Chatham particularly oia the proposed line of road) to be determined
chiefly by your, road, 'and future improvements to connect with it.

It will be perceived, by the foregoing description, and the Map, herein referred to, that the most fivorable location of your road. will give it on extraordinary character. The physical condition of the country, the position of its leading settlements, and the largest accomodation of rich apricultural tracts, all consjire to paint out a route from the Niagrea to Detroit Rivers to coasist of two tangent lines, each over one huadred miles long, and consecten in the contre, by a curve so gradual as not to ba distinguisiable from a straight line, ia short distances, by the cye! The formation of the country is peculiarly farorable for a railyoad; the surface being level or uaiormily ascending and cescondiag in sues at manner as to admit every where of casy grades.

The principal dificulties will be ercountered at five fila es on the line, to wit, at Grand River, Patterson's Creek, Big Creek. Otter Creek and Ketile Creek, and none of these are very formidable! The first, will require a draw bridge and an embank ment under favorable circumstances ; the second an extra amount of both deep cutting and embankment, and culvert at Patterson's Creek. 'The other three streams are proposed to be crossed by bridges, after the form of Long's or 'Town's, enclosed with a double track supported by timber piers from the bottom. These piers are to be covered for half their height, with cones of earth brought on the roal and dropped around their base, the upper poitions enclosed in coniection with the main trunk. The object of this is to strenghen the piers, tind preserve the rimber from decay below the earth, to serve as a foundation; when a re-construction shall be required. These bridges will be about 1000 feet in length each, and 80 feet above the stream. 'Their cost will be found stated in the estimate.

The extraordinary lengths of straight line on your road are attainable with little or no extra expease, and are unparalleled in the bistory of similar improvements. And they are the more remarkable as the line crosses the whole drainage of the country at right angles. These desirable distinctions of your undertaking do not depend upon conjecture, but from an actual surtcy of the wholo route, and a level carried through it, except a small portion of the west end, where the land rises but slightly over the adjacent waters, and where the line may be run in any direction best comporting with the policy of the company.

So far as my survey is necessarily connected with the decisions of the commissioners, by their resolution allopted in March last, at the town of St. Thomas, I see no difficulty in the proposed terminating point on the Niagara; and would establish the other termination at the wharf and landing of John Prince, Esq., in the town of Sandwich.

To establish any portion of the route definitively, by a preliminary survey, cannot be expected, nor is it practicable with a just regard to prudence. The best final designation may be effectel, by such variations of the ends of the tangent lines and the curves connecting them, as more minute and detailed examinations shall serve to recommend : and such examinations cannot be duly made without much scientific and vigilant appli. cation with transit instruments, in establishing correct lines, and correspunding expense.

The desire to adopt the greatest extent of straight lines, and the easiest curves attainable, may be deemed needless. Experienced men seek for them with great solicitude; and for their sake will incur largo extia expense. They are the shortest line possible, and may serve to telegraph from each station house through the line; they promote the salety of rapid motion, in the heavy locomotives employed upon them; they give reputation to the work in which they appear; they offer more atiractions in favor of profitable connecting improvennents; and of course hold out stronger inducements to the investments of capital. These considerations, in additon to those herein before adduced in their favor, make it the duty of the Engincer toadopt them if he can, without exorbitant extra expense.

The line of location to commence on the Niagara river at a point convenient for ferriago--convenient tor constructing suitable wharves; and where it will be found practicable to make eligible purchases of a site for the termination of the road line. Thence southwesterly, on a curve of ten thousand feet radius,
two miter, niactuen clum, and cigh!y-t wo links, to a point most favombe fir the co mancurat at the tangent lines on the Gumizul iescrvation, knowu as the sie of Fot Erie. Thence on a course supposed to be south, 85 deg. 45 min., west 108 miles 3 chains, to a point believed the most lis vorable for the commencenc:at ol" a curve ol one hundred thourand feet radius. Thenex on the ate of said cure (the angle of the tangent being 20 dew. 30 nim.) 7 m!es 65 chain. Hhence on what is delomated the weat rn taugen, so: tha 62 dre. west, 68 miles 13 chains, to what i., denominate the sio. Chair curve, commencing oppasite the mouth of the Thanes river. Thence on the are of said curve, being 100,000 tee radi, the angle of the tangents being 33 der. 45 min ., 11 miles 12 chains 48 links, to the St. Clair tangent. Thence on saill tungent 19 uniles 3 chains S4 links, to the Detroit river curve, the radius of which is 20,000 tee: 'Thence on the are of said curve, 4 miles is chains 45 liuks, to the wharf of John Prince, Eequire; in the village and town of Sandwich. The total distance is as follows; to wit:

Niagara river Curve,	10,000	feet radii,	-	2	19	S2	
Eastern tangent,	-	-	-	-108	9	-	
Yarmouth curve,	-	-	-	-	-	7	66

Miles 22169 Ch .

Gosfidd ronte, continuing down the western tangent 89 miles 73 chai:s, to the curve denomina ed the Gosfic!d curve. Thenca on the arc of sald curve, the radius of which is 10,000 feet, angle of tangent 63 deg. 15 min., 2 miles 6 chãins 61 limks. Then on what is denominated the Sandwich tangent, 14 miles 60 chains, t: the wharf before mentioned in the town of Sandwich. Total distance by Gosfiel, 225 naites 44 chains 82 links.

The distance from Niagara river to Deiroil river at Anherst: burgh, is as follows, to wit:

The said geraral description to allow any such changes of said tangents and ceurves as shall in a timal survey be found best or most advautageous. The eastern tangent may be subject to fractional variations from one favorable pint of location to another, paiticularly the location of the viaducts.

The charter does not anticipate a location of the line to Am: herstburgh, a reference to which tay be considered in the design, but to reach Sandwich requires a deflection from the tangent southerly as it approaches Lake St. Clar, and its continuance along the border of the Lake ánd Deiroit River, to its point of termination: This would be shorter 4 miles 9 chains. 25 links; than a continuation of the tangent to the corner of Gosfield, and thus giving it a direction to Sandwich. It may be thought expedient bereafter, with a view to claim the business and travel from the shore of Lake Erie, from Sandusky Bay to Détroit River, to obtain authority and complete the tangent to Amherstburgh. A reference to this would influence the location to Sandwich, so as to carry it direct to a point equidistant from this place and Amherstburgh. Should it be found for the interest of the Company to obtain the alteration alluded to, this location would save the construction of a greater length of colla eral lines.
Before introducing the estimates of your work, I have inserted a copy of my plan and views of constructing Rail Roads; which is the basis on which the estimates are made, and to which I would call your attention.

Rail Roads are constructed in various forms. Much science and ingnnuity have been applied to this sulject, as well as to all the inachinery to be employed upon theu.

The relative value of all the forms adopied, is well understood by professional men. Those now interested in the conl struction of Ral Roads mijoy the advanteges delived from thei experience and may the cefore more safel. procerd in this speci of public enterprise \quad It is the part of p antion wislum, mever undertaking, to adop is everton to cire salne so It we districts of country, where timber is abui dau, the fol rin h an: deep, and secondary formation, where capital is searcs, amm the rate of interest high, prudence dictates the adoption of dif ferent methods from those that nay be most rlitable under dit. ferent conditons. I have comparel all the lorms of conseruetion, which have oome to my know ellge. After diligent inquig. with much solicitude, in reference to the cardinal poins of economy in their construction, durability and a ficiency, I have adey ted, as the Engineer of the 'Tonawanda Rail Road, one of the following description, which is now in use, with Locomotive Engines of a heavy class, and full lreighted trains. The experience of two winters of great severity, contirms the clams here set forth, and its entire efficiency and tendency to kcel? in perfect adjustment, without the usual annual repairs.

1st. Blocks of round timber, from 18 t:, 24 inches in diameter, sawed with parallel ends, at right angles with their length, are placed in an upright position, with one end resting firmly on solid earth, from which all roots and top-soil atre circfully re. moved. Of these blocks there are two lines, 5 feet apart, from centre to centre, across the road. These blocks will vary in length according to the surtice of the ground compared with the grate level.

2d. Timbers 9 fect tone, 'fort in di meter, spoted on the under side where they are 10 re-t on the .lacks, and cal down six inches deep in a notch 1 , whe; wider above the blecks, where they are to receme the strus-p.eve. These are placed across the road from block to block, tach cond atending outide of the blocks upwards of one fuot.

3d. String-pieces from 18 to 24 inches in diameter, and eilher twenty or thirty feet in length. These must be squared at each end-one foot square-and at each intermediate ten feet, where they are to rest upon the cross timbers above the blocke, and parallel with each other, in two lines lengthwise of the road. They inust be well hewed on the uppur side, and firmly keyed into the cross timbers.

4th. Scantling, 3 hy 4 inches square, placed on their broadest side, must be extendel along the top of buth lines of string. pieces, parallel with each wher.

5th. Above the scan lug, in exat parallelism; are to be placed two ranges of iron hars five or six eighths of an inch in thickuess, and two and a quarter inch:s wile; and then the iron bars and scinting are firmly ecured to the strms-pieces, by spikes seven inches long, driven thrughthem bo h, into the etrug-pieces.

Aiter the road is locatel, and the grade line establisked, the timber work is completed. on all parts of it requiting embanksient, and not subject to cutting of more than wo fee in depth. A kind of working car is then used of simple construction, with four, six, or eight wheele, having either of thens four boxes, so contrived as to discharge half their contents befween the two lines of string-pieces, and half without them, and carrying a cubic yard of earth to each whe I, an 9 thus the embankment is ande. Where the cutting is deeper, these cars advance one or two hundred fett, on temporary ways, hemur moved by horse power, and as the excavation proceeds, the permanent tambers are duly placed and se ured, and the road completed. The timber work is all covered by earth within the grade to the surface of the iron, except room for the flange of the wheel. Any kind of timber may be used, for the blocks ald cross timbers; the string pieces should be made of the best timber afforded by the line of road or the ad acent forest.
[See Fig. 1.]
The earth for embankments, and in excavations, stone and lime culverts, sawed scantling, iron, \&c., are all moved on the line by cars.

[Sce Fig. 2.]

Men of mnch experience in constructing public works, particularly Rail Roads, have sought with much anxiety for some better means of apply.ng the necessary labor, than that afforded ly

placing it urder contract. 'This means has always made it difficult to sccure fidelity in the work, and leails to innumerable con. troversies and delays in the progress of contracts, and in their final settlement. A methol of procecding, in the construction of the Tonnawanda Rail Road, has been adopted, which avoids those evils alnost wholly. An active prictical Superintendent, with a party of twelve or fifteen hands, takes charge of the timber work upon a given section of the road. 'This Superintendent hiresand discharges his hands at pleasure. He subsists, pays, and directs their lahor, keeps a weekly work list, and is responsible for the industry, fidelity, and enonomy of the whole. Where cuttings occur, a car of suitable dimensions for the panicular work, with a horse, is placed upon the timber work, under a Superintendent and similar regulations• All these parties act in the spirit of an animated compcition with each other, and each is proud of having made good progress, during the week, as per estimate of his work, by the rusicent Engincer.

In the first organization of the Company, the Directors appoint an Ergineer, Commissioner and Executive Committec. Tle

Commissioner is chiefly $\mathfrak{m p u s i d}$ for the construction of the work, in all its parts.

The office of a Commissioner, is one of exceeding interest. O : his talents, industry, personal vigilance and example, the activity, economy and progress of every department of action, will very much depend. To much knowledge of the local business and resources of the coantry through winch the road is to pass, he should add the benefits of experience in conducting labor; and. should think tho hardship to exert his energios, most of the time, in person. and on foot, to advance the var:ous labors on the line, and secure fidelity in all..

In building the road-the more artificial structures and all the scientific details, he is directed by the Engineer. He receives the money to be disbursed from the Treisurer, and accounts, monthly, to the Executive Committee for its faithful applicatiou.

The ordinary mode of constructing wooden roads, is to lay two paralell ranges of sills or string-pieces lengthwise of the road, six inches by six inches square, or four inches by six or eight quare, or plank two or three inches by nine or twelve inches
 placed from three to five fet art. eight fest lung. 0, d sine or six inches by cight inches s. u re The rai's, on wh the iron rests, being sis inches square, or live by seven ine es, and the fron consisting of bars, five cighths or tiree fourths ot an inch by two int one-fourth inches wide. All this structure is placed nion the surface of the grade and filled with earth between the ratuges of sills so as pirtiaily to cover the cross-pieces for a horse path. On some roads, the wooden rail has been secured by chains or castings to stone blocks placed in i'eep beds of rubble or pounded stóne.
The more expensire and substantial roads of stone and iron are of various forms. The edge rail resting in chains or stono blocks. of various paterns, is used in some cases; and in others the I' rail resting on cross-timbers hedded even with the surface of the grade, and placel three fect apart with splicing chains; and in other case; still, the 'I' rail resting upon stone blocks, or in lace of cross timbers. split stone seven feet long, about one foot square, resibity on a bed oi stone eightera inchesin depth, the whote width of the track. The expelise of constructing these several form: of row, varies from fiteen to fifty thousand dol. lars per inile.

The expenie of thes forms of Railroais. const tutes a fiothongection: werr adoption ia new datticts of cou try ; and
chand nol be atopted, i. eytal were ever so abu
di.t.

 ton of rains, which setthe the:a ithe the sade; and they camus. sustain the pressare of locomotives wit heary trains.
2.. Tue timber work is phace i i the must exposed seluation possible, and t.e orm of preparng and fucing the erass timbers subjects them to the most rapid decay.

Brol. Tine imber is tow lig.t, yelding under the weight of the engine 'L"i, !cking and the settling together of the joints arme: by the ceos timbers in borizont a sections of roall offer
 grate.
sth. Ia a a 1 :t terncimate, te whto frosts prol ce great in. jury on whind. Tiac cioss t!mens virug cover d with earth,
 surface) the cro timbers are raised from the sills, and thus a derangencent bocin, w ic sipreals and becomes considerable every yent, especially in winters o. great severity.

As those crits iselo eed temselves to my observation, it becane a great object to contrive the means of avoiding them and introfucing unprovements combining durability, strength and eco. nony. 'Inse are. requistes of especial importance in new dis. triets; and difficult of attainment, in sols, rich and deop, and liable to hard frosts. "They res itt in an eminent degres, from the constuction which I have recommended. That method finds most of the materials o:1 the spot, in the heavy forests which encumber the seil, and whica may be brought into, and constitute, a principal part of the structure, at an expense scarcely greater than would be incarred by removing it out of tlic way. This very van luable feature; in my plan, adapts it, most happily, to woody dis, tricts, where upon the old inethods, the timber could not be sawed and delivered without exorbitant cost; and where there is timber standing, withon the limits to be eleared, sufficient to answer all the demands for that aiticle. Using large timber, in its roughest form, saves the great labor of scoring and hewing; it gives unyielding firmness to the frame work in the grade and provideos ample strength for the transit of a a y amount of tonage. Tho size of the timber and covering it, (eicept the top of the scantling) with earth, secured its soundness tor agreat length of timo. My examiuations of timber, in similar situations, convinces me, that in close or clayey soils, it will endure from thirty to fifty yeaas, except the scantling. winch is but ittle expensive, and may bo easuly replaced when it decays. Placing the timber work sa en. tirely under the grade, secures it effectually against the frost, as has been fully testel, by two severe winters, on the Tonawanda Railroad. The blocks on wheh the upper timber work rests, aro a substitute for stone blocks. They are so covered as to be durale, and so situated as ta increase the strength and steadiness of the cross and longitudinal timbers, amply shoring up to the superstructure, in any description of colls, and under any pressure
rom above; which secures the road for use while the embank: ments are acquiring solidity.

The scantling and iron plate incorpowted with the large string. pieces by strong spikes, thronghout the entire length, liave a bearing which will not permit them to settle, at all, from the grade line before or under the wheels of the Engine, thus leaving the locomotive its utmost power of traction, and compared with stone and inon roarls has that medium of elesticity most favorable to the durability of the Engine and cars. Faperience has shown that the great difficulay of kecping in exact adjustment the several parts composing a stone and iron rond, creates a serions tay anauallv, in the destruction and wear of its machinery.

This plan of construction punterially reduces the time and ex. penses of the Engineer department. The line is first located by transit centres, or tangent lines, and henches placed, by the test level. This prepares the way for the timber work. This being completed, the Resident Engineer gives the levels upon the cross timbers, and transfers the peints of curvature fiom the tangents, preserving the monuments on the sfaigitt lines, and directing tho everal gading parties to fom therr slopes, as thay proceed with the excavations ane cmbankrunts.

It avoids the tecious detail of staking ont the work for the contractor, or superintendent, replacing from time to time the stakes lost by the cutting, grubling, embankments, \&c., and requiring all to be surveyed and staked anew, when the timber or stone work, in the ordinary molle, is ready to be placed uion the grade.

The experse of a Railroad, is made up of difierent items of labor and materials combincd in many rifícrent ways, and comprising forcign and local or domestic supplies; it necessarily involves a multiplicity of details. Whatever simplifies these, and increases the actual responsibility of those having charge of them contributes essentially to ecolomy. Practical men know this. can scarcely be too much insisted upon.

The seantling to be used for the read, I shouid recommend besing of red cedar. There being an abundunt supply on Point Pele Island, where it may be shipped to Sandwiel, Chatham, Grand River, Gravelly Bay. Point Ebino, and Fort Eric, where exist good harbors for vessels, from wheh points it could be carricl out upon the line of read; or landed at other habors requiring but little land carriage. 'Ihis timber could be used wit', great economy, the scantling being sinall and of any lenatis. It would give you a good substitute for a stome and iron road, if 1 am correct in my views of tia durability of timber placed in the grade.

The line is divided into three divisions, Eastern, Midule, and Western, ns follows, to wit :

The Eastern Division. extending from Niagala river in the town of Bertic to Black Creck in the town of Wouthousa, being 64 miles and 27 chains.

The Middle Dirision, extending from Black Ceek to the west line of the town of Oxford and west line of t e Moravian Indian Rerservation. This embuaces that poition oï tue line that is ou a high level above lake Errie. Length of this division, 93 miles 79 chains 85 links.

The Western Division extends from the town of Oxford to the Dotroit river at Sandwich, being 63 miles 42 clatins 15 links.

Total distance 221 miles 69 chnins.
ABSThact.
 of executing the wo:k in a favorable section. Portions of the route would require higher blockisy in some cases in embank. ments and deep ailuvial deposits, ond in others requiring the timber moved into improved grounds, open prairies, or swamps, where thero is not suitable timber ; also, ourchase of timber winich would probady increase the aggregate expense to 2001. per mile. By the estimate Thave allowed 20 per cent. in addition,

Iron and splicing platos, $£ 450$ per mile, $\begin{array}{lll}99,838 & 02 & 06 \\ 11.093 & 02 & 06\end{array}$ Spike, a: $£ 50$ per mile
$\begin{array}{lll}11,093 & 02 & 06 \\ 11,092 & 02 & 06\end{array}$
Sawed Red Cedar Scantling, £50,
Laying Iron ard Scantling, £25 per mile, Engincer Department, Commissioner, Deputy and Book-keeper,

55461103

Workshops, Ware-houses, Wharf, Car-houses, \&tc., Sidelings, 'Turnouts, Scales, Circles, \&c., at eastern Depot on the Niagara River, comilete,
Do. the western Depot on the Detroit River,
Station bouses and branch tracks,
100 Pleasure Cars, at £200,
200 Freight Cors, at $£ 50$,
15 Locomotive and Tenders, large class,
Land for Depots, 10 acres,
Damages for lands and fencing, in the present state of the improrement of the country, む50 per mile,
$12,500 \mathrm{CO} 00$
ctal cost,
10,0000000
60000000
$400000 \quad 00$
20,000 0000
$10,000,0000$ 27,250 0000 500 Q0 00

11,093 00 0S £371.927 1102
'I'he estimanes are made at such prices as it is believed the work will cost, without adding per ccutage for contingencies.

Ciapitalists will think anch of the connection anticipated thes tween the Rall Roats of the Province aud those of the adjoining States; bacause on these connections the use, and of course the profit, of them, will reer innoh deperd. And if the great lines adaptet to the demands of the hoine pomation are laid out and opened, with a prusent reference to similar works set on foot, and in the way of rapid ecmpletion, by tho neighbouring population, it is evident that the latter population will be brought to con:ribute essentially to the enlargement of the annual dividents, and this contribution will be most cheerfully made, being in iruth only that reasonable tribute, which grod sense and justice may levy upon the natural adventages of local position.

The great lengith of the route,-the urparalleled extent ta which it is abzolutely straight-the ease of the curves, where curves are required-bihe absenco of all hut very moderate graules of ascent or descent-ind the practicability of passing over its entire distance between sunrige and sunset, with locomotives and heavy trains, under a very diminished pressure of the tractule power, are circumstances which could not be so extensively combined in any country but jours ; and which will be equally in:portant in jour road, by lye annual saving in the cost of traction and the perpetual gratifientions of interestand curiosuly, which they will offer to men of business and science.

It is obvious that the profits to be expocted in the shape of dividends, will depenil upon the outlay required to complete the work, the cost of maintaining the requisite power of trac. tion, and the amount of basiness commanded by the road. All these consderations have a farourable application to your work.

Rail Road stocks have been consilered, more or less, in the experiments of the age, is fincy stocks: 'They have been sold in the markets on the credit of popular names attached to them, and often receivel! a fictitions estimate from the exertions of individual spectilation, wihout any proper refurence to the substantial merits of the work. But the day of such resuits is now past. So many Inil Roads have now been mạde, and in so many different cenditions, is to their cost, and use, and value ${ }_{2}$ that every thing concerning them has been sulijected to the observation of multiturles of discerning individuals; and :hey are completely embraced within the cxperience of men of science. This experience proves that they unite such rapislity and facility of passage, buth for travellers ind commodities, that no ex. pense of outlay can scarcely be too great to provide them on the great thorouthfares of internal comonunication." They are therefore the proper subjects of business calculation; and are often undertaken, and may be well undertaken by private en. terprise. In favorable situations, where the original construction is cheap, the line when constructed of easy passage, and the direction such as to accommodate a great and growing intercourse, they will ensure abundant dividends, and soon reim? burse the sums expended upon them.

The great field of profitable Rail hoad investment must be found in lines of natural thoroughfare in districts under a course of rapid settlement, where alluvial formations are spread into immense tracts, and where primitive motintains do not require to be cut down, and rock bonnd vallies do not resist, to doubls or treble the amount of friction in passing frequent and abrupt curves. The great west will withess ibe highest and most uscful power of the locomotive. 'There will these wonderful powers soon display theinselves, upon atscale of such grandenr and utility, as find scarcely any type in the experience of the past, either in Europe or America,-a scale which can be anticipated only by the most comprehensive and intelligent riews of the magnificent expanse of her rivers and lakes-her prairies and table lands.

Whole ascènt West, 409,5:3
Whole descent West, 404,36

Average ascent per mile for the whole line is $1_{10}^{2} 80^{3}$ feet. Maximum grade, 15 feet per mile, in short sections.
All of which is reapecifuliy subnit?ed for the consideration and further or ter of your hosorable board.

ELISHA JOHNSON,
Chinf hamineer.
Engineers Unice of the Ningura am?
De:roit Rivere Ratil houd Co.
May 1, 1337.
Circulr
Condinel from p. 510.
Faring thes given a cketch of the manet in which it is propoed in conduct the inguirics*on partictilar subjects, in respect to which it would confer an obligation on me to have your sugges. tions, or those of any other experimented hermer, i procecd th other groat topics, to be embraced by the surver.

Satt. Marine Shells. GypsumClay. Sand. Marl.
Dock Murl. Astas of Minedral Coal. Buret Clay.
3. Vegetable Manures.

Ashes of wood and peat. Soot. Tamers' Waste. Straw.
Leaves. Sea Weals. Rape Dast. Sifent Manure.
Green Dressings, ploughet in. Muck Wheat. Clover.
4. Artifich Minures. Composts.
5. Modes of applying Marnuc.

Mixed or cear ; solid o: infuit ; in drill or broadeast ; in fres't or fermented and decayed state;-at what season of threser or crop; - annually, or how ofien ; id what guantity.

Use and application to pernatient pastures and mowing liands.
6. Manure Heuses or Cellars; Valts for the preservation of urine ; and provisions for forming compoai manures.
Machines for the application of liquid mazures:
XIII. Live Stook.

1. Black Cattle. Horses. SHecp. Swim. Poultry.
2. Comparative valne of diticrent Breeds of amimais for Stall, Work, and Dairy ; and notices of herds or indiriduals of improved Breeds, with places where found.
3. Abimats known abnomg us. Native; Hercford; Black Spanish; Devon: Holderness; Yoristhire; Alderney; Ayrsinic.

Improved Durham Short Horns.
4. The subject of Breeding.
XIV. Aminals for Lator.

Horses and Oxen. Compardive values. Mules. Cost or, leep; larness; stocing ; deturiontion or ingrovement.
XV. Animals for Beef.

1. Ser most eligible.
2. How reared ; as caives, how fed; how hong with the cow ; how managod the first winter.
3. What age at maturity. Age best fer fattening.
4. If pastured-average number of acre; to an anima?.
5. If soiled; how managed and fed.
6. If stalled on dry feed how, fed; how long kept ; amount of hay consumed per day; of meal ; of vegrotablis ; kinds of meal; kinds of vegetables ; how prepared; neal groand with or with out cob; mixed or unmixed; wet or dry ; cooked or raw.
7. Use ol flaxseed; oi! ; and vil cake in fattening.
S. Gain per day; per mosth.
8. Machines for cuting und steaming food.
XVI. Market; Returns of Brighto:n and Dauverse Markets.
9. Aumals-how sbld-on the hoot; or by weight aftor shaughter. If by weight, how determined ; custoins of butchers; what parts weighad ; what coasidered as perquisites. Liabilities to error or fruud, if any ; customs in other markets.
10. Different parts-how disposed of ; relative value.
11. Módes of curing, packing, inspecting, beefl, pork, hams, \&c.
12. Drift of animals; customs of Diovers ; expenses; loas in weight by travelling.
XVII. Anımals for the Dairy.
13. Choice of Breeds. Exauples and history of Cows of cxtraordinary product.
14. Size and color as affecting produce. Continuance in milt ing. Effects of early coming in. Disprosition of the caif. Time. of milking.
15. Average yield of a good cow in milk ; in butter ; in cheese.
16. Triuls of mill: as to quantity of cream; of butter ; and of checese, per grillon.
17. Modes of feeding ; vegetables; grain ; or meal ; how given a prepared; quantity.
XVIII. Dairy Produce.
18. Butter ; mudes of making and preserving.
19. Cheese ; mqdes of making and preserving.
20. Comparative profits of making batter and cheesc.
21. Use of șkim milk, butter milk, and whey.
22. Advantages, if any, of giving it to the Cow.
23. Value of dairy refuse for Swine,
24. What proportion between number of Cows kept, and num. ber of Swine kept.
25. Steaming; henting; freezing milk, with cqmparative ad: yantages of each method for raising cream.
26. Effects of different kinds of salt upon butter. Use of sugar and salt petre for butter. Coloring matter for cheesc:
27. Protection from vermin.

+ 11. Grasses for Dairy purposes.
Improving Peat Meadows.
XXXIV. Great Farming Ọpraticns;

1. Ploughing.
2. Sowing ; flanting; Laying down to Grass.
3. Haymaking.
4. Harvesting.
5. Preserving and Expending the Produce.
6. Marketing.
XXXV. Examples in detail and in full of
7. General Farm Management.
8. Particular Crops.
9. Particular Improverfents.

XXXYI. Labor.

1. Farm Labor by the manth or year.
2. " $"$ by the piece.
3. Cost of Board and prices of Provisions.
4. Use of Spirituous Liquor.
5. Laws and Customs relating to Labor.

Mechanical Labor.

1. Blacksmith. Price per pound of Iron.

Price of Horse shoeing. Ox shoeing.
2. Carpenter?̣? Work, per day.
3. Masons' Work; 1 er day.
4. Wheelwrights! Work, per fiece.
5. General cost of Farming Utensils; Carriages ; and Equipments.
XXXVII. Farming Implements, \&c.

Ploughs. Harrows. Horse Rakes. Cultivators and Horse Hoes. Threshing Machines. Winnowing Machines. Vegetable Slicers. Hay Cutters. Rollers. Drill Machines. Corn Planterrs. Corn Shellers. Wheel Carriages. Stnmp Extractors, \&c. \&c.
XXXVIII. Condition of Roads and Improvements in Construction of Roads, as intimately connected with the Agricultural Prosperity of a Ccuntry.
XXXIX: Miscellaneous Subjects.:

1. Size of Farms.
2. Farm Capital.
3. Farm Accounts.
4. Laws relating to Agriculture.
5. Taxes and Burdens upon Land.
6. Agricultural Pauper Establishments.
7. Agricultural and Manual Labor Schools and Colleges.
8. Agricultứral Societies. Funds. Premiums. Operations. Cattle Shows.
9. Agricultural Libraries and Publications.
XL. Manufactures connected 'with Agriculture.
10. Household. Manufactures. Manufactures of wool, silk, flax, hemp, hair, bristles, straw, \&c. \&c.
11. Leather, with all its various preparations.
12. Glue. Combs. Buttons. Bonnets and Hats from grass, straw, or wool. Wooden Ware. Barrels.
Maple Sugar, Maple Molasses. Beet sugar. Potato Syrup: Starch. Opium. Sunflower Oil. Indian Corn Oil. Linsseed Oil. Neat's Foot Oil. Wine from Grapes. Wine from Currants.
Cider. Perry. Beer and Alc. Whiskey. Gin.
Sonp. Candles.
XLI. Objects of Particular Inquiry, with a view to Agricultural Improvements.
13. Improvements in Live Stock.
14. " in Utensils and Farm Buildings.
"6. in New Vegetables, Fruits, and Grasses.
". in Seeds for earliness and abundant yield.
" in economical Preparations and Uses of Fuod for Man and Beast.
$\begin{array}{ll}\text { 6. } \\ 7 . & \text { in economical Uses of Fuel. } \\ \text { in economical application of human and }\end{array}$ brute Labor.
15. \because. in application of water, steam or wird power to purposes of husbandry.
9, 4. in cultivation-depth of ploughing ; mixing of suils ; compost manures; manuring with green crops; inverting and covering the sward; drill culture; sowiug broad-cast; management of any particular crop, \&c. \&c.
1c. Improvements in rotation of crops.

XLII. Exports and lmports of Agricultural Produce.

Capacity of the Sate to supply its own Wants, (ieneral views.
XLIII. Specimens of Soil to be analyzed.

Models of improved Implements.
Models of improved Buildings.
Sketches of improved modes of draining lands:
Collection of valuable Seeds or Plants.
Samples of Wool, Silk, and Sugar.
Saxon Sueep and Wool.-E. Tilden, Esq., P. M., New-Lebanon, Col: has a flock of 1,000 Saxon, and Saxon and Merino erossed sheep, which he considers of the first grade, and offers' a part for sule - the bucks at from five to twenty-five dollars, according to age and quality. Samples of the wool from ifesp bucls', have been deposited, for examination, at the office of the Cultiyator.
J. C. Van Wyck, of Fishkill, Dutchess cpunty, has also a flock of 500 prime Saxon sheep, bred with great care, which he wishes to disposeg of-price not mentioned.

REMARES OP THE CONDUCTOR.
We have adverted to the subject of bone manure in our second and third volumes, and stated our mode of obtaining and preparing it. We have boen less urgent upop this matter ${ }^{\text {b }}$ bo cause we saw little hopes of our farmers regarding this sourca of fertifity, while they remained reckless, is too many of them do, of their dung and other sources of fertility whicli" abound on every farm. The subject shall receive our early attention. In mean time, in reply to Mr. Foote's questions, we answer, firs -the time has come for every farmer to husband and apply to, his lands, all the means of fertility at his command. Bone dust will not prove serviceable upon clays. It is applied at the rate of 20 to 40 bushels on an acre. Bone milis can only be profit:ably erected near navigable waters. Secondly-bones can bé crushed in plaster mills, so as to answer well. Thirdly -bones that have heen boiled are deemed as good as those which hava not been boiled, and old bones nearly as good as fresh ones. And fourthly-not only potato tops, but sedge grass, weeds, straw, and every sort of vegetable matter, or earth abounding in it, as that from swamps, ditches, ponds, \&c., leached ashes, soap suds, urine, \&c., may all be profitably commingled in the dung yards, which should be made concave in the centre, in order to retain the liquids of the yard, and which these vegetable matters will absorb. And the yard should be thoroughly cleaned cvery spring, and the contents fed to hoed crops.

Ruta Baga Hoe.- We have beeu presented with a neat little implement for thinning turnips, or other crops, manufactu* red by Wm. R. Gates, Lee. Mass. It is for sale by Thorburm, at the moderate price of $37 \frac{1}{2}$ cents, including the handle,
XXVII., description of the method of hOOFING IN USE IN THE SOUTHERN CON CAN, in the east indies, by lieut fras OUTRAM, BOMBAY ENGINEER. COMMUNICated in a letter to the late presiDENT, T: TELFORD,'ESQ., BY MAJ. GEN. SIR joilin malcolm, G. C. B. \&c., Govelanor of bombay.

Extraet of a letter from Mr. Telford, enclasing Mr. Outram's Paper.
"I beg to present to the Institution, a pa"per describing a made of canstructing "stone-roafed buildings in the East Indies, " which, althougli it may be little applicable " in this climate, yet seems of considerable "value as relating to an important part of " the British empirc. It has been transmit" ted to me by direction of the Governor of " Bombay ; as will be seen by the accompanying note of his private secretary.
"I have much pleasure in sending you, "" by desire of the Governor, the accompa" " nying copy of a letterfrom Lt. Outram, " 'of the Enginecers, on the subject of stoue " ' roofed buildings. The few houses which "" have been already constructed on this " " plan, have been found to answer so well "" that I understand Government have re.
" ' solved to construct, on this principle, all " ' the public buildings, wherever suitable " " materials are to be prociured.'"

Nature of the arches
The roofing with stone (iron clay or laterite) in the Southern Concan is of a cempound nature, consisting of two kinds of arches, the first beiug parallel to each other, from 2 to 3 feet apart, and very light ; their average section being from 12 cy 10 inchess to 15 by 12 ; i. e. for foof of from 25 to 35 feet span; so that when any two of these arches or ribs arc complete, they are strong enough to bear slabs of stone 5 or 6 inches thick, extending a few inches over each, beginning from thie wall and meeting at the top, thas forming a second complete arch, and making, with the ribs, a compound muctr stronger uan vaulting of equal solidity over the same extent, made in the usual way:
theli iteteral The arches of one room are counthrut. teracted by those of the rooms an its sides, and so on for any extent; thase of the end rooms being counteracted on their outer sides by buttresses or by the walls of baths, \&c., so that the walls are required to walle. to be only sufficiently strong to support the mere weight of the masoury of the roofs, which has an average thickness of about 9 inches, excepting the plaster or tilcs, and therefore in rooms of 400 square feet would be about one-fifth weight of the upper Conperation wolsh walls of a two-storied house. As the roof itself is of consi derable altitude, the walls supporting it need not be of mare than two-thirds the usual height.
Loadiag of the archee. One advantage of the lightness of these roots is, that of whatever form the arches may be, very
littlo loading will-suffice; of course some littlo loading will-suffice; of course some arches would require no loading, but such Their forme are the most convenient for roofs is
general. : The best appears to be a compound of two segments of a circle of 50 or 55°, their chords intersecting at an
angle of about 100 ; such compound arch requiring a little loading at the top and the and outer surfece. haunches, which, waen duly added, gives an outer surlace of two inclined planes to each roof, which may be thed ether prastered or tiled. But in stead of loading tie haunches throug!out with solid rubble, it is beeter to do so partly with hallow masoary, to the upper surface of which may be given any slopes, whic by the 'connection of the opposite slopes of any two adjacent roofs, from a gutter of the securest kind. The average heig to this gutter should be about.one-third that of the roof, if to be plastorod, but not so much if the roof is to be tiled.

Tho expense of these roofs, including the outer plaster, and those tiled? has been found by myself and successar, in the Concan, to be much less than that of tiled roofs over the same extent. The walls should cost no mare than those of a substantial bungalow, far although the transverse walls have a greater weig't to suppart, yet as they need not be only two. thirds the height, thsi r tatal expense should dot be greater than that of the walls of a substantiai house. The only part of which the eomparative expense reinains to be considered, is the ceiling. The inner surface of the stone roofs, when finely plastered, forms an excellent ceiling, being light and cleanly, and most durable. The expense of this plastering, if not much ornamented, is below one-third that of the lath and plaster generally used.

Henee it is plain, and has been practically found, that the total expense of stone-roofed houses in the Concan, if properly constructed, is less than that of tuled houses of the same size ; but the sums saved in annual and special repairs are of far greater consideration.
In the Deccan,
In the Deccan whore timber is
so expensive, the comparative cost of the brildings would be still less, in all those parts where proper stone is met with:

The principal cause of the cheapness of these stone roofs, is the very litule centering, \&c., requisite: For as the ribs or primary arches, are very light, centering of the sim: plest kind does for any one of them, and thus for all successively in cither room. But as the centering caunot be removed from any rib till its counteracting ribs are complete, there is of course required one centering for each room, which, when que scries of the primary arches is complete, may be remov. ed with ease for the next, till a convenient number are ready for the superior arching, which of course is very quickly formed (as before described) without centering.

Stonee fituen for

The materials fittest for this bree roon. kind of building are the various kinds of sand-stone, including the calcareous sand-stone of cutch. The laterite, or ironclay, although a good material; and the only one hitherto used, jis apparently not so proper as the substance generally called freestone, which, if worked with saws, \&c. would be found to answer better than the laterite, which can be shaped only with a pickaxe, and is very heavy. This iron clay is found to extend from Bancoote E. N. E. to, I believe, Ceylon, lying over the trap-rock, even on the highest Ghauts, but is very un.
equal in thickness and quality ; that of Purnalla and Pawnghur, for instance, being of the softest and mo t porous kind, and that near Mahabulcsher of the best. This stone, when exposed to rain, \&c., becomes very hard if good, but if taken from any depth, is so soft as to be easily cut with a knife. It is hence calied scas.stone at Belgaum and other Madras stations.
Methotof working Ia making the primary arch. wie ribs. es, each workman slould be provided with a small square, one leg of which being laid on the centering, the other will, of course, be the prolongation of a radius of the arch's curve. In beginning the arch, therefore, the workman has only to cut (with a small pick-axe for laterite, and a chisel for sand-stone) the upper end of the first stone, till it is adapted to the square, after which another stone is hoisted up, (the pulley being sufficiently high to allow it to swing freely over the centering,) and its lower end easily fitted to the surface just Securing them fo
rior archanay. prepared; the upper end square for the reception of a third, and pro. ceeding thus, both sides of the arch are formed till they meet in a key-stone at the top, which should be connected, pro tempore, by a slab, with the side wall, or with the next rib, far otherwise, thess primary arches or ribș might be shaken down during the for. mation of the superiar arches.

By the usc of the square, merthed of workius the joinings of the arch-
aiches stanes must all properly concentrate, althaugh made by the most stupid workmen, and the arches are rendered perfect in much less time than they could have been by cutting the stones to chalked lines on the ground, as is usually done; besides, the stones may be of various lengths, and are thus worked with more froodom, and none spoiled.

The stones of each superior arch should be cut at their ends, so that their inner surface be an inch or two below the uper surface of the ribs.

The cuttings of the laterite, gool chunam, and sand, (sea sand should never be used,) in equal parts, form an excellent plaster for the outside of these roofs. The cuttings, or stone rubbish, will do pretty well without sand, but it should not be very finely powdered.

Precauzions necessary In finishing a plas. tered root.

The roof having been well washed, and not allowed to dry, the plaster should be laid on it throughout at once, and about two and a half inches thick. No fine ceunam should be put over this plaster, but it must be con. stantly beaten with small pieces of wood, for two or three days. As the tempering of the plaster is of great consequence, every seven or eight square feet should be under a boy, who has, besides the piepe of wood, a pot of water, to kcep the chuman moist the whole time; at the end of the twa or three days the plaster will have become very hard, and less capable of absorbing water: but after the boys, have left it, there should be a sprinkline of water over the whole, as long as possible, for the longer these roofs are kept damp, the stronger they become. Their sutface should not be left very smooth; but if any cracks appear, they show that the
chunam has not been property beaten, and should be filled by rubbing fine chunam int: them.
Io pheary mivert
As new chunam, fowewer pro ail perty made, absurbs water, it will be advisable in the first seaso:: to guar:i against wery heary rains, by covering the surface with a thin coat of wax and ol, which is casily done by robbing the mix. ture on the roof in the heat of the day.

But if chunam be scarce, or it it be not very good, the roof Tike mas be uard. it be not very goud, the root
overed with tiles, (which woull? should be covered less than the plaster,) as many be secri by the small proportion the tiles bear in the expense of a tiled roof; - the form of the roofs render such an addition very easy.
If adopted in Europe, brillings of this kind would be as remarkable for warmith as in this country for coolnes:. But the plastering outside would not be advizathe on account of the frost ; tiles, however, or slate, wouh protect the reof completely.
Adramase: or fune row The princimal advantares country are, their coolicss, and the lithe ex pense incurred in annual and special repairs; indeed, the latter will never be required if the building be properly constresced it first. It is also very eviderit that they can never take fire, nor can white ants afeet them; of course they could be built of several stories, the form of the floor ribs being merely a small segment of a circle, (or clipse, iistead of a compourd of two as in the roof. The upper floor of the jailor"s loatse at Rut. maghery is thus built, as also past of moncher house.

All the buildings hitherto constructed on this principle are, in a climate perhaps the most untavorable in Indiat fer there is not a terraced roof, constructed in the usual mode over wool, that is proof against the excessive rains of the southern Concan.
In mome parta of it a
nitxture of atoue and
This sysirm coull not be nitxture of atome
brick mavisuble. be so cconomically adopted where trap or whinatore only is procuratle, unless wood be very expensive, as at Poona; where a componad strueture of roofs, between stone and brick might be found even less expensive than common tilel roofs.
I take the liverty to ald some remark 3 on brick and conipound roofs of a similar construction, and it proposal for the use of domes in some cases, which I presume would be found more beneficial, and less expensive to government, than certain tile roofed buildings.

In the compounll roof, the primary arches, or ribs, to be constructed nearly as before mentioned, bun being of harder stone, not so masave; th. breadth of their section to be greater in proportion to the height. For arches of thirty feet Epan, the section of the rib stones may be as in the annexed sketch: theil length being from two to four feet. The slopes at the upper corners aee made fol bricks.

Comenecting alase.
The ribs thus formed to be comnected together by slabs of the same stone. One slab betweei every two at their tops, and another at each side, thout the middle of the secment;
hin distatice between the ribs to be about 3 ext.
Ementrate Whentilus formed, a piece of Gratumbe plaked centuring may be pla. cen between aly two ribs fiom the wall to the first comecting same, so that a thin brick vallit may he complutad over that spicec,-the sides of both maviag heea prepared (as before stated) to receive it. One piece of centering, in length only one fourth that of the ribs, and two or three feet wide, (coassquently extiemely ligit,) would suf. ties for the whole of the suphror arching of a room, for the connectel strength of tine ribs (by him laterel stones) wo:ld be quite ctoughi to sustain tho then intermediato arthes of brick; similar parts being done in surcession, until the whote be corered. But care nust be tiken that a proper resistance Resithanee ngainnt the
hat theal dha ust. be secured against the late. Whicher thrtist of thie brick-work, divary tever, is so very lightt that an or the tivo side ribs of eacin room bo placed alout one foot and a half, or two fect from them, so that, us with tio haterito, farg stones mighit lie on the intermediate space ; by the loaling of whicil, a mach greater resistance than requisite might to wistained.
Fipronemink If rows ate made of brick Ahroughanl. throughout, the proportion of the ribs and the valding should be somertiat difierent ; for 23 feet span, the ribs stould have a section of 18 by 8 inches, and their internediate space be about two feet wide. so that ti:e ribs will nearly of themsetwessus. tain the rautis.g.

Cund had duma.
In many casen, however, sumbuated domes formal on a componat emoid, two-thiids sphere, and the upper thin:l cone, would te the most economica! kind of houling, particelary for detached billthag in this coantry, where verendah or serens are necessay to protect them Irom san and rain, winca obiject would be at once gainen by ardens ever the butresse. the loading of whish with mad rubsle would of course increase their resistarce, and like wise present an addetito:ail obstacle to the heat.
These domes would be formd particularly advantageoua in government buildings; for instance, those i: the miltury department. in comparison with the barracks, storerooms, hospitals, sec., rooy in use ; they are far more casily ventilated by holes and windowz, unlinited, at the sides, und one at the top of the roof, (the clumsy method adopted at present in barrecks shows the neccssity of ventilation, and the g eat sprace inclosed by the roof alonge ensures a pleatiful sup. ply of fresh and cool air in the closest days. -Secondly, their interior cammot be affected in the slighltest degree, by the heat of the roof.-Thirdly, they include a larger space in proportion to their interior surface, thereby requiring less superficial repair, and being more easily kept clean.-F.Furlhly, they are altogether free from special repairs and cannot tuke fire, nor being affected by white ants, which have hítherto not only destroyed buildin,gs, but also the men's kits and public stores, the risk of which is perraps of greater consideration, than the sums expended annually in repairing the buildings now in use ; but those sums also would be savad in thece brick-roofed buillinity, excep,
indeed whitewasing and repairing the floor Tor the tiles of the roofing being fixed with chunam, would re zuire no urning. They should te placed in horizontal divisions, y which meats sell ungles will be avoided, anil unless the tiles actually break, there will be :o repains whaterer requisite to the roo?.
If the expense of anmal and special' repairs to luildings in general be considered, togetier with the destruction of stores by white tuts, the loss by fire, and the loss of hearti, occasioned by the extemes of heat and cold under tiled roofing: it may perhaps be allowedthat were roofs of masonry gene-
Companticerypene. relly adoptcd by Government, even at five times the originat cost of the buildings hitierto used, there would accrue a saving of money; but it has been already proved, that the compoum arched rocfs are cheaper, and it may now bo shown, that those with the modified domes are also very economical ; for, br. gimmarg with the walls, a circle being the ieast possibie porimcter of a given areu, the walls, it made of the ustial height and thicknasis, wothd be nuech less expensive than tiose of an equal phadrangular space; a square fu: instance, would cost one-tiird more, and the stapo gencrally given to hospitals and barracks, having the breadth onefourth the length, mercly because the roof would be very espensive if wider, would cost just twice as much- But as assistarice is required against the kateral thrist of the done, the additional butiesses necessary would eearly double the expenso of circular walls in all rooms above 20 or $2 \overline{5}$ feet dia meter, were it not that the great height of the interior of the come jitelfif renders it unwecessary to make the walls more than 7 oif 8 feet high, i. e. just enougla forr the doors \&c. It will nench be perecived that the exjertse of guadranguar walls is greater than tinat of circular walls of only hali their icight with butresses; and it will be scen by every one who undersiands the nature of a dome', that a surnounted dome, as describcll, would be perhaps the cleapest mode possible (unllss brick and chusain are chormsusly expensive) of substantially covering a given space, and the larger that space the greater the adrantage of this dome o:er wood ronfs, \&c. : for sgch requires no centerinis whatever, althoigh 300 feet in diameter; tund is built under the superintendence of one intelligent person, as easily as the upper walls of a house, because the arehos over the buttresses afford a landingplace for the materials, and the cuter surace of the doine gives a footing to the workmen without any scaffolding ; the expense, therefore, should be estimated as for upper walls, i. e. the sane rate for the solid nasonry of the dome, which, together with the tiles coveriug it, will cost less than a cormmon tiled roof, over an equal extent.
Diantronatse.
The disadvantages of domes, are, their inconvenient shape for houses in general, and upper storiell houses iu particular, their inelegant appearariee, unless the walls be of a proportionate height, which would increase the expense enormously in the buttresses, their depth being in direct ratio with the heights of the walls, so that if the height of the walls be doubled, the expenise of the
buttresses is fourfold. But where no stons is procurable, a house formed of several dome roofed rooms, pioperly connected together, would be found not mote expensive that one of the same size witil compound arches, i. e. in one.storied honses only, both being made of brick. Of course spheroidul roofs may be made nearly as easily as domes, but they would cost more, and would not do so yell fer tiles.

WHITE OAK AND POST OAK.

J. Seelye, of Sharon, Conn., inquires, first, what is the distinction betweea past oak aud white oalk, the former being esteenied, at the south, better and far more lasting, than the latter. And second, on what particular day in the year a tree, perforafed by woodpeckers, or slightly girded with an axe, will die. While oak is a rree of the first class as to magaitude, and grows in every part of the United States, thongh in Florida it is found only on the borders of the swamps. It is the orly oak, on which a few of the dried leaves persist till the circulation is renewed in the spring. Of all the American oaks, this is the best and most generallv used, according to Michaux, being strong, durable, and of large dimensions. The post oak resembles somewhat in foliage the white oak, though the lobes of the leaves are broader, and less pointed; and it; acorns are not half so large as those of the white oak. The leaf of the white oak has three, and that of the pest oak four loles. This cak helougs to the second class of furest trees, its height rarely exceeding 40 feet. It is not found growing north of the neighborhood of the city of New Yoik, bnt abounds in the middle states and in Florida. The wood is less elastic, though finer grained, and more durable than the white oak : hence it is preferred for posts, and is used with advantage by wheelwrights and cooperst. As to the second point of inquiry, we are ne屯, a ware that there is any particular day in the year, and we aro sure there is not, when a tree will be killed by the pecking of liirds. Trees either diq by cutting off the supply of sap, which passes from the roots threugh the sap wood, or for want of elabonatugg organs- ihe leaveswhich convert this sap into vegetable nutriment. Catting through the entire sap wood, at any lime in the early part of summer, so as to prevent the ascent of the sap, or divesting it entirely of the leaves, which elaborate this sap, in Jtnc, will seldom fail to kill the most haridy tree.

The bheat chor.

Our letters from Illinois, Michigan, Oinio, and the far west, are not favorable to a great product of the wheat erop, this grain having been seriously injured by the winter; and we very seriously apprehend, that the grain worm, which our legislators have considered too insignificant to notice, will lessen the crop of our own state to a most alarming extent. We do not mean to be come croakers, but we scriously believe, that the high anticipations of an estraordinary abundant wheat harvest, which our newspapers encouraged, will not be realized--ilis year.

Pratt's Stump Extractor,--We have received from J. R. Drake, Esq., of Owego, a handbill which contains a figure and description of this machine, and also certificates of its performance, which we shall forward to our correspondent, J. M. Garnet, Esq., of Virginia. The machine is, worked by a pair of oxen or horses. and can adrantageously enaploy fire inen. It appears from the certificate of H. Hutchinson, engineer on the Chemung canal, that with one of these machines sixty-eight stumps was extracted bet ween 2 a'elcek, P. M., and sunset ; and that with another two hundred and thirty stumps were extracted in a day. It is applied to green stumpis, as well as to those which are partially decayed, and without the previous labor of cu:ting the roots. Nos. 1 and 2 are heavy, and designed for extracting green stumps; No. 3 is more compact, and may be transported on cominon wagon or cart wheels. Four men, says Judge D. with two yoke of oxen and a stump-boat, will extract, and convert into fence, stumps enough for fourteen rods in a day. The price for a first rate machine, with ropes, chains, \&c., is nearly 8375 - without the apparatus the machine is offered at \$150, delivered at Albany or 'Íroy.

Gfucu Roluen.-Mif. J. Boyle inguires, what should be the dameser of the spiked roller, if made of sol:l wowi? If of phank what thickness--how long the spikes, und how many rows? The size may dopend ups conienimee or fancy, and may range from swelve to thinis inches in diameter. Aay deficiency in the weight of the rollcr,-for the spikid rolied mast be so heary as to press the spikes or darts into the stiff soil where it is interded to operate,-may be made uplystones or other heayy smbances, phacel upen the frame. The object is to becalk and patrerize the ground, and raise a tillt-and consequenty the sp.kes ournt to project three inches, and be eunticient in nunber to effect the entire sufface. It will therefore require from eight to ten rows upon a roller two feet in diuncter. Concklin's Preas Harrow, which rety mach reserables the espiked rolier, bas 12 rows of spikez.
plant mulberfy trebs.
We wander at the remiseness of the inhabiants of New-York in cultivating the mulberry tree. That it may, and eventually will, be made the sonrce of considerable profit, there can be no doubt. In many parts of New England, the farmers have al. ready turned their aitention to this subject, which will soon add very considerably to their weahh.
Mulberry trees should le phanted by the town authorities in the puislic sirects of crery town and village ; and thus, while they add to the beaity of a hanlet, they may adll also to the wealth of its hathabitarts. In the south of France, where silk is a staple commodity, the manufacture of it is more or less the employment of a portion of the family of every farmer. The great canal of Iangtedoe is lined with mulberty trees. The traveller passes over highways overhung with the branches of this beantiful tree, the culivation of which distributes wealth throughout that portion of Eurcpe.

This climate is known to be favozable to the production of silk-worms ; and evesy gendcman of taste, who wishes to combine ornament with uselulness-every landholder who is desirous of increasing the value of his own property, and of adding a stimulas to industry, showid have muiberry trees surrounding their honses, planted by the road-side, and scattered over their grounds. By fursniug this plan, the rearing of the silk-worm williu a few years become a profitable employment and fashion able amusement-sertainly a harmless one.

Mor, has sent us the following receijt for suring the horn-and in neat cattle. We publish it, though we confezs it smacks too much of quackery. It has too many ingredierts, a part of which we suspect are at least uscless.
"Take three egge, same in bulk of hack pepper, same of soot same of salt, stme of hen dung, mix with wheat flour till hard enough for pills; make nine, and give one ai a the there succeseive mornings, and intcmit three, and give three again, \&c.

Italan Sarmag Wheit.-Ithere bas been an abundance of this grain sown. It looks well, an.l, the grain worm permitting, ihele will be plenty of sced. Mr. H. Sicphenson, who writes from North Lake, Mich., shall be supplied. 'ithe price cannot now be determined. We beg Mr. S. not to forget the beautiful prairie flowers, the secls and buibs of which he promises $t 0$ send us. Mr. S. says, that fall wheat in his district, with some exceptions, will be a failure. We coincide with him in opinion, that in many parts of the country our reliance must ultimately be upon spring varietics of this grain.

Lime, we nican the carbonate, whether in the form of powdered lime-stone, effete lime, chalk, marinc shells or manl, differs in one particular from the other common earths-clay and sand: it decomposes and disappears in the soil-sand and clay do not. Hence the adrantage of re-applying calcareous matters to soils at intervals of a few years-of re-liming, re-mading or re-ashing tillage land.

Indian Pond Scrtile Stones are obtaining a decided preference in our market, on account of their superior quality, and are the principal stones now found in our siores. They are ob= fained at Bradford, $\mathrm{Vt}_{\text {, }}$ and are manufaciurel and sold by Filers \& Co.

From the l'arasers' liegist r .

memarks of manures in genfrial.-rutrescent, mincira. AND Miscellaneous.
We have doroted a large portor: o this publiration to the subject of manures, both because, in the present state of agriculture, arable land cannot be male to pay the expenses of cul tivation without the most skiful and economical, ihough un sparing, lle of the varions kinds, and because it is notoriou* that a great number of farmers are either ignorant of the nos judicious mode of their application, or negligent of the meanof their increase or preservation. The latter remark appliemore especially to farm-yard namure, which no one can ride over any part of the country without seeing wasted-dung cart ell out of the yards and thrown up by the sile of some lane without any foundation or further care, until, perhaps after having become mouldy and firefanged, it is at length turned over, white the best part of its juices have been. allowed to run into the ditches, or to stagnate around the heaps-thus, neither assistiny the proper fermentation of the dung, nor mixing the heap at such regular periods as to ensure its being all of one quality. \ddagger

We have already stated our opinion so clearly on the subject of fermentation, in our view of putrescent manures, that it may be thought lardly necessary to add any thing to the discussion of the point in dispute ; yet, as many farmers have been influenced by the reasonings of chemists, who possess no practical knowledge of agriculture, in favor of the invariable application of long dung -though oppased by experience-and as it is extremely important that the question should be set at rest, we request serious attention to the following extracts from an able article which has appeared in the Quarterly Journal of Agriculture since the publication we have written.§

It was promulgated as the opinion of Sir Humphrey Davy, in 1809, and it has, till lately, obtained the confiaence of most chemists, that "as soon as ding begins to decompose, it throws off its volatile parts, which are the most valuable and most efficientt Dung which has fermented, so as to become a mere soft cohesive nass, has generally lost from ore third to one-half of its mos. useful conslituont elements; and that it may exert its fill action upon the plant, and lose nowe of its nutritive powers, it should eviduntly be applied much sooner, and long before decomposition has arrived at its ultimale result." Experience has, nevertheless, acted in direct oppasition to this opinion. Manure has been continually applied in "a soft cohesive mass," and it has continued to raise large crops; whereas, had it been applied "long before decomposition had arrived at its ultimate result," that result would probably have been a loss of crop, manure and labor.
It is certainly an erronneous assumption to say the first stage of fermentation in dung must necessarily throw off its most valuable parts. Every duaghill of fresh dung throws off a gaseous

* Singer's Survey of Duinfresshire, p. 311-Gen. Rep. ofScotland, vol. ii. p. 353.
\dagger Young's Survey of Sussex, p. ${ }^{\prime} 218$.
On this, however, the following remark has been inslerter in the report of the committee of the Doncaster Agricutural Association upon bone manure-' The general mode of managing foll manure is erroneous, both as to the expense incurred and loss from evaporation. To prevent both, upon carrying it out to the firll, it shonld be forked up to a considerable height, and the whole covered with the soil nearest to the heap; a long heap. like a potatoe heap, is therefore best ; as it accumulates, taking care alwayz to cover the whole of the day's loading, excepting the end to which the next day's work is to be added. The confinement of the steam, which is always ob. served upon a fresh made heap of ranure, effectually secures the decomposition of the whole; which will cut out like a jelly without the uswalprocess of turning over and over.'-p. 31.
\ddagger No. xxiii. pp. f17 to 624. The discoveries alluded to, relate to a substance which chemists call Humin, which is said to exist in all soils, and to be formed of carbon and hydrogen. . The $\boldsymbol{H} u$ mic acid is composed of humin and oxygen, and its properties enable it to combine with lime, -potash, amania, and many sub. stances found in soils and manures, and render them easy to be dissolved in water, which could not be done in their separate state.
exhalation a very short time after it is put together ; and qua tity thens thrown off is regulated by the state of the atmospier But, this exhalation does not consist of the valuable gases ; it mere evaporation of the water contained in the dung. The sam hot haze inay be seen flickering over a fallow field in a sunny day in sunmer. Nobody could with truth assert, that this haze arises from the disengagement of the gases in the dung which had previonsly been inserted into the soil, when it is clearly no. thing more than the evaporation of the moisture in the soil. To say, therefore, the first stnge of decomposition in a dunghill throws off "the most valuabte and the most efficient" parts of the the dung, is just to say the vapor of water is the most valuable part of dung.
"It is true, were the fermentation contimued after" all the wa. ter in the dung was evaporated, a considerable increase of tem. perature would enstre; and when the texture of the fibpous portions of the manure began to decompose, there would be an evo. lution of valuable gases., Direct experiment has proved the es. cape of gases from a heap of dung which has been long ferment ing. But, what harm accrues to the ching as a manire from the escape of these gases? None whatever. We are told these gases constitute the food of plants, and if they are permitted to be dissipated by deeomposition, the quantity of nourishment in the heap of manure will of course be so much diminished; that, if the bulk of the dung-lieap be diminished one-half or one-third by excessive fermentation, the quantity of nourishment to the crops will be diminislied in a greater ratio. These cautions have longbeen whispered in the ears of practical men, but they have listened to the advice with a provoking indifference. Like ducklings when they first take the water, they have continued to disregard every remonstrance of their foster bretiren against injurious practices, raising and devonring their food, and enjoying themselves with tho greatest complacency in their vocation. It is true, and we must adinit it, that some of the gases constitute the food of the plants, but it does not follow that plants would receive them as food directly, as they are disengaged from a fermenting and heated mass; nay, it is probable they would rather reject the food that would injure them.-But, as plants are not endawed with locomotive powers, they cannot avoid the food which is directly presented to them; they will, thercfure, be obliged to partake of it in an in. jurious state, and in thus taking it they die. Accordingly, we invariably find that plauts suffer from the contact of fermenting dung ; and it is this well known fact, more than from any other circunstance, which deters farmers from applying dung in an unprepared state. It is sometimes applied to the soil, it is true, in an unprepared state, but long belore the crop is brought into contac with it, and after it has undergone fermentation in the soilt Though this application of dung is recommended by men of sci. ence, it is performed from the very opposite principle which they recommend. They racommend it because the gases arising, while the dung is ferinenting, are absorbed by the soil, and are thence given out for the use of plants; on the other hand, farmers perform it., because the fermentation will have ceased before the crop in inserted into the ground. Which of these is the more rational reason? The practical one, undoubtedly; for it is surely impossible that the shght covering of earth upon the dung can prevent the escape of the elastic gases, however it may retard fermentation.
". Morcover, practice finds that fresh dung is injurious to vegetation, and recent discoveries now inform us that this arises from the acridity of the ammonia, which is always present in unfermented dung. Fermentation drives off the acrid ammonia. Fresh dung is found to injure plants by burning them, which is a very appropriate term to describe the action of ammonia. In like manner, stale liquid manure is not so good a top-dressing to grass as fresh, or when it is largely mixed with water; because science now informs us, that ammonia becomes concentrated in stale liquid manure, and is, therefore, in an injurious state for plants; and that it is necessury to mix liquid manures largely with water, in order to dilute the ammonia, and allow the proper action of the humuc acid, waich exists in large quantity in them. Again, it is not an uncommon practice to cover a dunghill with earth in hot weather; and this is now explained, not as it hitherto has been"that the earth absorbs and prevents the escape of the carbonic acid gas"-but that a violent fermentation in the dung is checked by the earth, partly excluding the atmospheric air and rain water the oxygen in cither of which is indispensable to continuc the pro-
cess, it being this oxygen which forms the carbonic acid gas by uniting with the carbon of the dung. The necessity of ehecking a violent fermentation in a dunghill, which contains a large portion of horse-dung, is to prevent it being what is tochnically call "fyrefangil"-a state in which dung is nearly useless.
- We thus see that, sciance now agrees with that practice which has bean pursued for sears with unexampled uct ess. It is consolatory to practutioners to think that their experience, though unknowingly to them, has guided them to sucess on really scientific principles. This agreement of experience and science should teach every one that science and experonce, and not science alone, ought to be made the tests to try the accuracy of opinions; but, unfortunately for the credit of sciences, the test of accuracy hitherto, in the application of putrescent manures, has not been submitted to practice.'

We now not only beg to impress upon every farmer the absolute fecessity of guarding against the waste of any portion of the farm dung, but also to take care that nothing in the shape of refuse animal or vegretable substance be suffered to be thrown away by his serrants. Let a bed of sand, or any earth except chy, be laid in spots adjacent to the offices, and upon it let every particle of offal collected from the premises be regularly thrown ; to which add the sweepings of the roads and lanes about the house, grass, turf or rubbish, dug out of drains and ditches; every thing, in short, which, by decomposition, can be converted into manure, and all of which may be got together with very little trouble. Let the whole of this be every now and then covered with the earth, between two layers of which a small quantity of quick-line may be placed, or sprinkled upon any vegetable substance, such as leaves, tough, haulm fern, or any thing which cannot be easily dissolved, and thus formed into a compost. Care, however, must be taken that the vegetative powers of the ronts and plants be completely destroyed before the compost is spread upon the land ; for, if unskillully prepared, they will shoot up in the course of the ensuing season, and overrun the lind with weeds. Composts thus formed, whatever may be the ingredients which they contain, will ever be found a most valuable species of manure. The whole substance beconses one uriform mass or nutritive matter, which may be either mixed with the soil, or applied as a top-dressing, and, with proper attention, may be got ready for application at any period of the year. There are numberless receipts scattered throughout the writings of various theorists, in which the quantity and the quality of each ingrelient in these various mixtures are as accurately stated as if they were the medical preseriptions of physicians; but these are mere quackeries which do not mecit the atteatton of practical men.

Weeds, also, by the sides of fences, should never be permitted to perfect their seeds, but should be invariably cut while in a state of succulenco, and added to the heap; and, if those turned up by the process of horsc-hocing were also raked off, instead of being suffered to wither on the land, or to spring up again with the next shower of rain, it is inconceivable what a large quantity of valuable manure might be raised by the occasional empluyment of children, and of lakorers, who may otherwise be idling away their time. It would also contribute in a great degree to that neatness which forms a distinguished feature i.i a careful cul. tivation, and woald insure a habit of attention on the part of servants, and a consequent portion of prosperity which can rarely be enjoyed by a slovenly farmer.

Were the practice of soiling more generally attented to, it would also materially aid the increase of the dung-heap, without which no profit can be gained frous arable land. But a very small portion of the soil under the plough is, in this country, capable of bearing crops, unless it be recruited by putrescent manure about once in four years, or that it be elther suffered to e for a more than usual length of time under the cultivatep grasses and fel off with cattle, or supported by the fold: To obtain the requisite quantity of farm-yard manure has, however, baffled the best exertions of many industrious farmers; except in the immediate vicinity of large towns. There, indeed, the object is often obtained through the meaus of purchased dungs, the expense of which has been generally amply repaid by the growth of proportionally increased crops; but any one who is dependent upon the produce of his own farm, without the sub. stance of cxtraneous manure, for the support of the fertility of
the soil, should endeavor to cultivate those crops which are bes calculated to afford a large return of food for the maintenance of cattle. When the land is of such it nature as not to admit the growih of green crops, hay and o.l-cake shoult be resorted w for that purpose.

In other cases, lime, chalk, murl. and varions other mineral sub stances, have been r soted to as atuxiliarim; b ut, ithe effict of some of these tending more to simalate vegetation bran to enrich the wased powers of the soil, it has frequently happened that ground which at one time had been greatly benefitted by their application, has afterwarls been injured when repeated unther the erroneo is notion that its powers might be restored by the same operation. Land, thus forced, las in inany cases been so much impoverishei as to render it incapable of producing any thing but a poor pasture, and to require a great length
time to pass away before it can be restored to. its original condition. It should, indeed, be observed, that the application f fossil manures requires inore judgment and conid satlon than any other; for vegctable and animal manures contain tho fertilizing property within themselves, and, however injadiciously applied, cannot fail to impart ultimate benelit to the land, if not the immediate crop; but the power of fossils consists in their action upon the consitution of the soil, and if this be improperly directed, the greatest mischief may casuc.

None of these has, perhaps, produced more injury in some cases, or grtater benefit in others, than lime-of which very striking instances may be found in those parts of the country where it is either very abundant or scaree. In the former it has been not uncommonly laid upon the land without the aid of putrescent manure, until the soil has become woithless; while in the latter, as its searcity renders it expensive, it has only been moderately been used by farmers of judgment and eantal, and the effects. after a number of years, are still apparent in the improvement of the soil. While writing this, we have under our cye a farm of 400 acres of strong clay, which has not been limed within the memory of men. The tenant, who is conscious of the advantages which might be derived from the use of lime-as demonstrat. ed in the condition of adjoining land of the same quality-is yet prevented by circumstances from its enployment; and thus, not only are his own profits, but the value o! the soil to the landlord also, equally reduced.

On the subject of burnt clay, we have recently had an opportunity of making some inquries in the neighbornood of the late Gencral Beatson's farm, in Sussex; and we have learned, that although several practical farmers in that part of the country adopted his plan, yet very few of them have found it to answer their expectations: One of them, who has followed it extensively, confirms us in the opinion whicla we have already stated, that much depends upon the mode in which the operation of burning is performed; for if the clay be caicined to the consistence of brick, it yields nothing in the shape of that soft ash which is proper for manure; and, if not sufficiently burned, it will return to its original condition. In the former state it may, however, act in some degree as an alterative of the soil; and, in the latter, it will at least afford some nutriment to the crop to which it is actually applied. It, therefore, does not appear, from past experience, that it can ever be made to supersede the use of lime on land which has not been formerly dressed with the latter ; but, in such cases, or in parts of the country where lime cannot be procured, it may yet be employed to a certain extent with advantage.
As to paring and burving, there can be no doult that the earth, if combined with fibrous roots and other vegetable matter, will answer the purpose of manure when burned: yet shallow soils are thus frequently more injured by the abstraction of :oo large a portion of the surface, than improved by the temporary addition of the manure. We have lately seen down-land, which was broken up during the war, and has been now during several years returned to pasture, yet still bears nothing. like the sward of a fine sheep-walk on the poorest chalks, and probably will require half a century to briug it back to its former condition. ${ }^{\circ}$ We, there. fore, cannot but again caution all farmers and owners of land againgt bringing such soils under the plough.*

[^47]List of Subscribrs to tie Railroad Journal that have paid.Mr. Cotton, City Now York,

Jan. 1, 1833
J'. Argente, do
Joim Stevenson, do
do
do do
advertising:
C. Lows, Borcientown, N. J.,
M. Retobinson, Pitiladelphia, Pa.,
C. D. Appletoar, Baltimore, Mu.,
A. Welch, Lambertsville, N. Y.,
J. Beasley, Ripley, Onio,
G. B. Slater, Webster, Mass.,
H. Sitley, Bucksport, Me.

Advextiocments.

It is gratifying to learn that all the friends of railmoads are not disheartened.-_The following notice is cheering to us, may it be so to others.

TO RALLROAD CONTRACTORS. -CENTRAL RAIL. ROAD OF GEORGIA.- l'roposals will be received at tho ofice of this Company in Sarannah, untill the firsi day of Octo. ber next. for grading and preparing for tho Superstrusture twenty five miles of this roal, extending westwardy from a point 26 inilos from this city. Tie tistance will bo divided moto 3 sectio is and the price per cubic yad for excavatuon and embankmentper acre for clearing and par 100 feet for grubing, for each section. oftered for, nust be stated.

The country through which this part of the road is located is pine barren, and as hatthy as any part of the State.

The Company have on land a large quatatity of implem ant suc: as barrows, shovels, waggons, carts, \&e., which whl be furnished at cost and chareres, to such coatractors as mav desiro it.

Plans and specifications of the work will be ready for inspection after the fist of Suptember, and all uccessary iatoomation given on application to the subseri er.

Savamań, Aug. 3id, 18:37.
L. O. R"VNOLDS,
smaneor.
If any of our citizens, who have encountored and sarvived he storm, ticsire a confirtable reddence on a productive farm, in a healihy part of the contaty, wo would iavite their attention to the advertisement of Mr. John White, in this namber. His farms, we have reason to believe, are well worthy of notice. GREAT BABGMNS.

rHE subscriber offers for sale 322 acres of Labd, known as the late Cook \& Faner Farms, on the beautifil youlley, near Manlius Centres in this county-the limestene creen running through it, on which are three Dwellings, three Barns, goorl Orchard, 200 acres un ler good improvement, the stumps out, and weil calenlated for two tarms. The Erie canal in sight, south and the Sypacuse and Utica Rationel located and being made about 20 rots from and parallel with the north line, and where is to be the first watering place and station from Syracuse for taking in passenyers \&c. from Fayetteville, the sontitern and north. ern villages. \&cc. For grais, or grass and grain, for the Sugar or Root liusiness, a better soil cannot be fouad in any councry. When this railroad is completed, fiftern or twenty minutes of Syracuse, two hours of Utica, a few hours of all the river cities and New-York; indeed, when the railroad now making from Boston to Albany is completed, within a few hours ef all the principal eastern citics. Upon these great thorourh fares, and all these advantages, surrounded by flourishing villages, strong compelition will always secure on the premises, the highest prices for all its products. 'This is one of the most splendid farms in the state.

Aıso, for sale 120 acres of Laad on the Oswego canal between and immedictely at the junctions of the Seneca and Oneida Rivers, embracing the late widow Eno Plat, Tavern stand, \&c. \&ic. The meeting of these splendid rivers; convenient harbor, the canal-one of the great travelling and commercial thorough fares, to the west, the beauty of the spot, surrounded by a fertile country, indicate this as a favorable spot for a flourishing village, or for a residence, farming, gardening, profit and pleas!re; no siturtion on the Nor!h River can be more desira-
ble-the favorablo spot for the stations for all the Packet and Line Boats-for a public hause, mercantile establishments, and where cvery thing raused can lio sold at the highest prices.

Alsn, a farm of $160^{\frac{1}{2}}$ acres, bounded on the west by the Chittenango river, and on the forth by the flourishing village of Bridgeport, or "the Rifts," two miles south of the Oneida lake, on the northern and shortest travelled r ad from Utica to Rohester, cultivated, and the stumps out of nearly a hundred acres, fertile and beautiful lanil, cnough of which may be sold for village lots in a few years to pay for the whole. A: the head of navigation, at this village, are quite extensive hydraulic advantages -mills, carding and dressing, tannery, stores, public houses, schools, \&c. \&c. combiuing to render this a very desirable farm.

Also, a valuable Cedar Lot about two and a half miles north of Chittenango.

Also, as Agrent some very valuable Farms in Onondaga and Madison counlies.

The above mentioned Farms will le sold on highly advanta: geous terms. John White.
Sysacuse, Onondara, Co. Nerv-Yorl., June, 1837. 10-m4

CROTON AQUEDUCT_-NOTICE.

SEALED PROPOSALS will b3 recoived by the Water Com. missioners of the city of New-York, until the 5th day of September next, at So'check, P. M., at litir office in the city of New.York, for the Excavaion, Zimbankment, Bank Filling, Fuundation and Protection, Walls, Tunnels, neve. ral large and small culveris, and an Aqueduct of stome and brick masonry, with other incidental work on llat portion of the Croton Aqueduct which is embraced in seclions $9-10-12-13-14-16-19$ and 21 is 26 inclusive on the Ist Division; and sections 27 tu 53 inclusive, being the whole of the 2 d Division.

The prices for the work must inclute the expense of materials necessary fur the completion of the same, according to the plans and specifications that will be presented for examination, as hereinater mantluned.

I'tie work io be completed by the 1st day of October, 1810.
Security will be requircd fur the perfurnance of contracts-and propositions slould be accompanied by the names of responsible persons, signifying their
 posing, and lue sureties they बhall.offer, are not known to the Commisioners or bigencers, a certificate of good charecter, and the cxient of their responibility, sinnpd by the first julgo or clork of the cuunty in which they severally reside, wil! be required.

Fos trantefor of contracts will be recorniz 3l
"ho fine of Aquelluct wihl be lucated, and the map and profile of the same, togeliter with the plans and specilications of the matterials and manner of construc:ion, witl be ready fur examination at she office of the Engineer, at the villate of "Purryto:rn, on the $19 h_{1}$ instun, and the Chief or Resident Engineer wail lic in allendance fu explain the plans, dec., and w furnisll blank propositions.

Pers:ms proposing for more work than they wisls to contract for, inust specify the yranity they desire to take.
'The full nanes wi all persuns shat are partics to any proposition, must bo willen out in the si ynalure for tha sanie.
Tine parties to tho pro,osition which may be accepted, will be requiredy to enter into confracts, inmediately anter the acceptance of the same.
'Ihe madersigncd reserve to themselves the right to accept or reject proposals that may be offerel fur the whole or any part of the above desctibed work, as they maty consider the public interest to require.

New-I'ork, Augus\& 8ih, 1837.

T10 RALLROAD CONTRACTORS.-Proposals will be received at the oflice of the Clinton and Port Hudson Railroad Company, in the town of Jackson, Louisiana, until the first of November next, for the completion of the balance of the Clinton and Port Hudson Railroad, being about 21 miles. Pluns, profiles and specifications, giving all the necessary information, may bo examined at the office of the Engineer in the towa of Port Iftidson.

> A. G. THORN,

Port-Hudson, July 13 th, 1837.
t-3i. 1st Nov.

gr TO RAILROAD COMPANIES.

A PERSON experienced in the construction of Locomotive Fingines (many of his Manafacture being in successtul operation on important Railruais in the United states) and who is Jikewise thorouglily acquainted with the managernent of such machines, and, indeed, the entire ordeal of Railroads, is desirous of obsaining the siluation of General Superintendant on some Railroad, South or Wert.
The most satisfactory testimonials of character and capability can be prot duced. Conamunications addresseid th tho Editurs of this Journal, stating the location of liond, \&c. will ineet whth fromet attention.

Nevo- 'ort, June 151h, 1837.
 CBTY OF NEW-:ORE.
The Frair of twe Institute wifl be hell at Niblo's Gardeß commencing Montar, Septenber 25th, 183%
Tho render this e:lhibition worthy of the arts and of the ingenuity of the Mechanies of our country, the Managers appointod to conduct the approaching $F^{\prime} a w^{\circ}$ have determined to make such liberal arrangements as will insure to the contributors a fair opportunity of exhibiting their productions to the greatest advartage.

The object of Exhibition IVais is to present to the me:nbe:s of tha Instituteand their fellow citizens who are engaged in the Mechanic Arts, the means of making their skill ital ingeunity known in a way no other facilities afford: the may thousands who visit such exhibitions have a mach letter opportanity of judging of the matits of the varions productions, hath they would have by a mere verbal or newspaper description, besides the ad. vantage of sceing brought tomether, in one rast collection, thel products of the skill, ingenuity, and industry of our country.

Premuas of Medals, Diplomas, \&c. will be awarded for al worthy or meritorious articles exhibited, either as it respects superio: workmanship, machinery wherein the operations are new, interesting or important, where ingenuity is displayed, or taste manifested, and particulariy for all nesw and useful inventione.

You are respectfuily requested to send, for competition or exhibition, specimens of the articles you manufncture ; and you may be assured that the strictest impartiality will we olserved in the distribution of the Premiums.

Steam power will be provided lor the aecom:modation of those who wish to exhibit Machincry in eperation; an experienced Superintendant will take charge of thes deparimeni, and contributors in this branch are particularly invitad to sad or bring llieir Machines or moduls as cally as posible, on the 23 d Spptember that the necessary arrangenicnts may bo made in relation to shafting, pullies, \&ce

The Managers, in conclusion, cannot but express their belice that this 'Third Finir of the Mechanics' lnstitute, will exceed in variety and beauty of disit aty ati previous exhibitions of the kiad.

N. B. All articles for corapetition must be deliveres to the Committee at Niblu's Garden, on the $23 d$ September. Those for exhibition only will be received any day during the Fair, befürc 10 o'clock A. M.

RULES AND MEGUI.ATIGNS.

1. -The Garden will be opened for the reception of Goods, on Saturday, $23 d$ of Scptenber, from 6 o'clock A. B. until 9 o'clock P. M., and it is respectfully urged thet all articles intended for competition may be se. t in early in the day. Those articles intended for exhibition only will be reccived any day during the Fair, before the hour of 10 A . M.
2. -The Fair will open for visiturs on Monday, 25th Septemat 10 o'clock A. M., and contius open every day of the exhibition till 10 o'clock P . M .
3.-Competent and impartial 'Judges will be appointed to examine all articles presented, and premiuns will be awarded on all such as shall be declared worthy.
4.-The Committce on Premiums, and all firms or partnerships in which they may be interested, shall wo excluded from competition or the award of any premiun.
5.- All persons depositing articles, either for competition o exhibition, must attend to have them registered by the Clerk, a which time they will receive a certificate, which will be reguired of them when the articles are returned.
6.- Proof of erigin must be farnished if required, for any specimen offered for Premium.
7.-Depositors will reccive a ticket from the Clerk, which will admit then and Ladies during the Exhbition.
S.-Arrangements will be mude to exhevit, in operation, all worling modils that may be deposited-contributions in this branch are invited-a compeentperson will take charge of all thode!s sent for the avove purpose.
9.-'He morning of cach day, until fiteen minutes before 10 o'clock, shall be appropriated exclusively to the Judges.
3. - Menabers will receive their tichets of adnission by applyiny at the Institute Rooms, any time in the week previous to and duting the exhibition.
4. - All arictes ofiered by Apprentices, will be receivel, and adjudged as the production of Apprentice;-they must furmish a certificate of mane, age, with whom, and the time they have scrved as apprentices.
12.- Aricles subject to irjury by being handled, should be secured in glass cases-and contributors are requested to have a person to take charge dung the hours of exhibition-in tha iatervals, cficient mearures will be talicn to protect properiy.

George Bruce,	Joln Ridley,
Eohn M. Dotd,	Silas 13. Simenson,
James J. Rapes,	Thomas I. Peers,
Thomas Lubank,	Thomas G. Hodgkins,
Wim. Everdell,	George L. Spencer,
C. Croliue, jr.,	Peter Weanrel!,
A. J. Mason,	Richard Pragaw,
Thos. W. Barkolomew,	Ab'm Peitch,
A. Storms,	Ifm. IL. Hale,
Wm. Bailyd,	Win. J. Mu!!en,
Menry Cuntingham,	James Thomson,
Johm Harold,	Abaer Mills,
Joseph 'trench,	1. D. Chay in,
James D. Huyt,	1. Cammeyr,
John II. Mead,	Hiram Tupper,
J Jun Comey,	H. B.-Robertsen,
Jordia I. Mott,	dames Themas,
Samach mater,	H. G. Sietson,
George I. Nesbit,	Fersis Owen,
Ilcary Worall,	N. Bemy,
17. B. Wome!	O. Whitieleres,
Janes B. Cumanns,	M. W. Enmons,
dames Fwost,	J. S. Anderson.

NO CONTHACTORS.-Persons disposed to contract for and give personal attention to the laying of the superstructure for the Vicksburg and Jackson Raitroad, about 45 miles in leagth, in the State of Mississippi, may receive a!l necessary inframation to cnable them to propose by applying to the subsciber at the effice of J. R. Van Rensselaer, Eeq., 21 Wall Strect, until the first of September next.

> L. S. Vas ransselaer,
> Engiacer, V. \& J. R.R.

New-York, 1st 1 18urgusi,37.
L_32. 1st
Thansachons of mhit lintiturgon of Clvid hegineers of great maltain.
Tre first vo'ume of this valuabie work, has just made its ap. peamace in this comtry. A fuw copies, say luerty-jize or thirty oaly, have been sent out, and tho.se lation neatly or quite all been dibjosed oi' at ten dollars encis-a price, altiough not the value of the work, yet one, which will prevent many of our young Luginears from possessing it. In ordertacrefore, to place it withi. their rach, and at a comeniont price, we whall repriut the entire woik, with ll its cmargrings, neatly dome on wool, and issue in six parts or nuabers, of about 43 pares cach, which can be sent to ary part of the Unite! siate. by meth, as issued, or put upin a volunie at the close.

Tho price will be to subseribors tierce dollars, or fire dollars for two copies-alecays is circince. Tlie' f.rst iumber will be ready for delivery carly in April-Subscriptions are solicited.

[^48]'Ihe following nutice of T. G. Bates.
Esq.. Canst Commissioner of Olio, whll we hope, give employment to many who are now seeking work.

From the Daytun (Ohio) Juurnal, of 29th July.
EX'IENSION OF THE MIAMI

CAN:L.

notice to contractors.
PROPOSALS will be received on the 11 ? September next, at Sydney, Shelby County, Ohic, for constructing 17 miles of canal, along the valley o the Great Miami, from the muath of Loramies Creek, to a point 6 miles above Sydney. The work to be contracted fur, consists chiefly of an unuswalproportiou of bluff and steep hill side cutting-much ligh embankment-several small aqueducts-a nupber ul culverts and 8 or 10 stone locks.

And on the 15 th same month, proposals will be red ceived at the town of St. Marys, fur constructing about 26 miles of can.al alung the valleys of loramies Creek and St Masys river, from a puint 5 miles above Piqua to the town of St. Marys. The wurk on this part of the line, consists of much very heavy excava sion and embankment, sevcral small aqueducts and many small culverts. At the same time and place embankments fur the great reservoir near St. Marys will also be uffered for contract.
The cummissioner will expect certificales of chsracter and qualificatiuns from well known o: unquestonable authority, to accompany each pro usal, unless the bidder is personally known to hin or to the Principal or Reaident Engineer.

For further particulars, plans, \&c., apply to the Engineers on the line of canal or at their offices in Sydney and St Marys.
T. G. BATES.

33-t. 11th. Sep
RAILWAYIRON, LOCOMOTIVES,\&c.
THE subacribers offer the fullowing articlea for sale.
Railuay. Iron, flat bara, with ccuntersunk holea and mitred joints,

240	"	2 "	t,	"	\because	*	3 \%ivo
70	*	1t"	t,	"	"	1	$2{ }^{2}$
80	"	11°	t t,	"	"	16	${ }_{1}{ }^{25} 50{ }^{5}$
90	"	1^{16}	t,	*	"。	3	7

with Spikes and Splicing Plates adapted the reto. To be sold fiee of duty to state governinents or incorporatet dompanies.
Orders fur Pónnsylvania Boiler Iron efecuted.
Rail flead Car and Locomotive Lingine Tires,
wronghtand turned or unturned, ready to be fitted on the wheels, vii. $30,33,36,42,44,51$, and 60 maches aiameter.
E. V. Patent Chain Cable Bults for Railway Car axles, in lengths of 12 fuet 6 inclies, to 13 feet $\$ t, 21$ 3, 3t, 34,34 , and 3 inches diameter.
Chaina for Inclined Planes, short and stay links, mannfactured from the E. V.Cable Bolts, and proved at the greatest strain.
India Rnbber Rope fur Inclined Pl ines, mado from Ncw Zealand Hax.
Also Patent Hemp Cordage fur Inclined Planes, and Canal Towing Lines.
Patent Felt for placing botween the irun chair and atone bluck of Edge. Ra: ways.
Every description of Kailway Iron, as woll as Locomotive Engines, imported at the sl!orteat notice, by the agency of one of our partners, who resides in England for this parpose.
A highly respectable American Engineer, resides in Eingland for the purpose of ia specting all Locomotives, Machinery, Railway Iron \&c. ordered thrungh us.
A. \& G. RALSTON \& CO.,

28 tf
Philadelphia, No.4, Suuth Front-st

ARCHIMEDES WORKS

(100 North Moor street, N. Y.)
NEW-YORK, February 12th, 1836.
THE undersigned bega leave to inform the proprietors of Railroads that they are prepared to furnish al kinds of Machinery for Ruilroads, Locomotive Engines of any size, Car Wheels, such as are now in successful operation on the Camden and Amboy Railroad, none of which have failed-Castings of all kinds, Wheels, Axles,and Buxes; furnished aishortestnotice 4-ytf
11. R. DUNHAM \& CO.

MACHINE WOR咸S OF ROGERiE'TCIIIM AND GROSVFiNOLR, Paterson, New Tersey The undersigned receive urders fur the ful lowing articles, manufactured by thrm, of the mox anpertur leseription in every particutar. Their work h ing extensive; aud thenumber of hands employe h-iag large, they are gnahled th execute buth lary an is nall ordern tith promptness and desputeh-

 ing and wher L'sora ure Wheeis, A xles, Sprin:sanu Flanye 'Tires, Car Wheels of east iron, frum a va riety of patuerns, and Cnills; Car Wherls of cast irgu with wrought Tires; Axles of best American refinedi iron, Springs; Boxes and Bults lor Cars.

COTTON WOOL A \backslash D FLAX MACIIINERY,
Of all descriptions and of the most improv d Paterns, Stylo and Workmanship.
Mill Gecring and Millwright work generally; Hydraullc and other Presses; Press Screws; Callen ders; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.

ROGERS, KETCHUM \& GROSVENOR
Patterson, New-Jersey, or 60 Wallstreet, N. 5tf

AMES' CELEBRATED SHOVELS, SPADES, \&c.
300 dozens Ames' superior back-strapShovels
$\begin{array}{llll}150 & \text { do do do plain } \\ 150 & \text { do do do do castateel Shovels\& Spades }\end{array}$ $\begin{array}{lll}150 & \text { do do do Gold-mining Shovels } \\ 100 & \text { du do plated Spades }\end{array}$ $\begin{aligned} 100 & \text { du do plated Spades } \\ 50 & \text { do }\end{aligned}$
50 do do sucket Shovels and Spades.
Tugether with Pick Axes, Clinrn Drills, and Crow lears (stcel pulnted,) niannfactured frum Salishury refiaed iron-for sale by the manufacturing agents, WITHERELL, AMES \& CO.
Nn. 2 Liberty street, New-York. BACKÜS, AMES \& CO.

Nu. 8 State street, Albany N. B -Also furnished to order, Shapes of every de. Neription, made frum Salshury refined lron v4-if

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build.Bridges, or vend the right to others tu build, on his Patent Plats, would respectfully inform Kailroad and Bridge Curpurations, that he is prepared to make contracts to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted:)
Bridges on the above planare to be seenat the fullowing localities, viz. On the main road leading from Baldimore to Washington, two niles from the former place. Across she Metawacukeag river on the Military road, in Maine. On the national road in Illinois, at sundry points. Onthe Ba!timore and Susquehanna llrailroad at three points. On the Hudson and Yatterson Railroad, in two places. On the Boston and Worcester Railroad, at several points. Onthe Bostun and Providence Rallfoad, at sundry points. Acruss the Contoocnok river at Heniiker, N H. Across the Sunhegan river, at Milford, N. It. Arrosa the Conneetlcut river, àt Haverlill, N. H. Across the Coutwocook river; at Hencock, N, II. Across the Andruscuggin river, at 'lurner Centre, Maine. Across the Kunnebec river, at Waierville, Maine. Across the lienesse river, at Squakiehill, Mount Morris, New-York. Across the White Hiver, at Hartford Vt. Across the Conneclicut River, at Lebanon, N. II. Across the mouth of the Broken Straw Creek, Penn. Across the munth of the Cataraugus Creek, N. Y. A Railroad Bridge diagonally across the Erie, Canal, in the City of Hochester, N Y. A Ra lroad Bruge at Upper Still Water; Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 fect. It is probably the FIRMEST woowen aridee ever built in Ainerica.
Notwithstanding his present engagements to build between twenty and shirty Railroad Bridges, and several common bridges, several of which are now in progress of construction, the subscriber will promptly and on liberal terms
Rohester, Jan. 13th, 1837. . M-y

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads.

No. 264 Elizaboth stree t, near Bleeckerstreet, New. York.

RAILROAD COMPANIES would do wellto exa mine these Cars ; a specimen of which may he seen on that part of the New-York and Harlaem Railroad now in uperation.

525tt, 's

PATENT' RAILROAD, SHIP AND BOAT SPIKES.
** The Troy Iron and Nail Factory keepa con vantly for sale a very extentive assurtment of Wronght -pikes and Nails, from 3 to 10 inches, manufactured ty the subscriber's Patent Machinery, which afte ive years successful operntion, and now aimost uni ersil use in the United States, (as well as England ersal use in the United Statea, (as well as England
wh re th." suhiscriber obtatned a patens') are fuund Wh re th sthiscriber obtatned a pate
-upariur to sny ever offered in market.
Railrual Companies may be supplied with Spike having countersink heads suitable to the holes in iru ails to any amount and on short notice. Almost al the Railruads now in progress in the United States are fastened with. Spikea made at the above named fac-tory-fur which purpuse they are found invaluable as their adhesion is more than double any common as their adhesion is more it
spikea made by the hammer.
${ }_{*}^{*}$. All orders directed to the Agent, Troy, N. Y: will be punctaally attended to.

HENRY BURDEN, Agent.
Troy, N. Y., July, 1831.
** Spiker are kept for sale, at factory prices, by I. \& J. Towneend, Albany, and the principal Irun Merchants in Albany and Troy ; J.I. Brower, 222 Waler street, New-York; A. M. Jones, Philadelphis; T. Janviers, Baltimore; Degrand \& Smith, Boston.
P. ERailrwad Companies would do well to for ward their orders as esrly as practicable, as the subscriber la desiruts of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes.
(1J23ain)
H. BURDEN.

TO RAILROAD CONTRACTORS.
 SEALED proposals will be received at

 the office of the Selma and Tennessee River Rallroad Company, in the town of Selma, Alabamia, fof The graduation of the first forty miles of the Selma and Tennessee Railrbad. Proposals for the first six miles from Selma, will be received after the first of May, and acted on by the Board on the t5it Mayd Proposals for the ensuing 34 miles, will be received after the 10 th May, but will nut be examined until the Ist of August next, when the work will be ready for contract.The line, after the first few miles, pursuing the flat of the Mulberry Creek, occupiea a region of country; having the repute of being highly healahful. It is free from punds and swamps, and is well watered.The soil is generally in cultivation, and is dry, light and sandy, and uncommonly easy of excava .The entire length of the line of the Sel ta and Ten nessee Railruads, will be about 170 miles, passing generaliy through a region as favorable for health as any in the Southern Couniry
Owing to the great interest at stake in the success of this enterptise, and the amount of capital already embined in it, this work must necesarily proceed with vigor, and 1 invite the attention of men of industry and enterprise, both at the North and elsewhere to this undertaking, as offering in the prospect of continued employment; and the character of the soil and climate, 8 wide and desirable field to the cons tráctor.
Proposals may be addressed either to the subseriber, or to Gencral Gilbert Shearer, President of the Company
ANDREW ALFRED UEXTER, Chief Engineer. Selma, Ala., March 20th, 1827.

A 15 tf

ROACH \& WARNER,

Manufacturers of OPTICA L, MATHEMATICAL AND PIILONOPIICAL INSTRUMEN'TS, 293 Broadway, New York, wilt keep constantly on hand arge and general assortment of Instruments in their $\stackrel{ }{\text { line. }}$
Wholesale Dealers and Country Merchante aupplied with SURVEYING COMPASSES, BAROMETERS, THEMMOMETERS, \&e. \&e. of their own manufacture, warranted accurate, and at lower prices than can be had at any other extablishment.
instraments made to order and repaired. 1y 14

NEW ARRANGEMENT.

ropes for inclined planes of railzoads.
WE the subscribers having formed a co-partnerahip under the atyle and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planea of railruads, and for other uscs, offer tosupply ropes fur inclined planes, of any length required without splice, at shurt notike, the malofacturing of cordnge, herovofore carried on by S. S. Durfee d. Co., will be done by the new firm, the same superintendant and machinery are employed by Co. All orders will be phompty attendel to, and ropes will be shipped to any port in the United Statee State of New' ${ }^{\prime}$ 'ork:

33-i6
ROBT. C. FOLGER;
(iEORGE COLEMAN,

AMERICAN RALLROAD JOURNAL, AND ADVOCATE OF INTERNAL IMPROVEMENTS.

published weekly, at íno. 30 iwall street, new-york, at five dullars per annum, payable in advance

CONTENTS:

Suspension, \&c.
Communication from Elisha Johnson;
Communication from W.
Communications on Railroads,
Railroad Items,
Outines of Practical Mechanics',
On Zinc Roofing,
Remarks on Manures in General-(Coneluded.)
Items,
Advertisements.

529
530
532
533
534
535
533
540
541
541

AMERICAN RAILROAD JOURNAL.

NEW-YORK, AÜGLSTi' $26,183 \%$,

Abstract

0 Suspension of Publication; for four quecks.-The difficulty of collecting, or raising money, compels us to suspend the publication of the Journal for four weeks, when it will be resumerl, and the present volume completed; and if those in artears will pay what is due; the work will be continued.

SUSPENSION !-It is exceedingly mortifying-even at the present period of broken promises-ito be abliged to suspend the publication of the Railroad Journal ; but we are compeled to do so; for a short time-and only for a short period, as we confidently believe-for the reason that we cannot collect money enough to - pay the compositors and pressmen for printing it. To those of our readers who have paid in advance, according to the terms, this may appear singular, yet it is not by any means a singular circumstance at the present time for Periodicals to fare hard.

The Journal has been published nearly six years ; and its subscribers are scattered not only over the whole United States, but also in Europe ; and it is therefore exceedingly difficult, we are aware, for them to make remittances, and farmore difficult for us to make collections by agents, consequently there is a large amount, not only for the present, but also for past years, remaining unpaid-the amount exceeds six thousand dollars-yet we are un. able to collect enough to defray the unavoidable current expenses; and must therefore suspend its publication for four weeks, until we can receive from those subscribers who have not yet paid, the amount due, for which bills have been forwarded. In order that each subscriber, whose account appears on our books unpaid, may know how it stands, we shall mark on the margin of this number, the date paid to, and amount due up to 31st December next, or close of Volume VI. This is done with the hope that those who are indebted for the Journal will pay the amount at bnce, to enable us to complete the volume, and thereby do justice to those who have paid up. It is done with a view of showing those who have for years received the Journal without having

complied with the conditions of its publication, that is to say without paying for it -that they have aided in producing this sus: pension of publication-and that unless they remit promptly the amount due, they will compel the senior Editor, who established the work, in opposition to good adtice, to relinquish his interest entirely at the close of the present volunce; as he has already been compelled to make an Assignment of his interest in it to secure his creditors-who have aided him in sustaining it thus far.

It should not be forgotten that the entire materials of the Office, and 400 full sett of the work, were destroyed by the great fire, and therefore that the present famine bears upon it with a heavy hand:

The publication icill be resumed again, in four wecks; and the Volume completed by the close of the ycar-if those in arrears will deal justly by us, and pay what is due.

Those who have paid up in advance, may rest assurcd that the volume vill be completed,-to those we acknowledge our in: debtedness, and pledge ourselves to complete the volume, - and we hope many succeeding volumes; that, however, depende upon those who have not yet paid.

0 We ask that remittances may be made in such bank notes ar are at the least discount here-we have paid from five to twenty five per cent discount on notes sent us-and without grumdling too, yet we camot do it long and publish the Jour-nal-the best you hare, and a!l that is due, is all we ask-if we luare it scon-

East New. Yore.-We publish in this tumber a description and plan of this neve city. We have long been aware of the movements of gentlemen of enterprise and perseverance in this matter. It is not the work of a felo days and a Lithographer; but it has been for more than two years in progress, and will eventually show the judgmemt and enterprise of its projector:

Morris Canal.-This canal has been navigable to Jersey. city for several months, but we have never examined the line of the work until this week. The section between Newark and Jersey city was a difficult one to construct, most of it being marsh, and another portion of it requiring a heavy sea wall. The route is very circuitous, in consequence of the Bergen ridge. There is now very little business doing on the canal
between Newark and Jersey city. between Newark and Jersey city.
New.Jersey Railroad.-The work on the deep cutting through the Bergen Ridge, is progressing. It is a heavy and expensive section ; yet it will soon be passable for Locomotives:

New-York and Harlem Railroad.-On passing over this road recently, we were agreeably surprised to find il so vearly
completed.

Most, if not all our reader, sie aware of the nature of the work and its difficulties. The greatest of these is the tunuel through Prospect hill. This and the adjoining deep cuts are there a work of unusual hardness, but are now completed with exception of the dressing off, on the bottom and sides.

We happened to be prosent while several blasts were made near the centre of the tunnel, which on this occasion became a mighty air gun. The curious ringing and reverberations cannot be described to one who did not hear them.

We found the cars running from the north side of the tunncl to the termination of the road at 125 th street, so that with the exception of the tunnel and a small portion of the cut on cither side, the whole road is now actualiy in use.

We were pleased with the neat finish given to much of the new work upon the road. The bridge over Harlem Creek is a handsome and substantial structure on the lattice plan.

The company are also adding to tho finish and safety of the road by substantial slope walls along the whole lino of earth excavation.

We understand that it is intended to run the cars from Wal. ker street to 125 th street, the entire length of the road, before ths end of September.

This arrangement will be as much to the profit of the company, as to the benefit of individuals residing or doing business in the upper part of the city.
Ths new depot on 42th street with its ample stock of substantial and clegant cars, gives proof of the endeavor to meet the public wants.

At present we know of no route more interesting to a stranger or citizen than a ride over this road. -The tunncl alone is worth a journey-while the view from the upper portion of the road is very beautiful. Harlem and Manhattanville and the line of houses between them resemble the germ of some great city, while the Bloomingdale Asylum, the mansions of several of our citizens, together with the remains of the old fortifications, on the surrouading heights, give quite an imposing aspect to the borders (f the valley. To complete the view the back ground is made by the palisadoes and bauks of the Hudson.
On the other side the view over Hell Gate and the last river is quite as beautiful, though different in character.
The green fields of Long Island and the constant play of steamboats over the intervening expanse of water, are in very pleasing contrast with the sterner heights of the North River.
Those to whom this road offers convenience for transit have nlready made trial of its merits, and we advice strangerṣandlovers of variety to do the same.

For the Railroad Journal.

Rociester, July 25th, 1837.
Gentlemen,-While on a visit to my family, in this city, after a long absence, in the employmert of the Great Western Rail. road Company of Upper Canada-to the construction of whose work my services are engaged, the strictures of a writer, under the signature of \mathbf{Q}, in your valuable publication of the 15 th instant, have attracted my notice. They are of a character, which seems to require of me a few remarks.

The writer labors under some misapprehension of the details of my plan of Railroad ; and, by the concluding paragraph of his communication, may be thought to betray other purposes than the promotion of the great cause of Internal Improvement. Critical expositions of every new scheme for accomplishing useful objects, should be read with care, by all who are interested in the objects; and if they manifest intelligence-point out errors-or suggest improvements-should be regarded with gratitude by those, who are especially responsible for their successful accomplishments. It is the part of prudence to gather wisdom, even from an enemy ; and if I do not deceive myself, I should feel obliged to your correspondent, notwithstanding his disregard of the couresies generally held becoming among men striving to apply science to works of immediate and obvious public importance, if his strictures were founded upon an accurate assumption of facts, or illustrated useful principles in any new application.

It would be needless here to give a description of my plan, in detail, as you, Messrs. Editors, in tho spirit of justice claiming my thanks, have promised to publish it. To your publication of it, reference is herein made. Such refercuce will show, that the
whole timber work is embedded in the grade; and that the bearing surface, upon the grade, is one third greater than Q has adoped as his maximum. In my plan, the design of shoring up the longitudinal timbers, by blocks, is to facilitate the grading, by the use of cars upon the timber work, and to sustain the same in the progress of perfecting the embankments. And the road, when completed, presents a combination of tho longitudinal timbers, blocks, cross timbers, scantling, and iron, incorporated in the grade, in such form as best, as to resist the action of the engine and train

It is to be regretted, that Q, in his investigation of the different degrees of resistauce to flexure afforded by the common plan of wooden railroad, and my plan, had not taken the necessary precaution to assure himself of the correctness of his premises, before procecding to his conclusions-and still more, that he had not ascertained the accuracy of his deductions, as based upon these premises, before presenting them to the public. In the plan which I have recommended, in my report, string pieces, from 18 to 24 inches in diameter, and hewn upon the upper surface, and laid upon cross ties placed 10 fect apart from centre to centre. In the former part of his communication, Q says in relation to my plan, "that the rails are 12 by 12 inches, or large enough to square hat size;" and when he gives the result of his investigations, we find him, not content with assuming them at their minimum diam. eter, but divesting them of their "fair proportions," and actually reducing them to 12 by 12 inches square. This is unjust ; and it is an essential fact, in respect to their stiffuess. They are so small, only at the points of rest ; at all intermediate points, they are larger-ithey are cylinders of not less than 18 inclies diameter, with the exception of the upper surface flatted between the ties, and a lineal foot ol them contains 1108 cubic inches more thau a lineal foot of timber squared 12 by 12 inches.

Q docs not present the "modes operandi" by which he arrives at his results, yet it is evident, that finding, as the result of his enquiry, the sagitta or depression of the rail, between the points of support, in my system (with the dimensions which he assumed for it,) to be in the ratio of 2.7 t : 1 , compared with the same in the old plan, he jumped at the conclusion, that their natural stiffness is in the inverse of this grading; or that the old system is firmer than mine, in the ratio of 2.7 to 1 .

Let us examine this, still retaining the ratio at the dimensions given by Q. Suppose the depression of the middle point to be equal, in the two cases : then, on the old plan, for every three feet in the line, an engine must encountre just as much depression as for every nine fect of mine : consequently what Q has interpreted as the measure of stiffness, in the new system, must be multiplied by three, and the result will be correct-showing that my arrangement is firmer than the old, even with rails only 12 by 12 inches, in the ratio of 1.1 to 1 .
The compariso: when instituted between the two beams actually under consideration, will show a still more decided advantage in favor of stability, in my system, over the old. In the latter, $\stackrel{1}{1}$ of the solid contact is lost, in dressing the 6 by 6 iron rail, and in preparing it to receive the iron plate. This is a large allowance to make for what is hewn off from the upper side of my rail to prepare it to receive the scantling, it being not more than $\frac{1}{12}$, and gencrally less. But we will assume the rails of one system to consist of hewn timber 6 by 6 inches; and of the other to consist of round timber 18 inches in diameter. The beams being supported at each extremity and loaded at the middle point-the formulas which apply are

$$
\left.\begin{array}{l}
\text { For the Cylinder. } \\
\mathrm{F}=\frac{W(2 \mathrm{c}) 3}{\mathrm{~A} 12 \varpi \mathrm{r} 4}
\end{array}\right\} \quad \begin{array}{r}
\text { And to the Prism. } \\
\mathrm{F} \frac{\mathrm{~W}(2 \mathrm{c}) 3}{\mathrm{~A} 4 \mathrm{a} 4}
\end{array}
$$

in which we represent, by
F. The sagitta, or depression of the middle point of the beam. W. The pressure, to which the rail is subjected,
A. The co-efficient of elasticity.
a. Side of the square, or transverse section.
r. Radius of the base of the cylinder.

2 c . The distance between the points of support.
By substituting for $a, r, 2 c$ and w, their proper values we obtain for the cylinder $\mathrm{F}=4,6 \frac{\mathrm{~W}}{\mathrm{~A}}$
for the prism $\quad F=5,2 \frac{\mathrm{~W}}{\mathrm{~A}}$

W and A being of course constant quantities and known,or sus. cept ble of being known, the results show a depression, in the ratio of 1 , in my system, and of 1.1 , in the old; aud multiplying by 3 a 3 before, tor the difference of distance under consideration, we $\hbar \mathrm{va}$ advantages in stiffaess, in my system, in the ratio of 3.3 to 1.
An examination in relation to rupture, would show a still greater supericrity : for the strength increases with the cubes of the sides of transverse sections, in prisms, and with the cubes of radii of the transverse section, in cylinders, while it deereases with the length.

It ought to be observed here, that experience shows a decided advantage from the use of round berber, in the grade, rather tian square, -with the round, the grade unites more perfectly and equally. The action of the rains, and use of the horse track, presses the earth closely and uniformly against the lower sides of the round, soon producing a solid and stable connexion between the timber and the grade, of coasiderablo effect in preserving a proper adjustment of the track-while the difäculty of passing the earth, at all, under the lower angles of the squared timber, hinders its firm connexion with the grade.
Any improvement in the form or mode of executing the details of a railroad, though of little estimation, in a short distance, on one road, becomes of serious concern, in the vast lines of road projected throughout the entire country, whether the improvement relates to cost of construction, stability of the work, or the facility and safety of its use. In the common form of constructing wood roads, great difficulty exists in giving to the longitudinal sills, through the entire bearing surface, sufficient vertical strength, particularly in soils of secondary formation. Various sizes of these under timbers have been adopted, and \mathbf{Q} claims one of 6 by 12 inches of prepared timber, and of considerable length. On the road from Buffalo to Niagara Falls, a less size was used. It was found insufficient; and longer tim: ber was subsequently employed than that approved by Q, before the road was deemed fit for the use of locomotive power.
The grade of the road is the legitimite base on which the superstructure is to be erected. It is necessary to give sufficient bearing surface and vertical strength to the sills, connected with the grade, to sustain the superstructure, and all the weight of the engines and trains; for if the sills yield, the superstructure, which they support, yields also. Hence the sills must be large. On these sills, in the common form of road, cross timbers are placed three feet apait, on which are laid rails required to be of sufficient strength to sustains the weight of the engines and trains also, hetween the cross tiinbers, because they have no support from the grade, except at the points of contact with the cross timbers. These rails receive the iron, and thus the frame of the road is completed. Proper materials for this description of road, Norway pine, red cedar, and oak, are not easily obtained, in sufficient quantity; and when actually used in the road, are exposed to rapid decay.
My plan admits of using all sorts of timber,"and secures greater strength and durability. By placing iny cross ties deep in the grade, they are almost out of the reach of decay, and by using larger sills in a rough form, also buried in the grade, an additional advantage of increased strength is obtained. Instead of the cross timbers above the longitudinal sills and the small rails, adopted on the old plan, I employ a small scantling, continuously sustained by the strong sill in the grade, and the grade itself; on which scantling the iron is placed to receive the wheels of the cars and locomotives.

On the old plan the entire timber work, above the sills, is unsightly, decaying, dangerous, not equally and continuously sup. ported-and unnecessarily exposed to derangement by trosts. On my plan these evils are either entirely removed, or greatly diminished. The ordinary plan of railroads is copied from the first experiment model adopted in England; and places the timber above the surface of the grade. The plan recommended in my report, claims to be a combination of science and art, which the timber work by a more compact connection of and by being placed within the grade, secures in a much greater degree, the important desiderata of strength, durability, and cheapness, and by substituting timber for the stone and iron, is happily adapted to the use and circumstances of our country.
What is the necessity of the upper frame work upon the old plan, which, besides the ovils already enumerated, involves great
expense? I have thought it very desirable to provides aubstitutc for this frame worli; and the form of road which I have recommended, has proved to be a valuable substitute. The wood roads actually made, upon the old plan, have proved so imperfect, temporary, and costly, that iron and stone roads are clained to be the cheapest, where capital can be had for their construction. But it will be long before sufficient capital can be found to open all the roads actually wanted and projected, in the vast range of North America, unicss a furm of construction cheaper than any in which iron and stone are the chief materials; can bo adopted.

The essential facts respecting the amount of outlay required to open a railroad, are greatly in favor of my plan. In all the newer parts of our country a wood road can be constructed upon my plan with greater strength, permanency and beauty, than unon the ordinary plan, and at one half the cost. And I will here say; that rone of the features of my plan are derived from the invention of Mr. H. Allen. I understand this gentleman contributed largely to the advancement of the Charleston road, by driving piles, making bents, and forming a kind of truss work? to continue the road over marshes and bottom lands, in place of supporting it in such places by embankment. But this does not compare, in any respect, with the first principles of my form of road.

Experience is the best teacker. The rail road from Foches: ter to Batavia, 32 miles in extent, was made on my plan. The grading of this road exceeds one million of yards, the cuttings. of which were removed into the embankments, at an average distance excceding one-fourth of a mite, and some portions exceeding a mile. The work was accomplished by cars of eight wheels, carrying at each load 8 cubic yards of earth (about 12 tons weight) into the embankments, upon sills supported by posts. The track of this road crusses swamps, soft and hard land, in considerable varicty. It is now used by a heavy class of locomotives, on the same fotudations prepared for its grading: It has stood the test of two sevete winters, and it is now in better condition, and its adjustment better preserved, than any of the expensive roads, consiructed on the ordinary plans, in our coun? try ; although about one-third of the timbers in it (its posts and sills) are less thay two-thirds the minimum size recommended in my report. On this road your correspondent, or any other person, may see the ordinary business of passenger-trains, and a great extent of freighting business, performed at the most rapid rates of motion usual on the most expensive railroads of the country, without producing the evils imputed to the plan by \mathbf{Q}.

This road has been ınade at the expense of several enterpris: ing and intelligent gentiemen residing in its vicinity, who have watched its progress at every stage, and its use in every emergency, with all the vigilance demanded by large pecuniary investment; and so satisfied are they of its advantages over other plans of construction, that they have comenenced extend. ing the road, upon the same plan, 36 miles further, from Batavia to Buffalo.

Entertaining, as I do, a very exalted opinion of Messrs: Barlow, Tredgold and Dupin, and duly appreciaring the bene fits, which they have conferred upon the cause of internal improvement, and science in general, I must be permitted to protest against their being hell responsble for every mistaken application of formula, however currect in them-elves, or every de duction from principles however ngornasly demonsirated. Even the authority of their names will not suction the application of their heories, to subjects not legtumately within their sphere.

It is the province of the Engineer, "to produce the greatest mechanical results, with the greatest cconomy," -not that short sighted econony, which looks to one object, and one alone -but economy in its enlargel and liberal sense, looking to ultinate as well as immediate adrantage, and which, taking into consideration all the cirumstances of the case, and especially the requisite expenditures of time, money, labor, and materials. adapts its exertions most happily, and without loss, to all With no disposition to undervalue the aid, which science lends to the adrancement of works of internal improvement, I must be allowed to say, that the most enlarged mechanical science will avail but little unless guided, in its application, by sound discretion. Where timber costs nothing, and must be renoved, to make it a substitute for costly materials, in constructing any
work, as far as may consist with the object of the work, is the dictate of economy. It would be manifestly injudicious to adopt the same plan of operation, in a project, which might be equally well effected by the use of timber, irn, or stone, with. out taking into account the cost of these various materials, at the location of the project. If the live oak of the South would alone answer the essential demands of a timber structure to be erected in Canada. It is plain, that the care to save that article and the labor of its long transportation, should be very different from the care to save timber of other.descriptions to be found upon the very site of the structure, and necessary to be removed, at greater expense atcay from the structure than to be employed in it, if such other timber would as well answer its demands.

I am not unaware of the situation of the Engineer Corps of the United States. The demands of the service have called into the field all the assistance, that could be obtained. In many cases, individuals have been advanced early to the discharge of important duties. All have their theories ; most are tenacipus of common usage. To depart, in any measure, from this roquires great moral courage, and some self-confidence. A young Engineer, though of respectable scientific attainments, would not adopt a new plan, involving great anxiety for himself, and large disbursement for those, in whose employ he might be, until it had obtained the sanction of men high in authority. This would be the çourse of prudence, of reputation and of probable support for himself and family, if he had one." But it would not be the way of improvement. By a combination of prudence and prejudice many great improvements have either been wholly rejected or made their way slowly to public favor.

The subject of railroads enters largely into the enterprise of our country. And men, not professional, understand yet but little of its details. This of course imposes great responsibility upon Engineers; and they are somewhat divided into advocates of different theories. It has long appeared to me desirable, that men of respectable attainments, and desirable experience, in the applications of science to the opening of railroads and canals, should confer together upon thesc subjects more than they do; and take such measures as might be efficacious to countenance and recommend new inventions, worthy of approbation, in any branch of their pursuits. Your Journal the appropriate vehicle of intercourse between our countrymen devoted to these concerns, and by communications to the public, through its columns, their digested and deliberate views, principles and plans, they would advance one of the greatest of our public interests, extend their individual reputation, and afford a useful asssistance to a merito. rious and much needed publication.

1 trust I shall not appear officious, in the remarks called from ine by the strictures of your correspondent. I have meant only to justify myself, and my plan of railroad, from oljections founded in error. And if my labor shall tend to commend to public favor, any new and useful modification of the details of road making, and thus favor the great interests of the country, I shall be more than compensated for it, and for the uncourtcous animad. versions to which I have been subjected.

With much respect,
your ob't serv't,
Elisha Johnsoń,
Civil Engineer.
The following communication is from a gentleman whose opin 'on, in relation to such matters, is entitled to respect. His doc trine of the importance of the introduction of a cheap mode of $c^{\text {onstructing railroads in this country, and especially in the new }}$ and sparely populated Statcs, will find more advantages now than formerly. He will find on referring to tho Journal that we have recently published the Report refered to, and a communication criticising it.

Niagara Falls, August 15th.

Mcssrs. Editors,-The prosperity of our country is so intimatoly identified with the completion of its contemplated lines of intercommunication, that all good citizens must look with deep interest upon every measure which is calculated to advance or retard such an event. The financial embarrassments of the community have diverted into other channels, the capital designed for many of the most important links in the great chain of works; and the operawrs or projectors hive beon forced to their expenditures to a very
limited amount, and in many cases, to abandon their enterprise altogether, or defer its completion to more propitious times. For such a period, all are devoutly wishing aid most are confudently hoping. In the man time, it becomes us to avail ouss lves of the present moment, to look back upon the past, and profit by its tachings, and to look forward to the fature, rusolved to prac tice the lessons of wisdom. With our great natural advantageour vast resources, we cannot fur a moment admit the thought, that these stupendous plans must ultimntely fail. There is capi-- tal enough-there is enterprise enough in the country, if properly dirceted, to accomplish all that the real wants of community de. mand. These wauts must and vill be met. The demand will create the supply. The busiess operations of the country woill be resumed-the earth is yielding her bounteous supplies-the products of the fertile fiedds of the West and the far West, will seck a market, and it is the interest of all, and especially of Eastern Capitalis:s to furnish easy means of communication between the Atlantic citics und the interior. Sagacious capitalists, fore seeing the coming want of these channels of communication, are already secking among them, a safe investment and sure return, .for capital unprofitably or unsafely employed elsewhere.

The tremenduous revulsion which has every where been felt, will not be without its benefits, if from it we learn a lesson of wisdom. It should tach us the value of economy-the neces sity of caution. It should teach us to husband well our resourc es, and so to expend the money appropriated to these objects,as to produce the greatest amount of benefit.

The inquiry has been often made, whether some plan could not be devised for constructing vailroads, which should preseut tho requisite degrec of strength and durability, at a less expense than in the present mode.s. It has boen urged that American Eng 1^{-} neers fullow too closely in the footsteps of the European-that they adopt the expensive plans of the latter, which apply to short routes connceting popuinus citics, withont sufficiently regarding the diferent circumstances in which we are placed. Called upon to construct extensive lines of, road, through a thinly populated, and perhaps uncultivated region, and having a limited anount of Capital at our command; it becomes necessary (agreeably to the homely proverb) "to cut our coat according to the cloth."

True, some inodifications hare been made. The substantial structure of stone and iron, have given place to wood and the plate rail. But the cost of this, is in many instances beyond our means, while some defects in the system abridge its useful-ness-the profits being diminished by the tax for annual repairing. The great desideratum-cheapness of construction combincd with strength and durability, hats not yet been obtained.

Having recently had occasion however, to traverse some portions of the Wcst, I have availed myself of the opportunity presented, to examine the different roads which came under my observation, and to obtain such infurmatioa in relation to the subject as lay within iny reach. In the course of my inquiries I accidentally met with a report made to the Detroit and Niagara Rivers Railrowl Cumpany, by Elisha Johnson, Esq., their Engineer. He therein developes a plan of construction; which sceined to me to be more feasible than any that I have met with, and in short, to supply the very desideratum of which I speak. Not having a copy of the report at hand I cannot give you its detaits. But the peculiarities of the plan I believe to consist in using timber in its rough state, (the upper side only being hewn) which is so combined is to offer the necessary resistance to the action of the train, and in its being incorporated with the grade, supporting, and being supported by it, while the earth with which the timber is covered protects it from the action of the sun and rain, and prevents its decay. Mr. Johnson shows by proper estimates that the expense of preparing the road to receive the iron rail is only one half that of the usual mode. And to extensive woodland districts the plan seems peculiarly appropriate, since the timber can be cut down, and placed in its bed and suitably dressed to receive the rail, at the same expensc as would be incurred by removing it from the line of road.

For the manner in which the road answers the end in view, that of affording an unyielding support for the engine and its train, Mr. Johnson refers with apparent confilence to the Tonawanda Railroad which was built by him two years since on this plan. Desirous of satisfying myself on this point, I examined the road with considerable care and attention. The rails appeared in most excellent adjustment, and the condition of the
road to be altogether superior to any over which I havo travelled. I conversed with several gentlemen of intelligence, all of whom agreed with me in this particular. I was moreover informed, that so little had the road felt the frost of the last $t w o$ winters that not a dollar had been expended since its completion for repairs in consequence thereof. The action of the engines and :rain instead of discomposing, tends rather to consolidate and perfect the grade.

Satisfied myself of the excellence of the plan, by all the light which examination and enquiry, aided by some little knowledge of the subject had been able to shed upon it. I thought I could not render a more acceptable service to the great eause of Internal Improvement, than by calling the attention of your readers both capitalists and members of the profession, to the, subject in question.
If my views of the subject be correct, Mr. Johnson, by placing within our reach, a plan of construction by which the advantages of railroads may be secured at a comparatively small expense, has opened a new field for successful enterprise. Regions hitherto debarred by position and circumstances from availing themselves of these modes of comınunication, will now find them within their means. I regret that I can only furnish you with a meagre outline of the plan, but presume you have received the report, and hope you will give it publicity. Indeed, as I have not seen your Journal for some weeks, owing to my absence from home. I do not know but you have already done so. I hope the plan may receive an examination, commensurate with the importance of the pretensions which it puts forth. Let it stand or fall by its own itherits. Although disposed to judge fivorably of it, I shall not be sorry to see it strictly scrutinized.

Yours, \&c.,
W.

Mempius and Lagrange Rallroad._-We are indebted to a fiend for the following account of this road. It will truly be, as it is termed, "an important link" in the great chain connecting the Mississippi with the Atlantic-a chain which the good sense of the people will not long permit to remain incomplete. About 200 miles, or one third of this route is now constructed, and in successful operation ; comprising two of the flrst completed roads in this country-and more than imother third ${ }^{\bullet}$ is now in course of construction, thus placing beyond doubt the carly commencement of the remainder.

This road, and the Charleston and Cincinnati road, will open the interior of Allabama, Tennessee, Mississippi, and Kentucky, to the Atlantic at Ciaricston, and produce a wonderful change in the condition of each—and Clarleston, will by no means be the least benefitted.

Extract from a letler ialed Lagrange, Tenn. July 31, 1827.
The Lagrange and Memphis Railroad is progressing rapidly, and will be completed in 1840 . Distance 50 miles with a lateral of $13 \frac{1}{2}$ miles from Moscow to Summerville. When our road is completed it will form an important link in the great chain, connecting the Mississippi with the Atlantic. I am astonished that this great project attracts so little attention. It is to my mind by far the grandest scheme for railroad improvement in the United Statcs. The whole cost will fall short of $\$ 5,000,000$. The cheapest road for the distance in the world.
From Memphis* to Lagrange, 50 miles under contract.
" Lagrange to Tuscumbia, 100 miles, not under charter yet.
" Tuscumbia to Decatur, 43 miles, finished in 1834.
" Decatur to Rossville, 100 miles, Via T'ennessee river.
" Rossville to Athens, 140 miles, under charter and survey.
" Athens to Augusta, 85 miles, under contract, part comp't.
" Augusta to Charleston, 135 miles, in successful operation. 653 miles or there abouts.

[^49]Lagrange, is a beautiful town, containing about 1500 inhabtants. In fact the whole route to Charleston will be an exceedingly interesting one.

To the Editors of the Rail Road Jourual.
method; of location for railway engineers. ef s. mifflin, civil engineer. philadelphla.
Gentlemen : I take great pleasure in calling the attention of the profession, through the medium of your valuable journal, to the above admirable little work. The demonstrations of the different " Propositions" show an intinate acquaintance with Geo. metry ; the "Applications" show the experienced engineer; and the language in which they are conveyed to the reader, shows that the author possesses those acquirements, without which enginecring is not a liberal profession, and, without which, ro engineer will ever command the confidence of the accomplished and distinguished gentleman entrusted with the direction of many of our public works-I am sorry I cannot say, with all. The demonstrations are strictly geometrical, and the applications of the different problems most clearly explained. It is also, to the best of my knowledge, the first practical work on Railway Engincering.

With due deference to the care and labor which have evidently been bestowed on this work, I would suggest that between tho 5 th and 6th Propositions there should be introduced the general problem-to find the radius required to join 2 straight lines or tangents, the angle they furm and the origin of the curve being given, or, to find the origin, the radius, and the angle formed by the lines being given. It appears to me that this is required to render the work complete. 'There are also half a dozen errors in the letters referring to the figures.

How does it happen that the publishers of this work and of that of Professor Mahan do not advertise in the Rail Road Journal, by which they would sell more copies than by advertising in all the other journals of the union.

Buth works may be had at the Messrs. Carvills.
Your obedient servant,
New-York, 15th August, 1837.
Q.

Rallioad Accidents.-The following account of a recent accident on the Roanoke Railroad should arouse the attention o: the traveling community. Accidents on Railroads are too common. Those persons having charge of Locomotives.should be held to a strict account by the proper authoritics.

Correspondence of the Baltimure Patriot.
Steamboat Columbus, August 12 $2 \mathrm{~h}, 1837$.
The most serious accident that has occurred in Eastern Virginia since iny recollection, happened on the Porthsmouth and Roanoke Railroad, one and a half miles from Suffolk, yesterday, between 9 and 10 o'clock. A company consisting of about 150 ladies and gentlemen, from the counties of Isle of Wight, Nansemont and Southampton, came down on the railroad on Thursday, the 10th inst., with the view of visiting Porthsmouth, Norfolk, Fortress Monroe, and returning the next day-on their return, at the time and plare above mentioned, they met a locomotive and train of burthen cars, and horrible to relate, the two ran together while-going at the rate of 10 or 12 milcs an hour.

A messenger was sent into Suffolk for some physician in the place to come out immediately, and I being accidentally in that town, repaired to the place of accident, with the hope of being able to render some aseistance to the wourded.

The most heart rending scene presenting itself that I have ever witnessed; every spot oal both sides of the road, which of. fered the least protection from the sun, was covered with the dead dying and wounded. Three young ladies siting tagether on the front seat of the second car were killed, neither living longer than fifteen minutes: another lady, an infant and a negro girl were so much injured, that they died before three o'elock, and
ten or fifteen ladies and gentlemen besides, sustained injury of one kind or another, very likely to prove fatal to four or five of them.-The confusion attending an aecident where so many were present, the mangled oorpses laid out on the side of the road, he mourns of the wounded and the weeping and wailing of reations, presenting a spentivle which defies description. Every possible attention was faid the sufferers by the Plyysicians and hospitable citizens of Suffolk, but the situation where it happened and the excessive heat of the day, added greatly to the intensity of their 'sufferings-I shall not attempt to assign any cause for this painful occurrence, as the matter will probably undergo a thorough investigation before a Court of Justice.

AN ERE WTPESS.
The names of those killed imrnediately were, Miss M'Cluny, Miss Ely, and Miss Roberts.-The three that died afterwards were, Miss Holland, an infant name not known, and a female negro slave 8 years old.-Those iaured seriously are Mr. Wiley Watkins, two Messrs. Hollands, Mrs. Ely, Miss M'Cleny, Mrs. Holland, Mr. lhelts and others, names net known.

Major MeNcill, the Chief Enginecr of the Charleston and Ohio Railroad, arrived in Lexington, July 29th. The Knoxville Register saye, from a personal reconnoisance of the route of the road thus far, Major MeNeill finds the difficulties much less thau he liad expected, and entertains no doubt of the entire practicability of constructing the imgrovement for the estimated costs.

From the Philadtlphia United States Gazelle.

Locomotire Engine.-Mr. Chāndler-In your paper of to day, Messrs. Garret \& Eastwiek, by implication, deny that they have violated my patent right for an aight wheeled locomotive, and allege that there is a difference in the plan of their engine and mine. It is my duty to notice this, that no misapprehension in the public mind nay exist.
There is not a shade of difference in the principle, which it is the object of the patent right to secure, of nyy eight wheel engine and that of Messrs. G. E. L. they are in that respect identical.' I had tho:"ght that this was perfectly underatood by Messrs. G. \& E. because both these gentlemen at different times, enquired of are the torms on which I would permit the construction of this species of engine. The controversy however, cannot be settled by newspaper correspondence, and I shall not troublo you again, iny sole object being to place before the public $m y$ allegations to the facts. Their prof I shall furnish in a court of justice, to which I hall resort in order to obtain redress for the injury which I have sustained.

Yours, respectfully,
If. R. Cambrif.
Philadelphia, August 11, 1837.
Railroad Imphovements.-A locomotive engine of eight wheels, made for the Beaver Meadow Company, was tried list week on their road. She took a train of cars, 32 in number, loaded with 140 tons of coal, down the road from Blaok Creeis, branch of the Quakake, to Parryville, on the Lehigh, a distance of 20 miles, 5 of which lio along the Quakake Valley, on a grade of 250 miles, part of which rises to 95 feet to a mile.15 miles along the Lehigh river average absut 90 feet to a milc. The descent was no way surprising, as the road is all the way descending. But the return shows the improverrent in this new motive power. Besides her own weight and that of her tender, (together about 10 tons,) she dfew up the road 52 empty cars, weighing about 60 tons, until she reached the 95 feet grade, in a curve: here she detached 22 cars from her train, and with tho remaining 30 started anew, ami carried them through this heavy grade. The return with 52 cars along the Lehigh was quite easy, the grade not averaging over 20 feet to a mile.

By this experiment, the doctrine heretofore pretty currently established, that railrcads cannot compete with canals for heavy iransportation, is exploded. The average descent of most of our rivers (if no other sites can be found) present sites for railroads which can with such engines be made to compete successfully with canals of any size. Besides, the most satisfactory proof was presented by this engine, of the complete success of raising and keeping up stcam by the use of anthracite coal, for
fuel: the doors of the furnace having been, during this experiment, kept open half the time.
It is but just, in publishing these facts, to state, that the public is indebted to Messrs. Garrett \& Lastwich, of this city, fur this improvement in locomotive power.-[U. S. Gaz.]

The new and improved Locomotive for the Morris and Essex (N. J.) railroad, constructed by Mr. Seth Boyden, of Newark, goes at the rate of 60 to 70 miles an hour. The passengers are wholly protected from the fire of the chimney, the sparks, according to the Morristown Jerseyman, being taken to the ash dan beneath

Rallroad Statistics.-The number of proposed railways, in. c'uding diversions, extonsions, and branches in England and Wales, for which plans have been lodged in the private bill office in the present session, is seventy five, of which only forty-eight are under the consideration of Parliament ; these amount in length to twelve hundred and thirty-threc miles, and are estimated at the sum of ninctecn million threo hundred and fifty-two thousand pounds, or fifteen thousand six hundred pounds per mile. The whole length of tunnelling is twenty five miles ; and the number of bridges, exclusive of viaducts and cuiverts, two thousand eight hundred and twenty-five, or ncally two and a third per mile. The weight of iron required for the rails is one hundred and nincty-three thoustund toris; and of stones for the blocks, two million six leundred and seventy thousand tons. The area of land required to be taken up is upwards of fifteen thousand acres ; and of felt for the chairs, one hundred and thirty acres. These railways, if carried into execution, wond employ at least five thousand men and fifteen hundred horses for three years, for tho carth works alone.

Rotting of Timber in centian situltions.-Extract of a letter to the editor, from Mr. D. Tounlinson of Schenectady, N. Y., dated Λ pril 4, 1836.-In the year 1801, I built a watehouse on my lot in Inion Street in Schencctady. The cellar was gug about four feet deep, and the stone wall a foot cr two leeper. I left no opening in the walls for door or window. The floor beams were of excellent pitch pine timber of twelve by twelye inches, slit, and were six by welve inches when placed in the wall, and about eighteen inches above the ground. I laid a flogr of three inch oak plank, loose, neither jointed nor nailed, although they were square edge, and lay close to each other. Five years thereafer, $\frac{I}{5}$ obsarved a josiling in a place in the floor, and raised one of the planks to learn the cause, and found one of the six by twelve inch beams rotted off and fallen on the bottom of the cellar. The glank was rotten below, except about an inch sound on the upper side. I lifted the whole floor, found most of the planks rotten, except a shell on tho top; and the timl ers were roiteri, and so deciayed, that I took the nout and put in oak, after making windows and a door in opposite sides of the wall. I thought the depth of the ce!lar would have pre. vented injury to the timber, but found it the cause of the destruction, as fine shavings and slivers lying on the bottom of the cellar, were perfectly sound, while the timbers were beautifully ormanented with curtains of white mold, banging in festoons, nearly the depth of the cellar, as white as snow, very thick, and appeared like bleached muslin.

In the year 1S17, I took down an old kitchen on the same lot. Thie floor had lain on saplings of about 6 by 8 inches, such as are used for scaffold poles. They were bedded in the ground, so that the pine floor came rext the ground, and excluded air. They had lain there from 1794, and both the timbers and flooring were very little injured by rot.

I concluded, that a free circulation of air must be allowed, or air must be entirely excluded, to save timber from decay.

It has been found, that when posts are set in the ground and cased with boards tor better appearance, the confined air de. stroys them. Even red cedar, which lasts an age when set open, if cased, which is often done for ornament in gate posts, decays as soon as any other wood, by the confined air.

Enantiuc Ether. - The oenanthic ether may be deprived of any free acid it may contain, by agitation with a hot solution
of carbonate of soda, and subsequently boiling the mixture; the e ther rises to the surface and may be readily removed. The s mall quantity of water or alcohol which it still retains, may be $s_{\text {eparated }}$ by means of the chlorid of calcium. The ether thus purified, is very fluid, similar to the essential oil of mustard. It is colorless, has an extremely strong odor of wine, which when respired is almost intoxicating. Its taste is very strong and disagreeable. It dissolves readily in ether and alcohol, even when the latter is quite dilute; yet it is not sensibly soluble in water. Its density is 0.862 and it is but slightly volatile. It boils between 225° and $230^{\circ} \mathrm{C}$.
In three analyses, MM. Liebig and Pelouzo obtained the following results,-

Carbon,	-	71.815	72.50	72.02
Hydrogen,	-	11.844	11.86	12.05
Oxygen,	-	16.341	15.64	15.93

which correspond very rearly with the formula $\mathrm{C}^{18} \mathrm{H}^{36} \mathrm{O}^{3}$. The œenanthic ether is readily decomposed by the caustic alkalies. With potassa, it affords a very soluble compound, con. sisting of œnanthic acid and potassa. When this salt is decomposed by sulphuric acid, the cenanthic acid forms an oily bed on the surface of the liquid.

Einantmic Acid.-This acid presents a buter-like consistence at a temperature of 13.2 C . and is of a white color; at a higher temperature it melts and forms a coloriess, inodorous oil, which reddens turnsol and unites readily with the caustic alka. lies and alkaline carbonates. The cenanthate of potash, is a pasty mass composed of extremely fine fibres, which present a silky lustre after desiccation. From the composition of the œenanthates of lead and silver, the author infers that 2 atoms of base saturate 3 of acid.

In three analyses, MM. L. and P. obtained for the hydrated acid;

Carbon,	-	69.28	69.74	68.59
Hydrogen,	-	11.54	$"$	11.56
Oxygen,	-	19.18	"	19.85

which lead to the formula, $\mathrm{C}^{14} \mathrm{H}^{28} \mathrm{O}^{3}$. The anhydrous acid afforded carbon 74.32, hydrogen 12.2, oxygen 13.58 , which corresponds with the formula $\mathrm{C}^{14} \mathrm{H}^{26} \mathrm{O}^{2}$. It may hence be inferred that onanthic ether is composed of ocnanthic acid united to common ether, as is represented in the formula $\mathrm{C}^{14} \mathrm{H}^{26}$ $0^{2}+\mathrm{C}^{4} \mathrm{H}^{10} \mathrm{O}$, in the construction of which and also in the pree ding deductions, Berzelius's atomic weights have been used.

Essential Oif of Potatoes, by M. Augustus Cahours, (L'Institut, No. 199.)-According to Dumas, the essential oil of potatoes is represented by the formula, $\mathrm{C}^{20} \mathrm{H}^{24} \mathrm{O}^{2}$. M. Cahours infers that this oil is a compound analagous to alcehol and spirit of wood, in consisting of a peculiar compound of carbon and hydrogen for its base, ($\mathbf{C}^{20} \mathbf{H}^{20}$, united to two atoms of water. He cites the following experiments by himself as proof of the correctness of this view.
The oil treated with sulphuric acid, and subjected to a mild heat, yielded an acid containing the same carburetted hydrogen for base. This acid formed with bases soluble compounds, whose analogy with sulphovinates is incontestable. The salt of baryta, for example, contained $\mathrm{SO}^{3} \mathrm{Ba} \mathrm{O}+\mathrm{SO}^{3}, \mathrm{C}^{20} \mathrm{H}^{20}$, $\mathbf{H}^{6} \mathbf{O}^{3}$. If the oil is put in contact with iodine and phosphorus, an ethereal substance is disengaged, giving off a slightly alliaceous odor, which is similar in composition to hydriotic ether. With nitric acid and chlorine, it afforded products of analagous constitution.

outlines of

 PRACTICAL MECHANICS.
II.

of prime movers.

1. Of Weights.

16. A weight may be made to give motion to a machine, by attaching it to a cord, which cord may pass over a wheel, or be coiled upon a barrel. As the descent of a weight thus employed has a continual tendency to acceleration, it is necessary that it
should be regulated. A regulator well adapted to this purpose may be formed by placing leaves or plates of metal, in the diree tion of radii, upon a horizontal fly wheel. As the resistance of the air in which the fly whecl moves increases nearly it the ratio of the square of the velocity, the resistanco to the motion of the leaves finally becomes so great as to counteract any further tendency to acceleration.

This apparatus docs not furnish a perfect regulator, in as much as the density of the air is continually varying.

A better mode of regulating the motion of a descending weight is to be found in the pendulum.
A machine impelled by a weight and regulated by a pendulum is cal'od a clock. Its structure will be explained in the proper place.

2. Of Springs.

17. A spring is a flat plate of stce!, whicin bent from a po. sition determined by its original structure, tends to return to its primitive form. The form in which springs are usually fashioned s that of a spiral coil, and suci siprings are usually enclosed in a cylinder or barrel. This barrel is adjusted around a fixed pin, to which the inner end of the spiral is attached; the opposite end is fastened to the barrel. The spring may be wound up, or caused to form an increased number of revolutions around the central pir, by turning the barrel. As soon as the force by which the spring is wound up is withdrawn, the spring tends to uncoil itself, and in doing so turns the barrel around.

The force with which a spring tends to uncoil itself is not constant, but is greatest at first and gradually diminishes, until tho pring is uncoiled. If the spring were of equal elasticity throughout, its forec would be always exactly proportioned to its distance from a state of rest.

The most frequent application of the spring to drive machinery, is in the case of the watch and chronometer.

3. Of the Strength of Men ant Animals.

18. Animals may themselves be considered as machines, planned by the creator with consummate wisdom, and adm rably adapted to the several states and circumstances in which they are destined to exist.
19. The prine mover in animals is their life, a force whoso origin and action are to us inscrutable. This vital energy is made, by the exercise of the will or volition, to act in producing every variety of motion of which the animal is capable, but the manner in which this volition is transmitted, is also beyond the reach of our finite capacities. In obedience to the wili, the muscles contract, or are allowed to lengthen, and the contractile force is applied to cause r.gid parts of the animal frame to turn upon the juints. In vertebiatel animals, the muscles enclose the rigid pauts, whica are called boaes. articulated animals, the mus. cles are enclosed within a jointed shell, to which they give mo. tion.
20. Each sceveral motion of a bone is produced by the joint operation of two muscles which act in opposition to each other, sud are hence called antagonists. One of these acts in its contraction to bend the joint, and is called the flesor muscle; the other tends to straighten the joint, and is called the extensor.

By the united action of tilo or more pairs of a atagonist muscles, and by the simultancous operation of those which act upon different bones, every variety of position and attitude, of which an animal is capible, is produced.
21. The muscies which give notion to the limbs are inserted in the trunk itsclf, or in limbs more near to the trunk than the parts they are intended to move. These muscles are inserted in. to the limbs to which they give motion, at no great distance from the joint. Hence cach separate bone, when moving around the joint as a fixed point, becomes a lever of the kind rauked by mechanics as the third class. But when the extremity of the limb is pressed against an obstacle, and the muscles act to raise the joint, the arrangement becomes a lever of the second class.

In levers of the third class velocity is gained at the expense of power. But this loss of power is in no case attended with evil consequences, for the contractile power of the muscles is in all cases adequate to the exigencies which th.e habits of the animal demand. On the otherh and, great benefit is derived from the superior degrec of agility which is thus conferred, and there are many cases where the mechanical action, or useful effont is to be
measured by the square of the velocity instead of by the velocity simply, and in all these cases a lever of the third class is required for the most advantageous excrtion of the strength of the muscles. The foot of man on the other hand is a lever of the second class, and is thus calculated to raise a great weight to a small height by by a comparativeiy small force. The muscles which perform this uffice, are much stronger in proportion than in any other animal, and, accumulated in the calf of the leg, add not a littie to the beauty of the 'human figure." Man is thus enabled casily to maintain and move in that erect posture for which all the rest of his structure is fitted. This posture cannot be assumed by the animals which in other respects approach most nearly to the human structure. In these the muscles which form the calf of the leg in man, are slender and comparatively weak; thus, what in man is a firm support becomes in them a hand. These animals are hence styled Quadrunana or four handed.
21. The erect posture in man is not assumed or naintained without effort. The flexor muscles of the limbi are shorter than the extensors, and thus, the position of tho jaints, when volition ceases, as in sleep or death, is slightly bent. At the instant of dropping asleen, the museles before in action relax, and if a constrained posture have been assumed in preparing fur repose, a sensation is felt similar to that of a fall.

The exertion required to maintain the erect posture is so great that the muscles which concur in this effect, have frequent noed of repose; this is obtained by resting the weight, unequally on the two fect, and shifting it alternately from one to the other
22. In most quadrupeds, the relation between the lengths of the flexor and extensor muscles is the same as in man, and thus, when volition ceases, the joints bend, and the position of standing cannot be assumed or maintained without effort. The elephant is an exception to this rule. His great weight would demand a vast exertion of strength' to support it, were the usual relation of the flexors and extensors preserved: But in this large animal their relative lengths are much more near to equality, and the leg, when volition ceases, takes the form of a straight column. IIence this animal cạn sleep wịithout lying down.
23. Birds have the power of walking upon two feet, of standing upon but one, and of clinging tec a perch during sleep, or even after death. These powers are given by an exactly opposite arrangement to that found in the elephant. The difference in the length of the ex!ensor and fiexor muscles of the foot is much greater than in any of the mammalia. In consequence of this, the position of the talons, when the muscles are not exerted, is that of the greatest curvature. In moving the foot, the action of tho muscles spreads the toes, and they are set upon the ground in their mosextended position. The subsequent repose of the muscles tends to draw the claws together, but this tendency is counteracted by the weight of the bird, the talons are thus firmly fixed upon the ground, and their position is the more firm, the less the will of the bird is exerted. Birds therefore may sleep resting upon one or both feet.

In birds which perch when they sleep, the tendons which bend the toess aro the prolorgations of museles near the body. These tendons therefore pass over the intervening joints, so that when tecse joints are bent, the tendons are put to the streteh, and close the foot mechanically.
24. In the progressive motion of animals over the ground the useful effect of the muscular force may be resolved into two parts. By the first of these the whole weight of the animal, and consequently its centre of gravity, is raised a small distance at each step. By the second, the centre of gravity is pressed forward uniil its line of direction falls within a new base, provided by the forward motion of the limbs.

The first of these motions is performed in man with grcal case, in consequence of the mechanical property of the foot which has been mentioned, and the strength of the muscles of the calf of the leg. The second of these motions is performed with the necessary rapidity; because all the other limbs as we have already stated are levers of the third class.
25. When a man resting equally on both feet wishes to walk, the body is swayed ${ }^{\circ}$ towards one side until the weight rests wholly upon one of the feet, the other foot is then lifted from the ground and carried forwards, until a step of the usuallength is taken and
the foot again reaches the ground. While this motion is perform: ing by the foot and leg, the other leg is slightly bent; and the muscles of the calf are applied to raise the centre of gravity to a small height, at the same time these with other muscles are employed to throw the body diagonally forward, until the weight rests upon the foot which has been in motion, and is just set down. The foot which had remained fast during the first step, is now raised from the ground, and a similar operation repeated until it is planted and the weight of the body rests upon it.- In running, the foot whence the motion is performed is raised from the ground by a powerful exertion of the muscles before the other foot is set down. In walking therefore, bath feet are upon the ground together at the beginuing and end of each step, and one of them is always resfing upon it, while in running the feet strike the ground alternatcly, and the body is in the interval thrown into the air.
26. A horse, or other quadruped, when about to move, leans forward, his fect are then raised in succession. In walking, one of the fare feet, say the right, is first lifted and thrown forward, the left hind leg is lifted soon after. A short interval then follows, after which the left fore leg is raised and almast immediately tol: lowed by the right hind leg. In trotting, two diagonally opposite feet are raised at the same instant of time, and after they reach the ground together, the remaining two feet are raised at the same moment. In racking, the body is swayed from side to side dur: ing the progressive motion, as in the walk of man; the two right feet are raised in quick sucecession, and are followed, after they reach the ground by the two laft feet.
In galloping, the feet are taken up one by one, but the right fore leg follows the left foro leg at a short interval ; the right hind leg moves next, and is immediately followad by the left hind leg.
27. The motion of birds through the air, or flying, is performed by the action of the wings upon the air. These are kept in action by means of powerful muscles situated upon the breast of the bird, and which are hence called pectoral. By the action of these powerful muscles a rapid oscillation is given to the wings: Although the velocity of this motion is equal in both directions, yet as the wing is convex above, and concave below, it is much more resisted in the downward than in the upward stroke, the result of the motions, therefore, is to raise the bird. During the downward stroke, also, the great feathers which compose ihe wing strike the air directly, and close upon each other so as to form a continuous surface ; while, during the upward stroke they meet the air ob: liquely, or rather by an edge, and the air has a free passage between them. The directian of these motions is inclined, and thus the downward stroke is not only efficient in supporting the bird, but in giving it a progressive motion. The breathing apparatus of birds is so constructed that the air they respire may be passed throngh the quills and other tubes of the feathers. By this circu: lation of air, the density of the bird is materially lessened, and may be supported by a less cxertion of force.

In the bat, whose skeleton approaches closely in structnre ta that of man, the wings are menibranes spread upon the hind legs and the fingers or toes of the arms or forelegs. Motion is given to the later of these by strong pectoral museles, as in birds. In comparing the structure of this animal with that of man, it will be at once seen that the latter has not the power of flying, even with artificial wings, in consequence of a want of strength in the pectorai muscles. We may also see how monstrqus and unnatural are the figures intended to represent angels, in which the wings are set upon the shoulders. The flight of birds is directed upwards, downwards, or horizontally by the feathers of the tribe.

The obliquity of the stroke of the wings differs in different birds, and is expressly a dapted to their mode of life. It is greatest in birds of prey, which are consequently better formed for horizontal progressive motion ; and is least in birds which rise to great heights in a direction nearly vertical.
28. Fish which live in a dense medium, have bodies whose mean density is the same as that of the fluid. In order to cause their ascent and deseent, they are furnished with a bladder filled with air, and acted upon by muscles. When the air bladjer is compressed by these muscles, the fish becomes denser than water and sinks; when the action of the muscles ceases, the bladder delutes, the fish becomes less donse than the water and rises.

The air bladder is situated in the lower part of the body of the fish, which therefore tends to be easily overturned. This tenden. cy is prevented by two fins situated on the breast. These pectoral fins are moved by muscies of little strength, and have little ef-
feet in giving progressive motion．For the latter the tail is the important instrument，by an action resembling that by which u boat is sculled．＂In this important motion the greater part of the muscular matter of the fish concurs，and the two muscles of each pair are equal in length，so that under circumstances of rest the body of the fish remains straight．The tail itself is a large fin， whose curvature is altered by muscles，so that it may strike tho water under the circumstances best adapted for progressive mo－ tion．
29．The force of men and animals may be estimated in the weight they are capable of raising througin a given height in a given time．Each individual animal will have a different degrec of strength，but in those of the same species the comparison may be direct，and the average strengtin of a number of individuals may be used to express that of each．In comparing the strength of men with that of animels，or the strength of different species with each other，＇they must be considered as applied to do the same kind of work．The work which animals are most frequently caused to perform i ；that of draught．In estimating this the ani－ mal is supposed to move forwards upon a level surface，and draw 4 cord to which a weight is attached，and that the weight is drawn vertically upwards，as might happen，in consequence of the cord being passed over a fixed pully．Man may also be supposed to work in the same mauner，and thus their respective strength may be compared．

30．Animals and men are capable of exerting a great degree of strength when impolied by a sudden impulse，and of maving for a short time with great velocities；but such sudden and violent exertions are followed by fatique and exhaustion，In estimating the force of animals，it is therefore necessary to take into account the number of hours per day during which an animal can work， without losing the power of recruiting his strength in the intervals of labor ；and the number of days per year for which such work can be performe l．The maximump or greatest speed，then，is to be taken，not as that which can be reached for a short space of time，but as that which can be kept up for the number of wor－ king hours in a day；and for the maximum resistance，we are，in ijke manner，to take that which can be strained against，but not lifted，in working the same number of hours．

The greatest force of draught which a man cun exert is taken at 70 lbs．，his greatest velocity in walking at six feet per secoud， or a little more than four miles per hour．By the principle of s． 11，a man works ta greatest advantage in draught，to raise a weight to $31 \frac{1}{3}$ lbs．with a velocity of two feet per second．This is equivalent to raising 4120 lbs ．，through the space of ous foot， in a minute．

The utmost strength of a horse in draught has been estimated at $\mathbf{4 2 0} 0 \mathrm{lbs}$ ．；his utmost velocity in walking at ten feet per second， he will therefore work to the greatest advantage in draught in raising $186 \frac{2}{3} \mathrm{lbs}$. ，with a velocity of $3_{\frac{1}{2}}^{\frac{1}{2}}$ feet per second．＇Inis is equivalent to raising 36,933 lbs．． 1 foot high per minute．

A man may work at his most advantageous speed for ten hours per day，for several successive days；a horse camnot work more than eight ；but in both mstances，days of rest must be allowed from tine to time，in order to prevent a prostration of strengti． One day of rest in every seven is found sufficient to restore the strength of animials and men working against resistances hav－ ing the foregoing maximum measure，which fewer will not answer the purpose，hence the institution of the Sabbath is one of abso． lute necessity to the well being of mankind and the animals it bas domesticated．
Taking into view the difference of the number of hours each can advantageously work per day，the strength of a horse applied to draught is usually estimated as equal to that of seven men．
The strength of a horse is often used under the name of a horse power，as the unit in which the force of other natural agents is estimated．This unit has been sometimes taken as low as 28,000 lbs ，sometimes as high as $44,000 \mathrm{lbs}$ ．each supposed to be raised one foot per minute．The estimate of this unit which we shall employ is $33,000 \mathrm{lbs}$ ．raised one foot per minute．

31．Draught is by no means the most advantageous mode of excrting human strength；in flact there is no mode in which he can be applied to that purpose iis which he can do more than he can by the exertion of his arms and hands．But in bearing burthens，the relation between the strength of a man and that of a horse becomes greater than $\frac{1}{2}$ ．The force of the former applied to draught is limited to seventy pounds，which he
can move under any weight less than twice his own．Even when loaded with a weight bearing to his own the relation $\frac{3}{}$ ，he can mount vertically upwards，as unon a ladder，and with a speed of 2 feet per second．A horse on the other hand supports less weight on his back than he is capable of drawing，and cannot carry even his own weight up a plane inclined more than 45° to the horizon．

Men may carry weights nearly equal to their maximum foree of draught，and move under them with considerable speed．Thus a Roman soldier bore in his arms provisions and equipments， 60 Roman pounds，and performed journies at the rate of five miles per hour．A French Grenadier is loaded with 56 French pounds and marches at the rate of three miles per hour．The weights which are born by persons habituated to that species of labor are very remarkable，the most signal instances of this application of strength are to be faund in the porters of Constantinople and Bagdad，the Gallegos of Lisban，and the coal hevers of London．

4．Of Water．

32．Water may give a circular motion to a machine in three ways：by its impulse；by its weight ；and by its reaction．

33．The apparatus on which water acts by its impulse to produce a circular motion is called an undershot when！．
An undershot whecl is suspended upon a horizontal axis，and in its usual form has upon its circumference a number of floats or paddles，whose planes pass through the axis，and which dip， in the lower part of their revolution，into a current of water． This form is represented beneath．（See Fig．10．）

34．An undershot wheel may be loaded with such a weight as will prevent it from turning，or，were there no resistance， might acquire the whole velocity of the stream，in neither case

Fig， 10.

could it do any work．Its greatest or maximum effect is pro－ duced when its velosity is 学解合of that of the stream．This fact was first discovered in the experments of Sincaton，and has since been slown to be consistent with theory．It is also inferred from theory that at this velocity of＂ths，the useful ef－ fect of the wheel would be to raise one third of the weight of the water which forms the current，to the height whence it must have fallen to acquire its velocity，or in other words one third of the mechanical measure of the action of the water． This last inference is found to vary from the truh in different modes of placing the floats upon the wheel．

35．When the action of undershot wheels was first consider－ ed scientifically，it was inferred，that in order that the water should act most advantageously，no float should interfere with the flow of the current upon another．：To fulifil this condition， when the lower float is vertical，the preceding float should be just quitting，and the succeeding float just entering the water． Constructed in conformity with this conlition，the best effect was found to be little more than one fourth of the mechanical measure of the action of the water．Smeaton in his experi－ ments found that the most adrantageous position of the floats was such，that，when onebucket was vertical，two otbers should be inmersed in the water，a fourth entering and a fifth emerg． ing from it．In the former case no more than two floats can be in the water the same time；in the lust case there may be
four. With the latter construction the effect of the wheel becomes three-tenths of the mechanioal measure of the action of the water.
36. A further increase in useful effect may be gained by closing up the face of the wheel, and applying flaunches or edges to the two vertical sides of the float; the useful effect then becomes $\frac{38}{10}$ of the mechanical measure of the action of the water.
37. A still better arrangement is that proposed by Poncelet, and represented beneath.

Fig. 11.

In this wheel the floats instead of being plane surfaces are are curved into the form of a portion of a cylinder. By this arrangement the force of an undershat wheel has been doubled To be Continued.

The odor of Wines due to a peculiar ether. By MM. J. Jiebig and Pelouze. (Ann. de Ch. et de Phys. Oct. 1836.) It is a fact of common observation, that a bottle containing but a few drops of wine, gives off a peculiar odor, which cannot be imitated by mixing alcohol and water in the proportions in which they exist in the wine. This characteristic odor, which is more or less apparent in all wines, is produced, according to MM. Liebig and Pelouze, by a fluid possessing all the characters of an essential oil. The flower, aroma, or bouquet of veine , as it is more especially called, is produced by a substance which is inodorous, and should not be confounded with the subject of these remarks ; it is not volatile, is different in the eeveral kinds of wine, and in many fails entirely.

This oil may be obtained by distilling large quantities of wine, or the lees of wine, or especially from the product deposited after fermentation has commenced. From the results obtainel they infer that this oil constitutes abnu $\frac{10}{40} 0$ part of the winc. The oil as thus obtained, before purification, has a strong odor, and is generally colorless. Occasionally it presents a slightly greenish tint, derived from the presence of a small quantity of copper, as is proved by reagen!s; this color may be removed by distillation.

The constitution of this product, though it contains a considerable quastity of oxygen, is quite different from that of the oxygenated esscutial oils heretofore known. It proves to be a peculiar ether containing an acid allied to the fatty acids. This new acid is called by its discoverers, onanthic acid, and the ether, conscquently, cenanthic ether.

From the American Journal of Scicnee and Arts, for July. Interlocking of Deecil Trees.-On the farm of Colonel the Geo. Warner, in the southwest part of Stockbridge, Mass., is following curious interlocking of two trees of the common beech, fagus ferruginea. They grew on the side of a hill near the bank of the Housatenic liver, where the passage of the river around and through the north part of Monument Mt. presents very beautiful scenery. The right hand tree, A, as you stand facing the north, is nine a half inches dianseter at the base, while the left hand tree, B, which stood at the distance of eighteen inches from it and a little lower down the hill, is four and a half iuches in diameter, and shows forty-four concentric layers. The
limbs of the trees are peculiarly zigzag or tortuous. At the height of ten feet from the ground, a limb from \mathbf{B} has become so entangled in the limbs of A, that the body of A has grown entirely over the limb, and so perfectly enclosed it that the limb appears to grow directly through it. The tree \boldsymbol{A} is here five and a half inches in diameter, and the limb passes through it nearly in the middle from the center to the outside. The limb from B is two feet long to A, and one inch and a half in diameter where it enters A, but it is only one inch in diameter were it issues and then extends ten feet. The limb starts from B , about eleven feet from the ground. In the winter of 1836, the tree B was cut off for wood; but the farmer, finding it strongly entangled in the other tree and the weather being very cold, left it without ascertaining the reasons of its being held so firmly by A. In the summer he saw that the tree, though cut off and having turned round from the weight above so as to have its lower end about three feet from the ground, was flourishing with rich foliage; lie ascertained the singular union of the twp trees, and called the attention of the curious to the fact. When I saw the trees in September last, they were covered with large, full, bright leaves, the one equaliy with the other so far as the eye could ascertain from laying the leaves side by side. The trunk of B, which was cut off, had healed over at the lower extremity so as to be green with life quite to its end, and seemed to be as vigorous ns the other. The trunk and limbs of B. extend twenty feet beyond the limb which unites the two trees

It is evident that it is the sap of \mathbf{A}, which is elaborated in \mathbf{B}, and is employed for its support. It is probable that the vessels in the part of the limb which unites the trees, and in which the sap originally ascended, are now used for the passage of the sap from \mathbf{A} to \mathbf{B}. In this case the vessels for the ascending sap perform their usual function through most of the unitings limb, and their action is inverted in the uniting part.

Rochester, N: Y., March 29, 1837.
american journal of science and arts.
The July No. of this valuable work contains severai articles of high' interest.

Prof. Hare has contributed several papers containing descrip:ions of apparatus devised by him. His article on the subject of Chemical Nomenclature does him great credit-his ingenious views are well defended, and in our opinion with entire success.

The articles of Dr. Zabies Rie and Dr. Page on Electro Magnetism, and of Messrs. Twining and Swain, on Metcorological Phenomena, show how much interest is excited in the various branches of Electrical Science.

The contributions of Dr. Shephard and others on Mineralogy and Geology are also valuable papers. Dr. S. gives the chemical examination and a general notice of two new minerals of highly interesting coniposition

Dr. Gale has an article on Zinc roofing in reply to the remarks of Prof. Caswell, upon a paper by Dr. G. published in our Journal last year. We give them to our readers.

We look upon this Journal with no small degree of pride ; its contributors and its amiable editor would do honor to any coun-try-we are pleased when we can point out living illustrations of the proge ess of science in our country-more especially when they are to be found in men who, instcad of induiging in the common twaddle about "most congenial soil for the growth of science" "most favored country" "general intelligence" "most favorabre form and administration of government" \&c., \&c., go to work in good earnest to make good use of such of those advantages as are real, and to overcome them when they exist as obstacles, instead of advautages.

From the American Jonrnal of Science and Arts:
on zinc boofing ; by prof. l. d. Gale, of the new-yoti university. bead beforg the nechanics' institute, june 6, 1837.
Sir-The following remarks are intended as a reply to a paper by my friend Prof. Cuswell, of Brown University, and which ap-

Abstract

peared in the 31 st volume of this Journal. In March, 1836, 1 published in the Mechanics' Magazine of this city, (New-York,) some remarks on zinc as a roofing material, substituted for slate, copper, tin or tiles, in which I stated the bad results that had followed the experiments made on zine in this city, and pointed out the defects of that metal. Parts of that paper were copied into the newspapers of the day, from which I suppose Prof. C. obtained his idea of its correctness, inasmuch as he has both misconceivod and misquoted my paper. In the present remarks I shall first state the positons taken in my former paper, and then proceed to give the details of my experiments, and let others who may be dis. posed to read the article draw their own conclusions.

Prof. Caswell commences the argument in his paper on the three following subjects, supposed to have been the divisions of my paper in the Mechanics' Marazine. 1. Difficulty of making the roof tight. 2. Deterioration of the water which falls from it. 3. Comparatively small resistance which it offers to the progress of fire.

My own division, howerer, is quite another thing; it is the following. Zinc is objectionable, (as a roofing.) First, from the great expansive power of the metal. Secondly, its britteness. Thirdly, it deteriorates the water.

As Prof. C. has embraced my threefold division unter two heads, namely, tightness of roofs and deterioration of the water, I shall make a few remarl:s on cach of these. As his third division has no place in the original paper iu question, it need absorb no tine in this.

On the dificulty of making zine roofs tight Prof. C. states, "There is no practical difficulty in making a zire roof perfectly lighl," and this is proved he says "by numerous certificates that place the subject beyond all reasonable doubt. A zine roof may as easily bo made tight as any other. There may be shect zinc in the market of a bad quality, but none need lee deceived on this point, since nothing is easicr than to test its flexibility."

This is, it must be confessed, a pretty summary way of disposing of so important a matter. There is probably no place in the United States, where the experinent of zine roofing has been so extensively tried as in this eity. I think I can foint out between seventy and one hundred buildings, to my personal knowledge, that have been covered with zine, and in a very considerable portion of them it has been removed, and its place supplied by copper, tin, or slate ; and thosc roofs that still remain, covered by zinc, I have ascertained by careful investigation, are more expensive to keep in repair than any other roofs whatever; and furthemore, I would say, that zincis now almost entirely out of use in this city as a roofing material. Let me ask my friend Caswell, why most of our New-York builders, as well as the proprictors of buildings, have abandoned the use of zinc, if there be no practical difficuliy in making a zine roof perfectey tight! IHas Mossis. Crocker and Brotler's zine not come to the New-York market? Has not "forcign zine from the best manufactories" been imported and tricd in this city? Yet all this avails nothing. So long as zine retains the name and properties of zinc, it will continue to be a brittle metal, an I though by heating it to a certain point, it may be folled into thin flexible shects, yet, after a fow years, the metal may becomes nearly as brittle as it was before being wronght.This fact is a prominent one, not confined to zine only, but is common to most other metals; thus, malleable iron laid by for many years, becomes exeecdingly brittle, from a tendency iil the metal to assume the crystalline texture. I have observed fragments of sheet zinc laid by for a number of years, become so brittle that they would scarcely admit of bending without fracture. This seems to be a general principle, and I have little doubt that it forms one of the great difficulties in keeping zinc roofs in repair. Now if Prof. Caswell, and Mossrs. Croeker, Brother \& Co: have discovered that there is no difficulty in making zinc roofs perfectly tight. and that their zine "will bear to be doubled and hammered down without any appearance of fracture in the bend," and that the same remark is true of their zine generally, I would advise them to come to New-York and teach our builders how to make zinc roofs tight; for our worlmen are unable to do it and consequently zinc has almost entirely gore out of use for such purposes in this city.

I did observe in my paper, that water drained from a zine roof is deteriorated, and thus is injured, either for washing or for
culinary operations. Now because the same properties are not noticed by Thomson, Berzelius, Brande or Turner, Prof, Caswell has very judiciously come to the conclusion, that such properties as I have attributed to zinc cannot exist; thercfore, I must have been mistaken. He also says I have not stated very fully the reasons on which my opinion was founded, with regard to the oxidation of zinc on rools and the solubility of the oxide so formed, and as a proof that I was mistaken he has exposed water from a zine roof to the air in clean glass vessels for several days, without any appearance of a precipitate: he has also kept the water for s?veral days in a vessel of oxygen gas, subjected to frequent agin tation, without precipitation or appearance of milkiness. Hence, he says, "if such water contains the suboxide of zinc, its presence is not to be detected in this way." The conclusion from the above experiment is, 1 think, very just, but we shall see whether it will apply equally to my experiments, which I slall now give in detail. They were made with a zinc roof, one lundred and eighty feet by ninety, equal to sixteen thousand two huadred square feet, and repeated for three months, at every shower of rain, and the effects produced by alternate dryness and moisture u_{i} on the metal were carefully noted. I cannot go into great minuteness of detail, but only sufficiont to show the method of experimenting und the result.

As soon as'a shower of rain began to fall on the roof, some of the firet water that ran was collected and found to have a strong metallic taste, and to decompose soap. The water was set aside and allowed to remain at rest for some weeks, when a fine light yellowish sediment was found on the bottom. 'This effect was remarkably evident in the cistern, where the metal was precipitated from a large body of water. The sediment was carefully examin. ed, and found to be oxide of rinc. In many cases no sediment was obtained from water that was examined, though collected in the eariy stages of a rain; so that no good results could be ex. pected fiom a single experinent. Tile greatest amount of sediment was produced from a fall of snow, allowed to remain on the roof until removed by gradual thawing. The water drained from the roof under such circumstances was lighlly charged with metallic matter, which at length disappeared, and a sediment of exide of zine was found on tiec batom of the vessel and tho water left quite purc. Now as a metulic compound did exist in the water, and as that, at lergeth, elisappeared by exposure, and oxide of zinc was found deposited on the bottom of the vessel, I inferred that the soluble compound was a suboxide of zine, and probably the one described by Berzelius. Since Piof. Caswell's paper has appeared, I have callex on a number of builders and workers in metal, to ascertain whether and how far my expemriments and opinion, expressed in my paper in the Mcehanics' Magazine, comeided with facts as they vecur to the workmen, and I am happy to say that I have nothing to retract. The following corro'toratory remarks are from the Albany Daily Alvertiser.
"Zisc.--The experience of two winters has proved to our satisfiction, that this is a worthless materiul for covering the roofs of honises. It very sonu becomes roiten, and, as it is put on, affords very little protection against rain or stows. 'Tin or slate will be found far preferabic."

Inconclusion, I witl arain say, if zine is a valuable material for roofs, which cain casily be made tight, why is it that the article is going out of use as fast as possible? Why is it that no new zine roofs are furnished in this great metropolis? It may be sain, that they have used a bad article. But, I repeat, does not Crocker \& Brother's zinc, does not the best foreign article, come to the NewYork market? Where have purchasers a better opportunity of selecting good zinc, where have builders a better opportunity of experimenting and ascestaining the best material for roofing? Is it probable that men who have gone decply into the business of roofing with zinc, would readily abandon it, if they could sustain it? Would proprietors sustain the expense of tearing off the zine a nd substituting some other material, if there were any other better method of managing? Would they not first resoit to the expedient of mending? This last question I can answer from personal knowledge, that mending of zinc roofs has in some cases been nearly equal in expense to half the first cost. I am quite satisfied, that if my friend, Prof. Caswell, will review the wholo matter of zinc roofs, he will come to the conclusion that notwithstanding the superior products of Messss. Crocker, Brother \& Co. there are still difficulties in the use of zinc as a roofing material that are not entirely imaginary.

Concluded from page 525.

With regard to gypsum and salt we have nothing to add, cx. cept to repeat our recommendation of experiments on their effects. \dagger Though quite aware of the common sentiment-" that gentlemen may use their superfluous cash for this purpose, but farmers have uses enough for their money in the regular routine of their business, and few are so over-burdened with capital as to afford the risk of its diminution by uncertain speculation"-yet we entreut them to reflect, that experinents may be tried with those two articles upon a single acre; that the expense, if unsuccessful, can only occasion the loss of a few shillings; but, if they succeed, may be productive of incalculable advantage.

Neither respecting the various miscellaneous substances which we have enumerated, have we any further observation to make upon their respective properties. The fluid or dissolved parts of animal matter require some preparatory process to fithem for ma. nure, the great object being to blend them with the soil in a proper state of minute division ; for when they have been applied in a rank or unreduced state, bad effects have followed. Train oil, blubber, and simiar rofuse, should therefore, be made into com. posts with a large body of earth. \ddagger Rape and malt dust, requir. ing no mixture, are very commonly hid upon the land as top-dressings-the difference between which and manure ploughed in. to the ground, is, that the formor are applied chielly with a view to the sole beacfit of the immediate crop, without regard to the further improvement of the soil; though there can be no doubt that if the crop be increased, the soil will also feel their good effects. In this maner soot is also invaria'ly used ; but its fertilizing properties are solely referable to the ammonia contaned in it, which is an active stimulant of vegetation. The practice of laying it upon land which has been limed, or of mixiug it, as sometimes done, in composts with lime, is therefore injudicious. §
It has long been a disputed question, whether all plants extract the same nutritive juices from the soil, and convert them into he kind of sap adapted to their peculiar qualities, or whether each is nourished by a different substancc. Ii would at first appear improbable that plants differing from each other in form, smell, taste and properties as food, should be produced by the same matter; yet, when we reffect that different plants deprive each other of nourishment, by extending their roots into the same soil in which various kinds are planted, we cannot but conclude that their first nutriment must be of the same nature, though the sap probably acquires different properties in its progress towards perfection. This, however, is one of the secrets of vegetation with which we are unacquainted; but as we also see that some soils are better adapted than others for the growth of particular kinds of grain and vegetables, and that those crops to which they appear the most favorable yet become deteriorated if repeated, even though regularly dressed with one species of manure, it seems evident that there must be some advantage in the change of manure, as well as in the system of cropping tillage land.\| This will be gained by every farmer who has at his command manures of an unusual kind and who understands their use, for he may then adopt many plans of cropping which are out of the power of others not similarly situated, and vary his rotations according to circumstances of the moment, or to his own convenience-

We have already touched upon the properties of alkaline manures, so far as they have been tested by experience; the solution of the effects of acids upon the soil must be still left to future experiments, for those already made by chemists, in many instan-
instantancous fallow:' Were this principle to be relied upon, it would follow that paring and burning might, within a few years afterwards, be advantageously repeated; whereas, exper ence proves that, with whatever bencfit the operation may be attended with in the first instance, a repetition of it always found to impoverish the soil.-Sec Quarterly Journal of Agriculture, No. XXV. \dagger See Cinapters xiv and xviii.
\ddagger "Tallow and ails received in a crude state by the roots, may clog the pores of the plant, repel the aquenus fluid, and obsrtuct the free communication of the leaves with the atmosphere."Sir H. Davy's Lect. on Agric. Chem. 4to p. 112.
§ Hornby on Lime, p. 26.
|| Sir H. Davy, Agric. Chem. 4to. p. 273." Doncaster Report on Bone Manure, p. 27. See also the recent "Theory of Rotation of Cr ops," by M. De Candolle.
ces, present different results. Whatever may be the food of plants-whether gasses, oils, salts, or acids- the farmer, lowever, need not puzzle himself about their chemical qualities, for he may either satisfy himself from the experience of other, or by small trials of his own, whether the effects of any particular species produce fertility or not. Farm.yard manure has been justly called " the farmer's magic wand ;" and the oftener that wand is waved, the more will it contribute to lis prosperity. He sees that wherever it has been judiciously used, it causes abundant crops, and that wherever it has been withheld, sterility seizes upon the soil ; his chief efforts should, therefore, be directed to its increase.

Although the time and manner of applying every description of manures depend so much upon tho nature of the soil and season as well as of the crops to be sown, that 110 precise rules can be laid down for their employment, yet the following general hints may be found useful.

Summary.

When manures of any kind are to be used as top dressings for grass, the best season for that purpose is as carly as practicable in the month of February, as the vernal showers will then wash them into the soil. If for arable land, at the same time the sowing of the secd, or immediately after; but if for wheat, when vogetation is about to acquire force, in the spring.

If dung be applied to a wheat crop, it should be ploughed in during the course of a summer fallow ; if compots, at the last ploughing before the seed furrow; but compost of lime and earth only, may be laid upon the land during any period of the year.

The land should be laid dry : and the manure should be equally and syyedily spread over every part of it, in proportion to the na. ture of the soil; but if ploughed in, though it shoutd be well mix. ed with the दround, it should not be too deeply buried.

The stronger and the colder soils are, the more manure they require, and, as such land is generally applied to the production of crops which do not speedily attain their full growth, the application of dung which has not been completely decomposed by the putrefactive process may be there admitted, for although the progress of vegetation may not be so rapidly forwarded, yet the manure will at length decay, and afford a more gradual degree of nutriment to the present, and greater support to the land for the production of future crops. On adhesive land, long manure from the farm-yard also acting mechanically, by keep. ing the soil open, is not so binding as short dung ; but on dry, sandy, hot soils, the dung should, on the contrary, be perfectly decomposed, or rotten; and manure of any description should, on such land, bs only laid on in moderate quantitics at one time. One gencral observation may be made regarding all dissertations on manure, which is-that as there will be different gradatious both of soils and the substance of which manures are composed, we caa never speak but in general terms of their application.

The following tablo will explain Low many heaps of manure -each containing an equal quantity of any given amount-aro required to dress any field, per acre, at certain regular distances: so that, by calculating the solid contents of the manure in cubical yards, each containing 27 bushels, and dividing it by the number of heaps, the exact quantity to be laid on in each heap may be correctly ascertained :-

No. óf heaps	5 yds.	distance.	193	per acre.
"	$5 \frac{1}{2}$	"	160	${ }^{6}$
"	6	${ }^{6}$	134	"
"	$6 \frac{1}{2}$	"	114	"
،	7	"	98	"
"	$7 \frac{1}{8}$	"	86	"
"	8	"	75	"

WHITE OAK AND POST OAK.

J. Seelye, of Sharon, Conn., inquires, first, what is the distinction between post oak and white oak, the former being esteemed, at the south, better and far more lasting, than the latter. And second, on what particular day in the year a tree, perforated by woodpeckers, or slightly girdled with an axe, will die. While oak is a tree of the first class as to magnitude, and grows in every part of the United States, though in Florida it is found only on the borders of the swamps. It is the only oalk, on which
h few of the dried leaves persist till the circulation is renewed in the spring. Of all the American oaks, this is the best and most gencrally used, aceording to Michaux, being strong, durable, and of large dimensions. The post ouk resembles somewhat in foliage the white oak, though the lobes of the leaves are broader, and less pointed; and its acorns are not half so large as those of the white oak. The leaf of the white oak has three, and that of the post oak tour lobes. This oak belongs to the second class of furest trees, its height rarely exceeding 40 feet. It is not found growing north of the neighborhood of the city of New York, bnt abounds in the middle states and in Florida. The wood is less elastic, though finer grained, and more durable than the white oak: hence it is preferred for posts, and is used with advantage by wheelwrights and coopers. As to the second point of inquiry, we are not aware that there is any particular day in the year; and we are sure there is not, when a tree will be killed by the pecking of birds. Trees either die by cutting off the supply of sap, which passes from the roots through the sap wood, or for want of elaborating organs-the leaveswhich convert this sap into vegetable nutriment. Cutting through the entire sap wood, at any time in the early part of summer, so as to prevent the ascent of the sap, or divesting it entirely of the leaves, which elaborate this sap, in June, will seldom fail to kill the most hardy trce.

The Production of Galvanic Music.-The following experiment was communicated by Dr. C. G. Page of Salem, Mass., in a recent letter to the editor. From the well known action upon masses of matter, when one of those masses is a magnet, and the other some conducting substance, transmitting a galvanic current, it might have been safely inferred (a priori,) that if this action were prevented by having both bodies permanently fixed, a molecular derangement would occur, whenever such a reciprocal action should be established or destroyed. This condition is fully proved by the following singular experiment. A long copper wire covered with cotton was wound tightly into a flat spiral. After making forty turns; the whole was firmly fixed by a smearing of common cement, and mounted vertically between two upright supports. The ends of the wire were then brought down into mercury cups, which were connected by copper wires with the cups on the battery, which was a single pair of zinc and lead plates, excited by sulphate of copper. When one of the connecting wires was lifted from its cup a bright spark and loud snap were produced. When one or both poles of a large horse shoe magnet, are brought by the side or put astride the spiral, but not touching it, a distinct ring. ing is heard in the magnet, as often as the battery connection with the spiral is made or broken by one of the wires. Thinking that the ringing sound might be produced by agitation or

REMARKS OF THE CONDUCTOR.

We have adverted to the subject of bone manure in our second and third volumes, and stated our modo of obtaining and preparing it. We have boen less urgent upon this matter, because we saw little hopes of our farmers regarding this source of fertility, while they remained reckless, as too many of them do, of their dung and other sources of fertility which abound on every farm. The subject shall receive our early attention. In mean time, in reply to Mr. Foote's questions, we answer, first -the time has come for every farmer to husband and apply to his lands, all the means of fertility at his command. Bone dust will not prove serviceable upon clays. It is applied at the rate of 20 to 40 bushels on an acre. Bone milis can only be profitably erected near navigabie waters. Sccondly-bones can be crushed in plaster mills, so as to answer well. Thirdly-bones that have been boiled are deemed as good as those which have not been boiled, and old bones nearly as good as fresh ones. And fourthly-not only potato tops, but sedge grass, weeds; straw ${ }_{x}$ and every sort of vegetable matter, or earth abounding in it, as that from swamps, ditches, ponds, \&c., leached ashes, soap suds, urine, \&c., may all be profitably commingled in the dung yards, which should be made concave in the centre, in order to retain the liquids of the yard, and which these vegetable matters will absorb. And the yard should be thoroughly cleaned cvery spring, and the contents fed to hood crops.

List of Subscribrrs to the Railroad Journal that have paid.-
J. W. Judso:, Ashford, Com.

July 1, 1838.
S. Bailey, Bolivar, Teun.
E. Morri, Lagrange, '「ени.
J. Noonan, Baltimore, MLU.
N. B. Bufford. Frankfort, Ry.

March 1, 1838.
W. R. Hopkins, Cambly, S. C.

Jan. 1, 1838:
July $1,1837$.
July 1, 1837.

Advertisements.

CROTON AQUEDUCT-NOTICE.

SEALED PROPOSALS will be received by the Water Commissioners of the city of New-York, until the 5ih day of September next at 9o'clock, P. M., at their office in the city of New- York, for the Exackationt Embankment, Bank Filling, Foundation and Protection, Wallw, Tunnels, weve: ral large and small culveris, and an Aqueduct of stune and brick masonry, with other incidental work on that portion of the Crotom Aqueduct which is embraced in sections $9-10-12-13-14-16-19$ and 21 to 26 inclusive on the lat Division ; and sections 27 to 53 inclusive, being the whole of the 2 d Division.
The prices for the work nust inclade the expense of materials necessary for the completion of the same, according to the plans and specifications that will be presented for examination, as hercinafter mentioned.

The work tube completed by the Ist day of October, 1840.
Security will be required for the performance uf contracte-and propositions should be accompanied by the names of responsible persons, signifying their assent to become sureties. If the character and reaponsibilities of those pro: posing, and the sureties they shall offer, are not known so the Commisionert of Engineers, a cerificate of good character, and the extent of their tesponibility; signed by the first judge or clerk of the county in which they severally reside, will be required.

No transfer of contracts will be recognized
The ine of Aqueduct will be located, and the map and yrofile of the same, together with the plans and specifications of the materials and manner of construction, will be ready for examination at the office of the Engineer, at the village of Tarrytown, on the 19th instant, and the Chief or Resident Engineer will be in attendarce to explaiut the plans, \&.c., and to farnish blank propositions.
Persons proposing for more work than they wish to con tract for, must specify the guantily they desire to tako.
The full names of all persons that are parties to any proposition, must be written out in the signature for the same.
The parties to the proposition which may be nccepted, will be requiredj to enter into contracts, inumediately after the acceptance of the ssme.
The undersigned reserve to themselves the right to accept or reject proposels that may be offered for the whole or any part of the above desciibed work, as they may consider the public interest to require.
New-York, August sth, 1837.

> Stephen Allen,
> Cifarles Dusenberry,
> Saul Alley,
> William W. Fox,

Water $\left.\begin{array}{r}, \\ - \\ \text { UFF, }\end{array}\right\}$ Commissioncrs.
Thomas T'. Woodruff,
Johin B. Jervis, Chief Engintecr, New. York Water Works.

3t-32

TICKSBURG AND JACKSONRAILROAD.-NOTICE
 TO CONTRACTORS.-Persons disposed to contract

 for and give personal attention to the laying of the superstructure for the Vicksburg and Jackson Railroad, about 45 miles in length, in the State of Mississippi, may receive all necessary information to enable them to propose by applying to the subscriber at the office of J. R. Van Rensselaer, Esq., 21 Wall Street, until the first of September next.> R. S. Van rensselaer,
> Engineer, V. \& J. R.R.

New-York, 1st A 1Sugust,37.

t 32.1 st

T10 RAILROAD CONTRACTORS.-.Proposals will be reccived at tho office of the Clinton and Port Hudson Railroad Company, in the town of Jackson, Louisiana, until the first of November next, for the completion of the balance of the Clinton and Port Hudson Railroad, being about 21 miles. Plans, profiles and specifications, giving all the necessary information, may be examined at the office of the Engineer in the town of Port Hudson.

Port-Hudson, July 13th, 1837.
A. G. THORN
Chief Engineer.
t-32. 1st No

WTO RAILROAD COMPANIES.

A PERSON experienced in the construction of Locomotive Engines (many of his Manufacture being in successful operation on imporiant Railroads in the United States) and who is likewise thoroughly acquainsed with the management of such machines, and, indced, the entire ordeal of
Railroads, is desirous of obtaining the situation of General Superintendanif in Rome Railroad, South or West.
The most satisfactory testimonials of character and capability can be pros duced. Communications addressed to the Edtors of ihis Journal, stating the. location of Road, \&c. will meet with prompt attention.

EAST NEW-YORK-LONG ISLAND.

to mechanics, artisans and manuracturers :
More than three years have elupsed, since a project was first started to acquire by purchase, a considerable portion of the lands lying between Brooklyn and Jamaica on cither side of the Long Island Railroad, with a view of establishing locations for business of every kind, and also for permanent family residences-to afford substantial accommodations to the various interests of the different classes of society, who may desire situations in the immediate neighborhood of the great metropolis of American Commerce, on very moderate terms-where may bc enjoyed all the benefits of a residence in New-York, without the burden of her enormous city expenses.

Every thing anticipated in securing effectually the choicest of the lunds, has been fully accomplished; also in maturing and adopting plans for their general improvement; and the proprictors feel warranted in saying, that in no part of the United States can there be found a more eligible section of country for the purposes intended. The present time is peculiarly adaptea for the commencement of operations in East New-York, where all, however humble, may participate in its rise and progress. The awful and unprecedented derangement in all mercantile pursuiss, and the general prostration of commercial credit, cannot fail to affect more or less every interest. Thou: sands, who but a few months ago enjoyed the confidence of all, are now reduced to penury and want, and many yet above water, are so far crippled as to be unable to aj: ford any facilities to the mannfacturir. The pause and calm which at present exist, cannot last long-neve arrangements and modes of doing business must ere long be the result of the present revolutions in trade-and these will doubtless be bassed on moderate and economical views. Fxtravaganee and luxury have had their day: The humble, industrious man will seek to accomodate himself to the times; to provide the cheapest and safest location for his particular avocation. The extreme mo: derate rates at which pr perty may now be obtained, and the great reduction of building materials at this moment, cannot fail to reward richly those who first come into this enterprise. A very small sum now expended, will secure an indepencence-a home-a place of business, alnost within hail of the greatest market in America. Any change in our gencral affairs, must have the effect to enlance the interest and promote the wolfare of those who now becone proprictors in East New-York:

That portion which is designated for mechanical and manufacturng operations, is now prepared to a considerable extent for the reception of such persons, as from their connexion with the above mentioned branches of industry, may be disposed to participate in the growth and business of this now organized, (and which may be justly called) beadtiful manufacturing distmict.

The site selected for this object possesses many advantages, and it is intended by this communication to point out the most prominent.

1st. In its immediate proximity to the business and eastern part of the city of New-York, the city of Brooklyn, and village of Williamsburgh; through which latter places the great leading avenues are now parmanentiy fixed, and made to terminate at this parlicular point.

2d. The average distance from the city of New.York being but a trifle over four miles, makes the communica. tion at all hours of the day and night, certain and easy: The ordinary time required by way of the Long Island railroad cars, (the longest route) is about 25 minutes, (including all stoppages on the road) to Pennsylvania Ave: NUE, the centre point of the manufacturing district, situ. ated half way between the principal ferries in the city of Brooklyn and the village of Jamaica on a beautiful plain gradually slooping to the south-protected on the north by a ridge of hills rising about 150 feet above the level of the sea, in the midst of a highly cultivated country, producing all the necessaries of living upon its own soil.

3d. The Long Island Railroad being destined to form
a new channel of communication between New-York and the Eastern cities, (Boston, Providence, \&c.,) will, when com. pleted, render this location eminently conspicuous to the general observation of travellers, and being immediately on the route of this great Eastern and most expedittous thoroughfare, its ralue and importance must be greatly enharced from this circumstanc.

In presenting this subject so directly to the consideration of Mechanics, at this particular juncture of our affairs, it scems in. cumbent on the proprietors, to state somewhat more in detail, the advantages which are expected to be derived from an early location in East New-York; but it is desired and expected that all parsons wishing to purchase, will first visit the premises, and judge for themselves.

THIS TRULY INTERESTING SPOT MAY BE REGARDED IN REALITY AS FORMING A PART OF THE CITY OF NEW.YORK, (separated only by a narrow channel, and a small section of unimproved lands, barely sufficient to protect its inhabitants from the annoying, if not ruinous, effects of a crowded city, where vice and immorality exist to a great extent, alluring the young and inexperienced:) thus possessing all the advantages of the most important trade of our whole country with an uninterrupted open harbor at all seasons of the year, inviting and enjoying the commerce of the world; and yet, so far removed, as to be altogether free from the excessive taxes, for widening, grading, and laying out streets and avenues, the maintenance of paupers-expensive Police, \&c., \&c., all of which way be considered as special charges on the industry of those residing within the precincts of the City Corporation, and will be saved to those who may take their stand at East New.York.

The lands of East New-York can now be obtained at prices varying from 1-10th to $1-40$ th part of the prices of less desirable lands in the city of Newark, or from 1-20th to 1-80th part of the cost of lands in the upper Wards of the city of New-York. Under these circumstances, there can be no question as to the propriety and profit of investments here. The history of our country furnishes the strongest evidence in favor of early setilers in all advantageous situations, when they become purchasers of the soil; and the present plan of iniprovement is such as to facilitate and expedite (at the most reasonable cost,) every movement in the way of business. Goods may be landed on the Rail Road Dock, and forwarded to Pennsylvania avenue, (through which a Rail Road track is to be laid,) delivered at, and received again from, the door of the Manufacturer, and returned to the dock; thence by a single cartage, they may be placed on board of vesscls, destined to any of the various markets throughout the country ; thus affording greater facilities at a mere nominal expense, than can be found in any other part of the world, Manchester, in Engiand, not excepted, there being in our case but five and a half miles of Rail Road transportation, and in the other, 36.
The unexpected and most disastrous shock to commercial credit which, (within the short period of less than three months,) has so seriously affected our whole country, demands the solemn and delberate consideration of all classes of reflecting men. But while the ordinary channels of intercourse between the Manufactirer (or Mechanic) and the Country Merchant, are almost en: tirely broken up, so as to occasion a breach between them in the way of business, from Maine to the remotest regions of the South and West ; is it not a matter of deep importance to thousands of our most enterprising Manufacturers, Mechanics, and Artizans, to adopt, with sufficient promptness, such measures as will enable them to meet whatever demand there may be for the products of their industry, on such. terms as will hereafter protect and guard them against a repetition of the losses attending the consignment of vast quantities of goods to a comparatively few individuals, to be sold on commission. Many articles of American Manufacturers are regarded by Merchants visiting New York as of prime necessity. Consequently when not found (as heretofore) in large quantities, they will be.sought and picked up in small lots, either from the workshop of the Mechanic or from such agencies as wil of necessity be established under their own eye, on the spot, as is the practice at Newark and many other places. NONE OF WHICH CAN BE SAID TO PRESENT SO MANY IN. DUCEMENTS FOR A NEW BEGINNER AS CAN BE FOUND AT EAST NEW.YORK. The plan determined on; th most likely to offect this object, it is believed, may now be
commenced with every prospect of complete success, and we in. vite and solicit the special attention of all classes of Mechanics, Maufacturers, aud Artizans throughout the country to the consideration of this important undertaking.

Work shops, and otleer necessary buildings for the accommodation of operatives, can now be erected on a cheap and economical scale at East Nev-York. This name has been adopted by common consent, as most appropriate for our infant city, which is destined before many years to rie with the populous and thriving city of Newark, and be able to accommodate, like that and other commercial places, Shoomakers-Matters-Coachmakers-Wheelwrights-Enginemakers-Blacksmiths-Carpenters-Maz sons-Chairmakers-Brushmakers-Brewers-Curriers-Coop-ers-Carvers-Tin and Coppersmiths-Clothiers-Dyers-Milli-ners-.Gunsmiths-Gilders-Painters-.Furriers-Founders-Eugravers-Lithographers-Cabinetmakers-Tailors-Prinfers-Glasscutters-Gilassblowers-Grate makers-Harness makersGalico printers-Pianoforte makers_Mope makers_Locksmiths -Jeweiler:-Machinists-_Leather dressers-Cutlers-Blockma-kers-Blind makers-Clock makers-Box makers-Bookbinders -Button makers-Cane seatmakers-and every other kind of basiness, connected with Manufacturing, as well as Merchants-Butchers-Bakers-Grocers-Cardeners.

There are thousands of persons now living in New.York, and other places in the United States, who have accumulated their little earnings in the Savings Bank, that now have an opportunity to purchase a spot of ground, and erect thereon a comfortable tenement at an extreme low rate, and where the business, constantly increasing will not only give them employment, but add greatly to the worth of their investment; so that while they are earning by labor, their real estate will be augmenting in value.The high rents, and exorbitant expenses of living in the city always fall heaviest upon the laboring and poorer classes--in proportion to their means-but here, the poor man may purchase in a healthy country, with delightful water, and ocean air, a loi of ground, in fee for a less price than he is obliged to pay in New.York, for his yearly rent of a miserable hovel, crowded also under the same roof with so many as to endanger life.

There is nothing more certain, notwithstanding the state of the times, than that shoes-hats-clothing-provisions, \&ec., will be wanted by the community, and so will the poor man's labor.
ln order that no person may be disappointed or deceived as to the vaiue, situation or character of the property now offered for sale, a Land office has just been crected at the corner of Pennsylvania and Atlantic avenues, where maps, plans of improvement, and any other information (which may be required) can be had. For further particulars, apply to

JOHN R. PITKiN. No. 18 Wall-street, (Office No. 27,) and sec future advertisment.
4th July, 1837.
34_1t
It is gratifying to learn that all the friends of railroads are not disheartened.-The following notice is cheering to us, may it be so to others.

TO RAILROAD CONTRACTORS.-CENTRAL RAIL. ROAD OF GEORGIA. - Proposals will be received at the office of this Company in Savannalh, untill the first day of October next, for grading and preparing for the Superstructure twenty five miles of this road, extending westirardly from a point 26 miles from this city. The distance' will be divided into 8 sections and the price per cubic yard for excavation and embankmentper acre for clearing and per 100 feet for grubbing, for each sec. tion, offered for, must be stated.

The country through which this part of the road is located is pine barren, and as healthy as any part of the State.

The Company have on hand a large quantity of implements such as barrows, shovels, waggons, carts, \&c., which will be furnished at cost and charges, to such contractors as may desire it.

Plans and specifications of the work will be ready for inspection after the first of September, and all necessary information given on application to the subscriber.

L. O. REYNOLDS, Engineer. 33-t. 1st Oct.

The following notice of T. G. Bates, Esq., Conal Commissioner of Oxio, will, we hope, give empluyment to many who are now seeking work.

From the Daytun (Ohio) Junrnal, of 23 th Juls:"
EXTEENSION OF 'HHE MLAMI

CANAL.

notice to contractors.

PROPOSALS will be received on the 11 th September next, at Sydney, Shalby County, Ohio, for constructing 17 miles of canal, along the valley of the Great Miami, frum the muuth of Toramies Creek, to a point 6 miles above Sydney. The work to be contracted for, consists chicfly of an unusualproportiou of bluff and steep hill silde cutting-much bigh embankment-several small nqueducts-a number u êulverts and 8 or 10 stone locks.

And on the 15 th same m onth, proposals will be re. ceived at the town of St. Marys, fir coustracting ab out 26 miles of cansl alung the valleys of Loramies Creek and St Marys river, from a puint 5 miles above Creek and St Marys river, Iroma porne to the town of St. Marys. The work on this part of the line, consists of intuch very heary excava part of the line, consists of intich very ioned excava tion and embankment, several sman aqueducis and
many small culverts. At the sume time and place many small chlverts. At the samos time and place
embankments for the grent reservoir near St. Marys will also be uffered fur contract.

The commissionor will expect ecrtifica'es of character and qualific ations from well known o: unques tionable authority, to nccumpany cath prososal, unless the bidder is personally kuown to him or to the Principal or Resident Eirgineer.

For further pariculars, phuss, dic., apply to the Engineers on the line of eanal or ut :leir ulfices in Sydney and St Ma:ys.
T. G. B.ITES.

33-t. 11th. Sep

RAILWAY IRON, LOCOMOTIVES, \&E

THE subscribers ofer the fullowing articles tor sale.
Railway Iron, flat bara, with countersunk holes and mitred joints,

with Spikes and Splicing Pintes adapted thereto. To ba sold free of duty to state goveraments or incorporated companice.
Orders for RennsyIvania Builer Iron executed.
Lail Road Car and Lucomutive Engine Tires, wrought and turned or unturned, ready to he fitted on the wheels, viz. $30,33,36,42,44,51$, and 60 iaches
aiameter. \quad E. Patent Clioin Cable Bulls for Railway Car axles, in lengths of 12 fict 6 inches, to 13 feet 24,21 $3,3 t, 3 t, 31$, and $3 t$ inches diameter.
Chains for Inclined Planes, slurt and stay links, manufactured frorathe E. V. Cable Bolts, and proved
India Rubber Rope fur Inclined Mincs, made frum New Zealand flax.
Also Patent IIemp Cordage fur Inclined Planes, and Canal Towing Lines.
Patent Fele for placing between the iron chair and tone bluck of Edge Railways.
Every description of Railway Iron, as w•ll as Loconnotive Engines, impurted at the shortest notice, by the agency of one of our partuers, who resides in Fingland for this purpose.
A highly respectable Amorican Engineer, resides in Eingland for the purpose of inspocting all Locomotives, Machinery, Railway Iron \&c. ordered therough us.

23 if
Philadelphia, No.4, Suuth Front-st

ARCHIMEDES WORKS.

(100 North Moor street, N. Y.)
New-Yorx, February 12ll, 1836.
THE undersigned begs leave to inform the proprietors of Railroads that they are prepared to furnish all kinds of Machinery for Railroads, Locomotive Engines of any size, Car Wheels, such as are now in success-
ful operation on the Camden and Amboy Railroad, ful operation on the Camden and Amboy Railroad,
pime of which have failed-Castings of all kinds, Whiaels, Axles, and Buxes, furnisherlat shortest notice. . - Ytf
II. R. DUNIIAM \& CO.

MACHINE WORKS OF ROGERS, KETCIIUM and GROSVENOR, Paterson, Newlersey. The undersignell receive orders fur the following articles, manufactured hy them, of the most superiur description in every paricular. 1'heir works being extensive, and she ummber uf hands omployed being larye, they are onahled to execute bothli large and small orders with promptness and despatcl.

RAILROAD WOHK.
Locomotive Steam-Engines and Tenders; Driving and other Locomotive Wheels, Axles, Sprinis and Flange Tires; Car Wheels of east iron, from a varicty of patterns, nnd Chills; Car Wheels of cast iron. with wrought Tires; Axles of best American refined iron; Springs ; Boxes and Bults for Cars.

COTTON WOOL AYD FLAX HACIINERY,
Of all descriptions und of the nost improv:d Pat. erns, Style, and Workmanship.
Mill Geering and Millwright work generally; Mydraulic and other Presses; Press Screws; Callen. ders; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.

KOGERS, KETCHUM \& GROSVENOR
Patterson, New-Jersey, or 60 Wallstreft, N.

AMES' CELEBRATED SHOVELS, SPADES, \&c.

300 dozens Ames' superior back-strapShovels
$\begin{array}{llll}150 & \text { do do do plain do do } \\ 150 & \text { do do do } \\ \text { do }\end{array}$ $\begin{array}{lll}150 & \text { do do do caststeel Sho } \\ 150 & \text { do do Gold-mining Shovels } \\ 100 & \text { do }\end{array}$ 100 do du plated Spades
50 do lo socket Shovels and Spades.
Together with Piek Axes, Churn Drills, and Crow bars (steel pointed, naannfactired from Salishury re finediron-for sale by the manufacturing agents,

WITHERELL, AMES \& CO.
BACKUS, AMES \& CO. New- ork.
N. B - Also furnished toorder, Shapes of every de seription, nsade from Salshury refined Iron v4-if

FRAME BRIDGES.

TIIE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to other ; to build, on his Patent Plath, would respectfully infurm Lailroad and Bridge Curporations, that he is prepared to make contracts to build, and furnish all materinls for superstructures of the kind, in
Bridges on the above planare to be meen at the ful lowing localities, viz. On the main road leading from Baltimore to Washington, two miles from the former place. Across the Metawankeag river on the Military road, in Maine. On the national road in Illinvis, at sundry points. Onthe Baltimore and Susquehan-
na Rrailroad at three points. On the Hudsun and na Rrailroad at three points. On the Hudson and
Pntterson Railroad, in two places. Onthe Bustonand Phtterson Railroad, in two places. Onthe Bustonand
Worcester Railroad, at several points. Ont he Boston and 1'rovidence lailroad, at sundry points. Across the Contoocook river at IIenniker, \mathbf{N} y. Across the Sunhegan river, at Milford, N. H. Across the Conneaticut river, at Haverliill, N. II. Across the Contoocouk river, at IIancock, N. II. Across the Androscoggin river, at Turner Centre, Maine. Across the K-unneboc river, at Waterville, Maine. Across the Gienesso river, at Squakiehill, Munnt Morris, New-York. Across the White liver, at Harlford Vt. Across the Connecticut River, at Lebanon, N. II. Across the mouth of the Broken Straw Creck, Ponn. Across the mouth of the Cataraugus Creek; Canai in the City bridge diagonally across the Erie, Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the firmest wooden bridge ever built in Atnerica.
Notwithstanding his present engagements to build between twenty and thirty Railroad Bridges, and sevaral commou bridges, several of which are now in progress of conatruction, the subscriber will promptly
attend to business of the kind to much createrextent and on liberal terms.
Rohester, Jan. 13th, 1837.
. MOSES LONG.
STEPHENSON,
Builder of a superior style of Passenger Cars for Railroads.

No. 264 Elizabeth street, near Blecekerstreet,

New. York.
RAILROAD COMPANIES would do well to exa mine these Cars; a specimen of which may be scen
on that part of the New. York and IIarlaem Railroad on that part of the New-York and Harlaem Railpoad
now in uperation.

PATENT RAILROAD, SHIP AND

BOAT SPIKES.

**Tlie Troy Iron and Nail Factory keeps con: stantly fur snle a very extensive assortmentof Wrough: Spikes and Naiks, frum 3 so 10 inches, manufactured by the subscriber's Patent Machinery, which aftef fivo ycars euccessful operation, and now almost universal uso in the United Stater, (as well an England; Where the etilscriber obtaised a patent,) are found superior to any ever otfered in market.
Railroad Cimpanies may be supulied with Spikes having countersink heads suitable to the holes in fron rails, wa any amount and on short notice. Almost all the Railroads now in progress in the United States are fastenel with Spikes made at the above named fac:
tory-fur which purpose they are found invaluable; as their adhesion is more than double any common spikes made by the hammer.
*** Allorders directed to the Agent, Troy, N. Y., ill be punctuallyattended to.

HENKY BURDEN, Ageñí.
Troy, N. Y., July, 1831.
** Spikes are kept for sale, at factory prices, bit I. \& J. Townsend, Albany, and the principal Iron Mer chants in Albany and Troy ; J.I. Brower, 222 Water
street, New-York; A. M. Jones, Pliladelphia; ' 1 '. street, New. - ork; A. MI. Jones, Philadelphia;
Janviers, Baltimore; Degrand \& Smith, Boston.
P. S.-Railruad Companies would do well to for: ward their orders as early as practicable, as the subscriber is desirnus of extending the manufaeturing so as to keep pace with the daily increasing demand for his Spikes.
(1J23am)
H. BURDEN.

TO RAILROAD CONTRACTORS:
 SEALED proposals will be received at

 the office of the Selma and Tennessee River Rail: road Conpany, in the town of Selma, Alabama, for the Craduation of the first furty miles of the Selmaand Tennessec Railroud. Proposals for the first six and Tennessee Railrond. Proposals for the first six
miles from Selma, will be received affer the first of May, and acted on by the Joard on the 15th Moy. Proposals for the ensuing 34 miles, will be received after the 10th May, but will not be examined until the lst of August next, when the work will be ready for contract.
The line, after the first few miles, pursuing the fat laving the rep creek, occupies a region of country, free from ponds and swamps, and is well watered.The soil is generally in cultivation, and is dry, light and sandy, and uncommonly casy of excavation.The entire length of the line of the Selina and Ten nessoc Railruads, will be abuut 170 miles, passing gen eraliy through a region as fivorable for health as any in the Southern Country
Owing to the great interest at stake In the success of this enterprise, and the amount of capital already
embarked in it, this work must necessarily proceed embarked in it, this work must necessarily proceed with vigor, and linvite the attention of men or indusiry and enterprise, both at the North and elsewhere continued enupluyment offering in the prospect of and climate, a wide ond desirable field to the contractor.
Propusals may be addrcesed either to the subseri ber, or to General Gilbert Shearer, President of the Company
ANDREW AL.FRED 1 LXTRR, Chief Engineer.
Selima, Nlu., March 20th, 1837. A 15 if

ROACH \& WARNER,

Manufacturers of UPTICAL, MA' HEMATICAL ANI) PHLLOSOPHICAL INSTRUMENTS, 293 Broadway, Now York, wilt keep constantly on hand a large and general assortment of Instruments in theif lite.
Wholesale Dealers and Country Merchants supplied wild SURVEYING COMPASSES, BAROME TLRS, TLIEILMOMETERS, \&c. \&c. of theiz oun manufacture, warranted accurate, and at lower prices than can be had at any other establishment.
instrnments made to order and repaired. Iy 14

NEW ARRANGEMENT.

ropes for inclined plante of railroads.
WE the subscribers having formed a co-partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroads, and for other usts, offer tosupply ropes for inclined planes, of any length required without splice, at short notice, the matuufacturing of cordage, heretofore carried on by S. S. Durfee \& Co., will be done by the new firm, the same superintendant and machinery are emplosed by the newf firm shat were employed by S. S. Durfee \& Co. All orders will be promptly attended to, and
ropes will be shipped to any port in the United States: ropes will be shipped to any port in the United States: State of New-York.
33-tf.
ROBT. C. FOLGER,

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT No. 30 WALL STREET, AT FIVE DOLLARS PER ANNUM, PAYABLE IN AUVANCE.
D. K MiNUR. and

EDITORSAND
GEORGE C. SCHAEFFER, \}Proprteturs.]

CONTENTS.

Not ce to Suhsriltiers, and to Engineers and othe-s. 545 Hiwa-r+e =e:ma and Tennessee. and Mount Curnel Auburn, and Nur wich, and Worcester Railp ians-1.0
 Comnunic-itur of in ou linarnal Impuyvements. 517 Steam Navieaten uf the Atlantic
Medal Sinking, kitertrical Telegraphs beiween Edin birpliand l.andonl
Ughe from Insects-sieam Vessels In'Sweden-Arsenic 550 in Catriles-and Chimese. Literature Adventisements

AMERICAN RAIIROAD JOURNAY,
NEW-YORK, JANUARY $13,1838$.
to the subscribers of the rail road journal.
In resuming again the publication of the Journal, we have to apologize for the long perioll which has been permitted to elapse without communication with its readers. Its publication was suspended on account of the difficulty of collecting from those indebted to $i t$, an amount sufficient to pay the printer. At the period of its suspension, it was believed and stated, that its publication would be resumed again in four wecks, as it was not doubted but that, on learning of its suspension for want of funds, those, at least, who were indebted for previous volumes, if not those who had not paid for the current volume, would remit immediately the amount due, that it might again resume its course; yet, in this reasonable expectation we have been much disappointed, as the suspension of publication was followed by almost an entire suspension of payments, and we were led to infer that those who had not fulfilled their engagements to us, by prompt payment, were disposed to balance their remissness against our inability to complete a volume which we had commenced, and for which a large number of our more thoughtful and more just subscribers had paid.

It is well known to many of our readers, that the Journal was projected and commenced at a period (December, 1831) when there was compazatively nothing known, and very little information to be obtained, in this country, on the subject
of Railroads-no better evidence of this, assertion need be asked for than can be found in the first, and even the second volume of the Journal. The idea of sustaining the work was ridiculed by many as preposterous, yet it was continued year after year, notwithstanding its current expenses exceeded by several hundred dollars, aunually, its income.

It was continued, with a hope that it would eventually become profitable, but with a certainty that it would be useful in the great cause of Internal Improvement, from which our country antici. pated, and has realized so much.

When it had nearly completed its 4 th volume, and began to yield a small profit; it was involved in total ruin by the Great Conflagration of December, 1835, when its printing materials, and over 400 full sets of the work. were consumed. Determined, however, to continue its publication, if possible, its price was raised to Five Dollars, a measure which was, hy almost every subscriber from whom we heard, cheerfully acceded to. Our subscription list was extended, the work increased in usefulness, and we should have continued to the satisfaction of our patrons, if each subscriber had only paid what was already due to us.

As it is, we have been compelled to submit to the most mortifying sacrifices, rendered the more unpleasant by the reflection, that they were caused by the delay and remissncss of those who had received and used our Journal without any recompense, in some cases, for the labor of years.
We cannotin justice to ourselves omit this opportunity of returning our most heartfelt thanks to those of our friends, who have always been prompt in their payments and endeavours to assist us.

It is nol our intention to continue a large unpaid circulation, and we shall thus be better able to send our Journal with punctuality to such as pay forit.

Volume Six will be completed as speedily as possible. The next, or Volume for 1838 , will be published in a more coavenient form for preservation.

TO ENGINEERS; OFFIGERS AND DIRECTORA OF PUBLIC WORKS-MANCEACTURFRS, and others exgaged in the cause OF INTERNAL IMPROVEMENT.
The new year opening with the encouragement that the distressing depression and derangement of affairs which has operated to the disadvantage of Public Works, as well as to our own loss and disappointment, will soon pass away, it is our desire to obtain and circulate as much information as possible, in regard to Internal Improvement.

The severe ordcal of the past season has established the entire confidence of. the public in the usefulness and substantial character, in a financial point of view, of our Railroads, Canals, \&c.

We invite the earliest attention to our request,to furnish us with all information in regard to such works as each individual is, or may have been engaged upon.

We desire to learn in regard to Rail-roads:-

The date and conditions of their charter and organization, length of line, and termination.

Amount and cost of grading, its cha. racter, information relative to tunnels. \&c.

Cost and construction of bridges.
Cost and nature of superstructure, the form, weight and arrangement of the rail.

Cost and extent of depots.
Number and size of Locomotives, by whom made, their power, cost, \&ec.

Cost per mile of the Road when com. plete.
Nature and extent of traffic, with all other particulars in referenee tothe work, which are of interest to. engineers and stockholders.

Of work in progress-we desire to
know what has been done, and to be informed from time to time of the progress and prospects of the undertaking.

We also ask for similar information in regard to Canals.

Of Manufactories, we wish the location, the amount and extent of business, particularly those engaged in the construction of Locomotives, Railroad and other machinery.

The value and importance to all parties of such information, is too evident to be insisted upon at this time.

To all who remit us Fifteen Dollars, in advance, we will furnish a copy of the work, and continue an advertisement, equal to one square, in our columns for a year. Railroad companies, as well as manufacturers of Machinery, will unquestionably find their interest in accepting this offer. If generally accepted, the Railroad Journal may be considered as permanently established.

Since our last publication, we have received several reports and other interesting communications, which we hasten to lay before our readers. Several of them we give in this No. with an apology for their late appearance.

We have also been much gratified by our visits to several new and valuable machines, \&c. which we desire to notice in our next. We have received the following reports:-

South Carolina Canal and Railroad Company.
Sandy and Beaver Canal.
Ohio Railroad.
Buffito and Erie Railroad, (Preliminary Surveys.)

Survey of the Valley Railroad, Vermont.

Montgomery Railroad.

Charleston and Cincinnati Railroad.
Several others, which we understand have been sent to us, have been mislaid, or have never reached us-we request in such cases a renewal of the favor.

We are much obliged to the writers of the following letters. We wish to receive similar communications from every Engineer in the United States-they are of great service.

Athens, Tenn. Aug. 18, 1837.

Dear Sir,-The grading of the $\mathbf{H i}$ wassee Railroad has been commenced, at a point two miles below the town of Athens, by Mr. Kennedy Lonergan, the able contractor from the Philadelphia and Baltimore Railroad. A corps of Engineers, under Col. Long, are now making a survey for the junction of the

Hiwassee Railroad with those of Georgia. Upon this junction, the cotton growing portions of Georgia depend for the ready receipt of provisions from East Tenncssce. The intention of Alabama in effecting a union with the Hiwassee Railroad, is also, in a great measure, attributable to the same source; together with the increased facilities in the North Liast and South travelling. 'The Coosa and. Wetumpka Railroad will, hy its junction with the Hiwassce Railroad, open markets for the produce of East 'Tennessee at Mobile, New-Orleans, and other shipping ports.

Yours, respectfully, Join C. Trautinine.
D. K. Minor, Esq.

Extract from a letter lu the Editors of the Failroad Journal.
I have completed the Survey of Route of the Selma and Tennessee Railroad. The Route is uncommonly favorable. Nature had prepared a succession of valleys, for 150 miles, presenting a surface of unexampled uniformity. The whole estimated expense of the 150 miles is not $\$ 1,500,000$, and yet it is perhaps the most important route in the Southern states.

The Montgomery Railroad is going on fincly. We weathered the storm, however, with some difficulty. We have made an arrangement with the Pensacola Company, by which, on condition that we allow them to bring their Railroad from Pensacola to Montgomery, instead of Columbus, they have taken $\$ 200.000$ of our Stock, and lent us of Iron now on hand sufficient for the first 40 miles. You will thus perceive that the great route from New-Orleans will be through Pensacola, Montgomery and West Point, Madison, Gainsboro, Augusta and Charleston, by a continued line of Railroad. It is my opinion that this line of Road will be as grod Stork as any in the United States; and the Montgomery and West Point Road the most profitable link in the chain.

Fer the liallrad Journal.

TILE MOUNT CARMEL AND NEW ALMANY RAILROAD.
Princeton, Indiana, Nov. 1837.
Through the efforts of two enterprising citizens of lllinois, Mr. George Flower, of Alhion, and the Rev. Thomas S. Hinds, of Mount Carmel, a convention of delegates was got up at Jasper, in the State of Indiana, in November last, for the purpose of applying to the Legislature of the last named state, for a Charter for a Railroad, to connect the places named at the head of this article. Application was made, and the Legislature granted a very liberal charter, to continue in force and have existence for seventy-five years. Capital, a million and a half, with the power granted to the Board of Directors to increase the same to an indefinite amount, if it should become necessary to complete the work.

The power is also given the company to construct lateral branches, so as to accommodate points on cither side of the main work-the work to be commenced in five, and completed within fifteen years. There is yet another provision, which is deemed of itself' a sufficient bonus, to induce capitalists to embark in the enterprise, and that is, the right which is invested in the company, to purchase, hold, sell, and convey any lands, or real estate, they can purchase in the State of Indiana. The distance from New Albany to Mount Carmel is upwards of one hundred and twenty miles-two-thirds of the lands over which, and adjacent to the contemplated route, belong to the United States, and may be purchased at one dollar and twenty-five cents per acre. Were the company to purchase a million of acres of the lands adjacent to the work, the incrcase alone in the price of those lands so purchased, would, before the work is half completed, pay for the entire construction of the work. The bare location of the route will triple the price of every acre of land within two miles of it. All that is wanted is capital to invest in lands, and go on with the work for a short time without being competted to make sale of them.

It is to be recollected, that the State of Illinois has undertaken to coustruct a railroad from Alton, on the Dississippi, to Mount Carmel on the Wabash. This work is in progiess, and no doubt can be entertained of its speedy completion.
By a transient glance at the map, it will he scen that this road must erentually become of more impartance than any other work of internal improvement, now contemplated in the Western States. The Nashville railroad, the Charleston railroad, the Baltimore and Ohio railroad, the Pennsylvania railroad and canal, the Cleaveland and Portsmouth canal, and the numerous railroads now in progress to connect the Northern Lakes with the Ohio river, all converge to a focus at Louisville, forming tributaries to this great road, which, crossing the fertile state of Iudiana, intersects first the Central canal, then the Evansville and Vincennes railroad, and strikes the Wabash at the mouth of White River, and at tho foot of the grand rapids, passing through the town of Mount Carmel, where the unlimited water power may be presumed of itself sufficient to afford a valuable portion of transportation business, it proceeds through the prairio regions of Illinois, intersects near the meridian line, the Central railroad running through that state north and souths and terminating at the Mississippi, forms as at Louisville, a point, uniting tributary means of conveyance from every direction from the north-east by the lllinois river, from the north by the Mississippi river, from the northowest by the Misz souri river, from the south by the Mis: sissippi, and will extend its ramifications through the east and fertile regions of the west.

Indiana.

Auburn, Aug. 14, 1537.

Gentlemen,-In a repoit made to the Directors of the Auburn and Syracuse Railroad Co. by Judge Miller and myself, recently published, I perceive an error has crept in, which I ask the privilege of correcting throngh your columms.

The report was put in type at NewYork, and neither of the commitee inad an opportunity of examining the proof. This will account for the error of which I speak, as well as various others, typographical. In the report as printed, it is stated that the Utica and Syracuse Railroad Co. cannot by their charter carry freight upon their road. It will be found by reference to the act of incorporation, that they are allowed this privilegepaying toll upon property during the period in which the Canal shail be navigable.

The committee deem it duc to the Syracuse and Utica Co. and thesmselves, to make this correction. You will oblige me by giving this publicity.

Xour obedient servant,
S. A. Goodmin.

From the Batumure Gazelte.

One of the principal difficulties in the use of that portion of the Balimore and Ohio Railroad already constructed, is the grade of inclined planes on each side of Parr's Ridge, which has been supposed to be too great for the bencficial use of locomotive engines, and much expense has therefore been and yct is daily incurred by the use of horse power, on passing the cars of every description, in both directions over the Ridge-a distance of three and a half miles: So great has been the expense and inconvenience resulting from this mode of passing the Ridge, that the directors as we have understood, have had it in contemplation to make a new location of the road on a more circuitous route, so as to reduce the grade, which of course conld only be effected at a very heavy expense.

The stecpest grade of any part of the railway over the Ridge, is that of plane No. 3, on the western side, which is rather less than two nundrin and sintyfour feet in tie mile, and that grade extends ouly thirty-two hundred feet. It will be seen by the amexed paragraph that a locomotive engine, constructed by Mr. William Norris, is capable of transporting a gross weight of forty-eight thousand five hundred pounds with great facility and rapidity up and down a plane of a grade greater (steeper) by one hundred and five feet in the mile, than the greatest which now offers so inconvenient and expersive an obstruction to the use of our road. We may now reasonably hope that both the use of horses and the expense of a new location may be dispensed with, in consequence of the progress of improvement in the construction of locomotives.

The Philadelphia U. S. Gazette has
an,account of the extraordinary performance, on Wednesday, of a locomotive eugine which had been made by Mr W. Norris, of that city, for the Austrian Government. The engine is intended for a railroad leading from Vienna, and Mr. N. was desirous of making a public trial of its powers, before he sent it to its destination. It had heen kept fully emlloyed during the morning of the day pppointed for the experiment, and the parly assembled to witness its performances had the gratification of seeing it arrive in the eity with a train of fortyone laden burtíen cars.
The party then proceeded to the foot of the inclined Phane, when the Engine with two of the cars and sixty-three pissscngers ascended to the top in 3 minutes 15 seconds, amid long continued shouts of triumph. The gross weight in motion, (iucluding engine and tender) was 48,500 lbs . The planc is 2800 feet long, and grade 369 feet to the mile. On descending, the load was increased by the addition of niore than eighty persous, and this remarkable performance faithfully proved the immense power of the engine, for at three different times this great weight was brought to a dead stand, by the action of the steam alone.
"In the Engines constructed by Mr. Norris, the steam is generated by the ageney of wood fuel, which, we learn, propelis them at a very economical rate, while it greatly decreases the liability of wear and tear and the cost of repairs."
The following certificate is from the Weigh Master on the Columbia Road.

Philadelphia and Columbia Railroad.
Arrived from the Schuylkill Plane, the Locomotive Philadelphia, (built for the Austrian Government by Willian Norris of this city) with the following load, viz :

41 cars and load, weighing, 436,705 Tank,

9,000
lbs. 445,705
I certify the above statement to be correct,

Wm. B. Emerick,
Weigh Master P. \& C. R. R. Coffector's Office, Phila. Nov. 29, 1837.

The Norwich and Worcester Railroad Company in the prosecution of their work, found upon arriving at Quinebaug Falls, about three miles from this city, an immense mass of rock, lying directly across their contemplated ronte. On account of its great elevation, it was deemed necessary that it should be tunnelled. But upon an attempt to that effect, it was found that a large portion of the rock was of too substantial a cliaracter to enable them to do so. They were therefore compelled to open a passage from the foundation to the summit for a distance of 75 feet. Striking finally upon a solid mass of rock, the tunnel was commenced. On Monday the 28th inst. having succeeded, with great labor,
in working a passage through, our citizens generally were politely invited by the Dircetors of the Company to attend a celebration of its opening. A large assemblage of gentlemen and ladies were present. The ceremonies were commenced upon the summit of the hill through which a passage had been wrought, by a prayer from the venerable Dr Nott, of Franklin. An address was made by Asa Cliild, Esq. the General Agent of the Company, in which he made a brief statement of the present condition and prospect of the workyielding just and handsome compliments to the Commonwealth of Massachusctts and the City of Norwich, for the efficient and indispensable aid rendered to the Company, by the loan of their credit at a dificult and trying period of their operations. At the conclusion of these observations, by requesting of the Chairmain of the Committee of Arrangement, Col. G. L Perkins, a large pertion of the assemblage descended the hill on the West side, passed through the Tunnel, and reascended on the East side. They were received by the City Band of Music, ly whom they were escorted to a near grove a few rods distant. There a long range of tables were tastefully and bountifully spread with the good things of the land, of which all were invited freely to partake. Taken in connexion with the wild and romantic scenery of the spot, the whole performance was pleasing in a high degree-and we venture to say that all who were present will jnin with us in tendering thanks to the Directors of the Company, for the handsome entertainment afforded by them, and our best wishes for the success of their enter. prise.

The deep cut made-to reach the solid rock where the Tunnel was commenced as well as the Tunnel itself, was executed by the enterprising contractor for the New York and Harlem Railroad, Mr. Jolon Rutter, who is already becoming distinguished in colossal works of this description. The Norwich and Worcester Railroad Tunnel is 22 feet wide, 18 fect high, and about 300 feet long, and passes through a bed of hard gneiss similar to the rock of our own Island, of the vein of which it is probably a part. The first drill driven into this tunnel was on the 28th of April last, and the rock was completely perforated on the 27 th August following-comprehending a period of 122 days.

A Stockholder.

> Fron the Corrier and Enquirer.
pennstlvania trade and its increase.
The Argus admits that our up trade or tonnage of merchandise on the Erie Canal has fallen off 25 per cent. the last season, but attributes it to a decrease of our imports from England, \&c. of 35 per cent. This does not tell the whole truth. Philadelphia has taken a large portion of our business-this is the true secret of the falling off of our tolls, and
the increase of those in Pennsylvania. If any one doubts it, the evidence is to be found in the official report of D. H. Beardsley, Collector at Cleaveland, published in the Herald and Gazette of the Sth Dec.; we there find, that although there is the only difference of clearances for the month of November of 203,860 lbs.- (an increase)-yet in the article of merchandise there is a falling off of more than 50 per cent!! The reports says
" The total amount of pounds
"cleared the past month on
"the Canal is
4,897,667
" The corresponding month of
" November last year
4,693,807
*There is a great fulling off in
" the article of Merchandise.
"Last year there was cleared
" in November,
*This November,
2,609,633
1,256,631

Falling off

$1,353,002 \mathrm{lbs}$.
Where has this trade gone to ? Look at the map and the position of Cleaveland, and the answer is ready. It has passed through Pennsylvania by her Railroads and early canals, via Portsmouth, on the Ohio, into the interior of that state. Will not this fact, with the rapid strides of Pennsylvania in internal improvements, induce Governor Marcy to recommend the next Legislature, to foster railways, from tide waters to the Upper Lakes? Also, why not at once commence the Ship Canal around Niagara Falls, and a corresponding work from Oswego to the Hudson, so as to convey barges of produce by steam or animal power, from the Lakes to the wharves in New York?
J. E. B.
ars At all events, let its merits be examiaed by state surveys.

Canal metiting.

A meeting was held at P. Goodman's, on Tuesday evening, and delegates were appointed to attend the Canal Convenvion on the 20th, at Oxford. We cannot give the names of the delegates, as the proceedings have not been handed in.

A committee was appointed to co!lect all the facts within their reach, relative to the amount of business which will naturally be done on this Canal-such as statistics in regard to Coal, Lumber, Plaster, Salt, Iron, \&cc. \&c.-distances from the Coal and Plaster beds, to given points on the canal-costs of trausportation, \&c. \&c. \&c. The committee to report at an adjourned meeting, on Monday evening next.

To the Editor of the Courier \& Enquirer :

I send you a communication on the subject of internal improvements, to which please call the attention of your readers. In an age like the present, when not only the people, but the government of every country, are alive to the vast importance of internal communicarions, it will be a singular fact if the legislature of our own State should be
the last to act. Thus far they have not patronized Railroads; nlthough they were the first to exhibit the unparelleled effects of public prosperity by an introduction of a liberal patronage to Canals.

Your's \&c.
R.

INTERNAL IMPROVEMENTS.

The subject of Internal Impiovements which has for a long period engaged the undivided attention of most of our sister States, (and of some individuals in our own State, has at last been introduced in our Common Council by Alderman Bruen, who offered at a late meeting the following resolution:
Resolved, That it be referred to an appropricte committee to report a suitable meinorial to the Legislature for the establishment of a Board of Commissioners on public works, and for the formation of a liberal plan of internal improvements in this State.
'The resolution was adopted, and an able committee consisting of Messrs. Bruen, Robert 'Smith' and Ingrahain, appointed. The apathy of New-York on this great and important question has for some time been a matter of surprise to all who have examined the subject, and who are aware what great advan. tages she has already derived from her public works; which, literally speak!ng, are on a small scale and of limited extent. So great was this apathy that it was with the greatest difficulty that iegislative aid was obtained for the New-York and Erie Railroad Company, one of the most important and deserving corporations in existence.

The movement of Alderman Bruen demonstrates that sume effort is to be made to bring about a different state of things; and if it should prove successful (as it doublless will) we may confidently look forward to the possession and enjoyment of the numerous advantages wheh a steady and well-directed system of internal iinprovements cannot fail to impart. I have stated before there is great apathy on this subject. My attention to the relative value or prices of the different raitroad stocks in the United States, their cost and income, the support they receive from the people, and the dividends they pay the stockholders, has enabled me to collect a few facts, which I add, to establish the accuracy of this position.

There are now in operation in New. York, on leading routes, numerours railroads, of all which only one, the Utica, is above par in the market; while in the States of Pennsylvania, New.Jersey, Maryland, Delaware, South Carolina, Massachusetus, \&c. most of them are at or near par. The average prices would bring them above par-(I take the price as the standard of the support they receive from the public-as price depends in a great measure on their dividends) Here with our immense travelling, and great transportation, none but the Utica payz a regular dividend-none other, therefore, receives a cordial support.

Why is it so? Is it because there is an antagonist interest at work that operates against the others, or is it because the public, not a ware of the great benefits dorivable from them, have neglected to employ them? I take the latter to be the true reason. Let sus show them, then, whut advantages they are throwirg away. The Muhawk and Iludson, and the Utica now affurd a conimued line of communication from Albany to Utica traversable at all seasons, and in all uceathers. From Utica, the line will shortly be continued to Rochester. The railroad from Batavia to Buffalo will soon be commenced, the Hullund Land Company having generously given all the land required for the road. The funds to pay for the grading and iron will be obtained in Holland, where a loan is in progress of negotiation. Branch roads already con. nect the principal places out of the regulay Western line. 'I'nus it will be seen these companies will in a short time have completed an uninterrupted railroad communication from Albany to Lake Erie, with. out taxirg the public one cent for its construction. 'Ine vast savings thereby se. sured, are fully illustrated by one faci which is mentoned in a late London paper. A statement made by the corporanon of the Grand Junction Railway, states that from July 4th to October 4th, 144,818 persons have been conveyed on the road at a cost of $82,000 l$. less than they would have paid had they travelled in coaches. Not a single accident has occurred on the road during that time",

I havestated what may be looked upon as already done in the way of construction of Railroads-but the great point of consideration is what remains to be done. Although we have, a complete chain of railroad to Lake Erie, yet it is one that cannot be enjoyed by the merchants of this city during an important portion of the year. It still leaves us here, some weeks behind our rivals in the western trade. - There are two modes of placing us, not on an equality, but far ahead of them, both of which should be adopted, as both have peculiar advantages. The one is to prosecute with energy and dispatch the New-York and Erie Railroad. And here let me observe, that though political views should not be mixed up in a measure like this, still much is expected from the whig portion of the present legislature. The confidence of the people in their principles will depend on their action in this respect. One of them is the prosecution of internal improvements ; and 1 call on them, to use a hoinely proverb, is " practise what they preach." When this great road is completed, it can at a trifling expense be connected with the city itself by an extension of the Harlam Ruilroad to a point oppo. site its termination at Tappan. The freight can be transpot tel across the river in the cars, and there need be no unladins until it is deposited in its place of destination. The other mode alluded to, is the construction of the Albany \&o New-York
roal, and for this reason-That will also eonnect it with the city by the Harlæn Railroad, and with it and a road of 80 miles in Connecticut, we extend our communication to Boston by means of the Worcester road.-The importance of this last work is self evident. Thus do we see what great results may flow from fairly carrying out the propositions of the worihy alderman. New.York, with her Railroads extending North, East and: West, and with her commercial advantages, prosecutung and extending her intercourse with the south and with foreign countries, will then take the station to which the enterprise of her citizens and her natural position entille her. But as long as she neglects to avail herself of these advantages, she is not only allowing less favoured but more industrious sivals to reap them, but is in danger of losing them beyond all hope of recovery. I propose continuing the subject, should my views meet your approbation.

> Yours,
R.
steam navigation to america.
Sir,-An article on "Steam Navigation" appeared in a recent number of the Edinburg Review (No. 131,) in which the writer endeavours to prove that Dr. Lardner is correct in the conclusion to which he came in his paper on that sub. - ject laid before the British Association, Sept. 1836,-viz., that a profitable and permanent connexion could not be effected between New York and England in ane trip.

As the subject is one of gencral interest, and of great importance to the commercial interests of this country in particular, great care should be taken not to discourage the spirit of enterprise, which has prompted three different parLies to make the attempt to establish team communication with the United States, nor to afford an excuse for the East Indian Goverument to fall back into its former inertness upon the subject of a steam communication with India, now that it has been just roused into action, by the determined and persevering importunity of its subjects there. It is essential to a fair trial of any project, that the best means be employed to accomplish the end designed. If a vessel whose speed is only five miles per hour be employed to perform a certain passage in a given time, when one whose speed is ten miles an hour can be had, it is evident that the experiment is not a fair one. So in reasoning upon the practicability of any scheme, like that of steam navigation to the United States, if a number of vessels be selected whose size, speed and performance, are notoriously less, than those of many other vessels which are actually in existence, it is evident that however correetly the size, speed, and performance of the selected vessels may be given, it does not prove that the scheme is. impracticable with vessels of larger ize, greater speed, and better perform-

The writer of the article "Steam Navigation" in the Edinburgh Keview, has given. us a very full and elaborate table of the consumption of coals, average speed, \&c. of eleven steam vessels, from which he most Jogically and correctly proves, that with such vessels, a steam communication with New York is impracticable. Had his researches been somewhat more extended, it is very possible that he might have found, at least eleven other steam ressels, whose average speed would have shown that instead of twenty-four or twenty-five days, it would notbe possible to perform the same distance in fourteen or fifteen days.

The Reviewer states that Mr. Field considers that great improvements have been made in marine engines since 1834. The performance of many of the new steam vessels fully bear out Mr. Field in the opinion which he is said to have given. Yet, by a strange perversity, he adopts as data the performance of steam ships. most, if not all of them, built before that time, and concludes, that a steam communication with New York is impracticable !

The Admiralty steamers are the data upon which his calculations are made; yet he has not informed us whether they slackened their speed during the night, as I believe is the practice in her Majesty's service.

The writer contends, that any inferences from coast and chamel trips are fallacious; but he has not shown us why they are so. It is well known, that on the coast and in the channel, the short cross sea which is so frequent, retards the progress of steam vessels much more than a loug rolling sea, and therefore a priori, this affords a good test by which to try the performance of a steam vessel.
The use of salt water for raising steam is admitted to be a great obstacle to the performance of long voyages, but it is also admitted, that fresh water may be substituted with good effect ; the receut improvements in condensation, warrant us to expect that it may be done with success.
But the great difficulty is, the quantity of coals required, which the Reviewer says, will prove an insuperable obstacle to long voyages. In this particular it seems lighly probable that he will be found to be in error, for upon his own showing, the larger vessels require a smaller power in proportion to their tonnage than the smaller ones. And of the vessels which he has selected as the data upon which he makes his calculations, there are only three which are now deemed Jarge vessels,-viz., the Medea Steam Frigate, of 807 tons; the Dee. of 639 tons; and the Private Steamer A, of 660 tons. The two firstare constructed for war, and are therefore not to be expected to have sufficient capacity for carrying a large sumply of fuel; and the Private Stenmer i; is tot sufficiently described; for the public to form any
judgment as to the quantity of fuel she will carry.

The Reviewer states that a steamer of 1,200 tons, with 300 horse power, will only stow 500 tons of coals. In this statement it is evident that he has taken the nomainal tonnage ns the actual weight she is capable of carrying; whereas, it is usually found that a vessel will carry about 50 per cent. more than her nominal tonnage; thus, a vessel nominally of 1,200 tons is capable of carrying with safety 1,800 tons. - If then the power be equal to 300 horses, the weight of the machinery and water will be, say 400 tous. The consumption of coals per dav with boilers of the best construction, will be $72,000 \mathrm{lhs}$. per day, and for fourteen days will be 450 tons, leaving 950 tons for spare coals, merchandise and stores.
Another important feature which has been overlooked, is the fact, that large vessels are propelled at a much greater rate with the same proportion of power. to tonnage than smaller ones. Hence, if the Dundee and Perth, which are about 650 tons, are propelled at the rate of 9.99 miles, nearly ten miles per hour, a vessel of $1, \therefore 00$ tons inay be reasonably expected (having the same proportion of tonnage to power) to be propelled at a greater velocity, but if, contrary to all experience, she slould not go faster, then she would perform the distance between New York and England in fourteen days; and if the currents and winde should be favournble, in much less time, as it is found that with a strong wind in such a direction, that a steamer can set her sails, her speed will be accelerated about a mile, or mile and a half per hour.

Let us take the large steam ship now building in London for the British and American Stean Navigation Company, and try what her capabilities are for performing the intended voyage. Her nominal tonnage is 1,795 tons; she is to be propelled by two engines of 221 horse power each, which will require 47 tons 2 ewt. 3 qurs. 12 lbs . of coal per day of twenty-four hours; if her speed is only nine and a half miles per hour, she will perform the passage in fourteen and a half days, and consume during that period 683 tons 11 cwt 1 qr .20 lbs of coals.

Take the estimate weight of her machinery, boilers and water at 600 tons, and (allowing 50 per cent. on the consumption of coals as a reserve) the weight of fuel at 1,025 tons, we have 1,625 tons for machinery and coals. Now the calculated displacement between the light and load water line amounts to about 2400 tons, thus leaving about 800 tons to be occupied in stores, merchandise and passengers: From a drawing which I constructed, in order to be submitted to the directors, I found by calculation, that with her maehinery, coals and merchandise, she would draw only 16 feet of water, if built after my design; and, although built from another design,

I do not think that her draft of water will be greatly different, probably rather more than less, when fully equipped.
Some of your readers may be impatient at this mode of mecting the question and wish for sume facts upon which they too may reasoa and come to a concliasion for themselves.

In 1825, the Euterprise, a vessel of about 409 tons, effected her passage from England to Calcutta in 113 days, 64 of which she was propelled by stean, and 49 by sails alone.
In the present year, the Atalanta steam ship, of about 650 tons, effected her passage from England to Calcutta in 91 days, 23 of which she was in port, and under weigh 63 days only.
Here then is a striking instance of the improved state of marine steam cngines, and of the advantage which a large vessel has over a small one in making her passage. The average speed of the Enterprise, taking the distance at $\mathbf{1 5 , 0 9 0}$ miles, is $132 \frac{2}{3}$ miles per day, or ubout 5.4 miles per hour; whilst that of the Atalanta is 220^{2} miles per day, or $9 \frac{1}{6}$ th miles per hour for the whole distance.

The average speed of her Majesty's steam vessels on the Mediterranean station was, some time since, officially stated to be $7 \frac{1}{4}$ th miles per hour, whieh is $1 \frac{1}{4}$ th miles more than the average given in the Edinburgh Review; taking the highest number as correct, it is much below the rate of most merchant steamers, under much more unfavourable circumstances. For instance, those between Scotland and London come to an average speed of upwards of nine miles per hour ; those between Glasgow and Liverpool, perform that passage in, from scventeen to twentyfour hours; and from the books of one company, I found on inspection, that the average time occupied in the passage, both winter and summer, was nineteen hours; and it was thought that some new boats, which were then nearly ready would make the average still less, now the distance by sea being considerably more than 200 miles, the average speed of the steam ressels employed in that trade, must considerably exceed ten miles per hour. The voyages now regularly performed by the merchant steamers to the Peninsula and into the Mediterrancan warrant us to expect that a steam communication will be efiected with New York in one trip.

It woild be unjust not to refer to the Columbus, a steam ship, fitting upon Mr. Howard's principle for the purpose of attempting the passage to New York. She is capable, I numformed, of carrying a sufficient quantity of coals to supply the engine for upwards of forty days, and will use fresh water only for raising steam.

Excuse my trespassing so long on your time, and believe me,

Yours truly, Georae Baylex.
medal striking.
We have much pleasure in announeing to the friends of the fine arts that

Mr. Pistrucci, clief medallist in the Royal Mint, has discovered a method by which he can stamp a matrix or a punch from a die which has never been touched by an engraver, and shall yet make a medal identically the game with the original model in wax, an operation by which the beauty and perfection of the master's design are at once transferred to any metal, whether gold, silver, or copper, by striking it according to the nsual process. It will at oace be seen that this is a very different operation from that by which cast medals are manufactured It is as simple as it is ingenious, and Mr. Pistrucch-having no intention of taking out a patent for the discovery, and being anxious to give to the public the full bencfit of it, in the different processes of munfacturing plate, jewellery, and all kinds of ornamental work in metal, annonnces that the whole of the process consists of the following method:-The model being east in any sulstance, wax, clay, wood, or other fit inaterial, a mould of it is taken in plaster, from which mould, when dried and oiled to harden it, an impression is taken in sand, or other similar sulstance which may be preferred, and from this again a cast is obtained in iron as thin as possible, that the work may come up sharply, and the iron attain the hardness almost of a steel die hardened. The enst-iron impression is then flattened mathematically true on the back, and fixed in a steel die, the hollow of which is turned to the exact size of the cast-iron, and it is set within the rim or border, hammered as close as possible, so as to form a collar. The metal upon which the impression is to be struck (to form either the medal itself or a steel matrix, if desired) is to be fashioned into the shape of a cone in the ordinary way, perfectly flat at the base, heated red hot, and placed at the bottom dish of the press. When the die, fitted as above, having been previously placed at the top dish, and the workmen quite ready to give the blows instantly, thrce or four, as may be required, a perfect impression of the cast-iron will be attained without the least injury to it. Of course it will be necessary, previous to the die being used for the artist to polish the surface. Mr. Pistrucci's first experiment was successfully performed upon a punch of hard copper, with his model of Sir Gilbert Blane, being nearly three inches in diameter; and he has no doubt that it will equally succeed on a steel punch, perhaps, too, without its being necessnry to heat it. When the process above described shall have been brought to the perfection of which it is capable, there can be no doubt that in the execution of works of this description, it will not only be the saving of the labour of months or years in the engraviug of dies, and, consequently, of great expense, but the work to be executed will in all points be, in an instant, an exact fac-ormile of the original conception of the artist, instead of representing, as at present, merely the handiwork of
the engraver. copied from such original. It will also dispense with the use of very expensive machincry, such as the tour a portrait, introduced into the mint ly Mr. Pistrucci several years ago, which, however apparenty correct in its productions, can never give a perfectly true semblance of the original, even to the limited extent to which it is applicabie. And we may possibly be led by it to dis. cover the mode by which the artists of antiquity succceded in producing these beantiful coins, in which the softness and boldness of the fleshy parts have neser yet been equalled by any modern engraver in steel.-Times.

teleghaplic communication betwixt

 EDINBUROLI AND LOTDON.
From the Scotswian.

It has been found by experiments made with a view to ascertaining the velocity of electricity, that it is transmitted instantaneously, by means of a common iron wire, a distance of eighi miles; and electricians of the first eminence have declared their opinion that. judging from all scientific experiencc, the electric or galvanic influence would be almost instautaneously transmitted from one end to the other of a metallic conductor, such as ordinary copper wire of moderate thickness, of some hundred miles in length.

If this scientific theory is correct, it follows that a wire, secured by a coating of non-conductors, and protected from external influence or injury, and laid under the turnpike-road between F:dinburgli and London, could be the means of distinctly indicating to a person stationed in London, that such wire had been electrified or galvanized in Edin-burgh-the transmission of the electric or galvanic influcnce being clearly disccruible by various well known means.

How, then, is this scientific fact to be applied to purposes of practical and general utility? Simply by laying as many wires separated from each other as will correspond to the letters of the alphabet, and preconcerting between the persons stationed at two extremities of the line of communication, that each individual wire is to represent a particular letter; because, if the person stationed in Edinburgh can, by applying the electric influence to any one wire, instantancously apprise another person stationed in London that a particular letter of the alphabet is thereby indicated, words and sentences ad infinitum, may be communicated, and the idea of a perfect telegraph would be realized.

Without experience, it is impossible to say with what rapidity this electro-magnetic telegraph could be worked; but, in all probability, intelligence could be conveyed by such a medium as quickly as it is possible to write, or at least to print ; an apparatus could be constructed somewhat resembling the keys of an organ, by which the letters of the telograph could be touched with the mont perfect ease and regularity.

It has been mentioned, that the transmission of the electricity or galvanism could be discernible by various means well known. If any indication, however slight, is made, that is enough, all that is wanted being that it should be perceivable by the person placed to watch the telegraph.

It has been assumed, that the electric current is capable of transmission by means of a single impulse from Edinburgh to London. But it is not indispensable that so great a distance should be accomplished at once. Inmediate stations for supplying the telegraph with new galvanic influence could be resorted to, and its perfect efficiency still preserved.

The best mode for troughing or protecting the metallic conductors, and separating them both from each other, and from the surrounding substances by which the electric or galvanic influence might be diverted, would, of course, require considerable scientific and mechanical skill; but the object appears perfectly attainable. Insulating or nonconducting substances, as gumlac, sulphur, resin, baked wood, \&c., are cheap; and the insulation might be accomplished in many ways. For example, by laying the wires, after coating them with some non-conducting substances, in layers between thin slips of baked wood, similarly coated, the whole properly fastened together, and coated externally. These slips might be perhaps ten yards long, and at the joinings preeautions for the expansion and contraction of the wire by the change of temperature, might be adopted. The whole might be enclosed in a strong oblong trough of wood, coated within and pitched without, and buried two or three feet under the turnpike road.

The expense of making the telegraph proposed is, of course, an important element in the consideration of ite practicability and utility.
The chief material necessary, viz., copper wire, is by no means expensive. It is sold at 1 s .6 d . per pound, of sixty yards in length. The cost of a wire from Edinburgh to London, say 400 miles, would thus be about $900 l$. ; but say for solderings, \&ec, 100l. additional, or that each copper wire, laid from Edinburgh to London, would cost 1000 . sterling, and that the total amount of the wires necessary to indicate separately each letter of the alphabet, would be 25,000 . The purchase of so large a quantity, would, of course, be made at a considerably less price; but probably one or two additional wires might be needed, and the circuit of the electrical influence must be provided for by one or more return wires.
The coating, separating, and troughing of the wires can be accomplished by low-priced materials, and the total expense of the whole work (except the price of the wires), allowing a large sum for incidental expenditure, has been raughly estimated at 75,0001 ., making a
maximum expenditure of, say, $\mathbf{1 0 0 , 0 0 0}$. for the completion of the telegraph. FG1 a proportional additional sum it might be extended to Glasgow.

As to the working of the telegraph, it is apprehended, that even if the speed of writing were rot attained, there could at least be no difficulty in indicating one letter per second. At this rate, a communication which would contaiu sixtyfive words would occupy about five minutes. This is supposing the vowels to be all indicated. But abbrevation in this, and many other respects, would no doubt be contrived; and the number of words in the communication supposed, are greater than necessary for an ordinary banking or commercial letter, or for friendly enquiries and responses. Supposing, however, that each communication was to occupy five minutes, and to be charged five shillings cach, if the telegraph was worked twelve hours a day, (that is, six hours from each end), it would produce a revenue of $36 l$. daily, or $10,800 l$. per annum, supposing there were 300 working days in the year. If, however, the plan is practicable, the public intelligence that would, no doubt, be transmitted by the telegraph would be sufficient to keep it in operation night and day.

Arrangements are being made for having the necessary experiments tried on a metallic conductor of fifty or a hundred miles in length, and if the same instantaneous and perfect indication of the passage of the electric or galvanic fluid is found to take place, as in the case of the recent experiments at the University, the triumpl of the scheme would be complete.

hight evolved from insects.

A singular phenomenon was witnessed on Tuesday evening, in the city of Canterbury. The residents within and near the precincts of the Old Castle, at the southern entrance of the city, were alarmed in the night by a stream of red light, npparently issuing from the old ruins, as if a fire were raging below. On repairing to the spot, it was discovered that the light emanated from an innumerable swarm of small insects, which had collected on the walls and about the old ruins. The moon was not visible, and, with the exception of the spot on which they had located, all was darkness. With the morning sun the little creatures disappeared. About thirty years ago a similar phenomenon was witnessed on these walls.-Kentish Ga$z c t t$.
steam vessels in sweden.
The progress of Sweden in steamnavigation may be considered as very creditable to that country, when we reflect that in spite of great natural resources, it is at present the poorest in Europe. The number of steam vessels now in activity amounts to twenty-six, of which four belong to the government and twenty-two to prisate individuals.

The horse-power ol the four government teamers is stated at 275 , and that of the private ones at only $899 ;$-the average, therefore, fer one of the former is 68 horses, and for one of the latter, 40, or one-tenth of the power of the large steamer just launched at Bristol, to run between that port and Now-York, three of a similar size to which would exceed in power the whole Swedish twenty-six. Four other steam vessels are now, however, in course of building for the Swedish goverument, and it is intended to go on gradually adding more and more to the navy.

arsenic in candles.

At a late meeting of the Medico-Botanic Society, Mr. Everitt made some remarks respecting the tests for arsenic, and afterwards demonstrated its preserice in the composition candles. Having fully proved the existence of the poison in the candle, in the proportion of at least two grains in cach (and he stated his belief that four grains were a more correct statement,) he then proceeded to assign a reason for its use. Candles which are made of tallow are of too low a melting point to admit of the use of a curved wick. Stearine or spermaceti, either of which has a. much higher melting point, is, therefore, employed in making the composition candles, and to prevent its running into grain or crystalizing, a certain quantity of wax was added, which, it was found, would fully answer the purpose. It was afterwards discovered that a small quantity of arsenic would effect the same object, and it being considerably cheaper, it was adopted into use. The professor further stated that, when he had made the discovery, and it had become bruited abroad, his opinions were confirmed by two or three manufacturers who acknowledged using the poison. He left it to the members of the profession to determine whether arsenic thus volatilized, and coming in contact with the lungs, would prove deleterious. Judging from the efiects of other gases, he thought it would be injurious.-Lancet.

Chinese hitcrature.

The study of Chinese appears to be making some progress on the Continent. The Emperor of Russia has appointed a Professor of that language at the University of Kazan, in the person of a Russian missionary long resident at $\mathbf{P e}$ kin; he has also purchased his Chinese library for three thousand rubles, and assigned him an annual salary of four thousand rubles, or about a hundred pounds sterling more than it is proposed to give the new Professor at the University of our own wealthy metropolis. The latter situation is, it is rumoured, to be offered to Mr. Kidd, now President of the Anglo-Chinese College at Malacca, one of the Chinese pupils of which has lately found employment under the Government of the Celestial empirc, at a
translator from the English. At Vienna, also, they are not inactive. Mr. Stephen Fndlicher, an industrious and ingenious officer of the Imperial Library, has taken advantage of a recent visit of Baron Schilling de Constadt, the well-known linguist and traveller, whose gigantic stature aud proportions found him. such favour among the Tibetans, to draw up and publish a catalogue of the Chinese books and coins of the Imperial collec tion. 'The number of works, it appears, is 189 ; the library may perhaps be equal in this department to the British Museum, or even of the East India Company, but is certainly inferior to that of the Asiatic Society, or the London University; and all four of these are in our own capital, now pre-eminent for collections of Chinese literature. With regard to coins, there will probably be no reason for English readers to recur to the pages of Mr. Endliche : a memoir on the subject, embodying information derived from Chinesc authorities, by Mr. Samuel Birch, of the British Museum, was recently read before our Numismatica Society.
** Subscribers who desire to be supplied with missing numbers, will do wel to apply for them soon. We shall alway's take pleasure in furnishing them if we have them to spare.

0 Pr Particular attention will be given to the procuring of all kinds of Instru ments required by Engincers.-Orders must be accompanied with the necessary funds or city acceptances.

NEW ARRINGEMENT.

ROPES FOR INCLISED PLANES OF RAIILROADE.
WE ther sulbscribers have formed a eo part nership under the styli and firm of Folger \& Coleman, for the manufazturin: and selling of Rupes for inclined plancs of railroals, and for other uses, offer to supply ropes for inclined planes, of any length required withnut splice, at short notice, ithe manufacturing of corilage, herelofore carned on by S. S. Durlee \& Co., will he dome by the now firm, the same superintendint and machinery are employel by the new firm that were employel by S. S. Durfee \& Co All orilers will be properly attended to, and ropes will bushipped to any port in the United States.
12th munth. 12th, 1836. Hudson, Columbia County, State of New-York.

ROBT. C. FOLGER.
33-15
GEORGE COLEMAN.

ames' Celfibrated shovels' SPADES, \&c.

300 duznns A mes' superior back-strap shovels.
150 do. do. do. plsin do.
150 so. do. do. cas'steel Shovela \& Spades
150 du. do. Gold-minurg Shovels.
100 do. do. plated Spades.
50 do. do. soiket Shovels and Spades
Together with Pick Axes, Chum Drills, and Crow Bars (steel pointed). manufactured from Salisbury refined iron-for sale ly the manufarturing agente,

WITHERELL, AMES \&OO

No. 2 Liberty street, New-York.
BACKUS, AMES \& CC.
Fo. 8 State-sircet, Albany.
N. B. - Also furnished to order, Sbapes of every demeription, made froas Salisbury refined Iron. $\mathbf{v 4}$-il

MACHINE WORKS OF ROGERS,

 KETCHUM AND GROSVENOR, Patermin New.Jersey. The undirsigned receive orders fot the following aricles, manufactured by them, of the most superior description in every particular. Thei works being extensive, and the number of hand: employed being largro, they are enabled to execut burh large and smalt orders with promptness and dispatch.
RAILROAD WORK.

Locomotive S:ean-Eugnes and Tenders; Dri ving and-other Locomotive Wheels, Aales Springs and F lange I'ires; Ca: Wheels of cast iron, fron a variety of patterns, and Chills; Car Wheels o cast iron. with swrought Tires; Axles of best Anme rican refined iron; Springs; Boxes and Bolts for Cars.
COTTON, WOOL, \& FLAX MACHINERY,
Of all descriptions and of the most improved pat erns, Style, and Workmanship.
Mill Geering and Millwright work generally Hydraulic and other Presses; Press Screws; Cal lenders; Lathes and Tools of all kinds; Iron anil Brass Cas ings of all descriptions.
ROGLRS, KETCHUM \& GROSVENOR
Paterson: N. J. or 60 Wall-st. New-York
51tf

FRAMË BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build on his Patent Plan, watu.d respectfully inform Railroad and Bridge (iorporaions, that he is prepared to make cohtracts to build, and furnish all materials for superstructures of the kind, in any part of the United. States, (Maryland excepited.)
Bridges on the above plan are to be seen at the followi-g lucalities, viz. On the main rearl leading from Baltimore to Washingron; two miles from the former place. Across the Motawamkeag river on the Military road in Maine. On the national road in llituois.at sucdry painfs. On the Baltimure and Susquehanna Railroad at three points. On the Hudson and Paterson Railroal in two places. On the Boston and Worcester Railroad; at several points. On the Boston and Providence Railroad. at sundry points. Across the Contoncnok river at Hennikar, N. H. Acrose the Souhegan river, at Milford, N.H. Across the Comnecticut river, at Hancoed, N. H. Across the Androscoggin river, at Turner Centre, Maine. Acriss the Kennelnec river, at Waterville, Maine. Across the Genesce river, at Squakiehill, Mount Morri; N. Y. Across the White River, at Hartford, Vi. Across the Connecticut River at Lebanon, N. H. Across the mouth of the Broken Straw Creek, Penn. Across the innuth of the Cataraugus Creek, N. Y. A Rail-road-Brilge dingonaly across the Eric Canal, in the City of Ruchester, N. Y. A Railriad Bridge al Upler Sill Water, Orona, Maine. This Bridge as 500 feet in length; one ot the spans is over 200 feet. It is probably the firmest wooden bridge ever built in America.
Notwithstanding his preseet engagements to build retween twenty and thirty Railruad Bridges, and several common bridges, deveral of which are now in progrese of construction, the subscriber will prompily attend to business of the kind to much reater extent and on litheral terms.

MUSES LONG.
Rochester, Jan. 13th, 1837.
4-y

STEPHENSON

Builder of a superior style of Passenger Cars for Railroads,
No. $2 \pi 1$ Elizabeth street, near Bicecker strest, NEW-YORK.
RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the New- York and Harlaem Railroad, now in nperation.

ROACH \& IVARNER

Manufacturers of OPTICAL MATHEMA TICAL AND PHILOSOPHICAL INSTRU MENTS, 293 Broadviay, New-York, will keep constanily on hand a large and gencral assortmen of Instruments in thoir line.
Whnlesale Dealers and Country Merchants suppliet with SURVEYING COMPASSES, BA ROMETERS, THERMOMETERS, \&e. \&c. of their own mannfucture, warranted accurase, and at lower prices than can be had at any other extablishinent.
Fin intruments made to order and repaired.

RAILWAY IRON, LOCOMOTIVES, THE subecribers. \&c. THE subscribers offer the following articles for sale :-
Railway Iron, flat bars; with conntersunk holes and mitred joints,

witn Spikes and Splicing Plates adaptel thereto. To be sold free of dity to State governments, or: incorporated companies.
Orders for Pennsylvania Boiler Iron executed.
Rsil Ruad Car and Locomitive Engine Tires, wrought and turned ur unturnell, ready to be firted on the wheels, viz. $30,33,36,42,44,54$, and 60 inclies diameter.
E. V. Patent Chain Cable Bolts for Railway Car axles, in lengtis of 12 feet 6 inches, to 13 feet $2 \frac{1}{2}$, $2 \frac{2}{3}, 3,3 \frac{5}{3}, 31.3 \frac{1}{3}$, and $3 \frac{1}{2}$ inches diameter.
Cbains for Inclined Planes, shurt and stay links, manufsctured frum the E. V. Cable Bolts, and proved at the greateat straio.

India Rubber Rope for Inclined Planex, made from New Zealand Wax.
Also, Patent Hemp Cordage for Inelined Planes, and Canal Towing Lines.
Patent-Feft. for placing between the iron chair: and stone block of Eilge Railways.
Every description of Railway Iron, as well as Locomotive Engines, imported at the shortest nutice br the agency of one of onr partners, who resides in England for this purpose.
A bighly resjrectable A merican Engineer resiJes in England for the purpose of inspecting all Loco. motives, Machinery, Hailway Iron, \&c. ordered through us.
A. \& G. RALSTEN \& CO.,

Philadelphia, No. 4 South Front-at.

ARCHIMEDES WORKS.

(100 North Mcore-street, N.Y.)
THE underaigred beg leave to inform the proprietnrs of Rail Roarls, that they are prepared to furnish all kinds of Machinery for Ruil Roads, L,ocomolive E,ngines of any size, Car Wheels, such as are now in successful operation on the Caaden and Anboy Rail Road, none of which have falled.Castings of all kiudy, Wheels, Axles and Buxes, furnished at the shortest notice.
H. R. DUNHAM \& CO

NewYork, February 12ih, 1836.
4-ytf

PATENT RAILKOAD, SHIP AND BOAT SPIKES.

* The Troy Iron and Nail Factory keeps constantly for salo a very extensive assortmerit of Wrought Spikes and Nails, from 3 to 10 inches, inanufactured by the subscriber's Patent Machinery, which afier five years successful operation, and now almost universal use in the United States, (as well ás England, where the subscriber oblained a patent) are fuund superior to any yet ever offered in market.

Railroad companies may be supplied with Spikes having conntersink heads saitable to the holes in iron rails, to any amount and on short netics. Al. nost all the Railroads How in progress in the United States are fastened with Spikes mede at the above-named factory - for which purpose they are found invaluable, as thelr adbesion is more than douhle any enmmon Spiles made by the hammer.
** All orders directed to the Agent, Troy, N.Y.
will be punctually atteniled to.
HENRY BURDEN, Agent.
Troy, N.Y., July, 183 I.
** Spikes are kept for sale, at factory prices, by \& J. Townsend, Albany, and the principal Iron Mo chants in Albany and Troy; J. I. Brower, 222 Water.street, New-York; A. Ns. Jones, Philadelphia; T. Janviers, Baltimore; Degrand \& Smith, Eostrn.
P. S.-Railroad enmpanies would do well to forward their erders as early as practicable, as the subseriber is desirous of extending the manufactur. ing so as to keep pace with the daily increasing demand for his Spikes.

1 J 23 mm
H. BURDEN,
F. Mitchell, Printer, 265 Bowery, N. Y.

ADVOCATE OF INTERNAL IMPROVEMENTS.

fublished weekly, at No. 30 Wall street, at five dollars per annum, payable in advance.

D. K. MINOR, and
GEORGE C. SCHAEFFER

Editorsand \} Proprietors.]

CONTENTS.

Ohlo Railiond Report.
London and Birmingham Railtroad
Royal Observah ri-Temporary Caiseoon,
Cross's Experiment-Rusisian Gold Mines-Thames
Tunnel-Paper Cant-Percussion Tubee
Tunnel from Dover to Calab-Flitering Galvaric Telegraph-Round Scraper-Stachines ation of the Jumna-1)o. In Ewizzean Navi
light-Efect of Cimale-Ce ewizerland-Now for steamboat Fuel-Queenis Adverizements, \&e.

AMERICAN RAILROAD JOURNAL.
NEW-YORK, JANUARY 20, 1838.
OHIO RAILROAD REPORT.-R. HIGHAM, ENGINEER.

> Engineer's Officc.

To the President and Directors of the Ohio Rallroad Co.
Gentlemen, -I have the honor herewith to present the Maps, Plans and Estimates for the proposed Ohio Railroad, beginning at the western boundary line of the State of Pennsylvania, and extending westwardly to the Maumee river in the State of Ohio, a distance of 177 miles.

The several red lines on the maps, are those that have been minutely examined and surveyed; they embrace a large extent of country, and afford sufficient data, to determine the general route the road should pursue.

Of the several routes surveyed, that passing through the towns bordering upon the Lake, presents the least formidable obstacles, and has the most favorable grades. The whole of this route can be traversed by locomotive engines, with a small diminution of their greatest effective power, as the greatest inclination does not excced 16 feet per mile, and only a small proportion even of that elcvation. This route, commencing at the Penrsylvania line and extending to the Conneaut Creek, was surveyed with a view of connecting the road with the Pennsylrania Railroad, and can be changed between these points to meet that road when located.

From Conneaut Creek to the township of Perry, 2 distance of 34 miles, the line passes over a country highly favor. able for the constraction of a Railruad. The greatest embankment or excavation will not exceed 4 feet, except in crossing Ashiabula river, and some small streams. At this point in the township of Perry, The line diverges, and three lines of about the same feasibility biffer:- two of which

SATURDAY, SEPTEMBER 9, 1837.
 (Published January 20, 1833.)

pass through Fairport and Richmond, and the other through Painesville. The adoption of either of these lines will be a matter for your further consideration, at the final location of the road, when a detailed estimate for each will be submitted. These several lines again unite near the village of Willoughby.

Between Willoughby and Lower Sandusky, the line passes through the city of Cleaveland, Ohio City, Charleston, Vermilion, Huron, and Sandusky city. The only difficulty throughout will be the great elevation at which we shall be compelled from the surface of the country to cross some of the rivers flowing north. wardly into Lake Erie.
From Lower Sandusky to the Maumee river, the routes to the several towns on the river, from Perrysburgh to Manhattan, are about equal both in grades and expense; the route to the point which shall be deemed the most advantageous termination of the road, can be selected without fear of an additional expense of grading.
The South route from Ohio City to Lower Sandusky, through the townships of Olmstead, Elyria, Norwalk, Ridgefield, \&c., would be considered in ordinary circumstances a very favorable one; but in comparison with the northern route, there is a great differencc in favour of the latter, both in point of grading and in the amount of work.
For ease of grades, and proportion of straight lines to curves, perhaps no section of country can be selected more favorable than this route, for the construction of a Railroad. The whole distance from Penusylvania to the Maumee river being 177 miles, of which $171 \frac{1}{2}$ miles are straight lines, and $5 \frac{1}{2}$ miles of curres, or about one mile of curved line to 31 miles of straight lines. Of these lines, one is 40 miles in length, another one of 28 miles, four others of 15 miles each, and others from 5 to 10 miles in length.
The grades are short, and are laid to suit the construction of the country. All heavy excavations and embankments have been avoided. The greatest inclination in any one mile is 16 feet, and this may be feduced to 10 feet per mile, and all the other inclinations nearly to a level, with a very small additional expense.

Aggregate length of lines, with Lerel Grades,
Bo. do. with grades from levelDo. do. with grades from level- 109
to 7 ft . per mile,
Do. do. with grades from 7 to 10 ft . per mile,
Do. do? with grades from 10 to
15 ft per mile,

$$
11
$$

$$
\begin{equation*}
\because \tag{17}
\end{equation*}
$$

$\overline{\text { en }} 177$ miles:
The following estimate of the probable cost of the road graded for a double track, with a single track laid the whole distance, the necessary turnouts, machinery and buildings, has been made with great care, and I feel confident will be found abundant to complete the work. The superstructure is contemplated to be of the usual form used in the States of NewYork and New-Jersey (see plan and Estimate No.- 1) having a rail plate of twenty-five tons to the mile. The graded surface to be twenty.four feet wide in einbankments, and thirty-six feet in excavations, with a slope of one and a half horizontal to one rertical, having the proper ditches through the excaration. The large streams and valleys are estimated to be passed by wooden riaducts. In those that are of importance, the timber and framing to be completely pro. tected from the weather, the small ones will be built in a simple form as per plan, and can be replaced when decaying, by earth embankments, and stone arches, which with the facility afforded by the road for conveying materials, can be done with less expense than at present.

No allowance bas been made in the estimates for the purchase of lands and cost of fencing, nor for grubbing and clearing. The general disposition of the proprietors of the lands on the line to release it, and make their fences, and also the powers granted in the Cbarter to take the lands, and have the advantages offset against the damages, together with the liberal donations of land: and the enlightened riews entertained by the mass of the inhabitants through whose land the road passes, will warrant us in omitting this usually leary item in the construction of public works.

The light timber on the line, may be cut into steamboat wood, for which there is a great and increasing demand, and the oak-and other building timber will find a ready market, in the progress of
the work, and will yield more than suff. cient to pay all the expense of grubbing and clearing.
The general character of the soil, on the line of the road, is gravel, loam, sand, afd alluvial deposit, and throughout the line no rocky or other hard material is found. The earth from the slight excavations, is to be carriedinto the embankments; when there is nots snfficient earth from the clittings to form embankments, they are to be formed by widening and reepening the ditches on the sides of the road; and where a surplus of earth is laken from the excavations, it is to be wheeled into the spoiled banks contiguous thereto. there are but few excavations where the earth will have to be carried more than five hundred feet. In all cases, both the excarations and embank. ments have been estimated, so that the price per yard is abundant to meet any contingencies of extra hauling.

An even and level road, for the safe and speedy transportation of passengers and freight-besides the economy in wear and tear of machinery-is of the first importance, and can only be attained hirough the flat country, by properly draining and elevating the road. With this view, the grades, generally have heen elevated about two feet above the surface of the ground, by which means we shall be able to have a dry road upon which the frost will have but little effect, and from which the light snows will be blown off, and the deep ones easily removed.

estimate.

$1,230,164$ cubic yards of
excavation at $10 \mathrm{c} .8123,01640$
2,873,889 c. y. of em-
bankment, at 11 c. 316,12779
439,14419
197, 3 feet drains, (see estimąte A.) at $\$ 63$,

12,41100
28,5 feet culverts, (see estimate B.) at $\$ 157$,

4,38600
5, 10 culverts, (see estimate C.) at \$361

1,805 00
18,602 00
Bridge over Conneaut
River,
18,75000
do: over Ashtabula R. 32,290 00
do. over Grand River, $\mathbf{1 6 , 0 0 0} 00$
do. over Chagrin Riv. 8,20000 do. over Cuyahoga R. 38,80000 do.over Walworth Run, 10,500 00) do. over Rocky River, 20,000 00 do. over Black River, 10,80000 ro. over Vermilion Riv. 7,200 00 do. over Huron River, $\quad \mathbf{6 , 6 0 0} 00$ do. over Sandusky R. 39,000 00 do. over Portage River, 4,200 00
16,100 Lineal fi. of Bridge
over the maishes, ra-
rines and small streams,
at $\$ 4$ per lineal foot, 64,40000

708 crossing places ${ }^{\text {spr }}$
farms and roads, it $10, \quad 7,08000$ 177 miles of superstructure at $\$ 3,83$ per mile, as per estiriate D.

12 Locomotive Engines,

at $\$ 7,000$
84,000 00
20 Lar. Cârs, at $\$ 1,600,32,00000$
20 Sm . cars, at $\$ 1,000,20,00000$
100 Fr. Cars, at $\$ 400, \quad \$ 0,00000$
176,000 00
Depot buildings, water sta
tions, \&c.
100,000 00
Engineering and superintend-
ing,
100,000 00
1,795,830 19
Add 10 per cent for contin gencies,

179,58? 01
Total, $\$ 1,975,41320$
Or, $\$ 11,16052$ per mile graded for a double track, with a single track laid.
Or, \$14,992 52 per mile for a double track complete.
Total for a double track, machinery, buildings, \&c. complete, $\$ 2,653,676$.
To those that are acquainted with the country through which the line passes, and have examined into its merits, the facility it will give to the great mass of travellers that are daily thronging to the west and east, through Ohio, it would be superfluous to say more, than that the route is a feasible one, and can be built at reasonable expense; but to those who hare not examined into the merits of this work, it may not be unimportant to give some general statements of its local advantages, to draw their attention to the subject, that it may be investigated by every one interested, when, I am confident they will come to the same conclusion that the projectors and friends of the road have, that is-that it will be one of the most important roads to the public, and the most profitable to its stockholders, of nny in the Union, being a connecting link between all the great thoroughfares from the Eastern States to Lake Michigan, and the great South.western Rivers and States.

By referring to the map of the United States, and examining the routes of improvements completed and in contemplation, it will be seen, that both from the east and from the west, they all concentrate and unite with this road; from Maine to Virginia on the east and south, and fram Lake Superior to Arkansas on the west.
Through half the'year when the navigation of the Lakes is obstructed with ice, this must be the traveller's only route; and the saving of time, the safe and regular transit by Railroad, must secure through the remainder of the season a large proportion of travel.
When we compare the delays, damages and accidents incident to Lake navigation, the high and fluctuating prices of freight and insurance; with the safe; rapid and
regular, transit at all seasons, and the regular prices of freight, by Railroad, Lake Erie will hardly be considered a rival communication for passengers, merchandise and light freight.
South of the table land (on which the Ohio Railroad is located) to the Ohio River, the country is broken with mountain ridges, dividing the waters flowing north and squth, and raising impassable barriers to a parallel foute.

The following roads and canals connect through this road the fertile regions of the west and the commercial cities of the Atlantic. On the east it receives the travel :

1st. From Boston to Albany by Railroad, the Erie Canal, and the Railroads through the same valley to Buffalo; from Buffalo by the Buffalo and Erie Railroad.

2d. From New-York city to Albany, and thence by the same route as No. 1 .

3d. From New-York city by the New York and Erie Railroad to its intersection with the Buffalo and Erie road, thence by the Erie road to the Ohio Railroad.

4th. From Philadelphia, by Canals and Railroad, to Erie, thence by the Erie; to the Ohio Railroad.

5th. From Philadelphia, by Canals and Railroads, to Pittsturg, and thence to the Obio Railroad, either by the Conneaut and Beaver Railroad, the Ashtabula and Liverpool Railroad, or the Pittsburg, Warren and Cleaveland Railroad.

6th. From Baltimore, by the Balimore and Ohio Railroad, the Wheeling and Wellsville Railroad, and the Wellsville and Fairport Railroad.

On the west the road receives the travel:
1st. From the Ohio River, by the Mad River Railroad.
2d. From Missouri and Illinois, by the Terra Haut and Alton Railroad, and the Peoria and Logansport 'Railroad, through the Wabash and Eric Caral and Railroad.

3d. From Chicago, through the Wrabash and Erie Canal.
4th. From Evansville and Indianapolis by Railroad, and Wabash and Erie Canal. 5th. From Eransville, by the Indiana, and the Wabash and Erie Canals.
6th. From Lake Michigan, ty the Erie and Kalamazoo Railroad.
7th. Fram Detroit; by the Detroit, Monroe, Huron and Manhattan Railroad.

Some idea of the business of this road may be formed from the following statement of the amount of business done on, Lake Erie, a large portion of which will be drawn to this road. There will be on the Lake the ensuing season:
52 Steamboats, whose aggre.
gate tonnage amounts to 15,900 tons
3 Ships, whose aggregate tonnage amounts to

800
6 Brigs, whose aggregate tonnage amounts to $\quad 1,046$
150 Schooners and Sloops, whose aggregate tonnage amounis 10 eity :13,800

One hundred and fifty-nine sail vessels
Fify-two steamboats.
From the records kept at Buffalo, the averuge number of arrivals and clearances for sail ressels, will be for eack vessel thirtecn. The average tonnage of said vessels is ninety eight tons.

The steamboat clearances and arrivals at Buffalo will a aerage forty-one for each boat. The average tonage for steamvessels is three hundred and five tons. This will give for sail vessels 202,566 tons And for steam vessels $\quad 650,260$

$$
\text { Total, } 852,826 \text { tons }
$$

The navigation is usually open about two hundred days; this will give four thousand two hundred and sixty-four tons daily, that passes to and from the State of New-York; add to this the business from Pennsylvania and other sections, and the increase from the facilities given. together with the fact that the increase of travel has been above twenty per cent. per year for the last twenty years.

It is impossible to ascertain correctly the number of passengers that are passing east and west, but we can approximate something near it by estimating the number of arrivals and departures. The arrivals and departures of steamboats at Buffalo last season were one thousand six hundred and twenty, ihe traveling season two hundred and sixteen days, making a fraction short of eight boats per day. Allowing six of ihese boats to ply between Buffalo and Detroit and the intermediate places, and that each boat west has two hundred, and each boat east has one hundred passengers; which every one. who has seen the steanboats arrive and depart from Buffalo, will consider a very low estimate, besides the steamboats and sail vessels, there are two daily lines of slages from Buffalo west. From the above there would be by steamboats:
129,600 passengers going west.
64, s00 do. do. east.
5,400 passengers going east and west by stage and sail vessele, 25 per day.
5,400 passengers going east and west by private conveyance.
29,800 passengers going east and west by private conveyance and stages the remainder of the year 149 days at 200 per day, milking a total of 235.000 passengers.

I have consulted with a number of genthemen who are well qualified from their commercial connection, to judge of the passengers passing east and west, and they are unanimous in the opinion that this is underrating the amount.

Without allowing for any inicrease of mevel: and that ope-half of the present will take the railroads, and putting the fare ai $\$ 5$ for athis 177 miles of road, it will

100 ons of freight per day for 300 days $-30,000$ tons per year (which is one twentyeighth of the tonnage on the Lake for Buffalo Harbor) at 2 cents per ton a mile,

106,500 Transporing United States mail per year,

20,000
714,300
From this deduct for managing road and repairs, as per estimate D.

96,240
\$618,060
Making a nett increase of 23 per cent. on $\$ 2,654,000$, the amount necessary to compiete the road with a double track.
All of which is respectfully submitted by your obedient servan!,

R. HIGHAM,

Engineer of the Ohio Railroud Company.
At a Meeting of the Board, it was resolved unanumously, That this Board fully appreciale the ability and zeal with which Mr. Higham has prosecuted these surveys, for which their thanks are hereby tendered; and from Mr. Highan's high professional standing, they have full confidence in his Report.

Fiom the Lundion Mechanics' Magazine.

london and birmingham rallway.eighth annlal report. Eitulingham, leth August, 1 E337.
The directors on the present occasion of submitting their half-yearly report, have the satisfaction to announce, that the expectation they held out in their last Report of a partial opening of the line in the course of the present summer, to the extent of twenty-one miles out of London, has now been fully realized. Early in the month of July, the engineer having reported that the works of the twenty-four and a half miles, between the Company's station, at Euston-square, in London, and Boxtroor, were in a fit state for use, the directors decided that this portion of the railway should be opened to the public, on the 10th of that month. The trains commenced running accordingly on that day, and although the traffic has hitherto been merely derived from excursions of pleasure and curiosity, and from the journeys of the comparatively few individuals who reside in the immediate vicinity of the line, and although the departures of the trains (in consequence of the progress of the works connected with the entire completion, and finishing off; of this portion of the railway), are at present confined to three from each end, the number of passengers has already exceeded anticipation, and proved fully equal to the means for their conveyance.
On the 16 th instant, being 28 days from the first opening, 39,855 persons had been cunveyed by che wailvay, being an average of f. 1432 per day, for which
the daily receipts average $153 l$; during
the last week the daily average of numbers has advanced to 1,807 , and of r^{-} eeipts, to 189 .

The directors are assured by the engineer that the works which at pre: sent interfere with mid-day trains will be entirely completed, and that the whole of this part of the railway will he in excellent travelling order in the course of a month, by which time the stationary engine for the incline of the extension line will be in readiness for work, and an ample supply of locomotive engine: at their command. Full effict will then be given to provisional arrangemeats. which have been already entered inte, with the principal coach proprietors, for bringing the passengers by their re:pective coaches upon the railway, as fast as it is in readiness 10 receive them, which arrangements, and others calculated to bring an immediate and activtraffic upon the railway, all the parties concerned appear most anxious to carry on with spirit, whenever the director: fecl satisfied that they are in a situation to perform punctually and efficiently what the company will then have to undertake.

The directors cannot but notice the great advantage arising from the gradual opening of successive portions of the railway; opportunity being thus affordel for organizing the arrangements requred in the carrying departunent, and for progressively adapting them with the benefit derived from experience on a small scale, to more extended operations, whilst the road is becoming gradually and safely consolidated, and an important revenue is afforded by a limited number of passenger's trains.

The advance made towards the entircompletion of all the works of the London and Birmingham railway, and the near approach of the tlme at which thewhole line will be opened to the public. appear to the Directors to require, on their part, a communication to the proprietors of the most exaet information which it is now in their power to obtain, as to the ultimate cost of the whole undertaking, the periods at which each portion of it may be reasonably expected to be opened for business, and the probable traffic. They have, in consequence, required from the engineer carefully revised estimates of the cost of all the works in lis department which are still unexecuted, and such a statement of the probable cost of those reuaining works, of their entire sufficiency for the purposes of the traffic of all descriptions to be anticipated on opening the whole line, and of the exaet periods at which, in all probability, each successive portion cannot now fail to be executed and completed, as he may bewilling should go forth to the proprietors with the full sanction of his name and professional character.
The details will be annexed to the Report, and the directors cannot but remark with pleasure upon the assurance remark with pleasure upon the assurance
they have from Mr. Steplienson, at this
advanced period of the works, that not only will a few weeks see the railway at the London end, opened from Boxmoor to Tring (a further advance of seven miles), but that in the course of December next it will extend in perfect working order for business, sixteen miles farther, to Denbigh Hall, at the crossing of the Holyhead road, and at the Birmingham end as far as Rugby, making the whole length of railway which will be entirely completed, and which the directors therefore hope to have opened to the public on the first of January next, 27 miles. They have thus reasonable ground to hope that at thits early period the entire line of railway communication between London, Birmingham, and the principal places in Lancashire, will be open to the public, with the exception only of an interval of thirty-five miles of excellent turnpike road between Rugby and Denbigh Hall. The engineer states that the proprietors may calculate with perfect confidence on the entire completion of the whole line, and of the works connected with it, in the course of the autumn of 1838 .

The proprictors will see by the annexed revised estimates, that the expectation of the entire completion of the railway and stations in efficient working order from end to end, and of the ample carrying establishment now contracted for, within the capital of $4,500,000 l$., is confirmed and strengthened by the furtheir means of calculation afforded by the nearer approach of all the works to thelr termination. As far as relates to the cost of stations, engines, carriages, waggons, and, indeed, every item of future expenditure, excepting the unexecuted works in the engineering department, there is scarcely any opening for error or question, and the directors think that the confident manner in which Mr. Stephenson has expressed his convietion of the sufficiency in all respects of his present revised estimates (confirmed by the circumstance that works in the hands of the Company have been let, and executed hy sub-contractors considerably below the engineer's estimate) affords every security and assurance of accuracy that can be obtained on this subject. It should also be mentioned, that no credit whatsoever is taken for a considerable extent of unoccupied land in possession of the Company for re-sale, as opportunities offer, and that the engineer's estimate for the carrying department includes a much larger extent of stock than will be required in the first instance, if at all. The directors, therefore, do not hesitate to express their confident expectation that the proprietors may calculate upon having the railway completed, and in full operation, within the present capital of $4,500,0001$., sanctioned by Parliament; and that if there should eventually prove to be any further excesin the engineering department, or if the extent of the future traffic should render expedient any extension of the works at
present contemplated, the additional capital cannot be required until a large revenue has rendered it easy of attainment, and placed the proprietors in a situation to judge of the propriety of such further outlay.
As the undertaking approached completion, the probable amount of traffic to be expected became a point of great interest. In order to obtain as near an approximation to truth as the circumstances of the case admit, a sub-committee was appointed to examine into the subject. The result of their investigations may be stated as follows :-
That the gross receipt from passengers now travelling by coaches on the roads parallel immediately contiguous to the line of railway, without assuming any increase, amounts at railway prices to
That the gross receipts from persons now posting on the same roads amount to £5,789

That the gross receipts from parcels now carried by coaches on the same roads amount to

Per Week.

1,571
That the gross receipts from goods now conveyed by waggons and canals on the lines between London and Birmingham, not including iron, timber, cattle, minerals, or other goods, which pay low tonnage, amount to

8,120

That the total gross receipts

 from the foregoing sources, assuming no in-crease, amount per week to£47,209
That the total annual re-
ceipts amount to
£894,868
The data from which these results are obtained will be found in the Report to the Board by the sub-committee appointed to investigate the subject ; copies of which document may be had by the proprietors, on application to the secretaries. The direetors congratulate the proprietors upon the eompletion and opening for traffic of the Grand Junction Railway between the Liverpool and Manchester line and Vauxhall near Birmingham, and upon the commencement of the works of the Midland Counties and North Midland Railways, connecting the London and Birmingham line with Yorkshire and the Midland Counties; all which lines form tributary streams, the full value of which to the main trunk can scarcely be over estimated. The Birmingham and Gloucester, and the Derby and Birmingham Railway Companies, appear to contemplate the use of the entrance into Birmingham and the stations of the London
and Birmingham Railway. The directors have the pleasure of communicating the entire success of the opposition announced in their last Report to the attempts to establish injurious rival lines, uncalled for by any public necessity. The judicious regulations now adopted by Parliament relative to all new lines of railway, afford ample grounds of security against the recurrence of projects of a similar description.

The directors have to amnounce, that the Act authorizing the Company to raise an additional million, and for other purposes, received the royal assent on the 30th June, and that in pursuance of therresolution of the special general meeting of the same date, an additional capital of 625,0001 . has been created, under the powers of the $A c t$, in 25,000 shares of 251. each, which have been offered to the proprietors of 1001 . shares, in the proportion, of a 25l. share for each 1002. share. It is proposed that the new shares of 25l. each, which form an integral part of the capital stock of the Company, shall be entitled to the same rate of dividend as the original shares of 1001 . each, without distinction as to the time of the payments of the calls which shall have been made respectively when a dividend is declared.
By the statements of accounts now to be laid before the proprietors, it will appear that-
The receipts to the
30th of June,were $£ 3,181,069158$ The disbursements, $3,102,292 \quad 8 \quad 5$
And the balance of
cash in the Com-
pany's hands at
pany's ha
that date
78,797 $\boldsymbol{7}$
The proprietors in referring to the account of capital, will observe , that there remains of the $4,500,000 l$, a sum of $1,329,282 l$. 17 s . 3 d . applicable to the further expenditure of the company, which, in the annexed estimate is stated at $1,313,695 l$.

$$
\left.\begin{array}{l}
\text { R. Creed, } \\
\text { C. R. Moorson, }
\end{array}\right\} \begin{aligned}
& \text { Secretanies of } \\
& \text { the Buard. }
\end{aligned}
$$

Engineer's estimate of the Periods at which different Portions of the Line will be completed.
From London to Milee.
Boxmoor, $24 \frac{1}{2}$ Open.
Boxmoor to Tring, 7⿺𠃊 ${ }^{\frac{1}{2}}$ " Oct. 1837.

IMPROVEMBNTS IN THE ROYAL OBSERVATORY, GREENWICH.
Since the appointment of Professor Airy, as astronomer royal, various important improvements in this establishment have been effected, or put in a course of accomplishment.

In the first place, a large portion of the Royal Park has been enclosed, and annexed to the Observatory, for the purpose of magnetic observations; and there is every prospect, that such observations will be commenced in the course of the ensuing summer.

The library, as Professor Airy found it, contained the germs of a most valuable astronomical and mathematical collection; but almost every set of works continued in series was imperfect; and much was wanting in the modern works of continental astronomy. At the Professor's application, sums exceeding 200l. were placed at his disposal, by the Lords Commissioners of the Admiralty, for the completion of the library. Niuch has already been done; and before long, it is expected that the hbrary will be made, without any great expense, a most valuable and practically useful collection. Mr. Airy attaches great importance to this part of the institution, for the following reason:The natural tendency, in an office so much pressed with routine-work, and with official business having no very close relation to science, i, to be degrarled into a mere bureau of clerks; and it is difficult even for the director to resist the contagion. The only antidote is, to place in the power of all, the means of acquaintance with the literature and the foreign syitems of astronomy: to make the prin. cipal persons at least familiar with the speculations of ancient, and the theories of modern, times. It is only thus that the character of astronomer can be made to predominate over that of mere observer or mere calculator.

The only changes which might have been made in the instruments of the $\mathbf{O b}$. servatory are the following:-The at tachment of the telescope on Troughton's circle has been altered, the connexion being now effected by claraps similar to those used on. Jones's circle and on the Cainbridge circle, instead of the grasp of the spokes by which the telescope had been held in the same position for several years. The acting part of the zenith tube has been completely remodelled.Micrometers have been placed in the microscopes for viewing the top and bottom of the plumbline: 'the original telescope-micrometer has been discarded, and a now one mounted, requiring only a small range of screw, and liable to none of the flexures to which the old one was exposed.
Mr. Airy having understood that Mr. Maclear, astronomer at the Cape of Good Hope, had with great care ascertained the precise locality of the Abbe do la Caille's observatory, and had taken measures for connecting, by triangulation, that spot with the new observatory, he
ventured to suggest to the Lords Com-1 missioners of the Admiralty the propriety of enabling Mr. Maclear to verify the astronomical part of the measure of the arc of meridian if he should think fit; and he pointed out Bradley's sector as an instrument which, with a change in its mounting, would be well adapted to this purpose. Their Lordships were pleased to direct that the necessary change should be made ; and that instrument is now in the hands of Mr. Simms for repair and alteration.

A valuable telescope of $6 \frac{3}{4}$ inches aperture has been presented to the Royal Observatory by the Rev. R. Sheepshanks; and, with the approbation of the Board of Admiralty, Professor Airy has taken measures for mounting it equatoreally in the South Dome; a situation greatly preferable to those of the existing equatoreals. The artist employed in constructing the mounting is Mr. Thomas Grubb, of Dublin.

The observations of 1836 , with the exception of some small matters, relating to the equatoreal observations and the solar eclipse, are entirely reduced and ready for press. Of the results, the following are the most interesting. The circles exhibit precisely the same kind of discordance between determinations by direct visions and determinations by reflection, which was formerly noticed by Mr. Pond, afterwards by Professor Airy, and more lately by Mr. Henderson and Mr. Maclear ; and its quantity is nearly the same. Correcting for this, and using Bessel's refractions, the Professor finds from more than 1300 observations) that Mr. Pond's latitude requires to be diminished by nearly one second. The accurate agrecment of the results from stars in different zones seems to show that Bessel's tables represent the Greenwich observations well. The discordance of the obliquities deduced from the two solstices is a very small fraction of a second. The right ascensions of the Nautical Almanac require to be diminished generally about 0,13 . The result of the reduced observations of a Lyræ is not yet wholly investigated, but they appear to show no signs of sensible parallax.

Complaint, we find, is made of a want of hands to reduce the astronomical observations made in a satisfactory manner ; or, to speak more properly, of much of the time of the present assistants being wasted upon business not strictly within their line of duty, namely, the daily comparison and official work relating to the government chronometers. Either the establishment should be increased, or the charge of the chronometers transferred to some other department.-London Mechanics Mag:
temporary caissoon for storping out WATER WHLLE REPAIRING SEA-COCKS OF gTEAM-vEESELS.

(Prom the Navilcal Magiozine.)

The following description of a temporary caissoon, applied to H. M. steamvessel Dee, for the purpose of excluding
the water whilst one of the sea-cocks was ground in afresh, by Com. W. Ramsay. R. M., displays that ingenuity under difficulty, for which our seamen are celebrated :-
In describing a caissoon that was used by H. M. steam-vessel Dee, under my command at Port Royal, in the month of August, 1835, the simplicity of the details are such, that it may perhaps be thought by some hardly worthy the attention of the readers of the Nautical ; but as all who may have to encounter a similar difficulty may not know how easily it can be overcome, is a sufficient reason for giving them. It is necessary first to state, for the information of those who are not much acquainted with the fitings of steam-vessels, that there are several sea-cocks, which, when turned, admit the water through the bottom of the vessel for various well-known purposes. The most common plan is to have a pipe which communicates with the sea. About a foot from the outside of the vessel is the neck, upon which another pipe is fixed, which conveys the water to its destination. Now these cocks, by constant use, are liable to leak; when this occurs, the water flows in a stream into the vessel, and the only remedy to be applied is to remove the cock, and what is technically called, grind it in afresh, and then replace it. This is, of course, effected without danger when the vessel is in lock; but, it is evident, that if attempted when she is afloat, without some method of preventing the water rushing in, if the pipe inside cannot be stopped, which would be very doubtful, the vessel would fill with water.
This being premised, it may now be stated that the sea-cock on the larboard side of H, M. steam-vessel Dee was found to be leaking very much. It was considered that taking off the cock, and trusting to being able to stop the pipe from inside would be dangerous, besides the difficulty, perhaps impossibility, of putting the cock on again when reground, with such a rush of water as it is evident would take place. As there are no locks at Port Royal, the only plan was to stop the aperture (by which the water enters the vessel) 'outside, until the necessary repairs were completed.
The ressel was first given as a great heel as possible to starboard, by which the hole to be stopped was brought within four fect of the water's edge ; next, having procured several feet of two inch fir plank, a box was made which had three sides, and a bottom, of the following dimensions: the back was five feet deep by four broad, the sides three feet broad, the bottom of course extending from the back to the ends of the sides. The way in which it was rendered water-tight was this: two folds of rery thick fear-nought boiled in a mixture of tallow and tar, was placed between each joining of the planks, and the whole was kept together by the means of iron bolts, which were driven quite through.

Now, it wat necessary to obtain the exact curve of the vessel's buttom, that the sides of the caissoon might be cut to anawer to it. This was effected by meanis of a long stripe of lead, which was forced during a calm against the ressel's bottorn. T'ke curve being thus obtained, the sides anil bottom of the caissonn were cut to their proper shapes ; small grooves were cut in their edges, and four folds of fearr.ought, prepared as above were nailed on. The nails were driven along the grooves, so that when the caissoon came to be pressed against the vessel's bottom, there inight be nothing to prevent a good fit. Two large cleats were then nailed upon the vessel's side, on the exact spot that the top of the caissoon would be, so that once forced down into its place, it could not rise again. As near the surface of the water as possible, two strong screw eye-b.llts were fixed to the vessel's side, through which lashings were rove, and a tackle got all ready.
The caissoon was now put over, forced down under the cleats mentioned above, the lashings encompassed it, which were hauled tight by the tackle, by which means the caissoon was forced against the vessel. A small pump that had been prepared before, was then placed in it, by the aid of which, and bailing, all the water was got out of the caissoon in about ten minutes, after which one man occasionally bailing kept it quite dry. Having this to work in, the aperture was soon secured, the cock taken off and ground afresh. When that was finished and put in again, the caissoon, which had been allowed to fill with water was purnped out, the lead and plank had been nailed on to keep the water out of the ship, was taken off, and the whole business was finished without the slightest stop, impediment, or difficulty, in about forty-eight hours.

mr. Cross's experiments.

Mr. Cross has lately written to M. Becquerel, that, among a variety of other things, he hus succeeded in forming an entirely new substance, which crystallizes in needles, composed of a strong proportion of sulphur, and a small one of lead, of copper, and zinc. In the beginning of its formation it is of a magnificent crimson colour, which afterward changes to a brilliant scarlet, with an orange colour. The process of procuring it is thus:-An earthen pan is filled with hydro-sulphur of potuss, and put in a glass vase, which is filled with a solution of sulphate of zinc. Afterwards is taken a small bow of lead and copper; the lead is plunged in lydro-sulphur of potass; the copper in sulphate of ziuc. A copper wire, sufficiently bent, is then plunged in the two solutions, one end in the alkaline sulphur, the other in the sulphate of zluc. Some brilliant red crystals, in the shape of needles, issuing from a common centre, then envelope the extremity of the copper wire in the alkaline solution. This substauce expe-
rieuces no action in muriatic acid, but it then becomes very black: Adding some drops of nitric acid, it is decomposed, and floats, in great part, at the surface; it is then pure sulphur., The remainder contains only lead, copper, and zinc, in small proportions. Mr. Cross writes, that since forming the substance, he had had too little time to examine it, otherwise than with grent rapidity.
Among the substances sent to M. Beequerel there were, 1 st, some beautiful crystals formed on the positive end of a copper wire, and, on the negative, crystals of sulphur : the solution employed was not mentioned; ; 2d, some per-oxide of granulous iron (fer mamelonné) on copper, surrounded with a morsel of specular iron, in relation with the negative pole, the liquid employed being a solution of proto-sulphate of iron : also some gold formed en dendrites at the negative pole, in a solution of gold, on some clay, slightly hardened by fire.-Railway Mag.
russian gold mines.-timportant discovery.
The St. Petersburg letters are much occupied with a discovery relative to the working of the Russian gold mines, which, if truly stated, may come to have some influence on the circulation of the precious metals. A letter of the 26th ult. says, "There has been found out, it is said, in the Ural Mountains, a new mode of extracting gold from the earth, sand, or ore. The sand or earth has been put into a blast furnace and melted, and the most extraordinary results obtained. By washing, the method hitherto pursued in Russia, if one and a half zolotnicks of gold were produced from 100 poods of sand, \&c., the expenses were about covered; two zolotnicks per 100 poods were worth working. Fine sand or earth rarely produced more than three zolotnicks, and five zolotnicks were quite uncommon. By the new process; on 100 poods of melted, they obtained sixty zolotnicks in some cases, in others forty to fifty zolotnicks; and on melting 100 poods of previously washed sand, they got forty to fifty zolotnicks of gold. There is little doubt of the aecuracy of these statements, but what the comparative expense of the two modes is, I can. not tell you, nor whether the Urul grows sufficient wood for fuel, and whether coal can be found there. One pound Russian contains ninety-six zolotnicks; 100 poods are about 3550 lbs . English weight."-7 ïmes.

ANOTHER RUPTURE IN TIIE TIIAMES

 TUNXEL.Yesterday afternoon the Thames Tun. nel became quite filled with water which flowed from an aperture from above. It would appear from the report supplied to us on the subject, that generally there existed some necessity for keeping the pumps at work, for we understand, that a little before twelve o'clock at noon the water.was found to increase considerably,
but in the course of the afterioon the quantity had somewhat diminished, although it slowly gained upon the pumps, and as the tide rose it was found impossible to keep pace with the increased influx of water, when Mr. Page, the acting engineer; considered it necessary to send for Mr. Brunel, who was in town attending a meeting of the directors.
At five o'clock, finding it was quite useless to proceed in the attempt to check the stendy increase of the water, which had risen ten feet, the attention of the engineers and workmen was turned to securing all parts of the shield; which operation was carefully and deliberately performed. The curiosity of the men, who, were anxious to watch the gradual risc of the water, rendered it very difficult for the engineer to withdraw them, even when it became expedient to do so. At half past five o'clock the Tumnel was filled, every one having previously retired, and it is gratifying to add, that no accident has occurred to any individual. Soundings were immediately taken by the engineer, and the displacement of ground having been ascertained to be of limitcd extent, steps were taken forthwith to stop the aperture from above, as upon former occasions, in order to resume the pumping as soon as possible.-Times.

paper casts of sculptube.

My servants made me casts in paper of the sculpture on the walls of these two rooms, that is,' of all the sculpture in the three large plates which I now publish. This method of obtaining fac-similes of sculpture in basso-relievo is very successful, and so easy, that I had no difficulty in teaching it to my Arabs. I found stiff, unsized, common white paper to be best adapted for the purpose. It should be well damped, and, when applicd to sculpture still retaining its color, not to injure the latter, care should be taken that the side of the paper placed on the figures be dry-that it be not the side which has been sponged. The paper, when applied to the sculpture, should be evenly patted with a napkin folded rather stiffly ; and, if any part of the figures or hieroglyphics be in antaglio or elaborately worked, it is better to press the paper over that part with the fingers. Five minutes is quite sufficient to make a cast of this description. When taken off the wall it should be Jaid on the ground or sand to dry. I possess many hundred casts, which my Arabs made for me at Thebes and in the Oasis. Indeed, I very rarely made any drawings of sculpture without having a cast of the same; and as the latter are how quite fresh as on the day they were taken, the engraver having not only my drawing but also these indubitable fac-similes, is enabled to make my plates exactly like, nud quite equal to the original.-Hosking's Visit to the Oasis.
percussion tubes for cannan.
Mr. J. Marsh has made a considerable improvement in the percussion tubes
used for cannon by the eraploynent of simple galvanic communicators, liave a crow or other small quill, instead of a metal tube, which bursts without any danger from the fragments. Several thousand rounds have been fired on board the Excellent at Portsmouth without a single miss, and the Board of Ordnance have ordered 1,000 guns to be fitted with percussion locks. Mr. M has also improved the fulminating powder by adding to the sulphate of antimony aud chlorate of potash a determinate portion of powdered glass, which, by increasing the friction, renders the explosion more certain and instantaneous. The Society of Arts heve awarded to Mr. Marsh their silver medal.
bridge or tunsel from dofer to calais
Mr. Coppett, an English engineer, is now on his road to Paris to lay before the French government a project for constructing a passage to cross dryshod from Calais to Dover. He at Havre explained his plan to the public. Mr. Coppett asks of France only one milliard, and as much from England. With this trifling sum, he will make cones like those employed at Cherbourg between fifty and sixty years ago. If the government does not approve of this system, he has in his pocket three or four others. For instance, he will make a tumnel under the sea from Dover to Calais, introducing from one end to the other cast-iron pipes 18 feet in diameter:" This list mode of communication, according to Mr. Coppett, would cost only one milliard, to be paid in equal portions by both countries.-Daily Paper.

filtering machines and infersal machines.

A Frenchman, of the name of Alleume, has lately got into a pretty' scrape by the ignorance of the Belgian police upon scientific inatters. It appears that he invented a machine for filtering and clarifying water, which he took with hịm from Paris to Brussels, for the purpose of procuring a patent. The police, howcrer, mistaking his filtering, for an infernal machine, he was arrested and thrown into prison, as a conspirator either against the French or Belgian king. After a confinement of two months, lie was acquitted, but interdicted from France, and ordered on hoard a ressel for England, where he arrived without money or friends. The Lord Mayor, to whom lis case was made known, a few days ago, recommended him to represent his case to King Leopold, now in Eng. land.

galvanic telt.graph.

The mode of making instantaneous commúnications by galvanic power has been put to the most decided test on the London and Birmingbam Railway, under the direction of Professor Whetstone and Mr. Stephenson, the engineer. Four copper wires, acted upon each end of the line at pleasure $z^{\text {by }}$ the agency of very
been laid down on the line of the railroad to the extent of 25 miles. They are enclosed in a strong covering of hemp, and each terminus is attached to a diagrain, on which the tiwenty-four letters of the alphabet are engraved, in relative positions, with which the wires communicate, by the aid of moveable keys, and indicate the terms of the communication. The gentleman to whom we have referred, we believe, are fully satisfied that communications to almost any extent may thus be unade instantaneously by the agency of galvanism.Truc Sun.

gigantic road scraper.

A machine has just been introdsced for scraping macadamized reads, and is now in use in Hyde Park, where it appears to do its work much more effectually, and in much less time, than the large hoe hitherto used for this purpose. The main objections to it are its weight, and that it appears to be only applicable to roads in good order, having a perfectly even surface.-Lon. Morning Herald.

SREAM NAVIGATION OF THE JUMNA, india.
The Agra Ukhbar of February, states, that a measure had been determined on by the supreme government, which was calculated to give impulse to the already fast advancing prosperity of Agra, and the permanent steam navigation of the Jumna. With a view to that object, three iron steam-boats, of the utmost possible buoyancy, liad been ordered from Mandeslay and Co., and would probably within a year be plying on the Jumna. It is added, that this, with the presence of the two boards now at Allahabad, and the influx of small capitalists, will give Agra an European population, nnd activity unsurpassed by those of any city in the Mofussil. Other measures for the improvement of local trade had been submitted to the local government, such as the erection of wharfs, marking the channel of the Jumna, \&e.

steam-boats in switzerland.

According to the accounts from Switzerland. several of the Cantonal Governments have determined to build stenmboats to run on their inland lakes. This plan will produce great advantages, by opening a more ready communication between Zurich, the Grisons, and Italy. When the boats intended to navigate the Lake of Geneva commence running, travellers may go from Geneva to Berne in one day.-Gazette de France.

A NEW LIGHT.

A chemist having found, after many experiments, that a void produced by electricity in a glass vessel became luminous, has, at last, succeeded in forming a long bottle, of 3 inches by 30 , from which having exhausted the air, and otherwise acted upon it by a galvanic
battery, a light is how enditted, "heinity hung up in his apartinent, equally clear, but not so oppressive to the eyes, as that of the sun. - French Papier:
effect of climate ind celtivation on

> egetables.

The myrthe tree, which, with us, is : small slirub, 'grows in Van Dieman's Land to the lieieght of 200 feet, and lasis a trunk from 30 to 40 feet in círcimérencé. The wood resembles cedar. The Chinese have an art ly which they are able to produce minialure pines, bearing " h perfect resemblance to the gigautic specimens of A merica, and only five or six inches high.-Lon. Mech. Niag.

From the Landon Dlechanios' Magazive c.AOUTClloUC Roors.

Sir,-As yours is a repository for many crude (as well as perfected) inventions, which may afterwards be the groundwork for others of the greatest value and importance to the public, I heg to request you will lay before your readers the following suggestion for a new application of caoutchouc or Indiarubler.

I have long thought, that if the tops of houses could be flat, and have reservoirs of water upon them, that water might be made available as a supply for domestic purposes to every room in the house, and also that screw hose might be fixed thereto for the purpose of extinguishing any fire in the room where it originates on its first discovery. Hitherto, lead has appeared the most sni:able material for roofs, but weight, price, nud contraction by the heat of the sun have been great objections.- May not lndiarubleer be advantagequsly substituted? If prepared in large sliects one-eighth or three-sixteenths of an inch in thickiness, they might be laid on and afterwards the joinings made perfectly secure by the solution of caoutchouc; and in case of damage from any cause, it might easily be repaired by the same means. Some of your more scientific readers can give the necessary strenght of wall and timber for bearing the various depths of water which might be required. I ap: prehend that in large buildings, such as the new Houses of Parliamenr, it would not only be advantageous as a preventive of fire, but also more economical.

Yours,
A Constant Reader-Z.
TURF FOR STEAMBOAT FUEL.
It is an interesting fact, that curf is now used as fuel on board the steamers plying between Limerick, Clare, and Kilrush. The Garryowen has made the passage between Kilrush and Limerick, fired with turf, in three hours and twenty minutes.-Irish Paper.

the queen's new dessert service.

There has lutely been exhibiting, at the Griffin warehouse, (late Weeks's Museum), Piccadilly, an elaborate sper:
cimen of akill and excellence in one of the foremost of British manufactures． It is a splendid dessert service of porce－ lain，made for her Majest，by Messrs， Brameld，of the Rockingham Works， near Rotherham，Yorkstire，of British materials．The designs，which are ori－ ginal，are by Mr．Brameld ；and the pictoraile embelisisiments hare been exce cuted by the aritists of the Rooking ham works．It has taken five years to com． plete this extraordinary labour of British art the charge for which is upwards of 3000 guineas．The service consits of 200 pieces，，iz， 56 levated vases，bask－ ets，dce，and 12 dozen plates．The service，by its lightress and elegance， will relieve the massire gold plateau， candelabra，sec．，which are used at the royal state diuners．
＊＊Subscribers who desire to be sup－ plied with missing numbers，will do well to apply for them soon．We shall al ways take pleasure in furnishing them if we have them to spare．

0 Particular attention will be given to the procuring of all kinds of Instru ments required by Engineers．－Orders must be accompanied with the necessary funds or city acceptances．

近 Volume Six will be completed as speedily as possible．The next，or Vo－ lume for 1838，will be published in a more convenient form for preservation．

NEW ARRANGEMENT．

ROPES TOR INCLINED PLANEA OF RAILROAVS．

WE the subscribers have formed a co partnership under the style and firm of Folger \＆Coleman，for the manufacturing and selling of Ropes for inclined planes of railroads，and for other uses，offer to supply ropes for inclined planes，of any length required without splice，at short notice，the manufacturing of cordage，heretofore carricd on by S．S．Durfee \＆ Co．，will be done by the new firm，the same super intendent and machinery are employed by the new firm tbat were employed by S．S．Durfee \＆Co All orders will be properly attended to，and ropes will be shipped to any port in the United States．
12th month．12th，1836．Hudson，Columbia County，State of New－York．

ROBT．C．FOLGER．
33－If
GEORGE COLEMAN．

AMES＂CELEBRATED SIIOVELS， SPADES，\＆c．

300 dozens Ames＇superior back－st rap shovels．
150 do．do．do．plain do．
150 do．do．do．casisteel Shovels \＆Spades
150 do．do．Gold－mining Shovels
00 do．do．plated Spades．
50 do．do．socket Shovels and Spades
Together with Pick Axes，Churn Drills，and Crow Bars（steel pointed），manufactured from Salisbury refined iron－for sale by the manufactusing agents， WITHERELL，AMES \＆CO．

No． 2 Liberty street，New－York． BACKUS，AMES \＆CC．

Fo． 8 State－streel：Albany．
N．B．－Also furnished to order，Shapes of every eseription，made from Salisbury refined Iron．v4－if

MACHINE WORKS OF ROGERS， KETCHUM AND GROSVENOR，Patermon， New－Jersey．The nndersigned receive orders for the following articles，manufactured by them，of the most superior description in every pariicular．Their works being extensive，and the number of hands employed being large，they are enabled to execute both large and small orders with promptness and dispatch．

RAILROAD WORK．

Locomotive Steam－Engines and Tenders；Dri－ ving and other Locnmotive Wheels，Aales Springs and F lsnge Tires；Car Whee＇s of catt iron，from a variety of patterns，and Chills；Car Wheels of cast iron，with wrought Tires；Axles of best Ame rican refined iron；Springs；Boxes and Bolts for Cars．
COTTON，WOOL，\＆FLAX MACHINERY，
Of all descriptions and of the most improved pat－ terns，Style，and Workmanship．
Mill Geering and Millwright work generally； Hydraulic and other Presses；Press Screws；Cal－ lenders；Lathes and Tools of all kinds；Iron and Brass Castings of all descriptions．
ROGERS，KETCHUM \＆GROSVENOR
Pateraor，N．J．or 60 W all－st．New－York 51tf

FRAME BRIDGES．

THE undersigned，General Agent of Col．S．H．LONG，to build Bridges，or vend the right to others to built on hia Patent Plan，wou＇d respectfully inform Railroad and Bridge Corpora－ tions，that he is prepared to make cohtracts to build， and furnish all materials for superstructures of the kind，in any part of the United States，（Maryland excepted．）
Bridges on the above plan are to be seen at the followir．g localities，viz．On the main road leading from Balcimore to Washington；two miles from the former plsce．Across the Motawamkear river on the Military road in Maine．On the national road in Illinois，at sundry paints．On the Baltimure and Susquehanna Railroad at three points．On the Hudson and Paterson Railroad in twe places．On the Boston and Worcester Railroad，at several points．On the Boston and Providence Railroad，at sundry points．Across the Contoncook river at Hennikar．N．H．Across the Souhegan river，at Milford，N．H．Across the Connecticut river，at Hancocd，N．H．Across the Androscoggin river， at Turner Centre，Maine．Across the Kenneliec river，st Waterville，Maine．Across the Genesee river，at Squakiebill，Mount Morris，N．Y．Across tho White River，at Hartford，Vi．Across the Connecticut River at Lebanon，N．H．Across the mouth of the Broken Straw Creek，Penn．Across the mouth of the Cataraugus Creek，N．Y．A Rnil－ road Bridge diagonally across the Erie Canal，in the City of Rochester，N．Y．A Railroad Bridge al Upper Still Water，Orono，Maine．This Bridge is 500 feet in length；one of the spans is over 200 feet It is probably the firmest wooden brillge ever built in America．
Not withstanding his preseet engagements to build between twenty and thirty Railroad Bridges，and several common bridges，several of which are now in progress of construction，the subscriber will promptly attend to business of the kind to much greater extent and on liheral terms．

MOSES LONG，
Rochester，Jan．19th， 1837.
4－y

STEPHENSON，

Builder of a superior style of Passenger
Cars for Railroads，
No． 264 Elizabeth street，near Bleecker att ist，写

NEW－YORK．

RAILROAD COMPANIES would do well to examine these Cars；a specimen of which may be seen on the New．York and Harlaem Railroad，now in operation．

ROACH \＆WARNER，

Manufacturers of OPTICAL，MATHEMA－ TICAL AND PHILISOPHICAL INSTRU MENTS， 293 Broadvay，New．York，will keep constantly on tand a large and general assortment of Instruments in their line．
Wholesale Dealers and Country Merchants sup plied with SURVEYING COMPASSES，BA． ROMETERS，THERMOMETERS，\＆c．\＆c．of their own mannfacture，warranted accurase，and at lower prices than can be had at any other establish－ nent．
Istrumentis made to order and repaired．

RAILWAY IRON，LOCOMOTIVES， \＆c．\＆c．
THE subscribers offer the following articles for Rale：－
Railway Iron，flat bars；with conntersunk holes and mitred joints，
liss
350 tons 2 by f， 15 A in length，weighing $4 \stackrel{68}{68}$ per a
280 ＂ 2 ＂$\frac{1}{2}$＂＂＂ 3544.
70 ＂11＂ $1 \frac{1}{3}, ~ " \quad$＂\quad＂ 21 ＂

90 ＂1＂支，＂＂＂${ }^{4}$
witn Spikes and Splicing Plates adapted thereto－ To be sold free of duty to Siste governments，or ncorporated companiee．
Orders fur Pennsylwanis Boiler Iron executed．
Rail Road Car and Locomsitive Engine＇Tires， wrought and turned or unturned，ready to be fitted on the wheels，viz． $30,33,36,42,44,54$ ，and 60 inchea diameter．
E．V．Patent Chain Cable Bolts for Railway Car axles，in lengths of 12 feet 6 inches，to 13 feet 2$\}$ ， $2 \frac{2}{2}, 3,3 \frac{5}{3}, 31,3 \frac{1}{2}$ ，and $5 \frac{1}{2}$ inches diameter．
Chains for Inclined Planes，short and stay links manufactured from the E．V．Cable Bolts，and proved st the greatest strain．
India Rubber Rope for Inclined Planes，made from New Zealand Wax．
Also，Patent Hemp Cordage for Inclined Planes， and Canal Towing Lines．
Patent Felt for placing between the iron chair and stone block of Edge Railways．
Every description of Railway Iron，as well as Locomotive Engines，imperted et the shortest notice， br the agency of one of onr partners，who resides in England for this purpose．

A highly respectable A merican Engineer resides in Erigland for the purpose of inspecting all Lucn－ motives，Machinery，Railway lron，\＆c．ordered through us．
28 tf
A．\＆G．RALSTEN \＆CO．， Philadelphis，No． 4 South Front－8t．

ARCHIMEDES WORKS．

（ 100 North Moorestreet，N．Y．）

THE undersigned beg leave to inform the pro－ prictors of Rail Roads，that they are prepared to furnish all kinds of Machinery for Ruil Roads，I．0－ comotive Engines of any size，Car Wheels，such as are now in successful operation on the Camden and Amboy Rail Road，none of which have failed． Castings of all kinds，Wheels，Axles and Buxes， furnished at the shortest notice．

H．R．DUNHAM \＆CO．
NewYorк，February 12th， 1836.
4－stf

PATENT RAILROAD，SHIP AND BOAT SPIKES．

＊＊The Troy Iron and Nail Factory keeps con－ stantly for sale a very extensive assortment of Wrought Spikes and Naits，from 3 to 10 inches， manufactured by the subscriber＇s Patent Machinery， which after five years successful operation，and now almost universal use in the United States，（as well as England，where the subscriber obtained a patent） are found superior to any yet ever offered in market．
Railroad companies may be supplied with Spikes having conntersink heads suitable to the holes in iron rails，to any a mount and on short notics．Al－ most all the Railroads now．in progress in the United States are fastened with Spikes made at the above－named factory－for which purpose they are found invaluable，as their adhesion is more than double any eommon Spikes made by the hammer．
＊＊：All orders directed to the Agent，Troy，N．Y． will be punctually attended to．

HENRY BURDEN，Agent
Troy，N．Y．，July，I831．
＊．Spikes are kept for sale，at factory pricer，by I \＆J．Townsend，Albany，and the principal Iron Me－chants in Albany and Troy；J．I．Brower， 222 Water－street，New－York；A．M．Jones，Philadel－ phis；T．Janviers，Baltimore；Degrand \＆Smith， Eoston．
P．S．－Railroad companies would do well to for－ ward their orders as early as practicable，as the subscriber is desirous of extending the manufsctur－ ing so as to keep pace wish the daily increasing demanil for hiy Spikes．

1 J 23 am
H．BURDEN．
G．Mitchell，Printer， 265 Bowery，N．Y．

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT No. 30 WALL STREET, AT FIVE DOLLARS PEIR ANNUM, PAYABLE IN ADVANCE.
D. K. MINOR, and
$\left.\begin{array}{l}\text { D. K. MiNOR, and } \\ \text { GEORGE C. SCHAEFFER },\end{array}\right\} \begin{aligned} & \text { Editors and } \\ & \text { Proprietors.] }\end{aligned}$

CONTENTS.		
Railrusd Acrident, . . .		
Union Catal Report.		
Paris and St. Germain Railway, . . 563		
Miverpool and Manchegter llailway Report, . . 564		
Babbage'sCalculating Maehine-Exp'oston of Steam. bollers-Force of the Wird-Incention to supersedy the Ure of Steam-Sieam Engines in Birminglizm		
Resistance of Railway Trains-Cavendi.he Experi-ments-Large Meteoric Stones-S:eam-Engine Impravenient - New Lock - Colossal Steumers-		
Jist of Subserilie's who have raid, $\quad 567$Advertisemen's		
AMERICAN RAMIRUAI JOURNAI.		

NEW-YORK, JANUARY 24, 1838
0 See Advertisement of the Louisville, Cincinnatti and Charleston R. R.

We cheerfully re-publish the following article at the request of a worthy and estecmed man of science. We desire to add our own earnest request, that the subject may meet the attention that humanity demands for it. Without any reference to the origin of the accident, arising from the want of proper care, to say the least, we call upon all parties concerned in the direction and management of Railroads, to prevent the fearful consequences as described helow, resulting, simply, from an improper or der of the burden and passage cars in a train. The very frequent practice of placing the passenger cars between the enormous weight of the engine and the still greater weight of the burden cars, has often struck us as at least impolitic, though we had supposed that the practice was a concession to the popular prejudice, that the first place is always the best, which, however true in a line of stage coaches, is most assuredly inap. plicable in a train of railroad cars.

Would it not be proper for Directors to forbid the burden cars being placed at the end of the train, and to order them immediately to succeed the engine and tender, in all cases ?

From the United States Gazette.
To the Public, and to the Managers,
Agents, and Conductors of Railroads.
The following appeal is made in the hope that it may be the means of saving life, or at least, of securing exemption from injury to some fellow-creatures.

The desire to render this appeal as forcible as possible, must be the apology for the gloony details which accompany it. It is not to gratify the usual morbid propensity to read of distress, or to give food to so depraved an appetite, but if possible to produce such an effect upon all concerned, as may be the means of obviating the cvil, which was the source of all the agony of those hours that immediately followed the late accident on the Pohtsmovtif and Roanoke Railroas, and of the cruel sufferings by which it has been attended.
The writer of this appeal and his only daughter were part of the company who took their places in the centre car of three, which formed a part of the train upon the above named road on the morning of the 10th uf December. Our fellow passengers were two ladies, their children, one infant, two female servants, and several gentlemen, the other cars contained an unknown number, but the third car was occupied principally by n party of females, who entered it upon the route, and who were the greatest snfferers by the accident which occurred shortly afterward. They were in high spirits, and were cvidently seeking pleasure in their trip, looking forth with gay countenances and chcerful anticipations of enjoyment, at the very moment that they were brought to the most excruciating tortures, some of them to death.
The cars were moving at the rate of 12 or 14 miles an hour, when a crash was heard, and the writer was conscious of a sensation of rising in the air, then a fall, but further than this all sensation and memory fail, save the agony of that moment, when his child was before him, fellow-creatures, including females and children, around, with the instant conviction, that death, in fearful torture, was claiming lis victims from among them.
To the scene which followed no pen can give description. The three cars had been crushed to pieces, and all whom they conlained, except those only of the second car, were lying torn and mangled, on and among the fragments. The cries, lamentations and prayers of the less injured, distreesing as they were, were far less appalling than the faltercd accents of the mother who said, "Tell my son to come to me, I am dying."

She died that night. Could anything be more agonizing than the situation of that poor girl, who lay with her limbs jammed and crushed by the two iron wheels for hours, whilst all our effiorts to relieve her, in the absence of all means, and far removed from aid were in vain. Let ns close this detail by stating that two burthen cars were emptied of their loads, and in them were placed twelve of those whose crucl imjuries and heartrending lamentations can never be forgotten, and they were conveyed back to the nearest station. The remainder, with the uninjured, were taken on by another engine and train which arrived in a few hours at the place of the accident,
The loss of life, the woundsand sufferings of the maimed, were not necessury consequences of the accident to the engine, but were oceasioned by the excessively reprehensible custom of attaching burthen cars behind the passenger cars. In this instance the facts and circumstances are as follows:-
The road is constructed of light plate rails, laid on wooden string pieces and sleepers. The end of one of the rails was loose, and stood up, it struck the scraper, and threw the engine off the track and into the side of the ditch, when its further progress was arrested, the front of the frame being buried in the earth. The tender was thrown on its side, against the back part of the engine, which lay partly over the track; against this opposing mass, the light passenger cars were crushed to picees; and the font of the baygage car was stove in, as it lay upon the pile of ruins, by the momentum of a number of burthen cars loaded woith cotton, in bales, which for. med the rear of the train.
It is consistent with the laws of matter and motion, and many circumstances warrant the belief, that if the passenger cars had been placed behind the burthen cars, or if there had been no burthen cars in the train, little or no injury would have resulted to the passengers from the accident.
A pair of horses which were in a car forming part of the train, were apparently uninjured, and a carriage standing upon an open car, was scarcely displaced.
In continuance of his journey, with all
these circumstances fresh upon his memory, and when the papers had announced the deaths of two of the sufferers, the writer entered one of the cars at Washington for Baltimore, and was painfully compelled to witness, the attacliment of burthen cars belind the train, and this too in the night, when obstructions upon the road are much more to be feared. When the agent came round to examine, and collect tickets, the writer made the circumstance a subject of earnest remonstrance. The agent, with honest candor, acknowledged that the custom was extremely reprehensible, cited instances of injury from the like causes, regretted that his remonstrances had not been attended to, and said that nothing was left to him but to look to his own safety in case of accident.

In publishing this statement, the writer does not mean to censure any one, he makes no charge of neglect or carelessness; but he believes that the parties who had control, were sufficiently aware of the consequence of the sudden arrestation, (and the consequent liability to injury of every thing which intersenes, of such a moving mass as a train of burthen cars, at the ordinary rate of railroad progress. He feels that this statement is an indispensable duty to his fellowcreatures, called for by circumstances from which, providentially, he is a sufferer only in a slight degree.

Philadelphia, December 23, $18 \mathbf{4} 7$.

From the U. S. Gazelte.

REPORT.

In compliance with the provisions of the charter, the President and Managers of the Union Canal Company respectfully submit to the stockholders their annual report :
The navigation on the canal ceased last fall on the 26 th of November, and was resumed on the 22d of March, 1837; since which time it has continued uninterrupted except for a few days in September, while some necessary repairs were made on the feeder. The main line of the canal has required none but the ordinary repairs. It has been all the season in excellent condition, and it continues so still. The supply of water has been ample at all times, and another year's experience confirms the former statement of the board, that entire confidence may be placed in the sufficiency of the supply of water. With the amplest means to procure any additional quantity, the board are confident that the canal may be made able to pass any amount of trade that may be brought to it
Upon this point, the report of the able and experienced engineer, selected last year to examine the whole line of the canal, and ascertain the practicability of eularging its dimensions, is conclusive. The board have for many years past had their attention directed to this sulject, and the result of long and mature reflec-
tion and observation has been, that placed as the Unipp Canal is, as a connecting link between two highways of much larger dimensions, it cannot be as useful to the public, or as profitable to the stockholders, as it might otherwise be, unless its dimensions be made to correspond with those of the Pennsylyania or Schuylkill Canal. While those works admit of a navigation by boats carrying from fifty to sixty tons, the boats on the Union Canal seldom exceed twenty-five tons burthen; the effect of which is, that much of the trade of the interior of Pennsylvania, which should come to Philadelphia by this canal, is diverted to other improvements. Were it not for this circumstance, the stockholders of the Union Canal Company, would long since have reaped the reward due to the public spirit and enterprise, which distinguished its first projectors. While great expenses are incurred by rival companies, to take away the trade that naturally belongs to us, and to direct it to a rival city, it behoves us to make every exertion to secure the natural adrantages which we possess. To this course the proprictors of this Canal are urged, not merely by a regard for the prosperity of our City and State, but chiefly by a judicious attention to the interest and productiveness of the great link entrusted to their management, and'in which their funds are invested.

Inpressed with these views, the managers promoted an application to the legislature at its last session, for such an appropriation as would enable them to construct a new set of locks, of enlarged dimensions, so as to admit of its being navigated by boats of the same size as those that travel on the State Canal and on the Schuylkill, With a judicious liberality that indicated the high sense which the legislature entertained of this work, and by a larger vote than could be seoured for any other part of the improvement bill, an appropriation was made in furtherance of the views of the managers, but unfortunately for us, from circumstances familiar to all, the measure failed of ultimate success.

The Board entertain the most perfect conviction, that it is of vital interest to the stockholders, that the application should be renewed at as early a perioul as possible of the next session of the legislature, and they entertain strong hopes that the aid of the State may be obtained in a manner, which, white it will afford us a highly improved work, will not interrupt for a single day the navigation of the canal, jeopardize the rights of the loanholder, or impair the prospect of the stockholders to early and profitable returns for their past excrtions and perseverance.

The tolls collected during the twelvemonths that ended on the 1 st instant, amounted to $\$ 107,59037$. Although this sum falls considerably bolow the expectations expressed in the last annual report, it is much larger than the

Board ventured to hope for, after they became aware of the commercial crisis which the country was destined to experience.

Two causes have combined to reduce our tolls below those of the preceding year. The first was the almost total failure of the wheat and other grain crops throughout Pemmsylvania during the summer of I836. The disappointment of our farmers was sensilly felt in the revenue of the canal; owing to this cause the transportation of flour and whiskey was reduced to one-half, and that of grain to three-fourths, of what it had been in 1836 .

But a still more severe reduction was. the effect of the great commercial distress which has marked the present year. Where such a convulsion has occurred, spreading over the whole union; affecting every individual; striking at the prosperity of every interest ; arresting every branch of iudustry, it could not be expected that the Union Canal alone, should have escaped its influence, and that a revenue depending upon the general trade of the country should have remained unimpaired, while the whole prosperity of the country itself was at a stand.
Accordingly the transportation of merchandize fell' to one-thjrd of that of last year; that of wool to one-fisurth, and that of tobacco to one-sixth. When we reflect that these are among the articles that pay the heaviest tolls on our canal, it is rather a subject of surprise and congratulation that the effiect of it should not have been to produce a proportionate reduction in our revenue. That such has not been the case is in part due to the growing wants of the country, which netually occasioned an increase in some important branches, such as the transportation of anthracite, iron ore, gypsum, \&c. The board also advert with pleasure to the fact that cotton is a new source of income to the company, this being the first year that the amount has been sufficiently large to justify its being specially enumerated, the same may be said of nails, \&c.

The board feel confident, that the depression of the present year. may be viewed as entirely of a temporary charaoter, and they doubt not that the returning activity of trade will iestore to the canal its due share of business. As an cridence of this, they have pleasure in sta. ting that since the first of November there has been a great revival of businces on the canal, and that the tolls of the last three weeks greatly exceed the average of those of the whole year.

Every economy has been practised by the board, consistent with keeping the canal, and feeder in good order; new boilers were obtnined for the pond engine; a new trunk was erected, more solid and durable, it is believed, than the old one, to conduct the waters from that place to the canal.
In every other respect the ordinary
expenses have been reduced to as low a point as was consistent with a judicious economy, and notwithstanding the severity of the times, the managers were enabled to redeem the hope given in the last annual report, and to resume the payment of interest on the loans in July last. The interest duc in July and October has been paid without difficulty.

The managers have felt the most anxious solicitude to settle all the outstanding claims for damages; part of them to the amount of $\$ 5,63430$ have been liquidated, and more would have been done in this respect, if the board had met with a corresponding feeling of liberality and justice on the part of the owners of the property through which the canal and its feeders are constructed. That the work has been of immense advantage to the country through which it passes, and has greatly enhanced the value of every farm on the line, there can be no doubt, and yet, far from producing a favorable effect, the board lave been and still conitinue to be exposed to numerous harassing and extravagant demands.
The managers regret that it becomes their duty to inform the stockholders of the vacancy in the office of president of the company. Their late President, Jacol Gratz, Esq. liad for a long time past expressed his. desire to be relieved from the duties of that responsible and laborious office, and his intention to decline a re-election.
The managers long indulged the hope that that resolution might be changed; but his impaired health requiring the bencfit of travel and change of air, he tendered his resignation of the presidency on the 18 th October last, and the managers, while they deeply regretted it, could not; under the circumstances of the case deciine to accept it. Mr. Gratz had been a nember of the board since the re organization of the company in 1821, and had filled the office of President for three years; no member of the board ever discharged his duties with more zeal or more assiduity.
The board have also to regret the death of Mr. Willian Y. Birch, one of the oldest and most respectable members of this board.
Thcy have, howerer, pleasure in announcing to the stockholders, that their colleague, Willi.m Boyd, Esq. whose long connexion with, and valuable services to the company, highly qualify him for the sitmation, has accepted tine invitation of the board to undertake the presidency of the company.

Annexed will be found the annual account of the treasurer, likewise a stateinent of the different articles and tonnage transported on the canal within the jear.

> By order of the Board of Managers, C. GRAFFF, President pro tem. Uninn Canal Office,
paris and st. germain bailwaí.
The last " movement" of the Parisians has been by steam. The present point d' appui of the excitement of the capital of La Belle France; is the result of its first attempt to annihilate distance by the aid of mechanics. Of the opening of the railway from Paris to St. Germain, we extracted an amusing. account from the letter of the Times' Parisian correspondent.

We shall go more into detail in our notice of this railway than we are in the habit of doing, in the first place, because it forms one of the first practical results, in this branch of art, of the usual superabundance of French theorising; and secondly, that the principal features of the line may be pointed out to such of our countrymen as may be visiting the French capital, who will of course not fail to take a trip by steam to St. Germain. The account which follows is made up partly from the Parisian periodicals and papers of the day.

On entering the station at the Paris terminus and paying for your place, you are immediately struck with the prominent manner in which the national taste for gaudy display, is introduced into an undertaking where every thing is of great weight and giant strength. Having obtained your billet, on which is marked the number of the place you are to occupy, you are, on producing it to a gendarme, ushered by him into a magnificent saloon, which in the evening is ligbted with fine chandeliers. This saloon is in the form of a lunette, with a railing in the centre, to divide the high price from the low-price passengers ; each point of the lunette, is the exit from this saloon to the stairs, which lead to each side of the railway; the walls of this waiting saloon are divided into compartments, beautifully painted and decorated in the Louis quatorze style; as also with the medallion portraits of celebrated engineers and men of science. The four principal compartments contain very spiritedly painted figures, emblematic of Science, Industry, Commerce, and Agriculture. In smaller compartments are tablets on which are inscribed the names of Newcomen, Savery, Wate, Washbrough, Trevethick, \&c., Papin occupying a place in the centre tablet, in consequence, perhaps, of some new discoveries of Baron Dupin, proving him to be the inventor of railways and locomotive carriages! Elegant and soft cushioned seats, covered with scarlet damask, are provided for the waiting passenger, who is enjoined in the announcements to be at the rendezvous a quarter of an hour before the appointed time of startingmore than half the time occupied in journeying the $11 \frac{1}{2}$ miles. The windows of this saloon overlook the railway. The biulding, the interior of which we have just described, is over the commencement of the first tunnel, which is at a little distance from the extreme end of the railway, the line after emerging from it, continuing for a short distance, and terminating
in a similar building; and the part between these two erections form a kind of head, analagous to the basin of a canal, where passengers enter the carriages, and the waggons are loaded. The path by the side of the train is here elevated so as to be over the wheels, and level with the floors of the carriages; thus a passenger has merelyto walk into the vehicle, any accident froin falling being rendered impossible. The same plan is adopted on the Bumingham line, but on the Green. wich, the height to which a passenger has to mount is extremely inconvenient.

The general design of these buildings, and the grard flights of steps, from a point of view taking in the whole, is of a very bold and striking character; and the effect 'of this design, from being executed in stone, in fact almost cut out of a bed of stone, comes with much force upon an cye accustomed to the dullness of the brick and mortar structures of this country. The facility with which stone can be procured, heing often dug from the quarry, hewn into blocks, and used, nearly all upon the same spot, gives the Parisians a great advantage over us, in the power of making a display of taste in the execution of their public works.

The law authorising the formation of a company for the construction of the railway from Paris to St. Germain, was passed on the 9 th of July, 1835. It commences, at present, in the Place de l'Europe, on the north of Paris, but it is intended to continue it, by the Rue Tron. chet, nearly to the Madelaine, in the rery heart of Paris, the termination is at the port of Le Pecq, at St. Germain. The length of the line is 18,430 metres, or 11.160 miles English. At Paris, it is 20.55 metres above the level of the sea (about 127 feet English) and at Le Pecq, 31.497 metres (about 101 feet, the difference in height between the extremities being 8.071 meires (about 26 feet.) The railway passes under the Place de l'Europe in a tunnel of 264 metres, or S442 feet ; then through a cutting, walled on each side until it enters another tunnel of 403 metres, or 1292 feet in length, which leads as far-the Rue de la Paix in the village of the Batignolles; it then passes under the exterior Boulevart and the Rue des Dames and Rue de la Paix, and various other streets, by means of bridges. Immediately past that which carries the Rue Cardinet over the railway, are large warehouses occupying an area of 250 m , by 100 m . (800 feet by 320) for receiving goods and merchandise brought to Paris by the railway. The line now proceeds on an embankment unil it crosses the Seine a little way past Asnieres by a bridge of fire arches of 30 metres each, (about 96 feet); it then continues in a direct line from its first curve before the Batignolles for about 4500 metres (threc miles), when between Colombes and Asnieres, there is a curve of 2000 metres (about $1 \frac{1}{4}$ miles) radius. In another direct line it then proceeds as far as the two bridges orer the Seine a
little way past Rueil, where the railway takes another eurve of a similar radius to the last. These bridges cross two arms into which the Seine is here divided, embracing the Isle du Chiard; one bridge is of three arches of 28 mettes ($89 \frac{1}{2}$ foet) each. In another direct line it then traverses the Forest of Vesinet and terminates at Le P ecq, in a large depot for passengers, and for warehousing merchandise brought up by the rivers Seine and Oise to proceed to \mathbf{P} aris by the railway; or which has been brought from Paris to be taken on by these rivers.

The whole length of railway is divided into three straight lines, and three curves. Each curve is on a level, and each straight line is an inclined plane of 1 mil. in each metre (or 1 in a thousand.) It was calculated by the engineers that the "same power required by the locomotive to ascend this incline, would be required to turn each curve, in groing from St. Germains to Paris; and that the powor necessary to thrn the curve in going from Paris to St. Germain would be obtained from the impetus acquired by the trade in descending the inclines; so that thus the locomotives would always be kept at an uniform power of traction. On approaching Paris the terminal curve diminishes to from 900 to 800 metres (960 to 552 yards), this being rendered necessary by the locality, and it also serves to deaden the speed of the train as it approaches the end of its course.

By the railroad, the distance between Paris and St. Germain is only a third of the length which it is by the river Seine ; the navigation between these two points is, besides being circuitous, extremely difficult, and at times impossible. This remark, however, morely applies to the carriage of heavy goods, as no passenger ever thought of travelling to St. Germain by water. Even by the steam-packets which were established about a year ago between Paris and Rouen, from the circuitousness of the route, and the difficully of navigation, it was found necessary to convey passengers by diligences to a puint about 15 or 16 miles down the river, where they then embarked in the steam. vessel.

The " materiel" possessed by the administration of the railway, consists of a motive force of 12 locomotives of different powers ; equal in all to 360 horses. The means of transport consist of -
5 Close carriages, having accommodation for,

Permons:

2 Open carriages,
8 Diligences,
20 Waggons "furnished."
T0 Waggons "unfurnished,"
Altogether there are vehicles for 4070 persons. There are four double lines of rails from Paris to the Batignolles; three from thence to near Asnieres, and two from thence to St. Germain. As yet, however, only one track is completed, for a considerable distance.

The rails on this line are of great soli-
dity; being twice the weight of those on on the Liverpool and Manchester, the former being about 60 lbs . per lineal yard, and the latter only about 30 lbs .
The breadth between the rails is $1 \frac{1}{2}$ metres, (about 5 feel) ; between the lines 1.80 m . (about 6 feet) and on each side 1.45 m . (about $4 \frac{1}{2}$ feet.) The tunnel of the Batignolles is divided into two galleries, in each of which are two tracks of rails; one gallery was commenced on the 7 h June, 1836, and finished, 9th March, 1837; the other is not y€t completed: The breadth of each gallery is 7.40 m . (about 23 feet,) the height 6 m ., (about 20 feet.

I'he number of persons going between Paris and St. Germain before the establishment of the railway, by public and private carriages, was estimated at 400,000 a year, or about 1100 per day ; it was anticipated that this number would be increased in a tenfold degree; nor do we think the expectation likely 10 be disappointed: during the day the railway trains are always full, and on fine evenings and Sundays the crush to obtain places, is as suffocating as at the gallery door of a London theatre during the Christmas holidays.
The railway from Paris to St. Germain presents a summary of all the works that any undertaking of a similar nature, is usually called upon to execute. I'wo tunnels, the one with four double lines of rails under two parallel arches or galleries; the other with also four lines under a single arch. Three grand bridges over the Seine, of which one is of three arches of 150 metres, (480 feel) ; fifteen brilges for roads and streets, the names of which it is needless for us to mention, to pass over the railway; cuttings to the depth of 17 metres (60 feet,) embankments to the height of from 10 to 20 metres (32 to 64 feet,) and a stone quarry traversed.
The landscape, on the rolte of the line, is not of any particular interest. On crossing the Seine at Asnieres, are seen the magnificent Arc de Triomphed'Etoile and the church of St. Dennis. The succeeding country is of a varying character. The forest of St. Germain, nenr which it terminates is the most extensive in the neighbourhood of Paris, containing 5,550 French acres. Ite vicinity to the railroad is already attracting there a new stream of population. The Muisons Laffitte, and its vast park of 1500 acres is now, says a Parisian journalist, being transformed into delicieuse colonie, where are building under the direction of a young architect, M. Duval, "les constructions les plus variées, les plus agréables, les plus caprićeuses, qu'il soit possible de voir." This delicieuse colonie is, thanks to the railroad, within forty minutes jnurney of Pariz; and for 8000 francs, or $£ 320$, one may become the proprietor of an acre of land, well covered with wood, a prelty house and garden, and near the banks of the Seine.

The railway trains leave Paris at inter vals, ten times a day'; as also the same
number of times from $\mathbf{S t}$. Germain. The departures ure so arranged, that no more than one train shall be journering on the ralways at once; the time occupied in performing the trip, being from 251030 minutes: intleed this arrangement is at present necessary, as for a great part of the length, the line is orily a single track. The fares are from 1 to $2 \frac{1}{2}$ francs.

I'he utility of the railway-system as applied to France cannot be questioned. In the neighbourhoorl of the capital its effects will be most beneficial. The supplying of the markets of Paris, says a writer in the Revue Britannique, with articles of daily consumption, especially milk and vegelables, has been becoming more and more difficult from the increasing population; the great demand impoverishing the lands in the neighbourhood; the kine are being cons:antly drained to the last drop, and the gardens permanent dunghills. The swiftness of transport on a railway, he adds, being 6 . or 7 times that of carriage on common roads, the produce of places six or seven times further distant from Paris than are at present available, would thus be brought into the market. And if lines were to radiate in all directions from the capital, with connecting branches, from 36 to 49 times the present extent of country would be laid uader contribution for the supply of Paris.
On the oiher hand we have heard it objected, that the system of centralization, which gives Paris such a hold upon the whole couniry, would be increased by railroads; we think, however, that the effect would be the contrary, and that the general adoption of the rallwy system from the capital to the provinces, and from one province to anolher, would tend to equalize rather than centralize, influence and wealth, as well politically as commercially.-Mechanic's Mag.

The Report of the Liverpool and Manchester road is always regarded with interest, and particularly so nfter the present reverses which have operated to the great detriment of a road so entirely depending upon commercial prosperity; for the extensive transportation of merchandise. The enormous cost of the road is likewise to be considered, still the semi-annual dividend declared, is £4. 10s on the $\mathrm{X}_{1} 00$. The latest quotation of its slock, is £201 per share.

LIVERPOOL AND MANCHESTER RAILWAY-

 ELEVENTH HALF-YEAHLY MEETING.In their last Half-year's Report, the Directors had to notice that their general depression in trade, which for several months had occasioned a serious diminution in the traffic by the railway. They regret to be ubliged to state, that the distress which, at that time, had just over. taken the mercantile community, has since increased and extended, in a degree almost unptecedented; destroying con-

Gidence, curtailing manufactures, diminishing exports, and assuming the fearful character of a national calamity.

It could not be expected that the railway, considered as a public carrying establishment, should escape the general pressure. Intimately connected with the trade and commerce of the country, the traffic by the railway, in the Merchandise Department, has diminished with the diminished trade of this great commercial and manufacturing district. In the travelling department the rereipts have somewhat exceeded those of the corres. poniling period of 1836 ; but our judg. ment of the rece:pts in both departments, should be formed, not by simple comparison with the receipts of last year, but by an estimate of that ratio of increase, the anticipation of which was warranted by former experience, and which only the prevailing stagnation in all mercantile adventure could have prevented.

Since the meeting of proprietors in March last, the Grand Junction Railway has been opened, for the conveyance of passengers between Liverpool and Manchester, and Birmingham. Proprietors are aware that the engines and carriages of the Grand Junction Company pass along the Liverpool and Manchester line, as far as the Warring!on Junction. A consillerable accession of revenue may be expected from this source. The last halfyear's recelpts, however, are not improved by any incoine from this quarter; the opening of the Grand Junction Railway not having taken place till the 4th of the present month.

The Act of Parliament for powers to raise additional capital for the relaying of the road with stronger rails, and for the general completion of the works, has received the Royal assent. By this Act, the Company are empowered to hold their Annual General Meeting for chonsing Directors, in January, in each year, instead of in March. By this alteration, shareholders will be saved the inconvenience of attending a formal meeting in March, so soon after the more important ineeting in January. Proprietors, accordingly, will be so good as to recollect, that the choosing of five Directors, in the place of those which go out by rotation, will take place at the General Meeting in January next.

The relaying of the road with stronger rails has been continued with litle intermission through the last six months; the whole line will be completed in a few weeks from the present time.

The building of a handsome and com. modious arrival station at Manchester, has been commenced; and the last suit of offices and package-rooms, at the Lime street station, is now in progress. These works will be completed before the meeting of proprietors in January next.

In their last Report, the Directors in formed the proprietors, that in the same management of the railway, their primary object had been to provide that full satisfaction to the public, which affords, in its
turn, the surest basis for the permanent prosperity of the railway.

In the half-year just closed, the coaching department has been conducted in a manner superior to what they had previously been able to accomplish. There have been more departures in the day, and the trips have been performed with greater expedition, and with more uniform punctuality; add to which, passengers at the Liverpool end are brought by the new tunnel, to the middle of the town, instead of being set down in Crown.street, a mile and a half from the centre of busi. ness. The means employed to attain this end have been principally a larger and superior class of locomotive engines, and very complete machinery for working the new tunnel.
The Directors regret that these improved, but at the same time, more cosily arrangements, should have been brous h : into operation in a season of commercial difficulty; that when the Company were prepared to meet an enlarged business, the aggregate traffic should have been curtailed; that the scale of operations and expenditure should have been enlarged, in expectation of an increased business; while, owing to the pecular circumstances and pressure of the times, the receipts have been diminished. The Directors nevertheless feel confident that the unremitting efforts of the Company to satisfy the expectations of the public will ultimately conduce to the permanent prosperity of the concern.
The follouing is a statement of Reccipts and Disburscments for the Half year cnding the 30th Junc, 183 خ.

RECEIPTS.
Coaching Departınent, Merchendise ditto, Coal ditto,
f. s. d. 59,956 $4 \quad 6$ 42,698 $13 \quad 4$ $3,296 \quad 18 \quad 2$

105,951 $16 \quad 0$

EXPENSES.

North tunnel do.
$\begin{array}{llll}\text { Nett profit for six months } & 35762 & 2 & 7\end{array}$

Statement of Receipts and Expenditures on Capital Account, fyom the commencement of the undertaking to 30th June, 1837.

The Treasurer, 1Dr. to-

A mount of joint capital
in shares and lcans $1,292,657100$
Amount of dividends
not paid
$1,141 \quad 6 \cdot 2$
Amount of reserved fund and interest
$4,262 \quad 4 \mathrm{~B}$
Surplus in hand after payment of the 13 th dividend in Feb. 1837

6,377 1511
Nett profit for the halfyear ending the 301h Jụne, 1837^{*}
$\frac{35,762}{1,340,20019} 4$

The Treasurer, Cr.

By amount of expen. diture on the construction of the way and the works, including the new station in Lime-street, \&c. 1,326,535 106
By ditto of balance of book debts due to the Company.
$13,664 \quad 8 \quad 10$
1;340,200 $19 \quad 4$
By the foregoing statement of Disbursements, and a reference to previous reports, it will be perceived, that the gross receipts for the six monihs, ending $\mathbf{2 0 t h}$ June, 1837, fall short of the correaponding receipts of 1936 . by $3,405 l$.; whercas the receipls of the half-year, ending 30th June, 1836, exceeded those of 1835 , by more than that amount.

While the receipts have been thus diminished, proprietors are aware that a half-yearly dividend must nnw be paid, on the first Instalment of $10 l$. per Share on the 7,968 new ifty pound shares, created in July last, as well as on $136 \frac{1}{2}$ new shares (issued in quarters) which the Directors were empowered to sell, to make up the aggregate capitalauthorised by the Act.
To the nett profit as rer
the foregoing statement 35,762 27
Must be added the surplus
after paying the half-
year's dividend in Jan-
nary last
6,377 1511
Making a disposal nett
balance of
$42,139 \quad 18 \quad 6$
The shares on which a dividend is to be declared are-

The old shares fore equaling	$7,965 \frac{3}{4}$	100 shares.
The $10 l$ instal ment on 7,968		
Fifty Pound shares equal'g	79610	100 shares
And on the new shares sold by the Directors		
the Directors	136	100 shares
Equaling in all	$02{ }_{20}^{10}$	100 sh

The Directors recommend to the proprietors a dividend on this number of shares of 47.10 s . per share, making 40,059 l. 4s. 6d., which, deducted from the disposable fund above stated

Will leave a balance of
according to various principles ; and all of them have been invented in more than one form. I consider then, even in their present state, as susceptible of practical execution; but time, thought and expense, will probably improve them. As the remaining illustrations are all drawn from the powers of this new engine, it may be right to state, that it will calculate the numerical value of any algebraical function; that, at any period previously fixed upon, or contingent on certain events, it will cease to tabulate that algebraic function, and conmence the calculation of a different one, and that these changes may be repeated to any extent.
"Tlie former engine could employ about 120 figures in its calculations; the present is intended to compute with about 4000.
"Here I should willingly have left the subject; but the public having erroneously imagined, that the sums of money paid to the workmen for the construction of the engine were the remuneration of my own services for inventing and directing its progress : and a Committec of the House of Commons liaviag incidentally led the public to believe that a sum of money was voted to me for that purpose, I think it right to give to that report the most direct and unqualified contradiction."-p. 170.

explosion of steam-bollebs.

The valves being in order, it is generally considered that explosions arise chiefly from the sinking of the water below a certain level. M. Sorel has proposed a method to obviate this by the introduction of a tube into the boiler descending a little lower than the said level. The orifice of the pipe is to be kept closed by means of a valve carried by a float, which sinking, as the water descends, beneath the desired level, opens the valve and permits the steam to pass out.-London Railioay Mag.

force of the wind.

Few persons can have any idea of the excessive powor of the wind in ligh velocitics. It appears from our table, No. 3 , that at 40 miles an hour, which; is a high wind, the force is no less than 6ibs. to the square foot. How many of our glass windows would stand even this pressure with doors open behind them? At 80 miles an hour, which is a hurricane, the pressure is no less thian $24 \cdot 561 \mathrm{bs}$. per square foot. Against such n wind as this, it would be exceedingly difficult for the strongest man to keep lis legs; to walk against it would be out of the question. At 100 miles an hour, it is said thic wind would sweep every thing before it ; the pressure would be $38 \cdot 36 \mathrm{lbs}$. to a square foot. There are few houses of any size, which standing singly, would not present 7.000 square feet. In such a hurricane the power of the wind would be no less than $38,360 \mathrm{lbs}$. or
above 17 tons, against a house with 1,000 square feet of surface. Its chance of resisting so enormous a foree would therefore be very little:-Ib.
invention to supersede the cse of steam.
An invention we have heard, is shortly expected to be laid before the public, by which steam will be, in a great measure, if not wholly, superseded. We are unacquainted with the particulars of the invention, but we have been assured, from two several quarters, that it is simple and efficacious; and is now waiting for the completion of one point in the universal application, which, it is sup. posed, cannot be long an obstacle.-Ib.
steam-engines within the borough of birmingham.
By a report made to the Birmingham Philosophical Institution, October, 1836, it appears that 169 steam-engines had been erected from 1780 to that period, of which 17 had been erected in 1834, and 22 in 1835 , The total horse power was equal to 2,790 horses. Within the same period engines equal to 162 horses' poiver had become void, or removed. Of those erected and estimated in horse power, 275 were used for grinding flour; 6,770 for working metals; 279 for pumping water ; 87 for glass grinding; 97 for working wood; 44 for paper making and glazing; 37 for grinding clay; 61 for grinding colours and chemicals; and 50 for sundry purposes. The estimated consumption of coals is 216 tons per day; estimated number of persons employed, 4,000 males, and $1,300 \mathrm{fe}$ males; and tlie estimated aniount of power hired out, equal to 450 horses. These estimates are confined to engines within the borough, and, of course, do not include the great Soho works of Bolton and Watt.
Of the 1,770 horse power employed in working metals, It is computed that 162 is used by iron founders, first applied in 1788; 570 in rolling copper, brass, and other metals, first applied 1790 ; 150 in drawing wire, first applicd in 1808; 201 in iron forges, and wrought iron mills, first:applied in 1810; 74 in nail eutting, first applied in 1813; 104 in screw making, first applied in 1819; and 34 in drawing metal tubes, first applied in 1822.-Ib.
gLass clotr.

Richard Barker and Son, of Ossett-street-side, near Dewsbury, have fonnd out an improvemient in glass, and have it so pliable that they can make a cloth or fubric of the finest texturc. Tley have picces of this glass two yards and a-half long and from nine inches to thirty-six inches in breadth; they have also made some very fine ladies' head-dresses or ornaments from this material, which are considered hoth yery curious and useful. -English Paper.
besistance of rallway trains.

Dr. Lardner exlibited some new investigations on the resistance of railway trains. The principal new element introduced was that of the gyration of the wheels, which seems to have been negleeted by Pambour and othiers. Dr. L. gave the data and results of some expements to which he had applied his theorems; and, what is very singular, found the resistance of the train, abstracting the excess of resistance of the engine, to be eight pounds and a half per ton, which he still thought was a little too much, coinciding very nearly with eight pounds, which Mr. Herapath afterwards said he had deduced from some experiments of his own, and used in calculations. We expected to be able to give Dr: Lardner's theorems, but have not been furnished with them. Mr. Vignolle observed that Wood had taken into account the rotation of the wheels; on which it was remarked, that Wood's theorems were never used. Dr. Lardner than made some observations on the practical unimportance of atmospheric resistance in his experiments, which we believe was misunderstood to mean a general neglect of the atmosphere ; whereas, from what he afterwards said to us, he meant that his experiments were made at a velocity of only nine or ten miles an hour, and with heary trains, exposing so little surface as to render the resistance unimportant. Dr. Robinson and Mr. Vig. nolles decidedly expressed their dissent from noglceting the effect of the air, and Mr. Herapath stated in some experiments he had made, that to a load of thirty tons the air at a velocity of thirtytwo miles aun hour, that at which he travelled, added an apparent load of twentyone tons more, and that trains which in a non-resisting air would move at a rate of sixty miles an hour, were by the air's resistance reduced to about forty. Mr. Robetts, of Manchester, made several pertinent observations, and so did Mr. Hardman Earle. Mr. R. said that he once made a top which would spin for thirty-seven miinutes, but when gilded, only seventeen minutes-a practical hint for making pendulums. Dr. L. concluded with expressing a wish that the Association would direct some experiments to be imade on this very important and interesting subject, which was loudly re.echoed by the section.-London Railway Magazine.

capendisis's experiments.

Government has granted 500 l . to the Royal Astronomical Society towards repeating the experiments of the Hon. Mr. Cavendish, made about half a century since, and Mr. Francis Baily has granted the use of apartments in his house. With the experience of the present day great discoveries, towards unlocking the secrets of many phenomena, are expected to result from the inquiry. It will take from one to two or more years to finish them when begun - London Railvay Magazine.

A recently received Halifax (Nova Scotia) paper says, that while several of the inhabitants of Montmorot, in the Jura, were at work in the vineyards which are close to the old castle there, they heard a noise which sounded like a distant clap of thunder, and saw a mass fall down into the vineyard of an innkeeper, named Michaud. On being examined, it was found to be about five feet high and three feet broad. It is of a grey colour, resembling pumice-stone, but marked with ferruginous particles. -Ib.

IMPROVEMENT IN THE STEAM FNGINE.
Professor Nollet, empleyed in the Museum of the State, has just completed a most important invention ; viz, a steamengine exempt from all danger of explosion, not expensive, occupying but little space, and the moving power of which, at the same temperature as the ordinary machines, has a power six times as great, reducing by one-fifth the consumption of fuel, which is an immense advantage, not only in respect to economy, but to the smaller space which may be required for the stock of coals. Brussels Paper.

NEW LOCK.

M. Lettestu has invented a lock, by which the bolt is drawn into the staple by a circular instead of a rectilinear motion. When shut it is said to resist, by its construetion, both the opening of the door and the slipping of the frame, (chambranle). The key to move the bolt acts in a nut composed of screral little rundles (rondelles); springs carried by some, fastened by others, and unfastened by projections conveniently constructed on a bit of the key, form the garniture or guard of the lock. The several pieces composing the nut, although of a similar exterior dimensions, are various within, and may be replaced from one lock to the other.

colossal steamers.

In addition to the information we supplied of the great steamer building at Curling and Young's in our last, the Morning Herald has furnished the fol-lowing:-
"After deducting her engine-room, she will have ample accommodation for 500 passengers, 25 days' fuel, and 800 tons measurement goods, exclusive of luggage, provision and stores. The enterprising spirit evinced, may be readily gathered from the following estimated expenses of the royage out and hone again. They are as follows:-

Wages, provisions, and				
stores for crew	$£$	666	0	0
Coal out and home. .	1,140	0	0	
Port charges, \&c.	1,378	0	0	
Insurance, interest,	cce.	2,000	0	0

£5,184 0

List of subscribers- to the Railroand Journal, who have paid since the 18tia of August last.
J. W. Judsons S. Bailey,
S. Mailey,
E. Morris,

Ashford, Con.
July 1, 1838 J. Noonan Grange," Jan. 1, 1833 N. B. Bufford, Baltimore, Md. ${ }^{61} 1838$ W. P Hord, Frankfort, Ky. July 1. 183% L. O. Reynolds, Chambly, L. C. J 1, 83 R. Higham, Utica, N. Y. L. D. Jaques, Painesvile, Ohio, July 1, 1838 J. R. Grout, - St. Joscphs, Mich. Jan. 1, 1838 Hugh Ronalds Albion, 111. © 1, 1838 Dr.J. W. Francis, Cily, "1, 1837 D. B. Elanchard, Shawneetown, 111. " 1,1838 Lucius Lyon, Detroit, Mich. Aug. 1, 1837
J. Gore, B!ack Creek Valley, Va. May 1, 1338 Central R. R. \& Banking Co.
Eavaruah, Cia. (Advertising) Aug. 1837 Do Do Do (Subscription) Sept. 1, 1838 Mr. Schoenever, Brooklyn. N. Y. Jan. 1, 1838 E. C. Billings, Charleston, S.C. " 1,1839 Hugh uillean, Harpers Ferry, Va. Oct. 1, 1837 Wretern R. R. Co. Jackson, Tenn. Jan 1, 1837 G. A. Niccol!s, Douglasville, Pa. "1,183i R.iI-Liddy, Boston, Mass. " 1, 1838 $\begin{array}{lll}\text { R. il } \cdot \text { Liddy, } & \text { Boston, Mass. } & \text { " } 1,1838 \\ \text { Judah Dobson, } & \text { Philadelphia, Pe. } & \text { " } 1,1838\end{array}$ W. Gregory, Pensacola, Fa. " 1, 1839 John Rutter, Yorkville, N. Y. "1,1838 J. B. Jervis, Litile Falls, N. Y. "1, 1838 T.J. Waters, City, 1,1838 N.Y. \& Eric R. R. Co." $"$ " 1.1838 L. N. Vibbard, Orange, N. Y. " 1, 1838 E. A. Douglass, Mauch Chunk, Pa. Dec. 6, 1837 A. Barrett, Lockport, N. Y. Jan. 1, 1838 A. \& A. H. Belknap, Newbury, N. Y. Oct. $20,{ }^{\prime} 37$ A, Stein, New Orleans, La. Sept. 1, 1838 J. Drakc, Cincinnati, Ohio. Jan. 1, 1838 T. H De Witt, Stone Wall Mills, Va." 1,1838 R. Carter, Bushnell's Basin, N. Y. " 1, 1838 Kamthers \& Erskine, Salt Sulphur

Springs, Va.
May 10, 1838
J. De Frias. Havana, Cuba, Jan. 1, 1838 J. Archilald, Carbondale, Pa. "1,1838 W. B. Cilliert, Dixon's Ferry, Ill. Oct. 1, 1838 R. J. Davis, Tye River, Va. Jan. J, 1\&38 Minard Sturgess, New Albany, Ind. "1,1838 C. W. Mills, Natches, Miss.: Oct. 1, 1837 F. Spofford, Bucksport, Me. Jan. 1, 1838 James Hayward, Cambridge, Mass. " 1, 1538 S. Ahboth
W. N. Grove
N. Coryell,
M. Coryell,
T. S. Brown, Durrison, Ohio, Sept 1, 183 E. Ross Bitule, Cooseta, Ala. July 1, 1838 P. Mitchell, Citys Jan. 1, 1830 W. B. Thompson, Richmond; Va. Nov: 22, 1538 Engineer Office, Washington, D. C. Jan. 1, 1838 Elihu Wing, Quaker Hill, N. Y. "1,1838 Samuel Hall. Princeton, Inda. July 1, 1838 Durfee, Coleman \& Co. Hudson, N. Y.Jan. 1,1838 Do. Do. Do. (Advertising) Aug. 1, 1837 Allen Harris, Central Village, Con. Mar. 20, 1838 W. J. Lewis, Columbia, S. C. Jan. 1, 1833 J. J. Myers, Poplar Springs, S. C. " 1, 1839 E. Lord, Tappan, N. Y. Sept. 1, 1837 Dan. Whi:ncy, Navarino, Wisconsin, Jan. 1, 1839 Jos. F. Totson, Jersey City, " 1, 1839 Hugh Fitz Patrick, Rock Run, Md. n 1, 1839 Daniel Mc Clain, Philadelphia, Pa. "1,1839 Alfred Hovey, Saganaw, III. "1,1839 A. A. Dexter, Montgomery, Ala. "1,1838 Do. Do. Do- Advertising ", 1,1838 $\begin{array}{ll}\text { E. \& G. W. Blunt, } \\ \text { Do. City, } & \text { Do. } \\ \text { Do. Advertising, " } 1,1833^{\circ}\end{array}$
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.

0 Particular attention will be given to the procuring of all kinds of Instru. ments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

红 $=$ Volume Six will bo completed as speedily as possible. The next, or Volume for 1839, will 'be published in a more convenient form for preservation.

LOUISVILLE, CINCINNATTT, AND

 CHARLESTON RAILROAD.NOTICE TO CONTRACTORS.-Sealed Proposals will be received at the Offico of the Company in Columbia, S. C., until the 15th day of February next, for the graduation and masonry of that portion of the Road from Columbia to the crossing of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.

Also, for the construction of a Bridge of 400 feet in length, on the Congareo River, to be built on stone piers and abutments, for which there are suitable quarries in the neigh borhood.

The plans and profiles of the line will be ready for inspection at the Oifice of the Resident Engincer, in Columbia, S. C., after the 10th day of February.

So soon as tho surveys for location, now in progress, are completed, that part of the Road extending from McCord's Ferry to the Charleston and Hamburg Railroad, at Branchville, will be put under contract, of which due no tice will be given.

WM. GIBBS Me NEILL, Chief Engineer.
OTJTho Railroad Journal, N. Y. Courier \& Enquirer, N. York; Providence Journal, Providence, R. I.: Atlas, Boston; Philadelpia En. quirer, Philadelplia; will publish the abovo notice 6 times, send a copy of the paper to the Offico in Clazleston, S. C., and a certified copy of their account for payment.

$$
\text { Jan. } 12
$$

finw6

NEW ARRANGEMENT.

ropes yor inćlined planes of railroads.

WE the subscribers have formed a co partnership under the styl: and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroa:ls, and for other uses, offer to supply ropes for inclined planes, of any length req:ired without splice, at short notice, the manufacturing of cordage, heretofore carred on by S. S. Durfee \& Co., will be dane by the new firm, the same superintendent and machincry are employed by the new firm that were employed by S. S. Darfee \& Co All orders will be properly attended ti, and ropes will be shipped to any port in the United States.
12th nunth. 13th, 1836. Hndson, Columbia County, State of Niew-York.

ROBT. C. FOLGER.
33-tf GEORGE COLEMAN.

AMES' CELEBRA'TFD SHOVELS, SPADES, \&c.

300 dezens Ames' superior back strap shovels. 150 do. do. do. plain do.
150 do. do. do. cas'steel Shovels \& Spades 150 do. do. Gold-mining Shuvels
00 do. do. plated Spades.
50 to. do. so:ket Shovils anil Spades
Together with Pick Axes, Churn Drilie, and Crow Bars (steel pointed), manufactured froan Salisbury refined iron-for sale ty the manufactuang agents,

WITHERELL, AMES \&

No. 2 Liberty street, New-York. BACKUS, AMES \& CC.

Fo. 8 State-sireet: Albany.
N. B.-Also furnished to order, Shapes of every description, made from Salisbury refined Iron. wi-il

MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Paterwon, New.Jersey. The undersigned receive orders for the following articles, manufactured by them, of the most superior description in every particular. Their works being extensive, and the number of hands employed being large, they are enabled to execute both large and small orders with promptness and dispatch.

RAILROAD WORK.
Locomotive S:eam-Engines and Tenders; Driving and uther Locomotive Wheels, Asles Springs and F lange Tires; Car Wheels of cast iron, from a variety of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of best American refined iron; Springs; Boxes and Bolts for Cars.
COTTON, WOOL, \& FLAX MACHINERY,
Of all descriptions and of the most improved patterns, Style, and Workmanship.
Mill Geering and Millwright work generally; Hydranlic and other Pressea; Press Screws; Cal lenders; Lathes and Tools of all kinds; Iron ami Brass Cas'ings of all descriptions.
R()GFRS, KETCHUM \& GROSVENOR,
Paterson, N. J. or 60 W all-st. New-York $51 t f$

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build on his Palent Plan, watid respectfolly infurm Railroad and Bridge (iorpora tions, that he is preprared to make cohtracts to build, and fornish all materials for superstructures of the kint, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followi-g localities, viz. On the main roarl leading fiom Baltimore to Waskiniton; two miles from the former place. Across the Motawamkear river on the Military road in Maine. On the national road in 1 linnois, at sundry paints. On the Baltimore and Susquehanna Railroad at three puints. On the Hudson end Patersm Railroall in two places. On the Boston and Worcester Railroad, at several points. On the Boston and Providence Railroad, at sundry points. Across the Contononok river at Hennikar, N. H. Across the Souhegan river, at Milford. N. H. Across the Cunnecticut river, at Hancoed, $\dot{N} . \mathrm{H}$. Across the Androscoggin river, at Turner Centre, Maine. Across the Kennehee river, at Waterville, Maine. Across the Genesee river, at Squakiehill, Monnt Worris, N. Y. Across the . White River, st llartfurd, Vt. Across the Connecticat River at Lebanon, N. H. Across the mouth of the Broken Straw Creek, Penn. Across the mouth of the Calaraugus Creek, N. Y. A Railroad Brilgediagonally across the Eric Canal, in the City of Rucliester, N. Y. A Railruad Bridge al Unper Sill Water, Orono, Maine. This Britge is 500 feet in length; one of the spans :s over 200 feel. It is probably the firmest wooden bridgre ever buili in America.
Notwith-tanding his preseet engagements to buial hetween twenty and thirty Railrond Bridyes, and several common brid.res, siveral of which are now in progress of contruction, the subscriber will prompily attend in business of the kin! to much greaterextent and on liberal terms.

MOSES LONG
Rochester, Jan. 19th; 1837. 4-y
STEPHENSON,
Builder of a superior style of Passenger
Cars for Railroads,

No. 261 Elizabeth street, near Bieecker strest,

 NEW-YORK.RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be sren on the New-York and Harlaem Railroad, now in operation.

ROACH \& IVARNER,

Manufacturers of OPTICAL. MATHEMA. TICAL AND PHILOSOPHICAL INSTRUMENTS, 293 Broadrag, New. York, will keep eonstantly on hand a large and general assortraent of Instruments in their line.
Wholezale Dealers sind Country Merchanta supplied with SURVEYI NG COMPASSES, BAROMETERS, THERMOMETERS, \&c. \&c. of their own mannfacture, warranted accura'e, and at lower prices than can be had at any other establishment.
Instruments inade to order and repaired. $1 y-14$

RAILWAY IRON, LOCOMOTIVES,
THE \&c.\&e
THE subscribers offer the following articles for salc:-
Railway Iron, flat bars; with conntersunk holes and mitred joints,
liss
350 to ns 2 by $\mathrm{f}, 15 \mathrm{ft}$ in length, weighing $4 \frac{68}{88}$ per r

80 " $1+$ " $1, "$ " " $1{ }_{105}^{25}{ }^{\circ}$
90 "1 " 4 " ". " \quad ²
witn [Spikes and Splicing Platea adapted thereto. To be sold free of dinty io State governments, or incorporated companies.
Orders for Pennsylvania Boiler Iron executed.
Rail Road Car and Locomıtive Engine Tirea, wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 inches diameter.
E. V. Patent Chain Cable Bolts for Railway Car asles, in lengtlis of 12 feet 6 inches, to 13 feet $2 \hbar$, $2 \frac{2}{3}, 3,3 \frac{5}{3}, 31,31$, and 52 inches diameter.
Chains for Inclined Planes, short and stay links, manufactured from the E. V. Cable Bolis, and proved at the greatest strain.
India Rubber Rope for Inclined Planes, made from New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and slone block of Edge Railways.
Every description of Railway Iron, as well as Loconotive Enginea, imported at the shortest notice, bv the agency of one of ont partuers, who resides in England for this purpose.
A highly resprectable American Engiufer resides in Erglanid for the purpose of inspecting afl Lon,. motives, Maclinery, Railway lrun, \&c. ordered through us.

28 If
A. \& G. RALSTEN \& CO.

Philadeluhia, No. 4 South Frobs-st.

ARCHIMEDES WORKS.

(100 North Moore-street, N.Y.)

THE undersigned beg hase to iuform the propristors of Rail Roads, that they are prepiared to furnish sll kinds of Machinery for Rail Roads, loncomolive Engines of any size, Car Wheels, such as are now in successful operation on the Cainten and Amboy Rail Road, none of which have finled.Castings of all kinds, Wheels, Axles and Buxer, furnishied at the shortest notice.
H. R. DUNHAM \& CO.

New York, February 12th, 1836.
4-ylf
PATENT RAILKOAD, SHIP AND BOAT SPIKES.
.** The Troy Iron and Nail Factory keepa constantly for sale a very extensive assorthant of Wrought Spikes and Nails, from 3 to 10 iucher, manithetured by the subseriber's Patent Mactinery, whicla afier five years successful operation, and nuwe almost unisereal use in the United States, (as will as England, where the subscrik. obtained a patent) are finurd superior to any yet ever offered in market.

Rairoad companies majy be eufplird with Spikes having conntersink lurads suitalile to the holes in iron rails, to any amonut and on short notics. Af. t:ost all the Railroads how in progress in the United States are fastened with Spikes made at the above-nansed factory-for which purpose they are found invaluable, as their adhesion is more than double any common Spikes made by the hammer.
${ }^{* *}$ Allorders directed to the Agent, Troy, N.Y. will be punctually atteniled to.

HENRY BURDEN, Agent.
Troy, N.Y., July, 1831.
** Spikes are kept for sale, at factory prices, by 1 \& J. Townsend, Albany, and the principal Jron Me chants in Albany and Jroy; J. I. Brower, 222 Water-street, New-York; A. Ni. Jones. Philadelphia ; T. Janviers, Baltimore ; Degrand \& Smith, Coston.
P. S.-Railroad enmpanica would do well to forward their orders as carly as practicable, as the aubscriber is desirous of extending the manufacturing so as to keep pace with the daily increasing emand for his Spikes.

1J23am
H. BURDEN.
G. Mitchell, Prinier, 265 Bowery, N.Y.

american
 RAILROAD JOURNAL,
 AND

PUBLISHED WEKKLY, AT No. 30 WALL STREET, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVAXCE.
SATURDAY, SEPTEMIBEA $23,180^{\circ}$.
(Published January 27, 1838)
VOLUME VJ.-No. :8.

CONTENTB.

Eufulo and Eive Railrond Report
562
Principles and Pradice of Levelling
571
Opening of the Railway from Paris io St. Germiln
The Ballimore and Susquebannte Raliroad. - The
Cincinnati de chatetime \& Louisville Railrond.
-The Ralt in Red liver
Trurability of various kinds of Wnod
Advertleemsents
AMEHICAN HAHLROAD JOUKNAH』
N゚EW-YURK, J ANUARY 27, 1838.
BUFFALO AND ERIE: RAIL ROAD REPORT.
T. S Broven, C'hief Engineer.

To the Piesdent and Directirs of the luaridu and Erie Ratirend Company.
Gentlemev,-Having, in compliance with your instructions, completed the preliminary surveys of the Buffalo and Brie Railroad, together with the estimates based thereon, I have the honor to submit the following report.
I. General description of the line.

The Buffalo and Erie Railroad will extend from the western limits of the State of New-York, eastward, along, the south shore of Lake Erie, to Buffalo; a distance of about 70 miles. At its western extremity, it will connect with a railroad, to be hereafter chartered by the State of Pennsylvania, leading to Erie, and thence to the line between Pennsylvania and Ohio. From the eastern boundary of Ohio, along the shore of Lake Erie, to the western extremity of the Lake, Railroad charters have already been granted, and at different points of the line, the construction of the road lias been commenced. It is believed, also, that railroad charters already exist, and that surveys have been made, and even construction begun on a connected liae of roads, extending westward from Lake Erie to the southern extremity of Lake Michigan, and theuce, in the same direction, to the Mississippi river. It Buffalo, the eastern extremity of your road will connect with the continuous line of railroads, constructed, and to be constructed, leading from Buffalo to Albany, whence, by means of the western Railroad of Massachusetts, a communication will soon be opened with Boston. The Buffalo and Erie Railroad, is therefore, an important link in that grand chain of railroad communications, which, by the route along the Erie Canal and the shores of the Great Lakes, is to connect Boston with the Mississippi river, the extreme east, with the extreme west.

This line is intersected at rarious points by important lateral branches which will serve to swell the amount of its business, and to dispense to all parts of the widely extended country through which they pass, the advantages of a cheap and rapid mode of intercourse. At Dunkirk, firty-two miles west of Buffalo, your road will connect with the western termination of the great New-York and Erie Railroad, which commencing at Tappan on the IIudson River, will proceed westward through the southern tier of Counties of the State of New-York, to Loke Eric. To that work, yours will be an important auxiliary, and from the connection between them, when completed, much profit cannot fail to accrue to your Stockholders.
Desisting from these general views, I will proceed to describe, more particularly, the route of the Buffalo and Erie Railroad.

Commeneing at a point on the westerin boundary line of the State of NewYork, within a few rods of Lake Erie, in the new village of Napoleon, the line proceeds in a northeasterly direction, inclining at first inland, for the purpose of avoiding the numerous ravines into which the surface is cut immediately adjoining the Lake shore. Having in a length of two miles, attained a distance from the shore of about one mile, the line for about six miles will run on extremely favorable ground, parallel to the shore, and below the ridge on which the postroad is constructed. Here it will again be necessary to converge towards the Lake for a distance of two miles, for the purpose of attaining a favorable point for crossing Chautaque Crcek.
At Westfield, and for some distance below, the ravine formed by this creek is very wide and deep, but near the Lake in the village of Barcelona, (Portland Harbor,) a point for crossing is found, which though still requiring the construction of a bridge of considerable extent and cost, is the best which can be obtained.

Passing through the village of Bareelona on the line either of 8 th or 6 th street, the line will again diverge from the Lake, and crossing numerous ravines, will once more reach the smooth and favorable surface immediately below the ridge occupied by the main road. Run.
ning close under the foot of this ridge, the line passes about half a mile north of Centreville and Salem, and crosses Coney's creek and Slippery Rock Creek, at points where no difficulties are presented, though nearer the Lake, the ravines of both these creeks would offer very formidable obstacles. Soon after passing Salem, the line changes direction, and converging towards the Lake, crosses the ravine formed by the Little Canadaway Creek where it is 600 feet wide and twenty deep, the creek itself being onlytwenty or thirty feet wide, and one or two deep. Leaving Van Buren harbor about a mile to the north, and crossing the Canadaway Creek at a favorable point, the route will pass over some broken ground, and entering Dunkirk, will curve into the line of Third-strect, down which it will proceed to its intersection with Lion-strect. At this point, which is eighteen miles from Barcelona, or twenty-eight from the State Line, your road will intersect the New-York and Erie Railroad.

In running the experimental lines, all the Lake shore villages have been included in the route, except Van Buren. It was found on examination that the road could not be taken through this place without incurring considerable extra expense, by crossing the valleys of Coney's Creek, Slippery Rock Creek, and Little CanadawayCreek at unfavourable points, besides encountering numerous rarines, which the line, as actually run, aroids; or without approaching Van Buren from the westward, at a rate of descent much greater than has been found necessary on any other part of the road. East of this village the ground is very favorable. A knowledge of the positions and elevations of certain fixed points has led to these conclusions without the necessity, for the purpose of a preliminary survey, of actually running a line of levels through Van Buren. It will undoubtedly be for the interest of the Stockholders, that the road should pass through as many villages as possible, and particularly where the villages are situated at harbors on the Lake, but if future careful surveys should confirm what is rendered probable by the partial examinations already made, it will evidently be better that Van Buren should be connected with the main route by a short branch,
than that the road should be seriously injured by taking it there in opposition to the requirements of the ground and to true principles of location. The railroad already chartered, which is to connect Van Buren Harbor with Fredonia, will cross your road not far from half way between those places, and might very conveniently, serve as a branch leading to both.
Proceeding eastward from Dunkirk, the line will follow the course of 3 d street for nearly a mile, and then bending more towards the Lake, and crossing several creeks and ravines over eight miles of surfice, which is on the whole rather favorable, will pass just to the norlh of the residence of Oliver Lee, Esq., at Silver Creek, and will strike Silver Creek in the village of Fayette, at a point two or three hundred feet from its mouth. Leaving the creek, the line curves around Oak Hill which lies immediately to the east of it, upon the top, and near the brink of the precipious rocky bluff forty feet high, which at that place forms the Lake shore.
The valley of Silver Creek, and Oak Hill beyond, present obstacles which appear somewhat formidalle; but by passing the road over the valley at a considerable height, by means of a trestle bridge, the alternatives, of steep grades, or of deep cutting and heavy fiilling, are both avoided at a comparatively moderate expense.

Having cleared Oak Hill by means of two curves of 2500 feet radius, their curvatures being in opposite directions, the route continues on favorable ground to Irving, at the mouth of Cattaraugus Creek, three miles distant from the flats, adjacent to Cattaraugus Creek, are occasionally subject to be overflowed, but this evil will be much diminished when the United States works of improvement at the mouth of the harbor are completed, and a very moderate embankment will obviate all inconvenience from this cause.

Crossing Cattaraugus Creek at a point either immediately adjacent to the new bridge, or at a considerable distance above it, the line traverses the Cattaraugus Indian reservation, where it is only a mile and a balf wide, and conforming with the direction of the Lake shore, will bend considerably to the north, for the purpose of keeping upon the favorable surface extending between the Lake and the high and broken ground occupied by the old Erie road. Four miles from the Cattaraugus, in the rear of Cash's tavern on the lake road, a ridge is encountered, running in a direction nearly perpendicular to the line, and terminating in a bluff upon the Lake, and immediately enst of the ridge, follows the wide and deep valKey of Mud Creek. In passing this ridge a cut will be neecessary, which will extend about 2500 fect, with a mean depth of seven feet, and the grade line will pass over Mud Creek Valley for a distance of 900 feet, at a height above the surface of from fifteen to twenty-five feet. From Mud Creek to Big Sister Creek, crossing

Delaware Creek, the line passes over very fayorable ground. Bending around the point of ligh ground occupied by Mr. Taylor's farm at Big Sister Creek, the experimental lines of survey have crossed that creek, within a few rods of the point where it is crossed by the old Erie road. From this place, which is eight miles from Cattaraugus Creek, or twenty miles from Dunkirk, and about a mile and a half from the lake slore, the line again turns inland, and proceeds in nearly a direct course over ground which is not unfavorable, except that it will require an ascending grade of twenty-five feet to a mile, to the point selected for crossing Eighteen Mile Creek, five miles distant. This crossing place is about two and a half miles from the Lake, and a short distance above the small village, at the mill owned by Mr. Burland. The whole course of the creek for about three and a half miles from the mouth, was carefully examined, and this point chosen as offiering, on the whole, the fewest disadvantages. Here the chasm fornied by the stream is about 400 feet wide, with precipitous rocky banks on each side, and the height of the grade line above the botom of the ravine will be about ninety feet. 'This ravine is the most formidable obstacle which is encountered on the whole road It is proposed to pass it by means of a wooden bridge resting upon two piers, the abutments, and also the piers for a heightit of thirty feet, to be of masonry, and the upper part of the piers to consist of substantial frames of timber, capable of supporting securely the bridge and load. Progressing eastward, the grade line continues slightly to ascend for a distance of about two miles, when it reaches an elevation above the Lake of nearly 160 feet. To descend from this elevation by an easy slope on favorable ground, required for five miles numerous and careful examinations. In the end a line was determined, which converges consideatably towards the Lake, and winding down along the northern slope of the high ground east of Eighteen Mile Creek, at a rate of descent not greater than it has been necessary to adopt on other parts of the road, proceeds in a direction on the whole remarkably straight, towards Buffalo. A point on this line four and a half miles east of the place of crossing Eightt en Mile Creek, is about one hundred feet ahove the Lake, and one mile distant from it. From this place, the line, continuing to descend over a very favorable surface, with the exception of a few deep and wide ravines by which the ground is furrowed, extends three and a half miles to a point alout a mile east from Comstock's tavern, on the Lake road, and about three-fourths of a mile from the shore. In the vicinity of Comstock's, the Lake const turns towards the north and west, nearly at right angles to its previous general direction. and the railroad route conforming to it, bends in a similar manner. From the point of this route last mentioned, one mile east of

Comstock's, and about six miles from Buffulo, two routes have been surveyed leading into this city: One, rumning parallel to the shore soon enters the Buffalo swamp, and passing for the last three niles between the turnpike and the Lake, and but a few hundred feet from the water, crosses Buffalo Creek on the line of Ohio-street just above the present toll bridge, and proceeds down Ohiostreet, towards its junction with Mainstreet. The other, keeping lack from the Lake about one and a half miles; and upon the Indian land, will pass over the Buffalo swamp where it is not wide, and will cross Buffalo Creek one mile and three-fourths above the turnpike bridge. From this place the line follows the course of the Abbott road towards the city of Buffalo, and entering Elk-street, near the boundary line of the Indian reservation, may procéed down that street or any of the streets parallel to it towards Main-street. It will be for the directors to determine which of these routes shall be chosen for final location; and for the purpose of making this choice, careful estimates and statements of their comparative cost and advantages, will at a proper time, be presented. The route last mentioned, has on account of its cheapness, been selected for the estimate contained in the present report.
-The foregoing general description applies to the route of the road as determined by the examinations which haveactually been made; but it is important to remark that material modifications of it will undoubtedly be suggested by further surveys, particularly from Buffulo to Dunkirk; and it is not impossible that a line may be found, differing entirely from, and possessing advantages superior to the one now described.
In considering the profile of this road; the principal remark which it is important to make, is, that though it is to be constructed immediately adjacent to the waters of Lake Erie, it will have no resemblance to a road built in the valley of a river. The grade line far from being on the whole nearly level, is broken into a continual succession of ascents and descents. At the State Line, Portland harbor, Dunkirk, Cattaraugus creek, and Buffalo, the lieight of the road is only from 10 to 40 feet:above the Lake; but between all those places there are one or more summits, varying in height from 100 to 160 feet. This undulating character of the road, results chiely, from the necessity of approaching the Lake at eertain points, for the purpose of attaining good places for crossing some of the streams, as at the State line, to secure a good location for crossing Twenty-Mile creek in the State of Pennsylvania, and at the mouths of Chautauque creek, Canadaway creek, Silver creek, and Cattaraugus creek; and of receding from the shore on other parts of the line, to avoid ravines, and ridges terminating at the edge of the water in abrupt rocky bluffs. As the face
of the country generally inclines towards the Lake à a considerable angle, the distance of the line from the shore cannot be varied, without causing a corresponding variation of level. It gives me pleasure; however, to inform you that the rise per mile will no where exceed twenty-five fect, and that there will not be any curves of less than 2500 feet radius. As the chief points for the receipt and delivery of freight coincide nearly with the Lake level, the ascents and descents between these points will be equalized. The greatest inclination upon your road being as before stated, only 25 feet per mile, on which slope it may be assumed that the gravitating force of the load will be nearly equalled by the friction, the loss of power resulting froin the undulations in the grade line, will be much less than might be supposed. The load attached to a Lo. comotive Engine of given power, will necessarily be limited to that which the steepest grade on the line can be overcome; but in consequence of the compensating effect resulting from the action of gravity on the descending slopes, the measure of the mechanical effort necessary to transport this load from any point at the level of the Lake to any other point at the same level, will be no greater than if the road between were horizontal, and of equal length, except on acconint of the loss of power arising from the additional friction, produced by the action of the load upon the Engine on the ascents. Practically speaking, the variable action of the Engine will be productive of inconvenience; but this evil may to a considerable extent, be obviated by proper inanagement on tlie part of the Engine man. Having these important principles in view, it has ap. peared to me proper to diminish the cost of the road by regulating the grade in short portions, so that it will conform nearly to the various slopes of the gruund, always taking care, of course, to keep the inclination below the limit assigued above as the maximum. It has also been my object to keep the grade line, as much as possible, from one to two feet above the surface of the ground, with a view to the use of the road in the winter season; and on account of the wetness of soil ; and hence, the estimates show a considerable excess of embankment over excavation:-Great improvements in the adjustment of the grade lines will undoubtedly result from further examinations, but it is not probable that any route can be found which will be cheaper than the one I have described.
(To be completed in the next.)
From the Lomion Rallway Mogazine.
PRINCIPLES AND PRACTICE OF LEVELLING. BY ŢHE EDITOR.
Simultaneous or Inlermediate Levels.
Where the ground is irregular or much andulating within a short distance: levellers elude the trouble of several adjust-
ments of the level, by fixing on a spot commanding a number of them at a moderate distance, on one side of the line to be levelled. In the ordinary way of fore and back observations; a little inaccuracy of the level, or in its adjustments, will not show itself, because on an ave rage the distance of the fore and back obscrvations are about equal, and therefore inaccuracies, or want of perfect adjustment, nearly balance each other; but in the cases of intermediate levels; it is much more needful that the instrument be a good one and truly adjusted.

It is also advisable that the instrument be set up as nearly as possible equi distant from the first and last positions, particularly, if they are any great distance from it.

The following plan of registering simultancous levels is from the managing surveyor of a very eminent engineer. For fewness of entries, it is preferable to one we have been in the habit of following. But we think ours has the advantage in simplicity and detection of error. We shall describe both.

The first of a series of simultaneous levels this gentleman enters as a back sight, and all the rest, including the last,
as fore sights. No intermediate back sights whatever are eutcred, as in the annexed specimen. The differences between these fore sights and the back sights, give their respective rises or falls. He, however, only reduces the first and last sight, and recommends all the intermediate one to be left to the last, "that the addition or subtractions of them may not be mixed up with the general running levels." He also advises their rises, falls, and reduced levels to be entered in red ink, which will always mark their character; or he otherwise puts a mark against the last fore sight, as for instance, against 1.50 and 4.52 in the following specimen. To find the reduced levels of these intermediate points their rises and falls are separately referred to the former principal reduced level. For example, in the following field-book, we start at an elevation above some point of 240 feet; and therefore 3.35 , $1.85,2.20$ are severally added to, and 460 subtracted from ≈ 40.00 to obtain their respective reduced levels. In the same way $250,4.00,1 \cdot 00$ are also separately added to, and $2 \cdot 80$ subtracted from $244 \cdot 50$ to have their corresponding

Back Sights.	Fore Sights.	Risc.	Fall.	$R c d^{\prime} d$ Levels.	Dist.	Observations.
Back Sight on Canal.				Fect.	C'h Lk.	
6.00	$2 \cdot 65$	$3 \cdot 35$		$\begin{array}{r} 424000 \\ 243.35 \end{array}$	4.50	On_surface
	$4 \cdot 15$	1.85	241.85	At cor. of hedge on right.
	380	220	0	$242 \cdot 20$		20 lks . from house on left.
	1060	\cdots	$4 \cdot 60$	$235 \cdot 40$	710	In Hollow.
	$1.50 \times$	$4 \cdot 50$		244.50	900	On Brow of Bank.
9.20	$6 \cdot 40$	$2 \cdot 80$		247:30	$12 \cdot 00$	On Line.
	-12.00	$4 \cdot 60$	2.80	241.70	13.00	Ditto.
	4.60 8.20	4.60 100	$249 \cdot 10$ $245 \cdot 50$	To rt. of last dist. 200 lks .
	$4.52 \times$	1.63	. . .	$249 \cdot 18$ 249	17%	To left ditto 150 links.

By the same method, which is very preceding method, while the reduced simple and economical; all the intermediate reduced levels are separate independent reductions, and no succecding reduced level will afford any test of the truth of the preceding. It is true the operations are very simple and easily gone over again; but always in figures it is considered an object, where errors are so likely to creep $\mathrm{in}_{\text {, }}$ to make, if possible, the last computation a proof of the accuracy of all the preceding. This is our plan, which is done by entering each of the intermediate sights a fore sight to that one which precedes it, and a back to the one which follows it. We then proceed precisely as in the case of ordinary running sights. Thus we should make $2 \cdot 65,4 \cdot 1 \overline{5}, 380,10 \cdot 60$ respectively back observations to $4 \cdot 15,3 \cdot 80$, $10 \cdot 60,1.50$; and so likewise $6 \cdot 40$, $12 \cdot 00$, $4 \cdot 60,820$, respectively back observations to $12 \cdot 00,4 \cdot 60,8 \cdot 20,4.52$. In the addition of verification, however, these intermediates would have the pen drawn across them, and be left out. So that we should leave no more figures to add up than the
levels would all be dependent, and betray at the end any error in the previous parts.

We,may also save labour in using the rising and falls as verifications, by striking out all but those which stand opposite to the last of the fore observations. By this means our addition in the columns of "rise" and "fall" is reduced to the same as the preceding method. We have described the two, leaving it to our readers to use whichever the prefer. As we said above, we admit the former to be more economical in entries, but we think the latter more uniform and secure against the existence of error.

Cross Sections.
Whenever the country is to he instrumentally examined for a line of railway, it is usual, when carrying on the operations of levelling. to take a number of cross sections at various points, connecting them all with the main system of levels, so as to be referable to one common datum line. Some engineers having settled in their own mind nearly the
line they intend to follow, simply direct cross sections here and there to be made for short distances, with a view of seeing where and how any little deviation can be made to advantage. Others procure the best maps they can of the country, and order all the roads, lanes, aad paths, if laid down, to be levelled for miles round, and the levels of the principal points to be marked on the maps. By this means, they get a pretty correct representation of the face of the country. Others, again, direct a system of reticulated levellings carried through the lowest parts of valleys and the highest ridges of hills, which they also carefully lay down on a map. This is the best possible method next to modelling a country; for the most advantageous line can afterwards be determined in the closet to the greatest nicety, and better than it could in the field.
Where the surface of a country is very irregular, it is not merely cross sections to the principal line of levels that are takén, but cross sections to the cross sections themselyes, even to the third, fourtr, and higher degrees. In all these cases it will be the best, and in the end the least expensive, as it will be the most correct way, to make a survey of the country first, unless good maps can be obtained, and enter on the plan itself the levels. But these are matters that do not belong to observations on level. ling. strictly speaking. I merely mention the matter to show young engineers the inmense labour that is required for settling the best line between two given points, when the ground is troublesome. Upwards of 1,000 miles, I am informed, were levelled before the line of the Midland Counties was finally fixed on.

Levelling with the Theodolite.-General Description of the Theodolite.

It would take up too much room for us to go into a full description of this very useful instrument. We must therefore refer our readers for details to a neat little work on the "Principal Mathematical Instruments used in Surveying, Levelling," \&e., by F. W. Simms. We may observe generally, that the object of a theodolite is to measure vertical and horizontal angles. For this purpose it is constructed on two brass, circular, horizontal plates, chamfered off at the edges, easily sliding on each other, and round a common axis. The circumference ofthe lower plate is divided into 360 degrees and half degrees, and sometimes into quarter degrees, or less. On the upper is one, and occasionally two or three, noniuses, for the purpose of subdividing the divisions on the lower plate into minutes or less of a degree. With these plates the horizontal angles are measured; the upper one generally carries two small levels at right angles to each other. The telescope has a spirit level attached to it , and is mounted in \mathbf{Y}, as in the common level; but these \mathbf{Y}_{s} are fixed to an axis supported on two up.
right arms on the upper plate, and to a portion of a graduated circle beneath them. A vertical motion is thus given to the telescope, and the graduated circle slides close to a fixed nonius, by which its divisions are subdivided into minutes or less. For moving the instrument very accurately, and by very small quantities, there are various clamps and tangent screws, or rack work to which it is unnecessary more particularly to advert.

On the other side of the graduated arc, there usually is a series of divisions marked "difference"; of base and hypothenuse ;" and another marked "perpendicular in 100 of base." According to the angle of elevation or depression, the former shows how many the base is of the same denomination less than the hypothenuse, supposed 100 , whether it be chains, links, feet, \&e. The latter also shows how many of the same denomination the perpendicular is, the base being 100 .

We might here observe, that as there is no instrument more useful than the theodolite, so there is none that has been made in a greater variety of shapes and forms, which has arisen from the numerous attempts to improve it.

Reclification and Adjustments.

The first adjustment is to fix the crossing of the wires in the optic axis of the telescope, which is described p. 66 of the last number.
The second is that of determining the error of the vertical reading vernier, or of ascertaining the position of the tele scope when its axis is parallel to the plane of the plates. Turn the upper plate round until each of the levels on it is parallel, or nearly so, to a pair of the adjusting screws beneath, like those in the level. Then by aid of these screws, and guided by the said levels, set the plate as correctly as possible level. Turn the intersection of the cross wires now to a particular part of some distant object, and read off the apparent elevation or depression of it on the part of the vertical circle by aid of the nonius. Take the telescope out of the $\mathbf{Y s}$ (previously thrown open for fear of disturbance,) and reverse it. Then turn the upper plate half way round, and point the intersection of the cross wires again to the beforementioned particular part of the distant object. The reading of its apparent elevation or depression will now be on the contrary side of zero on the vertical arc. If the two readings are the same, the nonius is correct; if not one-half the difference from the limb zero towards that side on which the greater reading was, is the true position of the zero. In all vertical angles, therefore, this half difference must be added to readings on the opposite side', of the limb zero, and subtracted from those on the same side as the true zero is.

Third Adjustment--Having set the plates level, and brought the true zero of the limb just found te the zero on the
vernier, the axis of the principal level, that attached to the telescope, may be set very nearly parallel to the line of collimation of the telescope, by simply turning the screw, at one end of it until its bubble settles in the middle. But the accurate adjustment must be made and proved as described in pp. 66 and 67, No. 18 .

Fourth Adjustment.-The preceding adjustments enable us to set the axes of the telescope and level parallel to each other, and to a line in the plane of the plate under the telescope. The next and last adjustmient we shall notice is that of making the vertical plane in which the telescope moves, truly perpendicular to the plane of its horizontal motion. Ordinary levels have no adjustment of this sort provided : the instrument is supposed to be turned out true in this respect from the hands of the maker. In very fine theodolites the frame carrying the pillars which support the axis round which the Ys turn, is fastened by three screws to the upper plate. With these the adjustment is easily made. When the adjustment is perfect, and the plane of the plates is set truly horizontal, if the intersection of the wires be turned on some well-defined elevated object-the more in reason the elevation the better-and then without moving the instrument the telescope be turned on the horizontal axis, until the said intersection fall on the re flected image of the body in any good liquid, as mercury, it will cut it in precisely the same point. If the intersection passes to the right or the left of the point, the adjustment is not complete, and must be altered.

Practice of Levelling with the Theodolite.

Though of much greater power and capability than the ordinary level, the theodolite is not so much used in practical levelling. This arises partly from its, greater expense, partly from its more complex construction and liability to get ont of order, and partly from its greater weight and inconvenience.
When the theodolite is substituted for the common spirit level, the point of true zero is brought to the zero on the nonius and clamped to it, after which the operations are precisely the same. But the method peculiar to the theodolite, and that in which it has n decided advantage over other instruments, consists in finding from a single sight the difference of level of nny two places within view of each other, whose direct distance is given or can be measured.
For this purpose the theodolite is set up at one end of the stations, and the height of the centre of the level is measured by taking a mean, if the ground inclines much, of the heights of the eye and object ends of the telescope, when turned in the direction to be levelled: Perhaps this mean is best obtained by holding the two stares, one before and the other behind the telescope, with the vanes at the same height on each, and near the guessed lieightof the telewcope.
when by inclining it parallel to the vanes, it mean height is immediately seen. The wire crossing the middle of the vane being set to this height, the staff is carried to the other station, and the apparent angle of elevation or depression read off, allowing for the index error, or quantity, the true zero of the arc differs from that marked on it, as before directed.

For the purpose of insuring accuracy, it is best to repeat the operation by reversing the positions of the instrument and staff, taking care to have the vane reset to the true height of the telescope in its new position. The mean of the angles of elevation and depression will be the true angle in either case. By this means any error in the parallelism of the telescope and level, or of the position of the true zero, will be corrected.

To the log-sine of this angle, add the \log of the direct distance between the staves in feet, if the difference of level is wanted in feet, and the sum, minus 10 from the index, will be the log of the instrumental difference of levels. Correct this for sphericity and refraction in the way described p. 69 , No. 18 , and the result will be the true difference of levels.

If an arithmetical operation is wanted, take out the number cut by the bevelled edge of the fixed nonius marked "diff. of hypo. and base," which take from 100. Take out in like manner the number cut by the same bevelled edge of the nonius mark "perp. to 100 of base," and multiply the foregoing remainder by a 10,000 th part of the product of the hypothenuse, and the number last taken out; the product will bethe instrumental difference of levels in the denomination of the hypathenuse, which must be corrected as before.

This is a very easy and correct mode when the angles of depression and inclination are such that the divisions exactly coincide with the bevelled edge of the nonius; otherwise it is a mere approximation.

Example. - The vane being adjusted to the height of the level and set up fourteen chains, or 294 feet off, the angle of depression was found to be $1^{\circ} 9$ ' and the division corresponding to "perp. in 100 of base" was very exactly 2 , that corresponding to "diff. of hypo. and base," not being any thing.

Here, then, we have the base sensibly the same as the hopothenuse, and consequently $i \frac{1}{0}$ th of 924 , or $9 \cdot 24$, multiplied by 2 gives 18.48 feet, the fall sought. By previous levelling with the common spirit level it was found to be 18.64 .

Secondly, If to $8 \cdot 30255 \log$-sine of $1^{\circ} 9^{\prime}$ we add 2.96567 the \log of 924 , we shall have $11 \cdot 26822$, and taking away 10 from the index 11, leaves 1.26822 the log. of 18.55 feet, very nearly the same as before, and as it was found by levelling, or thus:-

$$
\begin{aligned}
& 1^{\circ} 9^{\prime} \log \sin 8 \cdot 30255 \\
& 924 \log ^{2,96567}
\end{aligned}
$$

$18.55 \log _{2} \quad 1.26822$

When the theodolite is used for leveling in this way, the field-book contains a column for the angles of elevation and depression, distinguished with an e and d,
or the characters + and - before them a column for the Hypothenuse lengths; three for the rises, falls, and reduced

Angic of Elevation or Depression	Hypothenuses.	Rise	Fall.	Reduced Level.	Bases,
2.52	Chains.	Chaine	Chains.	C	Chains.
$4.1 e$	12.73 629	. 4403			
$83 e$	7.34	1.0276		+ .8314	$7 \cdot 27$
$1728 d$	11.71	. . .	3.5130	- 2.6816	11.17

The sum of all the bases (here $\mathbf{3 7 . 4 2}$) is the total base or horizontal length. We have here given the rises, falls, and reduced level to four decimal places, because being given in chains it is needful. if accuracy is required.
In most practical cases I doubt whether it is not quite as short and convenient a process for finding the rises and falls, to take from a table of natural sines the sine of the angle and multiply the hypothenuse by it. according to the rule of contracted multiplication of decimals, as it is to turn out the logarithms, unless the object is to reduce it to any other measure. And the same with respect to finding the bases, which are the products of the cosines of the said angles by the hypothenuses.

We have not made any allowance for sphericity and refraction in the above observations, because in the greatest distance (840 feet) it is hardly worth notice, and our chief object was to elucidate the method rather than to run into minutir. In our future observations these details may form a subject for discussion.
opening of the railivay from paris to st. germain.
We extract the following amusing account of this event, from the letter of the Times correspondent.

St. Gistinain, Aug. 26.
Paris has put on her seven-leagued boots, and reached St. Germain in a stride! The chateau of Louis le Grand, and the fine terrace sweeping through the forest until it is lost in distance, have kindly consented to approach the metropolis for the gratification of the numerous quidnuncs who inhabit it ; and St. Germain, with all its interesting scenery, although, if we are to credit the map, it is twe'.ve good English miles from Paris, is now more accessible than the windmills of Montmartre. This triomphe merveilleuse, as the Parisians delight to call it, is the work of that grand miracle-monger of the nineteenth century-steam; a trip on the railway is now the "plaisir inconnu," the "emotion savségal;", and if there be. throughout the length and breadth of Paris a single café or coterie, or in the faubourgs a "Merchand de Vin," alias "dramshop," where the praises of railroads in general, and of the railway to St. Germain in particular, has not formed the inexhaustible topic of con.
versation for the last four and twenty hours, I will suffer myself to be impaled alive like a frog in a gourmand's clutches, and fricaseed without mercy. * *

The train started at twelve to the in. stant, and then was the clatter of voices raised tenfold. "Il part-ce coursier de feu, et de fumée! He snorts! he snorts! His prodigious tail of vapour floats in the firmament! La viola!" Even when the engine had attained its extreme velocity, the rattling of tongues was continued, one person shouting into a second's ear, and a third shrieking at the extreme pitch of his voice, "Cheval magnifique! Noble and intrepid horse, which nothing can stop I He devours the way before himhe snorts ! vraiment, he snorts! He is clothed with thunder, like the horse of Job! Corbleu! what a delicious motion -n'est-ce pas? Oui-c'est le plus grand plaisir du monde!" Away clattered engines and voices to the same tune, to the end of the journey. If you wish for a genuine spceimen of an enthusiast, you have only to clap a Parisian for the first time in his life in a flying "locomotive." In the carriage in which I fixed myself were some half dozen piquantly-dressed soubrettes and grisettes, distinguishable by the extreme neatness of their fichus de dentelles a la paysanne, and their mig. nonnes lace caps. Of these no fewer than three affected dizziness, faintness, \&c., and finished par s'etre Évanouies on the bosoms of the gallants by whom they were accompanied Altogether it was a inost precious living comedy, worthy of a place in Paul de Kock's "Tourlourou sur les mouurs Parisiennes." Until I reached Paris, I laboured, in common with most people, under the absurd misconception, that the true "land of Cockaigne" is Lon. don. For genuine Cockneys you must come to France.

An hour's walk in the forest of St . Germain, after my arrival, was positively delightful in the extreme. In no direc. tion could you turn without meeting ele-gantly-dressed Parisian ladies (and all other dressing is out of the question) moving along as gracefully as swans in the Cydnus, to which their white muslin dresses, which are very much the rage here, in no small degree assimilated them. What charming bonnets adorned with waving feathers, or with those ambitious, but not less elegant, wreaths of flowers, which are only made to perfection here, and exhibit the very acme of taste! And:
then the eye is so pleasingly relieved by the graceful contrast presented by an unbonnetted girl, wearing one of those exquisite little cap 3 ; or by the outlandish helmet-shaped casquette which some rustic belle delights to select for her coiffure. The Bois de Boulogne never presented a more arimated scene.

For statistics, it will be sufficient to state, that the materiel is composed of 105 vehicles, capable of containing 4,070 persons, and of transporting the entire population of Paris to St. Germain in the course of one fine Sunday. The railway, $4 \frac{1}{2}$ leagues in length, passes through a beautiful country, traversing no fewer than eighteen bridges, three of which are across the Seine. The vehicles are all intended for the transport of passengers, and will be occupied principally on Sundays. There is a tunnel Batignolles, which is divided into two galleries, betng about 400 metres, or a quarter of an English mile long. The construction is very solid, the rails being fifteen times heavier than those upon the Liverpool and Manchester road.
(From the Baltimere Gazette, Fridjy, Jan. 19.)
THE BALTIMORE AND SUSQUEIIANNA raileoad.
The progress of this road towards completion, is very properly exciting the deep interest and attention of the citizens of Baltimore-and certainly in proportion to its extent and cost, it will be, in usefulness and importance, scarcely second in value to any work of improvement connected with our city. Its progress has been urged on with a steady and persevering energy, which is highly creditable to the officers of the company to whose care and direction it has been entrusted. Within the last two years, the graduation has been nearly completed of that portion of the road which extends from 'limonium (eleven miles from Baltimore, to York in Pennsylvania, a distance of forty-six miles, through a broken country abounding in rocky hills and rapid streams, requiring in its whole extent the construction of numerous, and some of them extensive bridges, and a tunnel more than eighty yards in length; and an immense quantity of rocky and other excavations and embankments. The railway is constructed about two-thirds of the distance between Timonium and York. The rails are of rolled iron weighing nearly sixty pounds to the yard; they rest on wooden sleepers which are laid across the track, and imbedded in stonc. The great weight and strength of the rails, and the firm manner in which they are attached to the sleepers, render the construction of the track of railway safe and permanent, and such as will require no repairs for many years, and at any time only such as can be effected with ease and at a small expense.

A continuous track of twenty-seven miles towards York, being completed of the new rails, and fit for use, the Presi-
dent and Directors of the Susquehanna Railroad Company invited several members of the Legislature now in this city, the Mayor and members of both branches of the City Council, and other City Officers, the Presidents, Directors, and Engineers of the other Railroad Companies in this city, to meet them yesterday morning at their depot at the head of North street, and proceed thence on an excursion over the railway as far as completed; and, agreeably to the invitation, a party of nearly two hundred assembled at the appointed time. The following account of the excursion, we copy from the American of this day:-

The party was conveyed the first 11 milea, to 'Timonium, by horse power. This part of the road is to be renewed with heavy rails, and various highly judicious alterations of the present location have been made, so as to make it conform in all respects with the new portions of the work.

From Timonium the company proceeded in new and elegant cars, the foremost train being drawn by the "Susquehanna," a very splendid new engine constructed at Lowell, Mass., on the English principle, with improvenents by G. W. Whistler, Esq., civil engineer.The second train was drawn by the "Herald."
The admiration of the party was excited as they advanced, as well by the romantic and abrupt character of the country through. which they were travelling, as by the manner in which the able engincer, Isaac Trimble, Esq., had made his location, so as to present the most direct and permanent line of road. The succession of rocky ridgees cut through, and lofty embankments filling up the intervening valleys, indicated the extremely difficult character of the work, and gave rise to general wonder that so much could have been effected in so short a time, and with such evident durability. We understand, that notwithstanding the extraordinary difficulties overcome, and the permanent mode in which the rails are laid, the road has cost less per mile than most other great roads to the North, where the edge rail is used.
At noon precisely the foremost train crossed the Pennsylvania line, and a short time after attained the summit level, at an elevation of 850 feet above tide. On arriving at Hise's Mill, (in the neighbourhood of Strasburg, and $16 \frac{1}{2}$ miles from York) it was ascertained that that the "Susquehanna) had performed the trip of 28 miles in 1 hour and 31 minutes, exclusive of 11 minutes for stoppages, being an average speed of $18 \frac{1}{2}$ miles per hour.

In approaching the summit level, there are two miles, the grade of which is a rise of 84 feet to the mile, over which the "Susquehanna" passed in seven minutes, drawing two heavy cars with 140 passengers, besides the tender, \&c.

An excellent dinner and appliances were duly discussed, and in returning the "Susquehanna" reached Timonium in 1 hour 16 minutes, having consumed in running the 56 miles, only one cord and a half of pine wood.
This road is steadily advancing towards completion, and will be among the very best constructed works in the country. The period, we are rejoiced to find, is near at hand, when our eity will begin to realise its important advans tages, in the results of the easy and rapid communication which it will open to the ferrile and productive valley of the Susquchanna.
the cincinnatti and chamlegtox and hotisville railkoad.
Col. B. 13. Long has arrived at Charleston, on a mission from Shauneetown, Illinois, to urge the importance of: extending the Charleston and Cincinnatti Railroad to some point on the Ohio at or near the junction of that river with the Wabash. This would make then a continuous route with the railroad through Illinois to Alton, opposite the mouth of the Missouri, commanding thus much of the great produce trade north that would otherwise pass down the river. General Hayne communicated to Col. Long the following valuable information of the great project which now interests all the South and West.
"That the Louisville, Cincinnati and Charleston Railroad Company has a charter from the states of North and South Carohna, Tennessee and Kentucky, for the purpose of forming a connexion by a Railroad, between Charlestown and the Ohio River, through those states. The original charter provided that this Road should strike the Ohio at three points, viz. Cincinnati, Louisville, and Maysville. This has been so amended, however, as not to require the Road to be carried farther than Lexing-ton-leaving it to those who are specially interested in these several branches, to unite them with our Road, at Lexington. The Company confidently relies on the combined efforts of all the states granting the charters, for the construction of the Road. South Carolina is prepared to do her part, but it will require the aid of North Carolina and Tennessee to enable her to extend the Road to Knox-ville-and of Kentucky to continue it to Lexington. When our Road shall reach Knoxville, it may be, and doubtless will bc, extended to Nashville, and eventually. to the Mississippi, in that direction.Tennessee has already caused surveys to be made for a Railroad from Fulton, on the Mississippi, to Knoxville, where our Road will unite with it. A Railroad from Nashville to Evansville, in Indiana, is also in contemplation, from which a very short branch would strike the Missisippi opposite Shawneetown.

THE RAFT IN RED RIVER.

The obstruction originally occupied a space of upwards of two hundred
niles; and, there is sufficient evidence that it has existed for ages before the discovery of the country, while its banks exhibit indubitable proof, that it once extended not within fifty miles of the confluence of that river with the Mississippi. The annual increasement has been estimated at two miles; and once formed, the serpenttine course of the stream forbids all possibility of removal, except by artificial measures, or the slow process of decay. In some places the raft is condensed to an astonishing depth, and forms what is called "the sunken raft:" a single strong \log removed will sometimes liberate lundreds The raft region may now be eonsidered under three divisions; that from which the raft is entirely removed, extending 140 miles from the commencement; that in which the raft is cut up and pulled in pieces, and not floated off-for which nothing is wanted but a strong current, which must immediately take place- 33 miles ni extent ; and that, lastly, which has not yet been commenced The water expelled from the channel by the raftinto the lakes, parallel to the banks as the obstruction is removed, turns and deepens the bed of the stream. At the commencement of the raft there is little or no current. This has added much to the labour in removing the obstruction; and many of the logs removed, have floated back subsequently by a rise in the Mississippi. The removal now of a few yards of solid raft, causes a fall of eighteen inches above it, and a rise of six feet below. There remains only about four miles of the raft to be removed, and, when the channel is once clear, the current will be powerful and deep, and the banks on either side will be lofty and firm. Capt. Shrieve declares, that all can be accomplished in three months, afier a suitable appropriation from Congress is made.

The magnitude of this undertaking, and the results which must ensue from its accomplishment, cannot be too highly appreciated. The river is navigable for more than 2000 miles above the raft, and through a region unrivalled in fertility. Though now thinly settled, it is rapidly populating-hundreds await the removal of the raft as a signal for entering the country-and all its vast resources and natural wealth must soon be developed. The result of this undertaking, once involved in doubt, as well as the permanent advantages which must ensue, are no longer problematical. The indefatigable industry, the untiring enterprise-the indomitable perseverance, and the enlarged and truly scientific designs of Captain M. Shrieve, the projector and accomplisher of this noble national work, can never be estimated beyond their merits. His history is identified with that of the empire of the West; and his fame will endure so loug as the magnificent streams with which his name is associated, shall continue to roll on their volumed waters to the deep.-St. Louis Bulletin.

The annexed Table, showing the comparative durability of various kinds of timber, unprepared and exposed under the most trying circumstances, will be found of constant use for reference.

We should like to ascertain the state of the tirriber in some of our oldest Railroads. Accurate statements are solicited from those who can afford them.
durability of various kinds of wood.
From the Sautical Magazine.
The following are the particulars of experiments made on several kinds of wood, 11.2 inch square, and 2 feet long, placed vertically in the ground, and about 1 foot 6 inches exposed to the atmosphere, on the 1st of January, 1831 ; examined at two different times, viz., the 8th of May, 1833, and the 24th February, 1836 :-

Species of Wood. \mid Remarks, 8th May, 1833|
Remarks, 24th Fcbruary, 1836.
English Oak
Italian Oak
Much decayed and dimin-Very much decayed, especially those ished in weight. of open grain.
Good, but decay had com- Do. do. rather less than the menced on surface. English.
Adriatic Oak
Leaf or Live Oak
Very much decayed.

Canada IVlite Oak Very much decayed.
Memel do. Daintzic do. Ditto. Mahogany hard
Do soft
Libanus Cedar Pencil Cedar

African, No. 1
African, No. 2
Teak, heavy Teak, light Teak, part of Hasting's mizen-mast
Fir, Dantzic
Fir, Riga
Fir, Memel
Fir, Red Pine
Fir, Yellow Pine
Do. Virginia Pine
Do. Pitch Pine, heavy
Do. do. light
Polish Larch
Scotch da. Trenails
English Elm
Canada rock do. Amercan ash
Locust Trenails
Scotch Larch do.
Stinkwood dark col
Cowdie
Stinkwood light co Poonal.

Very much decayed, excepting one piece, very good.
Three much decayed, the rest tolerable.
Very bad and rotten.
Ditto.
Exceeding bad.
Tolerably good.
Very bad, totally decayed.
Tolerably good.
All very good, as when put in the ground.
A little decayed, and inclined to doat; better than English oak.
Worse than No. 1.
Rather soft, but good.
Soft 1-4, but good.
Soft 1-4, the rest indifferent.
Very much decayed, rotten all through.
As bad as the Dantzic.
Very bad, rotten.
Very rotten, much like the Dantzic and Riga.
Very rotten.

$\begin{array}{l}\text { Very much decayed. } \\ \text { Decayed. }\end{array}$	$\begin{array}{l}\text { Very rotten. }\end{array}$
Very rotten.	

Decayed 1.2 of an inch, Decayed 1.8 of an inch, the rest the rest good. tolerably good.
Very rotten. Very rotten.
Decayed 1.4 in the surface, Decayed 1-4, the rest a little deand lost in weight. cayed.
Surface $1-4 \mathrm{in}$, decayed Surface $1-4 \mathrm{in}$; decayed, the rest and brittle. \quad brittle.
Very rotten. All rotten.
Ditto. Rotten,
Ditto. Ditto.
Good and retained their wt. $1-8 \mathrm{in}$, rotten, the rest as sound as when put in the ground.
Surface 1-4 decayed, and $1-4 \mathrm{in}$, retten, the rest britle. very brittle.
Surface not decayed, but This piece was misplaced. very brittle.
Surface 1-4 decayed, and Rotten. very brittle.
Surface $1-8$ dec., and brit. Rotten.
Surface a little decayed, Surface 1-8 decayed; the rest good, land become light. | better than African.
Note.-Riga preferable to all the Fir, and Dantzic next.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.

N Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.
in $-\frac{5}{-}$ Volume Six will be completed 28 speedily as possible. The next, or Volume for 1838, will !be published in more convenient form for preservation.

LOUISVILLE, CINCINNATTI, AND

CHARLESTON RAILROAD.

NOTICE TO CONTRACTORS.-Sealed Proposals will be received at the Office of the Company in Columbia, S. C. . until the 15 th day of Febrnary next, for the graduation and masonsy of that portion of the Rosd from Columbia to the crossing of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.
Also, for the construction of a Bridge of 400 feet in length, on the Congaree River, to be built on atone piers and abatmenta, for which there are suitable quarries in the neighborhood.
The pians and profiles of the line will be ready for inspection at the Office of the Resident Engineer, in Columbia, S. C., after the 10Lh day of February.
So soon aa the surveys for location, now in progross, aro completed, that part of the Road extending from McCord s Ferry to the Charleston and Hamburg Railroad, at Branchville, will bo put under contract, of which due notice will be given.

WM. GIBBS Mc NEILL, Chief Engineer
ITT The Railroad Journal, N. Y. Courler \& Enquirer, N. York ; Providence Journal, Psovidence, R. I.; Atlas, Boston; Philadelpla En. quirer, Philadelphia; will publish the sbovo notice 6 times, send a copy of the paper to the Office In Charleston, S . C., and a certified copy of their sccount for payment.
Jan. 12
fmw 6

NEW ARRANGEMENT.

Hopre for indinad planea of railhoads.

WE the subscribers have formed a co partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planés of railroade, and for other uses, offer to supply ropes for inclined planes, of any length required without splice, at short notice, ihe manufacturing of cordage, heretofore carricd on by S. S. Durfee \& Co., will be done by the new firm, the same superintendent and machinery are employed by the new firm that were employed by.S. S. Durfee \& Co All orders will be properly attended to, and rope will be ehipped to any port in the United States.
12th munth. 12th, 1836. Hudson, Columbia County, State of New- York.

ROBT. C. FOLGER.
33-tf GEORGE COLEMAN.

AMES CELEBRATED SHOVELS, SPADES, sec.

300 dozens A mes' superior back-strap ahovels.
300 dozens A mes superior back. strap ahovelis.
150 do. do. do. plat
150 do. do. do. do. dostaleel Shoveld \& Spader

150 do. do.
150 do. do. Gold-mining Shovels
00 do. do. plated Spadee.
50 do. do. socket Shovels and Spades
Together with Pick Axes, Churn Drill, and Crow Bars (stcel pointed), manufactored from Salisbury refined iron-for sale by the manufacturing agento, WITHERELL, AMES \&CO.

No. 2 Liberty wreet, New-York. BACKÚs, AMES \& CC.

Fo. 8 Stato-sreet, Albany.
N. B.- Alvo farraiched to order, Shapes of every deveription, mado from Salisbury sefined Iroon vilus

MACHINE WORKS OF ROGERS, KETCMUM AND GROSVENOR, Patonon, New. Jerrey. The undersigned receive orders for the following articles, manufactured by them, of the moet superior doceription in every particular. Their works being extonivive, and the number of hands employed being large, they are enabled to execute both large and small orders with promptnem an dispatch.

RAILROAD WORK.

Locomotive Steam-Engines and Tonders ; Driving and other Locomotive Wheete, Axles Springs and F lange Tires; Car Wheale of cast iron, from a variety of patterna, and Chills; Car Wheels of cast iron, with wrought Tires ; Axles of best Ame rican refined iron; Springs; Boxes and Bolts for Cars.
COTTON, WOOL, \& FLAX MACHINERY Of all descriptions and of the most improved pat. erns, Style, and Workmanship.
Mill Geering and Millwright work generally; Hydrautic and other Presses; Press Screws; Callenders; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.
ROGERS, KETCHUM \& GROSVENOR
Paterson, N. J. or 60 Wall-st. Naw-York 5Itf

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to builh on bis Patent Plan, wouvid respectfully inform Roilroad and Bridge Corpora tions, that ho is preperal to make cohtracts to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followirg localities, viz. On the main road leading from Baltimore to Washington; two miles froin the former place. Across the Molawanikeay river on the Military road in Maine. On the national road in Illinois, at sundry paints. On the Baltiaure and Susquehanna Rnilroad at three points. On the Hodson and Patermon Railroad in two places. On the Boston and Worcester Railroad; at several points. On the Boston and Providence Railroad, at sundry points. Across the Contmenok river at Hennikar, N. H. Across the Souhergan river, at Milford, N.H. Across the Connecticut river, at Hancocd, N. H. Acruss the Androscoggin river, at Turner Centre, Maine. Acmes the Kennelec river, at Waterville, Maine. Across the Genesee river, at Squakiehill, Mount Morri, N. Y. Across the White River, at Hartford, Vt. Across the Conrecticut River at Lebanon, N. H. Across the mouth of the Broken Straw Creek, Fenn. Across the mouth of the Cntaraugus Creek, N.Y. A Rail road Brijge diagonaily acrose the Erie Canal, in the City of Rochester, N. Y. A Reilroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet It is probably the firmest wooden bridge ever builh in America.
Not withstanding his preseet engagements to build between twenty and thirty Railroad Bridjes, and several common bridges, zaveral of which are now in progress of construction, the subscriber will promptly attend to business of the kind to mach greater extent and on liheral terms.
Rochenter, Jan. 19th, 1837. MOSES LCING,

STEPHENSON
 Builder of a superior style of Passenger Cars for Railroads,
 No. 261 Elizabeth street, near Bleecker strest, NEW-YORK.
 RAILROAD COMPANIES would do well to

 examine theso Cars; a specimen of which may be seen on the New- York and Harlaom Railroad, now seen on the
ROACH \& WARNER,

Manufacturers of OPTICAL MATHEMA TICAL AND PGILOSOPHICAL INSTRU. MENTS, 293 Broadray, New-York, will keep constantly on hand a large and general accortment of Instruments in their line.
Wholomele Dealers and Country Merchanta sup. plied with SURVEYING COMPASSES, BA. ROMETERS, THERMOMETERS, ecc Ace. of their owa mannfictare, warranted accurala, and at lower prices than can be bad af any other cetablishDent.

RAILWAY IRON, LOCOMOTIVES, THE subscribers offer tho following anicles for sale:Railway Iron, flat bers; wich conntersunk holes ind mitred joints,
lbe

90 " 1 "禾" u ". 子. *
witn $\{$ Spikes and Splicing Plates adapted thereto. To be wold free of duty to State governments, or incorporated companies,
Orders for Pennsylvania Boiler Iron execitech.
Rail Road Car and Locomutive Engine Tires, wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 inches diameter.
E V. Patent Chain Cable Boles for Railway Car a rlcs, in lengths of 12 feel 6 inches, to 13 feet $2 \frac{1}{2}$, $2 \frac{2}{2}, 3,3 \frac{1}{3}, 3\{31$, and $\overline{\text { on }}$ inches diameter.
Chains for Inclined Planes, shurt and otay inks. manufactured from the E. V. Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Planee, made from New Zealand Wex.
Also, Potent Hemp Cordage for Inelined Planes, and Canal Towing Lines.
Patent Fell for plecing between tho iron chair and stone block of Edge Railways.
Every description of Railway Iron, aa well as Locomotive Engines, imported at the shortent notice, br the ayency of one of onr partuers, who revidet inEngland for this purpose.
A lighly resprectable American Engineer residces in Ergland for the purpose of inspecting all Loco. inotivee, Machinery, Railwsy Iron, \&c. ordered through us.
28 If
A. \& G. RALSTEN \& QO.,

Philadelphia, No. 4 South Front-st:

ARCHIMEDES WORKS.

(100 Norih Moore-street, N.Y.)
THE undersigned beg leave to iuform the pro. prictors of Rail Roads, that they are prepared to urnish all kinds of Machinery for Ruil Roads, Lo comotive Engines of any aize, Car Wheels, such ao are now in unccessful operation on the Camden and Auboy Rail Road, none of which have failed.Castinge of all, kiuds, Wheels, Axles and Bosen, furnished at the shortest notice.
H. R. DUNHAN \& CO.

- New Yons, Fobruary 12th, 1836.

4-ytf
PATENT RAILROAD, SHIP AND BOAT SPIKES.
${ }^{-1}$ The Troy Iron and Nail Factory keepe coristantly for sale a very extensive assortment of Wrought Spikes and Nails, from 3 to 10 ircher, inanufactured by the subscriber's Patent Machinery, which after five years succeessul operation, and now almost univereal use in the United State, (aswlll as England, where the subscriber obtained a patent) are found superior to any yet ever offered in marker. Railroad cormpanies maz be eupplied with Spikez having conntersink heads suitable to the holes in ron raile, to any amoont and on short verice. At t:oost all the -Railroads now in progress in the United States are fastened with Spikes mado at the above-named factory -for which purpose they ave found invaluable, as their adhesion is more then double any cormmon Spikes nade by the hammer. ** All orders directed to the Agent, Troy, N.Y. will be puictually attended to.

HENRY BURDEN, Âgent.
Troy, N.Y., July, 1831.
S Sikes are kept for sale, at actory prices, by \&2 J. Townsend, Albany, and the principal lron N. erchants In Albany and Troy; J. I. Brower, 222 Water-street, New-York ; A. M. Jones; Philhdet phia ; T. Janviers, Baltimore ; Degrand \& Enith, Boaton.
P. S. - Railroend coropenice would do well to tor ward their orders as carly as practicabla, ass the sobveriber is desirous of extending the manuficturloig so as to keep pace with the daily increating demand for his Spikes.

1 J 2 am
H. BURDRN:
G. Mitchell, Printer, 265 Bowery, N. Y.

ADVOCATE OF INTERNAL IMPROVEMENTS.

CONTEVIS.

Commonicatlons-Buffalo and Erie Railiond Report, 577 Dreyeris Patent Ralls.
Qreat performance of a Locmmotive.
Víginia Improvemente- Memoriallo Congress, New Hydranis - Ratsing of the WUllam, Miscellaneons flems,
macellanoons lems,
Advertisements
AMERICAN RAILROAD JOUKNAL.
NEW-YORK, FEBRUARY I, 1838.
AVERY'S ROTARY ENGINE FOR SAW AND FLOURING MILLS.
In reply to the frequent letters received in relation to this Engine for driving mills, we give herewith an extract from a letter written by an experienced miller, who has applied the Rotary both to sawing and grioding-and who therefore spenks from personal knowledge, having no further interest in the subject than to have ample and chcap power to do his work.

The main shaft of the mill referred to; is over sixty feet in height, d driving four rün of stones, elevators; smut machine, bolts, and all the machinery necessary for a first-rate Flouring establishment. This letter was written when the mill had been in operation only a few weeks,' before the machinery had become perfectly worn to its place.
The great advantages of this Engine are said to be its simplicity, economy in first vutlay, in fuel, in repairs, and in attendance:
Extract from a letter written by a gentlemsn who lias been long engaged ia manufacturing Flour, dated -
Clyde, Wayne Co. N. Y. Nov.17, 1837.
Our Mill of four run of stones propelled by "Avery's Rotary Engine", has; with great ease, made 100 bbls. flour, witl 5 cords of wood, in twenty:four hours; and it has, without any extraordinary exertion, made 125 bblse in twentiynfour hounser!

We do not hesitate to say that after all the difficulties, incident to the first start-
ing, and running a large and extensive Flouring: Mill, in getting the Journals and Machinery worn smooth, and to fit their places sn as'to run'regularly,' that we can, with the same aniount of fuel, and with greater ease, manufacture 150 bbls. flour in twenty-four hours, than do what we have above stated.

Mr. Cook, in his mill with 2 saws, can easily cut 8 thousand feet in twenty-four hours, which requires'less than one cord of wood, in addition to the slabs it makes. I built the mill now owned by Mr. Cook, and know it can perform with great ease, all l have'stated above.

We have full confidence in this kind of Engine, and know that it is altoge. ther ahead of any thing of the kind now in use, in all respects. $B y$ giving it the necessary quastity of boiler, the Engine is competent and powerful enough to drive any description of muchinery.

Very respectfully yours,
Benjamin Ford. ${ }^{1}$

For the Rallmed Journal.

A globe, five inches in diameter, presents about 253 inches surface. Now on each inch of the surface" we will suppose there is an internal pressure of 1000 lbs. , and that the metal will bear no more. It will make no difference whether this pressure be produced by bars of steel or columns of steam, each inch has its 1000lbs.- These bars must be so shaped and put together as to have a base to rest on, sufficient to sustain them. The shape then required for 253 bars to fill this globe, will be one irreh square at the top, two and a half inches long, and reduced to a point at the other end. The body of the globe thus filled cannot give in any direction, so that an additional force of 50 lbs . to any one bar must punch it through. Now a globe 5 feet in diameter will receive 35,558 bars, each one inch. square at the top, two feet and a half long, reduced to a point at the other end. Hence it will take an additional force over the 1000 lbs to make one of these bars punch a hole through the vessel. Therefore I reason, that the same strength of metal will sustain steam in a large boiler, as well as in a small one, if the shape be a globe Now let us suppose this five feet glabe cut in two 2 and a cyliuder of the same
diameter put in between the parts, so at to form a boiler with circular headsiTo fill this cylindrical part, we must suppose these bars to be the same at the top, that is, one inch square, two and a half feet long, one inch broad at the point, reduced to the shape of a wedge, and the same principle must hold goad.
In a discussion the other day with a friend of mine, who is engaged in making some important experiments, I laid it down as a principle, that the thickness of the shells of stenm-boat boilers need not be increased in proportion to their size. He said: If I could establish that fact, it would be worth thousands to him. In your valuable paper, I have nut secn any illustration of this subject. The general impression is against me, but we of the Far West have to blunder along until we gather knowledge from the scientific at the East, or by accident stumble on it.

Yoar Friend,

> D. EmbRER?

Concluded from our tael.
bUFFALO AND ERIF RAIL ROAD REPORT.

T.'S. Bronon, Chitf Engincer.

It is proposed that the Buffalo and Erie Railrond shall consist of two tracke, and with this in view; and to furnish sufficient room for the transaction of the very heavy business which must at a future day be done upoll it, a strip of land will be obtained six rods wide.
In the first instance the grading will bedone but for one track, except in those cases where a great saviing may be effected by grading for both tracks at once, und at those points where two tracks will immediately be required to facilitute the busiiiess of the road. The width of track will be 4 fect $>\frac{1}{2}$ inches; the width of road for two tracks will be 24 feet; the side slopes will be inclined at the rate of $1 \frac{1}{2}$ base, to 1 perpendicular; and the width of the side ditches in excaration will be 4 feet,

III. Estimate of the cost of the Read.

Two distinct estimates will be presenty' ed; one for the completion of one track ! and for putting the road in a condition to commence business; the other for the

红 Volume Sux will be completed as speedily as possible. The next, or Volume for 1838, will !be published in a more convenient form for preservation.

LOUISVILLE, CINCINNATTI, AND CHARLESTON RAILROAD.

NOTICE TO CONTRACTORS.-Sealed Proposals will be received at the Office of the Company in Columbia, S. C., until the 15 th day of February next, for the graduation and masony of that portion of the Road from Columbia to the crossing of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.

Also, for the construction of a Bridgo of 400 feet in length, on the Congarce River, to be built on stone piers and abutments, for which there are suitable quarries in the ncighborhood.
The plans and profiles of the line will be ready for inspection at the Olfice of the Resident Engineer, in Columbia, S. C., after the 10 h day of February.
So soon as the surveys for location, now in progress, are completed, that part of the Road extending from McCord's Ferry to the Charleston and Hamburg Railroad, at Branchville, will be put under contract, of which due notice will be given.

WM. GIBBS Mc NEILL, Chief Engineer
[JT The Railroad Journal, N. Y. Courior \mathfrak{d} Enquirer, N. York; Providence Journal, Providence, R. I.; Atlas, Boston; Philadelpia En. quirer, Philadolphia; will publish the above notice 6 times, send a copy of the paper to the Offico in Charleston, S. C., and a certified copy of their account for payment.
Jan. 12
fmw6

NEW ARRANGEMENT.

gopes for inolaned planes of rallioads.
WE the subscribers have formed a co partnershi under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroads, and for other uses, offer to supply ropes for inclined planes, of any length requirei without splace, at short notice, the manufacturing of cordage, heretofure carried on by S. S. Durlee \& Co., will be done by the new firn, the same superintendent and machinery are employed by the new firm that were employed by S. S. Durfee \& Co All orders will be properly attended to, and ropes will be shipped to any port in the United States.
12th munth. 12th, 1836. Hudson, Columbia County, State of New-York.

ROBT. C. FOLGER.
33-tf
GEORGE COLEMAN.

A MES' CELEBRATED SHOVELS, SPADES, \&c.

300 dozens A mes' superior back-strap shovels.
150 do. do. do. plain do.
150 do. do. do. cas:steel Shovels is Spade
150 do. do. Gold-mining Shovels
00 do. do. plated Spades.
50 do. do. socket Shovels and Spades
Together with Pick Axes, Churn Drill, and Crow Bars (steel pointed), manufactured from Salisbury refined iron-for sale by the manufactuing agents

WITHERELL, AMES \& CO.
 No. 2 Liberty street, New-York. BACKUS, AMES \& CC.

Fo. 8 State-street, Albany.
N. B. - Also furnisbed to order, Shapes of every description, made from Salisbury refined Iron. v $4-\mathrm{lf}$

MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Paterson, New-Jersey. The undersigned receive orders for the following articles, na nunfactured by them, of the most superior clescription in every particular. Their works being extensive, and the number of hands employed being large, they are enabled to execute boh large and small orders with promptness and dispatch.

RAILROAD WORK.

Locomotive Steam-Engines and Tenders; Driving and other Locomotive Wheels, Axles Springs and Flange Tires; Car Wheels of cast iron, from a variety of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of best American refined iron; Springs; Boxes and Bolts for Cars.
COTTON, WOOL, \& FLAX MACHINERY,
Of all descriptions and of the most improved patterns, Style, and Workmanship.
Mill Geering and Millwright work generally; Hydraulic and other Presses; Press Screws; Cal enders; Lathes and Tools of all kinds; Iron and Brass Castiugs of nll descriptions.

ROGHRR, KETCHUM \& GROSVENOR.
Paterson: N. J. or $60 \mathrm{Wall-st}$. New-York $51 t f$

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build on his Patent Plan, wow.d respectfully infurm Ruilroad and Bridge Corporations, that he is prepared to make cohtracts to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland execpted.)
Bridges on the above plan are to be seen at the followirg localities, viz. On the main road leading from Ballimore to Washington; two miles from the former place. Across the Motawankear river on the Military road in Maine. On the national road in Illinois, at sundry paints. On the Baltinure and Susquehanna Railroad at three points. On the Hudson and Paterson Railroad in two places. On the Boston and Worcester Railroad, at several points. On the Boston and Providence Railroad, at sundry points. Across the Contixicrok river at Hennikar, N. H. Across the Souhegan river, at Milford, N. H. Across the Connecticut river, at Hancocd, N. H. Acruss the Androscoggin river, at Turner Centre, Maine. Across the Kennelec river, at Waterville, Maine. Across the Genesee river, at Squakiehill, Monnt Morris, N. Y. Across the White River, at Hartford, Vt. Across the Connecticut River at Lebanon, N. H. Acruss the mouth of the Broken Straw Creek, Penn. Across tho mouth of the Cataraugus Creek, N.Y. A Railroal Brijge diagonaily across the Erie Canal, in the City of Rochester, N. Y. A Railroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet It is probably the firmest zeooden bridgre ever buil in America.
Notwithstanding his preseet engagements to build between twenty and thirty Railroad Bridres, and several common bridges, several of which are now in progress of construction, the subscriber wil promptly attend to business of the kind to nuel greater extent and on liheral terms.

MOSES LOXG,
Rochester, Jan. 19th, 183\%.
4-y

STEPHENSON,
 Builder of a superior style of Passenger Cars for Railroads,
 No. 261 Elizabeth street, near Bleecker strest, NEW-yORK.
 RAILROAD COMPANIES would do well to

 examine these Cars; a specimen of which may be seen on the New-York and Harlaem Railroad, now in nperation.
ROACH \& WARNER,

Manufacturers of OPTICAL, MATHEMA TICAL AND PHIL(ISOPHICAL INSTRU MENTS, 293 Broadyay, New-York, will keep constantly on band a large and general assortment of Instruments in their line.
Wholesale Dealers and Country Merchants sup. plied with SURVEYING COMPASSES, BA-
ROMETERS, THERMOMETERS, \&c. \&c. o their own mannfacture, warranted accura'e, and al
lower prices than can be had at any other cutablishlower p
ment.
Is Istruments made to order and repaired.

RAILWAY IRON, LOCOMOTIVES,
THE subscribers offer the fullowing aricles for sale :-
Railway Iron, flat bars; with conntersunk holes and mitred joints,
350 to na 2 by t, $15{ }_{2}^{2}$ 'f in length, weighing $4 \frac{68}{180}$ per 1

witn $\$$ Spikes and Splicing Plates adapted thereto. To be sold free of duty to State governments, or incorporated companies.
Orders for Pennsylvania Boiler Iron executed.
Rail Road Car and Locomutive Engine Tire wrought and turned or unturned, ready to be fitted on the wheels, viz. 30, 33, 36, 42, 44, 54, and 60 inches diameter.
E. V. Patent Chain Cable Bolts for Railway Car axles, in lenglis of 12 feet 6 inches, to 13 feet $2 \frac{1}{2}$, ${ }_{2}^{2}, 3,3 \frac{5}{3}, 34,31$, and $5 \frac{3}{3}$ inches diameter.
Chains for Inclined Planes, short and stay links, manufactured from the E. V. Cable Bolts, ard proved at the greatest strain.
India Rubber Rope for Inclined Planes, made from New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent felt for placing between the iron chair and stone block of Edge Railways.
Every description of Railway Iron, as well as Loconotive Enqines, imported at the shortest notice, br the agency of one ut onr partuers, who resides in Eugland for this purpose.

A lighly respectable American Engineer residea in Exylandl for the purpose of inspecting all Loonmotives, Machinery, Railway Iron, \&c. ordered through us.
28 tf
A. \& G. RALSTEN \& CO.,

Philadelphia, No. 4 South Front-st.

ARCHIMEDES WORKS.

(100 North Moore-street, N.Y.)
THE undersigned beg leave to inlorm the proprictors of Rail Roads, that they are prepared to furnish all kinds of Machinery for Rail Roads, Lo comotive Engines of any size, Car Whcels, such as are now in successful operation on the Canden and Amboy lail Road, none of which have failed.Castings of all kiuds, Wheels, Axics and Boxes, furuished at the shorrest notice.
H. R. DUNHAM \& CO.

NawYorк, Fcbruary 12th, 1836.
4-ytf

PATENT RALLROAD, SHIP AND

 BOAT SPIKES.** The Troy Iron and Nail Factory keeps cos. stantly for sale a very extensive assortinent of Wrought Spikes and Nails, fron 3 to 10 itches, inanulactured by the subscriber's Patent Machinery, which after five jears successful operation, and now almont univereal use in the United States, (as will as Enyland, where the subscriber cblained a patent) are found superior to any yet ever offered in marker. Railroad companies nuay be supplird with Spikes having countersink heads suitable to the holes in iron rails, to any amourt and on short s:olics. At t:30st all the Railroads now in progress in the United States are fastened with Spikes made at the above-named factory-for which purpose they aze found invaluable, as thicir adhesion is more than double any cormon Spikes nade by the hammer.
dind *** All orders directed to the Agent, Troy, N.Y. will be punctially attented to.

HENRY BURDEN, Agent.
Troy, N.Y., July, 1831.
$*^{* *}$ Spikes are kept for sale, at factory prices, by
1 \& J . Townsend, Albany, and the principal lron V eichanta in Albaty and Troy; J. I. Brower, $2 \geqslant 2$ Water-street, New-York ; A. M. Joi:es, PhiladeL phia ; T. Janviers, Baltimore; Degrand \& Sinith, Boston.
P. S.-Railroad companies would do well to forward their orders as early as practicable, as the subscriber is desirous of extending the manufacturing so as to keep. pace with the daily increasing demand for his Spikes.

1 J23am
H. Burden,
G. Mitchell, Printer, 265 Bowery, N. Y.

ADVOCATE OF INTERNAL IMPROVEMENTS.

1). Ki MiNuR and
fintorsand

CONTEVAS

Comununications-Buffala and Erie Raikond Report, 577 Drever: Patent Rails.
Great pefformance of a Lncomotive.
Virginia Improvem-nts-Memotialto Congress,
New Hydranis-Ralsing of the Williain,
Miscellaneous liems,
Advertisements

(1'ubdished February 1, 12: 3 K.)
VOLUME VI.-No. ${ }^{3 ?}$

AMERICAN RAIIROAU JOURNAI.

NEW-YORK, FEBKUARY 1, 1838.

AYERY'S ROTARY ENGINE FOR SAW AND Flouring mills.
In reply to the frequent letters received in relation to this Engine for driving mills, we give herewith an extract from a letter written by an experienced miller, who has applied the Rotary both to sawing and grinding-and who therefore spenks from personal knooledge, having no further interest in the subject than to have ample and cheap power to do his work.
The main sliaft of the mill referred to, is over sixty feet in height, driving four run of stones, elevators, smut machine, bolts, and all the machinery necessary for a first-rate Flouring establishment. This letter was written when the mill had been in operation only a few weeks, before the machinery had become perfectly worn to its place.
The great advantages of this Engine are said to be its simplicity, economy in first outlay, in fuel, in repairs, and in attendance.
Extract frum a lester written by a mentlemm who has bren long euraged i.t matubacturing Flomr, dated -
Clyde, Waynt Co. N. Y. Nov.17, 1837.
"Our Mill of four run of stores propelled by "Avery's Rotary Engine" has, with great ease, made 100 blls. flour, with 5 cords of wood, in twenty: four hours ; and it has, without any extraordinary exertion, made 125 bbls . in twenty-four hours.

We do not hesitate to say that after all the difficulties, incident to the first start-
ing, and rumbing a large and extensive Flouring Mill, in getting the Journals and Machinery worn snooth, and to fit their places so as to run regularly, that we can, with the same amonnt of fuel, and with greater ease, manufacture 150 bbls. flour in twenty-four hours, than do what we have above stated.

Mr. Cook, in his mill with 2 saws, can easily cut 8 thousand feet in twenty-four hours, which requires less than one cord of "wood, in addition to the slatss it makes. I built the mill now owned hy Mr. Cook, and know it can perform with great ease, all I have stated above.

We have full confidence in this kind of Engine, and know that it is altogether aliead of any thing of the kind now in use, in all respects. By giving it the necessary quantity of boiler, the Engine is competent and powerful enough to drive any description of machinery.

Very respectfully yours,
Benjamin Ford. ${ }^{\circ}$

For the Rallrond Jutrmal.

A globe, five inches in diameter, pre sents about 253 inches stirface. Now on each inch of the surface we will suppose there is an internal pressure of 1000 lbs., and that the metal will bear no more. It will make no difierence whether this pressure be produced by bars of steel or columns of steam, each ineh has its lo00lbs. These bars must be so shaped and put together as to have a base to rest on, sufficient to sustain them. The shape then required for 253 bars to fill this globe, will be one inch square at the top, two and a hatf inches long, and reduced to a point at the other end.The body of the globe thus filled cannot give in any direction, so that an additional force of 50 lbs. to any one har must punch it through. Now a globe 5 feet in diameter will receive $35,55 \%$ bars, each one inch square at the top, two feet and a half long, reduced to a point at the other end. Hence it will take an additionat force over the 1000 Hb . to make one of these hars punch a hole through the vessel. Therefore I reason, that the same strength of metal will sustain steam in a large boiler, as well as in a sinall one, if the shape be a giobe Now let us suppose this five fect globe cut in two_{2} and a cylinder of the same
diameter put in between the parts, so a to form a boiler with circular heads. To fill this cylindrical part, we must supprase these bars to be the same at the top, that is; one inch square, two and a half feet long, one-inch broad at the point, reduced to the shape of a wedge, and the same principle must hold good.
In a discussion the other day with a friend of mine, who is engaged in making some important experiments, I laid it down as a principle, that the thickness of the shells of stemm-bont boiters need not be increased in proportion to their size. He said: If I could establish that fact, it would be worth thousands to him. In your valuable paper, I hav* not secn any illustration of this subject. The general impression is against me, but we of the Far West have to blunder along until we gather knowledge from the scientific at the East, or by accident stumble on it.

Your Friend,
D. Embese.

Conchuded from our last.

HUFFALO ANO ERIH: RAIL ROAD REPORT.

T. S. Brown, Chief Engineer.

It is proposed that the Buffalo and Eric Railroad shall consist of two tracke, and with this in view, and to furnish sufficient room for the transaction of the very heavy business which must at a future day be done upou it, a strip of land will be obtained six rods witle.
In the first instance the grading will be done but for one track, except in those eases where a great saving may be effected by grading for both tracks at once, and at hose poins where two tracks will immediately be required to facilitate the business of the ruad. The width of track will be 4 feet $+\frac{1}{2}$ inches; the midth of ruad for two tracks will be 24 feet; the side slopes will be inclined at the rate of $1 \frac{1}{2}$ base, to 1 perpendicular; and the width of the side ditches in excaration will be 4 feet.

1II. Estimate of the cost of the Road.

Two distinct estimptes will be present ${ }^{-1}$ ed ; one for the completion of one track ${ }_{1}$ ' and for putting the road in a condition to commence business; the other for the
completion of two tracks, with a full provision for all the accessories, necesary to the successful prosecution of Railroad business on a large scale.

1. Estimate of the cost of completing one track, and putting the road in a condition to commence business; the bridges, except the trestle bridges over ravines, \&c., to be built for two tracks.

From Dunkirie to Buffalo: 42 miles.
Embankment, 424,733.5 cub. y.
Excavation, 283,168.3 "
Total, 707,901.8 " $\$ 77,86919$ Bridging and masonry, $\quad 49,31000$

In this item, the following amounts besides others, are included. For a trestle bridge, 2000 feet long, over the valley of Silver Creek, \$8000 00; for a bridge over Cattaraugus Creek, $\$ 4,50000$; for a trestle bridge, 900 ft . long, over the valley of Mud Creek, \$2,700 00; for a bridge, 400 feet long, over Eighteen Mile Creek, \$16,000 00; and for a bridge over Buffalo Creek, \$2,500 00. Ample provision is made for drainage, but masonry will be used sparingly, owing to the scarcity of good stone.
Superstructure, For one mile,
Timber,
Longitudinal pieces, delivered round, 10,560 running feel, $1 \frac{3}{4}$ cents per ft., the , roadway through woods supplying a considerable proportion,
$\$ 18480$
528 cross ties, at 8 cents, 4224
5,280 leet round timber
for props, at $\frac{3}{4}$ cent perft. 3960
Wedges,
5000
Sawed rail, five inches square, 22,000 feet board measure, at 10 per ni .,

Workmanship,
22000 70000
Iron,
Plate rail, 21 by $\frac{3}{4} \mathrm{in}-$ ches, $26 \frac{1}{2}$ tons per mile, at $\$ 75$ per ion,

705 end plates, at 7 cents each,

1,320 pounds 41 inch pressed spikes, at 10 cents per pound,

Workmanship,
13200
5000
Making horse path, finishing banks, clearing ditches, distributing materials, \&c.,

70000
Unforeseen expenses,
4451
Total for one mile. $\$ \mathbf{4}, 200 \mathbf{0 0}$ 45 miles of superstructure,
at $\$ 4,200$ per mile, $\quad 189,00000$
Turn-outs, road crossings,\&c. 60000 Land and fencing,

1,987 50
49 35
13200

Chopping and grubbing, Engineerlng and miscella. neous expenditures,
Depots at Buffalo and Dunkirk,
Water stations,

2,00000

30,00000
20,000 00 $6,000 \cdot 00$

Total cost averaging $\$ 9$,

36260 per mile. $\$ 393,22919$
To commence business,
4 Locomotive Engines,
30,00000
40 Passenger Cars,
40 Burden Cars,
32,060 00
12,000 00
Total,
\$467,229 19
From Dunkirk to the State Line; 28 miles.
Embankment, 183,274.9 cubic y,
Excavation, 112,512.
Total, 295,786.9 \$29,578 69
Bridging and masonry, $\quad 23,64000$
In this item the follow-
ing amounts are included,
viz:-For a bridge over
Canadaway Creek, $\$ 1,590$
for a trestle bridge, 600 ft .
long, over Little Canada-
way Creek, 81,800 ; and
for a bridge over Chautauque Creek, $\$ 3,690$.
Superstructure: 31 miles, at $\$ 4,200$, per mile,
Turn-outs, road crossing, \&c. Land and fencing,
Chopping and grubbing,
Engineering and miscella-
neous expenditures,
Depots and water stations,
130,20000
40000
14,00000
1,40000
20,000 00
13,500 00
Total cost, averaging
$\$ 8,31138$ per mile. $\$ 232,71869$
To extend the business
of the road from Dunkirk
to the State Line.
2 Locomotive Engines,
20 Passenger Cars,
20 Burden Cars,
\$15,000 00
1600000
6,00000
Total,
\$269,718 69 Recapitulation.
Cost of road from Bufialo to Dunkirk,

8393,22919
Cost of road from Dunkirk to State Line,

Total cost of 70 miles of road, averaging $\hat{8}$, 94211 per mile,

232,718 69

To commence business.
6 Locomotive Engines,
60 Passenger Cars,
60 Burden Cars,
$\$ 45,00000$
48,00000
18,00000
Total expenditure for completing one track, with bridging for two tracks, and for providing ample means for the commencement of business,

8736,94788
2. Complete estiniate of the cost of constructing the road with a double track. This estimate includes the amount
of the previnus one, and the difference between the two will be expended at a future period, when the business of the road shall require it.
From Buffaio to the State Line: 70 miles.
Embankment, $\mathbf{9 0 0}, \mathbf{9 9 0} 7$ cubic y.
Excaration, 509,850.0
Total, $1,410,840.7$ © $\mathbf{1 5 1 , 0 2 8} 16$
Bridging and masonry, $\quad 100,95000$
Superstructure, equal to
145 miles of single
track, at \& 4200 pr mile, 609,0CO 00
Turn outs, road cross-
ings, \&ce.
2,000 00
Land and fencing, $\quad 32,45000$
Chopping and Grubbing, 4,00000
Engineering and miscella-
neous expenditures,
$60,000^{-} 00$
Depots and Machine shops, $45,0000^{\circ} 00$
Water stations,
$15,000 \mathrm{co}$
Total cost, averaging
$\$ 14,563,26$ per mile, $\$ 1,019,42816$
For a full business;
12 Locomntive Engines, 90,000 00
8:) Passenger Cars, $\quad 64,00000$
150 Burden Cars,
45,000 00

> 'Total,
$\$ 1,218,42816$
To inspire confidence in these estimates, it may be stated, that for the most of the items, the cost has been determined by taking the cost of similar items on works actually constructed, and adding a large per centage on account of the present advance of prices.

Should there be such a general decline of prices as there seems good reason to anticipate, there can be no doubt that the work ought to be constructed for less than the amount stated in the estimate.

It will have been observed that an estimate has been made of the cost of lnnd, although it is expected that the liberal feeling which will undoubtedly actuate the land holders along the route, towards a work destined to be of immense value to the country through which it is to pass, will relieve the company from all expense for this object.
IV. Estimate of the probable profit which the Road vill yield to the Stockholders.

Under this head so much must necessarily be left to conjecture, that nothing more than a reasonable approximation can be expected. Feeling sanguine, however, that the work will yield a large return upon the capital invested, I will present briefly; some of the data upon which my opinion is founded, and each stockholder will be enabled to determine for himself, the degree of weight to which the opinion is entilled.

Supposing the road with one track completed from Buffalo to the State line, and provided, according to the estimate above, with ample means for the commencement of operations; the cost of carrying on the business of transporting passengers, and of repairs, and mainte
nance of way, may be estimated at about
870,000 dollars a year. If we suppose the travel to be on an average only 75 pussengers each way per day, the nett profits for a year would be $\$ 94,000$ dollars, or nearly 13 per cent. On the suppositiou that there would be 100 passengers each way per day, the profits would be upwards of. 20 per cent, and should the number be as great as it is on the Utica and Schenectady Railroad, the annual profits would be between 30 and 40 per cent.
To any one familiar with the rapid increase of population and wealth in the west, it will appear far from extravagant, to expect that within ten years from this time, there will be as much business done on the Buffalo and Erie Railroad as is done at present on the Utica and Schenectady Railroad. The probability is that in much less than ten years, this expectation will be realized. The number of travellers by stage, last year, between Erie and Buffalo, was twice as great as it was the preceding year, and for some time to come the increase will probably go on at almost as greeat a ratio, as the facilities for travelling are multiplied. The present post road along the Lake shore, from Buffalo westward, is for the first 30 miles, notoriously among the worst in the State. There are few travellers in this region of country who do not dread passing the "Cattaraugus woods;" nevertheless the number of stage passengers upon this road, both ways, during the end ending April 1st, 1887, was about 11,000 , besides great numbers by private conveyance, almost the whole of the travelling being done during the suspension of the Lake navigation. If a Railroad had existed, the increased amount oi travel for the winter months alone, would unquestionably have doubled the whole amount for the year. In the present state of things, many who have occasion to pass in the winter from Buffalo to Michigan and to the countries west of it, choose the route through Canada, from the Niagara River to Detroit, notwithstanding all its inconveniences; but when your railroad and those which are to connect with it shall have been completed, nearly the whole of these travellers will prefer to go by the south shore of Lake Erie, through the flourishing country and populons towns of the United States. Great numbers who now travel between the east and the west, in the winter, by the way of Pittsburgh, and thro igh other chanucle, will prefer the northern route; as soon as the line of commenication of which your road forms a part, shall have been thrown open.

The whole number of pertons arriving at and departing from Buffalo, hy water, during the season of navigation, is probably much more than 200,000. It cannot be conisidered extravagant io expect. that or this number, at least one-fourth would prefer the railroad to the steamboat. Many having business along the Lake shore, would take the railroad as
being most convenient, many would take it on account of the greater rapidity with which they could travel, and very many would be induced to take it from a dread of sea sickness, and the dangers of Lake navigation. These and other considerations, woould probably induce a much greater portion than I have stated, to prefer the land conveyance to that by water. If the railroad were at this moment in operation, the number of travel. lers on it could not be less than from 60 to 80 thousand in a year, which would produce a profit of from 12 to 20 per cent., but before the work can be constructed these numbers will be greatly increased. By the time your road is finished, those which are to connect with it both at its eastern and western extremities, will also be in operation, and the amount of trarelling in the winter season will thereby be much augmented.

When the New-York and Erie Railroad shall have been constructed, your road will derive from it also a large accession of business; and that operations on that great work will speedily be resumed, no one aware of its vital importance to the City of New-York and to more than half the territory of the State, can for a moment doubt.

In addition to the revenue from passengers, there must likewise be very considerable receipts on account of freight. Of this no estimate will be attempted, but it may be suggested that the freighting business of Chautauque Countyalone, which already numbers about 50,000 souls and is rapidly increasing in population, would go a considerable waytowards defraying the expenses of the road. In the spring and fall, just before the opening of the Lake navigation, and just after it has closed, the business on the railroad will be particularly active. and there will always at those times be much freight to be conveyed.

The transportation of th:e United States Mail will afford another important source of revenue. The receipts on this account will probably be from $\$ 10,000$ io $\$ 15,000$ a year.

The general result of the whole of these imperfect views is, that the Stockholders are entitled to indulge, with confidence the most sanguine expectations of handsome profits from their investment.

Accompanying this Report, I lay be fore the Board of Birectors thirteen maps drawn by Mr. R S. Moore, which embrace plans and profiles of the whole of the routes surveyed.

1 received my appointment last October, and on the first of November the preliminary survers were continuted in the field through the most severe part of the winter, until the end of January, during whichtime, careful instrumental examinations were made of upwards of 155 miles of line. I should do great i justice to all the gentlemen engaged with me, did I not bear testimony to the zeal and energy with which I was seconded
by them, in carrying into effect the wishes of the company. Very respectfully,

Your obedient servant,
T. S. Brown.

Chief Engineer of the Buffalo and Erie Railroad.
Dunkirk, N. Y. May 1st. 183%.

dREYER'S PATENT RAIL.

The superiority of rail road transportation in regard to speed, cheapness, comfort and pleasure, before any other mode of conveyances, seems to be fully established; and the moving power by the application of steam and the invention of excellent locomotives within a very short time has been brought to such admirable perfection, that nothing else appears to be wanting, but to remove some defects, inconveniences and dangers, still arising from the construction of the rail road itself, and by lessening the cost of the building and reparing to give this branch of industry an internal improvement a greater extension and utility. However, amongst all the improvements already made and displaying so much ingenuity and talent, the construction of the road has been rather neglected and until this day we are exposed, not only to the disagreeable jarring and noise, but also to those dangers, which are inseparable from the present mode of fastening the rails, which does not and cannot give them the proper and so much desired smoothness and continui1y. It has, therefore, for several years been my study, to remedy these evils and obtain such a desirable object by finding a new, simple and cheap mode of laying and securing the iron superstructure of the road; and having, in my humble opinion, at last perfected my ideas and constructed a new form of the rails. which by several bolts and plates of peculiar shape are to be fastened on the stringpiece, I do nut besitate no longer, to request your attention to the following descripion of my inven!ion, which has met with the approbation of several scientific gentlemen, eminent inechanice and rail road builders.

My rolled iron rails, whose strength is optomal, but require in my opinion only a thickness of one inch, are inside dovetail groored, and consequently present a perfectly smooth ind even surface. To fasten them on the string piece, I use for cvery bar of fifteen feet length.

First. Four wrought iron bolts, which have a top, dovetailed one way and straight the other, with an eye in their round lower parte, to reccive wrought iron wellee keys.
Sicondly. Two cast iron dovetailed plates, to be screwed to the timber, one at the end of each bar, and one in 1 ts niddle, whose doretails fit to the dovelailed grove of the rail, and

Thirdly. Four cast iron small plates, having a round hole in the middle, one for each bolt, to be slijped over them up to the timber; the bolts to be turned to fit
the duvetall grouve in the rail, and then secured by the, wrought iron wedge key through the eye of the bolt and the two flanges on the plate; as the wedge key is forced in, it, secures firmly the rail to the stringpiece.
To give a clearer and more satisfactory view of the whole, pernit me briefly to explain the manner I intend to lay the auperstructure, and then point out some of the advantages of my plan.

After the mudsills, sleepers and stringpiece of the road are laid and every thing is fully prepared for the rails, I commence, by first fitting the dovetailed cast iron plates, according to their thickness on the timber of the stringpiece in their proper places, at the junction of every two rails and where each rail will find its middle, and shall have then the bolt holes bored, four inches from the ends wherever the rails or bars meet and at half the space between the middle dovetailed plate and the said first bolt holes, being a distance of three feet, scven inches ; whereupon the bolts cun be driven into their hoies, with their straight top sides in a line with the stringliece. Hereafter the dovetail pla'es nust be slipped into the dovetail groove of the rail and so placed, that they may be let down, where they have been previously fitted on the stringpiece and can now be screwed into its timber. When this is done, the bolts are so far turned (ninety degrees) that their dovetailed beads fit in the dovetailed groove of the rail, and finally the bolt plates are slipped on and the werges placed in tle cyes of the bolts through the gronves of their plates, by whose power when wedged up tight, the iron rail is pressed to the limber and kept in its due position.

I believe this will be sufficient to give a full idea of my plan, without any draw ings or model, which however may be secn in the Patent Office a: Washington, or here in New York in the offices of the Long Island Rail Road Company. I shall now state some of the advantages of this new mode of constructing and fastening the rails.

1. The continuity of the rails is main tained in all cases, whether the road should yield to the weight passing over it or not, as the dovetails of the end, and middleplates and of the wedged bolts must keep them down and together, so that there is no possibilty of their rising.
2. The superstructure of the road has always a smooth and even surface with the greatest solidity, which in combination will prove the best remedy agaiust that continual disagreeable jarring and noise, interrupting and destroying so often the plasure of this otherwise comfortible and speedy mode of travelling, and reminding the passengers of the dangers connected with a badly constructed road.
3. The adoption of this invemtion will give not only the road itself, butalso the locomotives and cars a longer durability, because
a. A sinooth and anmierrupted surface of the ruils and their being weiged down tightly on the timber, prevents the rain and now from penetrating into the wood and the interior parts of the iron 18 perstructure, whereto the spikes of the flat and edge rails expose then and bring on early rottenness of the timber iand oxyda. tion of the iran.
b. The rails cannot give away towards the eides, when the string. piece is properly laid, and consequently the track must remain in its due position and the motion of the engine and cars become more regular.
c. The timber does not suffer and wear out by the driving in, (and when repairs are necessary,) pulling out of spikes, , which frequently splits the wood, and by bending or cracking injures the rails.
d. The much easier and more regular motion on a smooth and solid surface which remains in its proper place, preserves, as there is less friction and shaking, the wheels, machinery and body of the locomotives and cars. And
e. There is less moving power required in proportion as there is less friction and a greater regularity of the road.
4. The rails can be laid from six to nine inches higher, than in the present mode of construcring and fastening the edge rails, which is of vast importance for the northern parts of the country where early and much snow falls, and contributcs to Jessen the moving power for a ceriain weiglit.
5. This new inode saves considerable expenses in litying and reparing the superstructure, as
a. No spikes need to be driven in or drawn out, and very little earth is to be removed, when the ralls must be taken up, so that one man can do more, than three at present are able to perfrom ; and as
b. The timber will answer until it is enirely rotten, being always kept to the rall by the power of the wedge key. But principally is to be considered
6. The very great difference in the first costs, in consequence of a large reduction of the weight of the necessary iron, which the following comparative statement will show. One mile railway require on both sides of the track
3520 yards of rolled iron edge rails, weighing per yard $56 \frac{1}{2} \mathrm{lbs}$. and per mile

198,880 lbs.
3520 yards dovetail grooved rolled iron rails, 1 inch thick and $2 \frac{1}{4}$ inches wide, weighing per yard 24 lbs : and per mile

84,480 lbs.
which gives a difference of weight, of not less than $114,400 \mathrm{lbs}$. 3520 yards edge rail require

10,560 wrought jron spices of 1 lb ., per mile

- tail require

2816 dovetailed wrought iron (bolts of ${ }^{3} \mathrm{lb}$., per mile
iron wedge keys of 1 Loz., per mile $\quad 1,584$ lbs.
$-3.696 \mathrm{lbs}$
giving a difference of weight of wrought iron of

6,564 lbs.
3520 yards edge rail require 2,112 cast irn plates of 64 lbs , per mile $\quad 13,200 \mathrm{lbs}$.
3520 yards dovetal grooved
rail require
1408 dovetailed cast iron plates of 3 lbs 11 oz ., per mile $\quad 5,192$ lbs.
2816 cast iron wedge plates. of 11 oz , per mile
$1,936 \mathrm{lbs}$
7,12s lbs.
making a difference : n weight of cast is on of $6,072 \mathrm{lbs}$.
However, if a rail, of $1 \frac{1}{2}$ inches thickness (weighing 36 lbs. per yard) should be preferred, the difference of the tails in the weight of rolled iron, would-stand thus:-
3520 yards, or one mile edge
rails 520 yards, or one mile dove-
tail grooved rails
$126,720 \mathrm{lbs}$.
still leaving a dif-
ference of
72,160 lbs.
the other differences remaining the same.
Before I conclude my circular, I wish to observe that the rolling of rails, in their dovetal grooved form, can be done in any of the British iron works; and that in regard of my Patent Right, which is seeured by Letters Patent of the United Sta:es, tvery company or individual, who resolve to adopt and use my invention, will find me very reasonable in my charges, offering at the same time, to undertake in connexion with Mr. James 1 Surman, Civil Engineer, the building of rail roads or laying their superstructure, according to my new mode, to whom or myself let:ers, requesting furither information, may be forwiarded, through the New York Post Office.

Most respecifully yours,
Peter Henry Dreyer.
For the United Sta:en Gazente.

- Render unto Casar the Ihings which be Casar's:'

My attention wrs lirected a few days back to the following communication in he Boston Atlas:
great performance of a lugqutive.
We learn from the Philadelphia Senti-
nel, that a few days since a locomotive engine, constructed by their enierprising felluw cilizen, M. W. Baldwin, Esq. drew upon the Philadelphia and Culumbia Railroad from Columbia to Philadelphia, E train of 35 merchandise cars, being, exclusive of the engine and its tender, the enerinous weight of 163 tons, 13 owt. 1 qr. 4 lbs ., at the usual rate of speed:
This is nothing to what our Yankee focomotives can accomplish. On the 25:h March last, the following load was drawn on the Boston and Lowell Railroad by the "Storington" loconnotive, built by the pioprietors of the Locks and Canals at Lowell, for the Stomington Railroad. 49 cars, loaded with conson,
wool, groceries, coal, \&c.
weighing
Weight of 45 cars, at 3,500
lbs. each
$333,428 \mathrm{lb}$.

Weight of 4 cirs, at 5.000
lbs. each
171,000

Weight of tender
20,000
14,400
$538,828 \mathrm{lbs}$.
Or 269 tons.
Distance 10 miles. Time $51 \frac{1}{2}$ minutes, or abunt 12 miles an hour. Irain 826 feet lung.

The engine stopped and started the train un a rise of 10 feet to the mile.

Now without ineaning any thing offensive to the writer of the above article, truit compels me to remark, that as un a lady's lelter, the most important iten of information liss in the postscript-for it the last quoied paragraph tiad been omitled, we simple minded Philadelphiańs must hive acknowledged defeat and have yielited the palın to our Yankee brethren; un'e ss perchance some of us hat been down east and " had taken notes to print at ho:ne." But we are very fortunately spared this trouble by the alorezaid paragraph, which informs us that the engine started her train on a grade of 10 feet to the mile.

Mr. Baldwin's engine carried itz train over a grade of 32 feet and rising to 50 feet to the mile, and around curves of 600 feet ruthins. After stating this fact it will only be necessary to refer the intelligent writer in the Atlas, to what I have no do bt he well understands, namely, the statical law of inclined planes and the dynamical expression for the modulus of friction of railroad trains, in order that he may perceive that Philadelpha need not tremble yet for the well merited fame of her mechanics and manufacturers.

From the known resulis of tie best experiments we may assume that the friction or which is the same for our purpose the iraction on dead levels is $\mathbf{1 - 2 2 4}$ of the load, or $10^{\circ} \mathrm{lb}$. to the ton.

It is an acknowledged statical principle that the force impelling a body down an inclined plane bears the same proportion to th, weight of the body as the height of the plane to its length.

A calculation founded upon these data will show that the Lowell engine must have exerted 2 force of traction equal to

3420 in drawing 240 tons on a grade ol 10 feet to a mile, or 1 in 528 , the friction being' 10 lb . and gravity' $\$ 1.4 \mathrm{lb}$. 10 each ton and $141-4$ - $240=3420$.
By a similar calculation It will be seen that the Philadelphia engine exerted a force equal to 5270 lb . in drawing 170 tons, which was the load, including the tender, on a grade of 50 feet to the mile, or I in 106.

The friction being as before, 10 lb . and gravily 21 lb .10 ton, and $31 \times 170=$ ㄷ2io.

So that supposing the Philadelphia and Columbia road is in as good orderas the Boston and Lowell road, which I am informed is far froun being the case, the latter being considered one of the most perfect in the country, and the former oue of the most defective. Mr. Baldwin's engine apprars to have performed fifty per cent. more work than her Yankee rival, as it will be seen that the power exerted on the Culumbia road, would have drawn 360 tons on the Boston and Lowell road.

Itis but just to say that the load drawn on the Columbia road was not: a mere experıment of 10 miles, but being a regu. lar every day business; those wachines have drawn much more when they have been put on trial. I must therefore whis. per to my New England friends, iry again.
C.
virginia impruvemente.
We find the following extract from a report made to the Legislature of Virginia, by the Committee on Roads and Internal Navigation, in the Courier and Enquirer, It evinces a spirit which will render the "Old Dominion" again, ai no distant day, as distinguished as in days past. Let her but improve her naturul advantages-which are inferior to no state in the Union-and she will stand in the front rank of the Union.
Will New York, after her glorious commencement of a more glorious system of internal improvement, sland with folded arms and see cther states going so far ahead ol her? We shall see:-
Virginia. -The Committee on Roads and internal Navigation in the Virginta Legislature, have made a repurt, accompanied by a bill, proposing 10 make varıous improvements on account of the state; the cost of which is thus estima. ted:
Rail road from the Tennessee
line to Evansham,
$1.200,00$ ()
Parkersburgh and Staunton Road,
Staunton and James River Turnpike,
Valley 'Turnpike,
Notih Western Improvements, Improvement of James River below. Richmond,

160,000
200,000
500,000
260,000
100,000
$82,410,000$

Add to this sum three-fiftss
of the sum necessary to extend the Rail "Road to Danville, whole capital, ©3,500, $00, \quad 1,500,000$
A mount of state subscription to road from Evansham to James River, 1,200,000 2,700,000

Aggregate amount

to be raised by
the state,
85,110,000
The report concludes with the following resoluitons:

1. Resolved, as the opinion of this Committee, That it is experient to construct the works specified in the annexed report, upon the principles therein indicated.
2. Resolved, that it is expedient to authurise the Board of Public Works, by law, to borrow from time to time, such sums of money as may be necessary to complete those works which are recommended as proper to be undertaken on state account; and also the sum necessary to subscribe the state's proportion of the capital, of the Joint stock Companies recommended, whenever the individual subscription shall have been made.
memorial to congress for the improvement of the alfrgany hiter.
To the llonorable the Eenate and Hrouse of RepresentaWes wit the Inved intute, in lonyess asenibed:
Thie practicability of the improvement of the Allegatiy River, for SteamBoat navigation between Pittshurg, Pa., and Urlean, Neiv-Y ork, being fully established, the undersigned, your meworialists, would respecifully solicit from your Honorable Bodies, an immediate appropriation for that object. An enlightened observer need but examine the geographical position of the Allegany from its entrance into the state of NewYork, to its confluence with the Ohio, und with a knowledge of the characteristicks of the stream, the conviction must be irresistable, that the improvement of such an avenue for the purpose of commerce and communicmion, must be of great national' importance. This becomes more clearly apparent when it is considered, that upon the completion of the Geasee Valley Canal, in the State of New-York, (a work now in progress, which is to unite the Grand Erie Caral at Rochester, with the Allegany ot Orlean, a chain of inland water communication is completed frim New-York city to the valley of the Mississippi, which a glance at the map will show is more direct, and experience will prove is more safe, cheap and expeditious than any other which can be obtained between these important portions of the Union. From the surveys made of the Allegany at diffierent periods, particularly by the one made during the past summer, under the direction of Major G. W. Hughes, U. S. Topographical 'Engineer, by authority of Congress, (to whose report your memorialists would refer,) its im-
provement for steam navigation is found can be effected at an expense extremely limited, compared with the general benefits it would colifer.

That it is a stream susceptible of im provement at a moderate expense, will appear from a general description. After.its entrance into the State of NewYork, many tributaries contribute to swell the channel, until it becomes a smooth, deep, and capacious River, and for the entire distance between Orlean and Pittsburg, flows over a pebbled bottom, unobstructed by rocks or sand-bars, with a uniform descent, and without one perpendicular fall, and is in its natural state, susceptible of being navigated by steam and other boats, during the inost of the fall and spring months. Its importance as a cliannel of trade is enlianced by the fact that it is closed but a short time in the winter, is generally open for the pnrposes of navigation during the first weeks in March, and while other important water communications which connect the eastern with the south-western border, and now chiefly used for the conveyance of merchandize, are closed by ice, the Allegany remains open, through which goods, \&c. may be transported and delivered at the different markets upon the Ohio, and its tributaries, several weeks earlier in the season, than by any other route;-to which consideration, when the advantages of increased cheapness, security, and expedition are added, your memorialists feel warranted in the statement-that this improvement would be attended with important practical blessings, and by facilitating the commercial intercourse of remote parts of the Union, would greatly contribute to the general good of a large portion of yout fellow-citizens.

Let us for a monent imagine, what in a very short period will be reality,-the Genessee Valley Canal and the NewYork and Erie Railroad completed, and merchandize, \&c. from the commercial emporiums of the east designed for the Mississippi Valley, to be transported through this chaunel, arrives at the Allegany. How vast a country accessible by navigable waters without another transshipment here opens to the view of the trader! ' Γ o the highest point of Steam-Boat navigation on the Mississippi River, is nearly five thousand miles. If this be taken as one continued chain, and the mighty streams which diverge from it, and which penetrate each of the States in the Mississippi Valley, be regarded as branches, one uninterrepted course of stean navigation is exhibited, of not less than twelve thousand miles. When in addition, we look at the Canals and Railroads contemplated and in progress within the several Sutes connecting with these waters and extending to the Athintic Ocean, the Great Lakes, the.Hudson und the Connecticut, and other navigable waters, we extend the sphere of Steam-Boat, Canal and Rail-
road communication to not less than eighteen thousand wiles, embracing in their extent almost evory State in our Great Confederacy. To this extensive inland channel of communication, the Allegany, as a connecting link, is of vast importance.

The improvement under considerution being so clearly of a national character, would contribute so largely to the general welfare of your fellow-citizens in facilitating trade between the States, in time of peace, and in tince of war by affording government a highly important avenue for the transmission of troops and munitions of war, your memorialists confidently believe that few improvements of a similar nature to which your attention will be called, will have equal claims, and none su-perior-for a liberal appropriation from your Honorable Bodies. Not only would this improvement greatly subserve the purposes of commerce between different and distant parts of the Union, and all the advantages of increased wealth and enterprize to every branch of industry be experienced, but by it a community of interest, of feeling, and of friendship will be more directly coment ed and perpetuated, and the citizens of twelve at least of the States and 'I'erritories brought as by enchantment, into one common neighborhood, and become dircetly partakers in the advantages it would confer. 'The improvement of the Allegany between Pittsburg, Pennsyl. vania, and Orlean, New-York, is respectfully submitted to your Honorable Bodies, and as so large a portion of the People of the United States, being within the range of its benefits, must feel a lively solicitude in this subject, it is confidently hoped that in view of its national beariugs, the prayer of your memorialists will be granted, by an immediate appropriation sufficient to accomplish the work. And your memorialists will ever pray, \&c.
Fiom: he Bakiune Gazeile.

Mr. Editor:-It is a matter of very great astonishment to me, that the public will continue to submit to the inconvenience of having liydrants sulject to being closed up by the frost, when they could so easily remedy it, not by adopting the new fashioned kind lately imported from Philadelphia by the Water Company, and which they propose to put down at a cheap, first cost, but which in the end will be found to be exceedingly dear, but by the adoption of the one upon the principle invented by our fellow citizen, Sater 'I'. Walker, Esq. The writer of this is personally acquainted with the fact, that this invention has been tested during the last two winters in the yards of John Scort, Eisq. Fielding Lucas, Esq. Janes I. Kidgely, Esq. W'alter Bnll, Esy. und Ldward Cockey, Esq ; and in every instance it has been found to answer the end proposed by the invent-
or, viz. farnishing, during the most severe weather, a free and unobstructed supply of water. In addition to this great desideratum, such is the construotion of the works that friction to as great an extent as is practicable has beep avoided, so that their duration may be considered equal to about one hundred of those down on the Philadelplia plan. The Assignee of the patent will, I feel assured, if applied to, put them at a reasonable cost to any of our citizens.

tile raising of the william.

Much interest has been excited by the various methods adoptcd for raising the two vessels, the A pollo steamer and the William of Sunderland, both sunk near this town. The first was to have been raised by means of nir bags, and the larter by cylindrical air cones. Through Mr. Kemp, the inventor of the latter apparatus, a nunber of scientife gentlemen, who take a great interest in the success of this novel means of raising vessels of any maynitude, have inspected not only the working inodels, but the whole apparatus by which the William is to be brought up. The William was run down by one of the foreign steamers last winter -she was 400 tons burden, and not being considered worth raising, was abandoned by her owners, and became a ruinous impediment to the navigation. The Lord Mayor, as conservator of the Ihames, put out notices for tenders for the removal of the wreck, and Mr. Kemp's plan was accepted, his offer being 5001. A large schooner was brought to the spot, containing 32 cylindrical vessels each six feet high, by four and a half diamette, lined through with zinc, and having only one head. Across the opening is a strong iron, which is firmly attached to the ma. chine, with a hook in the centre. The first step resorted to was to ascertein the precise situation of the vessel. This was done by means of Dean's diving apparatus, which merely consists of a copper helmet, with a glass front, supplied with air from a pump in tlae vessel above. The divers then proceeded to pass entirely round the vessel from head to stern a chain cable of tremendous strength. To this at intervening distances of six feet is attached short bridle chains; and to the end of each of these is a rope with abuoy attached to it, which floats on the surface. When cverything below is complete, this rope is passed through the cye at the open end of the cone. Tlie cunc is then cast overboard and immediately fills with water, and descends exictly to die bridle chain. The diver hen gies down and secures the two together. As soon as a suflicient number are attached, w tube connected with the air punp is placed under the open and ; nntl the air is then forced from the pump) into the cone, iand as soon as it luaves the tubo, lises natu. rally inside the vessel and displaces tho water liy taking its place at the upper end. The cylinders are filled in this manner by degrees, taking the alternate
sides of the head and stern first. Water being a non elastic fluid, will naturilly cause a body that may be sunk to rise to the surface ns soon as it shall be made lighter by the elastic fluid confined in the cylinders. Therefore it is quite clear that any body must be raised if only sufficient air attached to it, and this was the casc in the experiment tried on a small vessel loaded with iron we had the pleasure of witnessing, and which it was the opinion of every person present must raise the William, it were not for the numerous impediments and obstructions that have been thrown in the way. The vessel lying in mid-chanel is being continually run over by other vessols; and several times the iron chain round the bottom of the wreck has been earried away by the anchors of colliers and others getting foul of it. The buoys attached to the bridle chains have been over and over again destroyed by the paddlewheels of the steamers, whose masters really appear bent on doing' the machinery as much injury as possible. Two of the large cylinders were last week carried completely away, and have not since been found. The Lord Mayor has sent down a lighter, which is moored, to warn vessels from the spot, and the city flag is hoisted on board Mr. Kemp's schooner; fires are also kept burning the whole of the night; even this is to no purpose, for on Sunday afiernoon last, just as every thing was prepared for weighing, down came a collier, damaged the schooner to the amount of 200 l ., and carried away a large number of tanks. It is evident, unless some better protec. tion is nfiorded Mr. Kemp, he must abandon this ingenious plan, at considerable loss to himsclf, and the almost total destruction of his property. The working model exhibited is thtt of a vessel about three feet long, loaded with iron, which was raised to the top of the water in the tank with the greatest possible ease, as was also a large lump of iron, and every person present seemed perfectly satisfied that this plan must succeed in deep water, where every other method would fail. -Gravesend Journal.

the new governmbnt steamer "aordoñ."

The new steamer "Gordon," now lying in Woolwich Basin, is the largest steamer in her Majesty's service ; she is of 1150 tons, builders measurement- 37 feet 6 inches beam; and her depth of hold $22 \mathrm{ft} .9 \mathrm{in}$. She has sponsons on each side, which make the deck 10 ft . more, say 47 ft .6 in .; length between perpendieulars, 179 ft ; over all 210 ft . She will carry a tier of 36 -pounders on her main deck, and two large 84-pounders. At each end on the upper deck there are swivel guns that will range 290° round the horizon. The ressel is constructed from the designs of Sir Wil. liam Symonds, Surveyer of the Navy, and is, without exception, as regards her build and form, the finest steamer afloat.

She will carry twenty days coal- 1000 troops; 136 crew ; and stores and provisions for all, for six months. The engines, which are of 320 horse power, are now making by Messrs. Seaward \& Co., with their patent slide valves, now coming into such general use on board of steam vessels. The cylinders are 64 in . ches in diameter; wheels 26 feet; boilers all of copper, and the coal-boxes in the engine room will contain 360 tons of coal. The boilers, cylinders, and all the vuluerablc parts of the engine will be four feet under the water lire, besides having on each side from end to end of the engine room, a depth of coals in the boxes 7 feet thick. The whole of the steam machinery, may be said to be invulnerable from shot.-London Mechanics Magazine.

manufactures of lanchashire.

Probably the largest entire room for manufacture in this county, and if so, in Europe, is that of Messrs T. \& E. Grund5, at Heap.bridge, near Bury. It is appropriated to the manufacture of woollens, and is 85 yards in length by 75 in width, and 12 feet in height; is supported by 253 pillars, some of which also bear gearing ; it has 65 large windows, ar.d 253 skylights; 672 feet of steam piping ren through it, and about $\mathbf{2 , 6 8 8}$ feet of shafting are at work. Ii contains, or will contain, eight cardling engines, probably the largest in this county; eight gigantic slubbing frames; 40 mules; 200 looms, some for weaving prials, three in width; 450 gas jets; will be worked by one ϵ ngine of comparatively small power, and is surmounted by a funnel of 69 yards and two feet.-Bolton Free Press.

TELESCOPES.

A correspondent of the Hereford $\boldsymbol{J} \boldsymbol{\sigma}$:r$n a l$, in reference to the inconvenience experiensed from the condensation of moisture which is apt to take place upon the object glasses of telescopes in the atmosphere of the evening, says that it may be obviated by the employment of a tube of pasteboard 12 or 18 inches in length, so constructed as to fit upon the object end of the instrument. The invention, he says, was that of the celebrated astronomer De la Hire.-London Mechanic's Magazine.

ARTIFICIAL KUBIES.

M, Gaudin has presented a report to the Institute of Paris, detailing his mode of proceeding in the preparation of ficticious rubies, which in every respect resemble those found in nature. He submits aluminium, with a small quantity of chromate of potash, previously calcined; to the influence of a powerful oxy-hydrogen blow-pipe, by the action of which the material is melted, and no cooling, the crystel presents all the characteristics of the ruby. The Accandemy appointed M. Becquerel to examine into the"merit of the discovery, and his report being deem-
ed conclusive, presented their thanks to the author.-Ib.

A GOOD HEARING FOR DR. REID.

Dr. Reid of Edinburgh, who gave evidence before the House of Commons' Committee on the best way of consistructing a building for the purposc of hearing, wih reference to the new House of Parliament, is now on an acoustic tour through Europe, in order to examine the principal buildings with reference 10 their capabilities in that point of view. He lately paid a visit to Berlin and Pots-dam- to the latter, it appears, for the purpose of examining the acoustic properties of the barraks. Our readers may be surprised at his pushing the ardour of research so far,but their wonder will cease when they learn that Dr. Reid is an Accoustic Commissioner, and travels at the expense of Government.-Ib.

fUR IN steam boilers.

Messers Neron and Kuriz of Brussels have advertised an invention for dissolving the "fur" which collects in kettles and boilers, and is found so serious a misance in all operations conducted by steam. For this they require a yearly subscription from those who a vail themselves of it, of so high an amount as, in the case of steam engines, cight franks per annum for every horse-power. The German papers in taking notice of this, remark, that Mr. Bornschein of Frankfort on -the Maine, announced a somewhat similar discovery in the early part of this year, but that by his plan, the "fur" is not dissolved when accumulated, but absolutely prevented from accumulating. For the disclosure of his method he only requires the sum of ten ducats, not yearly, but once for all. We should think that when this information reaches Brussels, Messrs. Neron and Kurtz will have few customers for their expensive wares, unless Bornschein's discovery be discovered to be useless.-London Mechanics Mag.

SILK WORMS.

The cultivation of the mulberry-tree, and the raising of silk-worms, has been adopted in Switzerland with great suecess. At Basle August, in particular, this new source of wealth has been astonishingly productive.-Mining Jour.

红通 Volume Six will be completed as speedily as possible. The next, or Volume for 1838, will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.
0 Prorticular attention will be given to the procuring of all kinds of Instruments required by Engincers.-Orders must be accompanied with the necessary funds or city acceptances.

AGENCY
The-Subacribed offore hie servicen as Agent, to procure Machinery for Milts, Sleam, Engines, Locomotives, Printing Machines, Presses, Types and Fixtures.
He will give irrompt attention to all orders ontrusted to him for oxecution; a nd pledges himeself to those who may employ him, that no effort on his part shall be wanting to prucure tho bestarticles to be had in the city-and to givo satisfaction.
He will also employ Millwrights and Engi neers: to erest Mills, and put the Engines and Machinery in operation.

Orders accumpanied with the necessary funds, or satisfactory city aeceptances, sloould be addressed to D.K. MINOR, 30 Wall-st.

LOUISVILLE, CINCINNATTI, aND

 CHARLESTON RAILROAD.NOTICE TO CONTRACTORS.-Sealed Proposala will be receivod at the Olfice of the Conpipany in Coluabia. S. C., untll the 15 h day of Febranry next, for the graduation and masonry of that purtion of the Road from Coltunbia to the crossing of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.

Also, for ille construetion of a Bridge of 400 teet in length, en the Congarce fiver, to be built on stone piers and abutments, for which there are suituble quarries in the neigh borhood.

The plans and profiles of the line will be ready for inspection at the Offee of the Resident Engincer, in Co!uınbia, S. C., after the 10th day of Febriary.
So soun as the surveys for location, now in progress, aro comp'eted, that part of the Road extending from McCord Feıry to the Charles: ton and Hamburg, Railroad, at Branchville, will bo put under contract, of which due notice will be given.

WM. GIBBS Me NEILL, Chiof Engineer.
OTT The Railroad Journal, N. Y. Courier \& Enquirer, N. York; Providence Journal, Providenco, R. I.: Atlas, Buston; Philadelpia En. quirer. Pbiladelphia; will publizh the above notice 6 times, send a enpy ol the paper to the Office in Charleston. S. C., and a cortified copy of their account for payment.

Jan. 12
finw 6

NEW' ARRANGEMENT.

ROPES POR INCLINED PLANES OF RAILHOADS.

WB the sulhscribers have formed a co partnership under the stylo and firm of. Folger \& Coleman. fur the manufacturing and selling of Rupes fur inclined planes of railruals, and for other uses, offer lo supply ropes for inclined planes, of any leugth required without sidice, at short norice, the manufacturing of condage, heretafore carned nn ly S. S. Durfee \& Co, will lie done by the niw firu, the same superintendent and machincry are employed by the new Grm that were employed by S. S. Durfec \& Co Alt onlers will be properly attended to, and ropes willobe alipped to any part in the United States.:
12themunth. I2th. 1835\%. Hudson; Columbia Oounty, State of New-York.

ROBT. C. FOLGER.
33-f
GEORGE COLEM AN:

AMF.S' CELFBBRATF.D SIIOVELS, SPAD lis, fc.

300 dazrns Ames' superior laack strap shovels.
150 Io: do. do. plain do.
150 do. do. do. cas steel Shovels is Sjpades
150 do. do. Gold-minnug Shove's
00 do. do. plated Spades.
50 do do. so ket Sbovels and Sparles
Tagether with Pick Axes, Churu Drilis, and Crow Bars (stuel pointed), minufactured from Salisbury refined irun-for sule hy the manufactuting agents", WITHERELL, AMES \& 'VO.

No. 2 Livertv street, New-York. BACKUS, AMES \& CC.

Fo. 8 State sircet: Albany.
N. B. - Miso furnished to order, Shapes of evers description, made frosn Salisbury refiuad Iron-v4-il

MAGFINE-WORKBOF ROGERS,

KETCHUM AND GROSVENOR, Patereon
New. Jerwey. The undersigned receive orders for the following articles, manufuctured by them, of thi mont suprerior description in evrry panicular. Their works being exlensive, and ibe number of hand emplayed being largn, they are enabled to execut dispatch.

RAILROAT WORK.
Locomotive Sieam-Engınes and 'lenders; Dri ing and wher Locomotive iV heels, A ales Spring and Flange l'ires; Cas Whee's of cast iron, from variety of paucros, and Chills; Car Wheels ut cast iron. with wrought Tires; Axles of loget Anierican refined iron; Springs; Boxes and Bots for Cars.
COTTON, WOOL, \&FLAX•MACHINERY
Of all descriptions and of the must improved pat terns. Siyle, and Workmanslip.
Mill Geering and Millwright wark generally Hydrantre and other Presses; Press Screws; Cal londers; Lathes and Tools of all kinde; Iron and Brass Cas ings of all descriptions
R()GFRS, KETCHUM \& GROSVENOR.
Paterson, N. J. or 60 W all-st. Neiv-York 5116

FRAME BRIDGES.

THE undersigned, General Agent. of Col. S. H. LONG, to build Bridges, or vend the right to others to built on his Patent Plan, wouid regpectfully infurm Ruilroad and Bridge (:orrorations. that he is prejared to make cohtracts to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland exceptited.)
Bridges on the above plan are to be seen at the followi- a hecalities, viz. On the main ruad leading fion Baltimore to Washingion; two miles from the former place. Across the Mutawankeay river on the Military road in Maine. On the national roas in Illuois at surdry paints. On the Baltimure and Susquehanna Ruilroad at thrre points. On the Hudsnn end Paterann Railroad in two places. On the Bostion and Worcester Railmad, st several points. On the Boston and Providence Railrnad. at sundry points. Across the Contonciok river at Hennikar, N. H. Across the Souhegall river, at Milforl, N. H. Across the Connecticut river, at Hancocl, N. H. Across the Aidroscoggin river, at Turner Centre, Maine. Across the Kennelie river, at Watervills, Maine. Across the Genesce river, at Squakiehill, Mount Morris N. Y. Across the White River, at Hartford, Vi. Across the Connecticut River at Lebanon, N. H. Across the mouth of the Broken Straw Cireck, Penn. Across the innuth of the Cataraugus Creek, N. Y. A Rnilroad Brilge diagona'ly across the Erie Canal, in the (iity of. Ruchester, N: Y. A Railr.ad Bridge as Upper Still Water, Orono, Maine. This Bringe is 500 fert in length; one ol the spans is over 200 fiet. It is probibly the firmest wooden bridge ever built in America.
Not with tanding his presect engagements to buith hetwen twenty and thirty Railromd Bridyes, and averal common bridges, several of which are now in progress of con-truction, the subscriber will promptly attend to business of the kind to mweh greater extent and on likeral terms.

MUSES LONG,
Rochester, Jan. 19th, 1837.
4-y

STEPHENSON,

Builder of a superior style of Passenger Cars for Railrouds,
No. 26! Elizaluth street, near Bleecker street, NEW-YOŔK.
RAILROAD COMPANIFS would dn well to examine these Cars; a spreimen of which may be seen on the New. York and Harlaem Railroad, now in operation.

ROACH \& IVARNER,

Manufacturers of OPTICAL. MAI'HEMA TICAL AND PHILISOPHICALINSTRU MENTS, 293 Broadrag. New.York, will keep constantly on hand a large and gencral assortment of Instruments in their line.
Wholezale D nleris and Country Merchants sup died with SURVEYI ${ }^{\text {G }}$ COMPASSES, BAROMETERS, THER VOMETERS, \&c. \&e, of their own mannfacture, warranted accurate, and al lower prices than can be had at any orher cstablishment.
If Istruments made to order and repaired.

THE subscribers offer the following aniclec for, Railway Iron, flat bars; with eonnteraunk holes and mitres joints, the 350 to ns 2 ty $f, 15 \Omega$ in length, weighing 4 fis opor ?
 80 " 14 "1, " \quad " $1 i^{25} 0^{*}$
90 " 1 " 4 " " " \quad "
witn Spikes and Splicing Plates adaptel theretoTo be sold free of duty to State governments, or ncorporated companies.
Orders fir Pennsylvania Boiler Iron executed.
Rail Ruad Car and Lotom tive Engine Tires, wrought and turned ur unturned, ready to be filted in the whecls, viz. $30,33,36,42,44,54$, and 60 inches diameler.
E. V. Palent Chain Cable Bolts for Railway Car arles, in lengitos of 12 feet 6 inches, to 13 feet 23 ,

Chains lor luclined Planes, slourt adad stay links, inanufactured from the F.. V. Cable Bolte, and proved at the greatest atraiv.
India Rubber Rupe for Inclined Planes, made from New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Flanes, and Caual Towing Lines.
Patent Felt for jlacing between the iron chair and ssone block of Eige Railways.
Every description of Railway Iron, as well as Loconutive Engines, imported at the shortest n.tice, be the agency of one of onr partnera, who resides in England for this purpose.

A highly resprectable American Engineer resilcs in Erigland for the purpose of inspecting all Luea. inotives, Machinery, Railway Iron, \&c. ordered through us.

88 tf
A. \& G. RALSTEN \& CO., Philadelphia, No. 4 South Front-si.

ARCHIMEDES WORKS.

(100 North Moore-street, N.Y.)

TLIE undersigned beg leave to inform the proprictors of Rail Risals, that they are prepared to furnish ull kinds of Machinery for Rail Roads, Locomotive tingines, of any size, Car Whecls, such as are now in successful operation on the Camrien and Ambuy Rail Read, none of which have fated.Castings of all kinds, Whecls, Axlesand Buxen, furnished at the shoriest nutice.
H. R. DUNHAM \& CO.

New York, February:12ib, 1836.
4-ytf

PATENT RAILKOAI, SHIP AND BOAT SPIKES.

** The Troy Iron and Nail Factory keeps contautly for sale a very extensive assurtinemt of Wrought Spikes and Nails, from 3 to 10 inches, manufactured by the sulscriber's l'atemt Machinery; which alier five years successful oprration, and now almost universal uee in the United States, (an whell as Eugland, where the subscrib:r obraind da pratent) are found soperiar to any yet ever -ffered is marke. Railroad companies may be supplied with Spikes having conntersink heads suitable to the bules in iron raile, to any amount and on shot notics. Al1:0:0st all the Railroads now in progress in the Uuited States are fasterred with Syikes nuade at the above-named lactury-for. which purpose they are found invaluable, as thir adhesinn is more whan duuble any comnon Spikis made by the hammer.
** All urderx directed to the Agent, Tróy, N.Y. will be punctually attended io.

HENRY BURDEN, Agon.
Troy, N.Y, July, 1831.
** Spikes are krut for sale, at factory prices, by I \& J. Townsend, Albany, and the principal Iron Ve chants in Albany and 'Iroy; J. I. Brower, $2: 2$ W ater-street, New. York; A. Mi. Jones. Philader,hia; T. Janviers, Baltimore; Degrand \& Smith, Euston.
P. S.-Railroad companies would in well to forward their orders as early as practicable, as the sulseriber is desirous of extending the manufacturing so as to keep pace, with the daily increasing demanid fir hit Spikes.

1J23am
H. BURDEN:

G: Mitchell, Printer; 265 Bowery, N.Y. $\$$

ADVOCATE OF INTERNAL IMPROVEMENTS.

[^50]| | |
| :---: | :---: |
| CONTENTS.
 Reports Recelved-Imporod Tunculu >585 | |
| | |
| | |
| | |
| | |
| | |
| Traneactlops of tho Moryhand Acadeny - Cleveland and Pittoburgh Rallicend, | |
| | |
| Miccollanoous lieme, \therefore. 2 0. | |
| Arertipments . 91 - 59 | |
| MMERICAN RAIEROAU | |

NEW-YORK, FEBRUARY 3, 1838.

We acknowledge the receipt of the following Reports:
Proceedings of the Stockholders of the Louisville, Cincinnati and Charleston Railroad Co., at their Second Meeting held at Flat Rock, N. C.,October, 1837.

Report upon the plan of Construction of several of the principal Railroads in the Northern and Middle States, and upon a Railway structure for a new track on the Baltimore and Ohio Railroad, by J. Knight, Chief Engineer, and Ben. H. Latrube, Engineer of Location and Construction.
[We return thanks for this copy, and would be much obliged by the receipt of another. If the work is not intend${ }^{10}$ ed for sale, we desire to make public, through our columns, some of the in-- formation contained therein; it is highly valuable to the Engineers of - this country.]

Report of the Jefferson and New A1. bany Canal Co., Thos. F. Purcell, Chief Engineer.
eF In reply to the inquiry of E. C. B. of S. C., in relation toa "communication on the subject of steam-bonts," which he sent us in August last, we can only say that we have no recollection of having received $i t$.
The letter covering \$10, came duly to hand.

SATURDAY, OCTOBER f, 183T.
(Püblished February 3, 1838.) h
YOLUME VI-NO.

IMPROVED TURN-OUTS.

We acknowledge ourselves indebted to the writer of the following communication, describing the improved turn-out, now in use on the Liverpool and Manchester Railroad.

To the Edivors If the Rnilroad Journal:

Gentlemen-The frequent occurrence of dangerous accidents on Railways, produced by the trains running off the track, which in most instances is caused either by neglect, or inaccuracy, in the working of the switches in turn-outs, induces me through the medium of your Journal, to suggest to Engineers and Railroad proprietors the adoption of the following plan of working turn-outs, lately introduced on the Liverpool and Manchester Road, by which all possible accidents from this source are avoided, and even the grossest neglect of the attendant; or wilful derangenvent of the switel, cannot jeopardize the lives of passengers; or the safety of the engines and cars.
The present method of changing the direction of the engine and train from one track to the other, is to have the rails moveable for a distance of nbout 15 feet, and to make this line of rails serve in common for both tracks. Thus, one track is at all times interrupted, and consequently, the train liable to run off. if by accident or neglect, the switch should not be exactly in the right position.

The accompanying sketch of the new method shows that the lines of rails in the main track, as well as turn-ont, are perfectly uninterrupted. The change of directiou of engine aind train from one track to the other, is effiected by two guides, $\mathbf{A A}$, moveable upon hinge bolts, $b 6$, and connected by the rod \mathbb{E}, which passes under the main rail, and is work: ed by a simple lever, as in the present system. That portion between the letters $x x$, where the rails approach each other within $1 \frac{1}{2}$ inches, so as to allow a free passage for the flanges of the wheels, should be made in one casting; the joints of the inner two rails, gainst which the guides close, should not be less than half an inch wide; and may be made of cast steel.

The guides must be of wrought iron.
$2 \frac{1}{2}$ inches wide, 4 inches thick, and about 5 feet long. The top of the guide: must be level with the top of the rails; but from the point 0 , where they close against the casting, they should taper down in a distance of 9 inches, to 21 in. thick, leaving the ends of the guides 1 量 inches below the top of the rails-(see section of the guide). The object of this is, that if the train should come down on either track, and the guides by neglect or accident left so as to close it up, then the flanges of the engine and carwheels on one side would gradually mount on this incline, and passing over the guide drop again between it and the main rail, and thus regain the track without in the least endangering the lives of the passengers, or the safety of the engine and cars. The cost of working turn-outs in the manner described, differs but little from those now generally in use.

The advantages of this new method over the old are too palpable to require further comment; and I have no hesitation in saying that it would be a good economy on any Railroad abready in operation, to adopt this plan, for one

AGENCY．

The－Subecriber offers bis services as Λ gent， to procure Machinery for Mills，Sicam En－ gines，Locomotives，Printing Machines，Presses， Types and Fixtures．
He will give ןrompt attention to all orders entrusted to him firr execution；and piedges himself to those who may employ him，that nn effort on bis part shall be wanting 10 procure the best articles to be had in the city－and to givo satisfaction．

He will also employ Millwrigh＇s and Engi－ neers．to ereet Mills，and put the Engines and Machinery in operation．

Orders accumpanied with the necessary funds，or satisfactory city acceptances，sloould be addressed to D．K．MINOR， $3 J$ Wall－st．

LOUISVILLE，CINCINNAT＇II，an

CHARLES＇ION RALL！：OAD．

NOTICE．TO CONTRACIORS．－Scaled
Proposals will be received at the Otfice of the
Comjany in Columbia．S．C．，until the 15 th
day of February next，for the graduation and masonry of that purtion of the Road from Colminbia to the crossing of the Congaree Riv－ er，in the vicinity of McCord＇s Ferry，being 25 miles in extent．

Also，for lise construction of a Bridge of 400 leet in length，on the Congaree River，to be built on stone piers and abutments，for which there are suitable quarries in the neigh． borliood．
The plans and profiles of the line will be ready for inspection at the Office of the Resi dent Engineer，in Co＇unbia，S．C．，after the 10th day of February．
So soon as the surveys for location，now in progress，are comp＇eted，that part of the Road extending from McCord s Ferry to the Charles－ ton and Hamburg Railroad，at Branchiville， will be put under contract，of which due no－ tice will be given．

WM．GibBS Me NEILL， Chief Engineer．
$0 \bar{T}$ The Railrond Journal，N．Y．Courier \＆ Enquirer，N．York；Proridence Journal，Prov－ idence，R．I．：Atlas，Boston；Plaladelpia En． quirer．Philadelplia；will publish the above notice 6 times，send a copy of the paper to the Offico in Charleston．S．C．，and a certified copy of their account for payment．

Jan． 12
fmw 6

NEW ARRANGEMENT．

sopes for inclined planes of aaldioays．
WE the subscribers have formed a oo partnership under the styl－and firm of Folser \＆Coleman，for the manufacturing nad selling of Ropes for inclined planes of railroals，and for other uses，offier to supply ropes for inclined plancs，of any length repuireil without s_{i} lice，at short nuile，the manufacturing of eordage，heretofore carried on by S．S．Durtee \＆ Co．，will lie dime ly the $n \cdot w$ firm，the same super－ intendent and machinery are employed by the new firm that were employrd hy ‥ S．Dorfec \＆Co All orilers will he properly atteniled to，and ropes widl be shipped th any port in the United Siales．
12th munth．12th， 1833 ．Hludson，Columbia OLunty，State of New－Yurk．

33－1f
ROBT．C．FOLGER．
GEORGE：COLEMAN．

AMES＇CELFBRA＇TFD SHOVELS， SPADlis，\＆c．

300 doz＂us Ames＇superior hack strip shovels． 150 da．do．do．plain do．
$\begin{array}{lll}150 & \text { do．do．do cas steel Sinovels ie Spades } \\ 150 & \text { do．do．Gold minur Slove＇s }\end{array}$ 150 do．do．Gold－minnur Sbove＇s 00 do．do．plated Siades．
50 do．do．soket Shwels and Spades
Together with Pick A xes，Churn Driliz，and Crow Bars（stcel pointed），mmulactured from Salisbury refincal irun－for sale hy the inanufartuing agents， WITHERELL，AMES \＆＇こO．

No． 2 Liberty street，New－York． BACKUS，AMES \＆CC．

Fo． 8 Stall street．Albany．
N．B．－Also furnished to order，Shapes of evers dcacrip：ion，made from Salisbury refiued Iron．v4－u

MAGHHNE WORKSOF ROGERS，
ETCHUM：aND GROSVENOR，Patcrson． New．Jerwey．The undersigned receive orders for the following aricles，manneictured by them，of tha mant superior description in eviry particular．Their works being extensive，and the nomber of hand． employed leing larg＂，they are enabled to exccut． woth large and sumall orders with promptness and dispateh．

RAILROATN WORK．
Locomotive Sieam－Engmes and T＇eaders；Dri ing and wher Locmunive il hets，A，les Springs and Flanere l＇ires；Ca：Whee＇s of cast iron，from a variety of patterne，and Clalls；Car Whela ot cast ironl．with wought＇Tires；Axles of hest A me－ rican refined irmi Spurings；lloxes and Bubls for Cars．
COTTON，WOOL，\＆FLAX MACHINERY Of all discriptions and of the most improved prat－ erns．Sisle，and Workmans！ip．
Mill Crering and Millwright work generally， Hydrantic and other Presses；Pruss Screws；Cal－ lenilers；Lathes and Toons of all kimis；Iron atul Brass Cas inus of all descrintions
R（）G IIS，KETCHUM \＆GROSVENOR． laterson，N．J．or 60 Wall－st．Nirw－Youk $51,{ }^{\circ}$

FRAME：BRIDGES．

THE undersigned，General Agent of Col．S．II．LONG．to build Bridges，or vend the ripht to whers to buibl on his Patent Plan，whtud tions．that he is prepared to make cohtracts to build， and furnish all materials for superstructures of the kind，in any part of the United States，（Maryland exerpitend．）
Bridues on the above plan are to be scen at the followi gh licalities，viz．Ous the main road leading from Baltimore to Washingron；tivo miles from the former place．Across the Motawamkear river on the Military road in Maine．On the national roall in llinuis．at surdry paints．On the Ballimure and Susquehanna Railroad at thrie puints．On the Hudson end Paterson Rairoail in two places．On the Boston anil．Worcester Railroad，at several moints．On the Boston and Providence Railroad．at sundry proints．Across the Continciuk river at Henntkar，N．H1．Across the Souhegnil river，at Milford．N．H．Across the Connecticnt river，at Hancocd，N．H．Across the Audroscogyin river， at＇Turner Centre，Maine．Across the Kennelsec river，at Watervillo，Maine．Arross the Genesec river，at Squakichill，Momit Morris，N．Y．Across the White River，it llarifird．Vi．Across the Connectic＇t liiver at Lelmanon，N．H．Across the mouth of the Broker．Straw C＇reek，Penn．Across t！e sonth of the Catarangus Creek，N．Y．A Rnil－ road Brigge diagna＇ly across the Eric Canal，in the City of Ruchexter，N．Y．A Railreal Bridge al Upiler Sill Water，Orono，Maine．This Bridge is 500 feet in lengh；one of the spans is over 200 fiet． It is prob illy the firmest wooden bridge ever buili in America．
Notwith－tanding his presect engagensente to buiad between twenty ant thirty Railroad Bridres，and several cmamon hirideres，several of which are nuw in progress of con－truction，the subscrither will promptily attend to busumess of the kind to much greater extent and on lilveral terms．

Rochester，Jan．19：h， 183%.
MUSES LONG．
STEPHENSON，
Builder of a superior stıle of Passenger Cars for Railroads，
No． 261 Elizalvithsireet，near Bleecker street， NEW－YORK．
RAILROAD COMPANIFS wonh do well to examine these Cars；a sprcimen of which may be seen on the New．York and Harlaem Railroad，now in oneration．

ROACII \＆WARNER，

Manufacompers of OP PICAL．MAIVEIEMA TICAL AN゙ロ PHUCOSOPHICAL INSTRU MENTS， 293 Broadway，Now．York；will keel constanly on hand a larie and general assortment of Instruments in their line．
Wholuale D enlers hild Country Merchants sup plied with SURVFYSG COMPASSES，BA ROMEIERS，THER MOMET＇ERS，\＆C．\＆e， 11 －heir own mannfacture，warranted aceurate，and at lower prices than can be had at any other catablish－ ment．
IT Istruments made to order and repaired．

RAILWAY IRON；LOCOMOTIVES； \＆c．\＆c．

THE subscribers offer the following articles for

 sale：－Railway Iron，flat bars；with conntersunk holes and mitreJ juints，

 80 ＂1f＂t，＂＂＂ $11_{0}^{25} "$ 90 ＂ 1 ＂$\frac{1}{4}$ ． 7
witn Spikes and Splicing Plates adaptel thereto－ I＇o be sold free of duty lo State gosermments，or incorporated companice．
Orders lor Pennsyivania Boiler Iron executed．
Rail Road Car and Lo：om tive Engine Tires， wrought and turned ur unturned，ready to be filted whin the whecls，viz． $30,33,35,4 \%, 44,54$ ，and 60 inches diamater．
E V．Patent Chana Cabe Bal＇s for Railway Car axles，in lengtis of id fret 6 inches，to 13 feet 21 ， ：2，3，35 3 ， 31.21 ，and Bis wher dameter
Chans lor hiclined pianes．shart asadstay links， manufactured loun the Fi．．V．Cable lolts，and proved at the greatesi straio．
India Rubber Rupe for Inclined Planes，made from New Zealand Wax．
Also，Patent Hemp Cordage for Inelined Planes， and Canal Towing Lines．
Patent Felt for placing between the iron chair and sone block of Eige Railways．
Every description of Railway Jron，as well as Loconolive Eugrnes，imported et the shortest n tice， hr the ayency of one of onr partners，who resides in England fir this purpose．
A hiyhly respectable A merican Engineer resithes in Eugland for the purpose of inspecting all Lue．． motuves，Machinery，Kailway Iron，\＆c．ordered through us．

A．\＆G．RALSTEN \＆CO．
28 If Philadelphia，No． 4 South Front－8t．

ARCHIMEDES WORKS．

（ 100 North Moore－strect，N．Y．）

THE undirsigned beg leave to inform the pro－ pieturs of Rail Roarle，that they are prepared to furnish all kinds of Machinery lor Rail Roads，L．O－ comotive tingine sof any size，Car Whecls，such as are now in nuccessful operation on the Canaten and Anbuy Rail Ruad，none of which have falled．－ Castings of all kinds，Whecls，Axles and Boxen， furnished at the shortest nonice．

H．R．DUUNHAM \＆CO．
NewYork，Fchiruary 12th，I836．
4－ $\mathbf{y l}_{\mathrm{f}}$

PATEN＇T RALLKOAI，SHIP AND

 BOA＇I SPIKES．＊＊The Troy lron and Nail Factory keeps con－ －tantly for sale a very extensjuc assurtumit of Wrought Spikes and Nails，from 3 to 10 inches， manufaturd dy the sulscriber＇s P＇atem Machinery， which alier tive jears suceessful opration，and now alnost univeral use in the Unted States，（as woll as England，where the subserib．r obtained a pateni） are found superior to any yet ever wfiered in marke：． Railroad companies may be supplied with Spikes having conntersink heads suitable to the boles in iron rails，to any amount and on slort notics．Al． 1：0： 0 all the Railrnads now ill progress in the Uuited states are fastened with Spikee made at the above－named tactory－for which purpose they are lound invaluable，as their adsesion is more than duuble any comnon Spikes made by the hammer．
＊＊All orders directed tathe Agent，Troy，N．Y． will be punctually attended to．

HENRY BURDEN，Agent． Troy，N．Y，July， 1831.
＊＊Sujurs are krjt for zale，at factory prices，by \＆J．Townsend，Albany，and the primipal Iron V＇e chants in Allany and＇Joy；J．I．Brower，2\％2 W＇ater－strect，New－Hork；A．M．Jones，Pliladil－ hia；T．Jdnviers，Baltimore；Degrand \＆Smith， Euston．

P．S．－Railroad companies wouid lo，well to for－ ward their orders as carly as practicable，as the subscriber is dexirons of cxtending the manufactur－ ing so as to krep，pace with the daily increasing lemant lior his Sjikes．

1J23am
H．BURDEN，
G，Mitchell，Printer， 265 Bowery，N．Y．

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT No. 30 WALL STREET, AT FIVE DOLLARS PER INNUM, PAYABLE IN ADVANCE.

MPROVED TURN-OUTS.

We acknowledge ourselves indebted to the writer of the following communication, describing the improved turn-out, now in use on the Liverpool and Manchester Railroad.

To the Editors 'f the Railroad Journal :

Gentlemex-The frequent occurrence of dangerous accidents on Railways,produced by the trains running off the track, which in most instances is caused either by neglect, or inaccuracy, in the working of the switches in turn-outs, induces me through the medium of your Journal, to suggest to Engineers and Railroad proprietors the adoption of the following plan of working turn-outs, lately introduced on the Liverpool and Manchester Road, by which all possible accidents from this source are avoided, and even the grossest neglect of the attendant; or wilful derangement of the switeh, cannot jeopardize the lives of passengers, or the safety of the engines and cars.

The present method of changing the direction of the engine and train from one track to the other, is to have the rails moveable for a distance of nbout 15 feet, and to make this line of rails serve in common for both tracks. Thus, one track is at all times interrupted, and consequently, the train liable to run off, if by accident or neglect, the switch slould not be exactly in the right position.

The accompanying sketch of the new method shows that the lines of rails in the main track, as well as turn-out, are perfectly uninterrupted. The change of direction of engine and train from one track to the other. is effected by two guides, AA, moveable upon hinge bolts, $b b$, and connected by the rod \mathbb{C}, which passes under the main rail, and is worked by a simple lever, as in the present system. That portion between the letters $x x^{\prime}$ where the rails approach each other within $1 \frac{1}{2}$ inches, so as to allow a free passage for the flanges of the wheels, should be made in one casting; the joints of the inner two rails, against which the guides close, should not be less than half an inch wide, and may be made of cast steel.

The guides must be of wrought iron.
$2 \frac{1}{2}$ inches wide, 4 inches thick, and about 5 feet long. The top of the guides must be level with the top of the rails; but from the point 0 , where they close against the casting, they should taper down in a distance of 9 inches, to 21 in . thick, leaving the ends of the guides $1 \frac{3}{4}$ inches below the top of the rails-(see section of the guide). The object of this is, that if the train should come down on either track, and the guides by neglect or accident left so as to close it up, then the flanges of the engine and carwheels on one side would gradually mount on this incline, and passing over the guide drop again between it and the main rail, and thus regain the track without in the least endangering the lives of the passengers, or the safety of the engine and cars. The cost of working twrn-outs in the manner described, differs but little from those now generally in use.

The advantages of this new method over the old are too palpable to require further comment; and I have no hesitation in saying that it would be a good economy on any Railroad álready in opesation, to adopt this plan, for one
accident caused by the ether, would involve a Company, probably, in more expense, than a change of all the turnouts would amount to. C. L. Detmold, Civil Engincer.

electrical telegraph.
Among the Electrical novelties of the day, and they are numerous, the Telegraph of Prof. S. F. B. Morse, of the New-York University, is one that has excited much admiration, from its simplicity and immediate application to use.

We have not ourselves had the pleasure of examining it ; we give a description from the Commercial Advertiser.
\because The only difficulties consist in the perfect insulating of the wire in situations where it will be exposed to the contact of water. The numerous waterproof inventions of the day can certainly furnish a cheap and perfect process for insulation. We do not attach much weight to the objection advanced by some, that through design the wire may be divided at a time when most needed, and in such a manner as not to leave indications at what point, in a line of many miles, this may have been done, It would re. quire but very little contrivnnce to place it entirely out of the power of one unacquainted with the location, to determine the exact line of the position of so small a chain as the wire and its insulating covering would constitute. The necessary search could not elude observation. A very great advantage in such a telegraph will be found in the private mode of operation, even the moment of communicating caunot be known except at each terminus.

A much more complicated telegraph has been successfully tried on the line of the London and Birmingham Railroad.

We understand that Prof. Morse has much simplified the operations of the machine, by the discovery of an alphabet, instead of the reference by numbers.
"We had the pleasure, yesterday, of seeing in operation the very ingenious and beautiful contrivance invented by Professor Morse, for communicating intelligence at great distances, with lightlike rapidity, by the agency of electromagnetism, as it used to be called, the galvanic fluid. The machinery employed by Mr. Morse is far from complicated, yet not easy to describe intelligibly. It consists of a galranic battery, any required length of coated wire, a font of type, two dictionaries, a small apparatus at one end of the line for brealing and renewing the galranic chains of communication, regulated by the type set up, and at the other end of
the line another set of apparatus, by which a brass pen is ninde to strike upon a sheet of paper, rolled round a small revolving cylinder-a stroke of the pen being given at every renewal of the galvanic communication. The length of wire through which the signals were conveyed, was ten miles; this wire being wound for convenience, around some three or four large wooden rollers. In attempting to give our readers some idea of this admirably ingenious machinery, we will begin at what printers very naturally consider the beginning-to wit, the types.
"These are thin pieces of metal, about two-thirds or three-quarters of an inch in width, one of the longer edges being notched to the depth of about half an inch-the number of notches being from one to nine, representing the nine numerals; the cypher is represented by a long notch, or indentation of about three-quarters of an inch. With these ten types, it is evident, therefore, that any given amount in figures may be represented.
"Next come the gallies, which are pieces of wood about an inch square and 80 inches long, having eogs on the underside, and on the upper a slit, extending throughout the length, and deep enough to receive half the width of the types above described, which are sent into the slit in line, as required to represent the numbers.
Every word in the language is represented by a number, the whole dictionary containing some 50,000 . The two dictionaries are of course precisely similar, one being for use at either end of the telegraphic line. Every word has its number placed before it, so that the number for the word or the word for the number may be found with ease and expedition.

The apparatus for breaking and renewing the galvanic communication is simple and efficient. It consists merely of a lever, about three feet long, moving on a pivot at one end, and having at the other a pair of copper points, which fall into as many small cups containing quicksilver, and are raised again, according as the end of the lever is depressed or deviated. The cups communicate by wires with the galvanic battery, and to the lever is attached the end of the ten mile wire. Connected with the lever is a small winch, working a toothed wheel, which plays in the cogs of the galley, so as to make it pass along, under the lever.

Upon the under side of the lever, not far from the pivot on which it moves up or down, is a brass tooth, fitting the notches in the types. So that the operation is, when the winch is turned and the gulley moves along under the lever, to make this rise and fall alternately, as the tooth falls into the notches in succession. Thus the communication is broken and renewed in a succession exactly corresponding with the notches of
the types, which notches in their order represent a given sum in figures. This is the contrivance at one end of the line the end from which intelligence is to be
communicated. communicated.
The apparatus at the other end is somewhat more complex, and we shall not attempt to describe it farther than by saying, that its object is, first, to attract attention by striking a bell, ected upon by the galvanic stroke or sliock from the other end, through the ten mile wire next to set a motion, the cylinder around which the paper is wound, and lastly, to make the brass pen strike this paper at every renewal of the commiunication, and rise from it at every break. It is obvious, therefore, that the succession of dots on the paper, the cylinder all the while slowly revolving, will correspond exactly with the notches in the types, as the galley passes under and acts upon the lever at the other end. Thus, suppose notches to represent the numbers 22, 47, 121 and 236. The dots on the paper will stand thus: oo oo $00000000000 \quad 00000000$ 00000 the long spaces indicating that the number is complete, and that a new one is to be commenced. A cypher is indicated by a dash, thus ; munication renaaining unbroken while the long indention in the edge of the types passes under the tooth of the lever.

Such is the contrivances-if our readers can understand the description-by which Professor Morse proposes to communicate any required information, between points however distant, in a space of time much less than must be necessary by any other mode ever devised, or suggested. We have not the requisive science to offer an opinion whether it is or not liable to objection; but so far as the experiments we saw may be taken in evidence, the result is perfectly satisfactory and convincing. A communication of our own suggesting, and only known to Mr. Morse by the numbers representing the words, was communicated in eight minutes from the time at which he commenced setting the type; and this too, under all the disadvantuges arising from want of practice, and from the presence of a curions and eager throng of spectators.

That the galvanic stroke was communicated through the whole ten miles of wire, was abundantly demonstratedand we understood from gentlemen present, more capable than ourselves of appreciating the evidence; and we also understood from them, that it would have communicated through a hundred miles with the same rapidity and certainty. The rapidity, by the way, is that of light; the keenest eye can perceive no interval between the fall of the lever at one end, and that of the brass pen at the other.
It is proper to say that the dictionaries used are the common octavos of Walker, and contain multitudes of words which would never be required. Professor

Morse said that he entertained no doubt of being able to reduce the words to 30,000 , or perhaps to 20,000 . Jur own opinion is that a much smaller number could be inade sufficient.
We uuderstand that Professor Morse goes to Washington immediately with his apparatus, where it will doubtless attract wondering attention.

Note- - A more obviously satisfactory experiment might be made perhaps, by stretching out the line of wire between two points as distant as convenience would permit ; as for instance, between the Battery and 40 th street-which might be done, we should think, by stations on the tops of houses.

rail roads in carolina.

Sir-On all accounts, the opening of roads South is of the first importance in the Northern Cities. So important, that I trust you will insert the following observations, as written by a Carolinian, who has recently been on the spot, and thinks himself qualified to offer a few hints as to the proper method of filling up the gap between Waynesboro', \mathbf{N}. C., and Charleston, S. C., and thus completing the road from the North. He belieres his calculations to be generally correct, but if not exactly right, the errors can be easily rectified. \& Y. Z.

A New York Journal having stated that the Baltimorians, by means of the Railroad to Philadelphia, are anticipating the express mail; and, also that the Washington and Roanoke Railroad, is in a state of rapid progress, it is to be presumed that a continuance of the Railroad fromWaynesboro,' N. C, to Charleston, would operate in the same manner ; therefore, the object of this paper is to show that such a line must be a source of profit to the proprietors; and, if the Government would advance two-fifths, or any proportion to be hereafter determined, incalculable benefit will be derived by the people of the United States, in the means it would afford of carrying all its crops, mails, $\& c$, \&re., free of any further charge.

In a calculation of the profits of the Louisville, \&c., Railroad, based on the results of the Charleston and Hamburg road, General Hayne makes it for 620 miles, 177,142 passengers, paying $\$ 669$, 825. In a short time, he thinks it will be "doubled." The freight he estimates at $\$ 1,000,000$. Half of this would be receivable on a road, commencing at Summerville, 24 miles from Charleston, and proceeding aoross the Santec to Waynesboro, N. C., via - below Manchester, Summerville, Darlington and Fayetteville-or, in length, 200 miles.

The Cost.

260 miles at $\$ 10,000$ per mile
Locomotive power \$327,-
OOO, say

200 Aile Annual Expenses. 200 miles at 87,00 per mile

```
Passengers
```

182,000
462,000
\$280,000
Of the $\$ 5,00,000$ for freight, no notice is taken. The calculation is confined to passengers. On the subject of the Summerville and Wayuesboro road, let us takes the receipts of the 135 miles of the Churleston road, over which, in 1836, 39,216 passengers passed, paying \$129,982,34 - the freight amounting to \$129,633,84-they making a total of $\$ 269,016,18$. The cotton that year, would produce 835,000-thus leaving $\$ 234,016,18$, for 135 miles of road. The Summerville and Waynesboro road is 200 miles. Increasing $\$ 234,016,18$ to $\$ 240,000$, and allowing for the difference of distance, the receipts of the new road would be $\$ 462,000$.

But the importance of this subject, exemplified as it is by the actual results of the Charleston road, has led us into an investigation of the relative value of domestic and foreign communicationthe general idea having been that the benefit derived from that road, proceeded principally from the passage through, rather than the communication within the state; therefore, on a reference to the otherwise variously stated and glo. riously confused topsy turvy official documents of the Company, I have been induced to ask

$1836 .$		
Passeugers		Per Captiem
July ${ }^{2857}$	\$7252 64	
August 2380	209232	285
Seplember 1891	66\%8804	353
October 2782	1657751	376
November 3294	1053757	318
December 400%	1044118	261
17205	\$52 57926	\$1847
Month av. 2867	776321	307
	1837.	
January 2916	\$8537 74	\$2 93
February 3786	1236393	261
March 4695	1661425	332
April 4009	1238595	308
May 4009	1297769	323
Junc 3092	930056	300
22506	\$71 20212	
Month av. 3757	1186702	304

Conjectural Analysis.

From Augusta 335 m 5626 a $\$ 675 \$ 37976$ Branchville 62 m 5626 a 30016878 Inabinets 30 m
Fm Charleston $11254 \quad 150 \quad 16381$
$22506 \quad \$ 71235$
First six months $\overline{22506}$ in $1837 \overline{71202}$
The latter is but conjectural, and as the actual report will be highly satisfactory, it is to be hoped that as the Company is at market and should make a fair display of its situation, it will let the public have a correct detail of the lands whence its receipts have arisen. If it turns out that the mass is received from within : instead of without the state, it.
will prove very encouraging to all Railroads, and especially those in S . C.
I will look a little farther into the subject.
In 1836, 39,216 passengers paid \$129, $\mathbf{9 8 2}, 34$ and the freight paid $\$ 139,033, \mathbf{8 4}$. Total 269,016,18.

In Ist half of 1537 , there were $\mathbf{9 , 2 4 8}$ passengers up against 7500 in the Ind half of 1836, showing an increase of 1748.

In 1st half of 1 S 37 , there were 13,258 passengers down against 9705 in the 2nd half of 1836, showitg all increase of 3553.

In Ist half of 1837 , there were $\mathbf{2 2 , 5 0 6}$ passengers up and down against 17,205 in the 2 nd half of 1836 , showiug an increase of 5,301 .

Monies received for Passengers.

First half of $1837 \quad 57120212$
Last half of 1836
5257026
Showing an increase in six months of
$\$ 1=62286$
Monies received for Freight.
In 2nd half of 1836
$n p \$ 1942396$
In lst half of 1837
3503602
Diminution $\$ 1439094$
In 2nd half of 1836
down 1941075
In lst half of 1837
1054324
Diminution $\$ 6883971$
UP and down \$68883971
In 1st half of 1837
4558126
Showing a Diminution in 6 munths of
©23 25885
If to the decrease of freight, we oppose the increase of passage money, there will be left a balance of $\$ 4,63559$; but, if the increase next year in passage money be similar to that of the last, there will still be an augmentation in the increase of $\$ 14,000$, or enough to pay half the interest of the Company's debtnearly $\$ 500,000$.

I see also a notice " of the Cincinnati and Charleston Railroad having offered to purchase the shares of the Charleston and Hamburg road, \&c., \&c." This is an error. Like the road (to the west, it is as yet but a subject of conversation. But on any calculation, the purchase appears to be out of the question.
Charges, attending the Purchase of the
Charleston and Hamburg Road.

1. Cost of doubling 62 miles road
from Branchville to the City $\$ 1000 \mathrm{pr}$. m.
62 miles from Columbia to Branchville $\$ 10,000 \mathrm{pr} . \mathrm{m}$.
$\$ 250000$
620 000
34 miles from Columbia to Camden $\$ 10,000 \mathrm{pr} . \mathrm{m}$.

340000
Of 12,000 shares of the old Compa-
ny a a $\$ 125$ p.s.
1500000
Crossing the Cangaree

Estimate of a New Road.

2. Cost of $\mathbf{1 1 0}$ miles from Charles-
ton, via. Santee and Rockland
Fall to Columbia, Eric, $\$ 10.000$
pr. m.
Of making $3 t$ miles of roed from

Crossing Wateree Santee Leaving a difference between No. 18. No 29 $\$ 1440000$ 1270000 If the Congaree is passed at Columbia, it is at the expense of the Western Company, and for the bencfit of the Bridge Company. The mere ordinary travel of the country will first pay a small, and eventually a good interest on the struc: tures upon the Santee and Waterce.

But let us look to the

Annual Expenses.

No. 1. 62 miles $a \$ 1106$ per. m. $\$ 685 \%$ 0n. 96 miles 700 per m .
Ne. 2. 114 miles a 9700 per m . Saving 34972

Total Saved.

In 20 years $\$ 34,972$
Difference of purcha:e and Construction

6720000
$\$ 13577200$
13577709
$\$ 699440$
1270000
$\$ 1969440$
197 miles of road, $a \$ 10,000$ per. mile

1 970 000
Actual ernenses July to December, 1536

12561663
7470012 $\$ 30031675$
Thus for 135 miles, making an annual charge per mite of
And at the same time the Engineer noly calculated it

148485
Theer nnly calculated it
1233700
The Savannah and Macon
The Metropolitan
113200
70000
70000
600
gEMI-ANNUAL REPORT OF TIIE DIRECTION of tile south carolina canal ano railroad company.
To the Stockholders of the Sonth Carolina Canal and Rais Rcad Cumpany.
$J u l y 10,1837$.
The statement of the affiars of the Company herewith presented, show the income of the last half-year, embing 30 th June, 1837, to be
\$122,077 5:
From which the current ext penses deducted,

74,700 12

There remains

$\$ 47,34740$
From this amount a dividend is declared of three dollars per share on 12,000 shares, is

36,00000
Leaving a balance unappropriated of
to be carried to the ensuing
half-year's accounts.
The dehts of the Company wiil necessarily he increased until October, when the remaining instalments of the new stock, amounting to six hundred and forty thmsand dollars. may be called in -eighty thousand dollars per monthwith which all the debts of the Company may be liquidated, (except the State loan of one hundred thousaud dollars, not payable before the year 1847) and a sufficient capital remain to finish the improvements now in progress. A liberal course has been pursued by the Banks during the present scarcity of money. A little firther indulgence on their part will carry the Company fupward to its own nesources

The Road has gradually improved for the last year-a large portion of the wood work has been renewed. This work is going on, and by the time the embankment is made, and the new iron placed upon the road, the whole surface will be as good as new. Accidents are comparatively harmless where the road is thus improved, and their recurrence is decreased in proportion to the extension of these works.
The Embankment is now all under contract, except a few small places not exceeding two miles, to be done by the. road hands- the whole to be finished by the month of October, 183E. Many of the worst places are now nearly completed, viz. 9 Mile Buttom, 4 Hole Swamp, Edisto River Swainp, \&c. About 100 miles of the road is surface construction -less thian 40 miles remain to be embanked.

The nero Iron is now extended over about 54 miles of the road- 441 tons have just arrived-and 1000 tons more is finished and ready for shipment, by last advices from London. This when received will complete nearly 40 miles more, and before plaeed upon the road it is likely the balance to complete the whole line, will be contracted for and coming forwaril. The first contract of 2500 tons was made at £ll 10 s ; the second of 1000 tons at $£ 10$; and it is reasonable to expect a further decline before it is necessary to contract for the balance.

The old Irom, when replaced by new, may be sold, and would no doubt bring 120 to $8130,000$.

Turnouts have been and are to be placed hetween all the stations more than seven miles apart; six of which have been completed in the last six months, and six more are about to be constructed, which will increase the whole number to thirty, making the average distance between them abont $4 \frac{2}{2}$ miles. New tracks and sliding sections have been made at several of the stations to accommodate an increased business. Fences and gates hare been put up, the more effectually to secure the property at principal stations.

Houses have been purchased und built at scveral of the principal stations, in all ten, (and others to be huilt soon) to be occupied by the resident carpenters. These will affurd a shelter to passengers, ifaccidentally delayed in their vicinity.

The Machinery of every kind has been increased, and will continte to be increased, till an adequate supply is procured. Five new engines have been received since Janunry last ; two more ure in progress, and four more are ordered, all to be completed early in the present season: and three which had been laid aside, requiring large and expensive repairs, are given out, to be completed as soon as possible, by competent machinists, instead of building neir ones, believing they can be made as good as new. 7 These, with those now on the zoed, will sveell the number to treenty-
seven Engines, besides sevemi that have been condemined, parts of which will answer for repairing others:. If one half of this power can be Kept constantly in running order, more can be done in a given time than ever has been heretofore; and it is hoped will in some measure meet the expectation of the stockholders, and the demands of the public.
There is now a new claes of cars building on eight wheels, and it is expected by October to have twenty or niore freight cars, four passenger cars, and four servant, mail and baggage cars, all on cight wheels, besides keeping in repair those on four wheels-say 250 freight, 16 passenger and 4 baggage cars. The eight-wheeled cars, of which there are about 18 ready for service, (a part to be mounted as soon as wheels arrive) carry more than double the weight than can be carried on those on four wheels, and with more ease to the cars, the load and the road. Those appropriated to the passengers add much to their comfort, being fitted up at a considerable expense, costing about two. thousand dollars eaeh.

The carpenters are about equally divided in repairing old cars on four wheels, and building new ones on eight wheels,
The engines and cars all suffer much less in going over the road improved by embankment and new iron, and when these inuprovements are completed, it is believed that double the amount of ruaning machinery may be kept in order by the present force in the shops.

The same saving of labour is calculated upon in keeping the road in repais A carpenter's gang having in charge six miles, is extended over twelve miles when thus finished off.

The landed property of the Company has continued to increase in value, particularly the wood lands. Those which cost $37 \frac{1}{2}$ to 50 cents per acre a few years since, would now sell for 81 to $\$ 5$ per acre; and in places where villages are located, 8100 to $\$ 500$ per acre. The Company have about ten thonsand acres acquired by purchase, and over three thousand acres by locating vacant lands granted by the State. In this business there is n competent surveyor constantly employed. These possessions have carried the necessities of the Company for fuel and timber beyond the control of those who would otherwise take advantage of the continual demand for these urticles, and has kept the prices down to a lower rute than was at first expectedthe generul prices of timber being 4 cents a lineal foot, and wood $\$ 1.50$ per cord
To give some idea of the advantages derived by those not immediately connected with the Company by the passage: of the road through so great an extent of pine barren, a moderate estimate has been made of the additional value of these lands since the road was located, and it has been found that the advance within one mile of the road, and beyond the influence of the towns at either end, not
iacluding any within 15 miles of either extremity, has been equal to the cost of the original construction of the whole road.
The constant supply of timber for repairs, and wood for consmmption, gives employinent to hundreds of inhabitants on the line-these and those with their families engaged about the road, in all the departments, would increase the number to t nousands who have their sup. port from this institution. The knowledge of this fact should enlist the good feelings of the community towards the Company, and must be viewed by the stockholders as not the least interesting feature in the enterprise.
It will be received with pleasure by all having a feeling for the moral condition of society, to learn that great improvement in this respect has been observed in wall the varied departments of this extensive establishment, (although some few exceptions.) The general character is maintained only by the claim each can lay to a moral course, a correct deportment.

The Directors of the Louisville, Cincinnati, and Charleston Railroad Company residing in Charleston, have asked and had a conference with a committee of the Board of this Company on the subject of connecting the two roads. A report on this subject is annexed, and at the disposal of the Company. The plan of uniting the two, by the purchase, by that Company, of the stock of this, adds to the magnificence of the scheme of this gigantic enterprise, and gives proof on the part of the Directors of the Louisville. Cincinnati and Charleston Railroad Company, of their determination to place this grand undertaking beyond the possibility of failure. Possessed of this road, about half their line is finished to the mountains, and then with the capital subscribed in this State, will carry them to its extreme boundary.
The in erest of the stockholders of this Company in this matter is another subject, to which each has a right to look and act for himself individually.

Respectfully submitted by
-a Tais ram Tupper, President. July 10, 1837.

To the Editor of the Baltzmort Gazetle. transactions of the maryland acadevy or science and literature, vol. I. pp. 190.
This volume has just left the press of J. D. Toy, of this city. and I presume has not yet been extensively circulated, and as it is really a phenomenon in our liverary horizon, it seems to demand particular attention. . It will, doubtless, appear extriordinary to foreigners, when they are informed that this is the first volume of its transactions that any seientific association has ever published in Baltimore, whilat the sorieties of other citien of our country have for many years been favoring obe compunity pith the
results of their learned labors This book, then, whilst it reflects great honor on the Acadeny, is by no means creditable to the Scientific character of the city, for being too late in its appearance, and for having too few collaborators to contribute to its pages. But it is never too late to begin, and accordingly we congratulate the Academy on its publication, and hope that it may hereafter be able to issue an annual of its transactions, and thus in some measure, redeem the depreciated Scientific reputation of our city.

The volume contains thirteen articles, each of which deserves special mention.
I. Biographical notice of L H. Girardin, L L D. First President of the Academy, \&c. by J. 'T. D.

This is an interesting paper, and shows that the accomplished writer possesses talent not only for describing the usually dry details of rock formations and metallic ores, with Scientific accuracy, but also for adorning a purely literary subject with the graces of an elegant diction and a classical taste. We are indebted to this gentleman for rescuing from oblivion many interesting facts in the life of M. Girardin, and it well becane him, who is the successor of the subject of his memoir in the Presidency of the Academy, to accomplish the pleasing task.
II. Outlines in the Physical Geography of Maryland, embracing its prominent Geological features, by J. T. Ducatel, State Geologist, \&e.
An article exh biting extensive investigation and indefatigable energy in the pursuit of his favorite studies, and at the same time displaying his high qualification for the responsible trust confided to him by the Legislature. It shows the resources of the State in almost every department of nature, and communicates much valuable information on a subject heretofore little understood.

1H. Catalogue of Phenogemous Plants and Ferns, growing in the vicinity of Baltimore, by W.E. A. Aikin, M. D.

This does not profess to be complete, but shows that the author is asiduous in hiss attentions to Flora, and well qualified for the arduous work he has undertaken.
IV. A description of the Frostburg Coal Formation of Alleghany County, with an account of its Geological position, by Philip T. Tyson, accompanied with a map of the District.

There we discover decp research in more than one sense. Mr. T. has gone to the very bottom of his subject, and brought up an ahundance of coal. It is a subject about which a man might grow warm, for his District seems to be particularly coaled. The speculators in lands will be obliged ta him for his investigations.
V. Descriptive Catalogue of the Minerals of Maryland; by P. T. Tyson. The Mineral resources of the State are here pointed out in a rery satiofac-
tory manner. The tourist can now ascertain tbe locality of the object of his search, and he will find bis labors vastly facilitated by a perusal of this learned article.
VII. The detection of Arsenic in Medico Legal Investigations, by Wm.R. Fisher.

Any person who desires to see a diff. cult subject well treated, must read this paper. - It abundantly justifies the high reputation which the writer bears as a profound Analytical Chemist.
VIII. The Latitude of Annapolis, by H. Humphreys, D. D.-President of St. John's College
IX. Report of the Meteorological Committee, with tables of observations made at the Academy.
X. Directions for Preparing Specimens of Natural History.
XI. On the Metallic Coating for Electric Rubbers, by W. R. Fisher

A short, but good article, exhibiting an improved plan, with minute directions for the use of the article reconmended.
XII. Extracts from the proceedings of the Academy.

XIII. Donations to the Library.

This institution, which is really an ornament to the city, has for several years been noiselessly pursuing its way, and the only regret is, that more persons are not found to take an interest in its pros. perity. It affords uncominon advantages for the attainment of scientific knowledge. It has an excellent and constantly growing library, an extensive and increasing cabinet, comfortable rooms, and other attractions of no ordinary eharacter. And yet, I have reason to kuow, there are very few who take an active interest in the institution. There seems to be a want of taste, of intellectual cultivation, of literary. or scientific ambition in our city, which renders it exceedingly difficult to sustain such societies as the Maryland Academy professes to be. There are doubtless many persons who have scientific books, or ohjects of Natural History of no use or interest to them, which if deposited in the rooms of the Academy would contribute materially to the promotion of science, and there are many who by joining such an Association would be vastly bencfited themselres.

Baltimoriensis.

CLEVELAND AND PITISBURG RAIL-ROAD.
The Cleveland Intelligencer of the 22d inst. says :-Mr. Foot rresentrd the petinn of the citizens of this place on the 16th. praying the passage of a law au. thorising the city to borrow a sum of money to be applied to the construction of Cleveland and Pittsburg railioad. He reported, on the same day, a bill, which was read the first time, authorising a loan of $\$ 200,000$. On the day following it was consitlered and ordered to be engrossed for its third reading and final passage on the 18th.

avtomaton vilinim.

Galignani's Messenger, published at Paris, furniahes the following interesting account of a new musical wonder, in the shape of Monsieur Mareppe's automiton violin player, which was not long since exhibited before the Royal Conservatory at Paris-and caused much admiration.
"On entering the salooii, I saw a well dressed handsome figure of a man, apparently between 40 and 50 , standing wilh a violin in his hand, as if contemplating a piece of music, which lay on a desk before him; ard had I not gone to see an automaton, I should have believed the object before me to havo been endowed with life and reason, so perlectly natural and easy were the attitudes and expression of countenance of the figure. I had but little time for observation before the orchestra was filled with musicians, and on the leader taking his seat, the figure instantly raised itself erect, bowed with much elegance two or three times, and then turning to the leader nodded, as if to say he was ready, and placed his violin to his shoulder. At the given signal he raised his bow, and applying it to the instrument, produced a la Paganinni, one of the most thrilling and extraordinary flourishes I ever heard, in which scarcely a semi-tone within the compass of the instrument was omitted, and this executed with a degree of rapidity and clearness perfectly astonishing. The orchestra then played a short symphony, in which the automaton occasionally joined in beautiful style; he then played a most brilliant fantasia in E. natural with accompaniments, including a movement allegro mollo on the fourth string solo, which was perfectly indescribable. The tones produced were like any thing but a violin, the expression beyond conception. I felt as if lifted from my seat, and burst into tears, in which predicament I saw most persons in the room. Suddenly he struck into a cadenza, in which the harmonics double and single, arpeggics on the four strings, and saltos, for which Paganini was so jusily celebrated, were introduced with the greatest effect ; after a close shake of eight bars duration, commenced the coda, a prentissina movement played in three parts throughout.
This part of the perfurmance was perfectly magical. I have heard the great Italian, 1 have heard the still greater Norwegian, I have heard the best of music, but I have never heard such sounds as then saluted my ear. It commenced p $\mathrm{p} . \mathrm{p}$, rising by a gradual crescendo to a pitch almost beyond belief; and then by a gradual motendo and culendo died away, leaving the audience absolutely enchanted. Monsieur Mareppe, who is a player of no mean order, then came forward amidst the most deafening acclamations, and stated that emulated by the example of Vaucaoson's flute player, he had conceived the project of constructing this figare, which had cost him many years of study and labor before he could bring it to completion. Ho then showed
the company the interior of the figure, which was completely filled with small cranks, by which the motions are given to the several paris of the autumaton at the will of the conductor, who has the machine so perfectly under control, that Mons. Mareppe proposes that the automuton shall perfurm any piece of music that shall be laid before him within a fortnight. He also showed that to a certain extent the figure was self acting, as on winding up a string, several of the most beautiful airs were played, among which were "Nel cor piu," "Partant pour la Syrie," "Weber's last Wahz," and "La ci d'arens la mana," nll with brilliant embellishments. But the chef d'ouvre is the manner in which the figure is made to obey the direction of the conductor, whereby it is endowed with a sort of semi-reason.
hancock's patent caoutchode bookminding.
While numerous very important improvements have recently taken place in every other department of the mechanics of book making, that part of binding, which consists of attaching the leaves together, has hitherto remained stationary, if indeed it has not retrograded. That this want of progress in the march of improvement, is not to be ascribed to any perfection in the art as usually practised in the present day, will readily be admitted by every one who is familiar with its details, who has a library, reads a book, or is in the practice of making entries in ledgers or other account books. Mr. Hancock, in his patent process of binding books with caoutchouc, or India rubber, (an article which has made such rapid strides in usefulness within these few years,) is the first that has effected any improvement in the operation in question; and that improvement is a most important one. The qualities of caoutchouc, its elasticity, its adhesiveness, and its being impervious to the ravages of danp or insects render it an article admirably adapted for the purpose to which it has in this instance been applied; and we think there is little doubt, but that it will in a short time totally supersede the use of stitching, paste and glue.

Mr. Hancock's invention consists in the binding of the leaves of books together by a solution of caoutchouc, or India rubber, by various methods, the books being composed of either single leaves, or sheets of nny number of folds; dispensing altogether with the operations either of stitching, sewing, or sawing-in, and of the use of paste or glue in the backs. Instead of the leaves only being bound together by stitches at two or three points, the caoutchouc takes hold of the whole length of the leaf, in some of the varieties of Mr. Hancock's patented methods, and of a greater portion of it in others. The caoutchouc may also be used in conjunction with stitching, a
back, however formed in this wuy, at though of course stronger than with the caoutchouc alone, will not open quite so freely.

The advantage resulting from the adoption of Mr. Hanceck's putent cuonrchouc bookbinding are numerous; -the following are stated by the patentee, to be amongst the most obvivus. As regards books for the library-bound in the par tented manner, they will open with much greater facility, and when upened lie perfectly flat, or more nearly so than books bound in the ordinary way; thus preventing all strain on the backs, as well as obviating the necessily of keep. ing the leaves apart by force while reading, either with the hand, a weight, or otherwise.

In many expensive public and private libraries, the ravages of the insect produced in the paste, and by damp, have been most troublesome and destructive. Caoutchouc is impervious to both these evils. As regards collections of costly engravings, particularly when of large dimensions, and atlases, to these, the eaontchouc binding is particularly applieable, each leaf being attached with great tenacity. A large map, or chart, or even an engraving, may be doubled, and bound into a book half its size, and the fold at the back of the book; when open, be scarcely perceptible. For music books, the leaves when bound with caoutchouc, will not fly back after the V. S. operation, as they now very frequently do to the interruption of the performer, and often to the marring of a fine passage of music. Mnnuscripts and collections of letters, where, in the writing of them no margin is left at the back by which they can be stitched, may be bound without the least encroachment upon the writing. And, more particularly as regards ledgers nud other account books-every one having any thing to do with book-keeping must have experienced the inconvenience of writing in a day book or ledger, towards the inner parts of the leaves especially, whem the back, as is usually the case with such books, is of considerable thickness. The impossibility of obtaining a flat surface with ledgers, \&cc. bound in the ord:nary way, not only retards the operation of writing, but renders it extremely tiresome, besides producing blots and stains from the difliculty of applying the pen to the paper at a proper angle; in many cases also a portion of the breadth of the sheet of paper being wasted. Mr. Hancock's patent method of binding, he states, proluces such an elasticity in every part of the back, that it is eqnally convenient and easy to write, whether the book contain fifty or five hundred leaves. That these advantages are duly appreciated, nay be learned from the fact, of the approval of the invention by all the great mercantile establishments to which it has been introduced, and by the first account book makers in the trade.-. Landon Mechanics' Magazizequvas

 ing, in the course of the week, a trial of she locomotive engines manufactured by Messrs. Braithwaite, Milner, and Company. The workmanship of the engines is of a first rate character. We are glad to know that the late commercial difficulnes, which put so serious a check upou she enterprise of our translantic brethren, have so far been overcome that confidence is restored, and our railway manufactures for the American market are agrain in active operation.-Railway Times.
LITERATURE in tURKEY.

The Turkish Penny Magazine, whose appearance we noticed some time ago, is a reprint of our own Penny Magizine, of wbich the printing and press work are executed at the expense of the Grand Seignor. It is expected soon to equal in circulation the Turkish newspaper which has been established for some time. This now amounts to nearly five thousand, and is expected to be quadrupled as soon as the new post office arrangements are completed throughout the empire.-Ib.
fendering thatch incombustible.
A. M G. Barentin of Leipsic, Iately invented a method of preparing thatched roofs in such a manner as not to be liable to danger from fire. The Saxon government hashad M. Barentin's thatch tried, and has approved of it so much as to order it to be generally made use of. (Scotsman, Sept. 20, 1837.) Alum would have some effect, both in preserving thatch, and in rendering it incombustible. We know an instance of a gentleman Kyanising the thatch to be used on an ornamental cuttage roof, and we hope to be able in a few years to state the result. In the mean time we should be glad to learn if any of our readers know the German secret; and whether any have tried Kyanising with thatch, and what has been the expense per superficial yard of thatched roof, or per truss or load of thatch.-Architectural Magazine.

MEDITERRANEAN STEAMERS.

A Russian steamer leaves Constantinople for Odessa, on the 20th of each month. Charge 22 dollars. This route, and thence by way of Hamburgh, is the most expeditious and economical way of reaching England.
For the conveyance of travellers going to Persia, an English steamer has been for some time running from Constantinople in Trebizond, at the beginning and middle of each month. The distance is 530 miles, and the fare 30 dollars. An Austrian steamer, however, having been built and placed upon this station in May, 1837, the passage. will now be probably mide once a week, and at a reduced charge.
A steamboat (the Maria Dorothea, leaves Constantinople for Smyrna every Monday at 5 o'clock, and nuakes the voy-
agot in thity-six hours. Ah English steamer, the Crescent, proceeds on the same voyage in thitty hours. The charge for a passage in either boat is 13 dellars, including provisions. To visit the plains of Troy and the ruins of Assos, the raveller should take his place in the Maria Dorothea only to Mytilene, is the Dardanelles, where he will be landed on the morning of the day after leaving Constantinople; and having explored these classic spots, he may, on the following morning, take the Crescent steamer, which will have arrived in the Dardanelles.
The Levant steamer, which has bitherto run between Smyrna and Athens twice a week, making the voyage in about forty-eight hours, at a charge of 20 dollars for the passage, has been discontinued for some months, in consequence of a dispute with the Greek Government; but there is no doubt that several other steamers are by this time on the station.

The Ionian steaners leave Corfu for Zante on the 8th and 26th of each month, and return on the 12th and 29th. The charge is $2 l$., the voyage being made in about fourteen hours. The steamers for Ancona leave on the 16 th, and arrive thete on the 18 th . They leave Ancona, on their retuin, on the 21 st or 22d. Charge 61.

The English steamer leaves Corfu on the 29 th , touches at Patras on the 31 st , to take her mail, and thence proceeds to Malta, touching at Zante, and on to Falmouth; making the voyage of 1900 miles in about twenty days:
Those who wish to proceed to Egypt or Syria, take the English steamer at Zante, on the 31st of the month. It reaches Malta in three days; the charge being 8l. Another steamer leaves Molta on the 20th, and arrives at Alexandria in six days; the charge being $12 l$. ; and thence it immediately proceeds to Beyroot, in Syria, which it reaches in two days. The charge is 6l.-Guide along the Danube.

Children.

A bill has been introduced into the Legislature of Pennsylvania, providing for the education of children, which is very important to factory owners, and is alike interesting to the poor and the rich. The following is an abstract of the bill:
"That no child of a less age than ten years shall be employed in a factory.
That no child of a less äge than sixteen years shall be allowed to labour more than ten hours per day.

That all children employed in factories, not sufficiently well educated to be able to read, write, and keep an account, shall be sent to school at least three months in each and every year, while they are so employed, or until they are so far advanced in the rudiments of education as above mentioned."

Penalties are imposed on parents, geardians, or other persons, having charge
of ehildren, who neglect or refuse to comply with the above requisitions.
Penalties are also imposed on employers, for employing or allowing to be employed in their factories, children who come under any of the above mentioned provisions.

NEW WEIGH LOCK.

We are happy to announce the completion of the new weigh lock, at Mount Carbon. It is a first rate specimen of workmanship, and reflects grent credit on the skilful mechanic under whose able superintendence the work has been constructed. In weighing a ton, the variation does not exceed a pound or a pound and a half, and half an ounce will turn the scale. This scale is built on a different principle from any of this state, the lock being subject to the rise and fall of water in the dam, and the scale is so con. structed that it can be raised or lowered according in the height of the water. We have ascertained the dimensions of the scale, and amount of iron in the same, from Mr. Cole, which are as follows :
Length of the scale,
59 feet, Width,

16 "
Weight of the cast iron,
19,948 lbs.,
do. of wrought iron and
steel,
7,416"
We have before alluded to the accuracy of the scale. It will weigh from 3 lbs. to 100 tons.--Miner's Journal.

UTICA AND SCHENECTADY RAIL ROAD.
Statement for the year 1837 :
Total receipts for transport-
ing passengers,
$\$ 315,36161$
Total expendi-
tures on acc't
of transper-
tation, 8117,39617
Do. construc-
tion,
893,555 95
210,952 12

Balance

$\$ 104,40949$
The locomotive engines have run 150,000 miles, and the total number of passengers transported, 138,949.-N. Y. Express.

红 $\overrightarrow{3}$ Volume Six will be completed as speedily as possible. The next; or Volume for 1838 , will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.
0 Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

The sobacriber offory hio services as Agent, to procure Machinery for Mullo, Sleam En Mines, Locomofives, Printipg Machines, Pressea, Types and Fixtures.
He will give prompt attention to all orders entruated to bim for execution; and pledges hinaself to those who may employ him, that nn offort on his part shall be wanting to procure the best articles to be had in the city-and to give satisfaction.
He will also employ Millwrights and Engineers. to ereot Mills, and put the Engines and Machinery in operation.
Ordcrs accumpanied with the necessary fundn, or gatisfactory city acceptances, should bo addressed to D. K.MINOR, 30 Walt-at. N.Y.

LOUISVILLE, CINCIŃNATTI, AND

CHARLESTON RAILIROAD.

NOTICE TO CONTRACTORS.-Sealed
Proposals will be received at the Office of the Company in Colunbia. S. C.s until the 15th day of February next, for the graduation and masonry of that portion of the Road frum Columbie to thie crosang of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.
Also, tor the construction of a Bridge of 400 feet in length, on the Congaree River, to be built on stono piers a od abutments, for which there are suitable quarries in the neighborhood.
The pluns and profiles of the line will be ready fur inspection at the Office of the Repident Engineer, ill Columbia, S. C., after the 10th day of February.
So soon as the sarveys for location, now in progress, aro completed, that part of the Road extending from McCord 's Feiry to the Charleston and Hamburg Railroad, at Branchville, will be put under contract, of which due notice will be given.

WM. GIBBS Me NEILL,
Chief Engineer.
0 The Railroad Journal, N. Y. Courier \& Enquirer, N. York; Providence Journal, Prnvidence, R. I.: Atlas, Boston; Philadelpta En. quirer. Philadelphia; will pullish the nbove notice 6 times, send a copy of the paper to the Offico in Charleston, S. C.., and a certified copy of their account for paymont.

Jan. 12
fmw 6

NEW ARRINGEMENT.

ropes for inclined planes of antemoads.
WE the aubscribers have formed a co partnershif under the style and firm of Fulger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroads, and for other uses, offer to supply ropes for inclined planes, of any length required without splice, at short notice, the manufacturiny of cordage, beretofure carried on by S. S. Durfee \& Co., will he dune by the nuw firm, the same superintendent and machincry are einployed by the new firm that were employed by S. S. Durfee \& Co All orders will be properly atteniled t , and ropes will be shipped to any port in the United States.
"12th munth. 12 th, 1836. Fludson, Columbia County, Sitate of New- York.

33-if
 ROB'. C. FOLGER.

AMES'_ CELEBRATED SIIOVELS, SPADES, \&c.

300 dozens A mes' superior back-strap shovels.
$\begin{array}{cccc}150 & \text { do. } & \text { do. } & \text { do. plain strap } \\ 150 & \text { do. do. do. } & \text { do. } & \text { cas steel Shovels \& Spades }\end{array}$ 150 do. do. do. cassteel Shove 00 do. do. plated Spades.
50 do. do. socket Shovels and Sparles
Together with Pick A xes, Churn Drilis, and Crow Bars (steel pointed), manufactured from Salisbury refined iron-for sale by the manufartuzing agents,

- WITHERELL, AMES \&'VO.

No. 2 Libertv street, New-York. - BACKUS, AMES \& CC:

Fo. 8 State-street, Albany.

- N. B.-Also firrnished to order, Shajes of every description, made from Saliabury refined Iron. v4-it
¡MACHINE WORKEOPROGERS, KETCHUM, AND GROSVENOR, Patewon, New. Jeney. The undersigned seckive orders for
the following articles, manulactured by them, of thi the following aricles, manufactured by thein, of thy works being extensive, and the numiber of haind employed being large, they are enalled to executr. both large and small orders with prompticss and dispatch.

RAILROAD WORK.

Locomotive Steam-Engrnes and Teaders; Dri ving and uther Lucomotive W yeels, Aates Springis and Flange Tires; Car Whet's of cast iron, from a variety of patterns, and Chills; Car Wheels in cast irun, with wrought Tires; A xles of hest A me rican refined ison; Springs; Boxes and Bolis fo! Cars.
CO'TTON, WOOL; \& FLAX MACHINERY,
Of all descriptions and of the most improved patterns, Style, and Workmanahip.
Mill Geering and Millwright work generally tlydraulic and other Presses; Press Screws; CalIrnclers; Lathes and Tools of all kinds; Iron and Brass Cas'ings of all descriptions.
R()G\&RS, KETCHUM \& GROSVENOR. Paterson, N. J. or 60 Wall-st. New-York 5lff.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to builti on his Patent Plan, wwo.d respectfully inform Railroad and Bridge tiorporstions, that he is prepared to make cohtracts to build, and furnish all materials for supersiructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followi g localities, viz. On the main rual leading fron Baltimore to Washington; two miles fron the former place. Acrose the Motawankeag river on the Miltary road in Maine. On the national road in Illmois at aundry paints. On the Baltimure and Sinsquehanna Ruilroad at three points On the Hudson end Paterson Railroad in two places. On the Boston and Worcester Railroad, at several points. On the Boston and Providence Railroad, at aundry points. Across the Contmoink river at Hennikar, N. H. Across the Souhegan river, at Milford. N. H. Across the Cunnecticut river, at Hancoed, N. A. Across the Androscoggin river, at Tumer Centre, Maine. Acrnss the Kenneliec river, at Watervillo, Msine. Across the Genesee rivir, at Squakichill, Mount Morris, N. Y. Across the White River, at Hartford, Vt. Across the Connecticut River at Lebanon, N. H. Across the mouth of the Broken Straw Cireek, Penn. Across the mnouth of the Cataraugus Creek, N. Y. A Railroad Brilge diagona'ly across the Erie Canal, in the City of Ruchexter, N. Y. A Railmall Bridge at Upper Suill Water, Orono, Maine. This Brilge is 500 feet in length; one of the spans is over 200 feet It is probilly the firmest wooden bridge ever buit in America.
Notwithstanding his preseet engagements to bnild hetween twenty and thirty Railroad Bridges, and severaf cominon bridges, speveral of which are now in progress of construction, the subscriber will prompuly attend to business of the kind to much greater extent and on liheral terms.

MUSES LONG.
Rochester, Jan. 19th, 1837.
4-y

Builder of a superior style of Passenger

 Cars for Railrouds,No. 261 Elizabeth street, near Bleecker street,

NEW-YORK,

RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the New-York and Harlaem Railroad, now in opreration.

ROACH \& IVARNER,

Manufacturers of OPTICAL. MATHEMA TICAL AND PHILISOPHICAL INSTRU. MENTS, 293 Broadvay, New-York, will, keep constanlly on band a large and gencral assoriment of Instruments in their line.
Whole:ale Dealers and Country Merchants supwhiel with SURVEYI VG CDMPASSES, BA. ROMETERS, THERMOMETERS, \&c. \&c. of their uwn mannfacture, warranted accuraie, and al lower prices than can be had at any other establishment.
Ey Istrumenta made to order and repaired.

Railway Irom, wat barw; with connternunt holoweod

 90 以 7 \% witn Spikes and Splicing Plates adsptel thereto. To be, cold free of duty to State governments, or incor ,orused companies.

Orders fur Peansyivania Boiler Iron execoted
Rail Ruad Car and Locomstive Engine Tizes wrought and turned or ulturned, ready to be fitted on the wheels, viz. 30, 33, 36, 42, 44, 54, and 60 inches diameter.
E. V. Patent Chain Cable Bolta for Railivay Car asles, in lengtliss of 12 feet 6 inches, to 13 feet $2 y$, $2 \frac{2}{3}, 3,3 \frac{1}{3}, 31,31$, and 31 inches diameter.
Chains for Inclinel Planes, short and stay hake, manufuctured frum the E.. V. Cabla Bolis, and proved at the greatest strain.

India Rubber Rope for Inclined Planes, made Aleo, Patent Hend Wax.
Aloo, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and stone block nf Edge Railwaya.
Every description of Railway Iron, as well so Locomotive Engines, imported st the shortest notice, br the agency of one of onr partners, who revides in England for this purpose.
A highly respectable A merican Engineer residea in Eligland for the purpose of inspecting all Lu00. motives, Machinery, liailway lron, \&c. ordered through us.
A. \& G. RALSTEN \& CO,
Philadelphia, No.
4 South Front-

28 tf
Philadelphia, No. 4 South Front-at,

ARCHIMEDES WORKS.

(100 North Moore-street, N.Y.)
THE indersigned beg leave to inform the proprietors of Rail Ruads, that they are prepared to furnish all kinds of Machinery for Rail Roads, Locomotive Engines of any size, Car Wheels, such as are now in successful operation on the Camiten and Auboy Rail Road, none of which have failed. Castings of all kiuds, Wheels, Axles and Boxes, furnished at the shortest notice.
H. R. DUNHAM \& CO.

New Yori, Februery 12h, 1836.
PATENT RAILKOAl, SHIP AND BOAT SPIKES.
**The Troy Iron and Nail Factory keepe constantly for sale very extensive assortment of Wrought Spikes and Nails, from 3 to 10 inches manufactured by the subscriber's Patent Machinery, which afier five years successful operation, and now almost universal use in the United States, (as well as England, where the subscrib'r obtained a patent) are found superior to any yet ever offered in market. Railroed companies may be zupplied with Spikes having conntersink heads suitable to the holed in iron rails, to any amount and on short notics. Al. tuost all the Railroads now in progress in the United States are fastened with Spikes made at the above-named factery-for which purpose they are found invaluable, as their adliesion is more than double any common Spikes made by the hammer.
** All urders directed to the Agent, Troy, N.Y. will be ponctually attended to.

HENRY BURDEN, Agent.
Troy, N.Y., July, 1831.
** Spikes are kept for sale, at factory prices, by 1 \& J. Townsend, Albany, and the principal Iron Merchants in Albany snd 'Jroy; J. I. Brower, 229 Water-gtreet, New.York; A. Nu. Jones, Philadelphia; T. Janviers, Baltimore; Degrand \& Smith, Buston.
P. S.-Railroad compranies would do well to forward their orders as early as practicable, as the subscriber is desirous of extending the manufacturing so as to keep pace with the daily increasing demand for his Spikes.

1J23am
H. BURDEN.
G. Mitchell, Printer, 265 Bowery, N. I.

CONTEVTS.

 nal and Rallroed Co. +5.101 ! Repqrt of the Bhiladetphia, witmington and Balltmore Rallied Co.
Report of tho Sandy and Beaver Canal Co.
Minerat 4 remh of Miesouri-Ohly Cinnale - Reefing
Topsaits-Milwaukee Neeting-Mirtirinn Na:-thernkillrue1-TuledokMishigan City Railioud Advertisemenis

AMERICAN RAELRUAD JOURNAL.

NEW-YORK, FEBRUARY $\mathbf{8}_{1} 1838$.

00 nsf, Rif For the Railroad Journal.
 Messrs. Minor \boldsymbol{f} Scharffer:

Gentlemen,-I congratulate you, and the public, that the Railroan Journal has again made its appearance. : I cannot doubt, and I persuade myself the intelligent public will think with me, that a paper such as yours, conducted with knowledge and spirit, must be eminently useful in advaucing Internal linprovementa throughout our country. May your patronage equal your best wishes, and enable you to go on your way with renewed zeal.

I write from Wilkesbarre, the heart of Wyoming-the centre of the Great Anthracite Valley, on the Susquehanna. "Very well !", methinks you say-"what have you to tell us about Internal Improvements going on in that quarter ${ }^{\prime \prime}$ Much, Gentlemen; Good news! Rare news! The Lehigh Navigation Com: pany have completed their water communication from Mauk Chunk, up the Lehigh to White-Haven, within 15 miles of the Susquehanna at Wilkesbarre. $/$ A work of immense labor, and noted as the everlasting hills. The navigation is now complete from Now.York by the Morris Canal to Easton, hence to Mauk Chunk-up to White Haven, within 15 miles of our beautiful valley. How is this mountain to be got orer 3 : Who is to make the perfeeting link in this grand chain of communication ? The answer is ready. East winter the Lehigh Companyobtaffed an amendment of their Cbarter, authorizing them to construct a Railroad across-increasing their Capital Stock $\$ 600,000$, and releasing them from some work which would have been more burdensome to them, than useful
to the public. Under this law the Railroad has been carefully surveyed; and it will require 20 miles to obtain proper advantages of the ground to reach the borough of Wilkesbarre. One or two tunnels will be requisite-three inclined planes will be necessary. The cost is estimated at about $\$ 3,500$ a milc. You will see they mean no child's play. Here are to be no white piae sleepers, and hemlock rails, but materials and workmanship durable as time. Mr. Douglas, the Engineer, may have equals; but we affirm confidently, that he must be a man of extraordinary science and skill, to justly claim to be his superior. The work is all under contract, and co d as it is, the enterprising contractors are building shantees all along the line, and two thousand men will be atwork at the earliest opening of spring. -So you see, Gentlemen, that Whitel \&ozard. the leaders in this great field of Northern Improvement, have " neither slumbered nor slept.". Troublesome as times, and deranged as the money market has been. Pennsylvania owes them müch, and New-York is their debtor. In a very short period bnats will leave New-York, hop across this Railroad, for such is the intention, and following up our State Canal, enter the Small Lake, strike your grand Canal, and if they please, go down to Albany, and so home; surrounding a vast Island. In eighteen months the Anthracite Coal Mines of Luzerne, will be fairly open to your city market.

Clinton.

SEMI-ANNUAL REPORT OF THE DIRECTION OF TEE SOUTII CAROLINA CANAL AND RAILROAD COMPANY.

Concluded frome our laxt.

The Committee to whom was referred a communication fron the Directors of the Cincinnati Railroad Company in relation to the terms upon which the said Company would unite their interests with the Charleston and Hamburg Railroad Company, beg leave to report: $\frac{1}{}$

That a conference was held-by your committee wtih Gens. Hayne and Hamilton and Mischell King, Esq. who ap: peared on behalf of the Cincinnati Company.
That a free interchange of views and
opinions was had, the result of which was an unanimous opinion of the members of both committees that a union of the interests of the two companies was impracticable. Your committee then proceeded to the discussion of the ques-tion-Would it be expedient to sell the Charleston aud Hamburg Railroad to the Cincinnati Company Upon this question, so interesting to the stockholders, your committee came to the conclusion, that the Charleston and Hamburg Railroad had been so much improved by the expenditure of large suins under its present able executive; that its facilities of transportation had been so much increased, and its prospects of doing a more extended business so clearly developed, that each share was worth at least \$125; and that it would be inexpedient to effect a sale and trausfer to the Cinciunati Company under that price. They were, however, of opinion, that it would be for the interest of all concerned to open a negociation between the two companjes, whenever full powers were granted by the stockholders of the respective companies to their agents. Your commitue are of opinion that the Cincinnati Company should pay each stock bolder of ihe Charleston and Hamburg Company $\$ 125$ per share, (both old and new suhscription;) should assume all responsibilities, and be entitled to all our rights. That for every share so purchased by the Cincinuati Company of a stockholder in the Charleston and Hamburg Company, the said stockholder shall subscribe for a share in the Cincinnati Company, nud pay down the sum of five dollass. The stock of the Cincinnati Company will thus be rendered immediately profitable; the immense resources of that Company will enable them to put the road in complete order. and convey all the freight which may be offered. They may erect branches forthwith to Columbia and Cainden, and likewise be enabled to ${ }^{\circ}$ open the subscription books for a bank. Upon the books being opened, every Railroad subscriber will be entitled to subscribe for a share in the bank, and as banking privileges are valuidble, a corresponding value will be imparted to the Railfóad shares of the, Cimeinnati Company, so that eaeli subscriber may retain his share, or sell dat aib edrance.

Finally, the Committee of the Ciacinnati Company agreed to recommend to the stockholders who may assemble ăt Flat Rock in October, a purchase of the Chaplestod and Hamburg Railroad.Whist your Committee concluded to recommend to the Stockholders of our Company, a transfer of the road at the price above stated

They therefore recommend that a Committee be appointed to collect the

Charleftong and Handaty RatroadCompany, upon the proptiety of transferring by sale said Railroad to the Cincinnati
ed.

I. E. Holmes, T. Street, Gg, Gpabon.

Resolved, That a Committee of In. quiry be appointed to ascertain the views of each individual stockholder, as to What prict and wrum they would ber Company to the L. C. and Cherleston. Railroad Company, and to report an adjourned meeting of this Company.

On motion of Samuel Paterson, Esij., the following gentle men wert eppointed the Committee: 1. E. HoInes, Thad-
deus Street, aud George Gibbon. sentiments of each subscriber to the

Dr.
South Carolina Canal and Railroad Company, June 30th, 1837.

GECOND ANNUAL REPORT OF THE PHIIAA belphia, wilmington and balitimore RAILTOAD COMPANY.

Philadelphia, Jan. 15, 1837.
To the Stockholders of the Philadelphia, Wit. mington and Ballimore Railroad Co.
In compliance with the requisition of the 9 th Section of your charter, the President and Directors of the Philadelphia, Wilmington and Baltimore Railroad Company, respectfully submit the following as their second annual report.

In performing the duties entrusted to your board of directors, they considered the early completion of the road and its readiness for transportation and travel of great importance to the interests of the
company, they therefore deterinined on the prosecution of their works with energy and perseverance. Daily ehcouraged by the continued favor and patronage Which the public bestowed on the connecting companies since they have been in operation, your directors have been stimulated in their cxertions to terminate their operations this winter, that there might be no suspension or diversion of that patronage ; but that this company by nffording increased facilities, comforts and couvenience, might in conjunction with the adjoining companies, win and share increasing favor and profit. The late general convulsien of financial concerns throughout the Union, threntened to embarrass their exertions, and paralyze their designs; but that difficulty they have, with your aid surmounted, and from a lamented public calamity is owed, perhups the success of their efforts-as the discontinuance of many of the public works and improvements from that cause, depriving persons of employment, yielded more than an ample supply of laborers and material for the construction of this road, and at much lower rates than otherwise could have been obtained.

In the last annual report it was stated that an agreement had been made with the owners of the Gray's Ferry Estate, for the purchase of the old floating bridge ferry rights and appurtenances, together with two tracks of land adjoining on each side of the river Schuylkill, for which the Company were to pay them $\$ 50,000$. The purchase has since been concluded, the proper deeds of conveyance executed, and the title is now vested in this company. The old bridge is still maintained there and will remain until the erection of the new one, and has yielded in nett tolls for the last six months $\$ 2,388$, being more than ten per cent.per annum on the whole amount of the purchase money,

You were apprised by that report that an application had been made to the legislature of this State, for the right of constructing a new bridge over the Schuylkill, at or near Gray's Ferry, for the purposes of railroad and other tra. velling: such an enactment has since been obtained, and the construction of the new bridge, in strict accordance with the restrictions of the law, commenced, and its erection hastened as much as the care and prudence which such an operation required, wuuld permit. The plan submitted by the chicf engineer of the company, of sinking strong wooden foundation cribs, at the distance of forty-two feet apart at their bases, for the building thereon of the draw-piers, and increasing the width of the draw to fifty feet instead of being only thirty-threc in width, as required by the Act of Assembly, met with the sanction of your directors, as it would greatly facilitate can approach the city and difcharge the navigation of the stream. Many of their cargoes. Your directors are of our citizens unacquainted, perhaps, with opinion that on this section of the road, the intentions or plans of the directors about threc miles from Wilmington, and
ing of the river in the spring, before they
ere alarmed at their operationer in-the preparations of the foundations of the piers;' nind fearful less the river should be obstructed and its navigation'timpeded, the city councile and port wardens were induced to inquire into the designs of the company: As the navigation of the river and the interest of the city had always been of the first import ance, in the consideration and adoption of their plans of the viaduct, they willingly gave the information desired, and by so doing, they believe, \{they have effectually quieted alarm and silenced complaint. All the masonry work of the bridge is completed, excepting the two draw-piers, part of the superstructure is raised, and the whole of tbat work it is confidently anticipated will be entirely finished by the first of next May. The care necessarily required in the construction of this bridge forbade haste, and rendered its completion this scason impracticabre, and of course the finishing of the whole track to this city unnecessary. The directors therefore confined their exertions to the grading of the road, and laying of the rails to the western abutment of the bridge. From thence (being within two miles of this city) to the city of Wilmington they liave entirely completed one track of the railway, and tested its utility, and fitness for inmediate use, by the frequent passage during the last week of locomotive engines, witls trains of cars, over the track; and they are pleased in now being able to congratulate you on the successful consummation of their wishes.

From the Eastern abutment of the bridge to the junction of the Gray's Ferry road and Federal street the line of the road is located, the grading completed and ready for the reception of the rails; from that point to Broad street the route has not yet been decided, the location, however, can soon be determined, and the whole line of the road completed carly in the ensuing spring.

The requisite enactments laving been obtained from the Legislature of the State of Delaware, the Wilmington and Sisquelianna Railroad Company have ceded to this Company, by proper deeds of conveyance, all-the riglits and privileges they possessed under their charter, for the construction and maintenance of that portion of the Railroad situate between the city of Wilmington and the Pennsylvania State line, in consideration that this company lay and complete that portion of the road. The whole of that section was placed under contract last June, and lias been, as before stated, completed. It has long been an anxious desire with our commercial community to kecp, if possible, the navigation of the Delaware open during the winter, that vessels may not be detained until the open
whete the line of the road approximates close to the shore of the river Deluware, by the construction of wharves and erection of a commodious storehouse ithere, the interests of the company and the commercial interests of this city can be greatly benefitted, and the delays and embarrassments, which our merchants have keretofore suffered by the obstruction of our river with iee entirely obviated. As in the severest wanters, and at times when the river is impassable above, or access on nearer approach to the city hazardous, vessels can easily approach that place, be enabled to discharge their cargoes, transmit them immediately by the railway to this city, receive their freight, and without delay depart an another voyage.

The necessary motive power has been obtained, the engines being of the most approved nanufacture, large and commodious eight-wheeled passenger cars have been built, and are in readiness, on which all the new improvements that skill, ingenuity and forethought could devise, far comfort and convenience, has been successfully effected.

Arrangements have been made for the conveyance of passengers in omnibuses to and from the depot of the compuny. No. 280 Market street and Gray's Ferry Bridge; and as soon as the navigation of the river is obstructed with ice, this road can be opened at a few hours' notice for general travel and transportation, and notwithstanding the change of seasons, a rapid, safe and comfortable communication, daily maintained between this city and Baltimore.

A contract has been concluded by this company with the U. S. Post Office Department. for the transportation of one mail daily to and from this city to Baltimore, the compensation to be $\$ \$ 7,500$ per annum, the company having agreed to run in connexion with the Waslington and New York mails, and deliver the mail from this city daily in Baltimore, by half past 3 o'clock, P. M., and the snuthern mail in this city daily by 5 o'elock, P. M.

Having thus far finished our operations und successfully established a chain of rail road communication between this eity and Baltimore, our security, und the common interests of the companies constituting the line, require thit we should promptly and carefully consider the proper means of preventing any disturbance of the present harinony, now existing between the co operating companies, or distraction of their united efforts for the accommodation of the public.
Extending as the line of communication does, through three different states, composed of three separate and independent corporations, and each incorpornted by diticrent Legislatures. Thus situated. sectianal differences. conflicting interests, local jealousies. and the machinations of the designing and inimical, may engender disunion; or, so far interfere with our
arrangements, as ot buder reard, or perhaps destroy the very objects of our creation. To guard against, and prevent such evils has been the subject of serious consideration with your board of directors.

The stockholders and directors of the two adjoining companies liave made it the subject of their deliberations, and they have resolved on the union of the three companies, making the whole but one body corporate, and politic, their respective stocks, a common stock, and their separate interests a joint and common interest; for that purpose they have obtained from their different State Legislatures, the requisite enactments, and now only await the assent of the Stockholders of the company, to unite, and make their interests and effiorts with ours but one in all permanent and indivisible.
Your directors consider such an union of the utmost importance to the interests of all concerned, as it would render the whole line subject to the direction of few instead of many, prevent intestine confusion and dissension, diminish the expense, as united there will be no necessity of the present large number of officers and agents, nor of each company separately purchasing and maintaining motive power, machinery, and cars, for the use of the respective roads, premising that the stockholders would cheerfully assent to such an arrangement. Your Directors have applied to the Legislature of this State, this session, and have obtuined a law empowering this company to form a Union with the Wilmington and Susquehanna Railroad company of the State of Delaware, and the Baltimore and Port Depisite Railroad conpany, of the State of Maryland, under such terms and conditions as they shall agree on, and determine. Your sanction alone is wanted to effect immediately such an union, your early notice and consideration of the subject therefore is earnestly solicited.

In closing this report, your directors feel that that they would incur the imputations of injustiee were they to pass unnoticed the industry, skill and perseverance of the Engineers, agents, and contractors employed in the execution of their duties. Jo their indefatigable exertions, the directors are indebted for the successful and speedy termination of their lubors, to them is justly due the honor of having satisfactorily fulfilled their engagements and executed in a short space of time, an aggregate amount of labor almost incredible, and certainly unprecedented in America.
Herewith is annexed the annual report of the Treasurer of the company, all of which is respectfully submitted for your consideration.

In behalf of the. Directors,

Matthew Neinkirk, Pres't.
J. Wi'son Wallace, Secretary;
U. S. Gazette.

Third annual metront on The bandy

and beaver canal company.

E. W. Gill, Chif Engineer.

Auswor 1837.
The President and Directors of the Sandy and Beaver Canal Company, in compliance with their duty, present to the stockholders their Thind Annual Report.
In presenting this Report, we cannot suppress the expression of the regret we feel, in laving on the first of A pril last, had to curtail operations which were in progress for the completion of the whole line of Canal, when owing, principally as we concêive, to the exceeding pressure of the money market, it was deemed advisable to adopt this course; since which time a small force has beell contiaued in the employ of the Company, principally on the Eastern Division.
In curtailing operations the Board consider it due to those Contractors who surrendered their jobs, to state that with very few exceptions, they appreciated the difictilties to which this, with many other sinilar works, had been subjected, and compromised on terms deemed honorable to themiselves and satisfactory to the Board.

Relying upon the accuracy of the Report of D. B. Douglass, the Board had supposed that funds sufficient for the completion of the work had been provided; but shortly after théir last annual. report, from the amount of the monthly estimates compared with the progress of the work, together with the increased prices of labour and provisions, fears began to be entertained that some additional funds would be necessary. Accordingly the Chief Engineer was requested after the letting in October, to make an estimate of the whole cost of the work at the contract prices, as early as his other business would permit.Owing to the multiplicity of his duties this was not furnished the Board till January last-the amount considerably excecded the estimate of Major Douglass.

As Philadelphia was depended upon in the outset for the principal amount of funds, and the chief part of the Stock being held there, the Report was forwarded to our commissioners in that city.
The dificrence between Major Douglass' estimate and E. H. Gill's may, in some measurc, be accounted for by the adrance in price of provisions, laber, materials, and the substantial manner in which the work is executed.

With the advice of the Stochholders in Philadelphia, a further sale of Stock has been ordered by the Buard, an amount sufficient, it is believed, to complete the Canal, the certificates for which have been issued and forwarded to a committee in Philadelphiawho have been appointed by the Board to dispose of them. The board have not been advised, by this committee what progress they have made, nor what the prospects are,
"but are daily expecting to be sinformed amoint in the expenditures has been caused by the purchase of Real Fistate, for the sites of the Reservoirs on the sumnit, for the convenient and economical construction of the canal, and for Thydraulic purposes-amounting iu all to 86,650 dollars.

The opinion expressed in the last annual report is reiterated, that when the canal shall be completed, retaining so much as nay be necessary for its constriuction and the works coinected therewith, he residue, including the donations from individuals, can be sold for a sum sufficient to cover the purchase money of the whole.

In the last annual report reference was made to a contemplated connection from Bolivar, the connecting point of the Sandy and Beaver with the Ohio Canal, to the mouth of the Auglaize, the connecting point of the Nliami with the Wabash and Erie Canal. Since that time the Engineer designated by the State for examining this contemplated connection, has made a report recommending the continuation of the Wolhounding Canal from the Ohio Canal by the waters of the Maheigan to the town of Mansfield in the county of Richland, and from thence by Railroad to the mouth of the Auglaize.

At the last Session of the Legislature of Ohio, appropriations were made for extending the Walhounding branch to the Moheigan, there are therefore strong reasons to believe the work will be finally accomplished to the town of Mansfield, and from thence the connection completed by Railroad to the Auglaize, as the report of the Engineer is highly favorable for a cheáp construction of a Road from Mansfield to the last named point.

Hence the Board congratulate the Stockholders, that the State of Ohio. has commenced the important work of forming an entire connection throughout the interior of the State by canal arid railroad from the Ohio to the Miami, Wabash aud Erie Canals, which, with the canals and railroads, now made and making by the States of Indiana and Illinois, will be extended to the Mississippi and the Southern extremity of Lake Michigan. Another circumstance equally important to the Stockholders of the Company, has transpired since the last annual meeting. By the nction of Pennsylvania, it has been ascertained that a continued water communication can be formed across the Allegany mountains at a reasonable expense. From the vast importance of such a connection it is apprehended the time is not distant when it will be accomplished.

The, Board conceive these facts taken in connection with the rapid increase of trade on the (Ohio Canal, as shown hy the reports of the commissioners, to be upwards of $\$ 20,000$ in tolls annually, and the fact that more than three-fourths of the trade on that canal is sonth of the town of Masillon, and will in all proba.

Ibility puse through ithe Gaind y and Beaver. Cinat, I when itishall be finished, bught to unite the stockholders in usiug every exertion for the final completion of the work, and induce them to forego thl minor considerations, not only on account of the public weal, but their own private interests. ${ }^{2} \mathrm{We}$ then say, notwithstanding the many difficulties which liave been, encountered, and are still to be encountered, is there not great cause for congratulation ? and shall we not, relying upon the continued favor of the giver of all good, persevere, until we have completed that work, to which our efforts have been and are still directed, and which when finished, will be a link in the great chain of artificial communication between the waters of the Atlantic and the great waters of the far west. Since the last annual meeting, the Board have had to lament, deeply, the loss of one of its members in the decease of Judge Christmas, an ardent and persevering friend, to whom the Company is much indebted for his zealous efforts in its behalf. The vacancy occasioned thereby has been filled by electing Dr. Horace Potter.
For a more particular account of the situation of the work entrusted to their care, the Board refer to the report of the Engineer, which is annexed, who has so fully comprised all important facts that little else is required in order to give a concise account of the proceedings, not only for the past year, but also for the whole period since active operations commenced on the line. We add that nur confidence in his ability is unabated.

Gentlemen,-We now surrender to you the trust reposed in us for the year past, and we desire that your selection of Directors may be such that, with persevering and undivided efforts, they will carry on to completion the work which is the cause of your assembling this day.
By order of the Board,
Benjamin Hanka, President. August 9, 1837.

Engineer's Report.

To the President and Directiors or' the Sandy and Beaver Canal Company
Gentlemen,-The period having arrived when it becomes my duty to lay befure you, a synopsis of the condition and progress made in the construction of the work placed under my direction, I have the honor to present you the for. lowing report.

Since the date of my last annual report, the work progressed with spirit and energy, until checked by the paralyzing shock; which nearly all the improvements in our country have encountered, from the present very unexampled deranged state of the money market.

The excavation of the canal, and formation of the towing paths along the pools on the Fastern Division from New Lisbon to the Ohio River, a distance of about twenty-five miles are now completed, with the exceptions of portions of a few sections, not exceeding in all two
thiles in extent. On the same divition the masonry of nineteen locks is completed, and of several more nearly so.; four dams are finished and four others require but the plank and ice guards laid, to render them complete; the entire anount of lock and dam masonry, now constructed on the division, exceeds thirtyone thousand perches, in addition to which, eleven thousand perches of stone partly cut, two hundred and fifty-three thousand feet of timber, and one huudred and seventy thousand feet of plank are prepared and delivered for the construction of locks and dams. Pains have been taken to render the towing paths and embankments, secure from abrasion or injury by ice freshets, to accomplish which, about fifty thousand cubic yards of slope and rip rap wall have been furmed ; the division could be rendered navigable, should the funds of the company permit, in fourteen months.
The summit or middle division is in a state of forwardness, twelve sections or five and a half miles of it are finished; 547,680 cubic yards of earth have been removed from the Western deep cut, and has cost the company 870,237 ; there still remains to be taken out $150,000 \mathrm{cu}$. bic yards.
The tunnel in consequence of the great difficulty the contractors had to encounter, in procuring suitable miners conversant with that description of work has not progressed as rapidly as was anticipated, and, it was found necessary last February to declare the contract abandoned. 4.400 cubic yards of rock have been removed from the drift of the tunnel, and about five hundred feet in extent are now completed: the exeava. tion of the tinnel was contracted for at two dollars and thirty seven and one half cents per cubic yard, but the contractors having abandoned the work, the usual per centage was retrined, in consequence of which the work done bas cost the company but one dollar and ninety cents per cubic yard.

The reservoir mound on Cold Run is completed, excepung a small opening left for the water to pass through, till the land intended to be inundated, shall have been cleared. This piece of work has cost, including the iron conduit pipes, $\$ \Omega, 400$, or $\$ 3,340$ less than my cstimate. The West fork resevoir mound is two thirds done, and has already cost aboui $\$ 27,000$, and will require $\$ 14,000$, more 10 complete it. I originally estina:ed it 10 cost $\$ 19,244$, but the level of the summit was raised four and a half feet, higher than the level adopted by Mr. Hage and myself, in 18.34, (which was pointed out to us as the level fixed on by Maj Douglass) causing a reduction in the cost of that of at lenst $\$ 120,000$. I deemed it advisable to inciease the dimentions of the West fork reservoir, for the purpose of compensating for the loss of water, that the change in the summit level might produce; ;according to its present plan, it will flood five hindred acres of land, and contains upwards of $200,000,000$
of cubic fect of water; or more than double the quantity it would have con: tained, if constructed on the original plan. In order to obtain the result, it was of course necessary to increase the length and height of the mound, which will satisfactorily explain the cause of the discrepancy between the estimated and actual cost. Iiearly all the ground occu: pied by the reservoir has been cleared, the conduit pipes, and stop cocks are prepared, and nothing remains but the completion of the mound to render it ready for use.

Operations were commenced on nearly the whole of the Western division immediately after the letting in October last, and a very large amount of work would have been done this season, had not the difficulties heretofore alluded to occurred. At present about twelve miles of canal on that division, 3 locks and one dam are completed; in addition to which 615 perches of masonry are laid, 5800 perches of cut stone and backing. 69,000 feet of timber and 62,000 feet of plank for locks and dams are prepared and delivered on the ground. The entire amount of lock and dam masonry constructed on the division is 3,924 perches.

The heavy sections bordering on the Sandy Creek from Williams' Mill to Bolivar are, with one exception, either completed or nearly so, and much commendation is due to the contractors for their energy, perseverance and attention. If the dam and guard lock at Williams' mill were constructed, an expense not exceeding $\$ 10,000$ would complete those sections, and bring into operation the Company's very valuable water power at Bolivar. This power I have estimated in a former report,' equal to work twenty pair of mill stones in a dry period. If to it is added the Company's mill privileges on the Eastern Division, viz : at Dams, 1, 4, 10 and 14, it will be found that they possess a water power by purchase, equal at least to work 33 pair of mill stones.

But little injury has thus far been sustained by any of the works on the line, although one or two heavy floods have occurred during the last winter and spring; the works being incomplete, and in some cases, from that circumstance, unavoidably exposed to the action of ice freshets, danger was to be apprehended, but the entire injury received from such causes is trifling; considerable injury, however, from wash has been sustained on the Western decp cut near Hanover, and the only method of effectually guarding against it, and at the same time prevent sediment from being carried into the deep cut, and avoid unnecessary expense, is to construct a ditch 10 feet wide on bottom, on the back or north side of the spoil bank, and conduct the waters that collect from Brown's Run and the other streams, in time of rain, through it till they reach the low ground at the western extremity of the cut where they can be
diaćhárged without indjury inta the carial; a ditch of this/ description $3 \mathbf{z}$ fad ideep; with: the customary slopes on the sides, and a descent of 2 feet in every: 3,100 eet, (which the present head race, or ditch from the Run to the mill, would discharge 9,100 cubic feet of whter per minute, and canbe constructed for $\$ 2,200$. These atreams at their highest stage, will not afford over 4,000 cubic feet of water per mibute. I had early in the spring given directions to have a ditch of the above description commenced and completed: the workmen, you are ware, were stopped by a writ of injunction, served at the instance of the owner of a small tract of land through which the diteh was located, and as, the matier has not yet been finally adjudicated, and he being made responsible for the injury should the injunction be removed, nio other measures to prevent the wash, llave been reserted to. The method, suggested by the complainant for discharging the water into the canal, is to construct a slope wall or paved way; on the slope of the canal bank at or near the mouth of Brown's Run, and pass the water over it into the canal : the cutting or depth of excavation at that point, is upwards of 30 feet, and to discharge 4,000 cubic feet of water per minute, into the canal, down a descent of tbat description, acquiring as it would by gravitation a velocity of nearly forty feet per second; is preposterous in the extreme ; independent of numerous other objections, it would be highly dangerous, if not impossible, during floods for boats to pass it. This objection might be surmounted, by excavating a basin and discharging the water into it 60 or 100 feet back from the canal. A device of this description, constructed on the moost economical plan, would cost at least $\$ 5,000$. The water of those streams, you are aware, prior to the excavation of the canal, was the property of the owners of the Hanover Mill, and was there used, and constituted about one-half of the entire water power; in conducting it, as contemplated, along the back of the spoil bank, it will not be diverted from the mill, so that no claim for damages of that description, would be encountered; but if it is thrown into the canal at Brown's Run, as heretofore described, the mill will be rendered useless and the company subjected to claims for damages. Another reason for conveying the water along the back and keeping it out of the deep cut is, that it will reduce the cost of excavating the canal, at least $\$ 4.000$.

Last season much delay was experienced in consequence of not being able to have a sufficient quantity of hydraulic cement ground, to supply the wants of the contractors. In ofder to prevent n recurrence of a similar nature, several additional mills were, during the last winter, rented and fitted up for the purpose; and there is now ground and on hand about 76,000 bushels of this article, and 35,000 bushels burned and ready for
grinding althoughthe atone from whieh It ia mannufactured, is abundnpt, and of the finest quality on the Eastern and Middle divisions of the line, thus far, notwithstanding strict examinations lavo been made, no quarry of hydraulic liniestone worth opening has lieen discovered on the Western division - This circamstance, and being sensible of the vast importance of it in the construction of canal locks led me to make numerous experiments, for the purpose of nriving at a substitute, and I am pleased to state the result of my experiments is exceedingly satisfaciory , The ingredients used in the formation of the artificial cement, are cheap and abundant on the Western division. A contract has been entered into for manufacturing it, and a large amount delivered al twenty-five cents per bushel: the article proves fully equal to the best natural hydraulic cement. There are, nlso propared and on hand about § 9,000 worth of iron and iron work, such as lock irons, reservoir pipes, stop cocks, \&c.

The whole amount expended for canal construction, independent of real estate, damages or incidental expenditures, is $\$ 823,000$. $\$ 383,000$ of which liave been applied on the Eastern division, $\$ 259,805$ on the Middle, and the residue on. the Western division. Setilements having been effected with nearly all the contractors, when it was found necessary to curtail operations, the company at present is but slightly indebted for wort: done. The aggregate amount of contractors claims unsettled, inclading the retained per centage, will not exceed $\$ 25,000$. The force employed on the line is at present reduced to 220 men, 170 of whom are on the Eastern division. Most of the contractors hold themselves in readiness to commence operation3, as soon as the state of the company's finances will permit.

The partial suspension of the work has caused me to diminish the engineer corps, and consequently part with many gentlemen of skill and ability. The Eastern division is under the direction of James Bradley, Assistant Engincer, aided by Washington Gill, Junior Assisiant ; B. S. Dibble, target bearer, and William Smith, axeman. The Western division under the superintendence of Roger Morledge. Assistant Engineer, assisted by Lot Dixon and P. Hoagland, Junior Assistants ; J. R. Straughn, target bearer, and Hugh Miller, axeman. The masonry is under the charge of Walter Scott, and the carpentry, L. Reynolds, and J. Counover: to all these gentlemen 1 ain indebted fur their prompt attention to the duties assigned them.

In closing this report, I would respectfully call your attention to thal portion of the Eastern division, extending from the town of New Lisbon to the Olio River. 8356,000 have been expended on it, and 8420,000 will render it navigable and complete. New Lisbon has a population of about 2,000 inhabitants; it contains

twenty-three stores, independent of shops about 24, 000 ucres, situated in the soth.
 Waukee, and we would earnestly call the

and groceries, land four daily limestiof stages pass through it: numernus thriv? ing villages are contiguous, and the land in its, vicinity is rich and fertile, and I feel convinced it is the interest of the company to complete, without delay, thence to the Ohio River, feeling satisfied it would afford business sufficient to pay the interest on the expenditure.
All of which is respect fully submited.

E. H. GILL, Chief Engineer.

Engineer's Office, Sandy and
Beaver Canal, Aug. 7, 1837.
mineral wealtil of missouri.
Each successive day sheds new light upon the vast resources of our country. By no other perlaaps, it is excelled in the amount ind variety of its mineral productions. Among the States most remarkable for their metallic wealih, Mis: souri, we believe; occupies the first place. Not to speak of the famous iron mountain, its mines of lead, copper, etc.,", are unsur-: passed in extent and quality. Their developernent has been trifling as yet compared to that of which they are suscepti. ble. Some of them indeed have heen worked for nearly a century, particularly those of lead. This is the case especialIy with Mine la-Motte, which has yielled, from a distant period, large quantities of that metal, and has been a source of great prosperity to the surrounding country, notwithstanding the inefficient man. ner in which it was worked. This most extensive and valuable property has been recently sold by a decree of court, with the view of distributing the proceeds among the respective heirs. It had been previously rented for the annual sum of 6,000 dollars to parties by whom it was workzd in a careless and clumsy manner. We are pleased to learn that it has now passed into the hands of an intelligent and enterprising company, embracing, with three otbers, Dr. Linn, the worthy Senator from Missouri, who are deter: mined to do full justice to its resources. We are glad to lcarn this, not only on their account, but for the interest of the country, as we have understood from all authentic source, that the most valuable of its ores have been neglected from an ignorance of their nature and value. This was particularly the case with the carbonale of lead, which is found there in abundance. Large quantities of rich pyritous ores of copper were also thrown a way, because of, their not containing lead, the only metal which was searched for. A valuable ore of cobalt also is sald to have been oblained from this mine by Professor Frgost of Nashville. These general factstare confirmed by the state. ments of the commissioners appointed by the court, who sum up their observations with the remark, st that they are of apinion, founded on experience and observation, that the mineral / resources consisting of lead and copper, within the said tract of land, are of immense value." The Mine la Matte properly comprises
ern part of Missouri, in Madièpn county, aboat twenty-five miles frnm the Missis-
sippi tiver, in the midst of a heathy and sippi iver, in the midst of a healthy and
well peopled country. It is in the inmediate route of a contemplated Railroad between the northern and southern extremes of the State, and lies about eighteen miles from the celebrated iron mountain, in the adjoining county of Washing. ton. One of the branches of the river St. Francis runs through the tract, which is also interseeted, in various directions, by several minor streams of sufficient magnitude to propel mills or any requisite machinery. The soil thronghout is fair; and at least one-third of it of a very superior quality; the whole being plentifully furnished with timber, and well supplied with unfailing springs; thus offering every facility for the prosecution of mining operations. : We have been induced to offer a brief description of this important property to the public, as it presents facts and suggests considerations of general interest. We are informed that it is about to be revisited by Mr. Clemson, the eminent mineralogist and geologist, whose examination of the property, last summer, resulted in an impression highly flattering, and who goes out n second time for the purpose of maing more comprehensive and minute researches, with reference to the prosecution of mining operations of the most approved kind, and upon a scale commensurate with the magnitude of its resources. We wish these gentlemen all success in their enlightened and public spirited enterprise.-Globe.

OHIO CANALS.

The Ohin canal has been navigable from the 20 th April th the 1 st December. The amount of tolls for 1837, is 8293,428 79. The receipts for 1836, were $\$ 211,823$ 32, showing an increase in one year of $\$ 81,60547 .$. The Ohio canal is 310 iniles long, reaching from Cleveland on Lake Erie, to the Ohio River. This canal has been open part of the present monith, and a large quantity of produce carried down to be shipped from New Orleans. Ohio has eight canals com: pleted, or in a state of forwardness, the aggregate length amounting to 812 miles.

-N. Y. Express. 511 à

REEFINO TOPSAILS.

We learn from the Zion's Herald that Captain Jolin Wade, recently of this city, but uow of New Orleans, has hit upon a simple contrivance, by which all tho sails of a vessel can be reefed in a speedy and perfect manner, while standing on the deck. He had just taken out a patent for it at Washington.-U. S. Gazette.

The attention of the public is called particularly to the proceedings of a meeting held in this town last evening. The importance of the subjects embraced in the resolutions, is great, and indeed involves the immediate prosperity of Mil-
attention of Congress to the subject. The scarcity of harbors on Lake Michigan, and the great natural advantages of the bay and harbor of Milwaukee, are strong argunients in favour of the project. The number of vessels stranded and utterly. lost on our shores for ihe want of haret? bors, are wretched monuments of the necessity of doing something.
The necessity of a good road from Chicago to Green Bay, passing through Milwaukee, is so obvious as not to admit of démonstration.

The division of the Territory is also a matter of importance. The subject is now before Congress, and all we have to say about the matter is that the wishes of the people, so far as we have been able to learn them, coincide with the views expressed in the resolutions.-Milwaukee $\boldsymbol{A} d v$.

The Northern Railroad in Michigan will commence its eastern terminatioe at Fort Huron, on the Lake of the same name, and pass through the heart of the State to Grand River, This will be a continuation of the great Western Road through Canada, commencing at the head of Lake Ontario and ending at the foot of Lake Huron. The three Railroads through Michigan will be the one nbove named, the middle from Detroit to St. Joseph, and the southern from Monroe to New Buffilo. Intersected by such channels of trade this young member of the confederacy will enjoy to the fullest extent the benefits arising from the fer. tility of her soil, and industry of her pop-ulation.-Baltimore American.

toledo and michigan ctity railload.

The entire strvey of this road is now completed, and the part from Michigan City to Laporte, we are informed, is in the progress of construction. Its whole length is 178 miles; 64 in Ohio, and 114 in Indiana. The Ohio line has been run. The western country is probably the first in the word for Railroads; and the resources of the abave described section of the country richly deserve such a communication.-Chicago Citizen.

Volume Six will be completed as speedily as possible. The next, of Vo lume for 1838, will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will da well to apply for them soon. We shall alway take pleasure in furnishing them if we have them to spare.

0 Particular attention will be given to the procuring of all kinds of lnstro? ments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

The Sphetriber offorg hig serviegr ar A prot to proedre blochinery for Mult, Skeam Prat. Eined, Laromotived 1 of in
Ho mill give prompt athmtion to all ordert anktryted ro bin for oxecution. and plodgos himetr to thone who may employ him, that ais effite 'on'his' part shatt be wanting to procuve tho best antieles to bo had in the city-and to giverscrisftelien,
He ill aloo employ Millwrighis and Engl. noers, to eroct Mills, and pat the Enginet and Machinery in operation.
Orders tecimplatiod with the necessary fuadsi/or attiefactory nity aoceptances, diaul be addreased to D. K. MINOR, 30 Wall-ht. N.Y

LOUISVILLE, CINCINNATTI, AND

CHARLESTON RAILKOAD.

NOTLE TO CONTRACTORS.-Sealed Proposale will be received at the Office of the Company in Colunbia, S. C., ontil the 15th day of Febriary next, for the graduation and masionry of that portion of the Road from Columbia to the crossing of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.
Alea, tor the conatruction of a Bridge of 400 feet in lengils, on the Congarea River, to bo built on stone piers and abutments, for which there are suituble quarries in the neigh borhood.
The plans and profiles of the line will be ready fur inapection at tho Office of, the Resident Enginoer, it Columbia, S. C., after the 10th day of February.
So soon as the survege for location, now in progroas, are completed, that part of the Road extending from McCord's Feiry to the Charleston and Hamburg Railroad, at Branchville, will be put under contract, of which due notiee will be given.

WM. GIBBS Mo NEILL,
Cbief Eoginoer.
$\$$ The Railroad Journal, N. Y. Courier \& Eaquirar, No, Yurk; Providence Jouraal, Providence, R. l:t Atlas, Bostoll ; Philadelpia En. quirer, Pliladelphia; will pullish the aboro notice 6 timen, send a cony of the paper to the Office in Charleston, s. C., and a certfied copy of their aecount for pagment.
Jan. 12
fmw 6

NEW ARRANGEMENT.

EORES FOR INCLANED PLANES OF RA!HHOADE
W.E the subscribers bave formed a co partnerahip under the stylv and firm of Folycr \& Coleman, fir the manufacturirig and selling of Ropes for Inclined plames of railroails, and for wher uses, offer to supply ropes for inclined planes, of any length required Whout, apice, at short notice, the manufacturing of cordage, heretofore carried on by S. S. Durice \& Co., will lie dinne by the new firm, the same auperfatendent and machinery are employed by the new frm that were employed, by S., S. Durfce \& Co All orders will be properly attended in, and ropes will be shipped to any port in-the. United Slates.
12th mouth. 12th, 1836. Hudson, Columbia County, State of New-York.
83.-tf

ROBT. C. FOLGER.
AMPS CELEBRATED SHOVELS,
300 dazens Ames' superior back-strap shovela.
150 do. do. do. plain do do. 150 do. do. do doastel Shovela \& Spades 150 do. do. Co do casiatcel Slovel 00 do. do. plated Spadea.
50 do. do. socket Shovels and Spades
Together with Pick A xes, Churn Drills, and Crow Bana (ateel pointed) h manuffoctund frony \$alimbury refined iron - for sule hy the manufarturing agents, WITHERELE, AMES \&CO. Ni. 2 Litherty street, New-York BACKUS, AMES \& CC.

Fo. 8 statiownet. A many.
N. B.- A lso firnished ta prider, ishaperof every

MACHLNE WORKS OF ROGERS KETCHUM AMD GROSYENOR, PHVNO
 vorks being axionsivg end the nnmiber of hand vorks, being asionsing, and the nomber of habled to exechit boin'fro and sicall owerw whas proupthee atw diepratch.

RAILROAD WORK

Locomotive Seesm-Enginés and Tenders; Dri ving and uther Locomotive Wheela Asle Sprisg and Fhange tree; Car JV hee' of case irpm, fropy a variety af pateeras, and. Child; Car Wheels of cant inun, with wroughat Tires 1 Axles of best American refineit irun; 'Spriage; 'Boxes' and' Bolis for Cars.
COTTON, WOOL, \& FLAX MACHINERY,
Of all descriptiuns and of the most improved pat lerns, Syle, and Workmanship.
Mill Geering and Millwright work generally Hydrauhe and other Preases; Prees Screws; Cal Ifndera; Lathes and Tools of all kinds: Iron ant Bress Cas' ings of all lescriutiona.
ROGFRS, KETCHUM \& GROSVENOR:
Paterson, N: J. or 60 W all-st. New-York 51 If

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to otbers to buitt on his Putent Plan, wou. 4 ruspectfully inform Ruilroad and Bridge Corpora tions, that he is prepered to make cohtracts to build: and firinish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted.)

Bridges in the above plan are to be apen at the followi- o localitics, viz. On the main rnad leading from Baltimore to Washingion; two miles from the former place Across tho Mutawankeag, river on the Miluary road in Maine. On the national road In Illmois. at surdry paints. On the Baltinure and Susquehanna Railroad at three puints. On the Hudson and Paterson Railroad in iwo places., On the Baptinn and. Worcester Railroad, st sevcral points. On the Boston and Provilence Railroad. at kundry points. Across the Contomeiok river at Hennikar, N. H. Across the. Snuhegan river, at Milford, $\mathrm{N}_{\mathrm{N}} . \mathrm{H}_{6}$ Acroms the Connecticut river, at Hancocd, N. H. Acrues the Androscoggin river at Turner Centre, Mainc. "Acrnss the Kennetiee river, at Waterville, Maine. Across the Genesee river, at Squakiehilh, Mount Morris, N. Y. Across the While River, it Hartford, Vt. Across the Connecticut Biver at Lebanon, N, H. Across the mouth of the Brokinn Straw Cireek, Penn. A cross the mnuth of the Calaraugas Creek, N. Y. A Railmad Brilge Jinignally across the Erie Cansh, in the City of Rucherter, N. Y. A Railriad Bridge at Unper Sill Water, Orona, Maine. This Bridge is 500 feet in length; one of the spans is over 200 fret. It is probably the jirmeat wooden bridyre ever buili in America.
Notwithotanding his presect engagements to build hetween twenty and thirty Railruad Bridges, and several common bridges, several of which are nnw in pregress of contruction, the subseriber will promply attend to businesis of the kind to much greater extent and on lilieral terms.

MUSES LONG.'
Rachestet. Jan. 19th, 183%.
4-y

STEPHENSON

Builder of a superior style of Passenger Cars for Railrouds,
No. 264 Elizabeth metret, near. Bleceker street, NBWFYORK.
RAILRQAD GOMPANIES mould do well to examine these Cara a specimin of which may be seen in the New. York and Harlaem Railroad, now in nperation.

ROACH \& WARNER,

Manufacturers of OPTICAL MATHEMA TICAL AND PHILISOPHICAL INSTRU MENTS, 203 Broadway. New.Ynrk, will keep onnotently, on hand a large and geperna amortmont of Instrumenta in thieir line.
Wholénle Dealers ind Country Merchants sup. plial with SURVEYF NG:COMPASSES; BA. ROMEIERS, THERMOMETGRS, \&G, Ácy of cheir urp mapnfucture, warranted accurate, and a lower prices than can be had ai any other citablish-
If Itrements made to order and repaired.

THemberibate offer ithe Mllowing avinle seat

 RailwIrop fal bars with wonntersuol hotes and gitres joints, 200 to nf $26 y, 15 \mathrm{f}$ in longth, weighing 4 form
 80 is 14 125 90 with Spiker and Splicing Plates adaptel thereto. [o be cold fres of cluty to State guvetpmepts, or ucoriorated companipe
Ordera for Pénnsylvania Builer Iron executed,
Rail Ruad Car and Locome tive Eriginen Trres wrought and turned or unturned, ready to be fitted in the wheele, viz. $30,33,36,42,44,51$, and 60 inclies dlameter.
E: V; Patent Chain Cabie Bolts for Railway Car axles, in lengllis of 12 feut 6 inches, 20.13 feet $2 \$$ $22_{3}^{\circ}, 3,3 \frac{5}{3}, 3131$, snal zi inches diameter.
Cbains fir luclined Planes, shiot and stay links, manufuctured from the E. V. Cable Bolis, and proved at the greateot strain.
India Rubber Rope for Inclined Planes, made froin New Zealand Wax.
Also, Patent Heínp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Fell for, plucing betweeo the iron chair and stone block of Edge Railvays:
Every description of Railway Iron, as well as Locomotive Engines, imported et the shortest nutice. br the asency of one of unt porthers, who resides in England for this purpose.
A highly respectable A merican Engineer resides in England fur the purpose of inspecting all Luco. motives, Machinery, Kailway Iron, \&c. ordered through us.
A. \& G. RALSTEN \& CO.

38 If
Philadelphia, No. 4 South Froni-at.

ARCHIMEDES WORKS.

(100 North Moore-street; N. Y.)

THE undersigned beg leave to inform the proprieturs of Rail Ruade, that, they are, prepared to furnish all kinds of Machinery for, Rail Rouds, Locoinutive Engines of any size, Car Wheels, such as are nuw in nuccessful operation on the Camden and A ubby Rail Ruad, none of which have faled.Castings of all kiudy Wheele, Axles and Boxes, furnished at the shortest notice.
H. R. DUNHAM \& CO.

New York, February 12th, 1836.
4-ytr

PATENT RAILKOAD, SHP AND BOAT SPIKES.

- The Troy lron and Nail Factory keepe constantly fur sale a very extenive acsortiment of Wrought Spuikes and Nails, from 3 to 10 incher, manufactured by the subscriber's Pateni Machinery, which after five years auctesful operation, and núw almost univernal wee in the Unired Statee, (as well as England, where the subscriber oblaincd a patent) are found superior to any yet ever offered in market
Railfoded companies may be evipplifd with Spikes having coontersink beads suita ble to the hofen in iron rails, to any amount and on short noties. Al taost all the Railroads now in progress in the United States are fastenell with Spikea made at the above-named fictury -for which purpose they are found invaluable, as thrir mitiesion is more than doulle any cominon Spikps made by the hammer.
** All orders directed to the Agent, Truy, N.Y. will be punctually internded to.

HENRY:BURDEN, Agent.

Troy, N. Y, July, 1831.

** Spikes ace kept for sale, at factory, pricest by 1 \& J. Townsend, Albany, and the pritycipal yron Merchanis in Albany and Troy; J. P. Brower, 220 Water-street, New Yurk jlac M. Jointí Philaidet phia; T. Janviers, Baltimane in Degrand \& Smith, Eoston.
P. S.- Railroad anmpaios would dn well, io or ward their ordere as early al practicnble, at to

 demand far him Sujk

1323 am
H: BURDENTO:
G. Micchelli, Printer, 205 Bowery, N. I.

ADVOCATE OF INTERNAL IMPROVEMENTS.

D. K MINUR, and
D.

GEORGE 9. SCHAEFFER, \} Proprieturs.]

CONTENTS.

Coramunication
Report of the La ncaster and Harriajurgh Railroed.
Eeport of the Jefforeonville and New Aibany Canal
Company
Railroods and Steamboats
Misceilaneous Itma,
Advertisemente
AMERICAN RAIIROAD JOURNAL.

NEW-YORK, FEBRUARY 10, 1838.
We are indebted to the kindness of Messrs. Curtis and Scoles, for Congressional and Legislative documents.

Also,to J. E. Bloomfield, Esq., for the Report of the Canal Commissioners.

In placing the communication of "Veritas" before our readers, we feel that we cannot too strongly insist upon the correction of an error of so great magnitude as that animadverted upon by our correspondent. In so far as facts are concerned, the erroneous statements in this case happen to be diametrically opposite to the truth. Moreover, we have heard experienced engineers state, that the exceedingly rapid transit of passage cars actually injured the road more than the trains of burden cars moving at a more moderate rate.

To bolster up a foolish proposition by distorted, or rather entirely false statements, is no way to aid the cause of Internal Improvements.

For the Rallrond Journal.

DTTCA AND SCHENECTADY RAILROAD, dC. AND THE UTICA OBSERVER,
In a recent number of the Utica $\mathbf{O b}$ server, (January 30th, the Editor of that paper holds the following language :"So far as the Railroad companies are concerned," (speaking of those on the line from Albany to Buffilo) "we are informed that they, consider the carriage of freight as rather detrimental than bemeficial to their interests, The experi- contains a full refutation of the statements above queted from the Observer.
The evidence to which I refer, is the Report of the Liverpool and Manchester Kailroad Co. for the half year ending June 30, 1837, being the latest Report emanating from that company received in this country.
By that Report it appears that the gross receipts, or income, for the half year mentioned, is as follows:-

Transportation of Pas-
sengers, $£ 59,95646$
Do. Merchandize and
Coal_{2}
45.995 II 6

Total receipts, £105,951 $16 \quad 0$
The Report states, that being " intimately connected with the trade and commerce of the country, the traffic by the Railway in the merchandize department has diminished with the diminished trade of this great commercial and manufacturing district." It speaks, also, of the "general depression in trade, which had occasioned a serious diminution in the traffic by the Railway," and of the misfortune, "that when the Company were prepared to meet an enlarged business, the aggregate traffic should have been curtailed."
This, certainly, does not look much like a discontinuance of the transportation of Merchandize upon that Road, as asserted by the Editor of the Observer; neither is there evinced any intention of relinquishing a branch of their business from which, as appears by the receipts above given, they derive pearly one-half of their income. On the contrary, the Company deprecate as a calamity, the loss of a portion of that business resulting from the pressure of the times, which the Editor of the Observer, says, they
were not ouly anxious to relinquish, but had absolutely discountenanced.

From my knowledge of the character of the Editor of the Utica Observer, I feel confident he would never knowingly attempt, either directly, or indirectly, to deceive the public on a question affecting so vitally their intcrests. He has, undoubtedly, been misinformed by ignorant or designing-persons, who are aiming, it is believed, to accomplish two objects.

The first is to induce the State of New-York to relieve the Railroad Companies along the line of the Erie Canal, from the restrictions at present imposed upon them in respect to the carriage of freight. The second, and probably the leading object, is to produce an impression unfavorable to the adaptation of Railroads as a medium for the convegance of freight, and thereby prejudice the success of the application now pending before the New-York Legislature, in behalf of the New-York and Erie Railroad.

As to the propriety of the State imposing restrictions upon private euterprize, as is now done on a large portion of the line of Railway from Albany to Buffalo, in prohibiting either entirely, or conditionally, the carriage of freight, I presume no difference of opinion will be found to exist among reflecting and libe-ral-minded men. It is, however, too much the practice in these days of speculation and "humbuggery," to endeavor to accomplist by finesse, and misrepresentation. what should be done openly and above board. Had the "informants' of the Ohserver cone out fraukly, and acknowledged that the transpurtation of merchandize was a desirable object with the Companies located along the line of the Canal, and that they were anxious to have the present restrictions removed, we should with pleasure, when the proper time arrixed for action. have seconded this request. But when they aim to accomplish their object by indirect and improper means, which from their character are calculated, and probably intended, to μ reju. dice other and more important interests, we must be excused for speaking out plainly, and piacing the whole matter in its true light before the public. Veritas.

REPORT OR THE SUPERINTENDENT OF THE
lancaster \& harrisaurg bailroad.
To Samuel Wonderly, Esq. President of the Lancaster and Harrisburg Railroad Company.
Sir,-lln presenting to you a detailed account of the operations and condition of the road, which in some measure, has for the last year been entrusted to my care and management, I feel no ordinary degree of pride and pleasure in being able to present to you a statement of its condition, because when we reflect upon the various disadvantages and difficulties with which we have been surrounded almost from the onset, it is truly a flattering one, not only to those who have had the general direction of its affairs, but also to those whose money has been so liberally advanced for its construction.
To say nothing of the opposition, from a powerful source, which the Board was compelled to contend with, from the very commencement of their operations, and which was only overcome by a determination and industry that few men would have been capable of exercising, it is enough to draw the attention of yourself and those associated with you in the management of the Company, to the fact, that ever since the first division of the road went into operation, there has been an almost regularly organized, and I might say, pensioned set of people, acting in perfect unison to misrepresent, and by every species of management injure the business and reputation of the road. This course of treatnient towards any particular portion of the improvements of the country by any set of individuals, I am aware, may to you, and still more so to others havnig a deep interest in the road, appear rather singular and almost impossible. But when they reflect that the entire business of the improvements of the state, had for years been regularly flowing through their different channels to centre at one particular point, they will not think it strange to see the people whose hopes and prospects were likely to be destroyed by another improvement, rise en masse to cross its progress. Such was the state of things at the commencement of this road. The town of Columbin is peopled with an active, industrious, intelligent and enterprising people. They saw at the commencement of the system of internal im. provements what they believed the interest of their town; and unlike people of other towns and villages, possessing a greater extent of boundary and advantages, acted in concert and effected their object,-the location of the canal and railroad so as to make their town the point at which every thing must centre, was the result.

The commencement of the Harrisburg and Lancaster Railroad, was a blow aimed at the towering prospects which they had naturally built upon, and which they were realizing from the fruits of their former good management. To prevent its construction was the only
hope of a set of men who knew too well its effect upon themselves, if once it went into successful operation. This, then, was the grand cause of the many difficulties which were thrown in the way of the first operations of the Board, and which have still continued to extend themselves from one branch of operation to anotiuer. And it is the same feeling and interest which, being unable to effect any thing else, is endeavoring to operate upon the Legislature to authorize the making of another, or opposition road. All this, however, will avail them nothing. The Harrisburg and Lancaster Railroad has been made in despite of all opposition, and is now I am proud to say, in the full tide of successful and profitable business. And before taking leave of this subject, permit me to say, that the location of the state improvements is one of the strongest evidences to prove the important fact, that nothing short of a straight-forward, disinterested discharge of duty by any man or set of men, entrusted with the direction of any public improvement, will sustain them to the end. Had the public agents kept an eye solely to the interests of the commonwealth, or the public, there never would have been a canal from Middletown to Columbia, and a ruilroad from Lancaster to Columbia. No, the canal would have ended at its junction with the Union canal, and the railroad, instead of being pronounced impracticable, would have been made upon precisely the ground upon which it was located by the talented young gentleman, Mr. Roberts, who stands at the head of your engineer corps. It is true that the construction of this road has been an expensive business to those whose means have been compelled to bear the burthen, but the past sufficiently proves that the most sanguine anticipations of its friends will be more than realized.

The first nine miles of the road went into operation about the 16 th of September; 1836. Business was partially commenced upon the fifteen miles next Lancaster about the 1st January, 1837. Soon after this second division went into operation, I commenced my duties upon the road. Of the situation of things at that time it is scarcely necessary for me to say a word. To you they are familiar. I found two strips of disconnected road, that had most of it been hurried down at a season of the year when it was impos. sible to make good work. We had no facilities at either end of the road We had no workshops; no tools to make the most trifling repairs, either to the road or to the engines. We had no water stations; no turnrounds at either end; no sidings, or turnouts, at any one point on the road. In short, we had nothing but two unconnected portions of road, with but one engine fit to run, the "Middletown," upon the upper end of the road. One other engine was in use at Lancaster, the "Dutchman" but in such condition as to be unfit for duty had there been any
other. In this situation it was not to be expected that much could, or would be done. But what was the result? Notwithstanding we had no facilities, and in despite of every dificulty, we succeeded in carrying on the regular business of the road.
So well, too, were the community satisfied with the accommodations afforded them, that the business continued to increase almost daily, from the very day of our operations. To establish this fact, it is only necessary to refer you to the extraordinary exertions made at the opening of the Canal, to induce those gentlemen doing business upon the road, to leave it for the state canal and railroad. To effect this, every inducement was held out by all whose interests lead them another dircction. But finding that Messrs. Colder and Poters understood their ultimate interests too well, to be dazzled by a temporary saving of a few dollars, a powerful and determined opposition was got up, called the "Express Line,".headed by Mr. Leech, a gentleman of industry and great experience in business, and as a "blow kept in reserve," the state agent presented to the public a large argumentative advertisement, in favor of Mr. Leech's line, which ran upon the state improvements. But all would not do. The "EXPRESS LINE" was soon compelled to fly to the two little bits of unconnected road, which with all its disadvantages, was capable of satisfying the public that it was the direction which nature had intended as the line of communication between the metropolis and seat of government of the commonwealth. Situated as we then were, with an enormous travelling business, and little means of accommodating it, the only wonder is that we were able to succeed at all, But, although the situation of every one connected with the road, and particularly my own, was such as I should never wish to undergo again, I felt myself fully compensated when I reflect that great as the difficulties were, they have all been overcome. And powerful too, as was the oppositfon, it has been compelled to yield to the force of public opinion, and to seek other means of effecting its object. But how different is our situation now? We have struggled on until we have the whole linc of our road in operation. The tunnel, it is true, is not finished. But it is in a state of forwardness which warrants the belief, that we shall in a very short time, be able to pass through it, and thus afford our stockholders an opportunity of realizing the proud gratification of having effected that which the Commonvealth with her millions had pronounced impracticable.-Here permit me to say, that the operations at the tunnel are highly creditable to every one connected with it. Every facility is afforded the contractor by the different members of the engineer corps; all being anxious to do every thing in their power to finish that in which they feel the Company have so deep an interest. The
contractor is pushing his operations with no ordinary degree of skill and determined industry. There are now about 130 men at work oll it, and a portion of them at work all night. But the increasing demands of persons wishing to commence business on the road, made it necessary to make a still greater effort to accommodate, and a temporary track is now about being finished over the hill. By this we are enabled to do a very large transportation business, , which 1 feel confident will be found a source of considerable profit to the company, and which could, otherwise not have been had, to say nothing of the effect it is calculated to have upon the public mind.

During the past summer and fall, much time has been devoted in making such conveniences as were indispensable to the business of the road. Among these, were the water houses and wells at the different stations, turn-rounds to turn the engines, one at Harrisburg, one at Elizabethtown; one on the east side of the tumnel, and one at Dillerville. We have also been compelled at each of the other points, to have turnouts or sidings, all of which have required much time, attention and considerable expense. We have also been compelled to construct separate sidings, in which the three different weigh scales have been placed.The scales have been put down, nad the one at Dillerville, is now ready for use. We have had in use for the last three months a very couvenient little smith shop at the eastern end of the road, at which the repairs of the engines at tliat end of the road have been done at an expense mucb below that which they would have have cost, had they been taken to a strange shop. Since then, the permanent machine shop has been built at the same place, where all repairs of the machines can be done to a much greater advantage than they have been heretofore done. The depot house too, is about being finished. In speaking of these buildings, it is but just to say, that I believe they will compete with any other in the country, and from their neatness and convenience in answering the difierent purposes for which they are severally intended, reflect much credit upon him who designed them.

In conducting the business of the road, it will be recollected, it became necessary for the superintendent of the road to direct many things, and attend to the construction of many more, which under other circumstances would not have been part of his duty. But as above stated, we commenced business without any preparations, and having turned the travelling public upon the road, it would not do to suffer them to leave with a promise that we would be prepared to accommodate them at some future period. In this state of things, there was no alternative for the superintendent, but to exert himself to authorize and attend to the construction of such facilities as the business and the interest of the road required.

This, in every instance, was done as speedily as possible. Thus it was that we were able to continue our operations. And it is but right to say, that any other course than the one adopted, and pursued under the direction of the president, would have been found insufficient to meet the many difficulties which were daily presenting themselves. This course of management, which became indispensable from the situation of the road, and the want of funds liy the company, from which the engineer could draw, has been the cause of a large amount of money being expended, which otherwise would now be in the treasury. This will be seen by a reference to the regular statement of the expenditures, as properly arranged under their proper heads.

But as we have travelled through the worst of our difficulties with which we were for a time surrounded, permit me now to draw the attention of the Board to a more pleasing picture. The whole road is now in use. It is not like some other improvements which have been made at a very heavy expense, only ready for use, but it is actually being used by the great body of the travelling community. It is now not only the means of accommodating the traveller, but the man of business finds it his interest to prosecute his business upon it. Many gentlemen engaged in the transportation of merchandise, have commenced using their cars upon the road, and many more are making arrangements to commence in a few days. From what has already been done, I feel confident in the belief, that before the first of May next, we shall have onr road lined with business of every description, yielding profit to the stockholders far above their greatest anticipations.

The expenditures or payments, by my order, for all expenses since the commencement of business upon the road, being over 16 months, will be found as follows: For motive power, including repairs of engine, $\$ 11,57339$. For repairs of the road, $\$ 2,45798$. For permanent constructions, $\$ 6,21900$.

Thus it will be scen that a considerable amount of money has been expended for motive power, when compared with the amount expended for the repairs of the road. But to explain this, it is only necessary to remind the Board that owing to the unfinished state of the road, very nearly double the expense has been incurred which would have been necessary for the same amount of business on a finished or continuous road. Being compelled to stop at different points on the road, and return with the engine, made it necessary to keep up a double set of engiues, engineers and firemen, and in the article of fuel the expense has been more than double, because during the whole time the engine is standing, waiting, turning, or changing, nearly the same consumption of fuec is going on as though the machine was performing her regular labor. Owing too, to this con-
sumption of fuel, a double set of workmen became necessary to saw wood and pump water. But let us see how it will compare with the expense of the same department upon the state road. Upon the Columbia and Philadelphia road has been run during the most of the last year, eight locomotives per day. The amount of cost of motive power as taken from the superintendent's report is 8115,000 , or thereabouts. The two-eighths of this amount would be 128,748 , and our expenses were as above stated only $\$ 11,673$ $39!!$ Thus we see that on that road with every facility that skill, experience and money could devise and construct, the expense has been within a fraction of treble what it cost on our road, with all our disadvantages.
But I am pleased in being able to present to you so small a sum of money expended for the repairs of the road. This I think will argue but little in favor of the doctrine that is advanced by a few, that the State ought to have the management of all the improvements. The Columbia and Philadelphia road is about eighty miles long. and by a reference to the late report of the canal commissioners it will be found that $\$ 51$, 55322 has been expended during the whole time it has been in use, is but $\$ 3,457$ 98. In addition to this money, repairs became necessary during the last summer, that otherwise would not have been, had it not been that a large portion of the road was hurried down during the previous winter, and which had to be taken up so soon as the frost had left the ground. Next year it is confidently believed that the actual repairs of the road will be much less than they have been the year just ended. And again let it be remembered, that the state road is said to be a perinanent road; to avcid much repairs, was made of iron and stone, at a cost of about $\$ 60,000$ per mile, while our road is called a perishable road, and has been made at a cost of about $\$ 19,000$ per mile. So it will be seen from the above fact, that the difference in expense of the repairs will in a few years leave in the treasury a sum sufficient to replace the whole superstructure of the road.

James Cameron, Superintendent. January 6, 1838.

REPORT OF THE JEFFERGONVILLE AND NEW Albany Canal Cumpany.
To the President and Directars of the Jefferson. ville and New Albany Canal Co.
Gentlemen-It having pleased you to entrust the undersigned with the duty of ascertaining by actual surveys and estimates, the practicability and probable cost of constructing a navigable canal around the falls of the Ohio on the Iadiana side of the river, adapted to the use of steamboats, he has the honor to inform you that he has fulfilled the task thus confided to him, and now presents for your.consideration the following report:

On entering upon the examination of the ground to be occupied by the propos. ed work, two routes presented themselves to the consideration of the undersigned. By the first it was proposed to commence at a point on the Ohio river immediately above Jeffersonville, and near the boat yard; from this point a straight line was to be run to the valley of Nill runthence curving into the valley of that creek, it was proposed to occupy it to its mouth in the "Basin" below the falls opposite Clarksville. It required but a partial examination of this route to discover, that it neiber offered the inducements of diminished distance, usefulness when completed. or superior economy in its first cost of construction.

This ronte was ibnoxious to the objec.tions of greater length, greater depth, and quantity of excavation of earth and rork, and greater inconvenience was likely to be experienced after its completion from the water of the two creeks, which it was thus rendered necessary to cross, if this route was occupied by the canal: -yielding therefore to the force of these considerations, another route was songht for, found, and is recoummended to you as the most favourable of the two examined to the achievement of economy in the construction of the proposed work, and usefulness when it shall have been completed.

This route has its point of beginning on the Ohio river above Jeffersonville, near the boat yard, and pursues a straight course for about one mile-thence it turves into the valley of Cane run, and occupies the valley of that run to its month, thence it crosses the "Big Eddy," in the river by an enbankment, which will furm a large, convenient basinthence following the margin of the river, the canal descends to the river by two locks, the lower one of which is placed in the river, nearly opposite the mouth of Mill run-and in such a position that boats can enter it at the luwest stago of the water. The length of the canal on the proposed route is two miles and 3,200 feet, and the fall is twenty-five feet between the upper and lower mitre sills. After the determination of the proper route for the canal, the subject which next engaged the autention of the undersigned, was the ileteruination of the dimensions appropriate for the proposed
work. It would secm work. It would seem at the first view that the maximum usefulness of the canal would be obtained when its widh when finished, was stech that two boats of the largest class conld pass each other unob. structed. But it is manifest on reflection that todimensions so extended in breadth, as would be requisite to pass two boats abreast, there would be countervailing ebjections in the enhanced first cost of the work, and the increased difficully and expense necessary after its completion to keep it free from the obstructions incident to sedimentary deposite. Nature in forming and regulating the rivers, which drain the great western valley, has
assigned to eich a velocity sufficient to carry off to the ocean the sediment with which the watersare abundantly charged during the periodical inundations to which they are liable.
The Ohio, although it has not mingled with its waters as much solid matter as eitler the Mississippi or Missouri-yet experience has abundantly shown that during the spring and autumnal freshets, it contains a sufficient quantity of this sadiment to obstruct the free use of a canal, unless means is applied either to prevent its subsidence, or to effect its renioval after its deposition-(which happens at every consilerable rise of the river.) As the perfection of human skill consists in wielding nature's laws and natural agents for the achievement and preservation in perfect repair of the works of art, it has occurred to the undersigned that the same ineans must be used for keeping your canal frec from sedinientary obstructions, that nature has applied so succes.fully to the river, for the long lapse of ages that has intervened since its creation, and which yet continues, and probably ever will continue to enable it to move on in its course of unobstructed and unceasing usefulness. It is evident therefore that you must create in the canal doring periods of high water a current equal to the average velocity in the river ; or at least such a current as will he sufficient to keep light alluvial matter in suspension and progressive motion.

This desirable effect will be produced with more ease on a narrow han on a broad canal, for inusminch as this current inust be created lyy the water of the canal being made to flow through gateways placed at the lower end of the canal; of course, the more contracted the cross section of the canal, the less will :he uniount of gateway necessary to create a given velocity. Combining all the considerations of economy of construction, with facility of cleansing the canal when in use, the undersigned has established the breadth of the canal at eighty feet-the sides to be walled up vertically to the lieight of thirty fect when the excavation exceeds that depith. These ver tical sides have been found by experience to be much better adapted to the free passage of steamboats through the canal than whern they are made sloping. This width will enable two boats of the small and middle class, to move abreast in the canal. For the accommodation of boats of the large class. it is proposed to provide at suitable intervals, two basins, or passing places, in additien to the spacious one which will be made ut the " Big Eddy."
The canal now in use on the Kentucky side of the river, is not equally deep throughout its entire length: the under signed was infurmed, that it is not so deep up at the entrance of the cunal as it is at the head of the upper lock, by more than one foor, and hence the frequent grounding of boats observed at that point :-to
remedy this in your canal, it is proposed to sink its entire hottom level, one foot below the mitre sill at the hend of the upper lock before imentioned; this will give you, at the lowast stage of the river, five feet depth of water in your eanal.
It might seem at first view that this will furnish a greater depth of water than is necessary-for it may be said, that at the same time you are providing for five feet depth in the canal, there will be only two and a hatf feet on the Flint Island and French Island bars.
This would be true were it not rendered otherwise by the difference in height above and below the falls, to which the river rises during freshets-thus: when the river is at its lowest atoge the fall is twenty-four feot from the sulface of the water above to the surface of the water helow the falls, and then there is four feet depth of water on the upper mitre sill of the upper lock in the Louisville and Porlland Canal.

When the water rises two feet at the head of the falls (and of course in the canal) the fall is reduced to eighteen feet, there is about eight and one-half feet depth of water below on the French Island Bar, when there is only.about six feet depth in the canal. It is therefore in the medium stage of water in the river, that greater depth is found to be requisite in the canal.
The dimensions assumed for the locks are as follows-width in the clear, fiftyeight feet, and length from the upper to the lower hillow quoin 240 feet. Such a lork will pass a boat 225 feet long and 57 feet wide. It is not probable that a boat exceeding these dimensions will ever pass the falls, except when the water is at its greatest height, and then she can pass over the falls in the bed of the river. It is farther proposed by the undersigned to overecme the whole fall by tivo locks instead of three, as now used on the Louisville and Portland Canalalso it has been arranged to separate the two locks by an intervening basin. In this manner a greater number of boats can te passed in the same time and wilh n less expenditure of water. The cost of the lower lock is very greally enbanced by the necessity which exists, of locating it out sonee distance in the river, where coffer dams, and much pumping of water will be required, together with embankment and walling. This is oceasioned by the extreme sballowness of the water at its low stage, by reason of which it is necessary to place the outlet of the lock some 300 feet into the river to obtain the requisite depth for the pur poses of navigation. In order to maintain a current in the canal at high water so as to keep the sediment in motion, and prevent its subsidence in the canal, it is proposed to erect a wier, with a number of gates in the bottom of it, and to be of such a height that the waler will run freely over it, when the river is in the condition that bonts can pass over the falls.

Having thus detailed the general plan
of the canal and its incidental construc-tion-it remains to submit the estimated expense attendant on the execution of the work in the manner proposed-to wit:

For

1,322,100 Cubic yards ofexcavation of common earth, gravel, \&c., at 30 cents per yard, $\$ 396,63000$
382,384 Cubic yards of excsvation of solid rock at $\$ 1,50$ per cubic yard,

573,576 00
219,924 Cubic yards of embankment from the canal at 10 cents per yard,
228,508 Cubic yards of embankment not from the canal at 20 cents per yard,
153,512 Perches of walling
at 50 cents per perch,
For two bridges,
For a waste wier and gates,

21,992 40 bankment not

45,70160
79,236 00

For two locks with the necessary coffer dams. ex cavations of pits, gates, \&c.,

320,908 00

Totol cost

\$1.462,644
The cost of the Lonisville and Portland Canal up to the present ume is $\$ 953,300$, and on this amount the directors have declared a dividend for the past year of thirteen per cent-which if divided on the capital stock necessary to construct your canal would have been a dividend of 8 47-100 per cent.

It is clearly manifest that if a canal of large dimensions and greater depth were now constructed on the Indiana shore, the business would forsake the present canal, and seek the facilities offered by this enlarged and improved avenue of trade.

To counteract this operation, injurious to its interest, the Louisville and Portland Canal company would most probably seek to restore its business, by a reduction of the teriff of tolls at present imposed.

But aside from considerations of this sort predicated on the present trade of the Ohio river, it requires but slight forecast to predict with the certainty of its fulfilment, that the period is not far distant whe the trade of the Ohio valley will furnish to both canals as much business as they will be competent to perform.

To verify the truth of this assertion, it is only necessary to examine the magnitude of the country dependant on the Obio river as the avenue on which its commerce is to be conducted. A very large portion of the inhabitants of twelve states in the union are immediately in-
lerested in the navigation of this river The country inhabited by these peap'e was bu: a few years ago the home of the savage ; and even now, the greater portion of it is a wooded wilderness or an uninhatited prairie.

But when the swelling tide of population shall have peopled this fair and fertule land, with an industrious and hardy race, then the requisitions on the Ohio river as a channel of commerce will be coextensive with a nation's growth, and will be lunited only by a nation's wants.

In speculating on the probabilities of the future, the facts furmished by the experience of the past may be profitably consulteil-and accordingly the undersigned has collated the following tabular statement from the 13 th annual report of the president and directors of the Louisville and Portland Canal Company to the stockholders. This elatement shows the increase of trade on the canal from the year 1831 to 1837 as follows:

steamboats.	Flet and Keel boots.Tnns 406	421
453	179	70109
875	710	169885
938	623	162000
1256	355	200413
1182	260	182220
1501	165	1242374
$\mathbf{6 6 1 I}$	2713	$1,103,324$

Taking the period from 1833 to 1837 as indicating the future rate of increase of the trade, it will be thirty-five per cent. per annuin ; and at this rate of increase the number of tons which will pass the Louisville and Portland Canal in the year 1847 will amount to 848,309 , and if the price of tols is kept at the same rate now charged, the company could then divide forty-five per cent. per annum on the capital stock. This calculation. which is by no means extravagant, will exhibit clearly to the directors that the stock of the Jeffersonville and New Albany Canal will yield more than six per cent per annurn : because, as the dividend on the stock of the Louisville and Portland Canal is limited by the charter to eighteen per cent., it has been shown that in 1547 there will be tonnage enough to pay this dividend and leave twelve per cent. for your canal. But yours being the larger work, offering greater facilities to the passage of boats, would probably command the major part of the trade.

The application of the water power which will be created by the construction of the proposed work, may also be made a source of revenue to the company. The Louisville and Portland Canal Company has callsed to be kept a daily register of the comparative rise of the water at the head and foot of the falls-with a copy of which I have been politely furnished by the secretary of the board.
It contains the following stalement :
"When there is four feet of water in "the canal, the fall is twenty four feet, "and at the highest water ever known
"giving forty feet in the canal, the fall "was one foot and four inches."

The following table shows the falle for all stages of the river :
Depth in the Canal. Fall in the River.

Feet.	Feet.	In.
4	24.	
5	21	
6	18	
7	16	6
8	15	
9	14	
10	13	6
11	13	
12	12	
13	11	
14	10	
15	9	4
18	8	6
17	7	10
18	7	4
19	6	10
20	6	4
21	6	
22	5	8
28	5	4
24	4	10
25	4	6
26	4	4.
27	4	
28	3	10
29	3	8
30	3	6
31	3	4

"And up to forty feet in the canal " gives $12-10$ inches less foll in each foot. "It is further remarked, that the rises " of the water in the river are not uniform, "but vary almost every season, and it "does not attain its maximum height " oftener than once in ten years.
"The annual rise that reduces the fall "to six feet may be calculated upon-it "sometimes rises above that, but the " high water so as to reduce the fall be"low six feet, will not average ten days " in the average of each year, for the last "iwelve years. A safe calculation may "be made on eigh'een feet fall for eight " months in each year, t welve feet for two " months, and from eight to six feet, for "the remaining two months."
This is a statementderived from observation through a long series of years-it is entitled to respect, and abundmatly proves that there will be a large hydraulic power created by the construction of your canal ; and as the retarding influences which have probably operated 10 prevent the use of this power on the Kentucky shore, will not exist on the notthern side of the river-It is fair to infer tlat its use will be commensurate with the wants of an already dense and constantly increa. sing population, and that the receipts from this source will swell the annual profits of the enterprise in which you propose to engnge.

In conclusion, the undersigned will take occasion to remark, that in eulmitting the estimates for the probable cost of the canal, he has endeavored to present
an undisguised statement of its real cost on the plan proposed. It has been a setled rule in his professional career, never to suffer himself to be made accessary to the propagation of error, or to the purposes of deception-even though it were for the attainment of a desirable object.

The estimates which have been frequently submitted for proposed worksin some instances being less than a moiety of the actual cost-hare operated injurinusly on the cause of internal improvement, and is a reproach to the profession from. which they emanated.

With the expression of his best wishes for the success of your enterprise, the undersigned has the honor to subscribe himself,

Very respectfully, your ob't,
Tho's. F. Purcell, Civil Engineer.
Louisville, Jan. 8, 1838.

railroads and steamboats.

From Blackwood's "World we Live in."
It might be a curious speculation to inquire into the probable effects of the railroad system on mankind. Certainly no system ever became so popular, and so suddenly and so widely popular. France has begun to fling out those gigantic arms of communication over her noble coantry. Belgium exults in the commencement of a web of railroads, in which it expects to catch all the stray dollars and centimes of the Continent. The transit from Ostend to the Rhine will, in the course of a year or two, be an affair of a couple of hours. Germany is shaking off her sleep, her blacksiniths are lightning their Hercynian forges, and from the mountains of the Hartz to the Tyrol, huge men, with antediluvian visages and Cyclopean arms, are hammering at iron wedges, rail, and gear for "fire horses." Prussia is laying down railroads from her capital to France, to Poland, and to Austria. The puzzling question of her politicians being, whether she thus invites invasion, or proposes defence. But politicians are blockheads on all matters of common-sense; and of all blockheads, the German politician is the most profound, headstrong and hopeless. The merchant, the traveller, and the tinker know better things. They could tell them, that the roughest of royal rough-riders, was never able to whip and spur either Frenchman, Belgian, Prus sian, or Austrian into belligerency, more than fifty years out of every hundred. But, thanks to the growing common-sene of mankind, they never will be able to do even this again, and that the world is beginning to discover that fifty years of victory are not worth one year of peace. In short, the world is evidently become a buying and selling word, a vast spinning and weaving community, a vast aggregate of hands and heads, busy about the main chance, and much more incliued to cat, drink, and be happy, than to burn each other's warehouses, or blow out each other's brain's. That
war will never cease out of the world, is a theorem founded on the fact that the countless majority of mankind have a strong tendency to be fools; but we may establish another theorem, that the more difficult it is to make war, the less likely it is to be made. The more mechanical dexterity, personal ingenuity, and natural expense that is required to make war, the more will success be out of the power of brute force, and the more in the power of intellectual superiority.
Let war come to a conflict of steam engines, and all the barbarian rabble of the world, Turks and Tartars, Arabs and Indians, Africans and Chinese, must obviously be out of the question as once. They may massacre each other, but they must fly from the master of the mechanics. All the half barbarians, Russian, Greek, Pole, Swede, and Austrian, must make the attempt only to be shattered, and Field-Marshal Stephenson, with his squadron of fire-horses, galloping at a rate of eighty miles on hour, must consume their battalia with the breath of his nostrils. Thus England, instead of feeling alarmed at the sudden passion of foreigners for mechanism, should rejoice to see the passion spreading, should encourage them to throw all their powers into mechanical rivalry, and exult in every railroad that shoots its serpent line among the hills and valleys of the Continent, and hail the smoke of every steamengine that trails its murky line along its sky, as not merely an cmblem, but an instrument of their own superiority. Mechanism, the great power of art, is as exhaustless as any of the great powers of Nature, for it is only the exhaustless vigor of intellect combining with and commanding the secrets of nature.
Ten thousand years might roll on, and every year see a new advance of every kingdom of Europe in invention, and England keeping aliead of them all, and, like one of her own engines, showing her speed by the sparks that lighten the road behind. The steam-engine in its effective state, is but little more than half a century old, for its invention, in the time of Charles 1I., left it for upwards of half a century little more than a toy. In half a century more, its present perfection may be looked upon as little clse than that of an ingenious plaything. It is scarcely ten years since the steamboat first ventured to sea. Thirty years ago the late Lord Stanhope was laughed at by all London for his attempt to swim the steam-boat from London Bridge to Greenwich. It now dashes from the Tower to Constantinople; or shoots down the liead Sea, fights the monsoon on its own ground; sweeps to Bombay, Ceylon, and Bengal, and astonishes the Mogul and the Emperor of China, the same morning, with the month's newspapers from London. The railway in its present power, is not ten years old, yet is already spreading, not merely over Europe, but over the vast savannahs of the New World. What will. all this
come to in the next fifty years? What must be the effects of this gigantic strider over the ways of this world?. What the mighty influence of that mighty communication which, even in its feeblest state, has been in every age, the grand instrument of civilization!. Throw down the smallest barrier between two nations, and from that hour both become more civilized. Open the close shut coast of China or Japan to mankind, and from that hour the condition of the people will be in progress of improvement. The barbarian and the despot hate the stranger. Yet for the fullest civilization, freedom, and enjoyment of which earth is cepable, the one thing needful is the fullest intereourse of nation with nation, and of man with man.
The European passion for the railroad is certainly one of the most singular as it is one of the most checring characteristics of the age. Like all instruments of national power, it may be made an instrument of evil. It may give additional strength to the tyrannical, and accumulate force against the weak, pour resistless invasion against the unprepared, and smite the helpless with unexampled rapidity of ruin. But its faculties are made for peace, its tendency is to make nations feel the valuc of peace; and unless some other magnificent invention shall come to supersede its use, and obliterate the memory of its services we cannot suffer ourselves to doubt that the whole system which is now in the course of adoption with such ardor throughont Europe, will yet be acknowledged as having given the miglitiest propulsion to the general improvement of mankind.

POET WORKMEN.
It is singular enough, that Mr. Miller, the basket maker, and author of "A Day in the Woods," has a namesake now in London, who is like wise both a workman and a poet. Ticholas Miller, a printer of Stutigard, is author of a volume of poems which have attracted considerable notice in his own country,-Wirtemberg. He is now following his trade in London, where, although we can pretend no rivalry to the gigantic operations of the Parisian press in appropriating the works of foreign countries, there is still employment for some few printers of French and German. The king of Wirtemburg, in his recent visit to Eugland, took notice of Miller, and presented him with what the Hamburgh correspondent calls a " truly royal" contribution to his support, and "further education." From the latter expression, it appears that Miller is following the old and approved fashion of the German, travelling to perfect himself in his trade. Those who are thus enabled, are; it is well known, often slenderly furnished with money, and looked upon as entitled, without any forfeiture of their respectability, even to begon the road.-Ib.

EGYptias mode of movine colossi.
In the King's library at Berlin is an interesting, papyrus. representing the Egyptian mode of moving Colosei. The Sphynx being upon a sledge, the first line of laborers are placed very close to it, and the rope is ramified, after passing under each man's arm, so that every rank in advance doubles the number in the former line, just in the way that foreign heralds exemplify quarters of descent. A drummer appears to be giving time for a aimultaneous pull, a process facilitated by several attendants pouring oil where the tire of the sledge is about to pass. The latter circumstance would lead to the supposition that Egypt in prosperity was not deep in sand, as at present, or else that the ingenious inhabitants used a temporary railroad for conveying their prodigious monuments, the oil alluded to being poured upon the flange or groove that received it. The former may perhaps, solve the means by which the huge stones at Stonehenge and other ancient monuments in this country were placed in their situa-tions.-Lon. Meckanic's Mag.

belgian raidroads.

The lines by which the Belgians propose to connect their western boundary looking on the sea, with their eastern, bordering on Germany, is already so far completed, as to be opened from Termonde to Ghent. The ceremony took place on the 29th September: five locomotives drew a hundred carriages ; music, fireworks, illuminations, and a banquet to king Leopold augmented the pleasure of the day. When the line is completed to Ostend, ond a fast-going packet placed on that station, the journey from London to Brussels may be effected in sixteen hours. Just double the time, or thirty-two hours will be required for the passage from London to Paris, by a new route proposed by a French stear packet company, which intends to convey its passengers from London to Havre by a steamer, from Havre to St. Germain by the Seine, by a small boat, and from St. Germain to Paris by the new railway. $-\mathbf{I b}$.

releasing stoppers from bottles.

Sir,-As I have no doubt tha: others of your readers, as well as myself, have frequently been inconvenienced by the stoppers of glass botlles becoming fixed, perhaps the following method of extract ing them may prove useful to them. It was communicated to me by Mr. H. H. Clark of Sheffield, with whom it originated, and has, I believe, never been made public. Having wiped the neck of the bottles perfectly dry, and seen that the little groove or channel bet ween the stopper and the neck is quite clean, pour into the groove a few drops of spirit of wine, and having set it on fire; let it burn out, and then immediately give the stopper a few gentle taps with a light wooden instrument, as the handle of a small spatula or chisel, and try to turn the stopper in an upward direction from right to left. I
have in most cases found this effectual, but if it is no: so the first time, it must be repeated.-J. Fondred.-lib.

pirates of antwerp.

From the port of Antwerp alone, and in the month of September alone, printed books were exported to the value of 97,822 francz, or not a thousand pounds short of four thousand, and it is supposed, that a much larger exportation takes place by land than by sea from Belgium, principally to Italy, Germany and Holland. Not one in a hundred of these works is of Belgian authorship or public property-they are almost all piratical reprints of Parisian copyrights, while the reading public of the contineut is supplied with piratical reprints of all but Pa sisian copyrights by the Parisians them. selves. The gunner is here indeed "hoist with his own petard."-Ib.

THE ARTESIAN WELL AT PARIS.

On the Place de Grenelle, near Paris, they have already bored to the depth of 1830 feet, in the hitherto vain attempt to form an Artesian Well. At this depth Reaumur's thermometer stands 23 degrees (48 of Fahrenheit.) According to M. Arago's calculation, water at a depth of 703 metres (2155 feet) ought to have a temperature of 36 degrees of Reaumur, or 110 Fahrenheit.-Times.

FIRE-PROOF FABRICS.

A French gentleman named Durais, has discovered a process by which linens, woollens, and even fine muslins, may be rendered fire proof. It appears that he exhibited the effects of his discovery to a number of scientific men, who witnessed gauses and muslins pass through a fierce fire without being in the slightest degree burnt or injured. -Ib.

ford's fire escape.

During the week, Mr. Ford had the honor of exhibiting his ingenious fire-escape at the Castle. One of his machines was erected in the quadrangle, in the presence of several of the chief officers of the household, the Queen viewing it from the corridor. Her Majesty, the Duchess of Kent, and some of the Royal suite, we understand had before witnessed it. The machine (if a very simple contrivance can be so called,) is unquestionably superior to anything we have before witnessed. It has all the attrbutes which we conceive ii posseble to blend together for the purpose of saving life and property, and such seems to be the opinion of every person in Windsor who has witnessed it. Already we understand, have Mr. Ford's machines been supplied to the Castle, where the experiments made with one this week have been highly eulogised, especially by Sir Jeffery W yatville. They are used for cleaning the windows, for which, as well as for their service in cases of fire, they are admirably adapt-ed.-Windsor and Eaton Express, Sep. tember 30, 1837.

French substitute for indigo.

Public attention has been latterly attracted in France by the reported perfection to which the discovery of a substitute for indigo has heen brought, and by the establishment of dye-works on a large' scale for applying the process to the dying of wool and woollen cloths, for which it is more especially ouited. This new product is called French blue (blue de France,) and its advantages are thus described:-1st. Its colour in all its shades, is of very superior beauty to any thing yel known. 2d. It is perfectly unchangeable by air, acids, soaps, \&c. 3d. It never whitens at the seams, like indigo. 4th. It dyes in or penetrates the piece in the most perfect manner, which cannot be done with indigo. 5th. It preserves the quality of the cloth with all its sofiness and suppleness, without in any way altering the texture or nap. 6ih. It facilitates the reproduction of the same shades, which is so difficult with indigo. 7h. Its results in the execution are so sure, that an exact estimate may be made beforehand of the expense and product. 8 th . It offers a very considerable saving upon the value of the raw material (prussiate of potash,) which is an indigenous product of moderate price, susceptible of a reduction to a value still less, and by which, according to the quality of the cloth, it may be dyed at from 25 to 50 per cent. less expense than from indigo. 9th. It is said to be of great advantage for furniture, carriage and livery cloths, and for tartans, merinos, cachemires, \&c. on account of the superior clearness and lustre of its colours. 10ik. It produces an economy of 12 to 15 per cent. in the manufacture of the cloth, by the solid application of the colouring matter in piece, which has only been effiected till now in black and scarlet. Such are the laige results promised by this discovery, which appears to be looked upon by the parties originating it, as well as by several of the first woollen manufacturers of France, as likely to render France independent of foreign countries for the supply of indigo, of which she now consumes to the amount of $20,000,000$ francs per annum.-London Times.

江 Volume Six will be completed as speedily as possible. The next, or Volume for 1838, will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall al ways take pleasure in furnishing them if we have them to spare.

0f Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

AGENCY.

The Subacriber offers his services as Agent, to procure Machinery for Mills, Sleam Engines, Locomotives, Printing Machines, Presses, Yypes and Fixiures.
He will give prompt attention to all ordera entrusted to him for execution; and pledges himself to those who may employ him, that no effort on his part shall be wanling to prucure the best articlos to be had in the city-and to give satizfaction.
He will also employ Millwrigh's and Engineers to erect Mills, and put the Engince and Machinery in operation.
Orders accumpanicd with the necessary funds, or satisfactory city acceptances, should be addressed to D. K. MINOR, 30 Wall-at. N.Y.

LOUISVILLE, CINCINNATTI, aND

CHARLESTON RAILIOOD.

NOTICE TO CONTRACTORS.-Sealed Proposals will be recaived at the Offico of the Company in Colunbia, S. C., until the 15 th day of February next, for the graduation aud masonry of that portion of the Road from Columbia to the crussing of the Congaree River, in the vicinlty of McCord's Ferry, being 25 miles in extent.
Alao, for the construction of a Bridge of 400 feet in length, on the Congarec River, to be built on stone piers and abutnents, for which there are suitable quarries in the neighborhood.
The plans and profiles of the line will be ready for inspection at the Office of the Resident Engineer, in Columbia, S. C., after the 10th day of Febroary.
So soon as the survoys for location, now in progres a, aro comp'eted, that part of the Road extendiag from McCord Ferry to the Charleston and Hamburg Railroad, at Branchville, will bo put under contract, of which due no tice will be given.

WM. GIBBS Mc NEILL, Chief Engineer.
$0 \cdot{ }^{[1}$ The Railrosd Journal, N. Y. Courier \& Enquirer, N. York; Providence Journal, Prnvidence, R. I.: Atlas, Boston; Philadelpia En. quirer, Philadelphia: will publizh the abovo notice 6 times, send a copy of the paper to the Office in Charleston. S. C., and a certified copy of their account for pay ment.

Jan. 12
fmw 6.

NEW ARRANGEMENT.

bopis for inclined planes of mallitoads.
WE the subscribers have formed a co partnership under the stylp and firm of Folger \& Coleman, for the manufacturing and, selling of Rupes for inclined planes of railroals, and for other uses, offer to supply ropes for inclined planes, of any length required without splice, at short notice, the manufacturing of cordage, heretofore carried on by S. S. Durfee \& Co., will be dune by the new firm, the same super. intendent and machinery are employed by the new firm that were employed by S. S. Durfee \& Co All orders will be properly attended to, and ropes will be shipped to any port in the United States.
12th month. 12th, 1836. Hudson, Columbia County, State of New-York.

33-4f
ROBT. C. FOLGER.

ames' Celfbrated silovels, SPADES, \&c.

300 dozens Ames'superior back-strap shovels.
150 do. do. do. plain do.
150 do. do. do. cas steel Shovels \& Spades
150 do. do. Gold-miniug Shovels
00 do. do. plated Strades,
50 do. do. soiket Shovels anil Spades
Together with Pick A es, Churn Drills, and Craw
Bars (ateel pointed), manufactured from Salisbury
sefined iron-for sale by the manufartuaing agents,
WITHERELL, AMES \& SO,
No. 2 Liberty street, New-York.
BACKUS, AMES \& CC.
Fo. \& State-sIreet: Albany.
N. B.-Also furnished to order, Shapies uf every description, made froms Salisbury refined Iron, v4-it

MACHINE WORKS OF ROGERS,
KETCHUM AND GROSVENOR, Patermon New. Jerwey. The undersigned receive orders for the following articles, manufactured by them, of th. most superior description in every particular. Their works being extensive, and the number of hand employed being large, they are enabled to execut. both large and sinall orders with prompeness and dispatch.

RAILROAD WORK.
Locomotive S:eam-Engmes and Tenders; Dri ving and other Loconotive Wheels, As les Springand F lange 'l'ires; Car Whee's of cast irun, fron a variety of patierns, and Chills; Car Wheels u1 cast iron, with wrought Tires; Axles of lopst American refined iron; Springs; Boxea and Bolts fol Cars.
OTTON, WOOL, \& FLAX MACHINERY,
Of all descriptions and of the most inproved pat terns, Style, and Workmanslip.
Mill Geering and Millwright work generally Hydraulic and other Presses; Press Screws; Cal enders; Lathes and Tools of all kinds: Iron and Brass Castings of all descriptions.
R()GIRS, KETCHUM \& GROSVENOR.
Paterson, N. J. or 60 W all-st. New-York 51 ff

FRAMÉ BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build on his Patent Plan, wou.d respectfully inform Railroad and Bridge torpora tions, that he is prepared to make cohtracts to build. and furnish all materials for superstructures of the. kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followi g localities, viz. On the main road leading from Baltimore to Washington; two miles froms the foriner place. Across the Motawamkeay river on the Miltary road in Maine. On the national roat
in llimois.at sundry points. On the Baltimure and Susquehanna Ruilroad at three points. On the Hudson end Patermen Railroal in two places. On the Bootion and Worcester Railmad, at several points. On the Boston and Providence Railroad, at sundry points. Across the Contonenok river at Hennikar, N. H. Across the Snuhegan river, at Milford, N. H. Acrots the Connecticut river, at Hancoal, N. H. Across the Androscoggin river, at Turner Centre, Maine. Across the Kennebec river, at Waterville, Maine Across the Genesce river, at Squakiehill, Mount Morrí, N. Y. Across the White River, at Hartford, Vt. Across the Connecticut River at Lebanon, N. H. Across the mouth of the Broken Straw Cireek, Penn. Across the mouth of the Cntaraugus Creek, N. Y. A Railroad Bringe diagonally across the Erie Canal, in the City of Ruchester, N. Y. A Railroad Bridge al Unper Still Water, Orono Maine. This Bridge is 500 feet in length; one of the spans is over 200 fret. It is probably the firmest wooden bridge ever buili in America.
Notwith-tanding his presect engagements to builal hetween twenty and thirty Railroad Bridges, and several common bridges, speral of which are now in progress of con-truction, the subscriber will promptly attend to bustness of the kind to much greater extent and on liberal terms.

MUSES LONG.
Rochester, Jan. 19th, 183\%.
4

STHPHENSON

Builder of a superior style of Passenger Cars for Railrouds,
No. 264 Elizabeth street, near Bleecker atreet,

NEW-YORK.

RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the New.York and Harlaem Railroad, now in operation.

ROACH \& IVARNER,

Manufacturers of OPTICAL MATHEMA TICAL AND PHILOSOPHICAL INSTRU MENTS, 293 Broadvay, New-York. will keep constantly on hand a large and gencral assortment of. Instruments in their line.
Wholesale Dealers and Country Merchants sup plied with SURVEYI NG COMPASSES, BA. ROME TERS, THERMOMETERS, \&c. \&re. of their own mannfacture, warranted accura'e, and at lower prices than can be had at any other eatablish-
ment. ment.
IE. Istruments made to order and repaired.

RAILWAY IRON, LOCOMOTIVES, THE subscribers offer the following artiales for THE
Railu'ay Iron, flat bars; with conntersunk holem and. mitrel jointa,

witn Spikes and Splicing Plates arlapted thereto To be sold free of duty to State governments, orincorporated companies.
Orders for Penusylvania Boiler Iron executed.
Rail Road Car and Locom, tive Engine Tircs, wrought and turned or inturnal, ready to be fitted on the wheels, viz. $30,33,36,42,44,34$, and 60 uclies diameter.
E. V. Patent Chain Cable Bolts for Qailway Car axles, in lenglls of 12 feet 6 inchec, 013 feet $2 \frac{1}{2}$, $2 \frac{2}{3}, 3,3 \frac{5}{8}, 31,3 \frac{1}{2}$, and $5 \frac{1}{2}$ inches diameler.
${ }^{3}$ Chains for Inclined Planes, short and stay links, manufactured from the E. V. Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Planes, made rom New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and slone block of Edge Railwaye.
Every description of Railway Iron, as well as Loconıotive Eugines, imported at the shortest notice, be the agency of one of onr partners, who resides in England for this purpose.

A highly respectable A mericas Engineer resides in Elugland fur the purpose of inspecting all Loco. inotives, Machinery, Railway Iron, \&c. ordered through us.
A. \& G. RALSTEN \& CO.,

28 tf
Philadelphia, No. 4 South Front-st.

ARCHIMEDES WORKS.

(100 North Moore-street, N.Y.)

THE underaigned beg leave to inform the proprietors of Rail Ruads, that they are prepared to furnish all kinds of Machinery for Rail Roads, Locomotive Engines of any size, Car Whecls, such as are now in successful operation on the Camden and Aınboy Rail Road, none of which bave failed. Castings of all kinds, Wheels, Axles and Buxes, furnished at the shortest notice.
H. R. DUNHAM \& CO.

NewYork, February 12th, 1836.
4-yts

PATENT RAILKOAD, SHIP AND BOAT SPIKES.

**The Troy Iron and Nail Factory keeps constantly for sale a very extensive assortunent of Wrought Spikes and Nails, from 3 to 10 inchef manufactured by the subseriber's Patent Machinery, which after five years succeasful operation, and now almost universal use in the United States, (as well as England, where the subscriber obtained' a patent) are found superior tn any yet ever offered in market.
Railroad companjes may be eupplied with Spikes having conntersink heads suitable to the holes in iron rails, to any amount and on short notics. A1. i:10st all the Railroads now in progress in the United States are fastened with Spikes made at the above-named factory-for which purpose they are found invaluable, as their adhesion is more than double any common Spikes made by the hammer. will be punctually attended to. Agent, Troy, N.Y. will be punctually attended to

HENRY BURDEN, Agent.
Troy, N.Y., July, 1831.
** Spikes are kept for sale, at factory prices, by 1 \& J. Townsend, Albany, and the primcipal lron Merchants in Albany and Troy; J. I. Brower, 222 a Water-street, New-York; A. Nu. Jones, Philadelphia; T. Janviers, Baltianore ; Degrand \& Smith, Coston.
P. S.-Railroad enmpanies would dn well to forward thicir orders as carly as practicable, as the subscriber is desirous of extending the nannufacturing so as to keep pace with the Jaily increasing demand for his Spikes.

1 J 23 am
H. BURDEN.
G. Mitchell, Printer, 265 Bowery, NaI.

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT No. 30 WALL STREET, AT FIVE D(OLLARS PER ANNUM, PAYABLE IN ADVANCE.
D. K. MINOR, and

DEORGE C SCHAEFFR $\}$ Editors and
GEORGE C. SChaEFFER, ; Proprietors.]

CONTENTS.

Report of the Oswezo nnd Uuca Railroad tompany Oaio lutenal improvements
Animpolis and Elk Eiver Raitroad-Excursion to the Norwich Sall Mines by the British Association
Miscel!aneous hems,
Advertisements

AMERICAN RAILROAD JOURNAL.

NEW-YORK, FEBRUARY I5, 1838.
[The Report on a Road playing so important a part as this does in our chain of communication westward, merits particular attention.]
EEPORT OF TIE OSWEGO AND UTICA RAILROAD COMPANY.
J. D. Allen, Esq., Ch. Engineer.

To the President and Direciors of the Oswego and Ulica Railroad Co.:
Gentlemen,-In obedience to instructions, 1 herewith present a general statement of operations in the Engineer Department of your Company, from the period of the commencement of the surveys to the present time.

It being late the past autumn when the Department was organized and the surveys were commenced, the services of the field were considerably impeded by the unfavorable weather, and other embarrassments incident to the lateness of the season, and the peculiar character of the country, which is to a considerable extent unimproved, presenting many of the obstacles to a rapid and successful execution of the surveys, common to a region in a state of uature. The field duties were continued until December, when they were suspended for the winter, were again resumed in April and continued to the last of May.

The examination of the country has been very thorough. The extent of the lines instrumentally traversed, amount in the aggregate to not less than about four hundred and fifty miles. The most prominent of which, including those only which possess a decided superiority over others, are delineated upon the maps; which together with the profiles
will be found on inspection to exhibit a very perfect view of the topographical features of the country, and of the ground over which the several lines are traced.

A comparative estimate of cost, \&c. of these different lines has been prepared in a statement of an earlier date, which is at the service of the company.

The section embraced in the exami- nation, extends from the city of Utica westward along the valley of the Mohawk, fourtcen and a half miles to the village of Rome, and thence passing north of Lake Oneida to the termination at Oswego on Lake Ontario.

Lake Uncida, which is twenty-one miles long, with an average breadth of five miles, is situated about midway between Utica and Uswego, having a longitudinal direction nearly east and west. A right line from Utica to Oswego, connecting the extremes of the Railroad, passes Lake Oneida about half a mile northward of its eastern extremity. The most direct line of communication it is therefore obvious passes through the section explored, and it has been deemed an important object as well to the public who are to give it support, as to the stockholders by whose enterprize and means the work is to be constructed, to reduce its length to the shortest practicable distance, which the nature of the intervening ground, a just regard to economy, and the business accommodations of the country, would permit.

The valley of the Moliawk between Utica and Rome, clearly indicates the most judicious route for that portion of the distance. Its surface is even and regular, with an inclination of about two feet per mile, nearly uniform.

Proceeding west from the Mohawk valley, the country descends towards Lake Ontario; the drainage in that direction being conducted off by the tribu. taries of Oneida Lake, the Oneida and Oswego rivers, and the streams which run northerly into Lake Ontario. The streans intersected by the surveys are all, with the exception of Fish Creek and the Mohawk, of small dimensions. The latter is crossed twice, and the former once, at favorable points for the erection of bridges, the linear extent of which in the aggregate, does not exceed 440 feet, and are the only expensive
structures of the kind required upon any portion of the route.
The country between Lakes Oneida and Ontario is limited in extent, and hence the several channels which conduct off the drainage are small. They are also in general moderately inclined and free from those obstacles often encountered in the passage of streams, such as wide and deep beds, unfavorable position of banks, \&c. which ftend to enhance the expense of crossing.

The elevated ground separating Lakes Oneida and Ontario is about equidistant from each. It extends from Fish Creck to the vicinity of Oswego, in a direction nearly parallel with the course of the surveys. Within about twelve miles of Oswego village, a branch or spur of this elevated ground, bears off southwesterly, towards the fall of Oswego river, and is separated from the main ridge by the valley of Black Creek, which while it also winds around in a southwesterly direction, affords favorable ground for descending to Oswego.
Between Utica and Rome, the range presented for a choice of ground was limited, but between Rome and Oswego a wider field was offered for examination. In the latter distance several routes existed of a feasible character, more or less varying from each other in their relative features and position, but requiring much labor in the instrumental examinations to determine their relative merits.

From Rome to Oswego two principal routes are exhibited on the maps. The one passing northerly, along the valley of Little River, a branch of Fish Creek, and the other near to Lake Oneida. As these routes approach Oswego and descend towards Lake Ontario, several branch lines present themselres, and it is gratifying to find in the result, that a highly eligible line may be obtained between Utica and Oswego, with the advantage of being able to vary its location according as the business interests of the Road, or the success in procuring cession of land for the right of way, or other incidental considerations may render it expedient. The distance by the longest of the two principal routes is 773 miles. By the other, pursuing the shortest of its branch lines, is 734 miles,
the mean distance by the several lines surveyed in this latter route is $75 \frac{1}{2}$ miles.
Upon the more eligible routes, the maximum inclination of the grade line does not exceed 25 feet per mile. The heavier grades occur in descending from the grounds which separate the basin of Lake Oneida from that of Lake Ontario is 120 feet, and the distance between them should the route in that direction be pursued, would be from 25 to 27 miles, giving an average inclination of less than five feet per mile, but in consequence of undulations and a want of uniformity in the general inclination of the surface, it is necessary to adopt a grade of 25 feet per mile for a short distance.
The relative extent of grades of different inclinations, taking the average of the more favorable routes, is represented as follows :
Level, or below 10 feet per m. 42 m .

Total, $\quad 75 \frac{1}{\mathrm{t}} \mathrm{m}$.
The character of the grades exbibits a line which may be advantageously compared with almost any of the roads of like extent, in progress or in operation throughout the country. More than four-sevenths of the distance is either level or below an inclination of ten feet per mile, and over five-sevenths is under fifteen feet. The average inclination of the grade line, were it made uniform throughout the whole distance, would be less than 9 feet per mile.
The maximum grade is confined to less than two miles of the distance, and does not differ materially from the maximum upon the Utica and Schenectady Railroad, and of that portion of the Mohawk and Hudson Road between the inclined planes-and is considerably less than that upon the Camden and Amboy, and Boston and Providence Roads.
It is apparent that with a very slight reduction of speed upon the grades which are most inclined, the power of the engines for the traction of heavy loads, will be as effective as it would be upon a road uniformly inclined. In the conveyance of passengers, as the engines are seldom tasked to the full extent of their power, the limit to the speed will be that rate which is consistent with safety.
Twenty miles per hour will be easily attained in either direction, as the ordinary business rate for passengers, making the total time of passing between the extremes, not more than four hours.
In the conveyance of freight, with an average speed of 13 miles per hour in either direction, the best engines will convey an average net load of 100 to 130 tons, the time of transit not exceeding six hours.
Comparing the portion of straight line with that comprised in the curves, and the former is more than double the latter,
embracing more than two thirds of the whole distance. The minimum radius of curviture is 1500 feet and the radii of the majority of the curves will range from 3500 to 8000 feet.
The ground through nearly the whole route, is exceedingly well adapted for forming a substantial and durable road bed. No rock of consequence will be encountered in the excavations. Timber of a suitable quality for the superstructures, can be obtained near the line of the road, and whatever may be needed for the different structures in forming the road bed. A very considerable portion of the timber contemplated to be used will be derived from the clearing of the Roadway, which will contribute to lessen the cost of that material.

Mills for cutting the timber are numer rous in the vicinity of the routes. As an evidence of the facilities afforded ly the region of conntry through which the route pnsses for furnishing suitable timber, it will be sufficient to state that much of the timber entering into the construction of other roads, some of which are situated as far south as New-Jersey, is obtained from the vicinity of the Oneida Lake, and the Oneida and Oswego rivers.

It is supposed from the interest manifested, and the benefits to be conferred upon the adjacent country by the construction of the Road, that the necessary ground for the use of the Road, will be obtained at a reasonable rate. A considerable extent has already been gratuitously surrendered for this purposemuch it is understood has been obtained by negociations, which are still in pro. gress.
From the competition and the wide field for negociation, which the several routes present, it cannot be doubsed that a favorable result in that respect will be realized.
In regard to the cost of the Road, a very precise estimate cannot be made. Estimates which are based upon preliminary surveys, without a careful revision to adapt the line to the ground in the best manner in all its parts, serve only as near approximations to the truth. It may not be improper further to remark, that estimates of cost which have been made for public works from prelininary surveys, have in many instances proved insufficient-resulting in a great degree from a change or imperfection of the plans which had been con templated, and the occurrence of difficulties which were either overlooked, or could not well be foreseen. It is however believed that the present examinations have been made with the care requisite for a very near approximation to the probable cost of the work.
The country traversed by the most feasible line, presents none of those greater obstacles or points of excessive expense, often encountered upon many of the public works of the country ; and I cannot doubt, from the information be-
fore me, that the livad can be well con. structed at a cost considerably below that of many of the Roads forming main lines of communication now in operation.

Adopting the ordinary plan of Roadbed, substantially built and graded to a width which will serve for a double track, and surmounted with a wood superstructure for a single track with iion plates, and it is believed the cost will not exceed on an average $\$ 11.000$ per mile, all expenses included, making for

$$
\begin{array}{r}
75_{2} \text { miles, }
\end{array}
$$

$\$ 830,500$
Add for a second track of superstructure, say 10 miles, required to facilitate the passage of trains in opposite directions,

45,000
Total on ac't of construc. Add also for capital in-
\$875,500 vested on transportation account on the opening of the Road, which will require to be augmented as the business increases,

| 5 engines | at $\$ 7,300$ | $\mathbf{3 6 , 5 0 0}$ |
| :--- | ---: | ---: | ---: |
| $\mathbf{3 6}$ passenger cars, | 800 | 28,800 |
| $\mathbf{5 0}$ freight and bag. | 200 | 10,000 |
| Depot ground and buildings | $\mathbf{4 0 , 0 0 0}$ | |

Cost prepared for oper'n $\quad \$ 990,800$
The plan of Road upon which tbis es. timate is based, is of the kind most commonly in use. A plan essentially different may be adopted for a considerable portion of the distance, at a much less expense. By this plan, instead of embankments and cuttings for the formation of a Road-bed, piles of adequate size are substantially driven to receive the superstructure.

This plan is more especially applicable to grounds of a low or marshy cha-racter-yet from its comparative cheapness, it becomes a question whether upon the score of economy, it may not be well to apply it upon all grounds where cuttings are not required, and materials for embankments are not at hand; and where also, the natural surface is not too far below the grade line of the Road.

A Road thus constructed, resing upon piles from four to eight feet above the surface of the ground, would possess all the necessary firmness and strength, and would doubtless be easily maintained in good adjustment, at a comparatively small expense.

This plan, it is understood, has been adopted for some of the railroads of the country now in course of constuction; its merits will therefore soon be practically tested.

In the plan above-mentioned, the first cost will be less, and economy, which is a desideratum in the construction of railroads, will, it is believed, be consulted. In regard to its durability; it will be seen that a larger portion of perishable material enters into the construction, than is employed in the ordinary
plan, yet if this can be renewed at an expense less than the interest upon the difference in the first cost, an advantage will result in an ultimate saving of expense.
The probable cost of the Road,adopting the plan last referred to in part, may be estimated as follows :
$35 \frac{1}{2}$ miles graded in the ordinary manner for a double track, with single traek superstructure at $\$ 11,000$
40 miles eonstructed upon piles for a single track, all expenses at $\$ 7,300$. per mile,*
Superstructure for second track 10 miles,

Total on account of construction,
Add expenses on transportation account, for engines, ears, buildings, \&c. as before,

Cost prepared for oper'n
An estimate of cost upon both plans of construction for a double track complete, would show a difference less favorable to a piled road.

An inspection of the map of the northwest portion of New-York, the neighboring Province of Upper Canada, and the north-western states and territories, will indicate the importance of this line of communication. The Oswego and Utica Railroad forms an important link in the great chain of railway and steamboat communication from the Atlantic to the Lakes, and to the states and territories west. Much of the trade and travel of Upper Canada will be tributary to it, embracing the wide, fertile, and populous region of country bordering upon the upper part of the St. Lawrence and the Great Lakes, extending over a distance of more than 500 miles

The business intercourse between Upper Canada, and the State and City of New-York, already great, is steadily increasing with the advance in population and internal improvements. Numerous steum-boats and other craft are daily plying from the harbor of Oswego, to every important place upon the shores of the Ontario. The ease and rapidity afforded by means of these facilities, with still greater in preparation, will secure to the railroad a large amount of travel, which must be greatly augmented when the several avenues centering upon Lake Ontario at different points are opened and in operation.
Individual enterprise strengthened by the aid of the provincial and parent gor

[^51]vernments, has. recently placed the improvements of the province upon a prosperous footing. aud she is now advancing in the construction of Railroads, McAdam roads, and navigable communications; all tending to develope her resources, and increase her trade with her neighbors.
It has been remarked by the provincial press, in reference to the improvements in New-York, that "the next step will be to continue the railroad from Utica to Oswego. Then the traveller, or the mail bag, will be enabled to reaeh us by means of American capital, industry and enterprise, from New-York, by steamers and railroad cars in thirty hours. Every day will render Upper Canalla more and more dependant on, and commercialiy con. nected with, the state and city of New. Yark."
A further and important cause, which will doubtless soon operate to greatly inerease the travel and commercial interchange between the provinces and this state, will be experienced in the passage of the contemplated law of congress (favorably considered and reported upon by the late United States Comptroller) extending the draw back system, to the transit of goods through our country under bonds.
This measure, from its reciprocal advantage to the province and to this state, has been earnestly petitioned for by each, as well as by other states; and its sane tion by Congress, it is but reasonable to believe, will not long be delayed. This is indeed a subject of growing interest, in reference to our internal trade-and the question may well be asked, why should not the benefits attendant on the drawback system, be as freely extended to the western states, and to our merchants on the borders of our inland seas, as to their favored brethren upon the Atlantic coast ?

When the chain of communication shall be completed to Detroit, and to Huron, by the construction of the railway across the Canada Peninsula, from the head of Lake Ontario-together with the two lines of road across the State of Michigan, the one from Detroit, by the valley of the St. Josephs, and another from Huron or Fort Gratiot, by Grand river, in the direction of Milwauky ;* ull of which are now in progress or under survey; acommunication will be opened to the public from the states and territories west, to the Atlantic-to the great market of New.York, and to that of Bos. ton, also via the Railroad through Massachusetts from the Hudson; the advantages of which, in point of expedition, comfort and economy to the traveller, it is believed cannot be rivalled.
It will possess a great superiority from its directness, and from its peculiar clita-racter-formed as it is, of successive

[^52]veyance-each of almost equal, or of such convenient extent, that while the traveller enjoys the benefit of the great practicable celerity in his progress, he will realize in the well timed variety, that degree of ease and comfort, and that relief from fatigue, so desirable upon so great a distance, which cannot be equally secured upon any other route.
The passage may be made from NewYork to the city of Detroit, or to Huron and thence to Chicago, within the space of about 65 hours, including the necessary delays for morning and evening meals at each change of conveyance.From Boston to the Hudson by railroad, the time will not materially vary from that required from New-York to Albany.

> Miles.

Hours.
From N.Y. to Albany 150 bgnight stemmbat 10 ; "Allany to Osworyo 168 "Ossego to Hamilton 160 Haniiton to Detroit 192 or "t to Huron 136 Detroit to Chicago, 260 or Huron to Chicago by day railroad, 10 bynight sleamboal 131 by day railroad 11
day and night railroad \& steamboat 16

Total travelling time 61
In a further time of ten hours, the tra. veller may reach the Mississippi, or some of its chief tributaries in less time, and may complete the journey by the river to New-Orleans, within eight days from the time of his departure from the city of New-York, or from Boston.
The route from Oswego westward, may be varied in a direction towards Niagara and Buffalo, and thence to the region soum west of Lake Erie, without materially increasing the distance from Albany over the other route, with the advantage of passing by steam-boat through Ontario (from Oswego to Lewiston) rather than remain on a parallel route by night, upon a long line of continuous railroad, subject to its greater fatigue, and attended during night, in the view of many, with less safety. A great portion of the pleasure travel, will doubtless from considerations of change, and a greater variety, be induced to take this route either going or returning, in their visits to the Falls of Niagara and other places of interest west.
In regard to the travel between Albany and Detroit, and of course the whole counlry north and west of the latter place, the route by this railrond, and thence by the railroad now constructing from the head of Lake Ontario across the peninsula of Canada, will be found altogether the most eligible, producing an important saving in distance, time and expense : it is clearly. the bast commercial route from the Hudson to that region of country.
From Albany to Buffalo by railroad, the distance will not materially vary from From Buffalo to Detroit, by steam-boat on Lake Erie, route as generally naviga: ted. about

320 miles

340 "

Total, Albany to Detroit, by Buffalo,
From Albany to Oswego by railroad, the distance will be
"Oswego to Hamilton, head of Lake Ontario, by steamboat
"Hamilton to Detroit by railroad, per recent surveys

Total, Albany to Detroit, by Oswego and Hamilton

Difference in favor of the route by Oswego and Hamilton, 140 miles, making a saving of more than one fifth in distance.

The difference in time by the two routes, supposing the average rate of motion on the railroad to be 17 miles per hour, and upon the Lakes 12 miles per hour, will be as follows:
Albany to Buffalo, by rail. road.
Buffalo to Detroit, by steamboat

Total, Albany to Detroit, by Buffalo
Albany to Oswego, by railroad
Oswego to Hamilton, by steam-boat
Hamilton to Detroit, by railroad

19 hours.
$28 \frac{1}{3}{ }^{4}$

471
10 h
$13 \frac{1}{3}{ }^{16}$
$11_{3}^{1 / 6}$
Total, Albany to Detroit, by Oswego and Hamilton

342
Difference in time, in favor of the Os wego and Hamilton route, $12 \frac{2}{3}$ hours, making a saving of over one fourth,

The difference, supposing the cost by railroad and steamboat to be four cents per mile, is $\$ 5.60$, or over one-fifth less, upon the route by Oswego and Hamilton.

When in addition to the advantageous character and location of this line of communication, as illustrated above, it be further considered that the position which, by nature, Oswego uccupies, is most favorable for concentrating the trade and travel of all the country bordering upon Lake Ontario, and the upper part of the St. Lawrence, there can remain little doubt of the Oswer, 0 and Utica railroad becoming one of the most useful and necessary, among the leading thoroughfares of the country.*

* The Hudson River and Lake Ontario are usually open in the spring of the year ready for navigation, by the lalter past of March. The navigation of the Erie Canal. generally conmmences between the middle and last of A pril, being retarded until that time by obstructions from ice, and the making of necessary repairs. The transportation of merchanilise may therefure be effected by means of the Railroad from Albany to Osivego and thence by Lake Ontario to Port Dalhousie at the mouth of the Welland Canal, through which it may be continued; or to Hanillon whence it may be conveyed by Railroad to a western destination, about threa weoks earlier than it can pass through the Erie Canal. Analvantage will also to fome extent be offered by this line of communicalion, for, the transpartation of western produce to inarkei during the late season, afier the closing of canal nav.gation,
and previous to the closipg of the. Hudson.
form an' accurate estimate of the travel and business which may be expected upon the road. The wide region of country which is intended to be accoinmodated, is undergoing a rapid improvement, the population doubling upon the average each ten or fifteen years, and the business increasing in a much greater ratio than the population. This rapid advance is taking place under circumstances which will ensure its futurè continuance, being the combired result of superior advantages of soil and climate, of liberal institutions, of intelligence, and a spirit of enterprise-persevering and untiring in its efforts.

It appears by statements of business upon the Utica and Schenectady road, for the pist year, that the amount of receipts upon that road for passengers and the mail only, (the Company not being permitted to carry freight) a mount to
The annual expenses
amount to
Leaving the nett receipts equal to
$\$ 340,000$
140,000
$\$ 200,000$
As the Oswego and Utica road is nearly of the same leng!h with the Utica and Schenectady, the expenditures and receipts under the same amount of business would be nearly the same; and as the cost of the former will not exceed $\$ 1,000,000$, the annual dividend would be much greater, varying from 15 to 20 per ent-or otherwise, it would be equally profitable with a much less amount of business, in consequence of the smaller amount of capital invested in the con. atruction and transportation.

That the future receipts upon the Oswego and Utica road will be as great as the present receipts upon the Utica and Schenectady, cannot, it is believed, under a view of all the circumstances, be doubted. The present travel through Oswego, is stated to be more than half that upon the Utica and Schenectady road. It must eventually be equal to, and even exceed the present travel on that line. In addition to this, the Oswego and Utica Rail road, has the privilege not possessed by the other road, of carrying freight during the period of suspended navigation; and the privilege also of carrying freight the remainder of the year, subject 10 a tax equivalent to the canal tolls. The advantage resulting from this privilege of carrying freight, is further increased by the disparity in distance between the canal and railway. From Oswego 10 Utica via Syracuse, on the canal, it is 98 miles; by railroad, it will not exceed 73 to 75 miles, This difference will secure to the railroad a much greater proportion of the whole travel and business, than is enjoyed by the Uica and Schenectady railroad, as that road does not differ materially in length from the Canal between the same points. It is confidently belived that when the tax rbove. referred to,
levied upon private enterprise, is removed, as it surely will be under a more enlightened view of the subject, the railway will be enabled, under the great saving in distance, to compete successfully with the canal (as the same is now navigated by way of Syracuse) in the carriage of freight.

With regard to the sources of business in the immediate vicinity of the road, it may be stated that it passes through a region of country, well adapted to alt the purposes of agriculture, and abounding in valuable imber. The hydraulic. power also, which exists on the Oswego river, is without a parallel, when considered in reference to its farorable position on navigable waters ; its extent, its safety, and durability; being the drainage of. the whole of the Seneca and Oneida val. leys, embracing en extent of 4000 square miles; the numerous lakes in these val. leys serving as reservoits to retain the flood waters, and equalize the discharge at all seasons. This power is already to a considerable extent improved, and even. tually a vast amount of capital will be concentrated upon it, for manufacturing purposes.

The most prominent source of business to the road, and that from which it derives its greatest importance, results from its peculiar position as already described, for constituting one of the great thorough. fares between the Atlantic and the West, thereby placing it in the foremost rank of similar works in the country.

A more particular reference to presentor prospective sources of business may: not be necessary. I would however refer such as are desirous of more minute information of the general lopngraphical features of the section of country totween Utica and Oswego, and a more full expcsition of the existing and prospective increase in trade of that region of country, the surplus production and travel of which will naturally find its way to market along the great thoroughfares from the Lakes to the Hudson, to the able Report of E. F. Johnson, Esq. Civil Engincer, made to the Legislature of New-York in 1835, on the subject of the proposed Ontario and Hudson Canal. That Report exhitits in a convincing manner, the general principles of the advance of the country in population and wealth; and by inferences and elucidations derivable from the past, presented in a manier 80 clear as not to be controverted, satisfactorily demonstrates what must be the result for the future.

Proportionate to the increase of popu lation, und the extension of facilities serting to encourage the efforts of the enterprising to profitable ends; so will the business energies of the country be called forth, the many useful applications of industry, and the various departments of trade, be extended. In the trade and intercourse between, the seaboard and the west, daily a ugmentations are witncssed, yet the vast accessions of the future, from the increase of population and growing
commerce of the country, can scarcely now be justly calculated, and will only be fully realized when our chief avenues of exchange are opened, and the capabilities and wants of the extensive region to be accommodated, shall be fully developed.

Respectfully submitted by
your obedient:
Joserif D. Allen,
Chief Engineer.
Osioego, Sept. 1837.

OIIIO INTERNAL IMPROVEMENTS.
We are indebted to our representative for the Report of the Board of Public Works, which shows the condition of the works of internal improvement in the State. It covers twenty six octavo pagos. We will endeavor to condense it so as to give the substance without the verbiage.

1. The Ohio Canal has been navigable from the 20th of A pril to the 1st December, with the exception of 20 miles at the South end. The navigation of this part was suspended in consequence of the destruction of a stone aqueduct of about 50 feet span; 16 miles from Portsmouth, occasioned by the sudden rise of Camp Creek. From the difficulty of obtaining hands, the overflowing of the Scioto, and the continual fevers prevalent in that region, the repairs of the aqueduct were not completed until late last fall. The consequence has been a serious detriment to the interests of the people of the Sciota valley, and a loss to the State in tolls. The amount received for tolls, fines, and water rents, \&c., for the year erding December 1, 1837, is $\$ 393,4 \div 27$ 79. The receipts for 1836, were 211,823 32-showing an increase for 1837 over 1836 of $\$ 71,605$ 47. Taking into consideration the general depression in the business operations of the country and the time lost in repairs, this result is highly gratifying. The Ohio Canal, we believe is 310 miles long, reaching from Portsmouth on the Ohio River, to Cleveland on Lake Erie.

TheWalhonding and Mohican Canal, as far as located, is twenty-three miles in length, extending from the Ohio Canal, near Roscoo, to a point on the Mohican, about four miles above the junction formed by the Vernon and Mohican Rivers. Eighteen miles are now under contract, and the work is progressing with much spirit. [Its estimated cost is, $\$ 337,46714$. The Board propose the extension of it to some feasible point in Richland County : up Vernon river to Mount Vermon in Knox county; and up the Killbuck to Millersburgh, in the county of Holmes.

Wabash and Erie Canal.-This important work, eighty-nine miles in length, extending from its eastern termination near Manhatian, to the Indiana line, is now under contract, and when finished will be of immense advantage to the people of Ohio and Indiana. It will form when completed, a continuous canal communication from Lafayette, on the

Wabash river, to the town of Manhattan, a distance we believe, of about two hundred miles. It passes through a fertile and delightful region of country, moatly of spare population, and some of it a woilderness, which; we have no doubt in a few years, will become the habitation of an enterprising, industrious and intelligent population, who will cleave down the forests and erect cities, towns and villages, and promote, on a few fields, all the arts of civilized life. The estimated cost of Ohio's proportion of this Canal, is $\$ 1,968,540$. The funds for its construction are derived from the sale of the "Wabash and Erie Canal Lands." Sales to the amount of 8223,000 have already been made. The Board is of opinion, that no further sales should take place until the lands are enhanced in value by the construction of the Canal, and that the Slate can more advantageously borrow money for its present prosecution.

The Miami Canal.-Business commenced on this Canal about the 19 th of February, but its navigation, since that period, has been suspended for six or eight weeks, owing to the time lost in repairing an extensive breach near Cincirnati ; in cleaning out the Canal; repairing two locks in the vioinity of Hamilton; erecting aqueduct across Crane's Run and Dick's Creek; building a new and permanent structure across Gregory's Creek, and in improving the abuiments of the Miami dam at Middleton, and extending the Mad River feeder at Dayton. It is now rendered navigable from Cincinnati to the mouth of Lorami's creek, a distance of ninety-nine miles. Fifty-three miles remain to be completed to where it forms a junction with the Wabash and Erie Canal, a few miles above Defiance. The tolls, water rents, \&cc., last year amounted to 62,994 40-being an excess over the preceding year of $\$ 11,82288$.

Warren County Canal.-The Board apologise for the delay in the prosecution of this work, which is attributable, they say, entirely to circumstances beyond their contral! Many of the contracts have been finished; and the opinion is expressed, that the Canal will be completed to the first lock near the town of Lebanon, by the first of August next. The payments made on the canal amount to $\$ 83,62628$.

The Hocking Valley Canal, it is contemplated, will be completed in about three, years. The Board propose the purchase of the Lancaster Lateral Canal, by the State, in view of difficulties that may arise out of the conflicting interests of the two canals.
improvement of the muskin gum river.
The work on this improvement is progressing rapidly, and the fullest confidence entertained of its completion within the time specified by the contracts.

There has been paid out of the furds appropriated for making this improve. ment, during the year ending Dec. lst.,

For the wages of engincers

 and their assistants, for subsisterce, and for incidental expenses, out of funds subject to the unrestricted check of the acting Commissioner.12,252 24
There has been paid on awards of damages, on the improvement of Muskingum river, at Zanesville, by William Wall, Acting Commissioner, $\$ 14,432$ 14, of which sum, $\$ 9,048$ 92, was, in part, for damages sustained by the Zanesville Canal and Manufacturing Company, and assessed several years ago. The remaining sum of $\$ 5,38322$, was in consideration of the value of the West Zanesville Mills.

Nothing has been done with regard to the Wills Creek improvement, because the Board are unwilling to say that it will yield five per cent, on the cost of making it. Some modification of the present law on the subject will be necessary, before the board can believe it their duty to have any further action on that work, other than to make the additional examination and survey ordered.

national road.

In May last, contracts were let for rebuilding the bridge over Salt Creek, for erecting toll gates, and toll houses, on so much of the road as was received last winter ; and for putting full cover on all that part which lies between the beginning of the 7 lh and end of the 22 d mile. At a subsequent letting, in June, contracts were made for slight repairs on that section of the road which lies between the end of the 22 d and 83 d miles; for repairing various places between the 107th and 116 h miles; and by means of an arrangement with the Warden of the Penitentiary, considcrable repairs bave been made on the 117th, 118th, and 119th miles-while a good and substantial full cover, of the best quality of limestone, well prepared, has bcen put upon the 120 th and 121 st miles. The great slip on the 2d mile, at Bridgeport, has also heen repaired, in such a manner as to prevent the difficulty heretofore witnessed at this point, from again occurring.

Four dilapidated culverts have been rebuilt, and one has been extensively repaired. One of these is on the $13: \mathrm{h}$, two on the 14 th , and one on the 26 th mile. The stone on the old yards, both broken and unbroken, has been collected and taken care of for future use.

Most of the contracts let were finished within the time specified; some of them however, were necessarily extended beyond the time, and a few are not yet conpleted. By anticipating the tolls to be collected between this time and the fixet of March, all the liabilities resulting from present contracts, when finished, can be discharged, leaving the road fund on the first day of April next, nbout what it was at: the beginging of the same month
last year: so that contracts to the same amount can be aafely entered into in May next, which were in May last. This being the case, it is believed that a full covering on the road can be obtained during the coming season, extending as far as Washington, in Guernsey county, at the end of the 41st mile. In addition to this, sufficient repairs can be rade on the road generally to keep it in good running order ; and the system of permanent repairs adopted by the arrangement with the warden of the Penitentiary can be continued to a considerable extent.-Lebanon Star.

ANNAPOLIS AND ELK RIDGE RAILROAD.
We are indebted to the politeness of Mr. Hughes, the Chief Engineer, who has surveyed and located the route of the contemplated Railroad, which is to connect this place with the cities of Baltimore and Washington, for a glimpse at his final report which is about to be sub. mitted. We cannot resist the opportunity of laying before our readers some of its prominent features, as well to congratulate all that are interested at the result, which establishes that the road can certainly be constructed for the sum provided by the subscriptions made on the part of individuals and those autherised on the part of the State, as will be seen by the following recapitulation of the calculations of its cost---made as we are assured upon very liberal estimates:
Graduation and masonry, \$233,666 18

Superstructure,

Contingencies and superintendence,

30,366 79
8334,032 97
This is upon the presumption that an edge rail of 30 pounds to the yard be used. Should a heavy rail be adopted, it may increase the cost to $\$ 363,07279$.

Mr. H. received the appointment of Engineer to the company in June last, and commenced his field operations on the 28th July. The great number of experimental surveys which he made for ascertaining the minute features of the ground, so as to decide upon the best location, are sufficiently exhibited upon the large map, which he has constructed on a scale of six inchas to the mile, and which show those lines covering the surface of the country from the Patuxent to the Severn, and from Annapolis to the Balimore and \mathbf{W} ashington Railroad.
There are but two grades on this road as high as 40 feet to the mile, and only three grades between 30 and 40 feet. All these high grades are but for shert distances. By reference to the accompanying table of curves, we find one of 1795, which is the shortest on the line; the next is 3000 , most of them exceed 5000 , and from that to $\mathbf{1 0 , 5 6 0}$, two piles. - Maryland Republicam.

EXCURSION TO THE NORTHWICH BALT
MINES BY THE BRITISI AssICIATION.
Mr. Deck, the intelligent practical chemist of Cambridge, has published the following interesting narrative :

To the Editor of the Cambridge Chron.

Sir-Being one of the favoured few of the members of the British Association, during its late meeting at Liverpool, who were included in the geological excursion to the Marston Salt-mines nt Northwich, I feel anxious that a more explicit detail should appear than has yet been given of the very liberal conduct of the proprietors, and the extreme interest and novelty of the excursion. As the number was obliged to be limited, about 60 from a long list of members who had entered their names were selected out, and at eight o'clock on Saturday morning last they assemblel at the Railway station, where a beantiful locumotive engine, "The Spitfire," and a train of carriages, were placed at their disposal by the Railroad Company ; and, in the space of one hour and ten minutes, it arrived in great style at the Hartfurd station, a distance of 32 miles, being the nearest point of the road to Northwich. Here carriages of all descriptions were provided by the liberality of the gentlemen through whose kindness this delightful trip emanated, and conveyed the party four miles to the mine, through a country whose thick population were on the alert to view the "curious larned men," as they were termed. Every preparation had been previously made by lining the bucket and rope with cloth for a clean and safe descent, which was effected down a shaft of 400 feet by means of steam power, four individuals descending at a time, under the careful superintendence and watchful eye of a principal overlooker. All being safely landed, a scene of won. der and astonishment opened to view that will not easily be effaced from the memory of any one present. The extent of the excavations amcunt to $\mathbf{5 0}$ superficial acres, the principal parts of which were illuminated by upwards of $\mathbf{4 0 0 0}$ candles, tastefully displayed against the glittering rock, and some arranged in devices of "V. R." with a crown, also "B. A." The effect was magical, and the unexpected combustion of some crimson fire and blue lights (which a lover of the pyrotechnic art luckily possessed) upon the sparkling crystals of the mine, brought to mind scones in the well-known and oft-read tales of Sinbad and Aladdin; the enchantment of which was much increased by the moving trains of salt, drawn by horses from various parts of the mine towards the shaft, illuminater by candles, in honour of the visit, which produced an extraordinary and benutiful effect. Sixty men are employed, and upwards of 1,000 tons of salt annually rais. ed in these pits. After a gratification, not to be described, in viewing the wonders of these subterraneous treasures, the
company were shewn to a part of the mine, where (as if raised by the hand of magic) appeared a most sumptuous re-past-a table with every delicacy, and decerated with beautiful flowers, waxlights, and a profusion of the choicest wines; and it may be believed chat, from previcus exertion and the extreme novelty of the dejeuner, full justice was done to the vianos, and the interest of the scene was considerably heightened by the attendance, in such a situation, of four female servants to wait upon the company. C. Worthington, Esq., and T. Firth, Esq., (the spirited and liberal proprietors of the mine, acted as president and vice president, and proposed the health of "The Queen," with three times three, and which was honored by the discharge of some small pieces of cannon, the effect of which, reverberating for a considerable time through the extent of the mine, was very striking and extraordinary.
The health of "Professor Sedgwick" was given with great applause, as like. wise "Success to the Britizh Association," for which latter toast thanks were returned in a neat and elegant speech, by a gentleman who afterwards proposed "Our excellent and liberal hosts, the proprictors of the mine," with nine times nine; and if gratitude could be evinced by hearty cheers, it was here most vociferously testified. The compliment was acknowledged by one of the proprietors, who made some beautiful allusions to the situation in which the company were then placed, and suggested that as it would be prudent, from the peculiar journey we had to take, that the head should be kept cool and the hand steady, we drank to "Our friends above,", and all then adjuurned from the festive board, and proceeded to the shaft, where "God save the Queen" was sung. by the whole company in full chorus. Just previous to the ascent, a rev. gentleman in the company most aptly proposed that, as we had sung the praises of our earthly sovereign, it would not be inappropriate to sing praises to our henvenly one, particularly after viewing the stupendous and wonderful works of His creation, where we were tiren assembled, and suggested that the beautiful and appropriate lines of

"Praise God. from whom all blessings flow,

 Praise him all crealures here belora ${ }^{\text {m }}$should be sung. All voices quickly re. sponded to the call, and it was reverently and devoutly sung to the tune of the 100th psaim. By the same judicious and careful arrangement all were safely raised to the surface, and quickly conveyed to the steam carriages, where instructions were given to show the effect of railway speed; and in an hour we were delightfully conveyed the thirty-two miles to Liverpool, having effected, in the course of eight hours, a distance of twenty-seven miles, and spent five hours in the mine -concluding an excurajon. ofinsellectual.
enjoyment which will long be remembert ed with delight by those who were fortunate enough to be present.

I remain, Sir, your's, \&c.
I. Deck.

King's Parade, Cambridge, Sept. 21.

belgian and french raileroads. Brussels, Sept. 17.

The receipts of the iron railroad fully justify the expectations that were formed of it. The reccipts front a certain period, when only one section of the railroad, that from Mechlin to Brussels, was com. pleted, being asecrtained, it was calculated, that when two sections were in use. the amount would be tripled. This might have been thought rather a sanguine expectation, hut it has been realized. The receipts for eight months on the first section were 241,456 francs 10 centimes. Tripte this sum 724,355 francs 14 centimes. This may be considered as highly satisfactory; for the third section, that to Tersmonde, is of far less inportance than these of Brussels and Antwerj. Three new sections will be opened in the month of September, und we shall then see the product of six sections. Sept. 18. We nre informed that the commissioners asscmbled at Arras, to consider the best direction to be given to the iron railroads, have nearly agreed on the following basis. The coinmunication between France and Belgium, Amiens, Arras, and Douai, with a branch from Douai to Valencienmes and Cambrai, and from Lisle to Belgium on the other; to be by a line, which proceeding from Amiens, passing by Abbeville, Estaples, Boulogne, Calais, Watten, St. Omer, Aire and Merville, with a branch from Watten to Dunkirk, would join the principal line at Lisle.Brussels papers.

SAFETY vessels.

The Liverpool Standard announces that the subject of the safety ships proposed by Mr. Williams in his paper before the last meeting of the British As. sociation, has at length engaged the at. tention of government, and they are about corstructing a series of steam vessels for the home and foreign service on this plan. The interior of these vessels being divided by numerous bulk heads, and not intended for merchandise, they may without inconvenience adopt this arrangement. Separate portions of the vessel, each water tight, will be appropriated to the engine, boilers, cabins, store department, and for the accommodation of the crew, \&c. An additional advantage arisinir out of this arrangement is, that in case of being fired Into, they will not be in danger of that destruction which would inevitably follow a casualty of the kind to the present class of steam vessels. A very fine steamer, fitted up with three safety bulkheads, was this week launched from the yard of Laird and Co., at Birkenhead.

ThE ELGIN MARBLES AND THE PUBLIC TASTE.
In the report of the parliamentary committee on arts and manufactures, it is recommended that casts of the best spe. cimens of sculpture be transmitted from the metropolis to other iowns, at the lowest possible cust, in order to facilitate the iormation of galleries at various iustitutions, and thereby disseminate good taste. This object has been opportunely ad. vanced by the request of the French government to ours, for permission to have the Elgin marbles cast for the benefit of their national exhibitions. It was not considered advisable to trust the operation to any but the moulder usually em. ployed by the British Museum; but, in order to meet the wishes of our enthusiastic neighbours, Mr. Sarti has received urders to cast those valuable remains of antiquity; and the recommendation of the committee on arts is to be carricd into effect by the sale of copies of those admired relics of Grecian taste, at the price of plaster and labour. This looks like encouragement to taste, and it is hoped that the managers of literary and scientific institutions will not neglect the ad. vantage offered.-Sunday paper.

acoustic telegraph.

A new telegraph has been invented in Austria by a M. Kfeninger. It is an accuustic telegraph, consisting of a sube in the form of a speaking trumpet six feet five inches long, which conveys the sound in 11 and $1-10 \mathrm{ch}$ seconds to a distance of 12,000 feet. A trial made of this instrument at Vienna proved very satisfactory. The government intends to employ it in the army for the purpose of conveying military orders to troops dispersed over a great tract of land, \&cc. National.

IMPROVEMENT IN THE JACQUARD LOOM.
A great improvement has just been effected in the jacquard loom, by which all the weights are dispensed with, and steam power is used to work the machinery. By this new machine silks of any patlern, of superior texture to the French, of the most even fabric, can be made by children or women. Springs are used to regulate the yard beam withont reference to its diameter, and by a simple and ingenious contrivance, the yarn and cloth beams can be instantly stopped should the weight break.-Ib.

bRUSSEL.S IMPROVEMENT SOCIETY.

A company has just been formed ubder the name of "Civil Society for the En. largement of the Capital of Belgium." The object of this new company is to build new quarters within or withour the city of Brussels, particularly a quarter beiween the Louvian and Namur gates, to be called the Quarter Leopold. The affairs of the society are to be managed by seven directors without salary, and a secretary.-Brussels paper.

The Mexican papers speaking of the contemplated rail rond between Merico and Vera Cruz, represent it as a project which is to be immediately put in execution, the consequences of which will be of immonse advantage to the general prosperity of the country.

红 ${ }^{-}$Volume Six will be completed as speedily as possible. The next, or Volume for 1838, will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.
Of Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

For Sale.-A Level, made to oider by Brown \& Hunt, and in first rate order. Enquire at this office.

Wanted on a Lease.-A good country place, with suitable out-houses, and from 5 to 15 acres of land, a short distance of the city. Enquire at this office.

NOTICE TO CONTRACTORS.

Sealed proposals will le received by the undersigned, Acting Commissioner of Public Works, for the 5th Judicial Circuit, Illinois, at his office in Canton, Fulton couoty, on Tues. day, the 17 th day of A pril next, until 4 o'clock, P. M. of that day, for the Grading, Bridging and Masonry of twenty-four miles of the Peo. ria and Warsaw Railroad; extending from Peoria, on the Illinois river, twelve miles weat, and from Warsaw on the Mississippi, twelve miles east.
Sealed proposals will also be received at the Engineer's office, in Quincy, Adams county, Illinois, on Monday the 23d day of April next. until 4 o'clock P. M. of that day, for the grading, bridging and masonry, of tha Northern Cross Railroad, extending from Quiney to Columbus.
Plan and profiles, together with specifications of the manner of executing the work, will be exhibited at each office ten days previous to the days of letting. The portions of the above work to be put under contract are expensive, requiring a large amount of heavy excevation and embankment. They will be divided into sections of about one mile in length.

Contractors will be required to make an officient commencement of their respective jobs, within sixty days after the letting, and to have them fully completed on or befure the first day of A ogust, 1839.
Recommendations will be expected in all cases in which the contractor is not personally known to the undersigned, or the associate commissioner attending the letting.
The country is dry, heslthy, and well settled; provisions are easily procured, and as the above with the other works recenily let, and now offered by the different commissioners of the State to belet next spring, are the commencement of the extensive system of Internal Improvements projected by the State of Illinois, it is worthy of the attention of coutractors abroad.

J. WRIGHT,

Acting Commiseioner, 5th Judicial Cirevit, Canton, İliaoia, Jan. 9, 1838.

AGENCY.

The Subscriber offers his services as Agent, to procure Machinery for Mills, Sleam Engines, Locomotives, Printing Machines, Presses, Types and Fixtures.
He will give prompt attention to all ordere ontruated to him for execution ; and pledges himself to thoae who may employ him, that no effort on hia part shall be wanting to procure the best articles to be had in the city-and to glve satisfaction.
He will also employ Millwrights and Engineers, to erect Milla, and put the Engines and Machinery in operation.

Orders accumpanicd with the necessary funds, or satiofactory city acceptances, should be addressed to D. K. MINOR, 30 Wall-st. N.Y.

LOUISVILLE, CINCINNATTI, AND CHARLESTON RAILROAD.

NOTICE TO CONTRACTORS.-Sealed Proposals will be received at the Office of the Company in Columbia, S. C., ontil the 15th day of Fabruary next, for the graduation and masonry of that portion of the Road from Columbia to the crossing of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.

Also, for the construction of a Bridge of 400 feet in length, on the Congaree River, to be built on stone piers and abutmente, for which there are suitable quarries in the neigh borhood.
The plans and profiles of the line will be ready for inspection at the Office of the Resident Engineer, in Columbia, S. C., after the 10th day of February.
So soon as the survoys for location, now in progress, are completed, that part of the Road extending from McCord's Feiry to the Charles ton and Hamburg Railroad, at Branchville, will be put under contract, of which due no tice will be given.

WM. GIBBS Mc NEILL,

 Chief Engineer.0 TSThe Railroad Journal, N. Y. Courier \& Enquirer, N. York; Providence Journal, Providence, R. 1.: Atlas, Boaton; Philadelpia En. quirer, Philadelphia; will publish the abovo notice 6 times, send a copy of the paper to the Office in Charleston, S. C., and a certified copy of their account for payment.
Jan. 12
fmw 6

NEW ARRANGEMENT.

ROPRS FOR INCLINED PLANES OF RAILROADS. WE the subscribers have formed a co partnership under the atyle and firm of Folger \& Coleman, for the manufacturing and selling of Rupes for inclined planes of railroads, and for other uses, offer to supply ropes for inclined planes, of any length required without splice, ot short notice, the manufscturing of cordage, heretofore carried on by S.S. Durlee \& Co., will be done by the new firm, the same superintendent and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be properly attended to, and ropes will be shipped to any port in the United States.
12th month. 13th, 1836. Hudson, Columbia County, State of New-York.

33-if
ROBT. C. FOLGER.

AMES' CELEBRATED SHOVELS, SPADES, \&c.

300 dozens Ames' superior back-strap shovels. 150 do. do. do. plain do. 150 do. do. do. cas:ateel Shovels \& Spades 150 do do. Cold-mining Shovels. 00 do. do. platrd Spades.
50 do. do. socket Shovels and Spades Together with Pick Axes, Churn Drills, and Crow Bars (steel pointed), manufactured from Salisbury refined iron-for sule by the manufacturing agents, WITHERELL, AMES \& CO.

No. 2 Liberty struet, New-York. BACKUS, AMES \& CC.

Fo. 8 State-street, Albany.
N. B.-Also furnished to order, Shapes of every description, made from Salisbury refined Iron. v4-tf

MACHINE WORKS OF ROGERS, KETCHUM and GROSVENOR, Patermis New-Jersey. The undersigned maive orders for the following articles, manufactured by them, of th most superiur description in evcry paricular. Thein works being extensive, and the uumber of hand: employed being large, they are enabled to execut both large and small orders with promptness end dispatch.

RAILROAD WORK.
Locomotive Sicam-Engines and Tenders; Dri ing and other Locomotive W heels, Axles Spring. and Flange Tires; Car Wheels of cast iron, from a variety of patterns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of best American refined iron; Springs; Boxes and Bots for Cars.
OTTON, WOOL, \& FLAX MACHINERY,
Of all descriptions and of the most improved pat terns, Style, and Workmanship.
Mill Geering and Millwright work generally Hydraulic and other Presses; Press Screws; Cal lenders; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.
ROGERS, KETCHUM \& GROSVENOR, Paterson, N. J. or 60 Wall-st. New-York 51 tf

FRAME: BRIDGES.
THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build on his Patent Plan, wou'd respectfully infurm Railroad and Bridge Corpore tions, that he is prepared to make cohtracta to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followi-g localities, viz. On the main road leading from Baltimore to Washington; two miles froin the former place. Across the Motawamkeay river on the Military road in Maine. On the national road in $1 l l i n o i s$, at sondry points. On the Ballimure and Susquehanna Railroad at three points. On the Hudson and Paterson Railroal in two places. On the Boston and Worcester Railroad, at several points. On the Boston and Providence Railroad, at aundry points. Across the Contoncook river at Hennikar, N. H. Across the Souhegan river, at Milford, N. H. Across the Connecticut river, at Hancoed, N. H. Across the Androscoggin river, at Turner Centre, Maine. Across the Kenneliec river, at Waterville, Maine. Across the Genesee river, at Squakiehill, Mount Morris, N. Y. Across the White River, at Hartford, Vt. Across the Connecticut River at Lebanon, N. H. Across the mouth of the Broken Straw Creek, Penn. Across the mouth of the Cataraugus Creek, N. Y. A Raifroad Bridgediagonally across the Erie Canal, in the City of Rochester, N. Y. A Railroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the firmest wooden bridge ever built in America.
Not withstanding his preseet engagements to build between twenty and thirty Railroad Bridges, and several common bridges, speeral of which are now in progress of construction, the subscriber will promply attend to business of the kind to much greater extent and on liheral terms.

MUSES LONG,
Rochester, Jan. 19th, 183%.
4-y

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads,
No. 264 Elizabeth strcet, near Bleecker street, NEW-YORK.
RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the New-York and Harlaem Railroad, now in operation.

ROACH \& WARNER,

Manufacturers of OPTICAL, MATHEMA TICAL AND PHILISOPHICAL INSTRU MENTS, 293 Broadway, New-Yort, will keep constantly on hand a large and general ascortment of Instruments in their line.
Wholesale Dealers and Country Merchants supplied with SURVEYING COMPASSES, BA ROMETERS, THERMOMETERS, \&c. \&c. 0 their uwn mannfacture, warranted accuraie, and a lower prices than can be had at any other cotablish ment.
IF Istruments made to order and repaired.

RAILIVAYIRON, LOCOMO'TIVES, THE subscribers offer the following arictes for Railway Iron, flat bars; with conntersunk bi'es and mitiel juints,
llis 350 to ns 2 by $1,15 \mathrm{n}$ in length, weighing 418 F

witn Spikes and Splicing Plates adaptel thereto To be sold free of duty to State goveinaceits, or ncor jorated companies.
Orders for Pennsylvania Boiler Iron eaccuted.
Rail Road Car and Locometive Engine Tires wrought and turned or unturned, ready to be llted on the whecls, viz. $30,33,36,42,44,54$, and 60 nches diameter.
E. V. Patent Chain Cable Bolts for Railway Car axles, in lengthas of 12 feet 6 incher, to 13 feet $2 \frac{1}{3}$ $2 \frac{9}{3}, 3,3 \frac{5}{3}, 31,31$, and $3 \frac{1}{2}$ inches diameter.
Chains for Inclinel Planes, short aud stay links, manufactured from the E. V. Cable Bulte, and proved at the greatest strain.
India Rubber Rope for Inclined Planes, made from New Zealand Wax.
-Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and stone block of Edge Railways.
Every description of Railway Iron, as well as Loconvtive Engines, imported at the shortest notice, br the agency of one of onr partners, who resides in England for this purpose.
A highly respectable Americán Engincer resides in Ergland fur the purpose of inspecting all Luen. notives, Machinery, Railway Iron, \&c, ordered through us.

28 if Philadelphia, No. 4 South Front-st.
A. \& G. RALSTEN \& CO.

ARCHIMEDES WORKS

(100 North Moore-street, N.Y.)

THE-undersigned beg leave to inform the proprietors of Rail Roads, that they are prepared to furnish all kinds of Machinery for Rail Roads, Locomotive Engines of any aize, Car Wheels, auch as are now in successful operation on the Camiten and Amboy Rail Road, none of which have failedCastings of all kinds, Wheels, Axles and Boxes, furished at the shortest notice.
H. R. DUNHAM \& CO.

NewYork, February 12th, 1836.
4-ytf

PATENT RAILROAD, SHIP AND BOAT SPIKES.

** The Troy Iron and Nail Factory keeps constantly for sale a very extensice assortment of Wrought Spikes and Nails, from 3 to 10 inches manufactured by the aubseriber's Patent Machinery, which afier five years successful operation, and now alnost univereal use in the United States, (as well as Eugland, where the subseriber obtained a patent) are found superior to any yet ever offered in market.
Railroad companies may be supplied with Spikem having conntersink heads suitable to the holes in iron rails, to any amount and on short notics. Af trost all the Railroads now in progress in the United States are fastened with Spikes made at the above-named factory-fur which purpose they are found invaluable, as their adhesion is more then double any common Spikes made by the hammer.
will be punctually attended to Agent, Troy, N.Y. will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N.Y., July, 1831.
** Spikes are kept for sale, at factery prices, by 1 \& J. Townsend, Albany, and the principal Iron Merchants in Albany and Troy; J. I. Brower, 222 Water-atreet, New-York; A. M. Jones, Philadel phia ; T. Janviers, Baltimore; Degrand \& Smith, Boston.
P. S.-Railroed companies would do well to for ward their erders as early as practicable, as the subscriber is desirous of extending the manufactusing so as to keep pace with the daily increasing demand for his Spikes.

1J23am
H. BURDEN.
G. Mitchell, Printer, 265 Bowery, N. Y.

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT No. 30 WALL STREET, AT FIVE DOLLARS PER ANNUMM, PAYABLE IN ADVANCE.

CONTENTS.
Report of the Survey of the Valley Railioad
Proegedings of the Stuckholders of the Raleigh and
Gneton Raitroad cimpany.
Common schools in Prusia
Miscellaneous hems,
Advertisementa

AMERICAN RAILROA! JOURNAL.

NE W-YORK, FEBRUARY 17, 1838.

0 The delay in forwarding Nes. 39 and 40 , has arisen from the sickness and death of the goung man whose duty it was to put them up for the mail.
report on the surver of the valley rall RoAd.

A. C. Twining, Ch. Engineer.

To Hon. David M. Camp and John C. Holbrook, Esq. Commissioners of the State of Vermont for the Survey of the Valley Railroad.
Gentlemen,-In the Report which I have the honor to present, it will be my object to give a compendious view of all the operations in the valleys of the Connecticut and Passumpsic rivers, which, in obedience ${ }_{1}$ to your instructions, I have undertaken and executed, and of the results of these operations.

You will recollect that, between the middle and end of May last, I made a reconnoisance of the general route, in company with Erastus Fairbanks and John C. Holbrook, Esqrs., the then Commissioners for the survey. It may be well to take, in the first place, a rapid glance at the prominent subjects which Were, at that time, brought to view, and which are connected with the project in hand.

Having designed to commence the field operations at the south extremity of the State, the first subject of attention naturally, was, to find the proper spot upon the boundary line between Vermont and Massachusetts at which to fix the point of departure For this purpose a reconnoisunce was made, in the frat place, from Brattleboro', south ward, along the tornpike leading through Ber-

SATUKDAY, NOVEMBER 4, 183 \%.
(Published February 17, 18:8.)
VOLUME VI.-No. 44.
nardston to Greenfield. Upon a slight view, it soon became evident that the hills between the two places first mentioned, have au elevation too great to admit of a railroad along that tract. There exists a second route between 23 Bratleboro' and Greenfield, leading dowa the river from the former place towards Vernon and then turning to the west into Bernardston. This route I did not particularly examine; being satisfied that, whether practicable or not for a railroad, an examination was not necessary for the present survey, the object of which is not to fix, in every place, the exact line upon which the proposed railroad ought to be constructed, but to develope the facilities which the valley offers, and the difficulties which it presents in reference to such a project, together with the general features, properties and expense of the contemplated work. It was finally thought expedient to adopt a point of commencement upon the high plain immediately west of the Connecticut river, at the south line in the town of Vernon. From this place it seemed to be pricticable to conduct a railroad southward into the heart of Massachusetts, without meeting any formidable obstacle. A considerable expense might be unavoidable in crossing low grounds in the town of Gill; and it would, not improbably, be necessary, in approaching Milier's Falls, to cross the Connecticut a mile or two above these falls, and run for a distance up the valley of Miller's river;-thereby avoiding the circuit which the river makes below the mouth of that tributary, by a short cut back of the highlands which come down to the Connecticut and form its Eastern bank. Examinations having been made, sufficient, as was supposed, to determine the practicability of a union between our contemplated line and a line coming upward through Massachusetts to meet it, no farther delay was made in prosecuting our reconnoisance northward from the point of departure along the route, whose general features I come now to describe:

It is frequent that a stream like the Connecticut flows between bauks that slope, on both sides, from a moderate height above the water's edge to a much greater height one or two miles back in
the country, -thus offering the engineer a choice of ground on which to arrange at pleasure the necessary ascents and descents of his line. The formation of the Connecticut valley, however, differs widely from this, and is, in some respects, strikingly marked in its features. Through the entire distance from Miller's Falls' up to the mouth of the Passumpsic, wherever a space intervenes between the river and the mountains, that space is generally occupied by a succession of tables rising back of each other-often to the number of five. First, there is the low interval of the river, and to this adjoins a steep sandy slope, forming the edge of a table generally from forty to seventy feet above the interval; presenting on its top a plain almost perfectly level, and one which, as well as each of the succeeding tables, nppears to have formed at some ancient period the interval of the river, which must then of course have been elevated above its present channel as far as the table now lies above the flat. In some instances the low interval is wanting, and the first high table comes directly upon the river, presenting a steep hill slope, generally formed of clay at the foot and of light sand at the top. These slopes, although steep, are, for the most part, well timbered, but sometimes present an unstable mass continually sliding down by the effect of the weather, and forming a base that is ever shifting and totally insecure for a road, if made upon any common plan. To such localities, therefore, it will be necessary to adopt a peculiar construction. On their top these tables offer an even and beautiful surface for the bed of a railroad, so far as a line upon them can be maintained; but they are generally deeply channeled by ravines difficult to cross, and are besides interrupted by sudden bays and turns of the river, and its flats, so as to break off upon the present low interval, without any intermediate ground to sustain a descent from one to the other. Frequently there is found neither low interval nor table; but the mountainside comes close upon the water's edge, forming there a precipitous and sometimes an irregular ledge. The intervals also are often too deeply flooded by high freshets to admit of laying our line
in a direct course across them without encountering a high embankment.

The difficulties, therefofe, which were evident from the reconnoisance of this part of our survey, (from the south State line to the mouth of the Passumpsic, but which, it will presently be seen, are in a great measure balanced by corresponding facilities and advantages, may be classed us follows. First, the num. ber and magnitude of the ravines which intersect the table lands: Second-the flooding of the low grounds: Thirdthe sliding banks: Fourth-the ledges adjoining the river : and Fifth—the projecting table lands putting out into the stream.

The effect, on the other hand, of these unfavorable circumstances is counteracted, to a greater or less extent, by circumstances of an opposite character.

For, first-the excavations, both for the road-bed and for the material of embankments, are generally of the very lightest and easiest character. Secondthe aggregate amount of rock excavation will be small for such an extent of line. Third-the abundance of timber of different kinds' on the spot, or near at hand, renders it practicable to cross ravines by wooden structures, at moderate expense ; to pass low flats upon trestles, to run along steep slopes and sliding banks by a structure resting upon piles; and it will materially favor, also, the cost of the smaller bridges and of the superstructure for the road. Fourththe level character of the tables and of the intervals, gives opportunity, sometimes, for long reaches of line very cheaply made. These favorable and important circumstances will be found, as already mentioned, to reduce items of expense that would otherwise be great to a moderate amount. The appropriateness of all the foregoing considerations, may be made, by and by, yet farther manifest by an inspection of the estimate to be embodied in this report.

The valley of the Passumpsic, through which our route, after leaving the Connecticut, is continued, is not remarkable in any of its features, when considered with reference to the project in hand. The entrance to it is made difficult by the occurrence of steep and irregular rocky ledges, reaching to a great height. Passing up the valley, fourteen miles, we meet the great falls in the town of Lyndon, having an abrupt descent of about sixty-one feet between precipices of rock, and presenting a difficulty at first view formidable, but one which may be overcome with more ease than was at first nuticipated. Between these falls and the mouth of the Passumpsic, and also for n few miles above the falls, the river must be crossed repeatedly, in con. sequence of its winding chanucl, in connexion with the occasionally bold and high formation of its banks. In the town of, Lyydon and the town north adjoining, the Passumpsic divides into several branches, along some one of which
it was necessary to search for a passage through the maln ridge dividing the waters that flow southward from those which flow to the St. Lawrence. These branches are separated from one another by immense, ridges, broad on the top and sloping gently to either side, but thrown upivard to a great height so as to leave between them enormous gulfs, in the lowest parts of which the respective branches flow to their junction. The current of these streams is in every case lively-indicating the rapid descent of their valleys and the necessity of n considerable inclination of the railroad in order to surmount the different summits lying at the respective valley-heads. That preliminary reconnoisnnce of which, now, I am particulnrly spenking, was confined to an examination and comparison of the Barton and the Willoughby routes; but at a subsequent period, and during the continuance of the field-work, I visited, in turn, every other, that could be supposed in offer any considerable advantages for a location. It may be well to present in one view the results of all my examinations, made at different times, and the reasons for selecting that particular route which was ultimately pursued.

Choice of Routes.

North of the point in the central parts of the town of Lyndon, at which the Passumpsic divides into branches, four routes present themselves for consideration, viz. : The Eastern Passumpsic route; the Willoughby Lake route; the Barton route; and the Glover route. In the preliminary comparison of all these, much assistance was derived from the published report of the Canal survey made by De Witt Clinton, Esq., in the year 1825; which fixed definitely the height of the Barton summit-of the Willoughby Lake-of the Clyde river, at certain localities; and of other useful points of reference. In stating the comparative merits of the rontes, I shall proceed from east to west, and shall describe, First: The Eastern Passumpsic route. This would pass up the main branch of the Passumpsic river, through the towns of Burke, East Haven, and Newark, to thie beaver meadow lying in the north part of the last named town, at the head of the "Babylon Gulf," a long rocky ravine which goes by that name, and which gives passage to the head waters of the East Passumpsic. From this meadow the line descends about three miles to the Clyde river in the town of Brighton ; and then following the valley of the Clyde, passes through Charleston, Salem and Derby, to the Beebe Plain, or to the Stanstead Plain, at the boundary between the United States and Canada. These plains lie at the head of waters that run in opposite directions; and from either of them, as 1 learn from good authority, the continuance of our ine northward to the St . Lawrence river, or even to Montreal, ${ }^{\text {k }}$ is settled; by an actual reconoisance, to be practicable.

The lower part of this East Passumpsic route, for twelve or thirteen miles above the junction of the streams in Lyndon, is possessed of the most desirable qualities for a railroad. Some difficulty might be experienced from a sudden bend at the junction, near the house of Mr. David McGaffey ; bat, from that spot onward, the valley is direct and even, and regularly ascending. Thus far, the expense of grading would be small, and the inclinations uniform and gentle. This character continues to prevail up to the foot of the "Babylon Gulf;" but from that spot onward, for three-fourths of a mile, the stream comes down with such rapidity as demonstrates the impossibility of crossing this summit without an objectionable trade - - probably one of over me hundred feet to the mile. At the summit, a level meadow, out of which flows southward the Enst Passumpsic, interlocks with a pond that discharges northward into the Clyde river; the two being separated only by a ridge of moderate height. This last mentioned stream, in flowing about three miles, from its head pond to its junction with the Clyde in the town of Brighton, appears to fall from 350 to 400 feet. The Clyde river, at the junction in Brighton, being known from Mr. Clinton's minutes, to be not more than about fifty-six feet below the summit of the Barton route, it was evident, (even allowing for inaccuracy of judgment,) that the summit of this Eastern Passumpsic route must lie far above the Barton summit, (probably more than 300 feet.) This consideration alone, especially when we take into view the abrupt rise of ground towards the summit from either the southern or the northern quarter, formed in my judgrneut a decisive reason against entering upon a minute instrumental examination of the region I had already thus carefully reconnoitred.
Having thus disposed of the foregoing route, to my entire conviction, the next in order, proceeding westerly, was the Willoughby Lake route. To follow this, we must return to the centre of the town of Lyndon, and thence neglecting the East Passumpsic, must go. northward up the Middle Passumpsic, towards the town of Burke, ns far as Trull's mills in the last named town. Here the Middle Passumpsic turns west of north towards Sutton; while our route, leaving that strean, follows a gulf making north towards the Willoughby Lake. The ascent of this gulf is very rapid. It soon runs out at the top of the southern abutment of the Lake; which abutment, at the lowest place, is over ninety feet above the lake surface, and thirty-six feet more elevated than the Barton summit heretofore named. The line must now avoid the Lake by taking the mountain side which forms the eust shore; and, atler casting around to the north end of the Lake, will follow down the Willoughby river about one mile; after which taking the valley of a small tributary, it

Willascend in a direction east of north to waters both southward and northward. The swamp probably, (but this is inatter of judgment nuerely,) lies about 150 feet above the Lake; and about 90 feet higher than the Barton summit. From this swamp the descent is rapid into the Charleston aud Brownington swamp, through which the line must pass on its way to Pensioner's pond, in the town of Charleston,-where it would unite with the Eastern route, already described, and, like that, pass through Salem and Derby, to the Beebe Plain, or to the Stanstead Plain:

The foregoing stateinent has already set forth the prominent defects of the route under consideration. These are,First ; that the lieight of the land to be overcome, both southward and northward of the Lake, is in one instance 36 feet, and in another instance probably 90 feet-higher than the Barton summit. Secondly; that the ascent to the south abutment of the Lake and the descent north into the Charleston and Browing. ton swamp, must be made by the use of heavy and long inclinations, more objectionable than any necessarily used upoin the Barton route, with which this comes into comparison and competition. This is inferred with certainty from the fact the line from Trull's mills in Burke to the Willoughby Lake, when compared with a line from Trull's mills to the ground northof the Savanna pond, shows a greater ascent to be gained, and a less distance in which to gain it. But, if considered aside from these two objections, this route would possess one distinguishing and valuable property,-that of greater directness and smaller distance than any other. Oin account of this favorable circumstanice it would, in my opinion, be suitable in any future explorations, having reference to the actual location and construction of a railroad, to give this route an accurate instrumental examination ; but it was evident that all the purposes of the present preliminary surtey could be fulfilled with equal precision, and with greater certainty of immediate success, by following the route next to be named and described:
We have now come to the third route in order, progressing west ward, viz:- the Barton' route. To enter upon this, we must return to Trull's mills upon the Middle Passumpsic, in the town of Burke, and follow up the stream, which there iiiclines, about 30 degrees west of north, as we go towards Sutton. In approaching thie summit, which lies just northwest of the Savanna poind and $6 \frac{3}{8}$ miles above Trull's mills, the ground is found to rise at the rate of 50 feet to the mile. On the first running of the line, it was supposed to be practicable to dispose of the entire descent from the Savainna pond to Trull's mills in one inclination. not exceeding 50 feet to the mile. In the actual arrangement of grades hotever, in the office, I have, at cerrain points exceeded
this inclination, still lowever keeping within the limit which is considered admissible upon prominent and important works of the same kind in this country. In like manner the descent from the Bean pond, about one mile north of the summit, to the Bellwater pond at Barton, which descent it was intended, at first, to dispose in an uniform inclination, not exceeding 50 feet to the mile, I have found it necessary to dispose somewhat irregularly - so as, in certain reaches, to fall below that degree of inclination, and in other reaches to exceed it-only, however, to an extent not inadmissible in practice.
In continuing the route north from Barton village, the most obvious idea was to run down the Barton river valley, and terminate at some point east of the Memprhemagog Lake. With this object in view I explored, in the first instance, a route along the eastern slope of that valley to the east shore of the Lake-expecting, after having reached that point, to coast around on the easteru shore, and assuming the valley of Joln's brook to terininate at the Beebe Plain, A reconnoisance exhibited this route to be a difficult one, although practicable; for in addition to a rapid descent of the country, (being 236 feet in seven or eight miles,) the entire region ex hibits a broken surface, very unfavorable for the bed of a railroad. Subsequently, a second route was examined, passing northeast from Barton village into Brownington, crossing the Willoughby river from half a mile to one mile above the mouth of the Beaver bronk, and thence passing through the Charlestown and Brownington swamp, to intersect, near Peosioner's pond in the town of Charleston, our two routes formerly described as there meeting and proceeding onward to the Beebe plain, through Salem and Derby. The crossing of the Willoughby river seemed to present the only obstacle to the success of this route ; and this obstacle itself proved, in the end, less serious by farthan had been anticipated. The Barton route last described, passing through the towns of Sutton, Sheffield. Barton, Brownington, Charleston, Salem and Derby, and terminating on the Beebe plain; is the one which was finally selected for our instrumental exanination.
A fourth route which, it was thought, might claim some attention, was the Glover route. This would have left the main Passumpsic at Lyndon Centre,would have passed up the valley of Miller's run, which there joins the former stream, to the town of Sheffield,-after which it would have pursued a course purallel to the travelled road from Shef. field to Glover, but south and west of it, and having its summit in a hollow about 75 feet lower than the summit of the road, -and thence to the village of Glover, and down the ralley of the Barton river. The descent, howerer, from this summit to Glover village, must," in my judg. ment, considerably exceed 500 feet; and,
ife suppose Glover to have about the elevation of Barton, it would seem that the Glover summit is elerated about 250 feet above the Barton summit. On account of this elevation, as well as from the circumstance that the summit cannot be crossed by grades of less than 100 feet to the mile, this route is decidedly inferior, in the comparison with the Barton route. With these remarks, I conclude all that I design to say on the subject of the preliminary reconnoisance, and of the comparative merits of the rival routes that were inspected.

Field Operations.

Having, therefore, fixed upon the route by way of the middle branch of the Passumpsic,-by way nlso of Barton, Brownington, Charleston and Derby, as the one which offered the greatest advantages for the particular purposes of this survey, I commenced the field operations, on the second day of June, with two parties at different points. The southern party, which began its operations at the south line of the State, was placed under the direction of Harvey Smith, Esq., Assistant Engineer; while the northern party, under the direction of Elizur Goodrich, Esq., took its point of departure 34 miles farther north at Bellows Falls. On the 17th day of June, Mr. Smith had joined his line to Mr. Goodrich's at Bellows Falls; after which the party under his charge was transferred northward on to the Passumpsic, opposite to St. Johnsbury, with a view to finish the survey of the northern section to Canada, while the other party should be advancing their operations up to St. Johnsbury from the south. This object was accordingly effected; and both divisions of the survey were completed about the 20th of July,-soon after which time both parties were discharged at St. Johnsbury, having surveyed (iucluding double lines,) 209 miles in fifty days.

> (Tu be contirued.)

PROCEEDINGS OF THE STOCKHOLDERS OF the radeigir and gaston kailroad co.

At a general meeting of the Stockholders of the Raleigh and Gaston Railroad Company, held at the Banking house of the State Bank, on Monduy, the 22d of January, 1833, on motion of D. Cameron, Esq., John D. Hawkins, Esq., was called to the Chair, and E. B. Freeman appointed Secretary.
Upon its being ascertained that a majority of the Stock was represented, the meeting proceeded to business.
The Report of the, President and Directors, together with that of the Chief Engineer, were subrritted, and, on mo tion of Charles F. Osborne, Esq., ordered to be received and printed, with ac companying documents, under the direction of the President and Directors.

The following resolntions were offered by C. F. Osborne, Esq. :

Resolved, That the 1'resident and Di-
rectors be instructed to receive such subscriptions of Stock in the Raleigh and Gaston Railroad Company, ua may be offered; provided such subscriptions do not in all exceed one million of dollars.
2. Resolved, That in the event of the whole amount of the capital not being subscribed, the President and Directors be authorised to negotiate a loan for the deficiency, (convertable or otherwise, as they may think proper.) on such terms as they may deem most advantigeous to the intcrest of the Stockholders; and that they be further empowered to pleige the property of the Cumpany for the guaranty of said loan, and the payment of its interest, and to employ suitable agents.
3. Resolved, That the proceedings of the President and Directors, in letting out the remainder of the road to Raleigh, is unanimously approved, and that they be desired to prosecute the work as rapidly as possible, consistently with its durability and the interests of the Stockholders.
4. Resolved, That the President and Directors be requested to apply to the next Session of the Legisluture of North Carolina for an increase of the Capital Stock of the Company, to the amount of one million and a half of dollars, and for such other aid as they may deem most consistent with the interests of the Stockholilers.
5. Resolved, as the opinion of the Stockholders, that it is of the greatest importance to the sticcess of this work, that the Road should be extended to Columbia, South Carolina, and that they will use their utmost efforts to insure its extension to the South Carolina line.
6. Resolved, That the Report of the Committee appointed to examine the accounts and vouchers of the President, be approved and adopted, and that he be di. rected to balance the books, pursuant to the recoinmendations of said Committec.
7. Resolved, That in future the annual meeting of the Stockholders be held on the first Monday in June in each and overy year.

Which were unanimously adopted.
The meeting then proceeded, on motion of Mr. Osborne, to the election of n President and five Directors. William Boylan and Samuel S. Downey were appointed to superintend the balloting.

The Committee reported that the following persons were elec:ed: Geo. W. Mordecai, President; - Duncan Cameron, William Boylan, Joseph W. Hawkins, Charles Manly, and Thomas P. Devereux, Directors.

On motion of Duncan Cameron, Esq., a Conimittee consisting of Wm . Robards, Wm. Peace, and Alfred Jones, or a majority: of them, was appointed to examine the acconnts of the President, and report to'the next annual meeting.

On motion of Mr. Garnett, the following resolution was adopted":

That we feel a lively interest in establishing a communication by Railroad with the West, and invite the co-ojera-
tion of our fellow citizens of Snlisbury and the adjacent country, in procuring a charter from the Legislature for that purpóse.
The meeting then adjourned.

Report of the President.

In submitting to the Stockholders the following Report of their proceedings since the last annual meeting, the President and Directors deem it not aniss, briefly to advert to the state of affair: and the condition of the wo.k at that time. It will be seen on reference to the Report then made, that the Road had been located as far as Tnr River, and the greater part placed under contract. From the severity of the winter, but little work had then been done. As soon, however, as the spring opened, the work was vigorcusly prosecuted, and we have the satisfaction of stating that, with a single exception, the contractors have thus far complied with their engagements. The grating of 48 miles of the Road is now completed, with the exception of a few hundret! yards, and the work executed in a manner highly creditable to the contractors and the engineers entrusted with its supervision. The soil is admirably adapted to the construction of a Rail. road; and the cuts are generally free from water. The tanks on the first nine miles of the road, from Gaston to Littleton, having been thrown up a sufficient time to become firm, it was thought advisable to lay down the superstructure on this section at once; so, that it is now ready for use as snon as the bridge across the Roanoke shall be completed. On the remaining 38 miles, the timber has all been delivered and dressed, realy to be laid down as soon as the embankinents shall have berome sufficiently settled, from exposure to the winier's frost.

The bridge at Gaston, which had just been commenced at the last meeting, is now completed within a span and a half, and would have been really for the cars on the first of January, but for our disappointment in receiving timber which hall been contracted for and procured on the lower Roanoke; but, owing to the low water in the river, and the difficulty in obtaining means of transportation. it conld not be brought up in time, notwithstanding every effort to do sa This dif. ficulty is now removed, and the bridge will be speedily completed. The iron, which was ordered, has all arrived, and is ready to be laid; and we see no reason why the whole 48 miles should not be ready for transportation by the first of June, though experience has made us somewhat cantious in giving any pledges to the public on this subject.
On the road between Roanoke and Rar River, there are five depots, viz: at Litleton; at Brown'a five miles north of Warrenton; at Lampkin's, oppnsite Warrenton; at Twitly's, and at Henderson, about'threo miles south of the Chalk Level : all of which, with the wa-
ter stations and wood houses; are nearly finished.

The land damages have, with one or two exceptions, been liquidated in the counties of Warren nnd Granville; but in Halifax, though proceedings bave been institnted, the difficulty of procuring suitable Commissioners to act, has, as vet, prevented their being udjusted. This has been increased, by the ounission in our charter to provide compensation for the services of the Commissioners. We hope, however, they will soon be settled, and that those who, for the purpose of enhancing their lamages, have pretended such hostility to this woik, will then cea:e their opposition. In Fıanklin and Wake, steps will be taken at the ensuing courts to condemn the. lands of those with whom we cannot effect compromises.

The line from Tar River to Raleigh has been lucated. After crossing the river below Chavis' Ford, it iuns by Presley Person's, near Winston und Kearney's store, crosses Cedar Creek and the (wo Brandies, runs througls Wake Forest, along by the Baptiste Institute and Alston's store, crosses Nense River, near Win. B. Dunn's, thence by Rohert Jeffreys', crosses Crabtree about 250 yards below Jones' Bridge, thence crossing the stage road at the Pigeon House, it enters Raleigh in the rear of Thomas \mathbf{P}. Deve. reux's, and terminates at Halifax street, in the ravine between Mr. \rightarrow Devereux's and the Eigle Hotel. For a more para tiecular and minute description of this location, we beg to refer to the detailed Report of the Chief Engineer, which accompanies this. Believing that the interest of the Stockholders would be: greatly promoted by the speedy completion of the rond to Raleigl, and finding that contracts could be made on more favourable terms at that time than anyy subsequent period, immediately on the com. pletion of the grading on the first division, it was determined to go on with the work. The whole line to Raleigh is now under contract, and the contractors have commenced operations. This course will, we hope, meet the unanimous approbation of the Stockholders.

It was never contemplated or expected by any one, acquainted with the work, that the sum otiginally subscribed would be sufficient to coniplete this undertaking ; nnd it is now evident, that the whole capital of one million will be insufficient for that purpose. It will be necessary, Therefore, for the Stockiolders, at the present ineeting, to adopt some measures for the increase of ihe capital, to enable us to comply with our con. tracts.

As the scheme would be incomplete, were we now to stop short, and the value of the Stock be thereby materially affected, we cannot doubt that they will adopt any practicable plan which can be devised for raising the means of carsying on the work. To effect this, three modes have suggested themselves. By the
terms of, our ctiarter, the original subscribers are first entitled to take the residue of Stock unsubscribed. The first plan then would be, to offer to apportion the remaining Stock among the present solvent Stockholders, according to the mount already held by them. This would, in some instances, operate unjustly and uppressively, as many may have made as large investments in the first instance as their means would enable them to do; besides, we think this could only be done by the unanimous vote and consent of the Stockholders, and it is on that account further objectionable, as it would be difficult, if not impracticablé, to obtain this. To comply, however, with the provisions of our charter, the offer can be made to the respective Stuckholders. who can then accept or reject it at their option.

The next and most obvious plan, is to re-open books of subscription for filling up the amount unsubscribed. Had the conaition of the country continued as prosperous and flouiishing, and the facilities for obtaining money as great, as at the conmencement of this work, we might calculate with certainty upon the success of this measure, and that the same anxiety to possess our Stock, which characterized our first movements; would be again manifested: for nothing has occurred to diminish our confidence in the ultimate success of the undertaking. But owing to the sudden and onfortunate revulsion which has taken place in the pecuniary affairs of the country, (from causes unnecessary to be here alluded to,) Stocks of every description have undergone a very considerable decline; and, from the difficuity of procuring money, are no longer sought for with the same avidity as formerly. Our largest capitalists find it inconvenient to meet their existing engagements, and those having the command of money have so many opportunities of making investments affording immediate and exorbitant profits, that but few can be found to take Stock in iucorporated Companies, however flattering their prospocts may be. From these causes we apprehend here may be some difficulty in obtaining subscriptions for the whole remaining Stock. This can, however, be attempted, and in the event of its not succeed. ing, it is then recommended to the Stockholders to vest the Board of Directors with authority to make a convertible loan or loans, to the amount of the residue of the Capital Stock, and to pledge the property of the Company for the payment thereof. This plan, if anactioned by the Stockholders, is believed to be more practicable than either of the othere; for, while the scarcity of money is so great in the United States, it appears to be abundant in England, and capitalists there are seeking investments far less profitable than this would be. As soon as coinfidence in American credit shall be restored, which we are pleased to eay is daily increasing, and sufficient portion of our road shall be in operation
to afford a guaranty for the loan and the payment of its interest, we heve every asstranice that it can be effected there, if not in this country, and we are confirmed in this belief by our knowledge of the fact tliat several Railroad Companies in the United States have already negotiated loans in England to a considerable a mount; nune of them giving better security than we can offer. We would, therefore, recommend that the President and Directors be instructed, in the first place, to receive additional subseriptions for Stock to an amount, not exceeding in all one'million of dollars; and, in the event of the whole not being subscribed, that they be authorised to negotiate loans convertible, or otherwise, as they may think proper, for such sum as may be required to increase the whole capital of the Company to one million of dollars; and, for that purpose, that they be empowered to employ suitable agenis. The interest of the Stockholders, re jarding them merely as such. the benefit to the country and the whole success of the work demand its extension, and we are therefure satisfied that the Stockholders will adopt any means in their power to effect this.

A line of coaches commenced running between Gaston and Fayettevi!le during the last spring, and, althouga the change of times has caused a considerable reduction in the number of travellers, it has received a fair proportion of public patronage. From the experience gained from this, we are patisfied that the want of fa. cilities is the only obstacle to the diversion of the greater patt of the southern travel along this route. These will be greatly increased by the completion of our road to Raleigh, and if two good lines of coaches shall then be established, the one leading south to Columbia and Augusta, and the other, westwardly to. Salis. bury, there to connect with the Tennessee and Piedmont lines, we have little doubt that the principal part of the southern and weetern travel will find its way to this road. It may not be irrelerant or improper here, to draw a cotnparison between the present travelled routes from the south and southwest to Baltimore, shewing the difference in the distance by then respectively. Taking Milledgeville, Geo., as the starting point, the distance from that place to Baltimore, by the Piedmand, the noost direct rnute, is 692 niles -the whole of which journey, as far as Potomac Creed, is performed in coaches. The distance from Miltedgeville, via. Augusta, Columbia, Fayetteville, via. Charleston, Wilmington, Halifax, Potssmouth, \&c., to Baltimore, is 862 miles, being 170 miles greater than by the Piedmont or nearest, and 151 miles than by the road via. Raleigh. Should the coatemplated scheme of connecting Raleigh with Columbia and Augusta, by Reilroad, be carried into effect, which we are satisfied must be done in the course of a few years, it will place this route beyond comperition ; and the Stock of our road mist becomo as valuable ass any in the Union.

In the prosecution of this, and pursuant to the authority given by the Stockholders at their last meeting, a recounoisance of the route from Raleigh to Columbia was made by the Chief Engineer of this Company, whose highly satisfactory report shows that a very favourable route may be obtained. Books of subscriptipn for Stock in the Raleigh and Columbia road were opened during the past year, and a large amount subscrib-ed-ihe greater part in the cuty of Ra-leigh-but not aufficient to secure the charter. As we still regard the construction of this road of vital importance to the success of our own. it is thought proper to bring it again before the Stockholders that such measures may be adopted by them as they may deem advisable.

Whenever this road shall be commenced, we are assured that the Legislature of South Carolina will, with their accustomed liberality and spirit of enterprise, incorporate a Company for the further extension of the Road to Columbia; and, we learn, that the Charleston and Cincinnati lload has been located with a view to that connexion. We are still of opimon that the route originally contemplated through the Counties of Chatham, Moore and Richrnond; is the proper direction for this Road, both as regards the directness of the coinmunication, for the accommodation of the Norihern and Southern travel, and the probability of its ultimate extension Westwardly, so as to connect us with Salisbury and the whole Western section of the Slate; for we cannot yet abandon the hope, that the citizens of this fertile section of our State, cut off as they are from all facilities for transportation to market for therr varied and valuable products, w!ll, ere long, find it to their interest to unite with us in accomplishing this objest, so desirable to themselves, and tending so manifestly to the inprovement of the internal condition of our State, and the developement of its various resources. Ours appears to us now, the only feasible scbeme; and although, heretufore, disappointed in our expectation of interesting them in our project, we are still disposed to extend to them the hand of good fellowabip, and will most cheerfully unite in procuring for them at least one good outlet for their produce. This we shall be enabled to do, by diverging at Haywood, or some other suitable point in the county of Chatham, extending thence Westwardly, along the borders of Randolph and Guilford, to the Yadkin, whence, if desirable, it can be continued so as to intersect the Charleston and Cincinnati Road at some favorable point within the State,

Since the last Annual Meeting, the heavy expenditures ircident to a work of this magnitude, and the rapidity of its progress, have compelled us to call large1s upon the Stockholders for contributions. Instaiments of ten per cent. have been required to be paid on the firsi daye of March, July, October, December, January and February, which, together with
the amount previously paid, have produced up to the first of January, 1838, the sum of $\$ 406,12685$.

Although the difficulties of the past year have caused some little delay in the collections, and produced some failures among the Stockholders, yet upon the whole, we believe the payments have been generally made with more punctuality than to any other Road now progressing. To relieve the Stockholders, as far as possible, at a fseason when the pressure was greatest, a loan was made from the Bank of the State, to whom the Company is now indebted in the sum of $\$ 70,000$, which is to be provided for and refunded out of the Instalments now due, unless some other arrangement is made by the Stockholders.

A detailed statement of our Receipts and Disbursements will be found appended to this Report, to which we beg to refer. The accounts and vouchers have been examined by the Committee appointed for that purpose, whose Report is herewith submitted.
By order of the Board of Directors, Geo. W. Mordecal, Prest.

COMMON SCHOOLS IN PRUSSIA.
Here we have a charming portrait of a benevolent monarch-a philanthropist clothed with the prerogatives of an absolute throne, and exercising them all for the advancement of society, and the good of his race. We copy it from Professor Stowe's recent "Report on Elementary Public Instruction in Europe," to the Ohio Legislature, by which be was commissioned. It is an interesting pamphlet of some 60 pages, and we shall draw copiously from it hereafter.-New. ark Daily Adu.

When Frederick William III. ascended the throne of Prussia in 1797, the condition of the people was in many respects truly deplorable. Buc immediately upon his accession, he set about reforming abuses, and introducing improvements. The odious religious edict was abolish-ed-the adininistration of justice was thoroughly reformed, and rigid economy introduced into the royal household. The exclusive privileges of the nobles were taken away, and their power so completely broken, that there is now no hereditary aristocracy which can interfere with the sovereign, or oppress the people.

In 1810 the peasantry, who before had no ownership in the soil which they cultivated, and consequently no independence of character, by royal decree became freeholders on the following terms, viz : those who held their lands on perpe tual lease by giving up one third, and those who held them on limited or life leases, by giving up one half to the landlord became the owners in fee simple of the rest. 'The military is now so modelled that every citizen between the age of 18 and 21 , is in actual service in the standing army, where he is instructed in all that pertains to the military life, and then returns to his peaceful occupations:

Thus the army is made up entirely of ci-tizens-and every citizen is a soldier; and there is no such thing as a standing army at the entire devotion of the sovereign, and independent of the people.

The prime minister, Hardenberg, in a circular published at the time when these reformers were in process, declares, that i' the system is based upon the principle, that every subject, personally free, be able to raise himself, and develope his powers freely, without let or hindrance from any other; that the public burdens be borne in common and in just proportions; that equality before the law, be secured to every subject ; that justice be rigidly and punctually administered; that merit in whatever rank it may be found, be enabled so rise without obstacle; that the government be carried on with unity, order, and power ; that, by education of the people, and the spread of true religion, the general interests, and a national spirit be promoted, as the only secure basis of a national welfare.

Another European king of Roman üa. tholic faith, Louis of Bavaria, who is connected by marriage with the royal house of Prussia, moved by this example, and excited by emulation in behalf both of his church and kingdom, is now zealously pushing forward the same experiment among his people, and already the Bavarian schools begin to rival the Prussian ; and the University of Berlin finds its only equal in that of Munich. Louis has in one thing gone even beyond his brother of Prussia, in that he has granted to his people a real constitutional representation in the government, a privilege and a right which the Prussians, have labored in vain to extort from Frederick William.
Even the Autocrat, Nicholas of Russia, (married a daughter of the Prussian monarch, who inherits much of her father's spirit,) has been induced to commence a similar system throughout his vast dominions; und from the reports to the Emperor of M. d'Ouvaroff, the Russian minister of public instruction, it appears that already from -Poland to Siberia, and from the White Sea to the regions beyond the Cancasue, including the provinces so recenily wrested from Persia, there are the beginnings of a complete system of comnon school instruction for the whole people, to be carried into full execution as fast as it is possible to be carried into full execution, and to provide the requisite number of qualified teachers.

Thus three sovereigns, representing the threc great divisions of Christendom, the Protestant, the Romish, and the Greek, are now zealously engaged in doing what despotic sovereigns have seldom done before-enlightening and educating their people ; and that too with better plans of instruction, and a more efficient accomplishment in practice than the world has ever before witnessed. Nor is the spirit of education confined to these uations. The kingdom of Wirtem-
berg, and the grand duchy of Baden, are not behind Prussia or Bavaria. The smaller states of Germany, and even old Austria, are pushing forward in the same career ; France is all awake; Spain and Italy are begining to open their eyes; the government of England-which hss hitherto neglected the education of the common people more than any other protestant country of Earope-is begining to bestir jitself; and even the Sullan of Turkey, and the Pacha of LEypt; are looking arquad for well qualified teachers to go among their people. In London and Paris, I baw Turks, Arabs, and Greeks, who had been sent by their respective governments to these cities for the express purpose of being educated for teachers in their native countries, if not for the whole people, at least for the favored few. At Constantinople a society has been formed for the promotion of useful knowledge, which publishes a monthly journal edited by one of the Turks who studied in Paris; and the Sultan now employs a French teacher in his capital whom he especially invited from France. And here too in our own country, in the movennents of New England, New York, Pennsylvania, Ohio, Michigan, und several other of the States, we are strongly reminded of the educational zeal of the age.

And in short the whole world seems to be awake and combining in one simultaneous effort for the spread of education; and sad indeed will bo the condition of that community which lags behind the universal march.
The sovereigns to whom I have alluded, are not only educating the people, but they are laying aside the pomp, the trappings and the lavish expenses of royalty, and by simplicity, by rigid economy, by an energitic and impartial administration of the government, are endeavoring to establish their thrones in the hearts of their people.
Frederick William, in his dress, appearance and whole deportunent; is as simple and unostentatious as an Ohio farmer ; and few of our. wealthy merchants ride in so plain arriage, or sleep on so homely a bed, as the monarch of Prussia. After witnessing the pageantry, the pomp and ostentation of the limited monarchy of England, one is astonished at the rigid simplicity of the great military despotism of central Europe.

In every stage of instruction it is inade a prominent object, and one which is repeatedly and strenuously insisted on in all the laws pertaining to education, to a waken a national spirit-to creute in the youthful mind, a warm attachment to his native land, and its institutions; and to fix in his affections x decided preference for the peculiarities of his own country.

> INTELINAL IMPROVEMENTS.

The following is a brief synopsis of the inost important proceedings of the

Board, in relation to the ensaing six
 1st. On the Central Railroad. From Cairo northerly 20 miles. From the IIlinuis, where the Central Pailroad crosses the same, 11 miles noriherly, and 11 miles southerly, making 22 ; and from Galena southerly 20 miles, making in the whole on the Central Railroad, 62 miles.
2d. On the Alion and Sliawneetown Rinilroad. From Shawneetown to Equal. ity, 12 miles.

3d. On the Alton and Mount Carmel Railroad. From Alton to the diverging point of the Mount Carmel and Shawneetown Railroads at or near Edwardsville, 15 miles. From Mnunt Carmel to Albion, 18 miles.
4th. On the Alton, Shelbyvillo and Paris Railroad. From Alion, via Upper Alton, north-easterly 10 miles. From the State line, westwardly to Paris, 18 miles.

5th. On the Northern Cross Railroad. From Quincy to Columbia, in. Adams county, 15 miles. From Danville westwardly, 18 miles. Sixty-four miles be. tween these points have been heretofore let, making in the whole on this ruute 97 miles.

6th. On the Peoria nnd Warsaw Railroad. From Peotia west, 12 miles, and from Warsaw east, 12 miles.

7th. On the Pekin and Bloomington Raiiroad. From Pekia to Bloomington, previsusly let, 10 miles. Making in all 266 miles, of which as is shown, the Northern Cross Railroad has 97.-Van. Free Press.

winchester and potomae ratl road.

An act has passed the House of Delegates by a large majority, authorising a loan of one hundied and fifty thousand dollars, to be applied to the payment of the debts of the Winchester and Potomac Railroad Company. The Whig says the bill was handsome!' and energetically supported by Messrs. Venable, Murdaugh, and Sherrard, and opposed by Mr. Smith, of the Isle of Wight. The opposition of Mr. Smith was not to the ohject of relief, but to the manner of raising the funds.

The Whig also remarks that the exhibits and prospects of the Company were cheering, and proved that the work well deserved the fostering care of the Commonwealth.
(Since this road has been completed, there has not been raised in the Valley, nor in other parts of the country whose produce finds a market here, one crop of our great staple which might be said to approach an average ; nearly every road from this place. in every direction, is almost impassable at some seasons of the year, and never in good travelling con. dition; and yet, with all these obstacles to contend with, the Company has done a respectable business. There can now be no doubt, even with the mort sceptical, that should the Legislature adopt a
literal system for improving the thorough. fares of the Valley, and our farmers should be favoured with average crops, the investments in the stock of this road-will yield a profit second to none in the state. -Winchester Republican.

UTICA AND SYRACUSE RAIL ROAD.

We learn from Syracuse, that the directors of this important improvement have commenced the construction of the road. The route is uncommonly favorable. There are but four sections upon the road, requiring any considerable labor or expense in the excavation and grading. These have all been contracied on very favourable terms. The bridges have all been contracted, and also the superstructure, at faveurable prices, and to good contractors. The company have obtained title to about three fourths of the land required, either by purchase or hy donation.
A carefill estimate of the cost of the road, made since these contracts have been entered into, produces a cost of about $\$ 600,000$. It is supposed that it may be completed during the summer of 1839. When completed, it will run in connection with the Utica and Schenec. tady Railroad-American Adv.

SPEED OF THE THAMES STEAMERS.

It is a fact, not more strange than true, that, while Dr. Lardner and his opponents on the question of the navigation of the Allantic by stearn, have been disputing as to the rate of speed attained by the Amcrican steamers on the Hudsonthe one party asserting that they reached sixteen miles an hour; and the other, more than doubting the practicability of the feat-a reference close home would have settled the dispute, without the ne-cessity of sifting the veracity of people some thousands of miles off. Dr. Lardner, after treating the assertion as a Munchausenism, observed that, even if it were true, it would prove nothing to the point, as the Hudson steamers are, of course, exclusively river going vessels. But what could he have said to the fact, that at the very time he was so dogmatically laying down the law at the British Association meeting, some of our half-river and half sea-going Margate steamers were performing the distance between London Bridge and Margate Pier, at least eighty miles, in very litile more thon five hours? Yet no one was found to supersede the debate about the Hudson steamers, by referring to those of the Thames ! Truly, as the eastein proverb has it"There is darkness under the lamp!"
ST. PETFRSBURG AND ZARSKOJESELO RAILWAY.
The first public trial of the iron railroad to Zorskojeselo was made Oct. 7. It was five wersts in length, and begins in the midst of the city, near the church and parade of the Spmenow Regíment of the Guards. The price of $2 \frac{1}{2}$ rubles for seats in the first and second carriages is
considered :o be much too high for such a short distance. A private trial of the two engines lately received from England was made on Tuesday. Though but a short notice was given and only to the police, many thousand persons had collected to see this novel sight. Many persons crossed themselves at the sight of these gigantic machines, as if they had been demons.-Hamburgh paper.
baltimore, wilmington and philadelphia batlroad.
The Wilmington Journal says-"We learn that articles of union were agreed upon and executed yesterday, between the Wilmington and Susquehanna Railroad Company, the Baltimore and Port Deposite Railroad Company, and the Philadelphia, Wilmingten and Baltimore Railroad Company-the three roads extending from Philadelphia to Baltimore -by virtue of which they have become one corporation, under the name of the Philadelphia, Wilmington and Baltimore Railroad Company."

LAKE ERIE.

The number of ships, brigs, \&ce., navigating the waters of Lake Erie, is 300 , of steamboats 42, and of canal-boats 256. On board of these vessels, 5,152 men are employed.-Ohio $\Delta d v$.

It is said that 50,000 persens are employed on the navigation of the Mississippi and Ohio, working 638 steamboats, and 6000 flat and keel boats.

Steam navigation has greatly altered the nature of the cattle trade in Scotland. All the superfluous fat cattle and sheep which used to spend weeks on the hot and dusty roads, are now transported, in the course of a few hours, to the metropolitan market.

红 ${ }^{3}$ Volume Six will be completed as speedily as possible. The next, or Volume for 1838, will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shallalways take pleasure in furnishing them if we have them to spare.

0 Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

For Sale.-A Level, made to order by Brown \& Hunt, and in first rate order. Enquire at this office.

Wanted on a Lease.- A good country

 place, with suitable out-houses; and from 5 to 15 acres of land, a short distance of the city. Enquire at tbis office.The Sobseriber offiors his services as A gent, to procare Machinery for ANULs, Steam En. cines, Locomotives, Printing Machinec, Presses, Inypes and Fistures.
He will give grompt attontion to all ordert entruated to bim for execution; and pledges himaclf to those who may employ him, that no effort on bie part shall be wanting 10 procore the best articles to be had in the city -and to give satiafaction.

He will also employ Millwrighte and Engineers, 10 erect Mills, and put the Engines and Machinery in operation.
Orders accumpanied with the necesaary funds, or satiafactory city acceptances, should be addressed to D. K. MINOR, 30 Wall-st. N.Y.

LOUISVILLE, CINCINNATTI, AND

CHARLESTON RAILIROAD.

NOTICE TO CONTRACTORS. -Sealed Propoaala will be received at the Offico of the Company in Columbia, S. C., untll the 15th day of February next, for the graduation and masonry of that portion of the Road frum Columbia to the crossing of the Congaree River, in the vicinity of McCord'a Ferry, being 25 miles in extent.
Also, for the construction of a Bridge of 400 feet in length, on the Congaree River, to be built on atone piers and abutments, for which there are suitable quarries in the neighborhood.
The plans and profiles of the line will be ready for inspection at the Office of the Reaident Engineer, in Columbia, S. C., after the 10ih day of February.

So soon as the surveys for location, now in progress, aro completed, that part of the Road extending from McCord's Feiry to the Charloston and Hamburg Railroad, at Branchville, will be put under contract, of which due notice will be given.

WM. GIBBS Mc NEILL,
Chief Engineer.
15 The Railroad Journal, N. Y. Courier \& Enquirer, N. York; Providonce Journal, Providence, R. I.: Atlas, Boston; Philadelpia Enquirer, Philadelphia; will poblish the above notice 6 timen, send a copy of the paper to the Office in Charleaton, S. C., and a certufied copy of their account for payment.

Jan. 12
fmw6

NEW ARRANGEMENT.

mopes for inchaid planga of railioads. WE the subscribers have formed a co partnerahip under the atyle and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroarls, and for other usea, offer to supply ropes for inclined planes, of any length required without splice, st short notice, the manufacturing of cordage, heretofore carried on by S. S. Durfee \& Co., will le done by the new firm, the same superintendent and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be properly attended to, and ropes will be shipped to any port in the United States.
12th munth. 124, 1836. Hudson, Columbia County, State of New-York.

ROBT. C. FOLGER.
33-if
GEORGE COLEMAN.

AMES' CELFBRATED SHOVELS, SPADES, \&c.

300 dazens Ames' superior back-strap shovels. 150 do. do. do. plain do. 150 do. do. do. castateel Shovels \& Spades 150 do. do. Gold-mining Sbovels 00 do. do. plated 8 pades.
50 do. do. socket Shovels and Spades
Together with Pick Axes, Churn Drille, and Crow Bars (stuel pointed), manufactured from Salisbury Bars (stined iron - for sale by the manufartusing agents, WITHERELL, AMES \&CO.

No. 2 Liberty street, New-York. BACKUS, AMES \& CC.

Fo. 8 State-street. Albany.
N. B.-Also furnished to order, Shapee of every deacription, mada from Salisbury refined Iron. จ4-ti

MACHINE WORKS OF ROGERS,

 KETCHUM AND GROSVENOR, Paiction New. Jerwey. The onderaigned metive orders for the following aricles, manufactured by them, of the most auperior description in every particular. Their works being extensive, and the number of hand: employed being large, they' are enabled to executr both largdiapatch.
Locomotive Siean-Engines and Tenders; DriLach ather Locomotive Wheel, As les Spring and F lange Tires; Car Wheela of cast iront, from a variety of patterne, and Chills $;$ Car W heels of cast irun, with wrought. Tires; Axles of heast American refined iron; Springs; Boxes and Boits for Cars.
COTTON, WOOL, \&FLAX MACHINERY, Of all descriptions and of the most improved pat lerna, Style, and Workmanship.
Mill Geering and Millwright work generally Hydraulic and other Presses; Press Screws; Cal lenders; Lathes and Tools of all kinds; Iron and Brass Cas ings of all ilescriptions.
ROGERS, KETCHUM \& GROSVENOR Paterson, N. J. or 60 Wall-ut. Neiv-York 5ltf.

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, io build Bridges, or vend the right to others to build on his Patent Plan, wius.d respectfully inform Railroad and Bridge torporations, that he is prepared to make coltracta to build, and furnish all materials for aupersfructures of the kind, in any part of the United States, (Maryland excepted.)

Bridges on the above plan are to be seen at the followi g localities, viz. On the main road leading from Baltimore to Washingion; two miles froin the former place. Across the Mutawamkeay river on he Military road in Maine. On the national road in llinois, at sundry points. On the Baltinure anil Susquehanna Rsilroad at three points. On the Hudson and Patermon Railroal in two places. On the Boston and Worcester Railroad, at several points. On the Boston and Provillence Railroad, at sundry points. Across the Contonenok river at Hennikar, N: H. Across the Souhegan river, at Milford, N. H. Acrows the. Cunnecticut river, at Hancoci, N. H. Acriss the Androscoggin river at Turner Centre, Maine. Acrnss the Kenneliec river, at Waterville, Maine. Across the Gencsee river, at Squakiehill, Mount Morris, N. Y. Across the White River, at Hartfurd, Vt. Across the Connecticut River at Lebanon; N. H. Across the mouth of the Broker Straw Creck, Penn. Acrows the mouth of the Cataraugus Creek, N. Y. A Railroad Brinlge dingonally across the Erie Canal, in the City of. Ruchester, N. Y. A Railrual. Bridge al Upper Sill Water, Orono, Maine. This Brilge is 500 feet in length; one of the spans is over 200 feet It is probably the firmest wooden bridge ever built in America.
Notwith standing his prescet engagements to build hetween twenty and thirty Railroad Bridges, and several common bridges, afveral of which are now in progress of construction, the subscriber will promptly attend to business of the kind to much rreater extent and on liheral terms.

MUSES LONG.
Rnchester, Jan. 19th; 1837.
4-y

STHPHENSON

Builder of a superior style of Passenger Cars for Railroads,

No. 264 Elizabeth street, near Bleecker street,

NEW-YORK.

RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the New. York and Harlaem Railroad, now in nperation.

ROACH \& IVARNER,

Manufacturers of OPTICAL MATHEMA TICAL AND PHILOSOPHICAL INSTRU. MENTS, 293 Broadvag, New-York, will keep constantly on hand a large and general ascortment of Instrumente in their line.
Wholezale Denlers and Country Merchants suppliel with SURVEYI VG COMPASSES, BA ROMETERS, THERMOMETERS, \&ce. \&cc. of their uwn mannfacture, warranted accura'e, and a lower prices than can be had at any other catiblishment.
Fir lstruments made to order and repaired.

Te:-
Raily ay Iron, Gat bara; whe conntergunk hoies and mitred jnints, : lbs
 3 鼻:

witn Spikes and Splicing Platea adapted thereto To be sold free of duty to State governments, or ncorjoruted companies.
Orders for Pennsylvania Boiler Iron executed.
Rail Road Car and Locom tive Engine Tires, wrought and turned ur unturned, ready to be filted on the wheels, riz. $30,33,36,42,44,54$, and 60 inches diameter.
E. V. Patent Cbain Cable Bolts for Railway Car ax les, in lengtlis of 12 feet 6 inches, to 13 feet 2d, $2 \frac{2}{3}, 3,3 \frac{5}{8}, 31,3 \frac{1}{2}$, and $3 \frac{1}{2}$ inches diameter.
${ }^{3}$ Chains for Inclined Planes, shurt and stay linke, manufactured frum the E. V. Cable Bolta, and provell st the greated strain:
India Rubber Rope for Incliped Planes, made frum New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.

Patent Felt for placing between the iron chair and slone block of Edge Railways.
Every description of Railway Iron, as well ao Locomotive Engines, imported et the shortest notice, bv the agency of one of onr partners, who resiles in England for thia purpose.
A highly resjectable American Engineer residew in England for the purpose of inspecting all Locomotives, Machinery, tlailway Iron, \&c. ordered through us.
A. \& G. RALSTEN \& CO.,

28 tf Philadelphia, No. 4 South Front-st.

ARCHIMEDES WORKS.
 (100 North Moore-street, N.Y.)

THE undersigred beg leave to inform the proprietors of Rail Roads; that they are prepared to furnish all kinds of Machioesy for Ruil Roads, Locomolive Engines of any size, Car Wheels, such ass are now in successful operation on the Camden and Auboy Rail Road, none of which have failed.Castings of all kinds, Wheels, Axles and Boxes, furnished at the shortest notice.
H. R. DUNHAM \& CO.

NewYork, February 12th, 1836. 4-jtf

PATENT RAILROAD, SHIP AND BOAT SPIKES.

*. The Troy Iron and Nail Factory keepe constantly for sale a very extensive assortinent of Wrought Spikes and Nails, from 3 to 10 inches manufactured by the subseriber's Patent Machinery, which afier five years successful operation, and naw almost univeral use in the United Statce, (as well as England, where the aubscriber obrained a patent) are found superiur to any yet ever offered hin market.
Railroad companies may be supplicd with Spiken having conntersink heads suitable to the holes in iron rails, to any amount and on short notics. Alt:sost all the Railroads now in progress in the United States are fastened with Spikes made at the above-named factory-for which purpose they are found invaluable, as their athexion is more than double any common Spikes made by the hammer. ** All orders directed to the Agent, Troy, N.Y. will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N.Y., Jniy, I831.
** Spikes are kept for sale, at factory prices, by 1 \& J. Townsend, Albany, and the primeipal Jron Merchants in Albany and Troy; J. I. Brower, 222 Water-street, New-York; A. Mı. Jones, Philadel phia; T. Janviers, Baltimore; Degrand \& Smith, Eoston.
P. S.-Railroad enmpanies would ilo well 10 forward their orders as early as practicable, as the subscriber is desirous of extending the manufacturo ing so as to keep pace with the daily increasing demanil for hiy Spikes.

1J23am
H. BURDEN.
G. Mitchell, Printer, 265 Bowery, N. Y.

AMERICAN RAILROAD JOURNAL.

NEW-YORK, FEBRUARY 22, 1838 .

REPORT ON THE EUGVET OF THE VALLEY RALLROAD.
enk 3.1 (Continued froni p.619.) is
Description of the Line of Survey.

1. Commencing at the boundary of Massachusetts and Vermont, fifty rods west of Connecticut river, and at an elevation of $\delta 1$ feet above low water, our ling rests upon the surface of the first table for four miles and a quarter, when we reach the village of Vernon. In this distance sereral deep ravines must be encountered. At Vernon village the line deviates, first westivard, and in passing the village, again eastward-copying the sudden wiuding of the Connecticut, at this place. After running upon the stepep declivities and across the low grounds just north of Yernon, we ascend ugain upon the first table, and pass just west of the dwelling of the late Governor Hupt. As this table fails us, one mile and a half farther north, we are obliged afterward to descend, along the side slope which bounds the table, down upon the low grounds adjoining the river; and upon this low level our line is arranged quite to the town of Brattleboro': In the distance thus far reviewed, two large streams will require bridges-the Salmon brook at Vernon, and Broad brook nearly two miles and a hall south of Brattleboro'.
At Brattleboro', the construction will be expensive. Here the line, after crossing on a level the street leading to Brattleboro' bridge, at a point westward, a few rods of the bridge, passes the mouth of Whetstone brook, with an eleration of 25 feet abgre its bed; and, for 600 feet, continues in the deep water of the river although, out of its current. Here will be an embankmont of 30 feet Eigh $_{2}$ protected on the outer slope by a
crating of stone and loose rocks brought from the opposite mountain. The projecting sandy point, north of the cove, occasions a deep cut, which will furnish ample material for our embankment. About one mile north of the village, our line will cross the mouth of West river by a single span of 150 feét.

Through the towns of Dummerston and Putney, we keep every where near to the river-sometimes upon the narrow flats, and sometimes upon the steep hill. slopes. Besides crossing a second "Salmon brook," and other small streams, the Canoe brook, which occurs in Dummerston at the bend of the river, presents in its north bank a formidable sliding hill of clay; and, still north of that, our railroad will require protection against the current and the floating ice and driftwood of the river. Through both thesu towns, but especially through Putney, the abrupt character of the river-banks compels us to follow all the windings of the stream, and often with curves of a small radiustin one instance, of 550 feet At the sudden bend; one mile and a hatf south of Westmoreland bridge, we are edmpelled to cross the projecting high table with a deep cut; and again, immediately north of the table, to eross extensive low grounds with a high einbankment, s: In these towns four considerable brooks I must" be ' Crossed, riz: Salmon, Canoe, and two Underwcod brooks, so called. 4

Through Westminster we meet a sue cession of side hill and of meadow, with an abserice of high table land Just as we approach the borders of this town, the extensive I?utney Flats give an opportunity for a straight line one mile long, and very cheaply made. This is soon followed, however, for a considerable distance (one half mile) by sliding banks of clay; after which we enter upon the flats south of Westminster. In passing this last named place, we are compelled to make around at the foot of the high talite upon which the settlement: is situated, and which niot only rises abruptly before us, but also falls off again suddenly upon the flats to. the morth of the town:
At Bellows Falls, in the south part of thentown of Rockingham, the land rises
the stream-or between 50 and 60 feet. Between the North Westmister Flats, however, and this place, there is interposed, very favorably, a succession of. tables, into the surfaces of which we are able successively to ascend, and to conduct the railroad into the village, with an inclination of no more than 45° fcet to the mile. Eren this, however, is' a higher inclination than any which must necessarily have place south of that village ; or, I may add, north of it, as far as Fairlee. The crossing of Saxton's river, south of the village, and just south also of the town line, cannot be effected without a bridge elerated 50 feet above the stream; consisting, however, of no more than a single span, and estimated accordingly, at $\$ 5,200$. Through the village of Bellows Falls, two lines were. tried tone an the plain behind the main. village, and the other upon the river bank and along the main street. The former line is the more direct of the two; but the latter is the least-expensive. Two lines were also ran at the mouth of Williams river, in the same town-one crossing the stream considerably above its mouth; then crossing the flats in a direct line, and ascending upon tbe table land beyond with a deep cut;-the other erossing the river at its mouth, and maintaining a course upon the alluvial swell immediately adjoining the river. My estimate has been based upon the latter line, as involving the least expense, by reason of its avoiding both the low flats, which are, at times, deeply flooded, and the high table beyond, with its necessarily deep cut. The bridge at Williams; river has been estimated upon the idea of one span of 100 feet-the road-way to be elevated 25 feet above the bed of the stream.
It would be superfluous to detail with minuteness the arrangement of onr line through the towns of Springfield and Weathersfield. The bridge over Black river in the first named town, will consist of two spans of 100 feet each-the roadw ay being elevated 25 feet above the bed of the channel. 1 In Weathersfield, the circuit of the river which forrns what is called "s the Bow? was avoided by Ascending upon the first table above the flats and comtinuing across, in a line. nearly direct, and at a long distance
from the river. Between the residence of Consul Jarvis and the Claremont bridge, we find some ground broken by ravines, and must lay the line upon the side hill. The hill.slopes, however, are not sliding.
Through the townslap of Windsor,the ground was generally favorable. Our line, in passing the village, was run upon the meadows to the east of it. In less thian two miles nerth of this, we encounter the sliding sand banks called "the Hour Glass." Opposite these, the railroad, for eighty rods, must be constructed by an embankinent in the edge of the river, protected by a slope wall through the entire distance.

One mile and a half still farther north, in the town of Hartland, just south of Sumner's bridge, a dificiculty of some magnitude must be encountered. At this place, Hart's island divides the stream into two courses. The current upon the Vermont side, as it comes down past Sumner's bridge, turns albruptly west ; while at the same spot, the table land which forms the river bank, projects out towards the east, with a corresponding bend, and interposes its bulk directly in the way of a line coming up along the bluffs of the river bank, opposite. Hart's island. This projecting table is too high to be passable, except at the expense of an enormous cut. On the other, hand, by crossing the Vermont channel on to the south end of the island-then continuing upon the island and recrossing at its north end, we may gain by a very gentle curve the steep bank of the river at the Vermont end of Sumner's bridge. This mode of meeting the difficulty was preferred without hesitation, although it requires two bridges of dong spans in crossing to the island and recrossing to the Vermont bank.

Through the remaining part of the town of Hartland, as well as the towns of Hartford, Norwich and Thetford, there is little to distinguish the character of the route; which proceeds in turn upon flats and side slopes, and, in Hartford, often upon rocky bluffs. Three considerable streams occur in that dis-tance-the Queeche, the White and the Ompompanoosuc rivers, besides smaller streams, as for instance, Blood and Broad brooks. In the middle of the town last named, opposite Johnson's island, there will be required an amount of rock excavation unusual upon this line; and, at one projecting point still north of that island, a short distance (400 feet) will present a rock cut of 25 feet in depth. Above Hanover bridge, the route becomes more level; although possessing the general features already mentioned.
After entering Fairlee, and crossing the brook that comes from Fairlee pond, we ascend the Fairlee plain and soon reách Sawyer's mountain. This may be passed without embarrassmeut above the road, upon the loose rock at the mountain base. We now leave the river,
which bears off to the east, and follow up the plain-keeping near the travelled road; and liaving between us and the river the isolated mountain which occasions the bend until we strike again the stream, one-third of a mile north of the line between Fairlee and Bradford. In passing Bradford, we leave the village one half mile to the west ; and, crossing Wait's river near the mouth, by a span of 150 feet, we find for the wost part, a flat and favorable base for our road, interrupted only by a single bluff of rocks about one mile and a lialf north of Wait's river.
In approaching the town of Newbury, an attempt was made to shan the low meadows in its vicinity, by commencing a grade at Col. Chamberlain's, near the Haverhill bridge, and gaining the table land on which Newbury is situated. After this we could, it was thought, by running back of the village and along the mountain slope, descend upon the "Cow meadow," which puts in behind the village. But the table land was found elevated to 91 feet above the river; and the mountain slope is, besides, exceedingly steep and rocky, so tbat this attempt was abandoned. We therefore continued awhile upon the meadows, which are, in general, sufficiently elevated without high embanking; but which are notwithstanding, in certain parts overflowed ten feet deep, and for slort distances, fifteen feet deep, by the freshets. Our grade, however, is every where so arranged ns to he nbovo the highest water; and heavy embankments may be avoided by the employment of trestles. Immediately upon passing the village, and just south of Mr. Hazleton's house, we cut through the ridge upon which the road now runs, and thus come upon the flat surface of the "Cow meadow." Two miles north of the village, the rock which is known as "Ingalls' Point," juts out abruptly into the river, with a deep cove above it. 1 have here arranged the line with a view to pass directly through the rock by a tunnel 338 feet long. The tunnel, at its north extremity, will leave the hill at a point west of the road. After this we shall occupy the present road for 24 rods,and, on leaving that, take the meadow.
Near the boundary between this town and Ryegate, occurs a difficulty as serious as any we have hitherto met. The spot at which it occurs, lies in the south part of Ryegate, and is called "the Narrows." Here the river bank is high and rocky, and too much indented by bays and windings, to permit a passage along the shore. At the same time the table which constitutes the shore, is elevated to the height of 140 feet. The travelled road now: passes through this table in a gulley made by waters that fall into the Wells'river; but although this gully may be made, in part, available for the bed ofour proposed improvement, it is, for the most part, too circuitous to be thus used. Unless, therefore, we crosis
the river,(which is of doubtful expediency) it will be necessary, for a distance of 20 rods, to cut 80 feet deep, besides other deep cutting-or (what is more expedient) to tunnel underneath the table for 475 feet. Upon the idea of this tunnel I have based my estimate at this locality, which it will be seen hereafter, amounts to 826,000 .
Excepting for a moderate distance, where the bank is steep, and, in part, sliding, and where a slope piling must be resorted to in the manner aliready mentioned, no farther difficulty was experienced up to Dodge's Falls in Ryegate. Here it becomes necessary to rise rapidly in order to gain the level and high table land to the west, for the purpose both of avoiding the circuit of the river and of shuming. McIndoe's Falls in Barnet, which it is impossible to pass with a lower level, if continuing upon the Vermont side. A grade of 53 feet to the mile, ascending for 200 rods, enables us to command this plain ; and, after passing MeIndoe's Falls, we are able to descend again upon the low grounds boyond, with a short, similar grade. In passing Baird's Falls, south of Steven's Village, the rocky hill at that place will occasion only a moderate expense ; after which we may keep upon ground generally level, nearly to the entrance of the Passumpsic valley.

At the mouth of the Passumpsic, the western bank, both of that river and of the Connecticut, are irregular, precipitous and rocky. It will be necessary, in psssing one of the projecting cliffs, to use a curve of the smallest radius 1 have admitted any where upon the route-that is of 550 feet. But after having left the Connecticut and arrived in the Passumpsic valley, the character of our line experiences some changes, when compared with that in the other valley. We no longer meet with the lhigh tables, presenting steep side slopes, and crowding the railroad into the stream ; nor do we, at least above McLeran's dam, encounter, except in a single instance, (that of Lyndon Falls) any high mountain ledges. We are more generally upon the river flats, or upon ground either moderately sloping, or of no great elevation above the stream. On the other hand. however; we are compelled to resort to froquent crossings of the stream ; and our line in this, as it had been in the Connecticut valley, is winding, and sometimes with curves of a small radius. Between McLeran's dam and St. Johnsbury village, our line was laid across the stream six times. Between the place last mentioned and Trull's mills, eighteen miles above, there are also four crossings of the main Passumpsic, and seven crossings of its branches. In this distance there occurs no extraordinary difficulty. The Lyndon Falls, which, in a distance of two miles-that is, from ubove Cahoon's to the foot of 'Allen's' dam descend 101 feet, can be surmounted without a remarkable expense, by uning
a timber construction, with occasional walls, and by a grade of 50 feet to the mile.
We have now advanced our line up to Trull's mills in the town of Burke; whence, as was formerly mentioned, it deviates westward in its course to Barton. From Trull's mills to the summit, is pearly six miles and a half; and the elevation of the summit is 1043 feet ubove low water in the Connecticut, at the south line of the State, and about 1215 feet above the mean level of the ocean. In approaching the summit, and also after having passed it, I have arranged the grade at 80 feet to the inile for nearly three miles in all. These grades, however, I am satisfied, upon reflection, might be moderated, in the actual location; and perhaps reduced to 66 feet to the mile. The reduction must be expected to involve additional expense. . In approaching the summit, a cut will also be made that will drain the shallow waters of the Savanna, Pond. Our line continues northward from the summitsometimes in the valley and sometimes on the mountain slope-to the village of Barton, where the outlet of Bellwater Pond was crossed, to gain the east slope of the Barton river valley. In the descent from the summit to Barton village, alchough rough ground is found occasionally, no prominent obstacle will be encountered.
It has been mentioned in a former part of this report; that our line turns northeast from Barton towards Browningion and Charleston. In following this course, it becomes necessary to ascend at first with a gentle inclination, for one and a half miles, and afterwards, for more than a mile, with an inclination of 75 feetas at present arranged-to gain the height of 122 feet above Barton village, at a point nearly one half mile northeast from Mr. Jonathan Robinson's house. After this, no considerable inclination occurs for twelves miles, to Charleston. By taking this course, we avoid the broken slope of the Barton river valley, and come upon favorable ground. It is not necessary to enter into any details respecting the line from Robinson's house to Pensioner's pond in Charleston. The only point worthy of special notice is the crossing of the Willoughby river. This rapid stream, running between high banks, will be spanned by a bridge 66 feet high above the stream, and consist. ing of two reaches each 165 feet long. Soon after this,four line finds a very even surface to rest upon in the Brownington and Charleston swamp.

The slope of the hollow, west of Charleston, upon which we commence descending towards the Olyde river and the Salem pond, is exceedingly broken and channelled, by ravines and irregular gravel ridges; but after striking the valley of the Ciyde, no impediment occurs till we reach Lunge brook in the town of Salem, Where there is a broad valley to hecrossed with an embankment; orj more
economically, by a trestle work. The descent from Pensioner's pond to the outlet of Salem pond is disposed in easy grades-excepting one of 59 feet fortwo and a half miles from the causeway at the head of the Charleston hollow. But before passing. Dodge's hill in Derby, and for one mile and a half before reaching John's brook, the country descends with great rapidity. The fall to Beebe Plain is disposed with difficulty even into grades of 55 and 69 feet, extending together one mile and a half. In crossing on to this P'lain; a tributary of the John's brook, interposes a broad gulf, 70 feet below our grade at the deepest; which I propose to cross by means of a trestle bridge, bearing upon their walls, which cannot settle, raised to a certain height above the bottom of the gulf, and secured by being embedded in an embankment.

It has been already nentioned that the line meets the Canada boundary upon this plain; and that the plain forms the height of land between waters running in opposite directions; from which height there has been found by actual reconnoisance an easy route to the St. Francis lake, or, if preferred, to the city of Montreal.

Thirs I have attempted a description of our surveyed line as particular as these limits allow, and sufficiently full, I trust, to have embodied the prominent features of the route and all its points of principal interest or difficulty. ${ }^{\prime}$ For more detailed information concerning the expense of the whole line, or of distinct portions of the line, as well as concerining the curvatures, grades and other circumstances pertaining to the route, I refer to the parts of this report which yet remain.

General Observations.

The entire length of the froutc from Massachusetts to Canada is found to be 191 83-100 iniles. Its general character, so far as relates to the formation of the ground, is expensive; but this is counterbalanced by other natural advantages, - so that the entire line (as the estimate will show) may be made at a moderate expense by the mile. In respect of directpess, the line embraces a large portion of curved lines. The curvatures are generally moderate. It will be seen, in the table given below, that a small portion-two miles only, in all-is arranged in curves turned upon a radius less than 750 feet, and from that to 550 feet, which is our smallest radius. In respect of inclination the parts below St. Johnsbury are more favorable than the parts above. From Well's river down to the south line of the State, grades of 45 and 50 - feetoceur in two instances only; once at Bellows Falls, and once, south of Faírlec plain: Bet ween Wells' river and St. Johnsbiry, grades of a trifle more than 50 feet have been resorted 10 in several instances. Above St: Johnsbury grades still more inclined occur at certain places. The table of grades given below exhibits the arrangements of the line upon
which my estimate is founded: I do not consider that table a fair exhibition of the best possible arrangement upon the ground as it lies; because I am confident that more extended examination would develope lines superior, in this respect to my own lines, although probably more expensive. It may fairly be considered, however, that the grouod above St. Johnbury will not admit of a location embracing $n a$ grades as high as 66 feet to the mile. The table, however, as it stands, does not include any grade that is inadmissible in practice-although higher for short distances than would be esteemed perfectly free from inconvenience. The two tables that follow will explain their own object.

TABLE I,
Showing the aggregate length of grades as arranged for the estimate.

Inclination, ft. per. mile.	Miles azcending north.	M's. descen ding north.	Total miles.
Level.	:::::::7:	::::7::::	80,98
0 to 10	- 5,59	1,50	7,09
10 * 20	9,79	3,19	12,98
20×30	20,10	-14,59	34,69
$30 \cdot 640$	16,31	10,95	27,26
40 \% 50	- 3,45	1,95	5,40
50 " 60	7,65	7,61	15,26
60 ' 70	1,72	2,17	3,89
70 " 80*	2,74	1,54	4,28
by be reduced. Total 191,83			

TABLE II.
Showing the aggregate of different curves.

Before entering upon the subject of the actual expense of the contemplated improvement, it is necessary to state the exact plan with reference to which the calculations have been made. This being done, it will be possible for such as are versed in subjects of this kind to form their own judgment respecting the expense of the construction made upon any plan different from the particular one which has been made the basis of these calculations.

I remark, therefore, that I have adopted the contemplatedplan of improvement to the condition of the vallcy which is to be benefitted by it. This is a widely extended and fertile region, abounding in water power and the means of abundant pro-duce,-but now ill supplied, with com. munication to market. The great point to be aimed at is to open an outlet to the sea-board, as well as one susceptible also. of being extended by the inhabitants
of Canada to the St. Lawrence ${ }_{\text {, }}$ and, if desired, to Montreal. For this purpose it. is not essential to adopt a very expensive plan of improvement. On the con- 1 trary, as the character of a considerable part of the country interested is new, it is obviously essential that we avail ourselves of the natural advantages of such a region; so as to make the best use of the materials to be procured on the spot. I have therefore aimed specifically at two things: In the first place, to make the plan substantial in its character, and sufficiently durable to subsist in its first form for a period of years-say eight or ten years, -after which the perishable parts may be renewed or changed at pleasure. In the second place, Í have aimed at the very cheapest plan consistent with such an object. The following distinct ${ }^{\text {s }}$ specifications will give a complete view of the manner in which I propose to accomplish and unite these objects.
First: I propose a single track, both for grading and superstructure. The embankment surface is to be fourteen feet wide on the top, aud the excavations eighteen feet wide on the bottom, - a width sufficient to give space for drainage at the sides. It is contemplated to construct at certain distances-say at each fifteen miles-portions of a double track; half a mile in length, with turnouts at each end. By such a duplication of the track, at particular locations, the capacity of a single railway for transportation may be enlarged at a moderate cost. This of course should be done at places where the grading would be easiest. Other mere passing places are to be supplied at suitable intervals.

Second: I have contemplated, not only for the superstructure and the smaller bridges, but in other ways, a free use of the timber which is abundant along the track,-sueh as chestnut, pine, tamarac, spruce and cedar, and in certain situations, hemlocke. Thus in running along the steep side slopes of the lofty tables which it is impossible to excavate in the least without caving down an enormous mass of sand and growing timber, I would contemplate the plan of sinking piles eight feet into the solid earth. ${ }^{10}$! project several feet above the surface, and there to be crossed and bound together, and secured from springing by a long timber to be embedded and sequred in the hill slope above. In the same manner I would pass the sliding hills-lifting our track so far above the surface that the slips may pass underneath, and thus only embed the piles deeper and deeper. The small ravines are generally to be embanked; but sometimes are to be crossed by a firm trestle work deeply embedded in embankments at the foot Low meadows also are to be crossed by similar trestles five feet apart; embedded; first, two feet in the solid earth; ands then embanked from threa to eight feet in addition, raccording to the elevation of the roedway in In like
manner, deeper ravines may be crossed, by embanking with sand or gravel to a certain moderate height-then leaving the bank to settle nearly solid, and erecting trestles raised purposely too high; after which by filling, from above, a few feetadditional, the settling and embedding may be completed, and the trestles finally adjusted to the grade. In two instances I have supposed deep gulfs to be crossed by a simple bridge work; supported upon trestles, thirty feet apart, braced in every direction, and resting upon thin and rough but substantial walls of dry masonry, raised to a moderate lieight and embedded in embankment. The use of trestle work is well adapted to a winter rond-especially in a climate so far north as the upper parts of Vermont, in consequence of its projecting above the deep snows; and, inasmuch as cedar is very abundant in: the northern quarter, work of that kind may there be made very durable. It is obvious that such a road is to be worked by engines alone without the employment of horses, it being destitute of a horse path.

Third: I propose, upon the embankments and in the excavated portions, a wooden superstructure of the common kind-that is, with a wood rail and a flat iron bar spiked upon it. In the case of trestle work and slope piling, it is obvious that an important part of the structure-all the bearing parts-will have been already supplied, and that little will remuin but to adjust and secure the rail. This may be made of spruce, tamarac. or cheetnut. The usual cost of a superstructure upon this plan is about $\$ 4000$; but, taking into view all the circumstances, I have found a safe estimate for this road to be $\$ 3,250$.

We omit the details of the estimate and give the sum total.-ED. R. R. J. ${ }^{\text {t }}$ Total cost of grading the

Railroad; being 191

$83-100$ miles at $\$ 6,022$ 63,
Flat rail superstructure at $\$ 3,250$,
Additional track at each. 15 miles, to be graded and laid; in all $6 \frac{1}{2}$ miles at $\$ 9,272,63$,
Turnouts,
60,272 10
$20,000,00$
Depots, Engine and Carriage Houses, Shops, and watering stations,
Engibes, Passenger and Burden Carriages,
Engineering and Superintendents,

50,00000
185,000 00

Contingencies,
100,000 00

Total cost of improvement,
$\$ 2,285,00000$

General Remarks.

The estimate presented above, shows an average expense of the improvement, when finished and completely furnished for action, of a fractionless than $\$ 12,000$
a mile This sum, while I give it as abundantly competent to meet the cost of the contemplated work,-is, itself, 1 moderate, when compared, either with the known expense of other great routes, or with the magnitude of the object which this is designed to efiect. With regard to the resources of this railroad, is a mesns of profitable income, they are atready', in a measure, before the public in the Report of the convention holden at Windsor, in January 1836; and there is neither occasion nor opportunity for me here to do more than allude to that document. Neither can I dwell upon the inducements offered by the scenery of the Connecticut and its valley, ind of the fine mountains and lakes of northernVermont, to invite northern travellers to a choice of this line of passage. One consideration alone; of a public nature, and of pressing importance, I may be allowed to introduce. It is this.- The limited territory of the New England States has not hitherto withholden the amount and the moral force of their population from sustaining a weight in the national confederation disproportionate, indeed, to their extent of domain, butfor that very reason-of vital importance to the secure condition of their public interests. But the time is at hand when New England may be forced to struggle against the prospect of being overgrown by those immense new states, to some of which she has furnished largely both the population and the institutions. The very greatness of those states inspirits them to make the most of their natural advantages. But, with regard to ourselves, nothing can hold up these individual states of New England from siaking into an insignificance proportioned to the diminutiveness of their territory, but the policy of nurturing the nmount and the moral force of their people, not merely by institutions of intellectual and moral excellence, but by 4 opening, every where, the great channels of intercommunication, as the first step? to the effectual promotion of industry and the arts. The route which \mathbf{I} have: had the pleasure to survey is one of the it most prominent that can fix the attention, as opening to occupation and to enter prise a large region fertile in soil, and l° eminent for the amount of mechanical power upon its streams. Considered ${ }^{\circ}$ with reference to the foregoing ideas, it is an improvement, to the encouragement of which our citizens may justly feel im: pelled, not merely by the, prospect of immediate profit, but by a prineiple analagous to that of self-preservition:All of which is respectfully submitted.

Alex. C.T wiving, Eugineer.
New Haven, Sept: 25th, 1887 :
MONROE RAILROAD AND BANKINE CO.
At an annual meeting of the Stock. holders of this Institution, held on the 25 th day of January, 1838, the whole of the Stockholder attended eiher in pets
son or by proxy, with but very few exceptions. The Company assembled at their banking hoise, and after an organization of the convention, Gen. L. L. Griffin procceded to make a few clear, able and pointed prefatory remarks, and then submited a full, ample, and satis? facrory statement of the Bank, together with the report of the Chiaf Engineer, Mr. Daniel Griffin. He then submitted the books, vouchers, \&c, to the inspection of the convention, which gave general satisfaction to all who were pre-sent-which will more fully appear by the following resolutions which wete of fered and almost unanimously adopted:

Whereas, at the last Convention of the Stockholders, held on the 21 st day of August last, a resolution was passed by the Convention, "that no discount should be made until the discounted paper owned by the bank should be reduced by payment to a less sum than $\$ 200,000$, and after the discounted paper should be thus reduced, the whole amount of dis counts should not be carried beyond the sum of $\$ 200,000$, until otherwise ordered by the Stockliolders in Convention." And whereas that resolution has proved to be inexpedient, and a clog to the prosperity of this Institution, it is therefore Resolved, that said resolution be and the samo is hereby repealed. And be it further Resolved, that this Convention approve the order of the Board of Direc. tors rescinding said restraining resolution.
And be it further Resolved, That this Convention approve and approbate the course pursued by the President and Directors of the Institution since the last Convention; in faithfully and vigilantly protecting and promoting the interest of the Company in the Banking departmeni, and facilitating the completion of the road.

Afrer the adoption of these resolutions, the Convention then proceeded to an election of a President and six Directors for the year 1838, which resulted as follows:
: Qe Gen. L. L. Griffin, 4164
Henry Solomon, an and 4164
A: Brooks,
A: Brooks, Consmey is. 4039
John Martin, shat el 4164
B.T: Obar, 4039

Peter G: Thompson, 4139
Dr: M. Bartlett, $\quad 4064$
The Convention then adjourned.

fiolu Mevaineer's report.

To the President, Directors, and stockholders of Monioc Rattroad and Banking Company.
Gentlemen I again appear before you to report the condition and progress of the operative đepartiment of the Monroe Railroad, under more auspicious circomstances, than when I last had the honor to address you on this subject. The recommendations then made being adopted by you and fully carried into effect by the Board of Directors, have attained for your enterprise that state or fotwaratless which was contemplated by

say, insure its completion by the first of November next the dangers of the sea to the importation of your iron being alone excepted as the only circumstance involving a doubtful issue.

Being aware that it would be inconvepient to occupy minch of your tine on the present occasion, I will as concisely as possible notice the leading measures ta. ken since your last convention; and will add a short summary of the disbursements attendant on the progress of the work.
The necessary quantity of iron has been (hrough my agency, contracted for in Philadelphia at a cost of about forty thousand dollars, when delivered in Darien. The first cargo has already arrived, on which twelve thousand dollars has been paid. The entire cost when delivered in Macon will be about forty-eight thousand dollars, all charges included.
We have to regret that about three. fourths of this iron is smaller than that originally ordered, being to that iron in the proportion of 10 to 14 ; but the Di rection were left without choice in the matter, there being nothing better to be had on this side of the Atlantic, and any other alternative involved a year's delay, which of course was inadmissable.
Active operations have bcen resumed on all the unfinished work by the recall of the contractors who had suspended, and by re-leting the vacant sections to efficient persons. I am happy to be able to add, that the abandoned mile within the limits of Macon is incladed in this letting, the citizons have under more enlarged views of their interest and duty, retracted their former course, in relation to this improvement, and this part of the work now presents a most active scene.
Ihirteen miles of the line are prepared for the reception of the supersiructure, and five more will be-completed by the first of Match. The remaining six miles, with the exception of the deep cut through Singier's Hill, will be prepared by the first of June : and arrangements are now on foot to divide the deep cut into two contracts, for the purpose of doubling its force of labour so as to bring it to completion by the first of July at farthest.

Contracts have been made for cross ties and mud sills for nearly all parts of the line where it would be desirable to let oint that work-and the steam saw. mill, together with the mills of Samuel B. Hunter, Williamson Mims, and Frederick H. Reeves, are actively engaged in sawing railing to be delivered at different points of the line, some will also be prepared with whip saws.
A limited outfit of machinery is now in preparation in Philadelphia, consisting of locomotive engines, two eight wheeled passenger cars, and the iron work of eight wheeled burthen cars, these with turning platforms and other smaller machinery are to be delivered ai Darien by the first of June, their cost will be about iwentyfive thousand dollars delivered in Macon. 6/ The following sumbinty of expendi-
tures will not form a correct criterion by which to judge of the progress of the work, as some heavy sums including re-s tained per centage will fall due on the first of February and first of March, for work now completed or nearly so, which are not embraced by it, and there are large quantities of material prepar red and preparing, on which (by the terms of con tract) there will be nothing due under 12 months, neither will it give the actual amount paid out at the bank, paid interest for the accommodation given by the contractors of which-I take no account, believing it not properly chargcable to the railway.

The expenditures without interest would stand thus:
Paid on graduation and ma-
scnry,
$\$ 131,93741$
Material for superstructure,
Right of way and expenses of assessment,

16,76321

Engineer's services and its contingencies,

12,48878
Aggregate, $\quad \overline{\$ 165,25966}$
I have the satisfaction of stating that the cost of the sections already completed, and the prices at which the others are let, are such as to establish full confidence in•former estimates, so that I have no hesitation in assuring you that the aggregate cost of the worl: embraced in these estimates will not exceed that already reported.

In conclusion, I will add that I have no recommendations to offer but that the present designs be steadily pursued to their accomplishment, as I aוn confident that they lack nothing either of congruity or comprebensiveness requisite forsecuring the successful achievement of your undertaking.

Respectfully submitted,
Dantel L. Griffin.
BRICK AND CEMENT BEAMS.
A fresh series of experiments have been trying during the present week at the Royal Digineer establishinent, Chatham; by authority from the Board of Ordnance. Three experimental brick beams, each resting on piers of brick, were constructed and broken by weights, 2 which were applied over the centre of each. The piers were 2 feet 6 inches high and 18 inches square. The beams were 10 feet long, of the same width as the piers, and 1 foot thick. No. 1 beam was built of pure cement: No. 2 was also built of pure cement, with the addition of five longitudinal pieces of hoop iron, one of which was in the centre joint, and two others in each of the remaining joints. No. 3 , was built with mortar, composed of three parts clean sharp sand. and one part of Halling Lime, and had. also hoop iron in the joints. The wood work for supporting Nos. 1 and 2 mess?
removed in nine days, and that for supporting No 3, in six weeks after they were finished. No. 1. beam was broken down, but it yielded sooner than it was expected; but it proved that for buildings where beams are usually used, it may be safely applied. No 2 also was a satisfactory experiment. No. 3 was tried on Saturday. The object of the experiment was to ascertain the use of ceinent-bond in the walls of buildings, as a substitute for bond and chain timbers ; and also for ascertaining what additional strength is added to the bond by using houp iron in the joints. Mr Brunel first tried some very interesting experiments, proving the extraordinary strength of brick work, laid in pure cement with hoop iron in the lower joints, but the same thing had not been tried without hoop iron, which led to the experiments under Colonel Pasley.
We have since been favoured with the following correct report of the results of these experiments, by a gentleman who was present on the occasion. The reader will refer to the paragraph in our last number (p .16) for the description of the construction of each beam.

No. 1 beam was broken on the 27th at 2 P. m., with a weight of 298 lbs .; the break was not in the centre, but extended in two vertical seains, the one about 6 inches, the other 18 from the centre.
The strength was in favour of the cement, for in no direction did it give way; but on the other hand, the bricks were rent with an even fracture.
Another experiment was then made with the largest piece remaining, which measured about 4 feet over the piers: this required a weight of 2356 lbs ., and the fracture was similar to the former.

No. 2 beam was tried on the next day, and was found capable "of supporting 4723 lbs . but gave way on the addition of $56 \mathrm{lbs} . \therefore$ 4723-498 (weight required without the longitudinal bords) $=4225$, the amount of strength gaired by the use of iron bonds.

No. 3 gave way with the pressure of between 400 and 500 lbs. There was nothing remarkable in this experiment.

The above experiments were necessarily imperfect, the power not being applied as it would be in practice; for it is evident, that with a wall of from 10 to 15 , or even. 20 feet of solid work, the pressure, instead of acting merely on the centre, would be diffused throughout the whole beam. Upon clearing away the bricks from the middle of No. 2 beam, the two lower bars were found drawn asunder, the raiddle one, remaincd of the same length, and the upper pair found, what is called buckled, or foldell on themselves, showing tho neutral centre to be in the middle bar.
We may take this opportunity to observe, that the foundations of the new Judges' Chambers in Charcery Lane, are being constructed after the manner of the beam No. 2 , having a length of hoop iron to every row of bricks, and bedded in Romar cement.

On Monday some further experiments were made by Colonel Pasley at Chat. ham, in the presence of the heads of the Naval and Military departments there and matiy scientific gentlemen, upon the strength of cement. The first experiment was to ascertain whether a safe staircase might be made with artificial stones formed with bricks and tiles, and oiher small materials united with pure cement, strengthened by hoop iron bond.

A portion of the brick beam used in No. 2 experiment detaled in our last Number, in length 4 feet 4 inches, was inserted 9 inches into the wall of a stable; it consisted of four courses (two more than is used in a geometrical staircase ;) the extreme end of this step had no support whatever, so that we had the novel exhibition of a horizontal column of brick, retained together by cement and iron bars. Being loaded, it sustained the weight of 3566 lbs . Be eath the extreme end of the beam was placed a block to break the fall; when the weights were removed, and the block withdrawn, the column remained at the angle at which it fell, and required great purchase to remove it finally from the wall: Not one of the iron bars had given way.
The second experiment was for the purpose of ascertnining the force with which the hoop iron strengthened the brick beams, by weights acting on a piece of hoop in a slate of tension. In this case a picce of hoop iron, 12 inches long, similar to that used in the above experiment, sustained a weight of $\mathbf{6 1 6 3}$ Ibs., then yielded with a fair fracture; it was elongated $\frac{7}{8}$ of an inch; and its tem. perature sensibly increased.

The third experiment was upon the remaining portion of the brick beam, built with Halling lime mortar, and strengthened with hoop iron, which was broken on the 28th ult., but one end of which was little injured. This beam was placed across two piers two fee: asunder, so. that the bars had very little room for extension; the experimant, however, was remarkable, for the beam sustained the weight of 4887 lbz . It did not give way suddenly; two bricks fell from the lower course many minutes before the final crash, and this did nat occur till it had been yielding with a slow gradual motion. The fall was so tremendous that one of the piers were overturned, and scarcely two bricks. were found together. So much for mortar. None of the bars were broken in this experiment.
It appeared in these experiments that the iron was corraded in the mortar, but not in the cement, another security of the latter over the former

Correspondence of the \mathbf{N}_{0} Y. Unily Express.

 FROM'EGYPT.Extract of a letter from an American gentleman, now trayeling in the East, to a fieend in this city dated

Grand Cairo, Nov, 10, 1837. Kou will no doubt be greatly surprised
to receive a letter from me dated at this distant part of the globe; but accident more than design is the cause of my being here. On my reaching Malta, I found the communication to Egypt so rapid by the British steamers to Alexandria, that I determined to extend uny travels altogether in a different course from that originally intended, and you need not be surprised should my future letters be dated at points unihought of by me and our friends, when I left the United States-I am now entirely undetermined whether I shall proceed by steamboats up the Nile into Nubia, and even into Abyssinia, or go down the Red Sea into India. Cairo is now becoming one of the most important cities in the world. It bids fair under the present enterprising Pacha, to rival its ancient splendor. In former times, when the navigation round the Cape of Good Hope was unknown, the whole commerce between the African shores of the Mediterranean, and Persia, Arabia and India, was carried on by immense caravane, through Cairo to Suez. For many ages pasi this intercourse has greatly ceased. The present Pacha of Egypt is a man of exiraordinary character, and would be deemed such in any country. As an evidence of his energy and liberal spirit, he has offered every facility to the English, to extend through his dominions their line of communi cation with India. He has a steamboat of his own, called the Egyptian, running from here into Upper Egypt. She arrived here a few days agofrom Miniah, full of passengers, a dislance of two hundred and fifty niles up the Euphrates.

The route is now so easy compared with what it was a short time since, when, aside from employing guards, travellers were compelled to go on camels andasses, or in small boats-that I may take a steamboat to Nubia and pass on to. Thebes. But before I travel north or east, I must say something in relation to this, which has been termed throughout the east, the queen of cities, and has no rival either in Egypt or Arabia. The grand city it is called, in contradistinction to old Cairo, is surrounded by high walls, with magnificent gates. The streets narrow, dark and winding. The princi. pal street traverses and winds through the whole city. No pavements, and the consequence is that , the dust which is raised by the crowds of men from all countrics, and camels and asses which pass through them, is most annoying. The houses are from two to three stories high, but being lighted from the courts within, and then walled up on the street, present a dark and prison-like appear nnce. There are, however, open squares ipon which are buill some very fine dwellings. The baths, the great places of resort, are tombs of the Mamelukes, are of marble, and being painted with gilded domes, haye a most magnificent oppearance. The Pacha resides in the citadel which is said to have splendid aparyments The population is suppoted
to be from two to three thindred thousand, but no correct enunieration can be given. There is probably no place on the globe where the population is more ransient. Thousands are on the move constantly, to and from Africa into Asia, End from the shores of the Mediterranean intoUpper Egypt: I have not had time to attend to the sale of the male and female slaves that are exhibited in thestreet, of them I shall write to you in my next.

I fortunately reached here just in time to withess a scene of extraordinary gaiety and feasting. It is, called the Feast of the Circumcision, and has lasted for the last eight days. On this occasion nearly two thousand children, including the sons of Pachas and men in the high. est offices of the government, have been circimcised. - The cereminy, or operation, was performed in the most public manner, and subject to the gaze of the crowd. At the palace, hundreds of cainel loads of provisions were cooked for the thousinds and thousands that attended. Fireworks of the most brilliant description were set off, and a large amount of inoney distributed to the crowd. All has been music, dancing, \&c.
Sthould I pass into Upper Egypt, I will endeavour to give you a description of the wonderful ruins of tombs, and temples of ancient times, and of the Pyramids, which are in fact nmong the greatest wonders of the world. The British steam vessel Atalanta, is running regularly from Suez to Bombay. She stops at a number of places in Arabia, on the shores of the Red Sea, and at Mocha, and passes through the Straits of Babelinandel into the Indian Ocean. This is the new route for travellers, and no doubt will be taken by many English as well as Americans.

Yours, \&cc.

THE RAILROAD.

An ordinance is circulating through the city in pamphlet form, from which we perceive that the City Council of Co tumbus are laking steps towards the great enterprise of connecting Columbus with the Tennessee Railroad. Books of subscription are to be"ppened in the several counties concerned on the first Monday in March; subscribers to pledge property ly mortgage sufficient to ensure payment; the council is then to issue bonds which are to be sold to the best advantage, the proceeds to be loaned by the city to the company, and the work to commence.

Without pretending to decide upon the merits of the mode, (which by the bye, seems at first view to be the only practicable one in tho present deranged state of the money market, we most heartily rejoice to find nur enterprising board moving forward towards this great work. The only thing that can prevent itśs prosecution is want of zeal A man with foresight sufficiont to transact ordinary business, musiat once acknowledge

the practicability of the work, and one with half a head must see at a glance its nomentous imparfance to the very exis. tence of Columbus. Is there enterprise ennugh in our section to undertake it and carry it forward? For the honour of our country we would not question it.

We have before this given our views of the matter. It can do noiharm to repeat them. Without the fear of contradiction, ive nssert that there is no place in Georgia affords balf the natural advantages for commerce, as does Columbus. Her location, her relative position and the natural obstructions to passways in a different direction, alinost compel the up country trade to come to her wharves we care not whether it is done by canals or railways, the expense of bringing here the trade of Cherokee. Tennessec, the western part of North Carolina, and all intermediate cotintics in Georgia, must be one-third less than to take it to any other market; if done by a canal, we would sity one-half would do it. Now it is reduced to a certainty, that other sec tions, with all their disabilities, are seeking this trade-and unless we put in our clams soon they will have it. If then, it is worth their trouble and expense (so much greater than ours,) may we not well afford to take up the project? But it is useless to offer arguments. Those who have examined the subject know we can profitably embark-and as this is perhaps a sufficient motive, we most earnestly hone that all who can do so, will go into the plan with splrit and unanimity. Let every man feel that he is interested, and act accordingly-for every man in and around the route will share the benefits, if it be completed, and none will escape the loss if it fails. If she does not muve with energy in the works she mas scon bid farewell to her prosperity-and if she will open up her stores by this communication to the rich and immense products of the country alluded to, the man who owns an acre of her soil may be a Nabob.-Columbus Enquirer.

LEGISLATIVE PRUSSIAN IMPROVEMENTS

With the coming year a singular nerv law will come into operation in Prussia r_{t} is expressly intended for the "restric tion of freedom of trade." For the fulute it will be necessary to procure a licence to set up in business, and this is not to be granted till the applicant has undergone an examination will regard to his qualifications for the trade he has chosen, and shows that he possesses sufficient property to carry it on. The object of the law is said to be to prevent swindling, and the ruin often caused by the hazardous speculations of those who, possessing no property themselves, are indifferent about risking the property of others. The effect of, it will obviously be to keep classes where they are, and to bring every one into still stricter subjection than hitherto, to the powers tha be.-London Mechanics' Magazine.

Enimat line atine of al tys an wirn?
|imy|

红受 Volume Six will be completed as speedily as possible. The next, or Volume for 1838 , will be published in a more convenient form for preservation.
** Subscribers who desire to be supplied with missing numbers, will do well to apply for them soon. We shall alway take pleasure in furnishing them if we have them to spare.
0 Particular attention will be given to the procuring of all kinds of Instru* ments required by Engincers.-Orders must be accompanied with the necessary funds or city acceptances.

For Sale.-A Level, made to order by Brown \& Hunt, and in first rate order, Enquire at this office.

Wanted on a Lease.-A good country place, with suitable outhouses, and from 5 to 15 acres of land, a short distance of the city. Enquire at this office:

FRAME BRIDGES AGAIN.
Thie suhscriber will build Frame Bridges in any part of the United States, Maryland not excepted, and will extend them to as long as span, and warrant them to be as strong, durable, and chesp as those made by any other method.
Having no patent right, he requires no agents. A large number of bridges of his construcition are to be seen. Young genilemen, who wish, can be instructed in the irue mathematical principles of building bridges, and the application of the same to practice. JOHN JOHNSON. Burlington, Vi, Jan. 1838.
NOTICE TO CONTRACTORS.
Scaled proposals will to received by the undersigned, Acting Coramissioner of. Public Works, for the 5 th Judicial Circuit, Illinois, at his uffice in Canton, Fulton coonty, on Toes day, the 17 th day of A pril next, until 40° 'elock, P. M. of that day, for the Grading, Bridging and Masonry of twenty-four miles of the Poo. ia and Warsaw Railroad'; extending from Peoria, on-the Illinois river, twelve miles wert, and frum Warsaw on the Missiseippi, twolve miles east.
Sealed proposals will also be recoived at the Engineer's office, in Quincy, Adams county, Illinois, on Monday the 23d day of April next, until 4 o'elock P. M. of that day, for the gra ding, bridging and masonry, of tha Northern Cross Railroad, extending from Quincy to Columbus.
Plan and profiles, together with specifications of the manner of executing the work, will be exhibited at each office ten days previoua to the days of letting. The portions of the above work to be put under contract are expensive, requiring a large amount of heavy excavation and embankarent. They will be divided into sections of about one mile in length.
Contractors will be required to make an officient commencement of their respective jobs, within sixty days after the letting, and to have them fully completed on or before the firmt day of August, 1839.
Recommendations will be expected in all cases in which the contractor is not personally known to the undersigned, or the associste commissioner attending the letting.
The country is dry, healthy; and well settled; provisions are easily procared, and as the abuvo with the other works recenily let, and now offered by the different commissionere of the State to be let next spring, are the commencement of the extensive system of Internal Improvemente projected by the State of Illinois, it in worthy of the attention of coutractors abroad.
J. WRIGHT,
deting Commievioner, 5th Judicial Cirewith
Cantoo, Illinois, Jan. 9, 1838.

The Subscriber offers hie services as Agent, to procure Machinery for Mills, Steam Engines, Locomotives, Printing Machines, Presses, Types and Fixtures.
He will give prompt attention to all ordera entruated to bim for oxecution ; and pledges himself to those who may omploy him, that no effort on hia part shall be wanting to procure the best artictes to be bad in the city-and to give satisfaction.
He will also employ Millwrighls and Engi neers, to erect Mills, and pot the Engines and Machinery in operation.
Orders accumpanicd with the necessary funds, or satisfactory city acreptances, should be addressed to D. K. MiNOR, 30 Wall-st. N. Y

LOUISVILLE, CINCINNATTI, aN

CHARLESTON RAILROAD.

NOTICE TO CONTRACTORS.-Sealed Proposals will be received at the Offico of the Company in Columbia, S. C., untit the 15th day of February next, for the graduation ant masonry of that portion of the Road froin Columbia to the crossing of the Congiree Rivor, in the vicinity of MoCord's Ferry, being 25 miles in extent.
Also, for the construction of a Bridge of 400 foet in length, on the Congaree River, to be built on stone piera and abutmonts, for which there are suitable quarries in the neighborhood.
The plans and profiles of the lie will be ready for inspection at the Offieo of the Resi dont Enginoer, in Columbia, S. C., after the 10 ilh day of February.
So soon as the surveys for location, now in progress, aro comp'eted, t at part of the Road extending from McCord'e Feiry to the Charieston and Hamburg Railroad, at Branchville, will be put under contract, of which due notice will be given.

WM. GIBBS Mc NEILL, Chief Engineer.

QT Tho Railrond Journal, N. Y. Courier \& Enquitror, N: York; Providenen Sournal, Proridenco, R. 1.? Atlas, Boston'; Philadelpia Enquirer, Pliladelphia; will publish the abnvo notico 6 tiness, scind a copy of the paper to the Office in Charleston, S. C., and a certified copy of their account fur pay ma cnt
Jan. 12 \qquad urpay nien \qquad fmw 6

NEW ARRANGEMENT.

ROPES FOR inclined planea of ballroads.
WE the subscribers have formed a co partnership under the style and firm of Folyer \& Coleman, for thamanufacturing and selling of Ropes for inclined planes of railroads a nd for other uses, offer to supply ropes for, inclined planes, of any length required without splice, at short notice, the manufacturing of cordage, herctofore carried on by S. S. Durfee \& Co, will he done by the new firm, the same superintendent and machincry are employed by the new firm that were einployed by S. S. Durfee \&Co. All orders will be properly atteniled to, and ropes will be shipped to a ny port in the United States.
12th nwithi.' 12th, 1836.' Hudson, Columbia County, State of Nuw-York.:

ROBT. C. FOLGER.
33-tf GEORGE COLEMAN.

AMES CELEBRATED SIIOVELS, SPADES, \&c.

300 dozens A nes' superior baek-strap shovels.
150 do. do. do: plain do.
150 do. do. do. cas'steel Shovels \& Spades 150 do. do. Gold-mining Shovels. 00 do. do. plated Spades.
50 do. do. socket Shovels and Spadea Together with, Piek Axes, Churn Drilla and Crow Bars (steel, pointed), manufactured from Salisbury refined iron-for sale by the manufacturing agents, WITHERELL, AMES \& CO.
No. 2 Liberty struet, New York,
in 16 io BACKUS, AMES \& CC Fo, B. State-sineel, Albany. -N. B. +Aleo furnished to order, Shapes of every descripion madefrom Saliehury tefined Inm. v4-if

MACHLNE WORKS OF ROGERS; KETCHUM AND GROSVENOR, Patcno?, New-Jeraey. The undersigned receive orders for the following articles, manufactured by them, of the most superior description in every paricular. Thien worka; being extensive, and the number of hande employed being large, they are enabled to execute borh large and small orders with promptness and dispatch.

RAILROAD WORK.

Locomotive Steam-Engınes ind Tenders; Driving and other Locomotive Wheels, As les Spring and Flange Tires; Car Wheels of cast iron, from a variety of patterns, and, Chills; Car Wheels uf cast iron, with wrought Tires; Axles of bént A me rican refined iron; 'Springs'; Boxes and Eolts for Cars.:
COTTON, WOOL, \& FLAX MACHINERY
Of all descriptions and of the moss improved patterns, Siyle, and Workmanship.
Mill. Geering and Millwright work generally Hydraulic and other Pressea; Press Screws:Cal enters; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.
ROGERS, KETCHUM \& GROSVENOR
Paterson, N. J. or 60 Wall-st. New-York 51 tf .

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. ${ }^{\text {H }}$ H. LONG, to build Bridges, or vend the right to others to build on his Patent Plan, wuud respectfully inform Railroad and Bridge Corporations, that he is prepared to make cohtracts to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followirg localities, viz. On the main roull leading from Baltimore to Washingron; tivo miles. from the former place. Across the Motawamkeag, river on the Military road in Maine. On the national road in Illinois, at sundry points:' On the Baltimgre and Susqochanna Railroad at thrre points.i7 On the
Hudson end Paterson Railroal in two places. the Boston and Worcester Railroad, at several points. On tho Boston and Providence Railroad, at sundry points. Across the Contoocook river at Hennikar, N.H. Arrose the Snuhegan river, at Milford, $\mathrm{N}_{\mathrm{H}} \mathrm{H}^{2}$. Acrosis the Connecticat river, at Hancocd, N. H:' Across the Androscoggan river, at. Turner Centre, Maine. "Across, the Kennellec river, at Waterville, Maine. Across the Genesee river, at Squakichill, Mount Morris \mathbf{N}, \mathbf{Y}. Across tie White River, at Ifartford, Vi. Across the Connectieut River at Lebanon, N. $\mathrm{H}_{:}$Across the mouth of the Braken Straw Creek; Penn. Across the mouth of the Cataraugus Creek, N. Y. A Railroad Brilge diagonally across the Erie Canal, in the City of Rucherter, N. Ye" A Railrual Bridge at Upper Still Water, Orono, Maine,? This Brilge is 500 fees in length; one of the spans is over 200 fret; It is probably the firmest wooden bridge ever built in America.
Notwithstanding his preseet éngagements to build hetween twenty and thirty Railruad Bridges, and several common bridges, several of which are now in progress of construction, the subscritie? will promptly attend in business of the kind to much greater extent and on liveral terms,

MUSES LONG:
Rochester. Jan. 194, 183\%.

STEPHENSON

Builder of a superior style of Passenger Cars for Railroads,
No. 264 Edizabeth street, near Bleecker street,

NEW-YORK.

RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the New- York and Harlaem Railroad, now in operation.

ROACH \& WARNER,

Manufactirers of OPTICAL MATHEMA TICAL AND PHILOSOPHICAL INSTRU MENTS, 203 , Broadway, New-York; will keep constanily on hand a large and gencral aveortment of Instramente in their line.
Wholesale Dealers and Country Merchants sup. plied with SURVEYING COMPASSES, BA. ROMETERS, THERMOMETERS, \&a, \&d A their own mannfacture, warranted accurffe, and at
obvet pwices than can be had at an' olber cut blish-
ment.
IT Istruments made to order and repaired.

RAILWAY IRON, LOCOMOTIVES, THE subscribers offere.
THE subscribers offer the following aticles for Railway. Iron, flat bars; with conntermunk holes and mitred jnints,
350 tong $2 \mathrm{by}, 15 \mathrm{f}$ in length, weighing 4 Co

 witn Spikes and Splicing Plates adapted thereto Te. be sold freo of duty to State governments, or - Orderarated companies.

Orders fur Renusylvania Boiler Iron executed.
Rail Road Car and Locometive Engine Tires wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$; and 60 inclies diameter.
${ }^{5}$ E. V. Patent Chain Cable Bolts for Railway Car axles, in lengths of 13 feet 6 inches, to 13 feet 21, $2 \frac{3}{3}, 3,3 \frac{5}{7}, 34,3!$, and $3 z$ inches diameter.

Chains for Inclined Planes, short and stay links. manufactured' from-the E. V. Cable Bolta, and provell at the greatest etrain.
India Rubber Rope for Inclined Planes, maderom New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and stone block of Eugo Railways.
Every description of Railway. Iron, as well as Locomotive Engines, imported et the shortest notice, bi the agency of one of ons partners, who resides in England for this purpose.
A highly resjectable American Engineer resides in Ergland for the purpose of inspecting all Loco. motives, Machinery, Hailway lron, \&c. ordered through us.
A. \& G. RALSTEN \& CO.,

28 If Than 2 Philadelphia, No. 4 Snuth Front-st.

د ARCHIMEDES WORKS.

(Ino) North Moore-street, N.Y.)

THE indersigned beg leave to inform the proprietors of Rail Ruads, that they are prepared to furnish all kinds of Machinery for Rail Roads, Locomolive Engines of any size, Car Wheels, such as are now in successful operation on the Camien and Amboy Rail Road, none of which have failed.Castings of all kinds, Wheels, Axlea and Boxes, furnished at the shortest nolice.
H. R. DUNHAM \& CO.

New York, Felruary 12th, 1836.
4-ytf

PATENT RAILROAD, SHIP, AND BOAT SPIKES.

R. $*$ The Troy Iron and Nail Fsctory keeps constautly fur ssile a very extencive assortinent of Wrought Spikes and Nails, from - 3 to 10 inchen manufacturco by the subscriber's Patent Machinery, which aflor five years succesefol opcration, and now almost unifersal úse ir the United Stater, (as well as England, where the subscriber obtained a patent) are fuund superior to any yet ever, offered in marker. ${ }^{1}$ Railroad companies maj be supplied with Spikes having cohntersink heads suitable to the hoies in iron rails, to any amonnt and on short notics. - Al Inost all the Railroads now in progress in the United States are fastened with Spikes made at the above-named factory-for which purpose they are found invaluable, ras their adhesion is more than double any common Spikes made by the bammer: will * All orders directed to the Agent, Troy, N.Y. will be punctually aittended to.

HENRY BURDEN, Agent.
Troy, N.Y., July, 1831

- Spikes are kept for sale, at factory prices, by $1 \& J$. Townsend, Albany, and the principal Iron Merchants in Albany and Proy; J. I. Brower, 222 Water-street, New-York; A. N. Jones, Philadelphia; T. Janviers, Baltimore; Degrand \& Smith, Eoston.
R.S.-Railroad companies would dn well to for ward their ordere ss barly se practicable, as the aubcriber is depirous of extending the manufactryIng so as to keep pace with the dajy increasiog emand for his Spikes.

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT No. 30 WALL STREET, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVANCE.

CONTENTS

Report of the Raleigh and Gaston Railroad t'xmpany 633 The Interiol of a Conl Mine
Niscelianeois lems,
Advertisements

AMERICAN RAIIRGAV JOUKNAI.

NEW-YORK, FEBRUARY 21, 1838.
We are indebted to the Hon. Daniel Webster, for the Report on the Survey of the Western and Atlantic Railroad of the State of Georgia; to the Hon. E. Curtis, for Congressional papers; and to Col. H. W. Childs, for the Report of the Committee on Agriculture, and the draft of the Bill now before the Legislature of this State.

Also, to an unknown friend, for the Second Annual Report of the Raleigh and Gaston Railroad Company.

western railroad.

The Bill granting aid to this Road, has passed the Massachusetts House of Representatives by a handsome majority. A motion to re-consider was negatived by a stronger vote than the original one in favor of the Bill.

The Bill provides for the raising of nearly two millions of dollars in aid of the Road.
haleigh and gaston railiroad co. (Contisued from p.622.)

Report of the Ch. Engineer.

Raleigh, January 19, 1838.

Gentlemen, -In accordance with established usage, I beg leave to submit to you, on the occasion of the approaching Meeting of the Stockholders, the following Report of the progress and present state of the work committed to your charge. And I shall combine therewith, ns requested, general description of the Road, as now located. This was not done previous to the last Annual Meeting, because the location was in-
complete, and it was thought unnecessary to make any report on thesubject until it was completed.

Before entering on this description, I will briefly advert to the circumstances which led to a choice of routes. One of the earliest duties assigned to me, as your Engineer, was to make a reconnoissance and a suryey, if it was found necessary, of two routes which presented themselves-the one passing up the ridge which separates the waters of Roanoke from those of Tar River, and crossing the last named River above Louishurg ; and the other taking a more direct course to Raleigh, and consequently passing all the streams lower down. The result of this reconnoissance was given in detail in my letter of May, 1836. The Board agreed with me in preferring the upper or Western route, and all ny subsequent observations on this line liave gone to confirm me in my former impressions in its .favor. The elevations and depressions found, equalled my most sanguine expectations: though it was believed expedient, in some cases, to adopt grades with higher rates of ascent than were at first contemplated.
To proceed with my account of the Road : It consists of two divisions-the first commencing at Gaston, and ex. tending to a point in the vicinity of Chalk Level, 39. $\frac{1}{2}$ miles from the south side of Roanoke river; and the second, extending from that point to Raleigh. Beginning with the first division, the line, as located, and in part constructed, is an extension of the long straight line terminating the Greensville and Roanoke Railroad: which is continued across the river, and for one mile up the ravine, on the south side. Thus the Valley of the Koanoke is passed by a straight line, or between three and four miles in length. This is a matter of some moment, when we consider that there are two steep inclined planes, lescending towards the same point, and separated by the intervention of a short level it may be important, as a safeguard against accidents, that the Engine man on the Locomotive, coming down one of these planes, should be able to see some distance up the otlier. "The grade on the Greensville and Reanoke Raitroad is $\mathbf{9 4}$
feet per mile; that on your's is 63 feet per mile.

The river is crossed by means of a bridge of 1040 feet in length, consisting of six spans, the greatest of which is 169 feet. The abutments and piers are of substantial masonry, coursed and dressed above water. Three of the piers, together with the abutments, are built by means of coffer dams, upon the solid rock in the bed of the stream. The other two piers are built on cribs, made of large timbers strongly framed together, which are filled and surrounded with rip-raps. These cribs rest in like manner on the solid rock, and the timber work is raised to a point sufficiently below the surface of the water to avoid the danger of decay. We were fortunate in procuring for this work a granite which, for beauty and durability, I belicve to be unsurpassed by any in the world. The stones used, frequently present natural faces, which are almost perfect planes. I have seen a mass, thrown from the quarry by a single blast, which presented a natural piane surface of almost 100 superficial feet. The superstructure of the bridge is of the Susquehanna white pine, built on the plan of Town, but with the number of latice pieces doubled, and an extra set of chords.

After crossing the river, the Road ascends for a distance of 14,045 feet, at the rate of 63 feet per mile-a rate of ascent which is never afterwards reached on your work. The line then continues along the ridge before mentioned, which divides the waters of Roanoke and Tar rivers, until it descends towards the latter.

This ridge, though comparatively uniform, is indented by numerous heads of streams, which, though so small as to require little else than dry stone drains to vent them, frequently occasion embankments of 30 feet, and more rarely, of 50 feet in beight. The number of drains is so great, as to have added considerably to the cost of the work. The cuts, necessary to equalize the excavation and embankment, are frequently 20 , and sometimes 30 feet in depth. The highest point of this ridge is 500 feet above tide water, and, as is atways the case in such elevated countries, the

AMERICAN RAILROAD JOURNAL,

inequalities in the surface are much greater than a casual observation would lead us to suppose. The character of the soil on this division of the road, and indeed throughout the whole extent of the worl, is sych that the repairs, ustully so hotyy a tax on the profits of Rail.
coads, will be far less than ont any Railroad with which I am acquainted. Most of the cuts will be eisily kept dry, and the eyrithis, in generat, ofsubieieut consietency, to stand at the siopes given in constructing the work.

- In - adjusting - the -grades on this portion of the roal, a a liew was had to the great accession of twade which may be expected at Henderson Depot. As far as was consistent with a just regard to ecomomy, an effiort was made to preserye the rates of ascent and descent, especially when opposing the heary trate, at the lowest possible maximum. The accompanying Table, mapked 13 , till give you the grades adopted. It will he seen that the grales opposing the heary trade constitute only about gue fourth of the whole dength of the Division, and of these, 4t miles are at the rate of 10 feet per mile and under-41 nt the rate of 20. feet per mile and under, and 21 , at the rate of 2 J feet per mílo and under. They are most of them so short, that the momentuin alone of the train will overcome them. On the whole, we may, consider tliese grades sufficiently geatle, for great ussful cfiect. Wilh regard to direction likewise, the line is doeidedly favorahte, as will be seen by reference to the accompanying talile, inarked B. This tahle, as well as the one marked A, conmences on the sonth bank of Roanoke river, nearly half a mile from the point where the Raleigh and Gaston Railroad leaves the Greens. rille and Roanoke Roacl. For this distance, the grade ribes at the rate of 25 feet per mile. Aiter leaving the bridge, nearly 20 , out of the $39 \frac{1}{2}$ miles, consist of straight lines, and the curves are all sufficiently gentle, their radii varying from 11,46 in eet to 1,910 feet.
Along the line, at the points most likely to concentrate the trade of the adjacent country, saitable Depots have been erocted. The first Depot, at Littleton about nine miles from the river is the most convenient point for recciving the protuce of, all the enuutry lying oil Litle Fishing! Crecik, and on Great Fishing Creek, near their junctiou. The next Warchouse, at Eilgerton's will be the point of delivery, for many very productive plantations betweca the Road and the Romoke river. Opposite to Warrenton, a Depot has heen erected, solely with a , view to accompodate, the trade of that place. The uext Depert is fixed at the dis:ance from Edigerton's which is usually allowed between stopping plaees, without refercnce, to the Warringtoa Depot It is at he house of Mr. John E. Twitty: where the road from Williamsboro comes into the Raleigh raad, This Warehouso will re-
ceive the prolucts of the country for a considerable distance, on each site of the Railroad. A Gurge quagtity of tobacco may be expected at this point.
The second division of the road co

brought here us the chenpest and most expeditious route.

After passing this ridge, the line descends to Cedar creek, where nuoher deep ralley is enccuntend. Jadeed, quarters from its commencement, Hen-
derson Depot is placed. - This is bv far, the most important intermediate Depot on the line. 'i'he 'Tobseco and other ngrichlturn protuets of Grarivile, Person, Caswell, and a part of Franklin counties, with he troumht here.-. Tte trade from this fertile country will nidd largely to the reccipts of your Road. Oxhord is but ten miles from thenderson. The honse crected here is of the same size with the other Depots on the line, but it is so arranged, that it may be at any time cularged to any extent. It will probally be necessary to enlarge it considerably, but this can be better done when a short trial has shown us what will he reguired.

On the lirst eight miles of the second division, the work is very light. As the lines descends to T'ar river, the surface of the country becomes more broken, and deep cutting and filling often occurs, and in the excavations near the river, n great deal of rock has been fonnd. The work at Tar river will be ecistly. The road crosses the river at an elevation of ninety-four feet above the surface of the water. Althongh a span of 300 feet would have been ample for the passage of this stream, it has been found economical to usc a brilge of 825 feet in length. Ifter thus extending the bridge, the cmbankinent at each abutment still exceeds fifty feet feet in height. The abutments are of strong rubble masonry laid without cement - the piers, four in mumber, are of courscd rock work. This character of work combines a great degree of strength with a handsome appearance. Granite, of a suitable quality, las' been found in great abundance near, the site of the Bridge. This structure will be on the Lattice plan also ; but, in this case, the roadway, will be about four feet below the top of the Bridge instead of being near the bottom as at Ronnoke. Yellow, Pine for this work can be obobtained within a reasonable distance. The line, after leaving Tar river, ascends For more than threemiles at the rate of 39 6-10ths fét per mile, attaining the ridge between Tar river and Cedar creck, without mecting with any serious obstruction. Ahotit four miles from Tar river, at the point where the railroad crösses the road leading from Hilisboro' io Louisburg and Tarboro', it hes been determined to place a Depot. The road runuing from, this point to Hillsboro', is remarkably level and good, and leads, as you are aware, to a rich agricultyral country: Tobaeco and other articles will be received here from the greater part of Orange and Guilford, and Cotton from the country below. The inerchandise for Louishurg willt probably be
dinsion of the raad, the strentes af tery of the country. So, that grades, suited to Locomotive power, cannọt be chtained withouth having yers hing embankments. The grade at Cedar crerk fs about io feet above the surface of the water. Here it is contemplated to have a-Brones of about 600 feet in Pehifilf: ${ }^{\circ}$ The gromm, after passing Cedar creck, is very broken. and continues so for the greater part of the distance to Neuse river. Lhetwo forks of Brandy creck, Bichland creck, and many nther streanis of less note, require heary embankmelts. The line for the ten miles next to Neuse, runs always not far distant from the road leading from Simms' Bridge to Powilis Bridge, and crosses Neuse hetwen Powetl's and the Falls' Bridge. 'The crossing at Nense will be less expersive than that of any other strenm of sifinilar sizo on the rond. It is passed at ha moderate height, and a fasorable bliff on the south side will greatly facilitate the graduation. I cannot omit to mention here the valuable water power affordea by the Falls of the river, a sloort distance ahove our bridge. Doubtless, this will he turned to some useful pirpose when the resources of this country have heen more clearly devcloped, and the spirit of enterprise stimulated by the completion of your work. Any use which can be made of it will add to the transportation on the road.
To proceed: After leaving Neuse, we encounter a great deal of expensive work. At first, heavy cutting, and afterwards a continual transition from cutting to embankment, and the reverse. At Jefireys' creek, Manning's and Marsh creek, we shall require expensive structures of inasonry and high cmbankments. The last large strean to cross is Crabtree, over which it is conteniplated to build a Lattice Bridge. After leaving Crabtrec, the line will ascend to Raleigh at rates which can easily he overcome by Locomotive power. The road will terminate at Halifax-street, between Mrs. Miller's and Mr. T. P. Devercux's, on a suitable site for a Depot. It is interided to erect here, some time during the present year, a commodious Warehouse and the neces-

There has not been sufficient time to collect the necessary information for locating any of the ${ }_{S}$ Depots, between the one mentioned, four miles south of Tar river and Raleigh.
It could not be expected that where the streams are so numerous and the dividing ridges so high very, moderate grades could be obtained. Those adopted, however, will be found to oppose no serious obstacle to the transportation on your road. The accompanying T'able

mariked C, shews the grades used, and the 'Table \mathbf{D}, the direction of the lines.
With regard to the progress and present condition of the work, I have to say-
That the Bridge, at Gaston, is in a state of forwardness, and will probably be passed early in March. It had been foreseen that ihere would be great difficuly in procuring timber for this Bridge in papor tima. It was impossible to get Yellow Pine nearer than in the vicinity of Jackson, on the Portsuionth Railroai, or near the Roanoke, below the town of Halifax. Long experience had turght ine to dread the delays which woult occur in transporting timber from either of these points.' Thrs, together with the consideration of the superior value of the White Pine for this kind of structure, induced me to procure nearly all the timber from Port Deposite in Maryland.- A contract was made for this timber with Mr. Isaac Brown and Messrs. Jones \& Reinelart, which was promptly and faitifully executed. I have no canse to regret haring gone to such a distance for timber ; for, thongh the cost was soinewhat increased, it was not so much so as to counterbalance the advantages gained in the quality of the timber and in the early delivery. I contracted for a few of the larger pieces, to be gotten of Yellow Pine from the vici= nity of Hill's Ferry on the Roanoke.Every effort has been, hitherto, ineffectually made, to get these pieces delivered. But, for this delay, the bridge might have been passed on the first day of Jannary. The whole of the timber, however, will now soon be on the ground, and the work will be pressed with the utmost vigour. T'en miles of the road will be ready for use on the completion of the Bridge. The graduation is finished ior a distance of 48 miles, with the exception of a very small annount of work at two points, which will soon be completed. The timber for this division of the Road is nearty all delivered, and the superstructure is in rapid progress. Five Depots will- he finished in a short time. There can be no doubt that the 48 miles will be ready for use, by the first day of July next, and possibly at a much earlier date. The grading of about 15 miles beyond this is well adranced. A large force is at work on the Bridge at Tur river-the nasonry is progressing rapidly. One contractor is at work with an ample force, getting the timber for the superstructure and another is engaged to construet the Bridge at soon as the timber shall be ready.- It is hoped, though unt expected with certainty, that the Roäd will go into operation to the Hillsboro' Road Depot, 4 miles soutl'of 'Tar river, by the close of the year. Its completion cannot possibly be delayed much beyond that period.
All of the excavation, and embankment, and superstructure, from Tar river to Raleigh, arē now under contract, and the contractors are commencing their
work. The greater part of the masoiry and Bridyes are under contract likewise. All the arrangements have been made with a view to complete the work in eighteen months from this date. Should our anticipations be realized, (and the progress of the work up to this time encourages us to hope that they will.) this work will be finished in as short a period as any of the sane magnitude ever has been completed in the Southern country. On the works in the Middle and North. ern States, any number of laborers may be collected; but here, whites camnot he induced to remain, and it is difficult to procure enough, slave labor to execute work rapidly. But for the great exertions used, and the many inducements held out to persuade the owners of slaves to hire them on the Road, we would not have been able to collect a force during the pastyear. Now, however, since they have tried the experiment, the profits are sufficient to induce them to continue it
I deem it due to myself to say, that, before the plan of Superstructure used on this Road was adopted, the sulbject was well weighed, and all the plans which have been proposed by others were carefully examined. But none, in my opinion, combined as many advantages as the one adopted. This is the plan used on the Petersburg and other railroads; which I have adhered to, althongh it might render me obnoxious to the charge of want of originality. I thought it very desirable to use a thicker Iron, experience having clearly shown its advantage : but when the iron was purchased, the price was very ligh ${ }_{2}$ and it was thought inexpedient at that time to swell the cost of the work hy procuring a more expensive Rail. It may be found best (the price haring fallen) to use iron $\frac{\pi}{8}$ or ${ }^{3}$ of an inch thick, for the remainder of your Road.
It remains to give you an estimate of the cost of the Road. This can be done for the first Division with some degree of accuracy, the work being so near! finisthed. Before doing so, however, I beg leare to call your attention to the circumstances which have afiected the cost of this work:
At the time that the first Division was let, in Octuber 1836, the rage for speculation was at its highest piteh, nnd the price of every thing had gone higher, perhaps, than was ever known before in our country. There was a great deal more work offered in all parts of the United States, than contractors could be
found to take. It was particularly difficult to procure contractors here, where no work had been going on previous to this time. 'The effect of this state of things was counteracted, in some measure, by promising the contractors facilities which they could not obtain elsewhere. Still the cost of your work has been increased by the ligigh prices, beyond what it would have been under ordinary circumstances. There has been something, too, sacrificed for expedition. It was impossible to execute a work so rapidly, at the same cost as if the usual time had been allowed. It should be considered, also, that this is probably the heaviest work which has been hitherto constructed South of Potomac River.
But with all these dificulties, I challenge comparison with any other work in our country.

Estimate of the cost of the First Division, 40 milcs in length.

Graduation and MasoHry, in-
cluding Gaston Bridge, $\quad \$ 277,000$
Superstructure, $\& 4,600$ per
mile,
160,000
Depots, $\quad 12,000$
Superintendence and Contingencies,

50,000
§499,000
Which is at the rate of $\$ 12,475$ per mile, or $\$ 10,975$ per mile, exclusive of the cost of Gaston Bridgc.

Cost of the Sccond Dirision, $44 \frac{1}{2}$ miles.
Graduation and Masonry, in-
cluding Bridges,
$\$ 493,000$
Superstructure, \$4,000 per
mile,
170,000
Depots,
2.5,000

Superintendence, \&e.
20,000
\$716,000
Making the aggregate cost of 31,215 , 000, for the whole 84? miles. Tlie estimate of the cost of the Second Division is not to be considered as accurate, but is believed to he sufficiently so, for our present purpose. We may safely take this sum as the limit which will not be exceeded.

All which is respectfully submitted.
Chas. F. M. Garnett, C. E.
To the President and Dircctors of the Raleigh and Gaston R. R. Company.

TABLE OF GRADES-SECOND GREAT DIVISION OF RALEIGH AND :GASTON ralleoad. : il

$\begin{aligned} \therefore \text { Lengt } \\ \therefore G r_{i}+d^{2} \end{aligned}$
1,t
9,
1,5
5,3

ring of rate per mile. Total
$\left.\begin{array}{|c|c|c}\begin{array}{c}\text { Total } \\ \text { Ascent. }\end{array} & \begin{array}{c}\text { Total } \\ \text { Descent. }\end{array} & \begin{array}{l}\text { Total } \\ \text { Level. }\end{array} \\ \hline 9.00 & & \text { Level. }\end{array}\right\}$

Level.
Level.
Level.
Level.
Level.
Level.

Level.
Level.
Level.
Level.

Level.
Lerel.
Level.
Level.
Level.
Level,
Level.
Level.

Raleigh, January 20, 1838.
In pursuance of the order made by the Stockholders, at the last annual meeting, the undersigned have examined the Books kept by the President, and find the accounts so arranged as to present the receipts and disbursements under the appropriate and proper head.
neceipts.
The receipts from the Stockholders, to the first of January 1838,
amount to \$406,125 85
Amount obtained from the Bank of the State of North Carolina on loan
70.00000

8476,12585
expenditures.
The aggregate expenditures, supported by proper vouchers amount to

45\%,19976

> Showing a balance in the hands of the President, to be accounted for of

The account hereunto appended, marked A, will shew' the different Receipts and Expenditures. The Expenditures under the different heads, in the Exhibit, show the amount of the cost of the operations on the vazious contracts, and will be found on examination, by each Stochholder, to be supported by proper and satisfactory vouchers on file in the Office of the President. In passing on the accounts, we required vouchers in support of the different charges. They were readily produced, and, as far as we are competent to judge, we are of opinion, that, in every respect, the management of the operations by the President, and other disbursing Ufficers, has been judicious and proper.

We submit the foregoing, respectfully, as our Report, and suggest that, if the same should be approved, that the President be directed to balance the Books accordingly.

Respectfully submitted,

Wr. Robards.
 Wm. Peace.

To the Stockholders of the Raleigh and Gaston R. R. Company.

Length of Grades.	RATE Ascent	ER MILE. Descent.	Total Ascent.	Total Deseent.	Tolal Level.
200					Level.
1,100	21.12		4.40		Ler
200					Level.
1000	"	10.56		2.00	
200					Level.
600	26.40		3.00		
200					Level.
2,800		3960		-21.00	
200					Level.
900	34.843 .		5.83		
1,500	-11				Level.
7,100		50.16		66.75	
500					Level.
2,100	50.16		19.95		
- 200					Level.
1,400		44.88.		11.90	
300				,	Level.
8,400	50.16		79.54	¢	
1.000					Level.

resignation, intrepidity, and even heroism which necessarily belongs to these men, who, true martyrs to labor, bring themselves voluntarily in gloumy darkness.
The coal mines that surromit the ba\sin of the Loire do not communicate with one another-they have each their own issue in the form of a well. As soon as the foot is placed whihout the city, a building of wood is met with; here and there, blackened with sooi, enyeloped in smoke alinost ns largo as the Morgue. It is called Vargue.:

To imagine what must be the descent into a coal mine, it is necessary to call to mind the surmit of one of the towers of Notre Dame. A little vessel of a circular furm, constructed of planks, and scarcely two cubic feet in depth. descends before yon, balancing itself on the extremity of a cord, and about the length of an arm distant liom the wall.. The moment of embarking comes-you look up to the heavens and the cloudsyou lean furward over the gulf, so as to lose the equilibrium belleath your feet. It is a horrible moment. You must place one foot in the vessel, and but one-place it quickly, and you are pling. ed whirling into the abyss. In proportion as the vessel simks, the opening grows smaller, the light is enfeebled, the air becomes more rare, the temperature more clevated-your cliest sinks with uncasiness, and raises itself in spasins for breath: The walls of the will are wet with dampnessi, you meet, at first, with some marshy plants, afterwards nothing, not a blade of grass. In the midst of the confu-ed murmur which fills your cars, you distinguish the noise of some drops of water, which fall into thewell at measured intervals, like the noise of a pendulum of a clock. In the midst of the journey, you meet the ascending vessel, the contact of which is dangerons. You repulse it with the foot remaining outwards-if this motion makes yon totter-if you have the misfontune to support your hand upon the smutty and oily wall, your hand slips, the vessel turns over, and you ure launchedinto eternity, as the English sny.

You may now ask, what is it, in companison with such a descent, to venture in it bark, to feel beneath your feet, while flying from the shore, but a moving plank between you and the sea. Oh! how glad you would be, when plunging for the first time into a mine, to find yourself upon the sea, rolling in its foam, beholding the sun, and breathing the air frecly! You may there enjoy tlie tight, the air, and your arms, upon the wavesbut in a dark and narrow well, close as n prison, deep as a whirlpool, and horrible as annihilation, it is far difierent-yet a miner hastens down as gaily as a sailor on ship honrd ; and thinse have been seen, who, either by bravado or an indifference to danger, descend two hundred metres, holding themselves lay griping a cord; without any support under their feet. One trembles to relate such: a trial:
wstiengithore common thán is indagined! What is it then to see it 3 Arived int the botton, you are placed upen a natrows plank, which covers, in the furm of a bridge, the bottom of the weHta deep basin filled with thick and middy water: When you let go the cord, your feet are tottering like those of a drupken man-your heart beals, and your heial grows heavy. The heaven is to your dve but one resplendent point. Befory yonopens a gallery, inen another, then a pandenoniem of narrow corridors, dark and damp, which increase, mingle and grow entangled like the windings of a labyrinth. You see afar off, some red glimmers that light up, by their refieclion the dreps of water which hang from the roof, and the veins of gold that streak the coal like ribands. \hat{Y} ou creep an hour, sometimes upon vour knees, sometimes upon your breast, and neet. ing at each step only pools of ice, an infections air that suffocates you, and, moreover in the midst of the joyous chants that reach you from all sides, across the thousand months of the gul leries, like the magic ehoirs of Robert the Devil, or the Temptation. Whilst you listen to this invisible harmony, you are cllowed by a minor, who passes, bent double with a bag of coal on his back, holding a lamp in one hand, and supporting himself with the other, upon a little staff of iron. At length you arrive at the placess where they are at work. Ten laborers aro there, half nakei, knecling upon the ground, and cuting laboriously, enormous 'masses of coat, the surface of which sparkles with blue and gilded spangles.
The state of a minor is hereditary :this is a privilege that no ane dreams of attacking. Ordinarily he knows neither how to read or to write; for what use, what has he do bẹneath the sun ? speak to him of sending his children to school, he will not understand you; he works from the age of six years ; his father died in the mise, he will diethere also. Sunday is the only day of the week on which he can see the sun-on that day he rises before the davn. To dirty and torn garments succeed a jacket of velvet, a grey hat with large flaps; and for his wife, a calico petticoht embroidered with flowers and lace. Touch the hand of the miner, he salutes yon, he speaks to you, he smiles upon you; he raises hiss hat, he speaks, he smiles upon everybody. How proupd he as giving his arm to lis wife, whom ne leads to mass, and from mass to the inn, according to acient custom! For the miner is a free think. er; new ideas have not shaken his old belief; in his ignorant simplicity, he believes, he practices what his ancestors have believed and practised; and if he consecrates some hours to the enjoyments of the inn, it is not to contract there a taste for idleness aind dissipation. The week is so long in a mine, that one meed wot reproach him for the few coments that he spends in refreshing

and making himself mery: E: Besides, it is rave that he abuses them; he is in the midst of his family, and his brothers, for so he calls his fellow-laborers.

Finlurd hi vo To contimued.

vilyo orf ol

important invention.

We have been informed that there is to de seen at the iron foundry of Messrs. Batgher \& Wolf, of this borongh, something new in the mater of wheels for raiiroad cars. It is an invention by Mr. Wolf of that very useful article, on a principle which we believe is entirely new, and, alihough it has not yet been tested, promises fairly to be a valuable ratter with respect to the preservation of property and himan life. It is a cast iron wheel without spokes, of nbout the same shape as the common Railrond car wheel-hollow in the middle-the outer side or rim convex-weighing but about 30 pounds nore than the comnion wheel, and so strong that a friend of ours, who tried the expeniment, assures us that, although accustomed to quarrying heavy stone, he could not break it by a succession of bona fide beatings with risledge hammer. Numbers of other persons have tried it with the same success. Many accilents have occurred in consequence of the incapacity of the wheels of Railroad cars to sustain the weight with which they are burthened, and we trust that this invention (for such we believe it is,) may prove a sufficient preventive against any thing of the kind.-Columbia (Pa.) Spy.
mississippi and eock river canal come pany.
The propozed canal is intended to connect the Mississippi with Rock River by a cut of about five miles from Rock River above the Rapids, to the Mississippi. We know this country well ; and by this cut, an inland navigation of great extent will at once be secured through the most fertile region of Wiscunsin Territory. We venture to hazard the opinion that no western enterprise before the public, offers more inducements for safo investment of capital than'this; and we hazard this opinion upon an accurate knowledge of the collntry, which will be rendered accessable 10 steambnat narigation by this improvement- Cour. and Einq.

The survey of a Railroad route from Nashua, N. II, to Worcester, Mass. was commenced on the 5 th inst. Wc understand that it is the project of a New York Company. By this route passengers and gooils may be landed at Stoninglon, Coun, in five tours.-Courrand Enquirer.

The first trip of the cars on the Detroit and St. Joseph's Railroad was to be made on the 3it inst. The road is completed from Detroit to Ypsilanti, thirty miles. Commercial Adv.

cleveland and tfftsbergh rallroad.

- It will be seen. by an extract from the Cleveland Intelligencer, that the Legislature of Ohio has given that eity power to borrow two huindred thoussand dollars, to be applied to this road. This is a very important move towards the advancement of this work; and there is great reason to hope, that it will soen be rapidly advancing towards completion. When this work, and the Cross Cut Canal are completed, Buffalo may dremble for her title of chief city of the Lake. Indecd, we have no doubt, that every succeeling year will bring Cleveland bearer to an equality with her rival Lake

The mere southern and western position of the former city, gives it alrantages which no art or hilman exertion can counteract-more especially, while those natural adrantages are improved by a people so clear-sighted and enterprisiug as the Clevelanders.-PitisJurgh Adv.

红? Volume Sux will be completed as speedily as possible. The next; or Volume for 183 S , will be published in a more convenient form for preservation.
*** Subscribers who desire to be supplied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.
0 Rs Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.
For Saic.-A Level, made to order hy Brown \& Hunt, and in first rate oriler. Enquire at this office.

Warted on a Leasc.- - good country place, with suitable out-houses, and from 5 to 15 acres of land, a shoit distance of the city. Enquire at this office.

DIED-On the 13th February inst., Mr. Ausin Minse, aged about 24 years, son of Slephen Maine, Esq., of Hartiand, Vt. His disasse, the Small Poor, was taken withnut his being knowingly exposed to its influence; and its results shsuld bo a warning to those who have neglected to ayail thenselres of that mild and sure jreventirc-if thoroughly taken-vac. CIsative.
Mr. Maine hall cliosen the profession of Engineering, tu the studies of which he was tirreting the cuergies of a situsd siond and untiving induytry. "Mulest and retiting in his manners, he hadbut few assuciates; thowe few, howsere, appreciate highly his integnity and virtucs.

FRAME BRIDGES AGAIN.
Thie sulseritier isill buikl Frame Bridges in any part of the United States, Maryland not excrpted, and will extend them to as long a span, and warrant them to be as slrong, lurable, and cheap as thase made by ary oller meihod.
Having no patent richt, he requires no agents. A large number of bridges of his construction are to be secu. Young genilemen, who wish, can be instructed in the truc inatkematical principles of building bridges, and the application of the same to praclice.
Burlinglon, Vt, Jon. 1838

The Sobcribre of ore hi cervice se Agemh to procuro Nach ficry yor Mult, Seatm 2. gthos Lucdinviobe, 1
Ip will give mempl ativation to all ordery entruatod to bim firr axoousion: and plodgos himeolf to thooe who may omploy him, that in effort on bis part ahall to whinits to procare the bent artidices to tos buad in thio ciff-ind to give suriefaction.
Ho will aloo omploy Mjll wrighto and Engineorri to croct Mallo, and pat the Eigiees and Machinery in operation.

Orders sooumpaviod with the necomary fundi, of satinfootory eify icceptanees, stould be addressod to D. K. MINOR, 3O: Wall-st, N. Y.

LOUISVILLE, CINCINNATTI, AMD - CHARLESTON RAILHOAD.

NOTICE TO. CONTRACZORS - Sonlod Proposale will be recoived at the Office of the Company in Columbia, s. C.. watil the 15th dey of Fabruary noxt, for the graduation and masonry of that portion of the Road from Calumbia to the croseing of tho Congaree Rivor, in the vioinity of McCord's Ferry, being 25 miles in oxtent.
Also, for the conatruction of a Bridge of 400 foot in length, on the Congaree River, to be built on atone piere and abutments, for which there are guitable qoarries in the meigh. berhood.
The plane and profiles of the line will bo ready foz inapoction at the Office of the Residont Enginoer, in Columbia, S. C., afur tho 10th dey of Fobrwary.
So zoon ea the zervogo for loeation, now in progroes, ara completed, it part of the Road oxtendiag from MeCord'o Ferry to the Charloston and Hamburg Railroad, at Beanchvillo, mill be put under contrach, of which due no. ties will be ziven.

WM. GIBBS MO NEILC. Chief Engiocer.
WT The Railrosd Journal, N. Y. Courier of Enquirer, N. Yort: Providence Jouraat, Prove idenco, R. 1.: Allas, Bonton; Phladelpla En. quirer, Pbliadelphit: ' will publish the abovo notice 6 timen, sead a enpy of the papar to the Office is Charleotonis. C., and a certifiod copy of their account for pay ou ou
Jin. 12
fmw 6

NEW ARRANGEMENT.

 WE the subscribery havo formed app partnersbip under tha style and firm of Fotger at Coleman,' for the manufecturing and selling of Rupes for inolinea plaues of railkoile, and for cubbr uses, offer to nopply ropes for inolined plonet of any' length required without splize, as shon nolice, the manuffecuring of cordega, heserofore carned on by S. S. Durteo ia Co.f wifl tio dans by the now firm, the camo super. intondent and manchincry yre enaphoyed by the hew firm that wess moplayond by S. St. Durfes of Co All order! will be propenty mimaled to, and ropen will be shippedt to any port in the United Slater. 1201 mweth 12h, 10:3. Aldion, Columbin County, Stase or Now. York.
$33-18$
ROBT. C. FOLGER
-
RUORGE COLEMAN

AMES, CELFBRATED SHOVELS, SPADES, se.

 buth forg
ditpatet.

RAJLROAD WORK

 and Ihngo Tim; Cay Wheote of Cat who fro a varial, of pateras, find Chillo; Car W Weefi of
 Care
COTTON, WOOL, CFLAX MACHINERy
Of all descriptions and of the moxitimpieval pat. lemes, Style, and Wommanalip.
Mil Georing aid. Millwright mork meprmily, Hydraulic and outher Prenpea; Prees Seremn; Cal iraders; Lathes and Toole of all' Kinde; Iron am Braso Cecilige of efl devertitionn.
ROGURS, KETCHUK \&GROEVENOR.
Pacerton, N. J. or to Walt-x. Nom- Yors

FRAME BRIDGES.

ThE undersigned, General Agent of Col. S. H. LONG to build Bridem, or semd the right to othere to buikd on his Paient phan, woted rapectiully inform Railiond ints Britece tiorpori. rions, thet he is propured to mate cobitricts to bivild, and. furnimb ah materiale for :uypreruructares of the kind, in any part of the Upited Simest (Marylapd exeepted.)
"Hridges on the' above plan are io be seen at the followi'g olocalitime siz. On the main rund loading from Ballimore to Washingion; two miles from the former place. Acroen the Moiawamkeng river on the Miluary roos in Maine. On the national roind In Mllinote, al zampry pointo. On the Batlinuere and Suguehaune Railrond at thra pointat, On the Hoduon cad, Patermin Raitroad in two places. On the Boston enil Worcenter Rälrond, it Levera) points. Ov the Bouton and Providence Raikoed, al suadry poine is. Aerom the Commonalk river it Tiennikar, N. H. Acroos ibe Soulbegar fiver, at Milford, N. H. A erovs the Cunnectiey iver, at Heneoal, $\dot{N} . \operatorname{H.~Acruas}$ the Androoch in river, at Turner Centre, Maine. Acmes tho Renneliec river, as Squalkichill, Mound Morris N. Y. Acroes Tiver, White Rivor, st Hianfort, Vt. Aenoen the Conntectiout River an Letainan, in; H. Acheros ibe mouth of tho Beotrn Strap ctreek, Pengi Acrom slo mouth of the Calaraugoa Creek, N.Y. A Rait red Brimpedigronalls acrobe the Erie Cinflat, in the

 It k probably the ferinelt wooden or idese ever Loilh in A merica.
Notwithtranding bio propeot en gagacanto to buide between twenty and thirty. Reiligoyd Bridgen, and averal common bridget, verel of which are pow
 greater exteal and pa filioral torna
Rochaition 3 mm 19th, trs\%. MUSES LONG,

Builecr of E P P ENSON,
 of a mparior style of Papangeq Care for Raihnods.

 rankRond compozt.
RAIEROND COMPA NIES would do woll
 in apervios.

 mitn Spikee atid spliciog Plotes idaptal ihereme

 aroaght apd turmed or unfurnel, ready to be fitied ob 1) whim, vis $24,23,25,42,41,84$, and

 $2 z_{0}, 3,31,31$, 31; ind as inctive diameter Chios for luclimid Plavar short and itay linher. menufucturod, inum ite E V, Cotle Boltr, and. proved ot the grenteet derain India Rubber, Rope for toclived Planes, mado from Now 2ateod Whar.
Ala, Patant Hoonp Córingo for Inclined Plevin? and Conal Towing Livea.
Palent Felt for pleang between tho itron chair. and wome block of Edge Railmays
Every deacription of Railiay froci, oc well it Lecos ative Enciace; importal at the ebonerst notica Er the egeacy of ono of por paitmera, who residep in it Engliond for thit purpowe.
A highly reopectablo A meriain Englecer reitides. in Englond for ith parpeos of in Pecting ill Loon:motiven Machinery; Hailsey, Irem; dee. ondeiod: through us.
A. \& O. Balsten ac CO_{4}-2n!

ARCHIMEDES WORKS.

THE undrosizeed ing bees in mform its proo riveru of Rail Rumios that they Ere propared op. utnish all kinde of Mechivery forn Ronden Lan complive Knginge of any mize, Car Wr heele, auch es ve now in sucoceofol operation an the Camdeniest Agiboy Rait Rood, none of mijech hape falled.Cestings of all kind 'Whiect Ax apis and Bozen,

H: DUNBAM © Ca 2 In NE Wons, Foling 194h 1836.
$4-\mathrm{Mm}_{4}$

PATENT RAILROAD SHIP AND

 boAT Splikes.The Troot troe apil Nail Frotecy keqpe eon-

 Roilrond oompinien moy bo copplinel in mantion, beving connlexink beats guita be to the bolos in

 dowite cocom con Divere moll ty the phatact.
 Trog, N.Y, Jolj, EBSE.
 Mo.innem. Al 1

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WELKKY, AT NO. 30 WALL STREET, AT FIVE DULLARS PER ANNUM, PAYABLE IN AUVANCE.
$\left.\begin{array}{l}\text { D. K. MINUR. and } \\ \text { GEORGE ©, SCHAEFFER, }\end{array}\right\} \begin{aligned} & \text { EDITORS and } \\ & \text { Proprieturs.] }\end{aligned}$

CONTENTS.
Internal Improvenents in New Yoik-Repreft of the Committee on Railroads,
The Interiot of a Coal sline
Miscellaneous liems,
Advertisements

AMERICAN RAHIROA! JOURNAL.

NEW-YORK, FEBRUIRY 23, 183..
We are again under obilgations to Col. II. W. Childs, for Legislative documents.

Also, to J. B. Jervis, Esq. for the Report of the Water Commissioners.

INTERNAL IMPROVEMENTS IN NEW-YORK.
Much as we have seen and heard of the rapid advance of our neighiboring State of P'ennsylvania in the cause of Internal Improvemeats, and often as we have foretold the advantage and profit about to result to her, and the loss and detriment to us, we were hardly prepared for the numerical statements, that recently fell under our notice, by which we found that the s!ipping in Philadelphia has nearly doubled during the past year, wliile the revenue received in this port has fallen off most fearfully. The statement in Mr. Scoles' Report, which we publish on another page, shows the same result in the revenue derived from Internal Improvements. " While the tolls of Pennsylvania have increased one hun. dred and thirty-scven thousand, five hundred and fifty-fuur dullars, those of our own State have diminished to the amount of two hundred and seventeen thousand, three hundred and thirty-six dollars, and the annual reccipts from her public works and those of private companies exceed our own by half a million."
This does not look much like the "Empire State." The fact cannot be denied, that our neighbors are drawing off from us in every direction that busi-

SATURDAY, NOVEMBER 25, 1837.
(Publisleel February 28, 1833)

VOLUME VI. - No. 47
ness which lias been the source of all our prosperity. Of what use to us are natural advantages, if we do not follow them up by an intelligent and enterprising system of Improvements?

If natural advantages, such as those of location, climate, \&c., are to be solely relied upon, the Indians on the Pacific might indulge a reasonable hope of obtaining and holdisg, to our exclusion, the whole China and Pacific trade.

New-York can and must maintain her superiority in public works, or she must yield it in commerce, in agriculture, and manufactures.

REPORT

Of the Committce on Railroads, upon several petitions for legislative aid to the Canajnharie aitd Catskill Railroad Company.
Mr. Scoles, from the committee on railroads, to which were referred a 111 m ber of petitions of inlabitants of several comnties of this State, praying for legislative aid to enable the Canajoharie and Catskill railroad company to bring their work to a speedy completion, reports :-

That your committee are of opinion, that among the subjects which should command the attention, and call forth the energies of the state of New-York, with her large, increasing, enterprising population, her exhaustless resources, and unrivalled commerciol adrantages; cne of the first and most important, is that of Internai. Improvements. It must be conceded with whatever reluctance, that this subject has not received from former Legislatures, a due degree of attention and encouragement. The efforts of the State of New-York have not been commensurate with her own necessities and her obvious advantages, nor in accordance with the active spirit and individual enterprize of her population. The movements of legislation have nat satisfied the wishes, nor realized the expectations of the constituent. I'he voice of complaint has been heard, and we have felt that it was deserved. Since the completion of that great work of inter-
nul improvement, the Frie Canal; a work, the vast and augmenting utility of which will preserve to distant posterity, the name of the illustrious individual to whose keen sagacity, sound judgment and fostering perseverance, the original design and its final success are mainly attributable; since the completion of that great work, we ask, what has been done towards the full developement of our manifold resources, the increase of the fac:! ities of iuternal communication, and the expansivn of the means of mercantile enterprize? What has been done towards stimulating and rewarding within the range of our ability, the active industry of all classes of our people, and fairly testing the uncqualled capabilitics of our State? We answer, comparatively nothing. Have any great works of internal improvement been projected by the "Empire State," in demonstration of her wisdom and foresight? Has any judicious plan of general benefit been presented by her Legislatures to the consideration of the people? Has any promptness of co-operation, any liberality of appropriation encouraged the cfforts and extended the sphere of individual cxertion? To all these inquiries, the same uniform, unvarying answer must be given. She has done comparatively nothing; nothing in what she might and ought to havednne; nothing compared with what other States have done and are now doing.

While New-York has been thus supine and indifferent to her own interest, what has been the course of policy adopted and pursucd by other Stutes? Diametrically the reverse. Look at the appropriations made by the States of Maryland, Sonth Carolina and Virginia. Look at those of the Western States. In. diana setting apart ten millions of dollars for internal improvements; llinois making similar appropriations; and the infant.State of Michigan, pledging her credit to the extent of five millions. But wi hout giving further nttention to the conduct of other States, let us devote a little consideration to the example furnished us by our near neighibor and indefatigable rival, the State of Pennsylvania. Her exertions and their results are well calculated to mortify our pride, alarm our fears, nnd kindle our emulation.

The Śubacriber offers his services as Agent, to procure Machincry for Aills, Steam Engines, Locomolives, Printing Machines, Presses, Types and Fixtures.
He will give prompt attention to all orders entrusted to his fir execution; and pledges himself to those who may employ him, that nn effort on his part shall be wanting to procure the best articles to be had in the city-and to give satisfaction.
He will also employ Millwrigh's and Engincers, to erect Mills, and put the Engines and Machinery in operation.

Orders accumproied with the necessary funds, or satisfactory city acceptanees, should be addressed to D. K. MINOR, 30 Wall-st. N.X.

LOUISVILLE, CINCINNA'ITI, and

CHARLESTON RAILIROAD.

NOTICE TO CONTRACTORS.-Sealed Proposals will be received at the Offico of the Company in Columbia, S. C.. until the 15th day of February next, for the graduation and masonry of that portion of the Road from Columbia to the crossing of the Congaree River, in the vicinity of McCord'y Ferry, being 25 miles in extent.

Also, for the construction of a Bridge of 400 feet in length, on the Congaree River, to bo built on stone piers and abutments, for which there are suitable quarries in the neigh. borhood.

The plans and profiles of the line will bo ready for inspection at the Uffice of the Resi. dent Enginecr, in Columbia, S. C., after tho 10th day of February.

So soon as the survoy: for location, now in progress, are completed, t at part of the Road extending from MeCord's Feiry to the Charloston and Hamburg Railroad, at Brancliville, will be put under contract, of which due notice will be given.

WM. GIBBS Mc NEILL, Chief Enginecr.
$0 .{ }^{3}$ The Railroad Journal, N. Y. Courier \& Enquirer, N. York; P'rovidence Journal, Providenco, R. 1.s Atlas, Boston; Phuladelpia En. quircr, Philadelphia: will publish the abnvo notice 6 times, send a enpy of the paper to the ofico in Charleaton, S. C., and a certified copy of their account for paym en

$$
\text { Jan. } 12
$$

fmw6

NEW ARRANGEMENT.

ropes for inclined planes of rallitiongs. WE the subscribers have formed a co partuership under the style and firm of Folyer \& Coleman, for the manufacturiny and selling of Rupes for inclinet planes of railroads, and for other uses, offir to supply ropes for inclined planes, of any length required
without splice, at short nolice, the manufacturing without splice, at short nolice, the manufacturing
of cordage, heretofore carried on by S. S. Durlee \& Co., will te done by the new firm, the same superintendent and machinery are employed by the new firm that were employed by S. S. Durfee \& Co All orders will be properly attended to, and ropes will be shipped to any port in the United States.
12th munth. 12th, 183i. Hudson, Columbia County, State of New- York.

ROBT. C. FOLGER.
33-1f
GEORGE COLEMAN.

AMFS' CELFBRATED SHOVELS,
 SPADES, \&c.

300 dozens Amea' superior back-strap shovels.
150 do. do. do. plain da
150 do. do do. cas'steel Shovels \& Spades 150 do. do. Gold-mining Shovels
00 do. do. plated Spades.
50 do. do. socket Shovels and Sindes
l'ogether with Piek Axes, Churn Drills, and Crow
Bars (steet pointed), manufactured from Salisbury refined iron-fir sale ly the manufartusing agents, WITHERELL, AMES \& $\mathcal{O} O$. No 2 Liberty street, New-York. BACKUS, AMES \& CC.

Fo, 8 State-atreet. Albany.
N. B.- A lso furnished to order, Shaves uf every
iescription, made from Sulisbury refned Iron. v4-il

MACHINE WORKS OF ROGERS, KETCHUM AND GROSVENOR. Patermen. New. Jerwey. The underaigned rective orders for the following aricles, manisfactured by them, of th. most superior description in every paricular. Their works leing extensive, and the number of hand employed being large, they are enabled to executboth large
disprateh

RAILROAD WORK.
Loconntive Sieam-Engines and Tenders; Dri ving and other Locomotive Wheels, A a les Springand F lange 'l'ires; Car Whee's of cast irno, from a variety of patterns, nind Chilss Car Wheels oil cast irun, with wrought Tires; Axles of lirst American refined iron; Springs; Boxes and Botts for
Cars.
Of all descriptions and of the most improved pat terns, Siyle, and Workmansliyp.
Mill Geering and Millwright work gencrally; Hydraulic and other Presses; Press Screws; Cal lenders; Lathes and 'Tools of all kinds; Iron and Brass Cas'ings of all descriptinns.
R()GERS, KETCHUM \& GROSVENOR,
Paterson, N. J. or 60 Wall-it. Newv-York

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, io boild Rridges, or vend the right to nthers to build on his Patent Plan, wou.d respectfully inform Railruad and Bridge Corporations, that he is preprared to make cohtracts to build, and furnish all materials fur supperstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followi-g localties, viz. On the main road leading from Baltimore to Washingion; two mules from the former place. Across tho Motawankeas river on the Military road in Maine. On the national road in llinois, at surdry points. On the Ballinure and Susquehanna Ruilroad at three points. On the Hudson end Paterenn Railroad in two places. On the Boston ant Worcester Railroad, at several points. On the Boston and Providence Railroad, at sundry points. Across the Contonenok river at Hennikar, N. H. Across the Souliegan river, at Milford, N. H. Across the Cunnecticul river, at Hancoal, N. H. Across the Andrescogtin river, at T'urner Centre, Maine. Across the Kenneliec river, at Waterville, Maine. Across the Genesec river, al Squakiehill, Mount Morris N. Y. Acrosh the White River, at Hartford, Vt. Across the Connecticut Biver at Lebanon, N. H. Acruas the mouth of tho Brobirn Straw Creek, Penn. Acress the mouth of the Cataraugus Creek, N. Y. A Railroad Brilgrediagona'ly acrues the Erie Cannl, in the City of Ruchester, N. Y. A Railrial Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 fret. It is probatily the firmest wooden bridge ever built in Anierica.
Notwithitanding bis presect engagements to builit betwen twenty and thirty Railroad Bridges, and several common bridges, several of which are now in promress of construction, the subscriber will proinply atteml in businese of tho kind to mach greater extent and on lifieral terms.

MUSES LONG.
Rochester, Jan. 19th, 1837.
4-y

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads,
No. 264 Elizabeth street, near Bleecker street, NEW-YORK.
RAILROAD COMPANIES woutl do well in examine these Cars; a apecimen of which may be seen on the New. York and Harlaem Railroad, now in operation.

ROACH \& IVARNER,

Manofacturera of OPTICAL. MATHEMA
TICALAND PHILOSOPHICAL INSTRUMENTS, 293 Broadvay, New. York, will keep constantly on band a larye and gencral assortment of Instruments in their line.
Wholesale Dealers snil Country Merchants supplied with SURVEYI VG COMPASSES, BAROMETERS, THERMOMETERS, \&e. \&c. of their uwn mannfacture, wairanted accurale, and at fower prices than can be had at any orher eatablishment.
IT Istrumenta made to order and repaired

RAILWAYIRON, LOCOMOTIVES; se. sec.
THE subacribers offer the following aricles the sale:-
Railway Iron, fat barry; with connteraunk holes and mitres joints, 350 to ne $2 b y, 15 \mathrm{fl}$ in length, weighing 4 fion

90 "1." 1_{1} " * " 子 *
witn Spikes and Splicing Plates adapted thereto To be sold free of duty to State governmenis, os incory orated companiez.
Orders fir Penisylvania Builer Iron executed.
Rail Road Car and Locomutive Engine Tires wrought and turned or unturned, rendy to be fitted on the wheels, viz. 30, 33, 36, 42, 44, 54, and 60 incles diameter.
E. V. Patent Chain Cable Bolis for Railivny Car axles, in lengths of 12 feet 6 inches, to 13 feet 23 , $2 \frac{2}{2}, 3,3 \frac{5}{3}, 34,31$, and 21 inches diameter
Chains for luclived Planes, short and stay links, manufuctured frum the E. V. Cablo Bolts, and proved st the greatest strain.
India Rubber Rope for Inclined Planes, made from New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chair and stone block of Ealge Railways.
Every description of Railway Iron, as well as Locoswotive Engines, imported at the shortest notice, ov the agency of one of onr partners, who resides in England for this purpose.
A highly respectable A merican Enginecr residea in Elugland for the purpose of inspecting all Locnmotives, Machinery, llailway lron, \&c. ordered through us.

28 tf
A. \& G. RALSTEN \& CO,

Philadelphia, No. 4 South Front-st.

ARCHIMEDES WORKS.
 (100 North Moore-street, N.Y.)

THE undersigned beg leave to inform the proprictors of Rail Ruals, that they are prepared to furnish all kinds of Machinery far Rail Roads, L, ocomotive Engines of any size, Car Wheels, such as are now in ruccessful operation on the Caniden and Ambuy Rail Road, nune of which have fasled.Castings of all kinds, Wheels, Axles and Buxcs,
furnished at the shortest notice, furnished at the shortest notise.
H. R. DUNHAM \& CO.

NhwYonk, February 12h, 1836.
4-ytf
PATENT RAILROAD, SHIP AND BOAT SPIKES.
**The Troy Iron and Nail Factory keeps con. tantly for sole a very extensive assormint of Wrought Spuikes and Nails, from 3 to 10 inches inanulacturrd by the aubseriber's Patent Machinery, which after five years successful operation, and now almost univetsal use in the United Stater, (as well as Enyland, where the anibseriber obtained a patent) are fiund superinr to any yet ever offered in uarket. Railroad companies may be zurplied with Spikes having conntersink beails suitable to the boles in iron rails, to any amount and on short notics. Al. inost all the Railroads now in progress in the United States are fastened with Spukes made at the above-named lactory-for which purpose they ase found invaluable, as their adhesion is more than double any common Spikes made by the hammer. $\stackrel{*}{*}$ Allorders directed to the Agent, Troy, N.X. will be punctually autended to.

HENRY BURDEN, Agent.
Troy, N.Y; July, 1831.

* S Spikes are krpt for ale, at factory prices, by I \& J. Townsend, A lbany, and the principal Iron Merchants in Albany and I'roy; J. I. Brower, 222 Water-street, New-Yurk; A. M. Jones, Philadel phia; T. Janviers, Baltimore ; Degrand \& Smith, Eoston.
P. S.-Railread compranies would do well to for ward their erders as early as practicable, an the subseriber is desirous of cxteuding the manufactur. ing 20 as to Kepp pece with the daily increasing demand for biu Spikes.

1J23am?
H. BURDEN.
G. Mitchell, Printer, 205 Bowery, N. Y.

AND

ADVOCATE OF INTERNAL IMPROVEMENTS.

nal improvemumt, the Firie Camal; a work, the vast and angmentinge utility of which will proserse to distant posterity, the name of the illustrions indisitual to whose heen sagacity, sunnd judgment and fosteriber persmeramer, the original Casign and to final sureres are manly atriblutable sjuere the compulerion of that ereat work; we ak, what has heern dome towat! the fill dusplopmant of our mantiond rosourcos, the increase of

 ranti! flit ratio!? What has been done tow:ads silan!ating and rowarding withis the ratare of thr ahblity, the active iudustry of nll clasece of onn [rophle and
 of our state! W'e ahswer, comparatisely mothing. Jlane any ervat works of internal innprovement lieren projected by the "Eumpre sialt"," in demonhstration of hev wisdonn anal formioht ! las any judicins danol eroneral ben fit leen prevented by hor Legishatures to the consitheraion of the peophe? Ilas any fromp:tues of ér-operation, any liberality of approprialion enconerated the of"onts and "atembed the splare af individual exrrtion? 'Io all these intuiries, the same uniform, unvarimg answer mast be és. Sho has dime ecomparatively nothiner nobhine lo what she might and ought to have duase; mothinge compared winh what ohne :itates have done and are now doing.

While Sew-lunk has: leern tans supine and inklifierent to her eww interest, what has berat the collorse of policy afopted amel pursued hy other States? Diatnctrically the reversi Loobi at the appropriations made hy the stilles of Marylamd, somth Carolina and Virginia. Look at those of the Wrestern Stutes. In. diana settiner apart ten millionso f ilenlars for internal improvements; lllmois making similar approp iations; and the infant state of Michiran, plerleng her credit to the extent of fire millions. But wi hout giving forther attention to the comluet of other States, let us devote a litle consideration to the example furnished us lyy our near neishlur and indefatigable rival. the state oll Prunsylvania. Her exertions and therr results are well calculated to mortify our pride, alarm our fears, and kindle our emulation.

She has planned, and is pushing forward a system of internal improvements, which is no less to the honor of her public spirit, than it is to our detriment and our shame. She has come forth in her strength, and not only bared her own arm to rear her works of wide spread and incalculable benefit; but she has infused an aspiring spirit and promoted a salutary rivalry among her citizens. She has nerved the arm of individual enterprise, and administered aliment to that eagerness of competition, which is the life spring of trade, and the fertile source of wealth and prosperity. Since the year 1825, Pennsylvania has expended from her treasury for railroads and canals, the sum of twenty-five millions of dollars. Their aggregate length, including those constructed by the public and by private companies, approach nearly to an extent of two thousand miles. She has already in progress, n communication from her only port on Lake Lirie, intersecting her great line of internal improvements; this, together with her continuous line of canals and railroads, between Philadelphia and Pittsburgh, aims at diverting from us our southern and western trade: and her chief magistrate, in his annual message, confidently prognosticates, that "the completion of the Erie extension to the noble harbor of Erie, will give Pennsylvania the undisputed command of the lake trade." That same message also gives us the unwelcome information, that while the tolls of Pennsylvania have the last year increased one hundred and thirty-seven thousand, five hundred and fifty-four dollars, those of our own State have diminished to the amount of two hundred and seventeen thousand, three hundred and thirty-six dollars : and that the annual receipts from her public works and those of private companies exceed our own by half a million. With a quick perception of her interest, and a prompt and ready application of the necessary means of promoting it, Pennsylvania has proceeded onward; putting in requisition every mode in which her internal improvements could be efficien:ly encouraged and their completion sccured; constructing railroads and canals herself, and loaning ber funds to incorporated companies; guaranteeing to the stockholders an interest on their investments; and requiring as a condition for granting a charter to the greatest monied institution of the country, a large direct bonus appropriated to her public works, and a liberal subscription to private companies in every section of the State.

As a natural consequence of this liberal and enlightened policy on the part of the State of Pennsylvania-the contrast between her internal condition and our own, is to us humiliating in the extreme. The same desolating tornado which has swept over us has reached her also: for no corner of our land has escaped its baneful influence, but she has
gathered up her strength, and wielded the energy of her resources as an interposing barrier to the progress of destruction; and if the statements of those who have looked through her population with critical eye and discerning mind can be relied upon, while we are prostrate and enduring every variety of commercial disaster attendant upon blasted credit, general embarrassment and pecuniary distress, she is rejoicing in the cheerful hum of business, displaying the life and animation of universal activity, and looking forward with reasonable well grounded hope to the profitable returns of an extended commercial intercourse, and the steady employment of her working classes.
Is not this picture of Pennsylvanian enterprise and prosperity, this acknowledgment of her ambitious aims and coutident expectation, amply sufficient to rouse New York from her long, her deep, and her destructive slumber? How long will she remain thus inactive? Until her internal commerce is taken from her, her western and southern trade diverted into those channels which Pennsylvania has prepared for it; the empire State rendered tributary to one far inferior to herself in natural adsantages; and her own great city, the commercial emporium of the western world, so fallen from its high estate, as to be to Philadelphia "what Hava is to Paris"-a mere port of entry? Is she willing that Philadelphia shall be "the great distributing city of the union," and be hailed hereafter, and that ere long, as the metropolis "of the richest and most prosperous of the States ?" Will the great State of New Yoris remain inactive in the slumber of forgetfulness, until she wakes and finds herselt in the condition of an inferior? Is she content to be thus "shorn of her strength," without a struggle? Will she tamely resign her boasted sceptre of supremacy, without making a single effort to retain it? And will her legisla-ture-will those who should be her prompt and faithful sentinels, remain passive and indifferent to her wants and her danger-taking no steps to relieve the one, and giving their constituents no intimation of the other? We trust not. We believe that the time has arrived, when we may embark in the good cause of internal improvements, so long and so injuriously neglected, with the firm conviction that it will meet with general approbation, and be crowned with triumphant success. The people from every part of our State call upon us to press onward. They believe internal improvements are necessary to relieve their distress, to revive the drooping spirit of trade, to give employment to those who need it, and to circulate through the community those moneys which are now locked up in the coffers of capitalists for want of the appropriate channels in which they would find their way to those who are pining and perishing from a destitution of employment.

We are satisfied that the people require that we should adopt a liberal policy of internal improvements, and net upon it immediately; and as republicans, we believe it our duty to obey the popular voice, particularly when that voice calls upon us to do what calin consideration and careful investigation convince us, is both right and necessary.

But while we are decidedly in favor of a liberal and enlightened policy upon the subject of internal improvements, (which all experience teaches us to be the omly true one,) we would at the same time avoid every thing which could justly bring upon us the imputation of extravagance, or which would indicate the least incliuation for improvident expenditure. We would be liberal but prudent; so cautiously and discreetly shaping our measures, as not needlessly to conflict or interfere with any well considered policy of the State.

In cousidering the various works of internal improvement rendered necessary by our wants, and the rival effiorts of our neighbours, the railrouds leading through our territory, strike us as peculiarly important, overcoming as they do the evils incident to the severity of our winters, and afiording the benefit of their unparalleled celerity of communication, when other roads are impeded by the snows, and the canals are frozen up for several months. Among the railroads which may justly claim the highest degree of our sttention and encouragement, are all those which form a chain of communication between the extremities of our State. Each of these railroads, whatever its abstract extent, becomes of importance when viewed with a reference to that great whole of which it constitutes a part ; and as such, it presents an undertaking of general utility, and worthy of the public assistance. The Canajoharie and Catskill railroad, now making application for such public assistance in the shape of a loan from the State, is one of the most importunt of the links in that chain of communication to which we have referred.

Our State is probably not yet prepared to imitate the example of Pennsylvania, so far ns to take upon herself the sole construction of works, which, extensive in the range of their utility and benefit, nre yet startling from their magnitude.Where works of this character have been commenced by individual energy and enterprise, your committee would recommend the extension of such assistance by the State as may be necessary to prevent the delay, and insure the success of the undertaking. When meritorious works of more limited usefulness are commenced or contemplated, and the aid of the State may be essential to their completion, we would not desire to see that needful aid withheld. While we would have the application for assistance scrutinized with careful eye, and its merits subjected to strict investigation, we would still avoid that narrow parsimonious
economy, which shrinks from moderate expenditure even when connected with the almost certain prospect of future profits.
Your committee have no intention of recommending to the Lesislature to expose the people of this State to any taxation for the purpose of carrying out what they believe to be the great and uccessary policy of internal improvemeats. By assisting incorporated companies with moderate loans, taking such mortgages upon their roads as shall be justly deemed an adequate and sufficient security; the State having no concern in the profit or loss, need make no expenditures, and will run no risk. It will be a mere substitution of the credit of the State for that of the companies; and if, as your committee would recommend, the premium which may be obtained upon the sales of State stock created for this purpose, is required to be paid by the companies to the State, for the increase of the school fund, or some other public appropriation of equal importance, a benefit may be dcrived to the State from this species of negociation, separate and distinct from that which will how to her citizens as the necessary operation of valuable internal improvements.
By a policy, liberal but judiciousencouraging, yet prudent and discriminating, your committee believe that new avenues will be opened to commercial enterprise; unknown and unappreciated sources of wealth will offer themselves to youthful activity and ambition; a new vitality will be infused into parts of our country now lying inert and dormant, because their resources have never been developed, or from the absence of a market for their products; a healthy animation will be diffused throughout our community; the wheels of business will be set in motion; the laborer will find employment; the trader, the jobber, the importer, the manufacturer, and the mechanic-all will participate in one commonbenefit; and the cheerful aspect and improved condition of our population will be hailed as the harbinger of returning prosperity.

Your committee will not undertake to say what would be, in every instance, the most judicious mode of extending relief to such incorporated companies as may petition for it; but as a general rule, they are inclined respectfully to recommend, that in works of minor importance, nt least, the State should yield its aid in the shape of loans, taking, as security, mortgages upon the property of the companies, in preference to becoming connected with such companies in the capacity of stockholder.

As these preliminary observations upon that course of general policy on the subject of internal improvements, which appears to them just and prudent, and the adoption of which by the Legislaturc they most respectfully recommend, your committee would direct the attention of the House to the particular subject of the application now under cousideration.

The Cannjoharie and Catskill railroad company put the whole line of their work under contract for construction for a single track, in June, 1836. It was to be completed in 1837, if practicable; at furthest by the month of May, 1838, at the gross amount of $\$ 550,000$, exclusive of iron turning-plates, which were to be furnished by the company. Nearly the whole of the land required for the use of the company has been obtained by gratuitous releases. For a full statement of the cost of the road, its probable value, and amount of income, its sufficiency as a security to the State, and its usefulness and importunce as an internal improvement, your committee ask leave to refer the House to the reports of Judge Wright and Ephraim Beach, Esq., which your committee have annexed to this report.

The work has been and is still in progress, but owing to the uıparalleled pressure of the times, the pecuniary distress, and the utter prostration of every brauch of business, many of the holders of the stack of this company, as has been the case with those of nearly if not of all the other companies, could not promptly pay the calls made upon them; and although several have recently paid, yet owing to the circumstances mentioned, it is believed that the company will not be able to proceed and complete their work as speedily as the great interests of an important and neglected section of the State demand.
Your committee are also fully persuaded that other and still more important interests than those of the section through which this road is to pass, and intimately connected therewith. That inasmuch as the road terminates at a point on the Eric canal, west of what is called the Nose, where the canal is'closed by ice earlicr in the fall, and opens later in the spring than elsewhere, much property which otherwise must remain behind for months, would pass upon this road to Catskill and thus find its way directly to the city of New.York; while property on its way to the west, would be landed at Catskill, and by this road, specdily reach Canajoharie, and arrive at its destination, which must otherwise await the opening of the canal in the spring. This avenue must also prove essentially convenient and beneficial to those both in the west and in the city of New-York, who are interested in the transportation of property whenever the navigation of the canal may be obstructed east of the western termination.
Your committee would further observe, that numerous railroads, turnpikes, and other roads are now open, in progress of construction, and in contemplation, to connect with this road. Sereral of them are already chartered, and applications for others are now upon your table.These, together with the numerous petitions from many and distant countics of the State in favor of the application of this company, clearly indicate the estimation in which this project is held, and
the importance of the immediate completion of the work, which for the want of assistance, has been already too long delayed.
Λ large portion of the section of country bordering upon the line of this road is highly productive, which, with the fertility of that extent of country that must necessarily become tributary to this road, can scarcely fail to secure to the stockholders a sure and satisfactory revenue. In support of this opinion, your committee will here introduce an extract from a letter written to the president of the company, by W. G. McNeil, Esq., civil engineer, after having explored the country, with a view to obtain the requisite information to enable him to decide upon the propriety of prosecuting this work. "The question, then, it would seem to mc , is rather the amount of trade to be expecied, than the efficiency and reasonable cost of the proposed road.Looking at the fertility and extent of country that would usually seek this road as an avenue to market, I would almost ndrance the opinion that it could scarcely fail to be profitable, even should it divert no portion of the trade of the Erie canal." It is also a circumstance worthy of remembrance, that at the date of this letter, (June 4, 1\&31,) it was not expected that a route could be discovered requiring less than seven planes to be overcome only by the applicatien of stationary power, whercas no such power will be necessary on the route now selected.

The Unadilla and Schoharie rail-road company were chartered, and their road surveyed some time since. It passes through Susquehanna, Schenevous, and Cobbleskill valleys, a most fertile section of the State, from Schoharic to Nineveh, or Bettsburgh, connecting the New-York and Erie railroad with this work. This important and necessary avenue cannot be constructed, or if constructed, must be useless, without the Canajoharie and Catskill railroad. Your committce are persuaded, that an examination of the map must satisfy the House that the necessity and importance of this work is such, that the incerest and prosperity of the whole State requires that it should not be delnycd.

Your committec find, by referring to the report of the chicf engincer, that the amount expended by the Canajoharic and Catskill company, including iron and timber purchased, but not yet used, is 8176,46021 ; excceding the amount set forth in their petition by $\$ 26,400$, a portion of which has been expended subsequent to the date of the petitions.
Before dismissing the report of the chief engincer from further consideration, your committec beg leave to submit the following extracts. After setting forth the causes of the tardy progress of the wor k to which your committee have pieviously adverted, he says: "Yet, while the progress of every other public work in the State, (save that belonging to tho State itself,) has been suspended, this
work through the coinmendable and unremitted exertions of a few of the directors and stockholders to sustain it, has kept steadily on, and notwithstanding the variety of impediments interposed by the unfortunate state of the times, I am erabled to state, that the eastern and most expensive twelve miles of the road are graded and prepared for the reception of the superstructure; on the wes! nine miles considerable grading is done; the castern six miles of superstructure are laid and ready for use; large quantities of materials purchased and on hand; one passenger and two transportation cars have been purchased, and are used on the six miles completed."
"Conld ample funds be procured for an early cominencement and vigorous prosecution of the work in the spring, 1 have no doubt but it may be completed in two years; a:d probably (should the season prove favouable) in time to do some of the fall business of 1839 . The importance of facilitating this work, and of enlarging the plan for a double track, is too well known and appreciated by those whom I address, to require from me any further comment." loul committee annex to their report, the cstimate of expenditures furnished by the chief engineer.

In conclusion your committee would observe, that the section of tho State which now comes forward with an application for assistance, has never parlicipated in the benefits of its mmificence. Its popolation have given their counte. nance and support to great works which have extensively enriched others, and are justly regarded as the pride of the State; but upon them and thi ir interests, those works have invariably operated most injuriously. By a linle exercise of candid investigation, it will be discovered that the village of Catskill has had diverted from her masket by our im. provements, a large portion. perhaps twothirds of that business, which would o:herwise of necessity have found its way to it. This consideration alone, in the estimation of your committee, ought to be sufficient to inciine the house to listen favourably to the prayer of the petitioners.

For the reasons which your committee have above set forth, and from the full conriction that the Canajoharie and Catskill Railroad is a work of necessity to one section of the State, and of value to the whole, your committee are desirous that it should be urged forward with all convenient speed to its final completion; and as it appears from their investigation, that this cannot be accomplished without the assistance of the State, your committee do respecifully recommend, that the aggregate amount of three hundred thousand dollars be loanod by the State to said Company, in such manner, upon such conditions, and with such security, as are particularly set forth in the bill which they now ask leave to present.

Of expenditures on the Catskill and Canajoharie rallroad. Catskill, January 1, 1388.
Estimate of expenditures on the Cats kill and Canajoharie railroad.
For grading the 1 st mile,

	ding br	dges,		20,022 66
do	2d	do	do 1	11,069 60
do	3d	do	do 1	14,499 64
do	4ih	do in	Oci. est.	6,273 09
do	5th	do	do	6,327 75
do	6th	do	do	1,825 53
do	7h	do	do	3,666 67
do	8th	do	do	4,063 34
do	9th	do	do	1,94000
do	101h	do	do	3,056 67
do	11th	do	do	6,644 47
do	12th	do	do	3,681 34

For six miles superstructure,
(exclusive of iron plates,)
250 tons iron plates, \&c. purchased and delivered,

17,500 03
Sal. of Smith \& Bosiwick, timber purchas'd
"Buyd, 82,437.20, Hollers, \$5,196, Danfurth, $81.218 .80=$
Ties at Cairo, 81,500, Canajoharie, $\$ 600$, Springfield, $\$ 800,=$
One passenger and two transportation cars,

2,900 00
1,500 00
Expenses of engineering department,

19,526 65
$\$ 161,46021$
For original surveys, costs and expenses of procuring right of way, \&e.,

15,00000
$\$ 176,46021$
Epir. Beacio, Engineer.
Thos. B. Cönk, Esq. President.
Note.-The amount for " original surveys, costs and expenses of procuing right of way, \&c." was communicated to me by the treasurer of the company.
E. ${ }^{\text {B. }}$

Letter from Ephraim Beach, Engineer. February 10, 1838.
Hon. Thos. B. Conke, President Canajohurie and Catskill railroad company.
Sir:-In compliance with your request to be furnished with a statement of the extent, probable cost, value and importance of the contemplated Canajoha. rie and Catskill railroad in the absence of documents necessary to present the subject in detail, I beg leave to submit the following general statement.

The Canajoharie and Catskill railroad, when comple:ed, will be about seventy miles in length; its cost, if graded and completed with a single track, will be about $\$ 750,000$; to which add for depots, cars, \&c., to prepare the road for zuccessful operation, 8150,000; aggregate cost for single track and road, 8900,000 ; it graded for a double track and completed with a single track, about $\$ 1,000,000$;
add for depots, cars, \&c., $\$ 150,600$; cost of single track, with double grade, with depots, cars, \&c., 81,150,000.

The line of this road rur.s th ough a fertile and densely populated district of country, rich in agricultural and mechanical products. Flourishing villages are situated in the vicinity and along the line, within from four to six miles of each other, the whole extent, which now, with their products find their way to market by teams, for which this road, when completed, will be the main channel of com. munication ; the business of which alone would afford a rich profit upon art investmient necessary for the construction of a single track railroad. And when we consider the extent of country to be accommodated by this road, the immense tanneries, and other manufacturing establishments in the counties of Greene, Schohanie, Delaware and Otsego, it being the most convenient commutication to market for the upper valley of the Susquebanna. Add to which, the prospect of a speedy commurication with the souhern tier of counties of llis Siate, by the New York and Eitio railroad, connected with this by the Unadlla and Schoharic. Also, the probable diversion of business from the lirie caral, when the eastern section is choked by:he influx of produce from the west. Also, late in the fall and early in the spring, when the navigation of the Erie canal is closed by ice east of the intersection of this road, and open west of $1 t$, we are admonished of the propisely of grading for a double track, with the view of being prepared to accomodate the wants of the public by constructing a second immediately after the first is put in successful operation.

From the abore, some faint idea may be formed of its "value and importance." When to the extensive district to be immediately accommodated, we add the more distant and extensive distr:cts, the produce of which will be brought upon this by intersecting railroads, making this the main channel of communication, not a doubt can exist but that the slock of the Canajoharie and Catikill zailroad will be profilable; hence it will be good security for the inyestment nocessary for its constriction.

It will l:e observed, that the estimate of the cost of this road is much less than the cost of any other railroad of equal extent that has been constructed in this State. The reasons are, first: The lands necessary for the road are prircipally gratuitously given, consequently no estimate is made for damages. Second : The line generally runs in the direction of the streams following their valleys; ve. ry few ridges are to be crossed requiring deep excavations, or valleys requiring heavy embankments. Yours, \&ic.

Epuraim Beach, Ergineer.
Letter from Benj. Wrighl, Enginecr.
Thos. B. Cooke, Esq. President Catskill and Canajoharie railroad.
Dear Sir:-Having been employed and associated with Capt. McNeil, as
directing engineer of the Catskill and Canajoharie railroad, in the year 1831, I am well acquainted with the comntry through the whole line of road, and am knowning to all the facts as stated by Major Beach, in the annexed paper, as he wrs the enginecr in 1831, and passed over the whole line, and is now the chief engineer on this work.

In the course of iny duty in examining the route of the road at the periol before named, I became satisfied of the great importance of this improvement, and its superior adrantages by the main line and branches, to accommodate the various counties on the Scoharie and Susquehanna rivers and its tributaries, and which 1 can say will be hetter accommodated by this work than by any other which can be devised.

I concis fully in the statement herein given by Major Beach, in his views of the cost of the road, and atoo as to its profis; and subscribe to all his statements from iny knowledige of the facts.
Very respecifully, your ob't servant,
Bexju. Wrigut, Civil Engincer.
Fcbruary 10th, 1833.
An Act to aid in the Construction of the Canajoharic and Catskill Railroad.
Tiue people of the State of New York, representel in Senate and Assembly, do enact as fullows:

Section 1. Whenever the Canajohaaie and Catskill Liailroad Company shall have expended one hundred thousand Jollars in the construction of their road, and shall produce to the comptroller satisfactory evidence thereof, by the affida. vits of the re chief, or other principal engineer, and two of the directors of the said company, and by the affidavits of such other engineers, directors or agents of the said company, as the coraptroller shall reasonably require, he shall issue and deliver to the said company special certificates of stack to the amount of one hundred thousant dollans, bearing an interest of five per cent., payable quarter yearly. Aml whenever and as often as the said company shall have in like mannur expended the further sum of fifty thousand dullars, and shall produce the like evidence thereof to the comptroller, he shall issuc and deliver to the said company like certificates of stock for the sum of fifty thousand dollars, until he shall have issued and delivered said com. pany such stock, to the amount of and not exceeding in the aggregate, the sum of three hundred thousand dollars.
§ 2. No part of the said stock shall be delivered to the said company, until the acceptance thereof shall be signified to the comptroller, by the filing in his office of a certificate of such acceptance under the corporate seal of the company and the sigmature of their president.
§ 3. Each cerifificate of acceptance, so executed and filed as aforesaid, shall be recorded in the office of the secretary of sfate, and ahall thereupon become and be
to all inteuts and purposes a mortgage of the said road and every part and section thereof, and its appurtenances, the the people of this state, for securing the payment of the principal and interest of the sums of money for which such stock shall from time to tume be issued and accepted as a foresaid.
§ 4. The said stock shall be denominated "The Canajoharie and Calskill Railroad State Stock," and the faith and credit of tie people of this state are here. by pledged for the payment of the interest and the redemption of the principal thereof:
§ 5. The said stock shall be issued in certificates not exceeding one thousand dollars each in amount, payable to the said company or their order, and may be assigncel and transferred by the said company on books to be kept for that purpose at such bank ns the comptroller may seluct, in the city of New Yoik. or such other place in the said city as the Legislature slatl at any time direct.
§ 6. The sail stock shall be reimbursable at the pieasure of the Legislature, at any time afier twenty years from the Wate of the respective i-sues thercof; and the interest thereon shall be payable quarterly at the office of transfer, on the first cays of January, April, July and October, in each and every year.
§ 7. The side company shall, within three months, after the receipt of the respective certificates for the several instalments of said stock, sell the same under the direction of the comptrolli r, at public auction in the city of New York, giving at least three weeks previous notice of the time and place of such sale in the sta:e paper, and in two of the daily papers published in the city of New York; and the premium raised on any sale of the said stock, shall be paid into the trea. sury, for the use of the school fund.
§ 8 If the stock, or any part thereof, when offered for sale within the time avose limited for that purpose, shall not be saleable at par, the said company may, with the advice and consent of the comp. troller, defer the sale thereof for such other time as, by the comptroller, may be deemed exp:edient.
§ 9. The said company shall make provision for the punctual redemption of the said stock, and for the punctual payment of the interest which shall accrue thercon, in such manner as to exonerate the tre: sury of this state f:om any advan. ces of money for that purpose : and the tolls and income which shall accrue from the use of the said road, when the same or any part there of shall be constructed, after paying repairs and the necessary expenses of conducting the business thercof, shall be, and are herehy, pledged for the payment of said interest.
§ 10. No part of the stock so authorised as aforesaid, sh. Il be issued to the said company until full and satisfactory evidence shall have been given to the comptroller and approved by the attor-ney-general, that no prior lien or incum.
brance has been created or exists on said road or its appuitenances, except such lien or incumbrance as may have been created under this act.
§ 11. In casc the said company shall make default in payment of tiher the interest or prineipal of the said stock, or any part thereof, it shall be lawful for the comptroller to sell the said road and appurtenances at auction to the lighest bidder, giving at least six months notice of the time and place of such sale, by advertisement to be published once in each week in the state paper, and in two public newspapers printed in the city of Ne:s York; or to buy in the same at such sale, for the use and benefit of the state, subject to such disposition, in respect to the road or its proceeds, as the Legisla. ture may thereafter direct.

THE INTERIOR OF A COAL MINE.

Tiansialed fiom the Courier des elals Unis.

 (Consinued fiom p'6if.)This class of workmen, is filled only by those upon the spot; very few foreigners embrace this profession. How conld the therwise? One can scarcely believe that the daily salary of the miner rarely exceeds the rate of two francs, and that it is for so trifling a sum that he subjects himself to privation and unheard of latigues; that he exposes himself to dangers of every kind, and to numerous chances of violent death.

When be works, be has for clothing only a shirt and trowsers of blucicloth, open upon the breast, and the sleeves of whicit are raistl to the shoulder; a hat of iron, wooden shoes and no stockings. The whole of his body is covered with a cuat of thick and muddy soot, which leaves open to siglit orly cyes made red by incessant labor, and between his lips leeth white enough to excite envy in a woman. The layer of coal is not more than three feet in thickness; it is almost as high as the gallery. He extends himself face downwards, digs a furrow as deep as the layer, while uttering sighs which tear his breass, like a baker kneading. By the aid of a wedge that he buries to its depth with tremendous blows of a club, he succeeds in detaching from it encrmous fragments; perspiration bathes his foreliead, all his limbs irem.hle; his body is often even bruised in many places by blows from a mass of coal. or seme splinters which bave reached him, but there is no cession; he has ander his eyes a rigid and pitiless overseer. There is a workman chosen among the oldest and most experienced to superinterd the work. They give him the name of governor. This chief, almost as absolute as a captain on board ship, has not the habit of spoiling by excess of indulger.ce his subordinates so lately his equals. Sorne of the workmen called drawers carry away the coal as fast as it is broken up, in carts or in bags, which are loaded upon their backs.

The general work in the mine is in. terrupted one hour in the day; it is the
hour of repast. When this hour arrives, every arm stops with wonderful agrec-ment;-the pickaxes remain in the blocks almost falling out ; the loads are let fall half way; every cne moves; the most industrious have quitted their work; in two minutes the innumerable galleries are as full as our streets on feast day. From all quaters of the mine they assemble under a dripping roof, in a kind of square where many galleries cross and meet-an irregular and inclined polygon that they call a room-a magnificent room, in truth, with its polished pillars, where gold and azure are mingled with ebony; with its roof hung with drops of water like pearls of dew; with its thousand torches, which thow upon this scene a light as brilliant as that of the lustures and candelabra of our opera; a magnificent apar!ment, but where it is impossible to remain standing. All the miners seat themselves upon the damp ground in a circle, suspend their lamps to the roof, and draw their provisions from their sacks. Alas, with the trivial wages that are given, one may judge of the quality of their repast ; it consists almost always of brown bread, milk, and cheese. Wine is an object of luxury; if any one among them have brought with them by chance, the fruit of their savings, or a present from their wives from some anniversary, do not think that they reserve it for themselves alone ; they offer it to their comrades, and each bottle passes from hand to hand around the circle;-each one drinking and giving it up to his neighlour, each one wiping his mouth with his thumb ; for their exists among miners an equality of affection as great as between brothers, and, as we have said, they never call one another by any other name. There is something noble and touching in this simplicity of name.

It is in the midst of these brave people, more than in the bosom of our prond cities, more than in the counting houses and saloons of the happy people of our time, the privileged of societ y, it is in the midst of these poor workmen, we say, that we find the spontaneous and dismterested practice of the two most beautiful precepts of the Gospel, labor and charity! How many virtues, how many acts of courage, self-denial and devotion have remained buried in these depths, where they flourish and the world will always be ignorant of it! The cloister havo had their chronicles, their histories, but the mines, have they ever had them?

There is nothing in the world, not even the sombre and majestic appearance of an old cathedral, which awakens such severe, such solemn thoughts, as the interior of a mine. There every drop of water that falls, every echo that sounds, every light that shines, warn you as eloquently of your nothingness, as the funcral marble that is trodden beneath the foot, or the death-knell of a neighboringr church. In a mine, man in vain atlempis to master his emotions, to arm himself
with a pretended courage; he feets that he is in the presence of death, and if the spectacle is new to him, it is difficult not to allow himiself to he overcome by an involuntary error.
It is not there assuredly that a trappist would dream of digging his ditch; for it is the nature of man to cling to life closer, the nearer death approaches. Now, in the bottom of these infernal regions, death threatens him oll all sides ; it is at his feet ; it is abore his head; it is all around him ; water, fire, earth, it clothes itself in every form; it borrows of all the elements to vary its means of destruction. Let one grain of sand detach itself; let a current of water break through the narrow layer of soll that restrains it ; let a hollow and distant explosion interrupt the silence of the subterraneous echoes, and behold a troop of unfortunates belong no longer to the living 1 These galleries, so low that it is necessary to pass through them creeping, owe their foundation to late convulsions; strorg pillars bend already under the weight of galleries that to-night, to-morrow, or later, will crush them like shattered glass. The heaps of earth that are seen on the surface of this mine indicate perhaps as many tombs; no cross, no stones, no imperishable garlands reveal them to the indifferent traveller;but ofien towards evening, a mother, a widow, or orphans coine to kneel there piously on the soil, bare and entirely denuded of grass.
This species of the eartrquake is only the least of the dangers that threaten the miner; he has to dread more from the sudden inflammation of the gas; for the empire that holds rule over him, prevents him in many places, from making use of the beautiful and inappreciable discovery of Davy. If this meteorological pheno. menon is not to his eyes the work of a secret power, or an infernal.spirit, it is still in his superstitious belief, an accident that is not in the power of man to prevent the signal of almost certain death. But all these dangers are not the more real, because they are not beyond the knowledge of man; sciense and learning will soon succeed in preventing them entirely, or in rendering them infinitely more rare. It is not the same with instantaneous inundations. In a moment, at one blow of the pickaxe, one blow made carelessly, might inundate the mine, and this without any one having time to take one step backwards, to utier one regret for life, one thought for his family, one prayer to God. The existence of one hundred, and sometimes two hundred men, is thas thrown at the mercy of one imprudent, laborer. Ask the miners to relate to you any of these catastrophes, all will make the sign of the cross. This mine where they work is a theatre of them the youngest has been witness to them; not a single one among all who has not onc of his friends to weep for.
a munificent hegislaturf.
The Legislature of Tennessee has just
closed its biennial session, the measures of which, it is truly remarked by the Nashville Whig, render it one of the most important and interesting that has been held for many years past.
First among the important mensures of the late session stands by commou consent, the establishment of the bank ov tennessee, (a State Bank) comnected as it is with the maguificent appropriation of $\$ 4,000,000$ to works of interxat. imphovement, and $\$ 100,000$ per annum to comson schools.
A mong the funds which will constitute the capital of the State Bank, are about one million nad a half of dollars, received on accoumt of the surplus Revenue; and the proceeds of the sales of the valuable lands in Occoee district, acquired under the Cherokee treaty of $\mathbf{1 8 3 6}$.
The State interest in works of Internal Improvement was apportioned by an nppropriation of $\$ 650,000$ to the Charleston and Cincinnati Rail Road; $\mathbf{\$ 6 5 0 , 0 0 0}$ to the Hiwassee road (running from the Georgia line to Knoxville ;) $\$ 1,600,000$ to ${ }^{9}$ roads in Middle Tennessee, and \$1,C00 000 to roads in the Western District; and in addition to these appropriations, $\$ 300,000$ were apportioned to the improvement of the navigation of the rivers in each of the three divisions of the State. To ensure the prompt payment of the interest on the bonds to be issued by the State for purposes of 1nternal Improvements to enable the road companies to realize the investment without difficulty, the Bank of T'ennessce was made the fiscal agent of the State.
Out of the nett profits of the Bank the handsome annuity of $\$ 100,000$ is gunranteed to Common-Schools, and $\$ 18$. 000 per annum to the county academies; and by the same act two half townships of lands in the Oceoee District are set npart for the university of Nashville and East Tennesee college, in consideration of the claims of those institutions on the State for lands south of French, Broad and Holston.-Fredonian.

coal.

We are informed by a Pittsburg paper, that one thousand flat-boats have left that pluce the past year londed with coal, worth it is supposed one million of dollars. The coal trade is very fast rising into importance. The quantity reccived in this city in 1831, was but 41,437 bushels, while in 1837 it amounted to 322,275 . The coal of this vicinity is said to be of the best description for the production of Gas, which we hope to find shedding its mild radiance over our streets within a year from the present time. As some encouragement to this undertaking, it may be remarked that Gas shares stand higher in the market at the present time, than those of any other description of stock whatsoever. The Astor House pays five hundred dollars per month, or six thousand per year for Gas, which is far more econom-
ical even at that price, than sperm oil, or candles.

It might be amusing to some of the Eastern Railroad Directors, to take a view of the Locomotives which are in operation for the purpose of transporting coal from the mines in this vicinity, into the city. They are generally sixty feet in length, five feet wide, and seven feet in height, bearing the similitude of a wagon and four yoke of oxen. Occasionally, however, we meet with an improvement npon the common construction, in which the moving power consists of horses, oxen, jacks, jenneys, and mules; and all sizes and colors, intermingled at random.
One of this construction which might be called the "Novelty," passed us yesterday on Main street, composed, in part, of eight oxen, one horse and three mules, furming according to the best estimate we could make, a twelve horse power, sufficient on the rail way, to move one hundred tons at the rate of ten miles an hour, while here the power was expended in moving three tons at the rate of two miles an hour, which is not far from the average velocity of our improved locomotives when under full licadway.-From the St. Louis Argus.

INTELSNAL IMPROVEMENT CONVENTION.
We always take pleasure in giving publicity to any plan of operations recommended by the people, for internal improvement purposes : and especially so, when they come to us clothed in the same spirit of candor that we find in the proceedings of this convention. We are indebted to the Olean Times for a copy of the proceedings. The convention was composed of delegates from the western countics of this state and Pensylva. nia, and was held at Ellicottville, Cattaraugus county.
Mr. Bacon, in behalf of the committee appointed for that purpose, reported the following resolutions, which were unanimously adopted :

Resolved, That when experience has so fully proved the great benefis which result to all classes of community from liberal appropriations for works of internal inprovement, both in this and other states of the Union, in the opinion of this convention our legislature should vigo. rous! y prosecute the systen within her limits, and should extend to those sections of the state which have not been the recipient of its favors-the "justice so long deferred," and proceed to the speedy completion of the worl:s now authorised by law.

Resolved, That the New York and Erie Railroad is one of the most gigantic projects of the age-in impurtance, se. cond to none in the state or nation, and that owing to the magnitude of the work and the unparalleled conmercial embarsassments of the country, delays and difficulties must continue to impede its progress by the company-an enlightened policy should therefore dictate to our legillature, to extend such aid as may be
requisite for its immediate prosecution, or to asseme its construction, and become the owners of the work-and this too as a permanent act of justice to the southern tier of counties in the state.

Resolved, That our legislature be petitioned to amend the act authorising the construction of the Genesee Valley Canal, that the locks of the said canal may be built of the same dimensions and of similar construction with the locks upon the enlarged Erie canal.
Resolved, That the early completion of the Genesee Valley canal is of vital importance to this section of the state, and that the people interested have reason to complain of the delays which have hitherto attended its progress, and that it is expedient that through the legislature an enquiry may be had into the causes of delay, the progress actually made, and the intentions of the canal commis sioners in regard to the same-and as the funds are now appropriated for its construction, that our citizens have a right to expect that the canal commissioners will locate and put under contract the remaining portions of the work early the ensuing season, and vigorously prosecute the same to its final completion.
Resolved, That we learn with pleasure that the report of Major G. W. Hughs, Topographical Engineer, to Congress on the subject of the improvement of the Allegany river will be highly favorable to its improvement for steamboat navigation, and that in view of the advantages which are to unite with it, we regard it as one of the nost important links in the whole chain of internal inland communication in the Union-anil as such we confidenly hope and believe Congress will appreciate its national importance, and make a liberal approprintion fur the accomplishment of the object.

Resolved, That in the opinion of this convention the intercsts of this state and of the Union would be greatly promoted by the inmediate completion of these three works, that while we have a deep sectional interest in their construction, we view them as national in their character and general in the blessings which they would bestow-to none injurious in their operation, but extensively beneficial to all-and that we rely upon the wisdom of an enlightene! Stute a:d National Legislature, to adopt efficient measures for their speedy accomplishment.

Resolved, That the proceedings of this convention be forwarded to our Members of the Legislature, and Representativesin Congress, and the Canal Commissioners.

Upon the adoption of the resolutions, the convention was addressed by the President, Messrs. Crooker, Bacon, Almy, King, Leavenworth, and other gentlemen, and great unanimity of spirit prevailed in the proceedings.

Micah Brooks, President.

Joseph Wait,
 B. Chamberlain, $\}$

D. R. Bacon,
S. M. Russel,

红鱼 Volume Six will be completed as speedily as possible. The next, or Volume for 1838, will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.
0 as Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

For Saic.-A Level, made to order by Brown \& Hunt, and in first rate order. Enquire at this office.

Warted on a Lease.-A good country place, with suitable out-houses, and from 5 to 15 acres of land, a shont dislance of the city. Enquire at this office.

NOTICE TO CONTRACTORS.

Scaled proposals will Le received by the undersigned, Acling Commissioner of Public Works, for the 5th Judicial Circuit, Hlinois, at his office in Canton, Fulton county, on Tues day, the 17 th day of April next, unti1 4 o'clock, P. M. of that day, for thie Grading, Bridging and Masonry of iwenty-four miles of the Peoria and Wsrsaw Railroad; extending from Peoris, on the lllinois river, twelve miles west and frum Warsaw on tho Mississippi, twelve miies east.
Sealed proposals will also be received at the Enginecr's office. in Quincy, Adams county, Illinois, on Monday the 23d day of April next, until 40° clock P. M. of that day, for the gra. ding, bridging and masonry, of tha Northern Cross Railroad, extending from Quincy to Columbus.
Plan and profiles, together with specificetions of the manner of executing the work, will be oxhibited at each office ten days previvus to the days of letting. The portions of the above work to be put under contract are expensive. requiring a large amount of heavy excavation and embankment. They will be divided into sections of about one mile in length.
Contractors will be required to mske an ef ficient commencement of their respective jobs within sixty days after the letting, and to have them fully completed on or befure the firt day of August, 1839.
Recommendations will be expected in all ca. ses in which the contractor is not personally known to the undersigned, or the associate commissioner attending the letting.
The country is dry, healthy, and well gettlod; provisions are easily procured, and an the abuve with the other works recently let, and now offered by the different commissionere of the State to be let next epring, are the commencement of the extensive aystem of Internal Improvements projected by the State of Illinois, it is worthy of the attention of coutrac. tors abroad.
J. WRIGHT,

Aeting Commissioner, 5th Jodicial Cireuit,
Canton, Ilinois, Jan. 9. 1838.
FRAME BRIDGES AGAIN.
The sulscriber will build Frame Bridges in any part of the United States, Maryland not excepted, and will extend them to as long a span, and warrant them to be as strong, durable, and cheap as those made by any other method.

Having no patent richt, he requires no agents. A large number of bridges of his construction are to be seen. Yourg genilemen, who wish, can bo instructed in the true matbematical primciples of building bridges, and the application of the same to prectice.
Burlington, Vt, Jon. 1838.
F14if

AGENCY.

The Subscriber offers his services as $\mathbf{\Lambda}$ gent, to procure Machinery for Nills, Sleam Engines, Locomotives, Printing Machines, I'resses, Types and Fixtures.

He will give prompt attention to all orders entrusted to him for execution; and pledges himself to :lroso who may employ him, that nn effort on his part shall be wanting to procure the best articles to be had in the city-and to give satisfaction.
He will also employ Millwrigh's and Engineers to erect Mills, and put the Engines and Machinery in operation.

Orders accumpanied with the necessary funds, or salisfactory city acceptances, should be addressed to D K. MINOK, 30 Wall-st. N.Y

LOUISVILLE, CINCINNATTT, and

CHARLESTON RAIL!iOAD.
NOTICF TO CONTRACYORS.-Sealed Proposals witl be received at the Onfee of the Company in Columbia. S. C., until the 15th day of February next, for the graduation and masonry of that portion of the Road from Columbia to the crossing of the Congaree River, ill the vicinaty of McCord's Ferry, being 25 miles in extent.
Also, tior the construction of a Bridge of 400 lect in length, on the Congarce River, to be built on stonc piers and abutments, for which thero are suitable quarries in the neigh. borhood.
The plans and profiles of the line will be ready for inspection at the Olfice ol: the Resident Enginecr, in Columbia, S. C., after the 10:h day of February.
So soon as the surveya fir location, now in progress, are comp'eted, that part of the Road extinding from McCord's Feiry to the Charleston and Hamburg Railroad, at Branchville. will be put under contract, of which due notice will be given.

WM. GIBBS Mc NEJLL, Clief Engincer.
0 The Railroad Journal, N. Y. Courier \& Enquirer, N. Yurk; Providence Journal, l'rovidence, R. I.: Atlas, Boston; Plaladelpia En. quirer. Pliladelphia; will publish the above notice 6 times, send a enpy of the paper to the Office in Charleston, S. C., and a certified copy of their account for payment

Jan. 12

fmw 6

NEW ARRANGEMENT.

ropes for anclined planee of ratli:oads.
WE the subscribers have formed a co partuership under the stylinand firm of Folger \& Coleman, fior the manufacturing and selling of Rupes for inclined planes of railroa ls, and for other uses, offer to supply ropes for inclined plases, of any length req!ifed without splice, at stiort notice, the manufacturing of cordage, heretufore carned on by S. S. Durtee \& Co, will the done by the now firm, the same superintendent and machinery are employed by the new firm that were euployed by S. S. Durfee \& Co All orders-will be projerly attented to, and ropes will be slipped to any part in the United States.
12th nunth. 12th, 1836. Hudson, Columbia County, State of New-York.

ROBT. C. FOLGER.
33-tf GEORGE COLEMAN.

AMES" CELFBRATED SHOVELS, SPADES, \&c.
 300 daz'ns Amcs' superior back strap shovels.

150 do. do. Gold minining Shovels
00
do. do. plated Siades.
$\begin{array}{cc}00 & \text { do. do. plated Spades. } \\ 50 & \text { do. do. soket Slavels }\end{array}$
Toxether with Pick A Shovels and Spades
Bars (steel pinted) Axes, Churn Drills, and Crow sefined iron-for sale lig the manufacturing agents, WITHERELL, AMES \& OO $^{\circ}$ No. 2 Liberty street, New-York. BACKUS, AMES \& CC.
$\mathrm{Fo}_{4} 8$ State-street, Albany.
N. B.-A lon firnished to order, Shapes of every

MACHINE WORKS OF IROGERS, KETCHUM and GROSVENOR, Paterton. New. Jerwey. The andersigned receive orders for the following articies, manufucturyd by them, of thi most superior description in every prricular. Their works lifing extensive, and the numiner of hands. emploved being laren, thry are enabld to exreut hoth large and small orders with promptness and dispatcl.

RAILROAD WORK.
Locomotive S:eam-Engines and Tcaders; Dri ving and wher Locomotive iV beels, A sles Springand Flange 'l'ires; Car Wlice's of cast iron, frome a variety of patierns, and Chills; Car Wheels of cast iron, with wrought Tires; Axles of liest American refined iron; Springs; Boxrs and Bolts fol Cars.
COTTON, WOOL, \&FLAX MACHINERY, OI all deseriptions and of the most improved patrns. Style, and Workmans! fip.
Mill Gerring and Millwright work genran'ly Hydratice andoher Presses; Press Sorws; Callonders: Lathes and Tools of all kusds; Iroul aril Brass Cas ings of all ilescrintins
RUG| RS, KETCHUM \& GRCSVENRR.
Paterson, N. J. or 60 Wall-st. New-York $51 t f$

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LoNG, to build Bridges, or vend the right to others to buill on his Patent Plan, waus.d respectfully infurm Railroad and Bridge Corporations, that he is prepared to make cohtracta to build, and furnish all materials for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followi g lucalities, viz. On the main ruat leading from Baltimore to Washingon; two miles from the former pace. Across the Mutawankeay river on the Military road in Maine. On the national road in limois, at sumiry points. On the Bahtinure and
Susquehanna Rnilroad at thre pmints. On the Susquehanna Rnilroad at thrie puints. On the
Hudson end Patersun Railroatl in two places. On the Boston and Worcester Railroad, at several joints. On the Boston and Providence Railroad, at sumdry points. Across the Contoncenok river at Hennikar, N. Il. Across the Soubegan river, at Miffurd. N. [1. Across the Cunuecticat river, al Hancocd, N. i1. Across the Andruscogyin river, at Turner Centre, Mainc. Across the Kennelve: river, at Watervillo, Maine. Acrows the Genesee river, at S qukjehill, Monat .1 orris, N. Y. Acros the White Rucer, it Hartford, VI. Across the Connecticut liver at Lebano:, N. 11. Across the mouth of the Brokere Straw Crock, Penn. Across the mouth of the Cataratigus Creek, N. Y. A Rail road Bringe diagomily acriss the Eric Canal, in tie City of ILechester, N. Y. A Railr mal Bridge al Upper Sill Water, Orono, Maine. This Bridge is Wh fort ity inarth; ore of the spans is over 200 fiet in Amerien.
Notwith-tanding his prescet engagements to buid between tweuty and thirty Railruad Pridyes, and several common bindres, several of which are now in progress of com-truction, the subseriber will prompily attend to business of the kind to much "rreaterextent and on lilicral terms.
Rochester, Jan. 19:h, 183\%.
M JSES LONG.

STEPHENSON,

Builder of a superior style of Passenger Cars for Railroads,
No. 261 Elizalneth street, near Bleecker street, NEW-YORK.
RAILROAD COMPANIES would do well tn examine these Cars; a specimen of which may be seen on the New. York and Harlaem Railroad, now in operation.

ROACH \& WARNER

Manufacturers of OPTICAL MAVBEMA TICAL AND PHILOSOPHICAL INSTRU MENTS, 293 Brondwag, New.York, will keel constanly on hand a large and gencral assort:nent of instruments in their line.
Wholesale D.alers and Country Merchants suppliet wih SURVEYI ${ }^{\text {GG COMPASSES, BA }}$ ROMETERS, THERMOMETERS, \&c. \&c. of their own mannficture, warranted accura' e, and at lower prices than can be had at any o ther establishnent.
异 Istruments snade to order and repaired.

RAILWAY IRON, LOCOMOTIVES, \&c. \&c.
THE subacribers otier the following aricles for sale :-
Railuay Iron, flat bars; with conntersunk ho'rs and mitsed joints,
$3: 0$ tuns 2 by , 15Ω in length, weighing $4 \frac{68}{16} 6$ per

witn Spikes and Splicing Plates adapted thereto T'o be sold free of dity to State goveinircitis, or ncor, orated compenife.
Orders lir Pennsylvania Boiler Iron exrcuted.
Rail Rand Car and Locom tive EMyine Itires wrought and turned or unturned, reaty lo be fitid min the whecis, viz. $30,33,36,42,44,54$, and co inclies dianieter.
E V. L'atent Chain Cable Bolts for Liailway Car arles, in lenut!ss of I2 Ceet 6 iuches, in 13 lieet $2 h^{2}$, $2 \frac{3}{3}, 3,35,3535,3$ and : $_{5}^{5}$ inches dianeter
C'hains for luclined Planex. short and stay links manufactured from the E. V. Cable Eolts, and proved at the greatest strain.
ludia Rubber Rupe for Inclined Planes, made from New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for flacing between the iron chair and slone block of Eilge Railways.
Every deseription of Railway Iron, as well as Loconvotive Engines, imported at the shortest nutier; br the anency of one of our partners, who resives its England for this purpese.
A highly respectable A merican Engineer resides in Eloglanil for the purpose of inspecting all Low. motives, Machinery, liailsvay Iron, \&c. ordescd through us.

> A. \& G. RALSTEN \& CO.,

28 tf

$$
\text { Philadelilia, No. } 4 \text { South Front-st. }
$$

ARCHIMEDES WORKS.
 (100 North Moore-street, N.Y.)

THE undersigned beg liave to inform the propiletors of Rail Rualls, that they are prepared to furnish all kinds of Machinery for Rail Roads, Locollutive Engrines of any size, Car Whecls, such as are now in successful operation on the Camalen and Anday Rail Road, nome of whic! have finled.Castings of all kinds, Whieels, Axles and Euxcs, furnished at the shertest notice.
II. R. DUNHAM \& CO.

Nh.w York, February 12th, 1836.

PATENT RAILKOAD, SHIP AND BOAT SPIKES.

** The Troy Iron and Nail Factory keeps constantly firr sale a very exturnive assorlinernt of Wrought Spikes and Nails, froin 3 to 10 incher, manulacturr d by the subscriber's Patent Machinery, which after five years succeasfal oprration, and nuw almost universal use in the United States, (as woll as England, where the subscriber obtained a jatent) are found superior to any yet ever offired in markel.
Railroad companier miay be suppilied with Spikes baving conntersink heads suitable to the holes in iron rails, to any amount and on short notics. Al. 1:30:s all the Railroads now in progress in the Uuited States are fastened with Spijes nade at the above-nansed factory-for which purpose they are found invaluable, as thi ir adliesinn is more than doulle any common Spikes made by the hammer. will be punctually attended to Agent, Troy, N.Y. will be punctually attended to.

HENRY BURDEN; Agent.
Troy, N.Y, July, 1831.
** Spikes are kept for sale, at factory prices, by 1 \& J. Townsend, Albany, and the priticipal Iron Werchants in Albany and lioy; J. I. Brower, 222 W'ater-strect, - iw- York; A. Ns. Johes, Pliiladetphia; T. Janviers, Baltimore; Degrand \& Smith, Eoston.
P. S.-Railroad comranies would do well to forward thrir ordere as early as practicable, as the, sulseriber is desirous of extending the manufacturing so as to kerp pace with the daily increasing demand for bis Spilies.

1J23am
H. BURDEN.
G. Mitchell, Printer, 265 Bowery, N. Y.

ADVOCATE OF INTERNAL IMPROVEMENTS.

fublished weekly, at no. 30 wall street, at five dollars per annum, payable in advance.

D. K. MINOR, and

Ecitonsand GEORGE C. SCHAEFFER, $\}$ Proprietors.]

CONTENTS.

Semi-Annual Repert of the Ecuth-Carolina Canal and Railoned Compiny
Repurt of the Committer on Railroads, . . . 65
Ilvusatonic Raiload
Miscelianeous l:eme,
Advertisements

AMERICAN RAIIRGA! JOUBNAL.
NEIV-YORI, MARCH 3, 1838.
SEMI-ANNUAL REPORT कF.THE SOUTHCarolina canal and railroad comPANY, TO DECEMBER 31, 1837.
The statement of the affairs of the Company, by the Secretary and Treasurer herewith presented, shows the income of the half year ending the 31 st December, 1837, to be $\$ 158,13736$ From which deduct the current expenses,

117,897 60
There remains,
$\$ 40,23970$
From this a dividend is declared of three dollars per share on 12,072 shares paid in full on or before the 1st July last, amounting to

36,216 00

Leaving a balance,

$\$ 4,02376$
The debts of the Company amounting to $\$ 501,67481$ will be paid from the instalments yet to be received on the stock issued in February last, except the State loan, and interest, not due before the year 1847.

The payment of these instalments will, it is believed, be greatly facilitated by the large transfers of the stock about to take place.

The road and machinery are now in better order than at any former period; and the anticipation of the public as regards its usefuluess, is now in some degree realized, though the profits to the stockholders has not been in proportion to the increase of business on the roadit having arisen principally from the freight of cotton down, without an equal proportion of freight upward, and passengers.
ly comparing the last half year's accounts with those of the preceding half year, ending 30th June last, it will be
seen that while there has been a gain in the downward freights of $\$ 32,22592$ There has been a loss in the
receipt for passengers of 11,12163 The quantity of embankment in the last half year is quite as much as was expecied when the July report was made -and its progress gives assurance that the whole may be completed by October next ; their being sufficient force under responsible contractors to have it done by that time.
The whole extent to be embanked, not exceeding twenty-five miles, all parts of which are in progress-in detached spaces all throughout the line, and divided among twenty five different contractors, with twenty to one hundred hands each, so distributed as not to interfere with each other. Nine Mile Bottom, Four Hole Swamp, Yolk Swamp, Cattle Creek, and Edisto River Swamp, besides many extensive high places on the upper division of the road are all about completed-from the hundredth mile upward (36 miles,) there is not three miles in extent to be embanked; and by July next it is believed there will not be over three or four miles high work to be finished.

The embankment yet to be made is estimated by the superintendent of the road at 745,000 yards, at a cost of 20 cents per yard, will amount to 8149,000 .
'Ihe progress with new Iron has not been so great. All that was imported and not laid on the road before the first of July last, has since been put on, covering about twenty miles more than was at that time laid down.

About 700 tons more which lias been imported this fall, is now going up for distribution on the worst parts of the road, particularly on the curves between Aiken and Hamburg. This will complete about eighty-six miles, and leave to be done fifty miles; requiring two thousand tonsat a cost of about $\$ 150,000$.

This Iron should be ordered as soon as possible, as it cannot be too soon placed upon the road.
The very respectable house in London, who had the last order of the company, for a sufficient quantity to complete the whole work, have sent forward one thousand tons, (300 of which was lost on the passage out, on acoount of
the underwriters,)-the balance of the order they suspended, in consequence of the great commercial embarrassments which so generally pervaded that as well as this country.

Other improvements have been made by extending tracks to make room for receiving and delivering freight-sliding sections for eight wheeled cars-and increasing the number of turnouts which average within four to five miles of each other, with two yet to be built, through the whole line.
Several of the houses for carpenters have been finished, and others purchased, so that nearly all the divisions, (18) are furnished with a house for the carpenter, and another for the negroes, on land belonging to the company.
A large importation of wheels and axles has been made to supply the place of defective ones under the freight'cars, which have been frequently giving way. The new pattern are formed very superior, and give much security to the cars supported by them.
Since the destruction of Eason \& Dotterer's Foundry, we have found it necessary to establish a small one, which has been very successfully employed in turn-. ing out boxes, and other small work, both of iron and brass.
Two large passenger cars, on eight wheels, have been built since July last, capable of carrying 40 passengers each -making four of this class-which adds much to the ease and comfort of the passengers.
Several eight wheeled freight and baggage cars have also been completed, which, with those nearly finished, will increase the number to twenty-seven. These carry more than double the quantity of the load of the small cars, and with much more safety against fire and water.
The number of freiglit and passenger cars lias been fully equal to the demand for them in the most pressing season of business.
The power on the road has been fully equal to the business offered, except cotton down, while the rivers were too low for steamboat navigation.

For the last threc months we have been obliged to send up empty cars to bring down cotton, there not being
freight enough to load them all. This has increased the receipts without adequate profit, the expenses being ubout equal to the amount received when the cars are only loaded with cotton down.

After it was found that there would be disappointment in getting the Engines contracted for with Eason \& Dotterer's -two were obtained from Philadelphia, and two were re-built by M'Leish and Smith; these four, with those which the large force in our shops were able to keep in order, have been as many as could be employed advantageously, and equal, if constantly engaged, to swell the business to $\$ 500,000$ per year. The amount received in the last quarter being \& 103,923 SI ineluding mail, and 25 per cent more could have been earned if the passengers and upward freight had offered as freely as did the cotton down.
It is a source of much satisfaction that we have been able to perform the trip with passengers tlirough each way daily with as little inconvenience, thus far, this winter, as in the summer months; starting at 6 A. M. and arriving frequently by half past 4 to 5 P. M.

This gives assurance that when the new iron is on the whole length of the road, the trip may be performed between sunrise and sunset in the shortest days.

It has been found practicable to make the run through in the most' severe weather, in storms and freshets, when the travelling on the common roads was entirely broken up, and even the mails did not reach the city on other routes for several successive days, our cars came in and went out, losing but a single trip from these causes for the season.

A source of much greater satisfaction is in the fact that a passenger's life has not yet been lost upon our road, although the number carried upon it, the last scven years, has been nearly equal to the whole white population of the State; and in the last year, exceeding the whole population of the eity, being nearly 42,000. No other mode of conveyance over the same distance, ever presented equal safety to passengers.

In making these remarks, we have not forgotten the loss of several valuable lives of those in the company's service; every. means is taken to render their safety as perfect as that of the passengers. We look much to the good character and prudent management manifested in those engaged in the employ of the company, to render their duties pleasant, as well as secure against accidênt.

Much has been said of the necessity of construeting a double track to enable the company to convey all the freight that may be offered, without interfering with the passenger trains.

Double the business now done might be carried over the road on a single track, when the slidings or turnouts now being completed are all open for use. And it will only require a system of arrangement, which a little experience will
suggest. Less interruption in passin has occurred the present season, when 5 or 6 trains are met on the road, than with half the number, in years past, when the subject was not so well : understood, and the accommodations incomplete.

Eeonomy, too, would forbid the construction of another track, while it can possibly be avoided-as the timber destroyed on the line for the purpose, would so diminish the quantity as to inerease much the cost of repairs-the quautity of repairs too would be doubled; therefore the expense of keeping up the double road mighit be fairly estimated at three times the present cost.

It is now found that about one-fifith of the railsills are required to be replaced with new annually, at a cost of about one hundred thousand dollars.

There is another fact important to be remembered, that the decay of a wooden road is much less when frequently used, than when it is seldom passed overthis has been proved by the state of the timber in the turnouts least used, compared with that in the main track, immediately opposite. The jarring caused by the passing trains keeps out the worms, and otherwise prevents decomposition, which would take place when left at rest in the earth.
This is as clear in the vegetable as in the animal kingdom, which cannot have escaped the notice of every man of observation, that both unemployed soon become a worthless material.

Mr. E. R. Dorrill, who has been employed locating vacant land for the company, has brought in plats of all he could find, and also of such as belongs to the State road, which would be desirable for the company to own; also of lands purchased this side of Branchville and connecting plats of adjoining lands in the neighborlood.

The vacant lands run is 3212 acres. That beloug. to State r’d 1150 "
Believing that Mr. Dorrill's services could not be employed advantageously for a further time, we have closed the engagement with him.
The land purchased and paid for in the last six montas is,
On the 19, 20th Miles, 450 A . $\$ 675$
$81,82 \quad$ " 17 " 100

House and lot, 129 " 86
The company has been indieted for using steam below Line-street on Charleston Neck, it being regarded as à nuisance by some of the inhatitants of that neighborhood.

Should this case be finally decided against the Company, it will be a matter of consideration whether the Depository be removed beyond Line-street, or the great "cxpense of horse powerbe incurred, which could not be less than from $\$ 8$ to 10,000 per year, and the despatch of trains much retarded both in coming in and going out, and by this change, a greater inconvenience would be expe-
rienced by the public in having the cross-roads constantly oecupied by passing and re-passing cars.

The Committee appointed in July last to confer with the Stockholders individually, respecting the sale of their shires in this company to the Lonisvilte, (incimmati and Charleston Rail Load Company, have reported to an adjourned meeting, that they had obtained the sanction of a large majority to a sale of their stock on the following terms:
" $\$ 125$ per share on the old stock, and $\$ 25$ per share advance on the new stock, payable in for everg share we sell, one share in the L. C. \& C. Company stock with 85 paid thereon, and for the balanee, one third in cash, one third in ene year, and one third in two years, with interest from date of transfer secured ly a mortgare of the property.'
To which that company by its President has agreed.
This elange of stock is intended :o give that company the control of this road, so that they can progress wilh their great work, and comect it with the city of Charleston by means of thii road, and to commence a line to Columbia which the South Carolina Canal and Rail Road Company are authorised to do by their elarter, but have not had the means to accomplish; nor did the company think it advisable to progress with it till the line to Hamburg was further infproved by completing the embankment, and putting upon the rail the heavy class of iron, which will take another year to complete, and neither means nor Inbor should be detracted from its cauly accomplishment.

> Respeetfully submitted, Tristram Tupper, President.

In pursuance with a resolution adopted, the following Preamble and Resolution offered by Alfred Hugher, Esq., and adopted by the meeting was ordered to be published:
The Stockholders of the South Carolina Rail Road Company, aware of the importance of the occasion which calls them together, not only as the owners of this stock, but as citizens of the State, desire now to avail themselves of the opportunity afforded of placing upon record those feelings which the day is well calculated to excite. Like their forefathers, the authors of the greatest and noblest revolution that the world ever saw, they have witnessed the commencement of a work, the grandeur and magnificence of which seemed at first too striking to authorise even a faltering anticipation of success. In a region of perfect freedom, where no power but the power of the common good is felt, and where no despotism is known but that of which public opinion holds the sceptre, it has been boldly undertaken to accom. plish an object which the rulers of nations have never conceived. To surmount the difficulties of nature, and thus to
becone entitled to her protection and reivard, has excited our people to this vast cuterprize. To do what man lias never done before, and to enjoy what man ltad never hoped to attain, is now the purpose which we are assembled to consider, in compliance with our own aspiration, that the aid of heaven will susiain us, and thus sustained, with our own solemn convictions that success is certain, we now take the decisive and all-important step which is to insure to Enouth-Carolina the llessings of that wenlth and prosperity which are the resulis of in industry that never tires, anil of a spirit that never quails. Under tle full. and uncontrolled influence of alnc=e sumiments.

Lee it Rissolved, 'i'hat the Stockholders of the South-Carolina Canal and Rail Road Company, tender to the Committee who have acted in their behalf, their warmest thanks and the expression of lis:r cntire npprobation, for the able anil enlightened report which has just been sub:nitted, and to the same Cominitte their sincere congratulation at having thus been the successful agents in performance of a duty which is identified with the glory and the happiness of their conutry.
Notr.-Ineome derived
from passengers,
To .whieh add Mail,
Rent and Storage,
$\$ 152,76540$

Total
5,36S 96
$\$ 158,13736$

REPORT

Of the committec on railroads, on the petitions of the president, directors and company of the New. York and Eric railroad company, and of sundry citizens.
Mr. Holley, from the committec on railroads, to which was referred the peti. tion of the New-York and Erie railroad company, of sundry citizens of the counties of Allegany, Broome, Cattaraugus, Chautauque, Chemung, Delaware, Oneida, Orange, Otsego, Rockland, Steuben, Tiogia and Tompkins, of the chamber of cominerce of the city of New-York, and the memorial of the mayor, aldermen and coummonalty of the samecity, praying the State to subscribe three millions of dollars to the stock of that company, reports:
'That the New-York and Erie railroad company was chartered by an act of the Legislature, passed on the 24th day of April, 1832 , with a capital of $\$ 10,000,000$ with power to construct a single, double or treble railway, from the city of NewYork, or some eligible point in its vicinity, through the southern tier of counties, by way of Owego, 10 the shore of Lake Erie, at some eligible point between the Cattaraugns creek and the Pennsylvania line, and with power to transport thereon property and persons, for the term of fifty years from the passage of the said act. By an amendment
to the charter, passed April 19, 1833, the compary is empowered to cominence operations whenever one million of its stock shall have been subscribed.

The charter reserve to the State the right, after the expiration of ten and with in fifteen years from the completion of the roat, to take it with its fixtures, for the public use, on paying the cost thereof to the company, with interest at the rate of fourteen per cent per annum.

In July, 1833, one million of dollars was subscribed to the stock of the company, and further subscriptions have been since made, at different times, making the whole amount of subscriptions to the stock at ilse present time equal to about $\$ 2,583,20$. The totitl a mount of money reccived by the company since its organiz tion to the 31st Deceinber, 1837, is $\$ 338,6.3715$.

In 183.4, in anticipation of the ultimate participition of the State in this great enlerprise, which was desirable, as well to ensure the more speedy completion of the work, as of assuring protection to the in. dividuals who might embark their means in the undertaking, the company applied to the Legrislature to authorize a survey of the route of the road by engineers under the direction of the State authorities. In pursuance of this application, a law was passed in that year appropriating $\$ 15,000$ for the survey, and directing the Guvernor to designate an engineer. Benjamin Wright was the individual selected by the Governor to perform the service, and under his direction a survey of the whole line was completed in December of that year. The survey was careful and thorongh, and its results were signally favorable to the success of the enterprise. The board of directors thereupon felt authorized 10 enter upon the actual construction of the work, and accordinirly, in October, 1835, placed a section of the road $40 \frac{1}{2}$ miles in extent under contract, at prices much below the estimate of the engineer. Anxious, however, to ensure a more speedy completion of the whole work than could reasonably be expected, considering its magnitude, from the unaided efforts of private stockholders, the company, in conjunction with numerous citizens of the southern counties, made an application for aid to the Legislature of 1836 , which resulted in the passage of a law, loaning the credit of the State to the company, for an amount not exceeding three millions of dollars. By the conditions of this act, however, the company was required to make large preliminary disbursements, before any part of the loan could be used; and before these disbursements could be made, the untoward events which produced the present unfortunate condition of the currency of the country, put it entirely beyond the power of the company to avail itself of the provisions of the law.

The company has, therefore, been obliged, afier an expenditure exceeding three hundred ihousand dollars, to arrest entirely the prosecution of the work x_{2} and
to discharge the laborers and engineers. The work being thus suspended, the intended aid of the Legislature of 1836 being rendered unavailable by the circumstances of the times, and the whole enterprise being subjected to most injurious delays, if not to entire failure, without the further assistance of the State, the directors, in conjunction with a large number of citizens of ail the southern counties, pray the Legislature to authorize a subscription on the part of the State to the stock of the company, for an amount not less than three millions of dollars.

Your committee are unanimously of opinion, that the aid of the State ought, in some mode, to be extended to this company, either by a subscription to its stock, as prayed for, or by such a modification of the law of 1836 , as shall render the loan therein provided for effectual towards aiding in the construction of the work.

It is evident that the Legislature of 1834, by authorizing the appropriation of $\$ 15,000$ for a survey of the route of this road, regarded the enterprise as one of such public importance as to require and justify the interference of the State in promoting its accomplishment ; and the law of 1536, authorizing a loan of three millions of dollars to the company, upon certain terms and conditions, in the judgment of your committer, is a deliberate legislative sanction, as well of the necessity and practicability of the undertaking, as of the propriety of lending the credit of the State to ensure its completion.
The law of 1836 provided that when the company should have completed a single track of railroad from the Delaware and Hudson canal, to the point where the road should cross the Chenango canal, a distence of about 145 miles, the Comptroller should issue special certificates of stock to the company, to the amount of 8600,000 : that when the company should have in like manner completed a continuous line of such road from the Chenango canal to the Allegany river, a distance of about 180 miles, it should receive the like certificates $\$ 700$,000 : that when it should in like manner have completed a continuous line from the Allegany river to Lake Erie, a distance of about 65 miles, it should receire like certificates for $\$ 300,000$: that when it should in like manner have completed such continuous line from the Hudson river in Rockland county, to the Delaware and Hudson canal, a distance of about 77 miles, it should receive like certificates for $\$ 400,000$: and that when it should in like manner, bave completed a continuous line of double track railroad in this State, from the Hudson river to Lake Erie, it should receive like certificates for one million of dollars.

Independently of the disasters above alluded to, which rendered this law unavailable, its provisions are evidently so rigorous, requiring each portion of the
road, and those very lurge and expensive, to be completed, before the several amounts of slock should be actually usell, that even in ordinary times, private or corporate capital would be very likely to prove unequal to the exigency. Under the existing circumstances of the country, the work must probably be either wholly abandoned, or the aid of the public credit mnst be so liberally and efficiently extended to it as to insure its prosecution.
The length of this road from the Hud. son river to Lake Erie, as given by Judge Wright's survey is $\mathbf{4} 3$ miles. More recent examinations have already reduced the distance on particular sections, ard it is altogether probable that the length of the road, as it shall be finally established, will not exceed 450 miles.
The difficulties originally apprehended in the graduation of the road, from the undulating and elevaied character of the country to be traversed by it, were most strikingly diminished by the examinations of Judge Wright, which disclosed the important fact, that far the largest portion of the road could be carried along the valleys of streams intersecting that region, through all of which the acclivities are gentle, and perfectly easy of ascent. By that survey it appears, that one continuous section of 125 miles in length is situated on the margin of the Susquehannah and its tributaries; one of $\mathbf{6 9}$ and another of 39 miles along the Delaware and its principal confluents; and that other minor sections along the smaller streams, including 19 miles in the valley of the Ramapo, make up a total ainount of at least 400 miles, in which the route of the road obtains the important advan. tage of following the margin of watercourses. Of the remaining portions of the line, the ascents are more severe, and the graduation more expensive. Yet, with one exception, the difficulties here are not formidable in the way of the construction of the road, or of its adrantageous use. The exception alluded to, is the passage of the Shawangunk ridge, in the county of Orange, on the east side of the Delaware and Hudson canal, where a descent of 350 feet must be overcome in three miles. This obstacle may be surmounted by a deep cut in the ridge, at an expense of about $\$ 70,000$, or by a tunnel 900 yards in length, and cost $\$ 175,000$. Whatever plan for passing this ridge may be adopted, the total expenditure in constructing the whole section will not exceed from two hundred to two hundred and fifty thousand dollars. The steepest grade required on this section, and of course on the whole line of the road, will not exceed eighty feet to the mile.

The expense of constructing the road for the whole distance from the Hudson to Lake Erie, with a single track of rail way, according to the estimate of Judge Wright, would be $\$ 4,762,260$. This sum, it will be seen in the annexed report of Edwin F. Jolinso:, Es :., an engincer of great intclligence and experi.
ence, is increased by the addition of extra expense for iron rails on 70 miles of steeper grade, and of 25 per cent. for advance in prices, superirtendence, \&c., to the sum of $\$ 6,390,325$, for a single track.

For infurmation in relation to the prac. ticability of the proposed work, the probable returns of revenue, and the general benefits to result from it as a great thoroughfare of communication, your committec refer to the repert of Mr. Jnhin. son, which has, at their request, been put into their hanils, and which they hare made an appendix to this report. The facts, statements and conclusions furnishel therein, have been carefully considered by the committee, and they have full confidence in their correctuess, arid beg leave to refer the llouse to it, not only for all necessary lights in relation to the subject in hand, but for much valuable information touching the whole subject of Railroads as a means of internal im. provement.
In reference to the general importance of this road as a great public improve. ment, affecting most deeply the prosper. ity of this State, as having become indispensable, in consequence of the public works, completed and in progiess, of rival States, to secure to ourselves our just share of the western trade, nnd as being called for by a just and equal regard to the claims of the southern counties, the committee will not enlarge further than to express their thorough conviction, that every consideration connected with this subject requires, that a fostering care of this great enterprise should be regardell as part of the settled policy of the State, to be executed with vigor and without delay.

The committee aro of opinion, that a proper modification of the law of 1836 will afford to the petitioners the aid required, and have instructed their chairman to ask leave to bring in a bill amending that act, so as to authorise the Comptroller to issue the special State stock therein provided for, in smaller and more convenient sums, upon satisfactory proof being made to him of the previous payment by the stockliolders in good faith of sums from time to time, equal to the amount of State stock to be issued.
An Act to amend the act entitled" A.: act to cxpedite the construction of a Railroad from New York to Lake Erie," passed April 23d, 1836.
The people of the State of New Yo:k, represented in Senate and Assembly, do enact as follows:
Section 1. When the New York and Erie Railroad Company shall produce to the comptroller satisfactory evidence by the affidavits of the treasurer and two of the directors of the said company, that the sum of three hundred thousand dollars has been expended in the survey and construction of their Railroad, he shall issue and deliver to the said company, special certificates of stock to the amount of three hundred thousand dollars, bearing an interest of four and a half per
cent., payable-quarter yearly. And it shall be the duly of the comptroller to issue and deliver to the said company from time to time, further like certificates of stock, amounting at each delivery to not less than one hundred thousand dol. lars, whenever satisfactory evidence shall in like manner he furnished to him that the proceeds of the stock previously dclivered has been expended in the construction of the said Railroad; and also, that further instalments on the capital stock of the said company have been paid to their treasurer, amounting in each and every instance to the full amount of the stock to be from time to time applied for and delivered as aforcsaid, until the stock so to be issued and delirered by the comptroller, shall amount to the sum of three millions of dollars.
§ 2. The first section of the act hereby amended, is repealed; and the first section of this act is substituted in its place.

From the Bringeport Farmer.

In a recent communication published in your columns, I proposed to consider at some future period, the benefits of the Ildusatonic Ruilionad to the city of Bridgeport, its bearing on the interests of the citizens generally, (should she be so fortunate as to secure it,) as also the danger of her losing it through apathy or indifference. T'o enter into a minute detail of all the benenits that would re. sult to the city from this Railroad, which if carried into effect is to connect Bridgeport with West Stockbridge, in Massachusetis, where it will unite with three important roads; the Albany, Hudson and Boston, would require more room than could well be assigned to a newspaper communication. Indeed a long course of years will be required to develope to their full extent, the vast resources of the rich, fertile valley of the Housatonic, through which this road is located, for more than 70 miles. The present trade of this extensive and interesting section of country, now diverges in almost every direction from the valley, and thus does much for the support of sereral towns on the Hudson, particularly Hudson and Poughkeepsie. It also furnishes a large amount of aid to the several towns east and south, fram Springfield, on the Connecticut River, 10 Norwalk, on the Sound. The amount of trade that Bridgeport now enjoys with the Valley, is very limited, and does not exceed much beyond the town of New Milford. Indeen, the trade of New Milford itself is also divided between several markets on the coast and North River, while it is well known, by all who are acquainted with the business operations of the Valley, that its present trade is north of that township.
By comparing the present internal resources of Bridgeport with what they will inevitably be when this Road is accomplished, we cannot fail to perceive, that all the anticipations of the most sanguine friends of the project in reference to the prosperity of the city of Bridgeport,
will be realized. The distance from Bridgeport to the north line of New Mil ford, is about 40 miles. Nearly the whole internal trade of Bridgeport is drawn from the area of country lying between those two points, and extending from east to west on the average not to exceed ten miles distance, making together 400 square miles. It will doubtless be admitted on all hands, that no more than one half of the trade of this section is with Bridgeport, leaving her in possession of 200 square miles for her support.
Le: us now examine the resources she woull enjoy provided the Railroad should be completed and put in successful operation to the city. From a point in Newtown (where an important depot will be established for the accommodation of the surrounding country, to a few mules south of West Siock bridge, a distance of say 70 miles, with an average width of at least 20 miles, viz: 10 miles on each side of the road, the business of the country will as naturally and certainly fow on it, and be carried to Bridgeport, as the tributary streams of the Housatonic will continue to empty themselves into its bed, and piss off to the Sound. Here is an area of 1400 square miles; to which add one half of the country south of Newtown. 10 miles in widih, ard you have about 1800 square miles. All this can be relied on with certainty at all seasons of the year, and is a section of country highly productive, even at present, in its agricultural and mineral resources. Much matter has already been laid bef re the public on the subject of the mi noral resources of the Valley, and its hy. draulic powers. The great expense of transportation to tide water, has hitherto prevented a developement of many of its. most valuable minerals, such as granite. porcelain marble, clay, and all of which are of superior quality, but are lying dormant for want of the ficilities of transportation. The immense water power is also lying dormant from tha same cause, except so much as is used for the manufacture of iron. I believe I hazard nothing in say. ing, that no vallej or section of country in New England, of the same extent, contains as much real wealth as Housa:tonic Valley, or that can furnish the same amount of local support to a Railroad in the transportation of tonnage. Müch of the produce of the country norih, east, and west of the northern termination of the road, will find its way to Bridgeport for a market, in the winter months, by means of the junction of the Housatonic with the three roads above named. In a word, it will form the great thoroughfare and grand outlet for all the trade and travel, north, east, and west, of its northern termination for a great distance, for at least four months in the year.
From the material now before us, we see that with the benefi of the Railroad, Bridgeport would enjoy a communication with an interior of country, at all seasons of the year, at least seven and a half times greater than at present; while the produce and transportation of the Valley
will increase with astmishing rspidity, in consequence of the facilities the Road will afforid, and that the four mon:he sus. pension of navigation on the Hudson River would be the harvest season of busisiness in the city of Bridgeport.

Po:sessing, as Bridgeport certainly does, one of the most delightful and healthy locations in the country, with a safe and commodious harbor, and a guarantee already given that it will be made navigable at the expense of the general government for vessels of the large class, and with the prospect of so extensive a communication with an interior so abundant in its resources, who can Joubt for a moment that in a few years she will outstript in business, population and wealdh, the largest and most flourishing cilies in the State? For who does not see that she would stand without a rival in the extent of her internal resources ? The common sense of mankind. and the experience of all civilized nations, concur in establishing beyond the reach of controversy this great truth, that all commercial cities in all ages, have had, and ever must have, their origin in, and drive their constitutional support and prosperity, mainly from, the agricultural and mi. neral productions of the earth, and that ordinarily their prosperity and wealth are increased in exact proportion to the extent of those resources, and the facilities given to their transportation.
Commerce is nothing more or less than the exchange of one thing or commodity for another. The commerce or trade of a city, is of two kinds, internal and external. Its internal communication and trade are the basis of its external commercn; all the surplus produce of the country, which is developet by labor and enterprize, whether agricultural or mineral, is carried to some commercial town or city by. some mode or other, and ex. changed for othercommodities and things, of which the country stands in need, while the city favorably located for carrying on an extensive trade supplies itself with the means of procuring the foreign article, by the very commodity that she secures by her internal trade; hence one of the causes of a more rapid advance in the wealth and prosperity of the city than the country, that while the country only enjoys the benefit of the internal trade, the city, from the very nature of her position, unites the foreign and domestic both in one, and renders them equally subservient to the general good. Now let us apply these truths to the case in question. In the comparison that I have drawn between the present resources of Bridgeport, and wha' they would be with the Railroad and its several connections, it appears that her resources during the whole year, would be nearly eight times what they now nre; and including the extra winter trade, would doubtless increase to ten times its present amount; or that her present internal resources are derived from 200 square miles of country; whereas, she would by means of the Road, secure what would be equal to

2000 square miles. If for example, 200 square miles will produce a trade between the country and city of $\$ 500,000$ annually, (which is by fat too low an estimate,) and the profit on the trade is laid at 10 per cent, producing an income of $\$ 50,000$; then 2000 square miles equally productive, would afford a trade amounting to $\$ 5,000,000$, which at the same rate of profit would produce an income of $\$ 500,000$, from which deduct the supposed profits of the present trade, and you have remaining the sum of $\$ 150,000$. Allow 50 per cent of that a mount for the services of the dealers and the use of their capital, and you have remaining $\$ 225,000$ as the nett annual proceeds arising from the improvement in question.
It will be seen that the foregoing estimate, is based solely on the domestic trade, and that no allowance has been made for the profits of a foreign commerce. Now 8225,000 nett annual income, would be equal to an increase of the wealth and permanent capital of the city, of $83,750,000$; whereas the whole a mount necessarytoaccomplish this great and desirable object is but $\$ 1,000,000$. I am a ware that various objections are raised to this project, and what great project was ever commenced that did not find its opposers? the Erie canal was opposed and ridiculed at one time, and was considered by a vast majority of the people as utterly impracticable. Clinton, the great benefactor of his country, and the father of the system of internal improvements, received even the curses of those, who, when the project had succeeded, were compelled to do him honor ; and that work which, during its progress was stigmatized with the appellation of Clinton's big ditch, has already been the source of mill:ons of wealth, both to the metropolis, and the interior; is the pride and boast of the empire state, and imperishable monument of Clinton's well earned fame. It has been the fate of almost every useful project, r.ot only to meet with honourable opposition, but to be compelled to resist the torrents of ridicule, and brook the finger of scorn. Ridicule is not unfrequently successful in accomplishing its object, but is nevertheless a dangerous weapon to him who uses it; as when it fails of success, it invariably recoils upon its author. Let us suppose fur a moment, that all the world had hitherto entertained the same views ot projects, as are entertained by some of the citizens of Bridgeport, of the project in question; what would have been the condition of the world at the present day? Say they, we desire to pursue the course that was adnpted by our forefathers, and do not approve of new projects that break in upon old established habits and customs, while all the blessings they enjoy above the savage, are the fruit of projectis which were once innovations upon old established maxims, habits and modes of thinking; opposition therefore to any giren project, argues neither for nor against i:s praclicability or its usefulness,
as good and bad projects have alike met with the same opposition. Reason is the standard, to the bar of which, all projects should be summoned; to this standard I ask the reader to bring the facts and arguments herein submitted, and decide whether the project in question is worthy of the attention and support of the city of Bridgeport. The danger of the road being lost to this city, is a subject that should awaken the anxious inquiry of all the citizens, and induce them to simultaneous action. 'The question with Bridgeport was, shall we have a Railroad built or not? The question now is, shall the Railroad which will certainly be built, come to Bridgeport or not? This subject I shall discuss in a subseqnent communication. Iu conclusion, I beg every citizen to calmly and dispassionately weigh the subject in all its bearings. the question now presented is a great and important question, and on a right decis. ion depends much of the future good of this most interesting city.

NEW YORK CANALS.

The receipts for tolls on the New York Canals during the year 1837, were as follows:
Erie and Champlain Ca-
nal,
Oswego Canal,
Cayuga and Seneca Canal,
\$1,274,403 94 24,884 97

16,648 77
4,955 89 4,342 99
1,54761
Chemung Canal,
Crooked Lake Canal,

Total receipts,

\$1,326,781 17
pennsyluania canals and rallroads.
During the year 1837, the receipts for tolls were as follows, viz:
State Canals,
Railroads,
Schuylkill Canal,
Lehigh Canal,
Union Canal,
8473,261 11 295,504 01 604,189 57
147,266 74
107,590 37
Total receipts, Pennsyl. vania,
Total do. New York,
81,619,514 80

Balance in favor of Pennsylvania Works,
\$293,030 63
In the above statement we have included the tolls taken on the seven New York State Canals, and those on the Pennsylvania Canals, the Columbia and Portage Railroads, and the Schuylkill, Lehigh and Union Canals, as forming the great chain of communication with the West. It will be perceived that although the improvements in the latter State are still incomplete, the revenue derived from them in 1837, exceeds those of our rival sister, New York, nearly 300,000 dollars.-Phil. Com. List.

The following are among some resolutions passed on mation of H. Crocker, Esq., at a public meeting recently held at Milwaukee:

Whereas the people of Milwaukee
have repeaterlly petitioned to Congress for appropriations for the construction of a Harbor at this place, and also for the opening and improring the Military Road from Chicago to Green Bay; and whereas said petitions have been heretofore unsuccessful ; and whereas the completion of the said improvernents is a matter of great consequence to the shipping and commerce of the Lakes and to the Eastern portion of our Territory-There fore-
Resolved, That we will not desist from mernorialising and petitioning Congress and presenting our just rights and claims until we shall have finally accomplished our objects.
Resolved, 'That the Ḣon. G. W. Jones, our Delegate in Congress, be requested to use his exertions to procure appropriations for the immediate construction of a Harbor at this place and for the opening and improving the Military Road fiom Chicago to Green Bay, passing through Milwaukee.
Resolved, That a cummittee of five be appointed to draft memorials to Congress for the above purposes and forward the same to our Delegate at Washington.

toledo railroad.

The following abstract from the re. turns of the Erie and Kalamazoo railroad to the 31 st December last, is from a corraspondent, on whose accuracy, as well as in the returns themselves, entire reliance may bo placed:
Abstract of statement of the Erie and Kalamazoo Railroad, from Toledo, Ghio, to Adrian, in Michigan, 33 miles.
Cost of Railroad, buildings,
two engines, cars, wells,
well houses, and every-
thing, to 31st December,
1837,
\$257,659 72
(About 87,807 87 per mile.)
The expense of repairs, and
running, up to same time,
31st December, 1837,
\$14,181 52
Earnings of road, 855,821 62
Deductexpenses, \&c. 14,18152
Leaving profits for dividend, $\$ 41,60400$ or about 161-6 per cent. on the whole cost of road, engines, property and fix. tures.
It may be remarked, that this road is male through a new country, and when constructed, the route was an almost entire wilderness, as it is now for a considerable part of the way.
That after it was put in operation it was used with horse power only, till some time in June last, when one loconotive was placed on the road, and a second one in September last.
The profits of the road have principally, if not entirely, accrued since the locomotive was put on, as the expense of running with horses, during the autumn of 1836, and the spring of 1837, (with the small amount of business before the navigation of last spring opened on Lake Erie,) was about equal to its earnings. If business shall revive with the open.
ing of navigation next spring, and shall continue as prosperous ầ may reas, nably be expected during next season, it is believed that the road will pay all expenses, and earn 50 per cent., or neariy so, of its cost, hy the 31st December next.-Journal of Commerce.
The State of Pennaylvania has just completed a noble bridge across the Sus. quelianna, at Duncan's Istand, (motrh of the Juniata) which combines the double purpose of a tow path bridge for the towing of canal boats, and ono for wagons, carriages and other velicles. The formal opening was duly celebrated on Saturday last, in the presence of the Governor, Canal Commissioners, and a large number of citizens. The Harrisburg Telegraph furnishes the following rotice of the dimeasions of the structure:
It stands on nine piers and two abutments, founded on the solill rock. The span next the eastern abutment is 160 feet in the clear-the remaining nine spans earl 200 feet in the clear. The thickness of the piers on tep 12 feet, ma. king the whole length of tire brillge, from abutment to abutment, 2068 feet.
The length of the piers un top 34 feet, (with ice breakers at the liead, sloping 2 to 1,) supporting segments of lines of truss, on the principle of the combined arch and truss, apart in the clear, for the accommodation of common travelling. The fourth truss is put in to support a double lowing path, to be placed ono above the other, forming two balconies on the soath side of the bridge. The whole is constructed on a grand scale, unsurpassed in the execution of the workmanship, on in the naterials. It is less than twelvegnonths since the old bridge was sweft away. The present one takes its place for the accommodation of the public in this short period of time-a beautiful and, at the same time, a durable structure.
The wood work and mason work of the bridge have been executed in the best and most substantial manner, and with the best materials. As a structure, the State, the Engineer, the Contractors and the Supervisor, have reason to be proud. It is believell not to be surpassed by any job of the kind in the Union.-Baltimore Gazette.

rail road safeties.

The superintendent of the Providence and Boston Railroad has made a communication to the public upon the death of Mr. Perry, caused by the train of cars coming in contact with his wagon. Mr. Perry was crossing the road, but did not hear the bell, as he was deaf. If a man is deaf, we suppose he could not hear "bell or book;" but wic have sometimes thought that horses might take the hint, if given with a less pleasant instrument than a bell. The steam whistle has not succeeded entirely, but we understand that Mr. Norris, of this city, has invented a new instrument, or rather has applied a new instrument to steam loco-
motives, viz: a trombone, which we are told is played with such a gusto by the steam, that it can be heard many squares, tooting away above the uoise of the steam engine cars. Not content with a single pipe. Mr. N. is ahout to add several of differem keys, so that there may be a concert of steam instruments; and instead of quiet citzens, who may have got upon the wrong track, being "whisted off," as they hase been, or hearing their own knell in the locomotive bell, they will licar the "caveat monitor" of the trombones "far o'er hill and dale," and may scamper off beyond the reach of harmunless, mineed, the music should attract, rather than dissipate, travellers.-U. \boldsymbol{S}. Gazette.
niggara ship canal.
The fo:lowing bill, making an appropriation for this important national work, was introduced by Mr. Grant into the House of Representatives on the 25th ult., and was read twice and committed. A Bill to provide for the construction of the Niagara Ship Canal.
Be it enacted by the Senate and House of Representatives of the United States of Λ merica in Congress assenibled, That the suin of five hundred thousand dollars be, and the same is hereby appropriated, ont of any moneys in the Treasury not otherwise appropriated, to be expended, under the direction of the Secretary of War, towards the construction of a ship canal around the Falls of Niagara, to conneet the navigable waters of Lake Erie and the Gntario, on such one of the surveys and plans made by Captain W. G. Williams, one of the United States topographical engincers, communicated in his report under the order of the IIouse of Representatives of the third of Febiuary, in the year of our Lord eighteen hundred and thirty-six, as the Secretary of We:', upon full examination, shall think will best tend to promote the military defence and commercial interest of the country: Provided, always, That this act shall not take effect until the State of New York, by law, shall authorise the construction of silid canal within its territorial limits, and shall make such provisions applicable thereto as are made in regard to other canals constructed in said state : and shall provide, also, that such toll may be collected thereon as, in the opinion of the Secretary of War, may be sufficient to keep said canal in repair, and to defray the expenses of lock-keepers and other incidental expenses.
QUANTITY AND COST OF FUEL CONSUMED
in tuis city in the years 1836 and 1837.

From the City Inspector's annual report to the corporation, it appears that in the year 1836 there was sold in this city $243,798 \frac{1}{2}$ loads of fire wood, costing $\$ 691,34783 \frac{1}{2}$ cents ; and that in 1837 there was sold $298,427 \frac{1}{2}$ loads, costing $\$ 625,47184 \frac{1}{2}$ cents. From which it appears that though the quantity sold in 1837 was greater than in 1836 by 54,629
londs, yet the total cost was $\$ 65,87680$ cents less.

The quantity of charcoal sold in 1836 was 291,886 tubs, at a cost of $\$ 112,21120$ cents. In the year 1837 there was sold 284,110 tubs, which cost $\$ 83,20059$ cents; heing 7,776 tubs less than were sold in 1836 . Less cost for charcoal in 1837, $\$ 26,02024$ cents.
The amount of Anthraciec coal returned, is 5,609 tons less than in 1836.

The report states that the aggregate saving to the city in 1837 as compared with 1836 , on the above articles of fuel, is 8248,632 25.-Journal of Commerce.

the pacha of egypt.

In speaking of the present Pascha of Egypt, and the rapidity with which he causes works of improvement to be completed, Mr. Catherwood mentioned in his lecture of Friday that a canal connecting Alexandria with a point on the Delta forty:-four miles distant, and suited for vessels of forty tons burthen, had been completed in nine montlis. With such encrgy in the sovereign there is no wonder that Egypt is rapidly regaining its former consequence.-Balt. Amer.

The following gentlemen were elected directors of the Long Island Railroad Company on the 19th instant, for the ensuing year: Valentine Hicks, Leffert Lefferts, John L. Graham, David S. Jones, Benjamin Curtis, IIenry Wyckoff, George D. Stiong, John H. Hicks, Henry F. Tallmadge, Isaac E. Haviland, John Delafield, Walter R. Jones, Silas Carle.
At a sulsequent meeting of the board, Valentine Hicks was unanimously reelected President of the company.

A PRALSEWORTHY ACT.

We understand that the managers of the West Branch Railroad Company have appropriated the money received for fines and penalties for the infringement of their rules and regulations, as a fund subject to the order of the board in favor of such persons as may be disabled or injured in the service of the company, or in the mining or ransportation connected with the road.-Miner's Journal.

Mr. Purcell, Civil Engineer, has made a report in lavor of making another canal at the falls of the Ohio, on the Indiana side of the river. He estimates the cost at $\$ 1,462,644$. The Indiana members in Congress are making an effort to get an appropriation from the general government in favour of the work, and a resolution has been introduced into the House of Representatives for this pur-pose.-Balt. Chron.

PRIVATE ENTERPRISE.

The Miner's Journal, as an argument against the incorporation of a coal mining company at Pottsville, states as a fact, three individual coal operators have mined a greater amount of coal during the last season, than the aggregate quantity of the three coal companies in that
region combined, with capitals amounting to about six hundred thousand dollars; and that these men came to that region, a few years since, with little or no capi-tal.-Commercial Journal.

a rathiroad fact.

A large manufacturer belonging to Worcester, with a view of laying in his winter's stock of coal, gave an! early order to have a cargo delivered at Providence, so that it might reach him in good season. via Blackstone Canal. It happened, howerer, owing to the dry season, that the waters were so low that the coal could not be carried on the canal. After waining as long as the season would permit, his only resource was to order another cargo from Philadelphia to Boston; this he did, and orilered the vessel on arrival to haul at once to the Worcester Railroad wharf. The coal arrived, and in tex hours after the vessel had reported herself at the Custom House, the whole cargo of coal was at his door in Worcester !-Boston Gaz.

important to tanners.

It is stated that Dr. W. Zollikoffer, of Middleburgh, Md, has obtained a patent for a new diseovery in the art of taming, being an improved process of bating all kinds of hides and skius in one to nine hours. The texture and complexion of the leather that is tanned after the operation of this bate is said to lose nothing in comparison with that which has been lated in the old way.-Balt. Patriot.
红通 Volume Six will be completed as speedily as possible. The next, or Volume for 1835 , will be published in a more convenient form for preservation.
*** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall alwajs take pleasure in furnishing them if we have them to spare.

0 Particular attention will be given to the procuring of all kinds of Instruments required by Engincers.-Orders must be accompanied with the necessary funds or city acceptances.

For Saic.-A Level, made to order by Brown \& Hunt, and in first rate order. Enquire at this office.

Warted on a Lease.-A good country place, with suitable out-houses, and from 5 to 15 acres of land, a short distance of the city. Enguire at this office.

FRAME BRIDGES AGAIN.
The sulscriber will build Frame Bridges in any part of the United Slates, Maryiand not excepted, and will extend them to as long a span, and warrant them to be as slrong, durable, and cheap as those made by any other method.
Having no patent richt, he requires no agents. A large number of bridges of his construction are to be seen. Young genitemen, who wish, can be instructed in the true nathematical principles of building bridges, and the application of the same to practice.

JUHN JOHNSON.
Burlington, Vt., Jan. 1638
Fl4tf

AGENCY

The Subscriber offers his services as Agent, to procure Machinery for Nills, Sleam EnAnes, Looomotives, Printing Machines, Presses, Typez and Fixtures.
He will give prompt attention to all ordera ontrusted to him for execution; and pledges himself to those who may employ him, that n n effort on his part shall be wanting to prucure the best articles to be had in the city-and to give satisfaction.

He will also emplny Millwrights and Engineers, to erect Mills, and put the Engines and Machinery in operation.

Orders accumpanied with the necessary funds, or satisfaclory city acceptanecs, should be addressed to D. K. MINOR, 30 Wall-st. N. Y.

LOUISVILLE, CINCINNA'TTI, and

CHARLESTON RAILIROAD.

NOTICE, TO CONTRACTORS.-Sealed Proposals will be received at the Office of tho Company in Columbia, S. C., until the 15th day of February next, for the graduation and masonry of that portion of the Road from Columbia to the crossing of the Congaree River, in the vicinity of McCord'a Ferry, being 25 miles in extent.
Alao, for the construction of a Bridge of 400 feet in length, on the Congareo River, to be built on stone piers and abutments, for which there are suitable quarries in the neighborhood.
The plans and profiles of the line will be ready for inspection at the Office of the Resident Engincer, in Columbia, S. C., after the 10th day of F'ebruary.
So soon as the surveys for location, now in progress, arc completed, that part of the Road extending from McCord's Feiry to the Charleston and Hamburg Railroad, at Branchville, will be put under contract, of which due notice will be given.

WM. GIBBS Me NEILL,
Chief Engineer.
0 The Railroad Journal, N. Y. Courier \& Enquirer, N. York; Providence Journal, Providence, R. I.: Atlas, Boaton; Philadelpia En. quirer, Pliladelphia; will publish the above notice 6 times, send a copy of tho paper to the Offico in Charleston, S. C., and a certified copy of their account for paymont
Jan. 12
finw 6

NEW ARRANGEMENT.

mopes foa inclined plangs of raillioads.
WE the subscribers have formed a co partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroads, and for other uses, offer to supply ropes for inclined planes, of any length required without splice, at short notice, the manufacturing of cordage, heretofore carried on by S. S. Durfee \& Co., will te done by the new firm, the same superintendent and machinery are employed by the new firm that were employed by S. S. Durfee \& Co. All orders will be properly attended to, and ropes will bu shipped to any port in the United States.

12th month. 12th, 1836. Hudson, Columbia County, State of New-York.

83-1f
ROBT. C. FOLGER.
GEORGE COLEMAN.

AMES' CELEBRATF.D SHOVELS, SPADES, \&c.

300 dozens Ames' superior back-strap shovels. 150 do. do. do. plain do.
150 do. do. do. cas:steel Shovels \& Spades 150 do. do. Gold-mining Shovels 00 do. do. platrd Spades.
50 do. do. socket Shovels and Spades
Together with Pick Axes, Churn Drills, and Crow Bars (steel pointed), manufactured from Salisbury refined iron-for sale by the manufactusing agents, WITHERELL, AMES \& CO.

No. 2 Liberty street, New-York. BACKUS, AMES \& CC.

Fo. 8 State-street: Albany.
N. B.-Also furnished to order, Shapes of every deacription, made from Salisbury refined Iron. v4-tf

MACHINE WURKS OF ROGERS,
KETCHUM aND GROSVENOR, Palcrwon
Vew. Jersey. The underaigned recrive orders foi the following aricles, manufactured by them, of th. most superior description in every particular. Their works being extensive, and the number of hands. employed veing large, they are enabled to execut. both large and sinall orders with promptness anc disfratch.

RAILROAD WORK.
Locomotive S:ean-Engines and Tenders; Dri ving and uther Locomotive Wheels, Asles Springs and F lange Tires; Car Whrels of cast iron, frow, a vsriety of patterns, and Chills ; Car Wheels ul cast iron, with wrought Tires; Axles of best American refined irun; Springs; Boxes and Bolts for Cars.
COTTON, WOOL, \& FLAX MACHINERY,
Of all descriptions and of the most improved patterns, Style, and Workmanship.
Mill Geering and Millwright work generalty Hydraulic and other Presses; Press Screwa; Callenders; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.

R(JGL:RS, KETCHUM \& GROSVENOR. Yaterson, N. J. or 60 Wall-st. New-York 5Itf

FRAME: BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or vend the right to others to build on his Patent Plan, woud respectfully inform Raitroad and Bridge Corparations, that he is prepared to make cohtracts to build, and furnish all materials for superstructures of the kind, in any part of the Uinited States, (Maryland excepted.)
Bridges on the above plan are to be scen at the followi'g localities, viz. On the main road leading from Baltimore to Washingron; two mites frum the former place. Across the Motawamkeay river on the Military road in Maine. On the national road in llinois, at sunilry poims. On the Batiuure and Susquehanna Railroad at thrie points. On the Hudson and Paterson Railreall in two places. On the Boston and Worcester Railroad, at severa points. On the Boston and Providence Railroad, at sundry points. Across the Contoociok river at Hennkar, N. H. Across the Souhegan river, at Milford, $\mathrm{N}_{\mathrm{H}} \mathrm{H}_{\mathrm{H}}$. Across the Connecticut river, at Hancocd, N. H. Across the Androscoggin river, at Turner Centre, Maine. Across the Kennelec river, at Waterville, Maine. Across the Genesee river, at Squskichill, Mount Morris, N. Y. Across the White River, at Hartford, Vt. Across the Connecticut River at Lebanon, N. H1. Across the mouth of the Broken Straw Creek, Penn. Across the mouth of the Cataraugus Creek, N. Y. A Rail road Brilge diagonally across the Erie Canal, in the City of Ruchester, N. Y. A Railroad Bridge al Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one ot the spans is over 200 feet. It is probably the firmest wooden bridge ever buil in Americs.
Notwithstanding his presect engagements to buidd hetwcen twenty and thirty Railroad Bridgea, and several common bridges, several of which are now in progress of construction, the subscriber will promptly attend to business of the kind to much greater extent and on liberal terms.

MOSES LONG.
Rochester, Jan. 19 1 h, 1837.
4-y

STEPHENSON,

Builder of a superior style of Passenger Cars for Railrouds,
No. 26-1 Elizabeth street, near Bleecker street,

NEW-YORK.

RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the Now. York and Harlaem Railroad, now in operation.

ROACH \& IVARNER,

Manufacturers of OPTICAL, MA'I'HEMATICAL AND PHILOSOPEIICAL INSTRU MENTS, 293 Broadwiay, New-York, will keep constantly on hand a large and gencral assortment of Instruments in their line.

Wholesale Dealers and Country Merchants sopplice with SURVEYING COMPASSES, BAROMETERS, THERMOMETERS, \&c. \&c. of their own mannfacture, warranted accura'e, and at lower prices than can be had at any other extablishment.
IF Istruments made to order and repaired.
$1 y-14$

RAILWAY IRON, LOCOMO'TIVES \&c. \&c.
THE mbacribers offer whe following articies for sale:-
Railn ay Iron, flat bára; with conntersunk hoies and mitred joints, liss

 80 " 14 " \ddagger, " \quad " 11^{25} " 90 " 1 "直, " " \quad \%
witn Spikes and Splicing Plates adapted thereto To be sold free of duly to State governmente, of incor orated companies.
Orders for Pennsylvania Boiler Iron exccuted.
Rail Road Car and Locom tive Engiue Tires wrought and furned or unturnel, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and 60 inches diameter.
E. V. Patent Chain Cabie Bolts fur Railvay Car axles, in leneths of 12 feet 6 inches, to 13 fect 2b, $2 \frac{2}{3}, 3,3 \frac{5}{5}, 34.31$, and 3 inches dianieter.

Chains for luclined Planes, short at.d stay links, manufactured frum the F.. V. Cable Bolts, and proved at the greatest strain.
India Rubber Rope for Inclined Plasies, made from New Zealand Wax.
Also, Patent Hemp Cordage for Irclined P'anes, and Canal Towing Lines.
Patent Felt for jlacing between the ionn chair and stone block of Eilge Railways.
Every discription of Railway Iron, as well as Locomutive Engines, imported at the shortest notice, bv the agency of one of onr parthers, who resides in England for this purpose.

A highly resprectable A merican Engineer residea in Eugland fur the purpose of inspecting all Lues. motives, Machinery, Railway Iron, \&c. ordered through us.
A. \& G. RALSTEN \& CO.,

ъ tf Philadelphia, No. 4 South Front-st.

ARCHIMEDES WORKS.

(100 North Moure-street, N.Y.)
THE undersigned beg leave to inform the proprietors of Rail Roads, that they sre preparcd to furnish all kinds of Machinery for Rail Roads, Locomotive Engines of any aize, Car Wheels, such as are now in successful operation on the Camelenand Amboy Rail Road, none of which have failed.Castings of all kinds, Wheels, Axles and Boxes, furnished at the shortest notice.
H. R. DUNHAM \& CO.

NewYork, February 12th, 1836.
4-yt!

PATENT RAILROAD, SHIP AND BOAT SPIKES.

** The Troy Iron and Nail Factory keeps con* tantly for sale a very extensive sssorturint of Wrought Spikes and Nails, from 3 to 10 inches, manufisctured lyy the subscriber's Patent Machinery, which alier five sears successful operation, and nuw almost universal use in the United Statep, (as well as England, where the nubscriber obtained a patent) are found superior to any yet ever offered in market.
Railroad companies may be supplied with Spikes having conntersink heads suitable to the holes in iron rails, to any amount and on short notics. Ab raost all the Railroads now in progress in the United States are fastened with Spikes made at the above-named factory-for which purpose they are found invaluable, as their adhesion is more than double any common Spikes made by the hammer.
.*: All orders directed to the Agent, Troy, N.Y. will be punctually attended to.

HENRY BURDEN, Agent.
Troy, N.Y, July, 1831.
** Spikes are kept for sale, at factory prices, Dy \& J. Townsend, Albany, and the pritucipal Iron Verchants in Albany and I'roy; J. I. Brower, 222 Water-street, New-Yurk; A. Nu. Jones, Philadet phia; T. Janviers, Baltimore; Degrand \& Sunith, Eoston.
P. S.-Railroad compranies would do well to for ward their orders as early as practicable, as tha subscriber is desirous of extending the manufactur ing so as to keep pace with the daily increasing demand for his Spikes.

1 J 23 am
H. BURDEN.
G. Mitchell, Printer, 265 Bowery, N. Y.

RALLROAD JOURNAL,

AND

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISLIED WEEKLY, AT No. 30 WALL STREET, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVANCE.

D. K. MINOR, and

GEORGE. S. SCHAEFFER, | $\left\{\begin{array}{l}\text { Enitors and } \\ \text { Propriztors. }\end{array}\right.$ |
| :--- |
| CONTIENTS. |

AMERICAN RAM,ROAD JOURNAL.
NEW-YORL, MARCE17, 1838.

AN APPENDIX

To the Report of the Committee on Rail. roads, on the pitition of the New. York and Erie Railroad Company.

MR. JOHNSON'S REPORT.
To the President and Directors of the New-York and Eric Railroad Company:
Gevtremes-In compliance with your wishes, that I should communicate my views upon the character and importance of Railroads, as a means of intercommunication, and also of the merits of the New-York and Erie railroad route, compared with others which have been projected from New.York city to the St. Lawrence and Mississippi Valleys, I preseut the following statement, drawn up with some haste, and which though in consequence, somewhat imperfect, will be found, it is believed to contain facts and information on this interesting subject not gencrally understood, and in consequence not duly appreciated.
Railroads, as a means for transportation, lave been long in use upon a limited scale ; but it is only within the short period of tell or twelve years, that they have been successfully applied to purposes of general traffic.
The great importance which they have so recently acquired, is mainly the result of the successful application of the powrer of steam to locomotion, and which is found to transcend in economy, speed and uscful effect, the most successful application of animal power.
The important part which the locomotive engine has thus performed, in imparting to the railroad system its present degree of perfection, and which may possibly yet give it the ascendancy as a general means of inland communication, will constitute a sufficient excuse for bestowiag upon the principles of its con-
struction and operation, a little attention. -In the progressive movement of the engine upon the railroad, the several resistances which it encounters, and which must be overcome by the elastic force or pressure of the steam in the cylinders, consist of the following:

1. The resistance of the engine itself, comprising the friction of the pistons, steam-valves, conneeting rods, waterpump, \&c. with the power to work the latter ; the additional friction caused by the re-action of the load drawn, also the friction of the axles and at the surface of the rails, and resistance of the air, the latter of which is principally encountered by the engine in consequence of its position in adrance of the train. To these must be added the atmospheric resistance to the movement of the pistons in the cylinders, which takes place in all engines that do not condense their steam, and the increase in the elastic force or pressure of the steam required by the greater velocity of the engine and its load over that of the pistons.
2. The. resistance arising from the friction at the axles, and surface of the rails of the carriages composing the train, and also of the tender to the engine. The preceding comprise the more prominent of the resistances to the movement of the locomotive engine upon a straight and level railroad.
Upon such portions of the road as are curved, an additional resistance is encountered, which depends for its amount upon the radius or degree of curvature, but which is obviated in a great measure by the superior elevation given to the outside rail of the curve, and the conical shape of the rims of the wheels, and does not constitute any very great impediment upon curves which exceed one thousand feet radius.
Upon roads that nre not level, the force of gravity, if the engine is ascending, presents another cause of resistance. In descending, this force operates in aid of the impelling power of the engine.
The force with which gravity operates, whether in aid or to retard the movement of the engine and its load, varies with the inclination of the road, and by the established principles of mechanics, bears the same relation to the weight nearly on the planes of moderate incli-
nation, as the eleration of the plane to its hase or horizontal extent.
The above resistances, when accurately determined and resolved into their combined effect upon the pistons in the cylinders of the engine, constitute the true measure of the clastic force or pressure of the steam required to propel the engine and its train.
The amount of this elastic force or pressure is dependent upon various circumstances, all of which have been determined by experiment, and theinfluence of each separately and combined very nearly ascertained. These consist of the intensity of the heat. The extent of surface in the boiler exposed to the radiant and communieative action of the heat or total extent of effective evaporating surface, involving the expenditure of fuel and water, rate of the expansion of steam in the cylinders, dimensions of the steam pipes, steam valves, water pumps, smoke pipes, \&c.
It is only within a little more than three years, that experiments have been made on a sufficicntly large scale, to determine the relative value of the several causes which iufluence the operation of the locomotive steam engine upon railways.
Tlicse were performed by the Chev. F. M. G. De Pambour, upon the Liverpool and Manclester railway, with the aid of that company, and the results were arranged and analyzed by him, from which formule are deduced for determining the power of traction of engines of different dimensions and plans of construction under various rates of speed and degrees of the pressure of the steam, \&c., which, with the exception, perhaps, of a few slight inaccuracies in the mode of conducting and analyzing the experiments, nay be relied upon as approaching very near the truth.
From these formule may be determincd the powers of the improved American engines, under a knowledge of the dimensions of their several parts, and a series of results obtained, adapted to rarious rates of speed and degrees of acclivity of the road.
These results I have computed for two engines of different weightits and dimensions, and arranged in a tabular form as follows:

A PRACTICAL TABLE of the power of traction of Locomolive Engines, exhibiting the gross load in tons, including the tender at different rates of speed, and upon inclinations varying from a level to one hundred feet per mile. Deduced from the formula of De Pambour.

	Weight of engine, 13 tons. Evaporating power, 55 cubic feet. Cylindert, 1.16 feet dia.									Weight of engine, 10 tons. Evaporating power, 42 cubic feet. Cylinders, one foot dia.								
	VELOCITY IN MILES PER HOUR.									VELOCITY IN MILES PER HOUR.								
Ascent in fee: permile.	VIIt	X	XII ${ }^{1}$	XV	XVI ${ }_{2}^{1}$	XX	XXII ${ }_{2}^{1}$	XXV	\|XXVII $\left.\frac{1}{2} \right\rvert\,$	V1I ${ }_{2}$	X	XII_{2}	XV	XVII2	XX	XXII 2	XXV	XXVI ${ }^{\frac{1}{2}}$
	tons.	tons.	tons. 1	tons.	tons.	tons	tons.	tons.	tons.	tons	tons.	tons.	tons.	tons.	ons.	tons.	ons.	tons.
Level.	584	406	299	228	177	138	108	85	66	448	311	230	175	137	108	85	67	52
X	375	251	190	144	111	86	66	51	39	280	201	148	113	87	68	53	41	32
XX	275	183	138	104	79	61	46	35	26	204	145	106	80	61	47	37	28	20
XXX	216	144	. 108	81	62	46	34	26	18	162	114	82	63	47	36	23	20	14
, XL	178	117	. 87	65	48	36	26	19	13	132	93	67	50	37	28	21	15	10
L	147	97	71	52	39	29	21	15	9	111	77	55	40	30	22	16	11	,
LX	131	85	63	46	34	24	17	12	7	97	63	48	35	26	19	13	9	
LXX	112	73	53	38	28	20	13	9		84	57	41	29	21	15	11	7	
LXXX	102	65	47	34	24	17	12	7		75	52	36	25	19	13	3		
XC	90	38	42	29	21	14	9			67	46	32	23	16	11	17		
C	81	52	$3{ }^{1}$	27	18	12				61	42	- 29	21	14'		- 6		

Total pressure of steam upon the square inch in the boiler, 70 lbs ; dia. of driving wheels 4.5 feet; length of stroke in feet, 1.33 ; friction of engine, 14 lbs . per ton; friction of carriages, plus, additional friction upon engine from load drawn, 8 lbs . per ton ; the ton employed equals $2,000 \mathrm{lbs}$; the wheels of the engine are supposed to be coupled, if necessary, when drawing the maximum loads, or otherwise so arranged as to bring the weight of the tender upon the driving wheels.

The decrease of the load under an increase of velocity, as indicated in the table, is not so much the consequence of any great increase of the resistance, as of the diminished power of the engine, or its inability to generate steam to correspond with the increased consumption under a greater velocity.

By augrnenting the intensity of the heat, the force of traction under an increase of velocity will be increased. It is a consequence of the particular construction of the locomotive steam engine, by which the steam from the cylinders is discharged into the smoke-pipe, that an increase of draught, and consequent augmentation of the intensity of the hea:, is produced to a certain extent, by a greater velocity; and it is from this cause that the powers of the engine are so well sustained under the higher velocities.

It is the rapid generation of steam, occurring under the higher velocities which usually takes place upon the more level portions of a road, that causes the blowing or escape of steam at the valves, whenever the motion of the engine, and consequently the consumption of steam is checked by encountering grades of greater acclivities. In such cases, the fire being greatly excited, the pressure in the boiler is augmented, and continues in this state until the steam generated, no longer exceeds the consumption.

It is from this cause that the performances of the locomotive engines, upon short ascents, are knmon to exceed very considerably the results given in the table.

It will be noticed by a comparison of resulte in the table, that a great similarity exists in the general law which governs the operntion of steam and animal power. There is a speed at which the locomotive, like the horse, can do no more than convey its own weight. This limit does not
however depend as in the case of the horse upon any inherent power of action which cannot be exceeded, but is governed mainly by the size of the boiler, and evaporating power and weight of the engine.

It will be seen also, that the loads drawn increase in a greater ratio than the decrease in the velocity, and that so fir as it regards the conveyance of the greatest weight over a given distance in a giren time, on roads having a uniform grade, the advantage is greaily in favor of a diminished rate of speed. A saving also in the wear and tear and cost of traction is usually the result under such a diminution.
This range of the power of the locomotive engine, under differtent rates of speed, is of the greatest importance in reference to economy of transportation, combined with the cost of construction of railroads, enabling it, without a sacrifice of power, to overcorne considerable variations in the grades; which are necessary to conform the road to the shape of the ground, and which would require in many cases an immense expenditure to reduce to a level, or to an uniform inclination.

An examination of the table will show, that the load which an engine can convey at the rate of twenty-five miles per hour upon a level, can be drawn by the same engine up an inclination of 90 feet per mile at $7 \frac{1}{2}$ miles per hour; also, that the load on a level at 20 miles per hour, is equal to that on an ascent of 52 feet per mile, at $7 \frac{1}{2}$ miles per hour, and that the lond on a level at 15 miles per hour is equal to that on an ascent of about 27 feet per mile, at $7 \frac{1}{2}$ miles per hour.

It must not be forgotten, that the adhesion of the driving-wheels of the engine to the rails, is supposed sufficient in
each case to enable the engine to exert its whale power in propelling its load.

In consequence of this great range of power of the locomotive engine under different velocities, loads adapted to the full capacity of the engine upon the level or less elevated parts of a road, at the higher or medium rates of speed, can be conveyed over the more elevated portions, occasioning no other inconvenience than arises from a loss of time by the reduced speed in ascending acclivities. Thus the same load which would be conveyed at the rate of 20 miles per hour on a level, can be moved only at the rate of 15 miles per hour on a continued acclivity of 12 fect in a mile, or at the rate of 10 miles per hour on an acclivity a little exceeding 30 feet per mile, or $7 \frac{1}{2}$ miles per hour an ascent of 50 feet per mile.

The ability of the locomotive engines to convey heavy loads with the velocities above mentioned, is fully dermonstrated by experience.

In the report of the superintendent of motive power of the Philadelphia and Columbia railroad for the year ending Nov. 30th, 1837, it is stated that "one of the heavy engines drew 35 cars, constituting a gross load of 190 tuns, on a road with grades running up to 50 feet per milc," and that the average rate of speed in performing the distance of 82 miles, was 10 to 12 miles per hour. The Canal Commissioners of Penrsylyania, in their last report to the Legislature, speak in decided terms of "the approximation to perfection, which the construction of locomotive engines; and the economy and system in their use, has reached ;" and add, in confirmation of the precering, that "as an instance of extraordinary performance, some of the engines have drawn a gross weight of 190 tons over the Phila-
delphia and Columbia road, within the usual tirne for performing a trip."

Other instances may be. adduced of equal or greater performances, but as this is derived from an official statement made to the Legislature of Pennsylvania, on the condition of one of the most prominent roads in the country, and which is now doing a constant and profitable business in the conveyance of freight and passengers, I have concluded that any further evidence would not be necessary.

Ir. addition to those improvements which have conferred greater powers upon the locomotive engine, others have been made, by which the expense of operating is materially lessened.

In 1834, the arerage cost of the repairs and renewal of ongines upon the Liverpool and Manchester zailroad amounted to nearly $\$ 3,000$ each per annum. Thisitem, being a prominent one in the expense of locotnotive power, has been considerably reduced by improve. ments in the proportions and connexion of the different parts of the engine, giving it greater strength and ability to resist the strains and injuries to which it is subjected. Their inanagement is also better understood. Upon the Philadelphia and Columbia road, the cost for the past year has fallen considerably below $\$ 800$ for each engine. As an instance of remarkable performance on this road, it is stated in the rcpert of the Canal Commissioners already referred to, "that one engine made 175 successive trips of $\mathbf{7 7}$ miles each, with the regularity of the return of day, making a total of thirtcen thousand one hundred and seventy-five miles, without a dollar's worth of repairs." The diminished cost upon the latter road, compared with the former, is owing in part, in addition to the circumstances mentioned, to the less average rate of speed, which is only about three-fourths that upon the Liverpool and Manchester road at the time mentioned.
In respect to the resistances presented fr the movement of an engine, arising toom the shape or particular arrangement of the road itself, it is believed much misapprehension exists, particularly in reference to vertical changes in the aliguments or in the ascents or descents necessary to be overcome.
The principal difference betwen level or uniformly inclined, and ascending and descending lines, is in the infinence of gravity produced by these changes. The resistance at the surface of the rails is the same. That arising from curvature is the same, the ascents and descents not necessarily involving any increase in curvature. The resistance from the atmosphere is also the same, and that presented by the friction at the axles is nearly the same, if any dffference, it is less.

In respect to gravity, this power is a resistance only in ascending. In descending, it acts with a similar energy in favor as in ascending it operates against the povement of the engine and its train.

If a balance be struck between the sum total of the aiding and retarting effects of this power, on a rnad having an irregular profile, it is found to be nearly the same under all practicable variations of the grades, whether the irregularities are diminished or increased.

This is the theoretical view-practically the aid derived from gravity cannot in the great majority of cases be applied to neutralize, or be used ir. offset to its resistance.

In descending, no practical benefit is derived from it beyond that point where the inclination of the road is such as to enable it to overcome the friction, and other resistances encountered by the engine and its train, and impart to the latter the velocity which is consistent with safety. Beyond this, the motion upon long slopes, when the rails are in good condition, becomes too great for safety, and must be counteracted. The full lienefit of the aid afforded by gravity in descending, is likewise not experienced, if the length of time nccupied in the descent is such, as either to cause an escape of surplus steam or render imprasticable a reduction of the heat, so that no more steant may be generated than can be profitably passed through the cylinders.

Again, if the ascents or deviations from a level or an uniform inclination require to overcome them, a greater range of power than is possessed by the engine by varying its velocity, or a greater degree of adhesion than is afforded by the driving wheels, a loss is incurred, either by the necessary dimiaution of the load to enable it to overcome the greatest acclivities, or auxiliary power must be employed at an additlonal expense for that purposc. If the steeper grades are concentrated, and their length and degree of acclivity such as to give full and profitable employment to the auxiliary power, the disadvantage in the economy of traction is much less than it would be under a different arrangenient, when those grades are detached and distributed irregularly upon different portions of the roail.

Although inequalities in the grades are, as a general rule, to be avoided, if possible, yet, to a certain extent, they are not very objectionable. To suppose a very favorable case-a case, which it must be acknowledged is scarcely likely to occur in practice-it can be demonstrated, that it is possible, under a suitable arrangement of the grades of a railroad, to convey by locomotive steam power.a load, over a sttaight road, having a rise and fall of 20 to 25 feet per mile throughout its whole extent, in nearly the same lime, and at an expense no greater than the same load can be conveyed by the same engine, over the same road, reduced to a level.

It may be remarked farther, that the influence of asconding and descending grades upon the economy of transporta. tion, is subject to modifications, arising
from the preponderance or difference in the relative amount of trade passing in opposite directions. In cases where this preponderance is great, the cost of transportation will be lessened or increased according as the arrangement or position of the steeper grades is favorable or unfortunate tothat preponderance. The total cost of transportation upon railways is also affected by the greater or less expense incurred, or amount of fixed capital invested for the purpose of equalizing or reducing the grades in the construction of the road. This involves the consideration of the value of labor and materials, quality, amount and cost of excavation and embankment, mechanical work, and other expences necessarily incurred in the several positions which the grade line may be permitted to assume upon f the ground; also the difference in the distance involving the cost of additional extent of superstructure upon the long lines, repairs and maintenance of the saine, and extra wear and tear of engines, carriages, \&c.
The location of a railroad is usually a more difficult operation, requiring more calculation and more extensive examina. tions and measurements than the location of a canal. In tracing a route for the latter, little or no deviation from a level line is called for, or can be permitted, except at suitable places for inserting locks, or inclined planes, where the transition is made from one level to another. The horizontal changes in direction or curvatures upon a canal do not, moreover, require to be traced with any great degree of accuracy, the line in this respect being allowed usually to conform nearly to the particular shape of the ground. Upon railroads, the grades may be permitted to assume, according as local and other circumstances may require, every variety of position, varying from a level to that degree of inclination eitherascending or descending, which is the measure of the useful effect of the locomotive engine, whether operating alone or aided in its efforts by auxiliary power. Such is the character of railwass also, that the straight and curved portions must be arranged so as to harmonize completely with each other, presenting no abrupt changes in the continuity of the line, and requiting in consequence, that the curves be traced with the greatest practicable degree of precision.

I mention these circumstances, to show how much the efficiency of railroads, and consequent cost of transportation upon them, depends upon the particular arrangement of the grades and other causes, and to show how important it is, in es imating the expense of transportation, that all the attending circumstances should be duly considered; and also how essential it is in the location of railroads, that the principles of their operation should be scientitically and practically understood and applied, since any error or defect in this respect, which shäl
lessen the efficiency of the road or the economy of transportation upon it, is in most cases irremediable, except at great expense, extending its injurious influence through all future operations of the road.

I allude to these circumstances, also, to show that any effort to establish a definite or fixed ratio between a given vertical rise or fall and its equivalent horizontal distance, in reference to economy of transportation, is futile, so far as railroads are concerned. In regard to canals, a much nearer approximation can be made to a fixed standird in this respect, it being usually assumed that about 25 feet rertical rise or fall is equivalent to one mile horizontal distance, upon the supposition that the cost of locks for transferring boats from one level to another is about equal to three miles in length of canal; and the delay and expense in passing, about equal to the time and expense in traversing the mile of canal; thus rendering the one nearly equivalent to the other. Upon railways the circumstances are so entirely different, that no fixed rule, applicable in all cases, can be established.

The character of railways, and the general principles of their operation having been, it is believed, sufficiently explained, I will next proceed to make some remarks in relation to their capacity for conveying passengers and the various articles of commerce, and the cost of transportation.

The Philadelphia and Columbia railroad, to which I have already alluded, is the property of the Commonwealth of Pennsylvania. It extends from Philadelphia to the Susquehannalı river, a dijtance of 82 miles, und is part of the main liae of State improvements reaching to Pittsburgh. Its highest grade, as already stated, is 50 feet per mile, for a short distance, and there is a continuous slope of 9 miles in succession, at the rate of 30 feet per mile.

The loads drawn by the locomotives are of necessity graduated to the lowest velocity admissable upon the maxımum grade, and do not exceed, probably, the one-half or one-third part of what could be conveyed upon a level. Indeed, the superintendent, in his report, states, with perhaps too much confidence, that," if the Warren grade should be dispensed with, by the avoidance of the Schuylkill plane, and the Gap grade reduced, there would be no limit in practice to the loads that could be hauled."

The Philadelphia and Columbia railroad was constructed at a cost of $\$ 3,330$, 127. The superstructure for both tracks is laid throughout, and is composed principally of rails of iron laid upon a stone and timber foundation. There are two iuclined planes upon it, operated with stationary steam power, situated near the extremities of the road, one of which is soon to be dispensed with, at an estimated animal saving of $\$ 17,400$.

In conducting the transportation upon this road, the State furnishes the motive
power only, and consequently has nothing to do with the business of purchasing and maintaining carriages, receiving and distributing freight, ©c. This latter is performed by individuals or companies, who associate for the purpose. The report to which I have alladed, states that the total charge for rail-way and motive power tolls received of each passenger travelling the whole length of the road, or 82 miies, is $\$ 1.74$, equil to $2 \frac{1}{8}$ cents per mile; and that the average total charge per ton for freight is $\$ 3$, equal to about $3^{\frac{2}{3}}$ per mile.

With these charges, it is stated that the road has defrayed all expenses of motive power and repairs, together with the interes: upon the cost of construction ; and this notwithstanding much unnecessary expense was incurred in preparing for a considerable increase of business, which was not reallzed, owing to the change in the times, the force not having been brought down to an equality with the tride until as late as the first of July.
The whole cost per ton per mile of transporting freight upon the road the past year, exclusive of profit or tolls, is not stated in the report.

The charge for motive power only, per ton per mile, is 12 mills, which probably includes some profit, for, "after defraying all expenses of this department, it has paid the interest at 7 per cent. on the original cost of all the locomotives, ($\$ 326,103.41$) 50 in number, that have been put upon the road." It will not, it is believed, be placing it too low to consider the whole expense of transportation, exclusive of railway tolls and profit, at 2. 2 cents per ton per mile.

Independent of any prospective im. provements in the application of steam or other power upon railroads, the increase of business, from the growing trade and increasing population of the country, will produce in a short time, a material reduction in the costs of transportation.
Should the business be doubled, the expense upon the Philadelphia and Columbia railroad would probably not exceed $1 \frac{1}{2}$ cents per ton per mile, particularly if we take into consideration the saving to be made by dispensing with the inclined plains. This, upon a rail. road with grades and curvatures as unfavorable as that of the Columbia, would probably be sill farther considerably reduced upon a level railroad of the same extent.
Results similar to the preceding are derived from the experience upor the Baltimore and Ohio road, showing that the cost of transporting freight upon roads of $\mathbf{7 0}$ to 80 miles in length, with ordinary grades, and doing a full business, will not probably exceed $1 \frac{1}{2}$ cents per ton per mile, at a velocity of 10 to 12 miles per hour, being a speed four to five times greater than is attainable upon a canal where boats are moved by animal power.
The superiority which railroads pos-
sess, as a medium for the transit of pas-
songers, gives them great advantages in the transportation of freight. Upon a road doing a large passenger business, sufficient to maintain itzelf and pay the interest on its cost, freight may be carried, if necessary, in the event of competition, at an expense, without loss, not exceeding the actual ccst of transportation, independent of profit or tolls ; or, if the conclusions above stated are correct, at a total cost to the merchant or farmer, not exceeding $1 \frac{1}{3}$ cents por ton per mile.

This is an important view of the subject, and will have a great bearing upon the future importance and success of the railroad system.

In a report presented to the Legislature of New York, in March, 1535, by engineers in the service of the State, it is stated, p. 27, that the " actual cost of trans. portation upon the Mohawk and Hudson railroad, for freight, exclusive of profit or toll, is $3 \frac{1}{2}$ cents per ton per mile, and for passengers 1 \% conts each per mile;" and the conclusion, p. 33, is drawn that " experience thus far has setted the cost at $3 . \frac{1}{2}$ cents lier $^{\text {er }}$ ton per mile for freight upon a level road."
The Mohawk and Hudson railroad is $15 \frac{7}{8}$ miles in length, and tas a total tise and fall of 439 feet, overcome in part by two inclined planes with stationary engines situated near the extremities of the road. The peculiar arrangement of this road required the use of three kinds of power, viz: the horse-power, stationary steam-power and locomotive stcam-power. The mainienance of these, several descriptions of motive power upon so short a road, and the inferior character of the locomotives: employed, necessarily enhanced very much the expense. The saine number of agents, superintendents, \&c. and the same amount of capital invested in engines, carriages, \&c. would probably have sufficed for a much longer road, and for the transportation of a much larger quantity of freight, which, at the time, from particular causes, was limited in amount.
The cost of transportation upon the Mohawk and Hudson railroad was, therefore, no evidence of what could have been accomplished on extended lines of railway, properly located, at the time the report alluded to was written, and consequently is no indication of what can now be accomplished upon similar lines, under the great improvements which have since taken place.

The following is a statement of the power of traction of locomotive engines upon different inclinations of road, as exhibited in the report referred to, p. 33 :

Ascent in foet per	Grops load exelusive of tender- tona, ($2,060 \mathrm{lbs}$.)	Cost of motive power per ton per mile-cents.
Level.	75.25	3.50
10	49.53	4.20
20	37.35	4.90
30	27.24	5.95
40	20.22	7.28
50	17.04	8.19
60	13.92	9.66
70	11.31	11.41

" Weight of engine $6 \frac{1}{2}$ tons (13,000 lbs.) ; 7,000 lbs. on woorking wheels; adhesion at 10 ; weight of tender, $7,000 \mathrm{lbs}$; resistance from friction $2 \frac{1}{2}$ s. The load carried is exclusive of the tender, and includes freight and waggons." Velocity not stated.
I will not stop to compare the above results with what is now accomplished. The contrast is very great, as will be obvious from what has already been stated.

In respect to the useful and profitable adaptation of well constructed railroads to the conveyance of various descriptions of freight, there is now no doubt. On their first introduction, they were in general expressly designed for the conveyance of heavy commodities, such as coal, stone, \&c., and since they hare been used for purposes of general traffic, experience has shown that they are exceedingly well adapted to this object.

Upon most of the railroads in operation in the Unlted States, freight of all descriptions is now carried, embracing merchandize, cotton, flour, and produce of every description, including live stock, lumber, mineral coal, \&c. Upon the Baltimore and Ohis road, in addition to the usual varieties of freight, yards and spars, and other timber are conveyed.Upon the Philadelphia and Columbia railroad, notwithstanding there is a navigation connecting the waters of the Schuylkill at Philadelphia, with the Susquehannab, by means of the Union and Schuylkill canals, large amounts of lumber and of heavy and bulky articles of various descriptions are transported. In. deed, the superintendent of the latter road, in a late report, states that " though the passenger department is that in which the greatest number of citizens are directly interested, and to which, on account of the number of lives risked, the officers of the road are bound to pay the first and most strict attention; yet the tran sportation of goods and produce is the chief source of revenue to the State."
Upon the Boston and Worcester railroad, the conveyance of freight constitutes a prominent part of the business of the road. The receipts from freight upon this road for the year which has just passed, equal in amount about two-thirds of the gross receipts trom passengers. The increase in the former over the preceding year is 30 per cent, while the latter has advanced only $1 \frac{1}{2}$ per cent; showing that the transportation of freight is a growing and important part of the business of that road.

The capacity of a well constructed and well managed railroad for the transit of passengers, merchandize, produce, \&c. is very great. With a double track complete, and trains of carriages upon each moving in opposi!e directions, at the rate of ten to twelve miles per hour, continued throughout the year, with trains arriving and departing hourly or half hourly, which is possible under a systematic arrangement, provided the business is suffi ciently extensive to require $i t$, and the
whole amount will exceed what may be required upon any of the leading thoroughfares of the country for many years to come.

The additional expense of accommodating an increased amount of business upon a railroad, is confined principally to the transportation department, and not to the maintenance of way, the durability of which is affected, mainly by exposure to frosts, floods, and to natural decay, rather than by the severity of the service to which it may be subjected.
'That railro. Ids can be successfully used throughout the year in temperate latitudes, with little or no interruption, is now salisfactorily detcrmined. An estimate derived from the experience upon several roads in the northern states, shows an average interruption through the year caused by obstiuctions from snow, of only two days.

The business upon the Philadelphia and Columbia railroad was interrupted but three days the past year, viz. the 22d, 2.dd and 24th of January. at which time there occurred an unusuahy severe snow storm. According to the report of the superintendent of motive power, " many of the deep cuts were wholly filled up, and the road was generally covered with three feet of snow ; yet with the combined force of only three locomotive engines it was cleared off, and the road in use in the time stated.!

Upon the Uica and Schenectady railroad, little or no interruption has been experienced from this cause since the road went into operation. The snow in the latitude of New-York does not fall on an average more than about 20 to 25 days in the year; and upon a road doing a constant business, is in most cases removed before it accumulates so as to offer much resistance. The interruption arising from this cause to railroads doing a regular business with a locomotive steam power, cannot be said to exceed the ordinary interruptions to the transportation upon canals from breaches in the banks, repairs and floods, and other failures during the season of navigation.
In severe cold weather, the efficiency of the engine is sometimes lessened by the effect of the cold, in reducing the temperature and diminishing the elasticity of the steam. The adhesion of the driving wheels of the engine is also some. times considerably innpaired by frost and ice upon the rails, rendering the engine incapable of applying its full power to the propulsion of its load. The inconvenience experienced foom these causes is however much lessened from the circumstance that the naturaldiminution of the business in the winter does not demand at that season so great an expenditure of power.
It is true, that the cost of traction per ton or per passenger will be somewhat enhanced; yet if conducted with less;profit or advantage to the company, the public are benefited by the great accommodation which good winter communications must ever afford.

In addition to the advantages possessed by rail-roads over canals, in being available at all seasons, there are others when viewed as a general means of intercommurication, to which it may not be improper in this place to allude.
They can be made to traverse the more elevated sections of the country, for the accommodation of mines, villages. \&c. where canals would be impracticable, or if practicable, could only be constructed at great expense.
Branch rail-ways, connecting with a main line for local accommodation, can be constructed with greater facility, and at an expense generally less, than branch canals for effecting the same object.

The avcrage attainable speed upon rail-ways is from four to six times greater than is practicable upon canals, the latter supplying very imperfectly the wants of the public, for the purposes of travel, and the conveyance of the mails, while railways are alike adapted to freight or passage.
The great superiority of steam over animal power, in respect to economy, gives to rail-roads a corresponding advantage over canals of small dimensions, where steam cannot be used. The former are being constantly benefited by improvements in the econon:y and efficiency of the power in use upon them, which cannot be anticipated from the power at present employed upon canals. On the contrary, there is reason to believe, that as the country advances in population, the expense of animal power will in consequence be rather increased than diminished.
In reference to the gencral defence or military strength of the country, railways. present great advantages in afiording the means of a rapid concentration of forces at particular points, and are not as readily destroyed or rendered useless by the incursions and assaults of an enemy. They contribute, in the rapidity of their transit and availability at all seasons, to the suppression of monopolies in trade, the rapid diffusion of intelligence, the increase in the population and wealth of the country, and in the general economy and comforts of living. They in fine, may perhaps be said to promote in a higher degree the great benefits resulting from common and turnpike roads and canals, the advantages of which have with great justice been ranked next in importance to the geuial influences of the seasons.

In a review of the project for the NewYork and Erie Railroad, written nearly ten years since, I had occasion to point out, as I have done above, some of the prominent points of difference between railroads and canals, and I then ventured the opinion that railways possess properties which in most situations would render them more desirable than canals. Subsequent experience has contributed to confirm the correctness of the view then entertained and expressed. The whole extent of railways at present in
progress or contemplated in the United States, is trebles or quadruple that of canals.

The pociliar advantages derived from the railroad system in its accommodation to the travel and busincss of a country, is strikingly exemplified in what is now taking place in England, where notwithstanding there are few places of importance farther removed from navigation of some kind, citber natural or artificial, than twelve to fifteen miles, and notwithstanding the advantages possessed by that conntry in the great perfection of its public zoods, lines of railway are being constructed and extended in various directions throughout the island, and with abundant promise of benefit, both to the stockholders and the public.

As an illustration of the practical advantages of the railroad system, I will instance the case of the Utica and Schenectady railroad.

The number of passengers carried upon this road has thus far been equivalent to about 105,000, passing over the white road annually. The charges being $\$ 0$ for each passenger, the total annual rea ceipts amount to $\$ 315,000$.

The charges for conveying
the same number of passengers in stage coaches between
the same points, at 44 cents
cach per mile, for 80 miles, amounts to, ${ }^{2}$
The time occupied in passing between the two places in stage coaches at the average rate for all seasons, of 5 miles per hour, including stoppages, is 16 hours. Upon the railway it is 5 hours; making a saving in time by the railway to each passenger of 11 hours. Estimating the arerage value of this time to each passenger at $\$ 1,50$, and it amounts to,
Add for extra expense of meals saved to each passenger by the reduction in the time, say 25 cents,

26,250

Making a total of

$\$ 561,750$
From which deduct the ex.
pense per railway us above,
leaves,
$\$ 246,750$
Showing an annual saving to the travelling public by the railway, compared with stage-coaches, of $\$ 246,750$. This is the saving in time and expense on account of locomotion only to the individuals using the road, and does not therefore include the great advantages of the road in enhancing the value of property, and its beneficial influences in a commercial point of view, upon the business interests of the country generally.

> (To be compieted in the next.)

We extract from the Δ merican Railroad Journal a communication from a road Journal a communication from a
of the editor. We do so for two reasons ; first, to correct an error into which it seems we fell a fow weeks sinte in stating that the Directors of the Liver and Manchester Railroad had determined to discontinue the carriage of freight ; a circumstance which was stated " with. out book' and upon the information of an intelligent friend, who learned it, directly , or indirectly, from a source that even the suspicious Veritas of the Railroad Journal would not incline to suspect ; and next to repel the inpeachment of the motives of those by wham the correspondent of the Journal fancies we are surrounded.
While we claim without any scruple on the point of delicacy, all that Veiritas allows to the 'editor of the Observer' for sincerity of purpose, we disclaim with all modesty the less flattering insinuation that we are weak enough to be deluded, without knowing it, into the schemes of those who seek coverlly, as intimated by Veritas, to favor their own interests at the expense of others. The paragraph which has called forth bis criticism, was penned upon our own mere motion; and the fact which is deemed of so much importance; if uncorrected, as to stand in the way of his favorite project, was inserted in it some time after it came to our knowledge, which was casually and probably without a thought of its being summoned as evidence of a inonstrous design to embarrass and obstruct the New York and Eric Railroad.
Whether the directors and stockholders of the several railroads aiong the line of the Erie Canal are desirous on their own acconnt to be privileged to carry freight, or not ; that the business men of the interior, of all classes, desire it, is, we believe, past a doubt. . It was in their behalf-in behalf of the public convenience, during the scason of suspended navigation, and in truth at all seasonsthat we ventured to call attention to the subject ; and in so doing, we assure Vehitas, that the New York and Erie Railroad was not thought of as a rival to any existing improvement, or as likely to be unfavorably affected by the change of policy suggested.
'Veritas' admits the propriety of the change; but not without qualification as to time, which savors very strongly of those interested and selfish motives which, when they are presumed to govern other men's conduct, a ppear so heinous in his eyes. Does he intend to convey the illea that the change referred to will be designedly delayed to favor the N. Y. and Erie Railroad; and if so, does he speak by authority of those who are particularly interested in that great plan of improvement? If he does, he is very likely to excite hostility to it in quarters where it does not at present really exist.

We regret to observe a spirit of rivalry in regarif to actual or projected improvements, promoting those who are interested in them to charge to corrupt motives
and sinister influence every suggestion which may be made through the press or. otherwise, upon'points in which the whole public have a concern. When we pen a paragraph without special consultation or advisement, we cannot readily believe that we are imposed on, although we may chance to be mistaken both in fact and opinion? And when we think it prudent or reasunable to consult others, we shall always endeavor to consult those whose sincerity and disinterestedness cannot be impeached. Hostility to the N. Y. and Erie Road is noi we believe. a common sentiment here ; and we doubt if the paragraph which has given rise to so much animadversion was ever considered as having the remotest reference to that improvement, except by the easily alarmed and suspecting Veritas.-Utica Observer.

METAMORPHOSES OF THE MUSQUTTO.
The musquito, (says Mr. Gilehrist, surgeon) has three stages of existence, in two of which it is a water insect; in the third, the well-known winged one.
I observed several musquitos on the surface of some stagnant water, each in close proximity to a yellowish substance, which, when viewed through the microscope, proved to be a collection of eggs which the musquitos were depositing; each collection, though not consisting of fewer than 100 eggs, did not exceed 3.20ths of an inch in length, and 1-20th in breadth. The eggs were nrranged in lines standing on end, and were each 1-40th of an inch long.

A few of those collections of ova were placed, with some of the wnter on which they floated, into a tumbler, and placed under a glass shade. In two days and a half the water was found to swarm with animalcules, the shells of the ova were still adherent, as when first observed on examining one minutely, the larger or under end was found to have opened like a lid, to allow the insect to escape into the water.
The body of the newly hatched insect is semi-transparent. In the thorax the heari is scen furnished wih four projec. tions; from this organ two blood vessels proceeded down the centre of the body to the end of the tail, which is to be always seen just above the surface of the water, the animalcule having its head downwards.

Between the heart and the elongated tail an active circulation is to be observed, indicating probably that the latter constitutes the lungs or gills, it being al. ways above the surface of the water.

Its motion is quick, and it always goes tail foremost; when in search of food it Hhrows out a couple of brush-like tentacula, which move circularly, and create a vortex, by which the food is altracted within the reach of the depredator. The food appears to be principally decompos. ing vegetatite matter. They occusionally devour their own kind, and their recently quitted shella, \&c.

At the termination of 21 days, during which the water was thrice changed, they had attained to three or four twentieths of an inch in diameter. On attaining this age they underwent a second metamorphosis. The shape is materially altered, but the greates: change is that which regards the seat of the gills. These orgaṇs are now situated in the tho. rax, their former site, the tail being absorbed; and the channel of communica tion betwen them and the air consists in two small tubes attached to the upper part of the thorax. In this stage of existence the insects are much less active than in their former state. They do not require food, and have no mouth, resembling in this respect the chrysalis of the buttenfly. They seldom leave the surface, and when they do so, speedily return to it.

The insects remain in this stage nbout 48 hours, towards the termination of which the legs and proboscis of the winged musquito can be plainly seen through the thin membrane that surrounds it. This in due course bursts, when the musquito draws itself out, stands on the surface of the water a few minutes, to dry and expand its wings, then flies to a dry sithation.

If the musquito, in either of the two first stages, be then taken out of the water, it speedily dies, and it is as quickly killed by immersing in that fluid after becoming the winged insect.

We learn from the above details that the musquito is a most prolific insect, and that, as stagnant water is necessary to its propagation, all such ought to be kept as distant as possible from our dwellings. -Madras Journal of Literature.

PROSPECTS OF CHICAGO.

The boats that leave Buffalo for Chicago start with from 200 to 800 passen. gers, which they distribute throughout the Lakes. The price of passage from Buffalo to Chicago, in the cabin and found, is $\$ 25$; deck passengers half price. The price of freight on board schooness is $\$ 1$ per bbl bulk; on board steamboat it is $\$ 150$.

The amount of various kinds of merchandise transported from the East, principally from the city of New York, may be estimated as follows for 1836 :Amount sold in Chicago say $\$ 1,000,000$ -destined for the interior an equal amount.
Chicago will be connected with the waters of the Mississipppi by the lllinois and Michigan canal, how being constructed. The length of the canal is about 100 miles, 60 feet wide'at top and 6 feet deep. Its estimated cost is $\$ 7$, 000,000 . This canal is a State work, and will be vigorousiy prosecuted. The U. S. have appropriated every, alternate section of land for 5 miles, on each side of it, to aid in its construction. Its terminating points are Chicago, and Peru on the Illinois river. It will be supplied with water from Lake Michigan.

A large number of laborers are now
and will continue to be wanted on the line of the Illinois and Michigan canal. 820 per month with board is the price which has generally been paid during the past summer, a portion of the time $\$ \$ 6$ per month was paid. Mechanies' wages are now about $\$ 2$ per day at Chicago. Last year they obtained much higher prices. Labor of all kinds has always been in brisk demand.

The steamboat Michigan cost $\$ 69,000$ -her gross receipts in 1836 were $\$ 75$,000. The nett profit declared on her stock for that year was 50 per cent. Her receipts for one trip from Buffalo to Chicago and back were $\$ 14,500$. All the well managed vessels and steamboats on the Lake where no serious accident occurred are supposed to have paid an average profit of 50 per cent. on their cost in 1836.

Up to the spring of 1833 Chicago was simply an Indian trading post, occasionally protected with a small garrison of United States troops. At that time an appropriation was made for a harbor at the mouth of t!.e Chicago river. This gave the first impulse to the growth of the place. It then contained about 300 inhabitants: last autumn it numbered about 5000 .

The commanding advantages which Chicago possesses as a commercial position arise from the fact that it stands at the head of the great chain of American Lakes, at a point from which a water communication can be made with the waters of the Mississippi with compara. tively little artificial navigation.-Balt. American.

german railroads.

The great conception relative to thie establishment of a great continental line of Railroads across North Germany is in progress of execution. The line of Railroads in Belgium extend to the frontiers of France and Prussia, from Ghent to Aix-la-Chapelle. France is hesitating ; but Prussia is opening 20 German miles of Railioad, which will afterwards be extended to her capital. The company of Railroads of the Rhine and the Wester have obtained the concession, and are setting to work upon it. Doubis and obstacles disappear. It was said, indeed. that in. Germany the expense of Railroads would be enormous and the profits small. And the expense oi 233,000 thalers per mile extended on the Belgian Railroad was cited, with the trifling profit of 13 per cent. But these were casily answered. In Belgrum they counted only on 70,000 passengers, yet they were obliged to make a second line to accommodate the increased uumber. In North Germany, too, the country is much flatter, and the cost per German mile will not exceed ont-half of the expense in Belgium.-Minturn Cour.

For Sale.-A Level, made to order by Brown \& Hunt, and in first rate oriler. Enquire at this office.

红 \vec{F} Volume Six will be completed as speedily as possible. The next, or Volume for 1838 , will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.

AF Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

Warted on a Lease.-A good country place, with suitable out-houses, and from 5 to 15 acres of land, a shott distance of the city. Enquire at this office.

FRAME BRIDGES AGAIN

The suliscriber will build Frame Bridges in any part of the United Slates, Maryland not excepted, and will extend them to as long a span, and warrant them to be as strong, durable, and cheap as those made liy any other method.
Having no patent right, be requires no agents. A large number of bridges of his construction are to be seen. Young gentlemen, who wish, can be instructed in the true nathematical principles of bunlding bridges, and the application of the same to practice.

JOHN JOHNSON.
Burlington, I't, Jan. 1838 ,
Flitf

NOTICE TO CONTRACTORS.

Sealed proposals will be received by the undersigned, Acting Commissioner of Pablic Works, for the 5 th Judicial Circuit, Jllinois, at his offico in Canton, Fulton county, on Tuesday, the 17 th day of A pril next, until 4 o'clock, P. M. of that day, for the Grading, Bridging and Masonry of iwenty-four miles of the Pcoria and Warsaw Railroad; cxtending from Peoria, on the Illinois rirer, twelve miles wert and from Warsaw on the Mississippi, twelve miles east.

Scaled proposals will also be received at the Engineer's office, in Quincy, Adains county, Illinois, on Monday the 23d day of April next, until 4 o'clock P. M. of that day, for the grading, bridging and masonry, of tha Northern Cross Railroad, extending from Quiacy to Columbus.
Plan and profiles, together with specificstions of the manner of executing the work, will lie exhibited at each office ten days previous to the days of letting. The portions of the above work to be put under contract are expensive, requiring a lsrge amount of heavy excavation and cmbankment. They will be divided into sections of about one mile in length.

Contractors will be required to make an ef ficient commencement of their respective jobs within sixty days aftor the letting, and to have them fully completed on or befire the first day of August, 1839.

Recommendations will be expecied in all cases in which the contractor is not personally known to the undersigned, or the associato commissioner attending the letting.

The country is dry, healthy, and well seltled; provisions are easily procured, and as the abovo with the other works recently let, and now offered by the different commissoners of the State to be let next spring, are the commencement of the extensive sysfem of Internal Improvements projected by tife State of Illinois, it is worthy of the attention of coutractors abroed.
J. WRIGHF,

Acting Commisaioncr, 5th Judietal Circuit, Canton, Illinois, Jan. 9, 1838.

AGENCY.

The Subscriber offers his services as Agent, to procure Machinery for Mills, Steam Engines, Locomotives, Printing Machines, Presses, Types and Fixtures.
He will give prompt attention to all orders entrusted to him fro execution; and pledges himself to those who may employ him, that no effort on his part shall be wanting to procure the best articles to be had in the city-and to give satisfaction.
He will also employ Millwrights and Engineers, to erect Mills, and put the Engines and Machinery in operation.
Orders accumpanied with the necessary funds, or satisfactory city acceptances, should be addressed to D. K. MINOR, 30 Wall-st. N.Y.

LOUISVILLE, CINCINNATTI, AND

CHARLESTON RAILROAD.

NOTICE TO CONTRACTORS.-Sealed Proposals will be received at the Offico of the Company in Columbia, S. C., until the 151 h day of February next, for the graduation aurd masonry of that portion of the Road from Columbia to the crossing of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.

Also, for the construction of a Bridge of 400 feet in length, on the Congarce River, to be built on stone piers and abutments, for which there are suitable quarrics in the neighborhood.
The plans and profiles of the line will be ready for inspection at the Office of the Resident Engineer, in Columbia, S. C., after the 10th day of February.
So soon as the surveys for location, now in progress, aro completed, that part of the Road extending from McCord's Feiry to the Charleston and Hamburg Railroad, at Branchvillo, will be put under contract, of which due notice will be given.

WM. GIBBS Mc NEILL, Chief Engincer.
$0]$ The Railroad Journal, N. Y. Courier \& Enquirer, N. York ; Providence Journal, Providence, R. I.; Atlas, Boston; Philadelpia En. quirer, Philadelphia; will pablish the abovo notice 6 times, send a copy of the paper to the Office in Charleston, S. C., ànd a certified copy of their account for pay ment
Jan. 12
fmw 6

NEW ARRANGEMENT.

mopes for inclined planes of railioads, WE the subscribers lave formed a co partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroa:ls, and for other uses, offer to supply ropes for inclined planes, of any length required without splice, at short notice, the manufacturing of cordage, heretofore carried on by S. S. Durfee \& Co., will be dane by the new firm, the same superintendent and machinery are employed by the new firm that were employed by S.S. Durfee \& Co. All orders will be properly atteniled to, and ropes will be shipped to any port in the United States.
12th month. 13th, 1836. Hudson, Columbia County, State of New-York.

ROB'T. C. FOLGER.
33-tf GEORGE COLEMAN.

AMES' CELEBRA'TFD SHOVELS, SPADES, \&c.

300 dozens A mes' superior back strap shovela.
150 do. do. do. plain do.
150 do. do. do. cas'steel Shovels \& Spades
150 do. do. Gold-mining Shovels
00 do. do. plated Spades.
50 do. do. sorket Shovels and Spades
Together with Pick Axes, Churn Drills, and Crow Bars (steel pointed), manufactured from Salisbury refined iron-for sule by the manofactosing agents, WITHERELL, AMES \&CO.

No. 2 Liberty street, New-York. BACKUS, AMES \& CC.

Fo. 8 State-street, Albany.
N. B.-Also fyrnished io order, Shapes of every deacription, made from Salisbury refined Eron. It-if

MACHINE WORKS OF ROGERS

 KETCHUM AND GROSVENOR, Pateron New-Jeraey. The ondersigned receive ordera for the following articles, manufactured by them, of the most superior description in every particular. Their works being extensive, and the nuniber of hand: employed being large, they are enabled to execute boh large and amall orders with proniptness and dispatch.
RAILROAD WORK.

Locomotive S:cam-Engines and Tenders; Driving and uther Locomotive Wheels, Axles Springs and F lange Tires; Ca: Whee's of cast iron, from a variety of patterne, and Chills; Car Whrels of cast iron, with wrought Tires; Axles of best A merican refined iron; Springs; Boxes and Boits for Cars.
OOTTON, WOOL, \& FLAX MACHINERY
Of all descriptions and of the most improved patterns, Style, and Workmanship.
Mill Geering and Millwright work generally ; Hydraulic and other Presses; Press Screws; Callenders; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.
ROGFRS, KETCHUM
ROGERS, KETCHUM \& GROSVENOR,
Paterson, N. J. or 60 Wall-xt. New-York
51 tf

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or Fend the right to others to build on his Patent Plan, muaid respectfully inform Railroad and Brilge t'erpora tions, that be is prepared ta make cohtracts io build, and furnish all materiads for superstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followirg localities, viz. On the main roal leading from Baltimore to Washington; two miles from the former place. Acrose the Motawamkeag river on the Mithary road in Maine. On the national road in Illinois, at sundry points. On the Balimure and Susquehanna Railroad at three points. On the Hudson and Paterson Railroad in two places. On the Boston and Worcester Railroad, at several points. On the Boston and Providence Railroad, at sundry points. Across the Contoncook river at Hennikar, N. H. Across the Souhegan river, at Milford, N.H. Across the Cunnectieut river, at Hancoal, N. H. Across the Androscoggin river, at Turner Centre, Maine. Across the Kienneliec river, at Waterville, Maine. Across the Genesce river, as Squakiehill, Mount Morris, N. Y. Across the White River, at Hartford, Vt. Across the Connecticut River at Lebanon, N. H. Across the moath of the Braken Straw. Creek, Penn. Across the mouth of the Cataraugus Creek, N. Y. A Rail road Brilge diagonally across the Erie Canal, in the City of Rochester, N. Y. A Railroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the firmest wooden bridge ever buili in America.
Notwithstanding his preseet engagements to build between twenty and thirty Railroad Bridges, and several common bridges, sperat of which are now in progress of construction, the subscriber will promptly attend to business of the kind to much greater extent and on liheral terms.
Rochester, Jan. 19th, 1837. MOSES LONG,

STEPHENSON,

Builder of a superior style of \dot{P} Passenger
Cars for Railroads Cars for Railroads,
No. 264 Elizabeth street, near Bleecker street, NEW-YORK.
RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the New. York and Harlaem Railread, now in operation.

ROACH \& IVARNER,

Manufacturers of OPTICAL. MATHEMA TICAL AND PHILOSOPHICAL INSTRU MENTS, 203 Broadway, New.York, will keep constantly on hand a large and general assortment of Instruments in their line.
Wholesale Dealers snd Country Merchants sup-
lied with SUR VEYI plied with SURVEYING COMPASSES, BAROMETERS, THERMOMETERS; \&c. \&c. of their own mannfacture, warranted accurale, and at lower prices thas can be had at any other establishment.
ITr latrumenta made to orter and repaired.

RAILWAY IRON, LOCOMOTIVES,
THE subseribera offer tie following ariclea to sale :-
Railway Iron, flat bars; with conntersunt ho'er and milted jonints, lis 350 tons 9 by , 15 f in length, weighirg $5 \frac{68}{100} 9 \mathrm{per}$ 280 " 2 " $\frac{1}{2,} \times 114350$ 70"1年" $\frac{1}{\frac{1}{2}, ~ " ~} \quad$ " $2 \frac{1}{2}$

90 " 1 к $\frac{1}{4}$, " "
witn Spikes and Splicing Plates adapted thereto To be sold free of duty to State govermmente, or incorporated cony anies.
Orders fir Pennsylvalia Boiler Iron exccuted.
Rail Road Car and Locom tive Engine Tires wrought and turned wr miturnel, ready to be fitted on the wheuls, viz. $30,33,36,42,44,54$, and 60 inches siameter.
E V. Patent Chain Cable Bolts for Railway Cur arles, in lengtis of 12 feet 6 inches, to 13 feet 2J, $2 \frac{4}{3}, 3,3 \frac{9}{2}, 31,31$, apd in inches diameter.
Chains for Inclined Planes, shart an:d stay linkw, manufactured frem the F_{\sim} V. Cable Bolta, and proved at the greatest strain.
India Ruhber Ropre for Inclined Planes, made from New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planee, and Canal Towing Lines.
Prtent Felt for placing between the iron chair and stene bluck of Enge Railways.
Every description of Railway Iron, as well as Loconative Engines, imported at the shortest nutice br the ayency of one of onr partners, who resiles in England for this purpese.
A highly resprectalle A merican Engineer resides in Erylanil for the purpose of inspecting all Lucomotives, Machinery, Railway Iron, \&c. ordered through us.
28 tf
A. \& G. RALSTEN \& CO., Philadelphia, No. 4 South Front-sh

ARCHIMEDES WORKS.
 (100 North Moore-street, N.Y.)

THE undersigned beg leave to inform the proprictors of Rail Roads, that they are prepared to furnish all kinds of Machinery for Rail Roads, Locomotive Engines of any size, Car Wheels, soch as are now in successful operation on the Camden and Amboy Rail Road, none of which have failedCastings of all kinds, Wheels, Axles and Boxes, furnished at the shortest notice.
H. R. DUNHAM \& CO

NewYork, February 12th, 1836.

PATENT RAILROAD, SHIP AND BOAT SPIKES.

** The Troy Iron and Nail Factory keeps constantly for sale a very extensive assortment Wrought Spikes and Nails, from 3 to 10 inches, manufactured by the subscriber's Patent Machinery, which after five years successful operation, and now alnost universal use in the United Ststeg, (as well as England, where the subscriber obtained a patent) are fund superior to any yet ever offered in market.
Railrual companies may be eupplied with Spikes. laving conntersink heads suitable to the holes is iron raits, to any amount and on short notics. As vost all the Railroads now in progress in the United States are fastened with Spikes made at the above-nanicd factory-for which purpose they are found insaluable, as their adhesion is more than double any conmon Spilkes made by the hammer.
*** All orders directed to the Agent, Troy, N, Y. will be [unctually attended to.

HENRY BURDEN, Agent.
Troy, N.Y, July, 1831.
${ }^{*}$ * Sjuikes are kept for sale, at factory prices, by I\& J. Townseud, Albany, and the principal Iron Me:chants in Albany and Troy; J. I. Brower, 282 Water-street, New-York; A. Nı. Jones, Philader phia; T. Janviers, Baltimore; Degrand \& Smith. Eosion.
P. S.-Railroad emmranies would do well to forward their ordere as early as practicable, as th subscriber is desirous of exteading the manufactoring so as to kcep pace with the daily increasing demand for his Spikes.

> 1J23am
H. BURDEN,
G. Mitchell, Printer, 205 Bowery, An

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT No. 30 WALL STREET, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVANCE.
D. K. MINOR, and

SATURDAY, DECEMBER $16,183 \%$.
(PublisLed March 10, 1838)
VOLUME VI.-No. 50

CONTENTS.
Δ ppendix to Repolt of the Committee on Railroads
Wes'ern and Atlantic Railrond
Grand River COuntry-Chicago and New Yurk united by Internal Improvements
Niscel'aneous Ktems,
Advertisements
AMERICAN RAILIROAD JOURNAI.
NEW-YORK, MARCH 10, 1838.
AN APPENDIX
To the Report of the Committee on Rail. roads, on the petition of the New. York and Eric Railroad Company.

MR. JOIINSON'S REPORT. (Concluded from p. 6 \%)
Having, it is belicved, dwelt sufficiently upon the character of railways, as a general means of transit, I will next proceed to notice, in a cursory manner, the leading features of the several lines which are projected from the city of New-York, to the St. Lawrence and Mississippi valleys.

There exists, probably, no point upon the Atlantic scaboard of the Uuited States, in all respects so favorably situated for a great national emporium of commerce, as the city of New-York. It possesses a spacious and secure harbor, accessible at all seasons, communicating with the sea by three channels, two of which have sufficient depth of water to float the larger class of vessels employed in commerce, and is connected with the great basin, or valley, of the St. Lawrence, by a chain of natural or artificial navigation which cannot be excelled by similar communications proceeding from any other point on the seaboard. It is, therefore, so far as those channels are concerned, the point to which the trade of a very great portion of the St. Lawrence and adjacent portions of the Mississippi valleys will be directed.
In addition to this, it is before all others, the point on the seaboard for the concentration and distribution of the trade of the New-England States with the west and sonth, which, if it does not exceed, equals probably, at the present time in value and importance, the whole European trade with New-York.

In respect to the trade of the Missis-
sippi valley, the local position of NewYork city, if not fully equal is but little inferior toकther points on the seaboard; with however, the advantages it possesses from the peculiarity of its position as above described, together with the precedence it has already acquired in the trade and business of the country, there can be little doubt that with proper precautions and a liberal spirit of enterprize in respect to public improvements, it will preserve its ascendancy and continue as heretofore, notwithstanding the strenuous exertions which are making to divert business in other directions, to be the leading commercial emporium of the United States.

In this view, the city of New-York may justly be considered as a point from which it is required that continuous lines of railway should emanate, extending to prominent points on the navigable waters of the St. Lawrence and Mississippi. These points are Whitehall on Lake Champlain; Oswego, Rochester, \&c., on Lake Ontario; Buffalo, Dunkirk and Erie on Lake Erie; and Beaver, at the mouth of the Great Beaver on the Ohio river. This latter place is situated 26 miles below Pittsburgh, within the State of Pennsylvania. It is selected in preference to the former place, because it is the one to which the several lines which are brought into the comparison, will most conveniently and naturally converge, and because, also, it possesses some advantage in the navigation of the Ohio river, as indicated by the proposed extension to it of the Pennsylvania canal.
In the table below, are inserted the distances, with the average rise and fall per mile, of the several routes connecting New-York with the points referred to, with the exception of those leading to Lakes Champlain and Ontario, which as they are not so important to the present object, are omitted.
a ame or route.
Distance And tali to fit in nuiles. per mile.
New-York to Buffalo via
N.Y. \& E.R.R. to Angelica, \&c.

464
New-York to Bufialo, via W. Stockbridge, Albany, \&c.,
Do. do. Goshen,Catskill, Canajoharie, \&c.
17.1
10.

New-York to Dunkirk, via N.Y. \& E.R.Road 483 17.4

Do. do. Goshen, Catskill, Canajoharie, \&cc.

500
14.7

New-York to Dunkirk, via W. Stockbridge, Albany, \&c.
52310.

Do. Erie, Pa. via N.Y. \& E.R.R. to Dunkirk, 533 15.7

Do. do. Philadelphia, Co-
lumbia and Sunbury, \&c. 610
New-York to Erie, via Philadelphia, Pottsville, and Sunbury,\&c.,

605
New-York to Beaver, via
N. Y. \& E.R.R. to Olean, Franklin, \&c.
New-York to Beaver, via Philadelphia, Columbia, Sunbury, \&c.
9.33

New-York to Beaver, via Philadelphia, Columbia, Juniata valley, \&c.
11.03

New-York to Beaver, via Philadelphia,Columbia, Gettysburgh, and B. \& O. R.R.

New-York to Beaver, via Baltimore and B. \& O. R. R. 530

The distances and rise and fall per mile given in the table, are in most cases derived from authentic surreys: In some few instances, however, they are approximations from the best evidence that could be obtained. They are nevertheless, believed to be near the truth. The average rise and fall is derived from the main features only of each route, and does not therefore include the minor inequalities in the grades. This average, as already explained, does not afford conclusive evidence of the relative merits of the several routes in respect to cost of conducting the transportation upon them, but is given merely as an indication of their general character.

It will be observed by an inspection of the table, that there is, with the exception of the route via Catskill and Canajoharie to Buffalo, a saving in distance by the New-York and Erie Railroad, to the several places mentioned on Lake Erie.

From New-York to Buffalo, the dis tance is less than by the way of Albany 15.9 to the same point, 19 miles, while the
average rise and fall exceeds 7 feet per mile. This difference of rise and full in favor of the Albany route may be considered as in a measure counterbalanced by the saving in the cost of transportation, resulting from the shortening of the distance and the advantage which an extended line of road, mnnaged by one, or at most two companies, possesses over a similar line, controlled by eight or ten different incorporations, each of which, if a separate organization is maintained, must incur the extra expense of a greater number of engines, carringes, ware houses, machine-shops, agents,dc. with occasional delays and expense of transfer of freight.

Longer lines possess, also, some advantage over a series of shorter ones, which in the aggregate have a like extent. in the economy and efficiency with which the transportation can be conducted, arising out of the inequality in the business upon the latter, compelling such as are less fuvourably situated, in consequence of being farther removed from the cenirul points of business, or other causes, to labor under the disadvantage of conducting their business with less profit, and with a more limited means of infusing energy and punctnality into their operations. The saving, likewise, in expense of re. pairs and maintenance of way, resulting from the shortening of the distance on the line of the New York and Erie roat, and the comparative cheapness of timber in that section, as also of fuel for the engines, which, whether it be wood or bituminous or athracite coal, will be obtained at a inuch lower rate jn the southern than in the more northern sections of the Siate.

These remarks will apply with nearly equal force to connexions with other prominent points in the western part of New York, as well as to Buffalo. They apply, also, in like manner, but with greater force, to the extension of the main line to Dunkirk. The distance of this latter point from New York city, by the route of the New York and Erie Railroad, is 40 niles less than by the way of Albany, and does not exceed the distance by the latter toute to Buffalo.

In addition to the considerations mentioned above, by which an advantage to a certain extent is anticipated in the cost of transportation, it is believed that the line from the Hudson river to Lake Erie, on the route of the New York and Erie Railroad, will cost less in proportion to its lengili, than the line from New York by the waty of Albany.

The reasons for this belicf are the following:

1. Being under the direction of one company instead of nine, (the number of incorporations by the way of Albany) the cost will be less in proportion for engineering, superintendence, salaries of officers, \&c.
2. Ufon so much of the line via Albany as is already constructed, the cost of land, for road way and depot grounils,
and farmand turnpike damages, \&c. will not probalily average less than $\$ 2,500$ io $\$ 3,000$ per mile; and there is no sufficient reasol, to suppose, unfess a radical change shall be effected in the mode of making the nppraisements, that the average of the whole distance when completed, wilh be less than from $\$ 1,500$ to $\$ 2,000$ per mile. The lind upon the route of the New. York and Erie road, i_{1} the majority of cases, with the excepion of a porrion of the line in the vicinity of the Hudson river, will ei her cost nolling, or the assessinents will he light, owing to the sequestered posilion of thal section of the country, and the great berefit anticipated from the opening of a direct comninhication to market.
3. The donations of land to the New York and Erie Railroal company, 10 aid in the construction of their road, independent of what is required for roall. way and depot grounds, are larger, and when appropriated as infended, will serve to diminish materimlly the expence of the road to the stockhiliters. Upon the line via Alhany to Buffilo, donations of land, even for the road-way, have thins far been comparatively rare, and .nn grent assistance has been rendered, or can be anticipated in the way of donalions, to aid in the construction of the road.
4. The cost of fencing, which is an important iten, amounting to not less, utually, han $\$ 800$ to $\$ 1,000$ per mile, (if the cost of construction and capital required for maintenance is considered) will be much less upon the New York and Erie road.
5. The cost of timber for the supersloncture or rail-track, and for bridges, \&c., will be less. The line of the New Yoik and Erie road passes for mucls of the distance through a timber region, being the same regicn from whence is derived a portion of the timber for constructing the line of Railway via Albany to Buffalo.

In respect to physical obstacles, or ihose growing out of the topograplical features of the country, I nin not aware that the route of the New York and Erie Ruilroad, under a judicious location, presents, with the exception of the passage of the Shawangunk ridge, and n portion of the line on the Delaware, nny more points of diffichiliy or of excessive ex. pense, in proportion to its lengili, than are enconntered upon the line by the way of Albnny to Buffaio. In the matter of business, the termination at Dunkirk possesses some advantage over that at Buffalo, in the earlier disappearance of the ice in the lake at that point, and opening of the navigation in the spring, and being forty miles fartser west, is more favorably situated for accommodatin: the western travel.

The comparison with the line by the way of Albany, is not made with a view to detract, in the least, from the very ir reat importance of that route as a medium of communication with the north
and west. The very favoralile pasition which it occupies, must ensure to it it liberal support, cnabling it to maintain, ngraiust all opposition, a high rank in the great leading thoroughfares of the coun. try. It is referred to solely for the purpose of exhibiting some of the leading traits of difference between it and the New York and Erie roald, with the view of rimoving any erronewus impressions which may stili exist in respect to the practicability of the latter work.

Comparing the line of the New-York and Frie rinilroad with other routes en the somih, and the onc which appears to come more directly in competition with it for the Lake Eric trade, is that by the way of Fhnadelphia, Sumbury, and the west branch of the Surquehannah, to the port of Erie, on Lake Erie. The distance from Philadelphia via Columbia 10 Erie, by this route, as dednced from the State surveys for the West Branch canal, (here having, as yet, been no survey mule for n railway) is 523 miles, and from NewYork, 610 miles, from which 5 miles should be deducted, if the route via Potsville is taken.

The rise and fall is comparatively moderate, averaging for the whole distance from New-York, 8.7 feet per mile, ria Columbia; and 10 feet via Portsville. 5.7 feet, and 7.4 feet less than the New' York and Erie road :o Dunkirl.

The increase of disiance to Lake Erie (127 niles) by these lines, and the cir. cumstance of their being under the controi of several different incorpcrations, renders it improbable that they can be hronerht into successful competition with the New-York and Erie road. The port of Erie, it is true, possesses an advantage over that of Dunkirk, in the superiority of its harbor, not sufficient, however, to countertalance the great superiority possessed by New-York over Philadelphia, as a commercial mart.

As it respects the ftrade of the Ohio valley, the route via Philadelphia and the Jumata valley terminating at Bearer, pnssesses an advantage in distance, and in the average rise and foll orer the NewYork and Erie route. The distance, 525 miles, given in the table, exceeds, by 18 iniles, the present travelled distance on that route. This 18 miles is the amount to which the line would be lengihened agreeably to a recent survey, supposing the inclined planes upon the Portage railroad to be dispensed with, and grades suited to locomotive power of 44 feet per mile on the west, and 50 feet per mile upon the east side of the mountain, to be adopted in their stead.

By the New-York and Erie road, the distance to Beaver is estimated at 608 miles. The continuation, however, of the two routes to the Ohio canal, with a view of accommodating the trade and ravel of the more central portions of Ohio, with the advantages which that canal will present in relation to the trade of the Ohio valley, during those portions of the year when the river is not naviga-
ble, from the low state of the water, will, by increasing the distance of one in a greater proportion than the other, lessen somewhat the disparity between them.
'I'he New-York and Elie road, from its l.ocation, intersecting, as it does, the waters of the Aliequny within the limits of New-York, possesses advantages in the transunission of merchandize alld other freight westward into that valley, and that of the Ohio below, which will en.tble it to compele successfully with the more southern routes. This alvantage is derived from the descending navigation of the Allegatny, by which freight can be transmitted, according to statements which are entitled to credit, from Olean to Pittsburg, at an expense of from $\$ \mathbf{\$ 2} 50$ $10 \$ 3.50 \mathrm{per}$ ton, or to other points tower down on the Ohio river, at rates less in proportion than would he required from Olean to Pilsburer. By this channel, merchandize can be furwarded some weeks earlier in the reason than the open" ing of the P'ennsylvania Canals.

As it regards the roule from New-York by the way of Baltimore and the Baltimore and Ohio railroad, to the Ohio valley, it will be seen, by referring to the table of distances, \&c., that it is less advantageous than the route through Pennsylvania, and does not, therefore, require a more particular noticn.
The preceting comparison does not anticipate the aid to be derived from auxiliary lines, so lucated as to take advan. tage, of the more favorable ground, situated near to, but without the limits of the State. The effect of these lines will be to diminish the actual distance, 18 miles, and the average rise and fall per mile 2 to 3 feet, on each of the severallines from New-York via the New.York and Erie railroad, to Buffalo, and the other points mentioned.
This being so important a difference, and the prospect of those auxiliary lines being eventually constructed so very probable, it would not, it is believed, be safe, in estimating the future importance and relative value of the New-York and Erie route. as a leading thoroughfare between the east and the west, to rest upon any calculations, in which the aid to be derived from those auxiliary lines was not fully anticipated.

A similar remark may, perhaps, with propriety, be made, although possessing less force, in reference to the western portion of the route, via Albany to Buffalo. The route supposed in the comparison is that covered by the charters already granted. Should charters ultimately be obtained, and a line of railway be constructed along the lower and more level ground, in the vicinity of the Erie canal, it would lessen the average rise and fall per mile $1 \frac{1}{4}$ feet on that route, and would probably somewhat shorten the distance.

On the subject of the probable cost of transportation upon the New-York and Erie rallooad, the most satisfactory information will be derived from the experience upon the Philadelphia and Columbia
railroad, to which I have already had \mid per report, amounts to
\$198,891 89 occasion to refer.

The average rise and fall per mile upon that road, is 15 per cent greater than upun the New-York and Erie, supposing the latter to be located upon the most favorable giound.

The maximun grade upon the Phila delphia and Columbia road is $\mathbf{5 0}$ feet per mile; * but the general range of the higher grades does not much exceed 30 or 35 feet per mile. Upon the New-York and Erie, under a favorable location, it need not exceed 70, or at most, 80 feet, per mile, and that for a very short distance. The higher grades ipon the latter road are concentrated at particular points, and arranged so as to be overcome with the greatest economy. Those exceeding 40 feet per milc, embrace but one ninth part of the whote distance, leaving an extent of more :han 400 miles upon which the average rise and fall does not exceed 12 feet per mile.

The Philadelphia and Columbia railroad has also two inclined planes opera. ted by stationary power. Upon the NewYork and Erie road, planes will be avoided. The latter is, moreover, the straightest road, having no curvatures of a less radus than 700 feet. Upon the former road, the minimum radius is as low as 500 feet. In proceeding from tidewater wesward, the three great valleys, viz: the Delaware, the Susquehannah and the Allegany, through which the line of the New-York and Erie road passes, are elevated, the first 600 , the second 850 and the latter 1,300 feet above lide, giring a general inclination to the whole line eastward, favorable to the preponderance in the trade. This feeture is an important ore in reference to the economy of transportation, upon all that portion of the road lying beiween the Hudson river and the table land which separates the Allegany from Lake Erte, embracing more than nineteen-twentieths of the whole route, and on which full nineteentwentierhs of the whole business of the road will be cońducied.

The expenses of transportation upon the New-York and Erie road, so far as it is influenced by the shape or profile of the road, will, therefore, it is believed, rather fall short than exceed the cost upon the Philadelphia and Columbia road.

Upin the latter road, the gross receipts for the year ending Oct. 31, 1837, including railway and inotive power tolls, as per report of superintendent, amount to
$\$ 353,56638$
The total expenditure for the same timeincluding supervision, cost of repairs and maintenance of road, and expense of motive power, together with interest upon cos: of engines, as
-The maximum grade, where the Fchuylkill piane is
avoided by the Weet Phuadelphia branch, will be 56.8 feel per mile,

Leaving annual nett income equal to

8154,67449
Upon the Philadelphia and Columbia railroad, there are two inclined planes, the annual saving to the State, as estimated by the superintendent, by avoiding one of which, is 817,400 . For the two in the same proportion, it would amount to $\$ 34,800$; which, as there are no inclined planes upon the New. York and Erie road, should be added to the preceding,

34,800 00
Giving a total annual nett incorne, by avoiding the planes of
The New-York and Erie railroad being 5.9 linies the length of the Philadelphia and Columbia railroad, the nett annual incoine, sup. posing it to be in the same proportion, will amount to \$1,117,899 49

The Philadelphia and Columbia railroad has a double track throughout; rails principally of iron, with a stone and wood foundation. The cost of repair \& maintenance per. mile, for a double track the. past year, has been $\$ 750$. Supposing the New-York and Eric road to have a rimber stucture, plated with iron, after the ordinary plan, with the exception of 70 miles of the steeper grades, and that the cost of repairs, upon the portion where timber is used, is $\$ 1,100$ per mile. it will be necessary to add to the expenditures, or deduct from the estimated income, $\$ 350$ per mile,for $483-70=413$ miles equal to
$\$ 144,55000$
Leaving the estimated nett annual income NewYork and Erie railroad,

The total cost of gra. ding, masonryand bridging, for a double track, and superstructure for a single track, including clearing, grubbing, fencing, \&cc. of 483 miles the New-York and Erie railroad, accord. ing to the engineer's report of the State survey, which is the only estimate yet made of the whole line, amounts 10 , allowing 10 per cent for contingencies, $84,762,26000$,

Carried forward

To which, add extra expense of iron rails, on 70 miles of steeper grade,

350,000 00
$\$ 5,112,26000$
Adding to this 25 per cent for advance in prices, cent for advance in prices,
superiutendence, \&cc.,
$1,278,06500$

Gives for total cost of road, with singie track, $\$ 6,390,32500$
Adding for the second track, in the same proportion, in order to compare with the Philadelphia and Columbia road, gives a total of

88,880,575 00
To which, if the annual income, as obtained above, is applied, thore results an annual dividend of nearly 11 per cent.
If the proceeds of the sale of land donations to aid in the construction of the road, be applied to diminish the amount of capital paid in, the annual dividenc.s will be increased in a correspoading degree beyond the amount estimated.

In the preceding calculations, no allowance is made for the greater economy with which the transportation can be conducted upon a long line of road in proportion than a short one, which, upon two roads, differing as much in length as those under consideration, will undoubtedly have an important bearing upon the expenditures.

It should be recollected that ypon the Philadelphia and Columbia railroad, the state has nothing to do with the business of transportation, except to furnish the motive power. In addition therefore to the profits made by the State, there are other profits accruing to the forwarders, which in the case of the New.York and Erie railroad, under the same charges and amount of business, would serve to swell the income derived from the road beyond the amount estimated. It is proper also to remark that the State, furnishing as it does nothing but the mo. tive power in the business of conveyance, is under the necessity of providing that power to suit the convenience of forwarders. Hence it happens, oftener than would otherwise be the case, that the engines are not fully loaded, oceasioning a greater loss in this respect than would be experienced by a company having the entire eontrol of the road and of the transportation.
if It will be perceived from the above, that the New-York and Erie railroad company will be enabled with the same amount of business as is now done upon the Philadelphia and Columbia road, to reduce materially the charges for transportation below what they now are upon that road, and still make a handsome dividend upon the capital invested. If 1 am correct also in the views taken in another part of this communication, a still farther reduction in the cost of transportation may be expected eventu-
ally to take place, from an increase in business over and above what is now being done upon the Philadelphia and Columbia road.

The prominent position which the New-York and Erie Railroad will occupy as a great thoroughfare between the east and the west, will enable it to participate largely in the growing trade and increasing travel of the country. lts location likewise through a region of country which admits of ne rival route in its innmediate vicinity, and the important connexions to be formed by it with gother lines of communication which must to a considerable extent be tributary to it, give to it advantages which will contribute largely to its importance as a public work.

On the north it connects with the Chenango and Chemung canals, and the Ithaca and O wego railroad, and on the south the Delaware and Hudson and Lackawaxen canals, all of which are completed and in operation. On the south also it connects with the Pennsylvanian north branch canal, and the Bloss burgh and Painted-Post railroad, and upon the north with the Genesee valley canal, all of which are in in a course of construction, and will soon be completed and in operation. It will connect also on the north with several contemplated railroads, one leading from Orange county to Catskill, another to Utica, a third to Syracuse, a fourth to Rochester, and a fifth to Buffalo ; and on the south it will receive as tributaries the proposed Delaware and Hudson, Lackawana and Great Bend, and Williamsport and Elmira railroads; and will form likewise a connexion with the Allegany river, which, with the aid of the contemplated improvements, and the advantages presented by the descending navigation in that river, will secure to it in a great measure the trade and travel of the Allegany valley. By n:eans also of the contemplated Ithaca and Auburn roilroad, and the steamboat navigation upon the Seneca and Cayuga lakes, and the line of railway from Auburn to Buffalo, a direct communication will be opened with the rich and flourishing counties in that portion of the State. The interest taken by these e surties in the New York and Erie railroad, it may reasonably be presumed, will con tinue to increase in proportion as its beneficial effects, in affording a continuous line of railway to the city of New York, available at all seasons, and its advantages as a rival route in suppressing mononopolies upon other lines, are better unstood.

The number of branch lines of communication which are either now, or will soon be in operation. gives to the New York and Erie railroad, in ensuring to it an early increase of business, peculiar advantages, which are not possessed by most other main lines of communication.
In the conveyance of freight, the road will find permanent sources of business in the connexions to be formed with the
inexhaustible anthracite coal fields of Lackewana valley, and with the bituminous coal strata, that ase known to extend through the northern counties of Pennsylvania, from the Susquehannah to the Allegany.
It will also find a constant and profitable source of business in the transportation of lumber, with which large portions of the country through which the road passes, abounds, and which, from the waters of the Susquehannah to Lake Erie, includes the finest timber region within the limits of the State.

Salt and plaster, from the central, or northern portions of the State, will be distributed along the line of the road, and the agricultural and other productions of the range of counties on either side, from the Hudson to Lake Erie will be, to a considerable extent, tributary to it.

Adapted as railroads peculiary are, to the transportation of passengers, it is an important fact, and of itself conclusive, in relation to the future value of the road, that the aggregate population of the counties, which will naturally be tributary to it in the States of New York and Pennsylvania, when all the branch lines connecting with it are formed, falls only about one-fifith shor: of the population in the counties tributary to the main line of railroad from Albany to Buffalo, and is now increasing in a more rapid ratio than the population of the latter counties.* In this estimate the population of New York city and the cities and villages upon the Hudson, is not included. If, however, a fair proportion of the latter be added, as, also, that portion of the travel between New England and the west, which usually passes New York city in its course, and which, in consequence, would most naturally pursue this route, and there can be no doubt but the business will, in a very short time from the period of the opeuing of the road, be sufficiently ample to sustain it.

By an examination of the map, it will be seen that the New York and Erie railroad occupies middle ground between the main line of communication from Albany to Buffalo, on the north, and the Pennsylvania improvements on the south. In its course west, it avoids the main range of the Allegany mountains, which enter the State of New York much diminished in clevation, losing, in consequence, much of their formidable charaeier. It is probably the most direct courge for a continuous line of railway communication from the city of New York to the northern portions of Ohio, Indiana, \&c., thus penetrating to the heart of the most fertile portion of the Mississippi valley; and as such, was first advocated and brought into notice as a great public improvement.
From the surveys and examinations which have since been made, and facts developed, it has lost none of its importance, but has been daily acquiring more consequence in the estimation of the pub-
*See table annexed.
lic. It is evidently destined to bocome a great national thoroughfare, and as such is especially entitled to the attention and patronage of the State.

To the city of New York in particular, it assumes an importance second only in its anticipated influence upon its commercial prosperity to the Erie canal. While othercities upon the seaboard, Boston, Philadelphia and Baltimore, bave opened to theinselves railway communications, extending into the interior, by which supplies of provisions, fuel, \&c., can be procured at all seasons, New York is as yet unprovided with any such communication.

From the period of the closing of the canals to the opeaing of navigation in the spring, embracing more than onethird of the year, she is dependent mainly for her supplies upon the accumulations durring the seasons of navigation, and the contributions of the adjacent country, which are usually reserved to the period when they will command the highest prices.
The opening of a continuous line of rail way, leading into the fertile regions of the interior, will remedy, to a very considerable extent, this evil, and serve to prevent the existence of those monorolies which so easily spring up under the present limited sources of supply, and which will continue to be more severely felt in proportion as the population of the city and the adjacent country is augmented.
In conclusion, I will add, that this great interest possessed by the city of New York in the construction of the New York and Erie railroad, necessarily induces a reciprocal interest on the part of those portions of the interior of the State which are so situated as to be able to avail themselves of the road when constructed. The benefits accruing to those portions, in being able to commumunicate with the city at all seasons, with the great additional value which the road will impart to lands and other property wherever its influence shall be felt. cannot, from their magnitude, be easily calculated. As a public enterprise, in this view alone, it will richly repay to the people of the State of New York any favorsit inay be so fortunate as to receive at their hands in aid of its construction. Respectfully submitted,
Edwin F. Jounson, Civil Engineer. Albany, January, 1838.
Comparative Statement of the population of the counties situated between the Hudson River and Lake Erie, tributary respectively to the two lines of railway, one extending from Albany to Buffalo, and the other from New York through the southern tier of counties to Dunkirk.
WEW YORE AND ERIE RAILROAD.

Conmies.
Chautauque,
Cataraugus,
One-fourth of Erie,
One-fourth of Genesee

Popatition Populatino
34,671 44,869 16,724 24,996
8,930 14,398

Allegany, One-fourth of Livingston,
One-fourth of Ontario, One-half of Yates, One-fourth of Seneca, One-fourth of Cayuga, Tompkins,
Chemung,
Tioga,
Cortland,
Broome,
Chenango,
Three-fourths of Dela
ware, 24,768
One-half of Otsego, $\quad 25,636$
Sullivan, $\quad 12,364$
Two-thirds of Orange, 30,244
Total in New York, 413,017
Add for counties in
Pennsylvania,
92,795 107,000
505,812 580,199
Increase from 1830 to 1835 , is $14 \frac{7}{10}$ per cent.
albany to buffalo.

Three-fourths of Gene-
$\begin{array}{lll}\text { see, } & 39,110 & 43,941\end{array}$
Orleans,
18,773
Three-fourths of Living-
$\begin{array}{ll}\text { ston, } & 20,789 \\ 23,319\end{array}$
Monroe, $\quad 49,862 \quad 58,085$
$\begin{array}{ll}\text { Three-fourths of Ontario, 30,125 } & 30,653\end{array}$
Wayne, $\quad \mathbf{3 3 , 6 4 3} \quad \mathbf{3 7 , 7 8 8}$
One-half of Yates, $\quad 9,504$
Three-fourths of Seneca, 15,781
Three-fourths of Cayu-

ga,	35,961	36,900

Onondaga,
Oswego,
Madison,
Oneida,
Jefferson,
Lewis,
Herkimer,
Montgomery,
One-fourth of Otsego,
Schenectady,
35,961
58,974
27,104
39,037
71,326
48,515
14,958
35,869
43,595
\qquad

Increase, from 1830 to 1835 , is 13 per cent.

WESTERN AND ATLANTIC RAILROAD.
The interesting event of breaking ground in this magnificent enterprise, was celebrated on the 1st of January. One of the contractors, Mr. Neleigl, had arrived a few days previously, and Gen. Brisbane, then in command, in consequence of the absence of Col. Long, with characteristic energy, determined that the work should open with the new year. Accordingly, on the first day of January, I838, the citizens of the neighborhood were assembled on the very summit of 14,647 the Blue Ridge, and the laborers, with

22,893

9,898
35,214
7,773
41,435
10,217
9,898
5,656
12,302
38,008
17,465
16,535
24,168
20,190
40,762
25,644
25,214
13,755
30,064
473,199
nobler sentiment would in the presens nobler sentiment would, in the present
instance, require no aid of the lesser. A recurrence to difficulties already encounrecurrence to difficulties already encoun-
tered-a glance at obstacles still crowded around-a single appeal to that spirit of around-a single appeal to that spirit of
enterprise which had, from the lofty sum. mit of the Alleganies, dared to grapple mit of the Alleganies, dared to grapple
by one stroke of policy, the interests of a continent immeasurably broad, inexhaust-
ibly fertile, and incalculably populous, continent immeasurably broad, inexhaust-
ibly fertile, and incalculably populous, would, of itself, afford a sufficient gua.
rantee for the favor with which the celowould, of itself, afford a sufficient gua.
rantee for the favor with which the celobration of the day would be entered upon. bration of the day would be entcred upon.
He observed, that, in the remote ages of the world, this service would have been the world, this service would have been
offered to some heathen god, as a propitiation for his faror. That at a more tiation for his faror. That at a more
recent date, we should have felt through the pomp and circumstances of the occasion, the august rowers of some principal sion, the august rowers of some principal
potentate. But that, in our own glorious day, we establish, by these ceremonials, the epochs merely of our historic eras.
It was his duty, he said, to exhibit,
through the various objects, the charactes and the previous story of the work before
us-its claim to a prominent page, not and the previous story of the work before
us-its claim to a prominent page, not only on the records of America, but upon those of the world. He regarded it as revolutionary of the whole political, social, and commercial character of society.
*
On the first day of 1836, an act of the
 lished, declaring her interested in the then contemplated road to Cincinnati. At a convention of delegates held at Knoxville, East Tennessee, on the 4th of July, following, the Georgia representation, fro:n the reports of her engineert, and the inegociations of her statesmen, discorered, that while her position resembled that of New York, as to her domestic improvements, her intercourse with the west could be reduced to the most accurate and satisfactory calculationsthe exports of Cincinnati being deliverable at the western terminus of her road upon the Tennessee river, with the additional expense of railroad transportation
barrows, carts, picks, and spades, prepared to attack this mountain barrier to the west at its topmost elevation. The let and 3d brigades of the corps of engineers, were also in attendance; and on the bosom of the Allatoona heights, for the first time, was assembled, a portion of the privileged few about to divide the hanor of levelling the rugged obstacles of nature, opposed to the moral and commercial advancement of mankind. All seemed impressed with the solemn dignity of the occasion, and every heart responded to the animated eloquence that now echoed through the hills-sensible that the very paucity of their numbers only increased the share of honor to each participator.
Before the turning of the first sod, Gen. Brisbane, who had been requested to address the assembly, commenced his subject by cogratulating them, that although vanity as well as ptide, was usually enlisted upon similar occasions, the (y. -
to the sea-board, at a more reasonable cost thin the trade from the same phace to New York-the southern markets fol the sale of these exports, being exclurled in the estimate. The result of these conclusions, was a convention of the state ; and on the first day of 1837 , an act to survey, locate and construct, a railroad, to be an exclusive state work, was pub. lished by the Legislature.

On the 4th of July following, a iwelve month from the discussion of the policy at Knoxville, the whole was put under survey; and to day, the first of 183 s , two years from the earliest regislation on the ubject, more than a million of the surplus revenue of the state is enlisted in the actual construction of the work. Nor is this all, he exclaimed turning to the engineer department already had the influence of practical knowledge shed its rich lights upon the different interests of the people, their opinions were as sensibly modified. In 1825, Dr. Fort of Milledgeville, introduced into the Legislature of the state, a bill, purporting objects simllar to the present enterprise-'tis true, he saidthe bill had become a law, and the subject entered upon; but for the want of support on the part of public opinion, had been suffered to decline. At the present day, he was happy to say, no such thing could be. In the college of this state, à profezsorship of practical science had been established, and among the corps present, we nat only found the sons of Georgia's. most distinguished citizens, but the graduates of her classic institu. tion, were ambitious to take part in the actual operations of the field. He observel, that the high prerogatives of the southern ancestry had been ere this most wofully curtasled; and yet, while the whole world was engaged in extending the principles of science to the minutest application of labor our southern youths were ushered into active life, with the same closet love that constituted the pow. er or the high priest of some heathen temple. He finished his address, by calling upon all present to exert their influence in whatever sphere, upon a principle of duty-that from our distinguished chief to the least operatives on the work, a spirit of subordination and diligence should actuate us in the fulfilment of our respective fuactions. Ile trusted that a high-toned confidence in each otber, would altogether dispense with that contemptible habit of insolent control, which was so utterly inconsistent with the spirit of our institutions. He hinuself never had occasion to issue an orler, although often exposed to the most appaling contingercies. He felt a sympathy, he declared, which satisfied him, that the enthusiasm of the day would, of itself, engraft upon each, the proud resolve, "to dare to do," aud the people of Georgia, although anxiousiy intent upon the progress of their undertaking, would still discover in them an energy nltogether equal to the success of the enterprize. Washington (Ga.) Spy.

From the Grand River Times.

GRAND RIVER COUNTRX.
Almost the entire Grand River country lies soulh of the 4311 degree of latitude, south of the line of the Erie Canal, and is as much warmer than the country bordering upon the Atlantic coast in the same lattude, as is the valley of the Mississippi. It is not subject to severe frosts or heavy snows. During the last winter the snow fell to the depih of 18 inches, and we are informed by a gentleinan who has been engaged in the Indian rade for nearly twenty years, that he never knew it as deep before. During the coldest days the thermometer sunk to zero, while in Albany, if we recollect, it was more than 20 below. The frost of Angust, 1836, that so destroyed corn throughout the whole country, was no more severe here, than it was 100 miles south.

During the preseat winter we have not had more than four or five inches of snow, and since New Year none at all. The weather has been uncommonly warm, and farmers have been ploughing since th.s month commenced.

We subjoin for the gratification of the curious, a statement of the temperature as taken from a thermoineter record, kept by a gentleman of this place. The time of observation was 10 o'clock, A.M.

We commence with January 3.
Jan. 3. Jan. 7. Jan. 15
Sunday,
Mondiay,
Tuesday,
Wednesday, 70
3839

Thursday,
25
40

Fidrday, 57
Fidry, $32 \quad 30$
45

34
30
$\begin{array}{llll}\text { Suturday, } & 40 & 39 & 17\end{array}$
There being few marshes and litule stagnant water, the air is free from that miasma to which some sections of the country is subject, consequently there is little sickness of any kınd, as little as in any part of the western country.

The soil is generally rich, producing a magnificen! growth of timber, and is rneIy adapted for the growils of wheat, corn, oats, and the grasses. There are but few prairies, and those are mostly at the mouths of important tributaries of the Grand River, as the Maple, Flat. Thorn Apple and Rouge rivess. These, however, are unsurpassed in richness and beauty. The western part of Clinton is mostly timbered land of the first character, and we venture to say, here is no part of Michigan that is better fitted for a rich agricultural region thąn this. 'Phere are no marshes, no ponds, no waste lands, nod the numerous running streams with which it abounds, and its immediate vicinity to navigable waters, gives it advantages that are not and sliould not be overlooked. The Maple and Looking. ghass rivers, and Stony Creek, are the most important streams in this sectioc.

The eastern part of Ionia, bordering on Maple and Grand rivers. presents some of the finest tracis of "openings" that we have seen in the State. The
"oil is good as can be, as its appearance and its products alike testify.
As you descend Grand River yon find more "oak openings," as in that part of Kent county lying east of the 'thorn Apple, and the soil is more light but produces good wheat, as well ns grass. That part lying west of the Thorn Apple nnd south of Grand river, is mostly thmbered land, producing fine growth of black walnut, white woorl, sugur inaple, \&c. That part of Kent connty lying north of Grand river, (as yet unsold) presents one of the finest tracts of farming land that we have any where seen, and numerous and fast increasing seflements upon it, slow that we are not atone in believing it so.
'The eastern part of Ottawa county is of the same character, possessed of a fine soil and is well watered. The southern and western part is principally valuable for its pine timber which is found in great abundance, and of an excellent quality. As a whole, we are confident that no section of the State presents stronger inducements to the agriculturist, than Grand river country, Although it has nst the inciting prairies of the southern section of the State, its rich and durable soil, its freedom from marshes and punds, and the thousand clear and rapid brooklets that every where meet the observers eye, gives it at least equal ad. vantages.
chicago and new tork united by internal imphovements.
By the report and estimates of J. D. Allen. Esq., it is estimated by calculating Railroad speed at 17, and steambont at 12 miles an hour. that the transportation of passengers can be effected, from New York via Albany, Utica, Oswego, \&c., to Chicago, is sixty hours, thus:

Distance and Time.

From N. Y. to Albany, 150 miles, by night boat, $10 \frac{1}{2}$ hours
" Albany to Oswego, 168 miles, by day Railroad, 10 "
". Gswego to Hamilton 160 miles, by night bont, $13 \frac{1}{2}$ "
" Hamilton to Detroit 191 miles, or to Huron, 136 miles, by day Railroad, 11
". Detroit to Chicago, and from Huron to Chicago, 250 miles, by day and night Railroad \& stcamboat, $16 \frac{1}{2} \quad$ " Total $\overline{61 \frac{1}{2}}$ " From Boston-lime the same.

The report adds: "In a further time of ten hours, the traveller may reach the Mississippi, or some of its chief tributaries, in less time, and may complete the journey by the river to New Orleans, within eight days from his departure from the city of New York, or from Boston," and this too, withnut losing a meal, or 4 night's rest.-Chicage, Democrat.

The Richmond Enquirer of Thursday says: "There seems to be no end to the mineral treasures of Virginia. Yesterday wr heard of another discovery, which; according to presrut appearances, is destifed tu prove of incalculable service.

The reader will recollect that during last antumn we spoke of a rich vein of iton ore, which was in a course of ex. ploration. on the south side of James river, near the coal pits, and from two to three miles of the river. The ore has been further opened, and we are happy to learn promizes to be of great value It is under the auspices of John Heth. Esq., and is immediately on the new Railroad, which will soon be opened, from the cual piss to the river. Bat the discovery embraces a new object-a large rich bed of natural Coke, which is jus: below the iron ore, and is suspected of being in a large field, and of being near 17 feet thick.
The coke was first discovered by those who are engnged in laying down the Railroad. They thonght of burning it as fuel, and the experiment has answered.

It is said that Professor Rogers has prononncel it natural coke-and we understand that Mr. Deane is ahout to try its virtues in his iron rolling mill.

Shouli it correspond with the indica. tions which have so far transpired, it will prove a source of great wealht to its wor. thy, liberal and enterprising proprictor, as well as advantage to the rising inanufactures of Richmoul."

Whishaw's hvdiambic telegraph.
We have long ago heard it suggested, and we think by Mr. Vallance, that a column of water could be conveniently enployed to transmit information. Mr. Francis Whi-haw has conveyed a co. lumn of water through sixty yards of pipe in the most convolnted form, and the two ends of the column being on a level. motion is no sooner given to one end than it is communicated through the whole sixty yards to the other end of the columu. No perceptible interval elapses between the time of impressing motion on onc end of the column and communicating it to the other. To each end of a column he attaches a float board with an index, and depression of any given number of figures on one index, wlll he immediately followed by a corresponding rise of the float board and index at the other end It is supposed that this sim. ple longitudinal motion can be made to convey all kinds of information. It appears to us that the amount of informa. tion which can be conveyed by the motion in one direction only, of the water, or backward and forward, must be limi ted. To make the mere motion backwards and forwards of a float board, indicated on a graduated index, convey a great number of words or letters, is the difficulty to be overcome. Mr. Whishaw has exerted his ingenuity in this way, with a promise of success, and by-and.
hye, the hydraulic telegraph may supersede the semaphore and the galvanic telegraph. - Courier.

NEW YORK CANAL TOLLS.
The following table shows the annual amount of receipts for tolls on the New York, Erie and Champlain Canals, ant also the total receipts on all the New York State Canals, from Junuary 1st, 1S20, to January 1st, 1533.
Note. -In the total amount is includ. ell the receipts on the Erie, Champlain. Oswego, Cayuga, Seneca, Chemung. Crooked Lake and Chenango canals. The tabular statement is from the Jour. nal of Commerce.
Years. Erie \& Champlain canal, Total receipts. $18: 2053374$

1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
$18: 3$
1835
1836
$18: 7$
14,388 47
64,07240
152,958 33
340,761 07
566,112 97
76? 00369
859,053 49
835.10728

795,051 52
$1,032.539 \quad 13$
1,194,610 49
1,195,804 23
1,422,69: 22
1,294.649 66
1.492,81159

1,556.26937
1,239,052 49
1438847
64,072 40
152,958 33
340.76107

566,112 97
762,003 69
S59,058 48
83844469
813.13745
1.056.92: 12
$1,223,80193$
1,229,483 47
1,463.7i5 22
1,339,799 56
1.548.97? 39
1.614,680 38
$1,293,129 \mathrm{SO}$
\$14,823,746 $64 \quad 815,191,87968$
ANOTHER EVIDENCE OF THE WEAI.TIT OF n. carolina.

It was stated in this paper a few months ago, that a lot of copper had been sent here from Guilford county, on its way to New York, to be tested in quality-the mine having been then recently discovered. We understand that the test was highly satisfactory, showing the metal to be of a silperior kind, and that a quantity of the same has been shipped from this port to England.-Wilmington Advertiser.
ECONOMY OF LAEOR.

One great superiority of the manufacturers of England aver tho agriculturists, is attributable to their attention to the economy of labor. In my earliest remembrance, the farmers were too ig. norant to think of it, afterwards they were too prosperous, and now they are too much bent on seeking reliff from other sources than their own energies. What might be done in time by a combination of mechanical and chemical science, it is as impossible to calculate beforehand, as it would have been fifty years since to have foretold what would be the present state of spinning, wearing, b!eaching, and transport.-Walker's \bar{O}. riginal.

For Saic.-A Level, made to order hy Brown \& Hunt, and in first rate onler. Enquire at this office.

红? Volume Six will be completed as speedily as possible. The next, or Volume for 1838, will be published in a more convenient form for preservation.
** Subscribers who desire to be supplied with missing numbers, will do well to apply for thein soon. We shallalways take pleasure in furnishing tinen if we have them to spare.

0 Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceprances.

Warted on a Lease.--A good country place, with suitable out-houses, and from 5 to 15 acres of land, a short dislance of the city. Enquire at this office.

FRAME BRIDGES AGAIN.

The sulveriber will build Frame Bridges in any part of the United States, Maryland mit Bxerpted, and will extend bom in as long a spran, and warrant them to br as slrong, durable, and cheap as those made hy any oller methond.
Having no patent richt, he requires no agrnts. A large number of bridges of his construc ion are In luiscon. Yourg genlemen, who wish, can be instructid in the true mattenatical principles of huiding bridges, and the application ol the same to practice... JOHN JOHNSUN.
Burlington, I't, Jan. 1838,
Fl4f

NOTICE TO CONTRACTORS.

Sealed proposals will be received by the unaersigned, Acling Commissioner of Public Works, for the 5th Judicial Circuit, Illinois, at his uffico in Canton, F'uiton county, on Tues. day, the 17 th day of A pril next, until 4 'oclock, P. M of that day, for the Gradirg, Bridging and Masonry of iwenly-four miles of the Peo. ria and Warsaw Railroad; extending from Peoria, on the Illinuis river, twelve miles wert and from Warsaw on the Mississippi, twelve miles east.
Scaled proposale will also be received at the Fngineer's oflice. in Quincy, Adams county, llininois, on Monday the 23d day of April next, until 4 o'clock P. M. of that day, for the grading, bridying and masonry, of the Nurthern Cross Railroad, exteuding from Quincy to Columbus.
Plan and profiles, logether with specificalions of the manner of executing the work, will lre exhibited at each office ten dinys previsua to the days of letling. The porlions of the above work to be put under contract are expensive, requiring a lange amount of hraivy excavstion and embankraent. They will be divided into sections of about one mile in lengit.
Contractora will be required to make an ef ficient commeneement of iherr respelive jobs within sixty days afier the letting and to have them fully completed on or befure the first day of Augusi, 1839.

Recominendations will be expected in all cases in which the contractor is not personally known to the undersigned, or the associate conmmissioner attending the letting.
The country is dry, healthy, and well settled; provisions are easily procured, and as the abuve with the other works recenily let, and now offered by tire different commissioner of the State to be let next spring, a re the commencement of the exiensive system of Internal Impravementa projected by the State of Illinois, it is worthy of the attention of coutractors abroad.
J. WRIGHT,
dcling Commissioner, 5 th Judicial Circuit, Canton, Iilinois, Jau. 9, 183子.

AGENCY.

The Subacriber offers his services as Λ gent, to procure Machinery for Nills, Steam Engines, Losomotiees, Printing Machines, Presses, Gines, Losomotices,
Types and F rixteses.
He will give prompt attention to all orders entrusted to him for execution; and pledges himself to those who may employ him, that no affort on his past shall be wanting to procure the best artieles to be had in the city-and to give satisfaction.

He will also employ Millwrights and Engineers, to erect Mills, and put the Eagines and Machinery in operation.
Orders aecompanied with the necessary funds, or satisfactory city acceptanees, should be addressed to D. K. MINOR, 30 Wall-st. N.Y.

LOUISVILLE, CINCINNATTI, an

CHARLES'ION RAILROAD.

NOTICE TO CONTRACTORS.-Sealed Proposals will be received at the Ofice of the Company in Columbia, S. C., until the 15th day of Febraary next, for the graduation and masonry of that portion of the Road from Columbia to the crossing of the Congaree River, in the vicinity of McCord's Ferry, being 25 miles in extent.

Also, for the construction of a Bridge of 400 feet in length, on the Congaree River, to be built on stone piers and abutments, for which there are suitable quarries in the neighborhood.

The plans and profiles of the line will be ready for inspection at tho Office ot the Resident Engineer, in Columbia, S. C., after the 10th dey of February.

So soon as the survoys for location, now in progress, are completed, that part of the Road extending from McCord 's Ferry to the Charleston and Hamburg Railroad, at Branchville, will be put under contract, of which due notice will be given.

WM. GIBBS Mc NEILL,
Chief Engineer.
疐The Railroad Journal, N. Y. Courier \& Enquirer, N. York ; Providence Journal, Providence, R. I.; Atlas, Boston; Philadelpia Enquirer, Philadelphia; will publish the abovo notice 6 times, send a copy of the paper to the Office in Clarrlestou, S. C., and a certified copy of their account for payment

Jan. 12
fow 6

NEW ARRANGEMENT.

mopes for inclined planes of railioads.

WE the subseribers have formed a co-partnership under the style and firm of Folger \& Coleman, for the manufacturing and selling of Ropes for inclined planes of railroads, and for other uses, offer to supply ropes for inclined planes, of any length required without splice, at short notice, the manufacturing of cordage, heretofore carried on by S. S. Durlee \& Co., will be done by the new firm, the same superintendent and machinery are employed by the new firm that wete employed by S. S. Durfee \& Co. All orders will be properly attended to, and ropes will be shipped to any port in the United States.
12th month. 12th, 1836. Hudson, Columbia County, State of New-York.

ROBT: C. FOLGER.
83-4
GEORGE COLEMAN.

AMES' CELEBRATED SHOVELS,

 SPADES, \&c.300 dozens Ames' superior back-strap shovels.
150 do. do. do. plain do.
150 do. do. do. casisteel Shovels \& Spaues 150 do. do. Gold-mining Shovels. 00 do. do. plated Spades.
50 do. do. eocket Shovels and Spades
Together with Pick Axes, Churn Drills, and Crow Bars (steel pointed), manufactured from Salisbury refined iron-for sale by the manufacturing agents, WITHERELL, AMES \&CO.

No. 2 Liberty street, New-York. BACKUS, AMES\&CC.

Fo. 8 State-8treot: Albany.
N. B.-Also furnished to order, Shapes of every deacription, made from Salisbury refined Iron. v4-if

MACHINE WORKS OF ROGERS, KETCHUM AXD GROSVENOR, Paterson, New-Jersey. The ondersigned receive orders for the following aricles, manufictured by them, of th. most superior deseription in every paricular. Their works being extensive, and the nuniber of bonds employed being large, they are enabled to execute both large and small orders with promptness and dispatch.

RAILROAD WORK.

Locomotive S:eam-Engines and Tenders; Driing and uther Locomotive Wheels, Aales Spring* and F lange Tires; Car Whee!s of cast iron, from a variety of patterns, and Chills $;$ Car Wheels of cast iron, with wrought Tires; Axles of best American refined iron; Springs; Boxes and Bolts for Cars.
COTTON, WOOL, \& FLAX MACHINERY O all deseriptions and of the most improved pat. terne, Style, and Workmanship.
Mill Geering and Millwright work generally; Hydraulic and other Presses; Press Screws; CalHydraulic and other Presses; Press Screws; Cal-
lenders; Lathes and Tools of all kinds; Iron and Brass Castings of all descriptions.
ROGERS, KETCHUM \& GROSVENOR,
Paterson, N. J. or 60 Wall-st. New-York
51 ff

FRAME BRIDGES.

THE undersigned, General Agent of Col. S. H. LONG, to build Bridges, or rend the right to others to build on his Patent Plan, would respectfully infurm Railroad and Bridge Corporations, that he is prepared to make cohtracts to build, and furnish all materials for suyerstructures of the kind, in any part of the United States, (Maryland excepted.)
Bridges on the above plan are to be seen at the followirg localities, vix. On the main road leading from Baltimore to Washingion; two ailes frem the former place. Across the Motawamkeay river on the Military road in Maine. On the national road in Illinois, at sundry points. On the Baltimure and Susquehanna Railroad at three points. On the Hudson and Paterson Railroall in two places. On the Boston and Worcester Railroad, at several points. On the Boston and Providence Railroad, at sundry points. Across the Contoocnok river at Hennkar, N. H. Across the Souhegan river, at Milford, N. H. Across the Connecticut river, at Hancocd, N. H. Across the Androscoggin river, at Turner Centre, Mafne. Across the Kenneliec at Turner Centre, Malne. Across the Kennelvec
river, aterville, Maine. Across the Genesee river, at Squakiehill, Mount Morris, N. Y. Across the White River, at Hartford, Vi. Across the Connecticut River at Lebanon, N. H. Across the mouth of the Broken Straw Creek, Penn. Across the mouth of the Cataraugus Creek, N. Y. A Railroad Bridge diagonally across the Erie Canal, in the City of Rochester, N. Y. A Railroad Bridge at Upper Still Water, Orono, Maine. This Bridge is 500 feet in length; one of the spans is over 200 feet. It is probably the firmest wooden bridge ever built in America.
Notwithstanding his preseet engagements to build hetween twenty and thirty Railroad Bridges, and several common bridges, several of which aro now in progress of construction, the subscriber will prompily attend to business of the kind to much greater extent and on liheral terms.

MOSES LONG.
Rochester, Jan. 19th, 1837.
4-y

STEPHENSON,

Builder of a superior style of \boldsymbol{P} assenger
Cars for Railroads,
No. 261 Elizabeth street, near Bleceker strect, NEW-YORK.
RAILROAD COMPANIES would do well to examine these Cars; a specimen of which may be seen on the New. York and Harlaem Railioad, now in operstion.

ROACH \& WARNER,

Manufacturers of OPTICAL, MATHEMA TICAL AND PHIL(ISOPHICAL INSTRU MENTS, 293 Broadway, New-York, will keep eonstaolly on hand a large and gencral assortment of Instruments in their line.
Wholesale Dealers and Country Merchants sunplied with SURVEY1NG COMPASSES, BÁROMETERS, THERMOMETERS, \&e. \&c. of their own mannfacture, warranted accurase, and at lower grices than can be had at any other cutablishment.
is Istrumente made to order and repaired.

RAILWAY IRON, LOCOMO'TIVES, \&c. \&c.
THE wbscribers offer the following articles for sale:Railway Iron, flat bars, with conntersunk holesand mitred joints, lbs

$\begin{array}{lllllllll}80 & \text { " } & 14 & \text { " } & \text {, } & \text { " } & \text { " } & 1128 & 4 \\ 90 & \text { " } & 1 & \text { " } & \frac{1}{4}, & " & \text { " } & \text { " } & 2\end{array}$
$\begin{array}{ccccc}90 & \text { " } & 1 \text { " } \\ \text { witn Spikes and } & \text { Splicing Plates a dapted thereto }\end{array}$ To be sold free of duty to State gevernments, or incorporated companies.
Orders for Pennsyivania Boiler Iron executed.
Rail Road Car and Lócom tive Engine Tire wrought and turned or unturned, ready to be fitted on the wheels, viz. $30,33,36,42,44,54$, and $C 0$ inches diameter.
E. V. Patent Chain Cable Bolts for Railway Car axles, in lengtis of 12 feet 6 inches, to 13 feet 2d $2 \frac{2}{3}, 3,3 \frac{5}{5}, 34,3 \frac{1}{3}$, and $3 \frac{1}{2}$ inches diameter.

Chains for Inclined Planes, short and stay linke manufictured from the E. V. Cable Bults, and provel at the greatest strain.
India Rubber Rope for Inclined Planes, made from New Zealand Wax.
Also, Patent Hemp Cordage for Inclined Planes, and Canal Towing Lines.
Patent Felt for placing between the iron chatr and stone block of Edge Railway.
Every description of Railway Iron, as well ae Locomotive Engines, imported at the shortest notice, br the argency of one of onr partners, who resides in England for this purpose.
A highly respectable American Engineer resides in Eiggland for the purpose of inspecting all Luennotives, Machinery, Dailway lron, \&c. ordered hrough us.

28 tf
A. \& G. RALSTEN \& CO,

Philadelphia, No. 4 South Front-st.

ARCHIMEDES WORKS.

(100 North Meore-strect, N.Y.)
THE undersigned beg leave to inform the proprictors of Rail Roads, that they are prepared to furnish all kinds of Machinery for Rail Roads, 1 ,ocomotive Engines of any size, Car Wheels, such as are now in successful operation on the Camden and Amboy Rail Road, none of which have failedCastings of all kinds, Wheels, Axles and Boxes, furnished at the shortest notice.
H. R. DUNHAM \& CO.

NewYork, February lith, 1836.
4-yls

PATENT RAILROAD, SHIP AND BOAT SPIKES.

${ }^{* * *}$ The Troy Iron and Nail Factory kceps con ${ }^{-}$ stantly for sale a very extensive assorument o Wrought Spikes and Nails, from 3 to I 0 inchee, manufactured by the subscriber's Patent Machinery, which after five years successful operation, and now almost universal use in the United States, (as well as England, where the subscriber obtained a patent) are found superior to any yet ever offered in marker.
Railroad companies may be supplied with Spihes having conntersink heads suitable to the boles in iron raile, to any amount and on short notics. Ab most alt the Railroads now in progress in the United States are fastened with Spikes made at the above-named factory-for which purpose they ase found invaluable, as their adhesinn is more than double any common Spikes nade by the hammer.
*** All orders directed to the Agent, Troy, N.Y. will be punctually attended 10.

HENRY BURDEN, Agent.
Troy, N.Y, July, 1831.
** Spikes are kept for sale, at factory priceor by \& J. Townsend, Albany, and the principal lron Merchanta in Albany and Troy; J. I. Brower, 222 Water-street, New-York ; A. Nı. Jones, Philadel phia; T.Janviers, Baltimore; Degrand \& Spith, Boston.
P. S.-Railroad companies would do well to forward their orders as early as practicable, as the subscriber is desirous of extending the manufacturing 80 as to keep pace with the daily increaning demand for his Spikes.

1123 am :
H. BURDER
G. Mitchell, Printer, 265 Bowery; N.Y

ADVOCATE OF INTERNAL IMPROVEMENTS.

PUBLISHED WEEKLY, AT No 30 WALL STREET, AT FIVE DOLLARS PER ANNUM, PAYABLE IN ADVAN゙CE.
D.K. MINOR, and
GEORGE C. SCHAEFFER, $\left\{\begin{array}{l}\text { Editors and } \\ \text { Proprietors.] }\end{array}\right]$

CONTENTS.
Repert of the Auburn and Rochester Railroad Co. First Annuai Report of the Enstern Raifroad Co Croton Water Works,
Raft of the SL. Francis-Inundated Lands,
Miscellaneous trems,
Advertisements

NEW-YORK, MARCH 21, 183\%.

REPORT TO THE DIRECTORS OF THE AUburn and rochester rall road com-
PANY. by R. Higham, engineer, \&c.
To the President and Directors of the Auburn aud Rochcster iaailroad Company:
Gextemen,-Fully appreciating the importance of an early completion of so important a work as this Railroad must be, and to satisfy the anxiety of the travelling puislic, and those interested in the stock, in relation to what progress has been made towards so desirable an object; I an induced thus early to submit the following report, and estimates of the eost, together with the accompanying rough map and profile.:

Not conceiving it good policy to make a comparative estimate of the several routes surveyed, at this early stage of the work, I do not recommend that on which the estimates are made, as the best or cheapest route that can be selected, or that has been surveyed; but as one that can be taken, provided none of the others should prove more advantageous to the Company.

We shall be able to pass the whole distance, between Auburn and Rochester, without having any grade to exceed twenty-eight feet ascent or descent, per mile, and that without any very deep cuttings on the summits, or high embankments in the valleys. The curves, generally, will be of a large radius, only one being as low as 1000 feet.
The route estimated upon, commences at the termination of the Auburn and Syracuse Railroad, and passes throngh the several places mentioned in the charter, to wit: Seneca Falls, Waterloo, Geneva, Vicnna, Canandaigua and Victor, and extending to a point on the west side of the Genesce river, in the central part of the city of Rochesterwhere the Tonawonda Railroad can be

SATUKDAY, DECEMBER 23, 183%.
VOLUME VI.-N゚. 51:
(Publisl.ed March 21, I838)
connected with it, hy a route that admits of using locomotive power to the junction of the two Roads, and without crossing or passing through any important street in that city. The distance from the village of Auburn to the city of Rochester, by this route, will be $78 \frac{1}{2}$ miles.

The work throughout, will be of a plain and easy character, without any heavy rock excavation, or expensive river walling, and with as little perishable structure us perhaps any Road of the same extent in the United States. The superstructure of bridges over the Erie and Scneca canals, the Seneca and Genesee rivers, and some others of minor importance, (the cost of the whole amounting to $\$ 19,190$, in fact, constituting the only perishable part of the road; and allowing that this wiH require anexpenditure equal to ten per cent. per annum, on its cost, to renew and keep it in repair, will only amount to $\$ 1,919 \rightarrow$ a mere nominal sum for repairs, on so great a work. This permanency in the character of the work, will unquestionably be a consideration of great importance, with those who wish to have their money invested in stocks that will yield them an annual return of profits, instead of having it consumed in continual repairs.

The grading for that portion of the route which lies betwcen the village of Aubirn and Seneca Falls, is through gravel and clay soils; for the remainder of the distance it is generally through loam, sand and gravel, and at three several points some slight lime-rock cuttings, but not more than will furnish the necessary quantity of stone to be used for culverts and bridge abutments in their vicinity.

The character of the masonry, 1 have estimated to be of plain, rough, hammerdressed stone work, laid in quicklime mortar. [The quantity and prices, as per the accompanying estimates D. E. F. and G.]

The item of Land for the road-way, usually a heavy one, I am confident can, on this route, be procured at a reasonable rate. This is evident, from the progress already made in procuring releases, the favorable character of the country admitting of the selection of rarious routes of about the same feasibility, whereby scetions can be avoided in
which combiuations to extort exorbitant prices from the Company might be formed, (but which I am happy to say, there is no apparent disposition to do ;) and also from the peculiar circumstances of the country, which require greater facilities for carrying off its surplus produce, and making the location of the road a desirable object to every, section, and the interest of individuals to give, or sell their land to the company at a very moderate price. Through the progress of the surveys, where opportunity and time admitted, conditional releases and contracts have been procured on the different routes. On the route estimated, there are $\mathbf{2 3 3}$ Landholders, (exclusive of owners of village lots,) of whom 89 have released, or coutracted for prices not exceeding the value per acre of their whole farms. In the city of Rochester, grounds have been secured to the Company (gratuitously) for a. depot at the termination of either of the routes surveyed; and throughout the line at the several villages, the importance of the location of the depot, for a great freight and passenger Railroad, it is thought, will create competition among diferent interests that will secure to the Company a sufficiency of lands, at a reasonable compensation. The prices estimated for the several depots, are considered sufficient to include the necessary lands.
The follow ng estimates are made for grading and masonry for a double track -the first track to be laid immediately, the second track as soon after as requisite. Considering this as one of the links in the great chain of Western Railroads, from Boston to Buffalo and the "far West," the estimates are made on a scale of corresponding character and magnitude, to accommodate the business of this great and increasing thoroughfare; and nothing short of a double track will, in my opinion, be adequate for any great period.-This is indicated by the fact, that the travel on the Utica and Schenectady Railroad, (which forms another link in this same chain.) already requires the second track, to do the busimess of carrying passengers only; and the fact, that the 'Ionawanda Railroad, (from Rochester to Batavin,) with its presen accommod uions, law tug only a single track, is matequate to the busi-
ness, although trains of cars run day and night.

The subject of wooden superstructure, from its importance, has occupied much atteution. From the experience of the present day, there can be no question, that a combination of timber and iron makes, under all circumstances, the preferable road for this climate. The greatest objection to roads of this character, is the large amount of perishable materials used in their construction, as all the difierent kinds of timber that can be procured in sufficient size and quan. tities for rails, are not of a durable nature; and from their exposed situation near the surface of the ground, they must decay very rapidly. It is found, that in ordinary cases, the common timber of the country will require replacing, on anl average, every six or seven years.

The following plan for a durable superstructure, is suggested for your consideration, as a better and cheaper road than the common modes: The sills to be 4 by 12 inches, well bedded; the top surface four inches below the grade of the road : on the sills are spiked crossties of red cedar, three inches thick, of any width not less than 4 inches, and fwo feet from centre to centre. Between the cross-ties are red cedar blocks, 3 by 6 inches, and one foot long, leaving spaces between the tics and blocks, not exceeding 8 inches. Upon the blocks and ties, and under the rail plates, is a locust ribbon, one inch thick and three inches wide, to raise the iron rail, and clear the flanges of the wheels from the ties. Upon the locust ribbon is placed the rail plate, one inch thick, $2 \frac{1}{4}$ inches wide on the bottom, and two inches wide on the top. The spikes to pass through the iron plate, the locust riblion and the ties, into the sills, confining the whole together.

The locust and cedar being durable beyond any experience, may be considered, practically, as permanent as the iron. The sills may be of any timber of the country; being bedded in tho earth, and remaining moist and free from the action of the atmosphere, they will last for a great length of time. The bearing between the ties and blocks being so small, the plate and ribbon will be abundantly strong for any weight that can at any one time be brought upon thein. Their spikes being one foot from centre to centre, and passing into the ties and sills, would have an equal or greater hold to keep the rail in its flace, than in the common wooden rails. It is believed that the increased size of the rail-plate will be materially important in giving stability to the road, and will be more than sufficient to compensate for the large wooden raik, in keeping the road firm and in place.

The accompanying estimates show that at the same prices for materials, a permanent road, after this plan, can be constructed for less money than the ordi-
nary road, and will not require more repairs than an iron and stone road.

The following tabular estimates give an aggregate.*
For excavation and emf
bankment, $(3,398,014$
cubic yards,
$\$ 373,272.27$
"Masonry in Culrerts and Bridges, $(6,192$ cubic yards,)
$35,213.00$
"Supersiructure in Bridges, (1,865 Linear ft.)
$19,190.00$
For Grubbing \& Clearing,

7,36500
"Lands, damares for remov'g buildings, \&c
"Road crossings and cattle guards,

Making a total for Girading, Masonry,\&c. of For 156 miles of fencing " $78 \frac{1}{2}$ miles of superstructure for a single irack, at $\$ 1,369,70$ per mile,
$50,9 \subseteq 000$
6,885.00

Total amount for groding, fencing, and superstructure,
\$492,915.27
37,440.00

343,02 1.45

Depot Buildings and Machinery.

Depot in the village of Auburn,
" in the villages of Cay. uga Lake, Seneca Falls, Waterloo, Ge. neva, Vienna, Manchester, Canandaigua and Victor,
" in the city of Rochester,

8 Locomotive Engines at \$7,000,
50 Passenger Cars, at $\$ 1,000$
100 Freight Cars, at 8250,

Engineering and Superintendence,

Making a total for 731 miles, of or $\$ 14,030.27$ per mile, graded for a double track, and a single track laid; or $\$ 18$, 39997 per mile for a double track complete and a to:al of

* Nork.-The detailed estimates, being very voluminous, are omitted in this publication. The excaration and embankments average 11 cents per yard. The masnory averages nearly $\$ 6$ per yard, inclading foundations. The bridging, $\$ 10,50$ bur Lincar fivet.
$81,101,376.72$

Some time has been expended in eollecting data from which to form an estimate of the number of passengers, and the amoun: of freight which must be conveyed over this road. The number of passengers in stages has been ascertained from the books of the stage pro-prictors- the amount of freight, generatly, from the persons receiving it. The estimale of the number of passengers ibat pass in freight boats, a large proportion of which will be drawn to this roat, was furnished by the politeness of Jolin Allen, Esq., forwarding merchant, of Rochester. "The number on the packet boats between Rochester and Syracuse is from the books of the Packet Buat Company.

The way-passengers not nscertained, and those travelling in private carriages, that would take this road when completed, have been estimated by those who have long been conversant with the travel of the country, and from my own observation; and certainly may be considered as noi overrated. The increased travel on this route has been, for the last 30 years, 20 per cent a year; this must continue to ircrease from year to year, and will more than compensate for any diversion that may be made in the travel from this great thorolighfare to other routes of less natural advantages. The natural business of the country, independent of that which the facilities of this road would invite from other points, would in a few years be amply sufficient to justify a more expensive structure.

It must be borne in mind, that these estimates are niade from the actual travel and tonnage for the past year. It is not a speculative view of what might be done on the road, but that which is now being done, and which the great facility furnished by this road, will draw to itself. The time for which these estituates are made, embraces a portion of one season from Sept. 1836, to Jan. 1837, which was perhaps more than an average of the usual business for any corres. ponding period; but for the remainder of the year, to Sept. 1837, it was enough less to make up for any excess in the early part of the year ; and this time was selected as furnishing probably the near. est approximation to thejactual traveland tonnage that could bc had.

Estimated Revenue.

8,776 passengers west (as. certained from the stage offices) that would pass over the road at $\$ 3.00$
8,046 ditto passing east, at $\$ 3.00$
$826,328.00$
$\$ 3.00$
24,138,00.
4,000 dilto passing east from Rochester as above at $\$ 3.00$
4,000 ditto passing west from Rochester,al83.00

12,000.00 from Rochester by Pal , myra to Geneva, 50
miles, at $\$ 2,00$
3,000 ditto west from Geneva, as above, at $\$ 2,00$
2,400 ditto from Geneva 10 Palmyra by stage to take caral west, (50 miles per Railroad tó Rochester at $\$ 2,00$)
3,500 passengersin packet boats to and from Geneva east. 25 miles, at $\$ 1$,
19,500 passengers, by 3 lines of packet boats between Rochester and Syracuse that would take the railroaut, at 83,
The number of passengers per annum, as per Mr. Allen's statement, in line boats on the Canal, amounts to 94,500 . Allowing that one-fourth of this number, or 23,625 will take the first class of cars, at $\$ 3,00$,
Say one-fourth more will take the 2 d class cars at $\$ 1,50$,
(It is found on the Canal from Schenectady to Utica, that more thar three-fourths of the travellers take the Railroad in the first class of cars.)
The way passengers from the villages along the route, are estimated at 4 per day each way, and 4 more that travel in private carriages, will make 5,840. Admit they travel on an average over half the road, $\$ 1,50$ each,

8,760.00
Making a total for pass'gers \$263,538.50 freight.
Freight ascertained to have been transported from the Canal to points on the Railroad, and which would take the Railroad when completed, the prices the same as now paid.
$1: 1,604$ tons to the village of Vienna, as (per statement) at $\$ 1,00$,
45,000 barrels of flour, pork \&whiskey, from Bates's, Chapin's and Short's mills, to the Canal, at $12 \frac{1}{2}$ cents,
705 tons merchandise to Canandaigua, at $\$ 2,00$
2,000 barrels of salt to Ca nandaigua, at 22 cents,
100,000 bushels of wheai from Canandaigua to Chapin's, Bates's, and Short's mills and to the canal, at 3 cents,
12,600 barrels flour, whiskey, \&c. from Victor and Fredon, at $12 \frac{1}{2} \mathrm{cts}$.

5,625.00
1,410.00
440.00

3,000.00
$1,575.00$
$6,000.00 \mid 110$ tons merchandise to
do. do. at $\$ 1,25$,
$6,000.00$ i 700 barrels of salt to do. do. at $\$ 12 \frac{1}{2}$ cents.
Add to this, for plaster to be cousumed along the line of the Road, and also for the towns of Bloomfield, Mendon,\&c. to which this road would be the nearest channel, estimated at 20,000 tons annually, at $\$ 1,00$ per ton.
10,000 tons merchandise, wheat, \&s. as above, at $\$ 1,00$,
As soon as the Blossburgh Railroad is completed, a large amount of coal will be furnished at Genera for the places bordering on the Road, which may be es:imated at 20,000 tons annually, at $\$ 1,00$ per ton,
Transporting great western and side mails,
137.00

S7.50
$20,000.00$

10,000.00

20,000 00
20,000.00
Making a total for freight
and passengers of
$\$ 361,517.50$
The numerous items, and the many incidental expenses embraced in the expenditures for managing a railroad, which cannot be foreseen or calculated with accuracy, may be estimated from the experience of other roads. The Utica and Schenectady Railroarl Company have, as appears from a report of the President to the stockholders, taken some pains to keep an accurate account of the expense of managing their road, which amounts to $\$ 72,000$ per annum.

This road being of about the same extent as the Utica and Schenectady, I have calculated that the expense would be nearly the same.

Deducting from the above revenue,
For managing Road per annum,
" clearing ditches, renewing bridges, and leveling Road in the spring, " any incidental expenses

10,604.00 Total for managing Road, $\quad 90,000.00$ Which deduct from revenue, 361,517.50

Leaves an income of ($\$ 271,517.50$ or nearly nineteen per cent. on the estimated cost of the Road, for a double track complete.
These estimates are made with confidence, and may be relipd upon by the stockholders; who cannot but be satisfied with the prospects of the Company; and should feel confilence in prosecuting the work with the utmost energy to a final completion.

> Respecifully submitted, R. Hıghas,
> Engineer and Commissioner. Canandaigua, Oct. 3, 1837 .
10.000.00
8.000 .00
$872,000.00$
harge of kindred improvements, and li beral capitalists in various parts of the beral capitalists in various parts of the
Union, and, with a view to demonstrate the natural adrantages of the work, and the peculiar benefis conferred by the the peculiar benefis conferred by the
charter, and other enactments relating thereto, which give to it stronger assuThereto, which give to it stronger assu*
rances of extraordinary profit than are presented by any similar enterprise known in the country, they reepectfully submit the subjoined illustration:-
In the first place the location has been made, after surveying several routes, and critically taking the levels, by two brigades of Engineers under the immediate direction and supervision of Col. Kearney, the senior of the 'Topographical Department of the United States-an officer of great experience, and approved intel-ligence-and without cost to the Com. pany-the entire expense having been defrayed by the State and General Governments. A view of the map will show that it is the most dircet line along operations by enlightened individuals in harge of kindred improvements, and li-
first annual report of the stockholders of the ehstern railroad co. To the Stockhorders of the Eastern Railroad Co:

In submitting their first annual report, the Directors have pleasure in assuring you that the requisites of the charter, and other enactments relating thereto, have been strictly complied with in goad faith, as will appear by reference being had to the archives of the Executive and Trea ${ }^{2}$ sury departments of thie State-and that appropriations have been made, out of the funds received from the private Stockholders, to pay the expenses incident to the subscription, and the organization of the Company agreeably to law.
The Directors have also contracted for a portion of the real estate required. for the uses of the corporation, on lcasc, including buildings sufficient for the convenient accommodation of the board, and the business of the several offices of the Secretary, Treasurer and Agent, as well as for those of the Engineering depar:ment, and spacious cellars and store rooms for the material of the Company to a large extent. This was esteemed the most eligible arrangement, as a considerable capital would thereby be reserved for any possible deficiency - and the property being altogether appropriate, and immediately ready, the valuable time which would otherwise be consumed in the construction, and the cost of supervision, would be avoided. So that the Directors will be prepared, after having received the first payment on the State's subscription for one million of dollars, to proceed in the work with alacrity and vigor to its earliest practicable completion, which is considered as highly important to the interests of all concerned-and they cannot doubt of that continued observance of the public faith, which has heretofore characterized the fiscal concerns of Maryland, in its engagements under all the obligations of a solemn contract.

The Directors have been cheered by intelligence of the interest taken in their
the maritime coast from Florida to Phi-ladelphia-and the report of the Engineer in Chief proves it to be the most exdeditious, comfortable and cheap. By referring to the enactments it will appear that the granted powers are free and ample. They are perpetual, and forever exempl from laxation-but a peculiar benefis is to be found in the fact that although the State is apparently a stockholder, for four-fifths of the capital, she is in effect no stockholder at all-but a liberal furmisher of four-fifths of the funds at common interest, and that charge is not to commence until the expiration of three years from their being so furnish-ed-the one-fifth only, belonging to the private proprietors, being in truth the actual capital for dividends-and as the work, with its motive power, and all appurtenances, (including the steamboat distance of eighty-six mites from Portsmouth in Virginia to the Southern terminus of the Eastern Shore peninsula of Maryland, which is provided by nature, according to the estimate of the Engineer adopted by the Company and approved by the Executive of the State, will cost but six thousand dollars per mile, of which the proportion of the private proprietors, (one-fifth part thereof,) is tuelve hundred clollars, being only about a tucentieth part of th: cost of sevcral existing Railraads-sonsequently the receipts would yield to them a dividend of five per centum would give the Eastern Shore improvement one hundred, or an annual duplication of the capital.
The following table will exhibit the distribution of interest and dividends according to the act of 1835 , chnp. 395, which authorises the investment on behalf of the State-in the concluding sentence of section 9 of which act it is declared that "any excess of dividends on the capital stock of the State, above six per centum, shall be distributed to the other stockholders of the Company."

table I.

per cent. Capital. Liabilities. to State. Dividends.
$6 \quad 1,250,000 \quad 75,000 \quad 60,000 \quad 15,000$
12 1,250,000 150,000 60,000 90,000
24 1,250,000 300,000 60,000 240,000
So that the proportion distributed as interest to the State being limited at 6 per cent. remains stationary, whilst the dividends of profits to " the other stockhol. ders" increases rapidly. In this statement the capital is fixed at an even sum, and will be so throughout for the greater facility of demonstration.
Seventy-five passengers per trip each way per day at ten dollars will give for the year five hundred and forlyseven thousand and five hundred dollars - say
$\$ 547,500$
Which being apportioned according to the act referred 10, will be as follows-to wit :-
To the State for in-
terest on $\$ 1,000$,-

000-at 6 per cent. 60,000
" the other stockhol-
ders $3^{\prime \prime}$ on 250,000-
" 100 " -250,000-310,000
Will leave a surplus of two
hundred and thirty-seven thousand and five hundred dollars-
$\$ 237,500$
for expenses and contingencies.
Assuming ten dollars (including the loll, or transportation, from its northern termination, to be paid by the Company) as sufficient for the entirc distance from Norfolk to Philadeiphia, which is cheaper than can be afforded on any other route, the following statement will show the result of certain numbers of passen. gers per trip each way for the year-to wit :-

TABLE If.

Passengers	Amount		
$\mathbf{2 5}$	182,500	25	120,000
50	365,000	50	240,000
75	547,500	100	237,500
100	730,000	200	230,000
200	$1,460,000$	500	210,000
400	$2,920,000$	1000	420,000

The above, it is to be observed, is exclusive of avails to be received from the transmission of the mail, the transportation of troops, seamen, munitions of war, and other public property-(which may be sufficient, at least, to defray the charge of toll, or transportation, for persons or tonnage, from its northern termination)and also from merchandize and produce. Of the latter it is believed by intelligent gentlemen of the South, and Snי!h-! est, from whom communications have been received, that a large proportion of the cotton and other productions of Virginia, the Carolinas, Alabama, Tennesee, and even Mississippi, would pass on this cheap and expeditious roule fur exportation, or for manufacturing, in the North and East. The receipts from tonage of such produce might cover the cost of repairs-and pay, perhaps, the six per cent. on the capital furnished by the Treasury.

The million of dollars supplied by the State might in fact, be regarded as a donation, as the interest reserved, is less than the tax imposed on some Railroads, it amounts to only about two hundred and fifty dollars per mile, whilst that on the branch from Baltimore to Washing. ton exceeds a thousand.

The cost of repairs of the Eastern Shore Railroad will, as well, be comparatively small-being built of durable timber, which abouds along the line, it will need but little reparation for several years. And beirg on the level surface, its structure will be always visible and accessible. And, being without deep cuts, it will be exempt fiom slips and slides, and other vexatious causes of heavy expenditure and embarrassment.

By recent information from high authority it appears that upwards of fiftysix thousand persons travelled in the steam packets between Charleston and Norfolk is 1835, with a subsequent annu. al increase of some eight or ten thou-
sand persons-and the Chief Engineer, in his general report, states that the truvel between Chimrleston and Sarannah and the northern cities alone a mountel to between sixty and seventy thousandthese accounts are corroborative.

Many beliere that the travel of the Peninsula alone will of itself be twentyfive per day. Such passengers, however, would not pay the full ten dollars-but the transportation of the local produce might make up the difference.

Persons coming from the South and South-west and going to the North, (besides those in the lines from Savannah and Charleston, who would of course proceed direct to Portsmouth or Norfolh ${ }_{2}$) will concentrate at Roanoke, and there decide between the Western and Eastern shore routes-that decision, as the Engineer remarks, "the friends of the latter vil' willingly leave to the traveli'er'-as from the defections both vertical and horizontal of a cunsiderable part of the furmer, and the detention by stoppages at the different towns-it may be safely affirmed that Philadelphia may be sooner reached by the Eastern shore than Baltimore by the Western, and at much less expense-and mose particularly in winter, when the Potomac creek is rendered impassable by ice, whilst that from Portsmouth to 'Tangier is open and free, with very rare exceptions. The actual distunce to Philadelphia is considerably greater by the Western than the Eastern shore- and the difference is rirtually increased more than four-fold by the deflections and interruptions mentioned.

A winter port for shipping, especially with a view to deliveries of merchandise for early spring sales, has long been desired by those engaged in that commerce. This may be found at the Southern depot where vessels of burden may moor in safety near the shore, and where return cargoes may be in readiness, or speedily procured. The approach is in the direct line from Norfolk, and is plain and practicable at all seasons. So eligible a harbor, indeed, is rarely to be seen in this section of the Union. It is near to Tangier Cod, that beautiful basin in which the British fleet lay during the late war.From this point goods may be sent by the cara in a few hours to Philadelphia, and cargoes, if not already there, may lie brought from any of the ports of the Chesapeake, and particularly from Baltimore to load a ship without delay-and at an expense, for transportation, perhaps, but little exceeding the drayage from the latter city to the "Point," or place of loading-as, of the fleets of fine schooners lelonging to the waters of this county there are scores, and oftell hundreds, at Baltimore; many of which are always ready to return in ballast, and will bring flour, tobacco, naval stores, or other produce at moderate freights, or charter by the day, so that the sate may not exceed from five to ten cents per barrel.
Commodio is wharres and warehouses
will be constructed at the aforesaid southern depot.
The final report of the Enginees, made to the Commissioners for superintending the surveys and location, takes a minute and specific view of sundry matters immediately connected with the subject accompanied by estimates and illustrative drawiags, as well of the line proper, as of the severial improvements either cumpleted, or in the course of construction, or projecterl, which are calculated to contribute to its productive operations. This document has been reported by the Com. missioners to the executive, and by that department to the Legislature, by order of which it has been printed. Col. Kcarney was also ordered by the Senate of the United States, through the Secretary of War, to report to the General Government, and the maps, drawings and illusirations have been engraved to accompany his report to that Guvernment.

The following extract of a letter from the Chief Engineer is submitted for the purpose of presenting the opinion of that officer on the proposed improvement-to wit: "I congratulate you on the prompt completion of the subscription to the captal of 'the Eastern Shore Railroad Company.' It is, indeed, a great adventure, and there can be no reason to doubt of the ultimate, and ample, reward of those who have taken the shares of stock. The work has nothing to fear from com-petition-it must attract a very large proportion of the Southein and South-Western travelling-laying as it does, directly in their route, it will offer to them the cheapest, the most expeditious, and the most camfortable conveyance-and every traveller knows the influence of these temptations. The people south of the Chesapeake are alive to the success of the enterprise. The road will certainly pay largely with a comparatively small amount of business, as it has none of these severe absorbents of its receipts which characterise so many others-besides the cost of its motive power will be diminished in due degree to the gradua. tion-which may be reduced to a perfect level, or nearly so."

It may well be noted that the proposed connection of the great line of intercommunication between the north and the south, whilst incalculably benefitting the Eastern Shore, would net he without advantages to Baltimore, as it is well known that the mass of travellirs, before arriving at that emporium, are transferrel, on the Patapsco, from one steamboat to an-other-and it may be fairly anticipated that the increase of trade and navigation, to arise from the consequent improvement of the Perinsula by the operations of the Company, would infinitely exceed any probable diversion of personal inter. course.

An estimate of the time of travelling from Roanoke to Philadelphia is annexed, to wit:
A train of cars will leare Hali-
fax, in North Carolina, at 3
A. M., and arrive at Portsmonth, in Virginia, at 8 A. M., (84 miles.) allowing an hour for embarking baggage, \&c., in the steamer,
A steam packet will leave Portsmouth at 9 М. M., ar.d the passengers, refreshed by breakfast and dinner, on board, will arrive at Winter Port, Tangier, at 6 P. M., (86 iniles,)

10 hours.
And allowing an hour for debarking and moving baggage, \&c.,-a train of cars will leave the Port, and city of Tangier, at 7 P. M., and arrive in Philadelphia at 3 A. M., (160 miles,)

8 hours.
Total time of traveiling 330
miles-133 per hour-one
day, or
24 hours.
Respectfully,
In behalf of the Direstors,
John U. Desnis, President pro. tem.
Littleton Dennis Teackle,
Secretary pro.tem.

From the Evening Poto

1 noticed in your paper of the 9 th the proceedings of a meeting of the citizens of Westchester county in relation to the crossing of Harlaem River with the Croton aqueduct by inverted syphons. The ostensible ground of complaint set forth by the remonstrators, is that the proposed plan will destroy the navigation of the river, and thereby materially injure their interests. They state that the difference in the cost to the city between the original project and that now in contemplation will be only $\$ 509$, 718, of which " your memr,rialists insist that it would be inequitable in the extreme, for the purpose of saving to the taxable inhabitants of the city of New York the payment of $\$ 509,718$ to be divided among them-that some of your memorialists should be compelled to lose the large amounts of difference of value of their lands and farms being bounded upon navigable water." I have some considerable acquaintance with the valuo of lands bounded by the Harlem river, and also with the persons who have put their names to the remonstrance, and I hazard nothing in saying that the sum of money proposed to be saved by the commissioners would have purchased all the land in fee any way affieeted by the river, previous to its being purchased by a band of speculators in anticipation of this very difficulty of which they hope to avail themselves in the manner usual in such cases. This fact is notorious, nnd it is equally notorious that assessments for dimages to many of the individuals who complain has in many instances been exorbitant and unreasonable. It is said by many intelligent people that almost every man who has been paid damages as as. sessed, would have rather given the land than it should have taken a differeut dircction. Erery land-holder doubled
his valuation as soon as the surveyor's marks indicated the route through his ground; because he knew a great outcry would produce a great awurd of damages. The commissioners have fought their way through great difficulty; impositions of the most glaring description have been attempted, and their partial defeat has caused a rancorous feeling against them. But it is hoped they will nct be turned aside from their intrepid defence of their constituents against the rapacity of a band of hungry speculators, who desire the citizens of New York to make up by a donation of a "few dol. lars each; their probable losses in rash speculation." Of course my remarks do not apply to that portion of the remon. strants who "derived their lands from their ancestors long previous to the revolutionary war." But of this very class I will say, that they are now at their own expense creating an impediment to the navigation of the river, in the shape of a new bridge ${ }^{\text {* }}$ much more worthy of complaint than the syphons. And if you take them from the list of complainants, the sum of $\$ 509,718$ will now buy the soil owned by every signer of the instrument, provided you take the taxable assessment roll as the measure of value, or appraise the same at its sale value previous to the speculation in consequence of the anticipated increase by the passage of the aqueduct through that part of the county.
more anon.
A new bridge has been commenced, and is be-
ing built, for the exclusive accummodation of the inhabitants of "Morisania."

croton Aqueduct.

The attention of this community has been called to the plan recornmended by the Water Commissioners, for carrying the Croton Aqueduct across Harlem River; and in an article published in the American of the 9 th inst., they are charged, logether with their engineer, with incapacity and want of skill, in recommending iron pipes in preference to a high bridge of masonry. This is a work of too great importance to the welfare of our city, to allow any reasonable doubts to exist in the minds of our citizens of the efficiency of the plans the commissioners may adopt : and as experience is the best guide, we have thought the opinion of men of experience would be useful at this time. We have therefore been permitted to make the following extract from a letter written the 21 st ultimo, by Frederick Graff, Esq., the supeindendent and engineer of the Philadelphia water works, to the chief engineer of the New York water works. It will be recollected that Mr. Graff has been more than twenty years engaged on the Philadelphia water works, during which period they have erected the works of Fair Mount, which have justly been the pride of that city.

Mr. Gaff has probably had more experience in laying down inon pipes than any other man in this country, and as he
has received the unqualified approbation of his fellow dcitizens, his opinion, expressed without any reference to this controversy, and altogether unsolicited, must be entitled to great consideration.
" It is with much pleasure 1 acknowledge the receipt of your interesting report on the progress of your great work, and feel gratified that your plans meet the approbation of your citizens, who, I flatter myself, will, by your exertions, enjoy, in the course of four or five years, an abundant supply of pure water; the magnitude of your reservoirs, together with the various connections in the whole chain of the works, are such as cannot fail.
"The plan you have adopted in passing over Harlem River with iron pipes, is. in my opinion, preferable to the high aqueduct : the manner you have planned the whole structure, together with the arrangement of the pipes cannot but succeed to give a copious supply of water."

RAFT OF THE ST. FRANCIS.

(Abstract of a report in Congress by the Hon. A. G. IIarrison.)

About three hundred miles up the St. Francis, from its discharge into the Mississippi, commence the rafts of timber by which its navigation is obstructed. These rafts are three in number, the most extensive not exceeding one mile. They commence at the head of the back water on the St. Francis, from the overflow of the Mississippi; and if once properly removed, they would not probably again obstruct the channel. Like all other obstacles of a similar character on the western rivers, these rafts are formed of immense masses of heavy timber, piled up and driven compactly together; and in some portions, by the deposite of allu. vion, and the decay of vegetation, a soil of some depth has been formed upon them, supporting living trees, underbrush and herbage. In some places a person may cross the St. Francis without beholding any indication of the stream, or being conscious that he is in its ricinity. The river enters above, flows beneath the raft, and again issues below, as if it had just risen from the ground. Some of the rafts rise and fall with the varia. tions of the stream, like a floating bridge. The principal obstruction is opposite the lower extremity of West Prairie; but there are several smaller ones lower upon the stream, and on its various tributaries. In the vicinity of this raft lies an extensive swamp, some eighty miles in length, which, it is thought, may be reclaimed by a canal, which would cost $\$ 250,000$. A short distance below the raft, an extent of country fifty miles in length, and about thirty in breadih, was sunk to the depth of one hundred feet, perpendicular, by the earthquakes of 1811 and 1812. The effect of this was completely to destroy the channel of the St. Francis for thirty miles, its waters being divided into n number of small streams, none of sufficieat depth for na-
vigation. By filling up all those channels excepting one, and cu!ting that deeper, a good navigation might be obtained, it is thought:mist of the year for steamboats. The expense of this undertaking is estimated at $\$ 50,000$.
There is said to be something remarkable in the vast inundation between the St. Francis and the Mississippi. Prior to the earthquakes of 1811 and ' 12 , these bottoms were not flooder; but by that event, this whole ecction of country was so shaken and depressell, that the freshets of the St. Francis found their way across the interval to the Mississippi; yet, as a general thing, the banks of the latter strean exceed those of the former in height, by sixteen fect-a levee of a few fect altiturle would therefore be amply sufficient for every variation of the waters. The castern bank of the St . Francis, it is believed, should also be le. veed, for a distance of one hundred miles from its month, to prevent the back water of the Mississippi from overflowing the bottoms that lie between the streams, in time of flood. The probable expense of removing the rafts and other obstruc. tiuns to the na vigation of the St . Francis, as well as of constructing the necessary levees is estimatel at less than $\$ 200,000$, and the value of the territory redeemed at nearly eight millions! When the St. Francis is once cleared from obstructions to its navigation, it will present one of the noblest streams in the western valley-navigable for a distance of four or five; hundred miles through lands of unrivalled fertility. The redemption of this extensive tract-three hundred miles in length, and upwards of thirty in breadth, is a subject of deep interest to the State of Missouri. All her southern countics would be greatly profited; a navigable stream would tlow past every farm-the health of that region would be improved-the agricultural interests would be advanced, and 36,000 new fa. milies could be settled on lands, now deemed worse than valueless. This subject, we repeat, is one of vital importance to the southern sections of / Mis. souri, and we trust that her representatives at Waslington, will duly consider those measures, which may be introduced before our national councils, most conducive to her interests.

INUNDATED LANDS.
The point at which the Inundated Lands upon the Western waters, may not prove uninteresting. The point at which the Inundated Lands on the Mis. sissippi commence, is in the vicinity of Cape Girardeau, extending South-distance of one hundred and thirty-five miles parallel with, the river, at a mean breadth of twenty-t woniles, andembracing an area of about two millions of acres. These lands are overflowed by the floods of the Mississippi; but it is believed they may be drained by a canal, and rendered fit for cultivation ut an expense of $\$ 100$, 000. To effect this, it will not be neces-
sary to levee the banks along the whole extent of fthe Mississippi; but only at the head of La Croix Creek, one or two miles in length, and $n t$ an expense of $\$ 2$, 500.

With respect to the lands between St. Francis and the Mississippi, to which we have alluded in a former artic!e-in order to secure them from inundation it is depined necessary, that a levee be con. structed along the eastern bank of the latter stream, for one hundred miles, at an expense probably of $\$ 128,000$. The aggregata cost for works thought necessary to drain this extensive swamp, is estimated at $\$ 281,000$, and the extent of territory fit for culivation reclaimed, wonld be ahout two millions of acres. Between the town of Cape Girardeau and Helena in Arkansas Territory, there is a distance of two hundred and tifieen miles, not provided for in the estimate already made, along which levces will be necessary at an expense of $\$ 500,000$, and the land reclaimed will mmount in nearly five millions of acres.-The construction of a levee from Helena to the mouth of the Arkansas, along the White and the Mississippi rivers, will cost $\$ 300$, 000 , and reclaim about two millions of acres.
The extent of country between the Mississippi and, the Pine Bluffs on the Aıkansas, which is inundated at present is utterly valueless, is estimated at the enormous amount of about tell millions of acres. This immense tract may be redeemed by a levee on the Arkansas and Mississippi at an estimated expense of $\$ 600,000$. - A levee from the mouth of Red River to the northern boundary line of Louisiana, a distance of threehundred miles, would reclaim a large extent of Territory. As we descend the Mississippi the increase of inundated landa is so great, that an exact estimate of their extent is impossible; but an apropriation of one million of dollars, it is believed, will reclaim three and a half millions of acres. -There is said to be a tract of country embracing 675,000 acres of land lying between the Atchafalaya and Mississippi Rivers, two thirds of which belongs to the United States, which may be reclaimed and rendered fit for cultivation by a levee at an expense of 8125,000 . Between the northern boundary of Louisiana, and the Gulf of Mexico, the superficial area of inundated lands is estimated at five and a half inillions of acres, a very inconsiderable poltion of which has been reclaimed. By embankments of sufficient strength and canals, this tract could be reclaimed, at an expense of about $\$ 200,000 .-$ On the Mississippi above its confluence with the Missouri, there is a large body of land subject to inundation, extending more or léss along its whole course with the State of Missouri, which can be easily reclaimed at an expense 8100,000 . The quan. tity of land would probably amount to 300,000 acres, and of the most fertile characte?. The Missouri does not over-
f.ow the banks to a sufficient extent to descrie attention; and the most serious kifficulty a?tending the streant, is found in the numerous snags and drift heaps in its channcl. An appropriation of $\$ 50$, 000, it is believed, would render the navirelion safc.

The angregate quantity of inundated lands on the Mississippi, according to the estimates pointed in this Report, amounts to $23,469,260$ acres; of which abo't $11,234,630$ acres belong to the United States, and can be redeemed, from its present worthless state, at an expense at the highest estimate of abont $\$ 4.4000$, 000. The minimum value of the lands reclaimed would be abont $\$ 56,000,000$, leaving a balance of $5:, 000,000$. The quality of the land is said to be the finest on the globe, and the effect of draining them upon the health of the country, calunt be estimated too highly.-St. Louis Bulletin.

TRANSIT OBSERVATIUNS AT ST. JOHN'S college.
Preparations have been made at St. John's for the determination of the longitude, from the eclipse of the sun, on the 18 th of September next. This cclipse will be annular, at Annapolis, and will afford the best possible opportunity to find the accurate longitude of as many places in the United States, as may be favored by competent observers with the necessary instruments. A chronometer by Berlhoud has been provided, and the Theodolite is used, as a transit instrument, to ascertain its rate. Any occultations of standard fixed stars, which rnay occur, before the eclipse of the sun, will a!so be carefully observed: Ihe telescupe of the Theodulite, was placed in the plane of the nicridiar, by calcula. ted transits of Sirius, the actual time having been found from previous observations on the sun and stars by one of 'Troughton's sextants, with a perfect mercury horizon. The star was bisected by the vertical hair at the instant of its culmination. The position was afterwards verified by taking small equal azimuths and altitudes of the star, east and west of the meriaian, and then bisecting the intervening arc of the horizontal circle. This course was adopted merely for the convenience of observing at a southern window in the building, from which a favorable view can be liad, only of stare having considerable south declination. The method of Lunar distances has already given the longitude of St. John's as 76 deg. 33 m . approximately, or 5 h .6 m .12 sec . in time, west of Greenwich. The following is the method of applyiog the transits to the chronometer:
Example-Right ascen.
sion of Sirius, March
$5 \mathrm{th}, 1838$, increased by
24 hours,
h. m: sec.

Sidereal time, corrected
to this meridian,
$22 \quad 51 \quad 68 \quad 92$

Passage in Sidereal time, 7460240 Accelerating for the interval, 11656

Mean time of passage,
7444584
Time by the chironometer, 74454

Chronometer too fast,

816
The calculations for the time, from altitudes taken by the sextant, will be made by James P. Archer, of the class of Civil Engineers.- N. J. Republican.
specimen of frencir inventron.
Among the new joiut-stock companies which are starting up thick and threefold in the Erench capital, there is one of rather a morenovel character than usual. This is a "Navigation Company," which proposes to introduce into France those improved methods of communication in which, as the prospectus observes, she is far behind many other countries, but more especially England and America: to effect this object, or even to go beyond it, it is proposed to build a number of steamtowing vessels, some of a large size for the open sea, and others of smaller dimensions for the French rivers, with an immense fleet of ships and barges to be propelled by the former. The grand feature of the scheme is, that these vessels are to be constructed as to serve the purposes of conveyance by land as well as by water: the towing ships, when required, are to mount the railways as locomotives, while their convoy are to follow in the character of a "train."-Lordon Mechanuc's Mag.

红鱼 Volume Six will be completed as speedily as possible. The next, or Yolume for 1838 , will be published in a more convenient form for preservation.
**Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing them if we have them to spare.

0 Particular attention will be given to the procuring of all kinds of Instruments required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.

Warted on a Lease. - A good country place, with suitable out-houses, and from 5 to 15 acres of land, a shoit distance of the city. Enquire at this office.

For Sale.-A Level, made to order by Brown \& Hunt, and in first rate oriler. Enquire at this office.

[^53]
NOTICE TO CONTRACTORS.

 James River and Kanawha Improvement.PROPOSALS will be received at :he office of the Company, in the city of lichmond, until the 9th day of April next, for the conslruction of all the farm bridges between Richmond and Maiden's Adventure, and the dams across James River, situated respectively at the mouth of Tye River, Jushua's Falls, and Seven Islands.

The two first of the above named dams will be alout six hundred feet long, and about 14 feet high. The fuundations are of rock.

The depth of water in the summer season is generaliy trom one to four feet.

The cuntractors will le required, by the terme of their agreements, to complete the dams in the course of the next sumnier and fall; and with a view to this ohject, proposals are ouly invited from men who have the necessary skill and ability to accomplish the labor.

The wooden guaril-locks at the sites of the Tye River and Joshua's Falls dams, will be offered for contract at the same time.
The plans and specificalions may be seen at the office of the subscriber in this city.

CHARLES ELLET, Jr.
Chief Engincer James Rirer \&- Kanawha Company.
Richmond, 10th March, 1838.-tap 6 April.

TO CONTRACTORS.

PROPOSALS will be received at the Office of the Engineer of the Central Railroad of Georgia, in Savannah, from the 1st to the 5 th of A prit, for grading $13 \frac{1}{2}$ miles of this road, extending to a point 83 miles from thas city. The work will be divijed into sections of a suitable length. The country is remarkably healthy, and the work being heavy, offers great inducements to Contiactors. Profitea will be ready for examination aner lst of A pril. Also,
The laying of the superstructure of 7 sections from the fth to the 12 th, both inclusive; a distance of 19 miles--the Company furnishing all materials --any distance nut less than 6 miles, may be propised for. S. O. REYNOLDS, Chief Engineers. Sararnah, Ga. March 1, 1838.

Ap, 5

NOTICE TO CONTRACTORS.

Sealed Proposals will be received by the unilersigned, acting commissioner of the Board of Publie Works of the State of Illinois, for the Th Judicial circuit at Peru, Lasalle county, lllinvis, on Monday, the 25th day of June next, until the honr of four o'clock P. M. of said day, for the clearing, grubbing, grading. masonry and bridg ing of twent y-two miles of tine Central Railruad, extending from the Illinois River southerly eleven niles, also from said river northerly eleven miles.
The work will be divided inte sections of convenient length, and most of them will embrace jobs worthy the attention of compretedt and experienced coniractors, among which will be eeveral viaductes heavy embankments on the llinnis iiver bottom, and also some deep cultings and heavy embankments in rising the bluffs.

Plans and profiles of the lines, and drawings of the different constructions upon it, together with specifications of the msnner of execuling the work will be exhibited at the Commissioner's of fice at Peruten days previous to the day of letting, and all other information in relation to the work will be given on application at the above office.
Contractors will be required to make an efficient commencement of their jobs within 30 days after the letting, and to have them fully completed on of before the first day of September, 1839 .
Recommendations will be expected in all cases in which the contractors are not personally known to the undersigned or the other associate Commissioners attending the letting.
For the information of contractors abroal, it is mentioned that this lina of roal crosses the llinois river at the head of steamboul navigation, and termination of the Michigen and Illinois Canal, and is situated in the midet of a most rich and fertile country abounding in supplies of all kinde that can be desired by the contractor.

Proposals for any of the above works may be direcled to the undersigned at any time previous to the hour of letting, endorsed proposals for work ta be let on the 25 th of June, 1838, and they will be duly considered.
E. PFCK.

Acting Com. for 7th Judicial Circuit.
Chicago, III, Fcb. 12, 1839. mi9tjelo

AGENCY．

The Subscriber offers his services as Λ gent， to procure Machinery for Mills，Steam En－ gines，Locomotives，Printing Machines，Presses， Types and Fixturcs．
He will give prompt attention to all orders entrusted to him for execution；and pledges himself to those who may employ him，that no effort on his part shall be wanting to procure the best articles to be had in the city－and to give satisfaction．
He will also employ Millwrighta and Engi－ neers，to erect Mills，and put the Engines and Machinery in operation．

Orders accompanied with the necessary funds，or astiafactory city acceptances，should be addressed to D．K．MINOR， 30 Wall－st．N．Y．

FRAME BRIDGES AGAIN．

The subscriber will build Frame Bridges in any part of the United States，Maryland not excepled， and will extend them to as long a span，and war－ rant them to be as strong，durable，and cheap as those made by any other methol．

Having no patent rivht，he requires no agents． A large number of bridges of his construction are to be seen．Young gentlemen，who wish，can be instructed in the true mathematical principles of huilding bridges，and the application of the same to practice：

JOHN JOHNSON．
Burlington，V＇t，Jan． 1838
F14tf

THE NEWCASTLE MANUFAC TURING COMPANY

Continues to furnish at the works situated in the town of Newcastle，Delaware，Locomotive and other Steam Engines．．．Jack Screws，Wrought－ iron work and Brass and Iron Castings，of all kinds connected with Sleamboats，Railroads，\＆c． Mill Gearing of every description；Cast Wheels （chilled）ofany pattern and size，with axles fitted， also with wrought Tires；Springs，Boxes and Bolts for Cars；Driving and other Whee ls for Locomot ives．
The works being on an extensive Scale，all or－ ders will be executed with promptness and dispatch． Communications addressed to Mr．William St Dobb，Superintendent，will meet with immediate attention．

ANDREW C．GRAY，
President of the Newcastle Manufact＇g Co Newocastle，Del．March 6， 1838. $1 y$ ．

NEW ARRANGEMENT．

ropes por inclined plangs or rarlitoays．
WE the subscribers have formed a co partnership under the stylle and firm of Folger \＆Coleman，for the manufactoring and selling of Ropes for inclined planes of railroasls，and for other uses，offer to supply ropes for inclined planes，of any length required without splice，at ahort notice，the manufacturing of cordage，herctofore carried on by S．S．Durfee \＆ Co，will be done by the new firm，the samo super－ intendent and machincry are employed by the new firm that were employed by．S．S．Durfee \＆Co． All orders will be properly attended to，and rope will be shipped to any port in the．United States．
12th month．12th，1836．Hudson，Columbia County，State of New－York．

33－if
ROBT．C．FOLGER．

AMF．S＇CELF．BRATFD SHOVELS， SPADES，\＆c．

300 dezrns Ames＇superior back．strap ahovels．
150 do．do．do．plain do．
150 do．do．du．cassteel Shovelo \＆Spades 150 do．do．Gold．mining Shovels
00 do．do．platrd Spades．
50 do．do．socket Shuvels and Spades
Together with Pick Axea，Churn Drilis，and Crow Bars（stel pointed），manufactured fron Salisbury refined irun－for aule thy the manufartusing agents，

WITHERELL，AMES \＆CO．
No． 2 Likertrstreet，New－York．
BACKUS，AMES KCl
Fu． $\begin{gathered}\text { State stred．Albany．}\end{gathered}$
N．B．- Also fiernished to order，Shapes if ever， ¿eseriphion，mule froun Salisbury refied Iren vi－il

MACHINE WORKS OF ROGERS， KETCHUM AND GROSVENOR，Patcreon New．Jersey．The undersigned reccive orders for the following aricles，mannfactured ly them，of the－ most superiur description in every paricular．Their works being extensive，and the number of hands employed being large，they are enabled to execute． both large and amall orders with jromptness and dispratch．

RAILROAD WORK．
Locomotive Steam－Engmes and＇l＇eaders；Dri ving and uther Loconotive Wheels，Aasles Sjring＝ and Flange Tires； Ca W heels of cast iron，from a variety of patterns，and Chills；Car Wheres of cast iron．with wrought Tires；Axles of likt Ame－ rican refined iron；Springs；Boxes and Buits for Cars．
COTTON，WOOL，\＆FLAX MACHINERY，
Of all descriptions and of the most improved pat terns，Style，and Workmanship．
Mill Gecring and Millwright work generally； Hydraulic and other Presses；Press Screws；Cal－ lenders；Lathes and Tools of all kinds；Iron and Brass Castings of all descriptions．
ROGERS，KETCHUM \＆GROSVENOR，
Paterson，N．J．or 60 W all－st．New－York 5 Itf

FRAME BRIDGES．

THE undersigned，General Agent of Col．S．H．LONG，to build Bridger，or vend the right to others to built on his Patent Plan，wou：d respectfully inform Railroad and Bridge Corpora－ tions，that he is prepared to make cohtracta to build， and furnish all materials for superstructures of the kind，in any part of the United States，（Maryland excepted．）

Bridges on the above plan are to be seen at the followi g localities，viz．On the main road leading from Baltinore to Washingron；two miles from the forimer place．Across the Molawamkeay river on the Military road in Maine．On the national road in llinois，at sundry points．On the Ballimure and Susquehanna Railroad at three points．On the Hudson end Paterenn Railroad in two places．On the Boston and Worcester Railroad，at several pointa．On the Boston and Providence Railroad，at sundry points．Acrose the Contoocnok＇river at Hennikar，N．H．Across the Soubegan river，at Milfort，N．H．Across the Cunnecticut river，at Hancocd，N．H．Across the Androscogyin river， at＇lurner Centre，Maine．Across the Kínnclec river，at Waterville，Maine．Across the Genesec river，at Squakiehill，Mount Morrie，N．Y．Across the White River，at llartford，Vt．Across the Connecticut River at Lebanon，N．H．Across the mouth of the Broken Straw Creek，Penn．Across the mouth of the Cataraugus Creek，N．Y．A Rail－ road Briilge diagonally acruss the Erie Canal，in the City of Ruchester，N．Y．A Railroal Brilge at Upier Sill Water，Orono，Maine．This Bridge is 500 feet in lengliz；one of the spans is over 200 fret． It is probilly the firmest wooden bridge ever built in A merica．

Notwithstanding his prescet engagements to buihd between twenty and thirty Railroad Bridges，and several common bridges，several of which are now in progress of construction，the subseriber will promptly attend to business of the kind to much greater extent and on liberal terms．
Rochester，Jan．19th，183\％．MUSES LONG，

STEPHENSON

Builder of a superior style of Passenger Cars for Railrouds，
No． 264 Elizabeth street，near Bleecker street， NEW－YORK．
RAILROAD COMPANIES would do well to examine these Cars；a specimen of which may be seen in the New．York and Harlaekn Railroad，now in operation．

ROACH \＆WARNER，

Manufacturers of OPTICAL，MATHEMA TICAL AND PHILOSOPHICAL INSTRU MENTS， 293 Broadway，New．York，will keep constantly on hand a large and general assortment of Instruments in their lime．
Whole：ate Dealers and Country Merchants sup－ plic． 1 wh SURVEYING COMPASSES，BA－ ：1：OM：1＇ELES，THERMOMETERS，\＆c．\＆c．uf huir wwn mannfactiore，warranted necurate，and at luwe．prices than ean be ladat any other catablish－ heent．
要象 istruments made to order ard repaired．

RAILWAY IRON，LOCOMO＇TLVEN， sc．\＆c．
THE subscribers offer the following artic！es fir sale ：－
Railway Iron，flat bars；with conntersunk hoies and unit red juints，

280 ＂ 2 ＂古，＂＂＂ 3 ＂
70 ＂11＂1，：

30 ＂ 1 ＂$\frac{1}{4}$
witn Spikes and Splicing Plates adapted thereto ＇To be sold free of duty to State govemincmis，or incor orated comianice．
Orders for Pennsylvania Euiler Iron exceetral．
Rail Road Car and Loromrtive Engine Tires wrought and turnet or unturned，reatly to he fitted on the wheels，viz． $30,33,36,42,44,54$ ，and 60 inches diameter．

E V．Patent Chain Cable Bolts fur Railway Car axles，in lengths of 12 feet 6 inches，to 13 feet $2 \frac{1}{2}$ ， $2 \frac{2}{2}, 3,3 \frac{5}{6}, 313 \frac{1}{2}$ ，and ${ }^{\circ} \frac{3}{2}$ inches dianjeter．

Chains for Inclined Planes，short and stay linke， manufactured from the E．V．Cable Bolts，and proved at the greatest strain．
India Rubber Prope for Inclined Planes，made from New Zealand Wax．
Also，Patent Hemp Cordage for Irclincd Planes， and Canal Towing Lines．
Patent Felt for placing between the iron chair and slone block of Elge．Railways．
Every description of Railway lron，as well os Loconotive Eugines，imported at the shortest nutice， br the agency of one of onr partiers，who resides in England for this purpose．

A highly resprectable American Engineer resitces in Erigland for the purpose of inspecting all Lueo． motives，Machinery，Railway Iron，\＆c．ordered through us．

38 If
A．\＆G．RALSTEN \＆CO．，
Philadelphia，No． 4 South Front－st．

ARCHIMEDES WORKS．

（ 100 North Moore－street，N．Y．）
THE undersigned ber leave to inform the pro－ prictors of Rail Roads，that they are prepared to urnish all kinds of Machinery for Rail Roads，Lo－ comotive Fingines of any size，Car Wheels，such as are now in ruccessful operation on the Camilen and Alliboy Rail Road，none of which have fiiled．－ Castings of all kinds，Wheels，Axles and Boxes， furnished at the ahortest notice．

H．R．DUNHAM \＆CO．
New York，February ISth， 1836.

PATENT RAILROAD，SHIP AND． BOAT SPIKES．

＊．The Troy Iron and Nail Factory keeps con－ stantly for sale a very extensive assorthert on Wrooght Spikes and Nails，from 3 to 10 iuches manufactured by the subscriber＇s Patent Machinery， which after five years successful operation，and now alinost universal use in the United States，（as well as England，where the subseribir obtained a patent） are found auperior to any yet ever offered in market．
Railroad companics may be supplied with Spikes having conntersink heads auitable to the holes in iron rails，to any amount and on short notics．AJ． rast all the Railroads now in progress in the United States are fastened with Spikes made at the above－named factory－for which purpose they are found invaluable，as their adhesion is more than double any common Spikes made by the hammer．
＊＊：All orders directed to the Agent，Troy，N．Y． will be punctually attended to．

HENKY BURDEN，Agent．

Troy，N．Y，July，IS9I．

＊＊Suikes are kept for sale，at factory prices by 1\＆3．Townsend，Albany，and the primcipal Iron Weichanta in Albany and I＇roy；J．I．Brower， 2×2 Water－street，New－York；A．Nı．Jones，Philadet phia；T．Janviers，Baltimore；Degrand \＆Sunith， Eoston．
P．S．－Railroad companies would do well to for－ ward their ondere as early as practicable，as tha sulaseniber is desirous of extending the manufactur－ ing so as to krep pace with the duily increasing lemand for his Spikes．

1JZ3au
H．BURDEN．
G．Mitchell，Printer， 265 Bowery，N．Y

AMERICAN

AND

ADVOCATE OF INTERNAL IMPROVEMENTS.

GEORGE 1: SBHAFFFER, $\}$ PROPRIETOR.$]$

CONTENIS.

To Suhacribers-Waer Cemaissioners' Report Death of Bowditch - Railronds in Churches,
Bennet's Steambuats - Last number of the preseat
Volume-Railroads la New England,
The litilroad S.eamer,
Fuel, Cual, isc. .
Wilful Injuries to Railroads-Statistics of Paterson, Miscei'nneuns fems,
Advert:sements

AMERICAN RAIRROAU JOUSINAL.

NEW-YORK, MARCH 24, 1838.
We are indebted to A. H. Wilson, Esq., for the Reports of the Canal Commissioners, of Pennsylvania, and of the Committee on the Gettysburgh Railroad.

Also, to Col. Childs, J. E. Bloomfield, and E. F. Johnson, Esqrs., for Legisla. tive Documents, and to Joseph D. Allen, for Report to the Oswego and Utica Railroad Co.

Also, to Mr. Morton, for his Report to the Directors of the Cleaveland, Warren and Pittsburgh Railroad Co.
\int See Notice to Contractors, by the Chief Engineer of the James River and Kanawha Company, Va., among the Advertisements.

TO SUBSCRIBERS.
Before the end of the present month, we intend to lay before our Subscribers the first number of a new volume.

As we desire to introduce considerable inprovements into the new volume, we most earnestly call upon nll our subscribers to remit upon the receipt of the first number.

To those indebted for past years, we must decline sending. It is but a sorry compliment to subscribe for, and read the Journal, without paying for even the paper.
To those of our friends who have done their part, we return our sincere thanks, and beg them to consider the completion of the present volume, at a
considerable disadvantage, as our guarantee for the future performarce of our duty.

Water commissioners' report.

We have delayed the publication of this voluminous Report, until we shonld be able to do it justice. Owing tis its great length, ind the importance of the subject, we prefer giving it to our readers in as short a compass as possible, which we shall be able to do in two or three numbers more.

We exceedingly regret that the discussion on this subject in our daily papers has been, in some instances, of a very personal and unfair character.
We do not object to the fair criticism of an Engineer's plans-but roundly to deny his capability or experience, contrary to the fact, is most utiwarrantable.

DEATH OF BOWDITCII.

It is with feelings of the deepest regret that we announce the death of this distinguished man. Of the merits of Dr. Bowdtteh, as a mathematician, it is needless to iuform our readers. Ilis labors in both the practical and the theoretical departments of the science are well known.
His translation of, and commentary upon the "Mecanique Celeste" remains unfinished-a monument of his high talent not likely to be completed by another hand.

Dr. B. died at his residence in Boston, on Friday, the 16 th instant. We are not informed as to the nature of his complaint.
railionds in churches.
It is remarked by Chevalier that the Americans are emphatically a people for Railroads. When he entcred the cabin of the packet at liverpool, the first American paper that cauglit his eye was the "Railroad Journal." .During
his sickness, which lasted through the voyage, he says, he remembers of the conversation on board only the word "Railroad." When he arrived in NewYork, he was shown among other things, a "Marine Railroad," for hauling up ships for repair. In the lead mines in Pennsylvania, he saw a "Railroad" under ground. At a Southern Manufactory of a very extensive character, one of the chief curiosities, was a "Railrwad suspended in the air" (after the manser of those used in some of our large printing establishments, for transportation from the higher stories of one building, to those of another). When he visited one of the prisuns, in Philadelphia, we believe, after having gone the rounds, the overseer exclaimed, "but you have not yet seen my "Railroad."

Railroads in churches had not yet been imagined, certainly not introduced, or the quick observation of Mons. Chevalier would thave discovered them. They are, undoubtedly, an invention of a date later than the visit of Mons. C. to this country.

Not to exhaust the patience of our readers, we should say that the Railroad the subject of our notice is located in the chancel' of St. Peter's Church, in this city, and is used for moving the pulpit from before the altar, to a place provided at one side, and out of the way of the other scrvices.
The operation is performed with the utmost ease, while it prevents the onesided, and to us unpleasant, permanent location of the pulpit, in most Catholic Churches.

While on the subject, we must not neglect the opportunity to do justice to the perfect neatness and good taste displayed in the design of St. Peter's. The exterior is not quite completed. The interior, for chasteness and correct proportion, is without a rival in this city. It requires some art to fill up a space of
eight thousand superficial feet, without leaving voids, or overloading with ornament in any part. The organ, built by Mr. Henry Erben, of this city, is the largest we have in New-York, and is so powerful as to fill this immense building with ease.

We understand that mother church in this city has a Ruilroad, and that the pulpit on it is a locomotive, as no pri. mum mobile can be discovered while it is in motion.

BenNet's steambo.it.

We understand that Mr. Benuet has completed the alteration in the valves of his new steamboat, and hus met with such success as to encourage his highest expectations. We have been informed of the result of a very satisfactory trial, but do not wish to make any statements, as Mr. Bennet iutends in a few days to invite a critical examination, which will give results in a form more generally useful, than those derived from a partal trial.
'Ihis is right-Mr. B. knows what can be done; all he asks is fair play, and an impartial trial. We wish all manner of success to such ready ingenuity and indomitable perseverance, as he possesses, in whatever way he may choose to show it.

last wumber of the present volume.

Our readers are reminded that this is the last number of the volume or the year 1837. We have, at much cost and pains, succeeded in fulfilling our engagements to our subscribers. We wish them to do the same for us.

Hereafter, the American Railroad Journal will be published semi-monthly. in a large octavo form, including an extra advertising cover, independent of the usual quantity of matter. The work will thus contain as much matter, when bound, as heretofiore.

The Mechanic's Magazine, which we formerly published, contained only a certain portion of the matter of the Railroad Jonrmal. The work in that form is discontinued. subscribers who have paid for the year, will be supplied with the Railroad Journal to complete their year-after which time we intend to publish but the one work; subscriptions Five Dollars a year, payable in advance

In asking the indulyence of our read. ers, for the delay in competing this volume, we need but remind thear of the
trial of the past year to excite their sympathy.

We are doing every thing in our power to make the next volume highly interesting and useful, both to the proctical and scientific man. No pains will be spared in oltaining the larest and best information in our own country and abroad.
Our foreign papers and journals enable us to give our readers such information as cannot be obtaned in any other way, unless at a great cost-while in our own country, our f:iends do not often give us time to enquire after Reports, at least, before they are on our table.

But we would particularly invite the attention of Manufacturers to the Jourmal, as the best means of communicating the results of their respective establishments. Whenever alything worthy of notice is offered, we will make it our particular husiness personally to attend and examine it.

But while we are devoting time and labor to the advancement of internal improvements, we must semind our readers that we incur heavy expenses, and it is consequently necessary that they should be punctual in their remittances. "A word to the wise-_."

We commend our readers to the following article as containing some notrons on the subject of railroads. We desire to see more from New England.
ridilroads in new england.
An impression exists, to some extent. that R iltroads ate nat fitted for the Eastern States, or at ali cevents, that they are not as necessary or as profitable as m oiher parts of the country. This impression is, we are sutsfied, entirely erroneous, and as it is one which has a rery inporlan benring upon the prose. cution of these works in the New Enirland States, especially upon their receiving the commenance of the Legist.rtures of those Staté, I deem it proper to oceupy some space in showing how entirely uniounded is this ivea.
First, It is notorious that there is no mart of the country as populous as New Enghand. Its whole territory is studded wilh villages and culisatell furms, and a Ralroal passing through the heart of such a region as this for cony consilerable dislance, must receive a very large amount of lacal support.
Second, There is no section of country where in the same distance the amount of articles to be transported is so great. Without consilering the large amounts of building and flagring stone, shop timber, \&c. \&c., the supply of then umerous
manufaciuring villages, with the raw material for manufacture, and the many articlesfur consumpion liy the opernives, and the transportation of the manufactured article, affords a very large businuss to a railroad passing through a comntry abounding in manufacturng establishments.

Third, A New England population is eminemly a travelling population. They are conslanily in motion. and are always. ready to a vail themselves of any improved mode of intercourse, and that portion of Fopulation connected with marufactuing estabhishments, are peculiarly locomotive in their character.

Fourth, Althnogh the face of the country is generally very rongh and uneven, yetit is practicable ofien by pursu. ing the valleys of rwers to obtain as favor ble a route as in any portion of the Wes, boih in point of elevation and curvature.
Fifih, The main support of any Railroad passing for any considerable distance ihrough a populous country with a large amount of arbicles to be mansporied, must be derived from the business upon its borters. The common opinion on this subject is altogether erroneous, as experience in other modes of couveyance has must fully shown. On the Erie Canal, as appears by official returns to the year 1828, the receipts of the transportation of goods, and passengers carried only a portion of the distance between Albany and Buff, lo, were thirty nine furtieths of the whule receipts-that is, only one fortielh patt of the receipts were for persons or goods passing through the entire line of the Canal. And on the Hudson river, it is an ascertained fact that there are very many more passengers who go only a part of the way in steainboats between Albany and New-York, than through from one of those cities to the other. Of the passengers on board the New-Yurk and Proridence stcamboats, not ono half, as we are informen, pass over the I'rovidenceand Bosion Rallroad; the number'1o, and from Providence, and the interior, being greater than the number pis*ing between Boston and New Yoik. Facls of this kind might be multiphed indefinitely, all showing that the borter support, the local business, is the most valuable from its certainty, and most imporiant in arnount.

Sixilh, As the business upon all Railroads increnses geometrically, ws you add to its lengith, it is of course insportant that these roads should be extended ihrough a large tract of conntry: such will be the case in New England. Already from Boston the Railroals are extending rapidly Fazs, and South by way of the Providence and Stoningion Railroads, and the Worcester Railroad, and the Norwich Road, (rapidly constructing, to Long Island Sound, and all these connecteil with each other, and by means of the Western Rallroad from Worcester to Albany, with the great avenues at the

West. So that each one of these Ral roads is a part of a long line of communication, and will enjoy all the benefits of such a connection.

As an illustration of the peculiar advantage. atiending the consiruction of Railroads in NewEngland, and in proof of the statements above made, I will advert to a road not yet completed, (although far advanced and in the course of rapid construction, and therefore not universally known.

The Norwich and Worcester Railroad extends from the steanboat navigation of the Thames at Norwich to Worcester, a distance of 59 miles. In this whole route there is no inclination exceeding 20 ieet to the mile, and the road is very easily constructed and at moderate expense. Within fire miles of the route between Norwich and Worcester, excluding those two towns, there are $\mathbf{7 5}$ cotton mills, 27 woollen mills, and numerous manufactories of iron, paper, \&c. By offical re. turns collected under the authority of the state, and just published, it appears that there are in the county of Worcester, into the heart of which this rond runs, 74 cotton milts, whth 124,720 =pindles, making groods annually of the value of $\$ 1,991,024$; 66 woollen mulls with 160 sets of machinery, manufacturing $3,748,852 \mathrm{lb}$-. of wool into $2,740,467$ yards of cloih, worth $\$ 3,695,321$. Also the enormaus suin of $\$ 2,791,298$ the value of bonts and shoes annually manufactured; $\$ 387,039$ the value of hides tanned; $\$ 321,100$ in chairs and cabinet furniture; $\$ 111,554$ in palin leaf hats; \%1:8.971 in straw bonnets; $\$ 331,200$ in machinery and various other manufactured articles, anomang in the whole to more than $\$ 12,000,000$. Indee 1 , in the colnijes of New Lonton and Wintham, in Connecticut, through the heart of which this railroad paseses, and the county of Worcester in Massachusetts, there are not less than 230 cotton and woollen mills, besides very numerous marufactures of other kinds, in the aggiegate of even greater value.
But this is not all, at Worcester this railroad connects with the Baston and Worcester Railroad, and a large-number of manufacturing establisbments are near that road, and a portion of their business would take this route to New-York. What is however more important, this connection furnishez a coute between Boston and New-Yook as expelitions and pleasant as any other. From Boston to Norwich is 102 iniles, and thence to New-Yoriz 130, by steamboat. The time from Boston to New-York, by this ronte, will be fourteen or fifteen hours.

Again, from Worcester a route has been surveyed for a railroad to Nashuis, N. H., and been found to be pxcetdygly favorable. The distance is 40 miles, and no elevation is greater than 33 feet to a mile, and a great portion entirely level This will open an entirely new course of travel and transportation, not only from Nashua and the intermediate roints, bilt even from Lowell, this is a few miles the
nearest, and by far the best route to New York, as there will be but one transshipment, and that at Norwich on board a steamboat. Of the immense business of Lowell nothing need be said, farthen Ihan that from these same official returns it appears that asite from articles of ransportation from all other sources, the cotton manufactured and cotion goods, wools and woollen goods, authracite coal used in the cotton anil woollen mille, and iron and coal in the manufacture of machinery, are together equill to 29,350 tons ammally. It is apparent also, that passengers and goods from. New Hampshire, destined for New-York would, on arriving at Nashua, find this far the shortest, cheapest, and best route to that city.

By its connection with the great Western Railroad at Worcester, on the completion of that road, (which is now put beyond a doubl, a counmunication is al once opened whit Albary and the West, forming a most important connection, mutually beneficial to both roads.
A slight examination of the map will show the importance of this road and its connexions, and in view of these facts, and in the further fact, that it is ascertained that it will cost less than one hatl as much per mile as any other roal here tofore constructed in New England, I would enquire in what respect any Rail. road at the West is superior to thes, or where one is to be fund out of NewEngland uniting so many adrantages?

I make these remarks an reference to the Norwich and Worcester Ralroad, not for the purpose of making uny invilions: comparison between that road and any other in New England, but because 1 am best acquainted with the facts in relation 10 it.

New England.

THE RAILROAD STEAMER.
ey dames johnson, m d.
Were any of the ancients to rise from their tombe, and to beholid a steam ship, full of passengers, darling up the Thames, or a train of carriazes, with a thomsand people flying along a Railroad, at the rate of thirty miles an hour, they would be very apt in doubt the fact of their revisit to the same planet they hatl leftsince a thousind years in the grave may probably serm no longer than a s!ort siesta after dinner. Thurir surprise woulh not be much lessened by the sight of a byilliant flame springing up from the middele of a street, or issuing from ton thonsand metallic tilies, and turning the dark. ness of night inte the glare of day I If, while gazing at these phenomena, the! siw a man, or even a munkey, descend from the cle 's cuspeniled as the pendulum of a huge ur-irella, iheg would no longer doult thac they had got into" anwher if r ' $:$ a befter world" ihan that of their bil and deatt.'

But es etu:n to the Rail road Steamvar. Without ridder or reill-wihmut tug or tow rope-without chart or culli.
pass-without impulsi: from mas, or trac. iion from deast-this maximum of power in minimum of space-this mayic atromaton darts forward on iron pinions, like an arrow from a bow, along tis desined course. Devised by science, but devoted to industry-harniless as a dove, if unopposed; but fatal as a thunderbolt if olstructed in its career-this :nstonish. ing offopring of hmman incention-this glant in strengih, though a dwarf in stature, drags along, apparemly without effort, whule cargoes of commerce-merrhants and their merchandize, artizans and their arts. travellers and their trafic, tomists and their turs, (some of them heavy mongh)-in short, every thing that can be chained to the tail of this Herculean velociprde!

The stram carriage nearly annihilates distance between inhabitants of a state, and thereby converts, as it wre, a whole comitry into a city. securing all the good -ffects of conibinution and concentration, wilhoul the detrimertal consequences of a crowded popilation. By the Railroad, Liverpool, Manchester, Birmingham, and the Metrop. lis, are consnituted cortiguous rities, while wide and fertile tracts of conntry inmervene! 'Ihus stea'm multiplies the product of human labor, ly incrasing their sale and! diminishing their price. It will enable us to convert milI ons of acres from pasturage into corn. firlds, and consequenly the provender of horsen inio food for man.
'The whole transit of a Raidroad steamiar is a series of miracles, which. in furmer diys, would have been attribuled to angels or demons. At blarting, the mighty automaton surdenly suppresses his torrent of hissin r ste.m, and beiches forth a dee; and hodow congh, which is reiterated at shorter and shorter perionls, hke a louge ar inal pamting for breath, as the engine, with its irain, laburs up the Euston square. These belchings more nearly resemble ine pant. ing c : a tion or tiger than any wher sound hat 1 know of. With a slow motion, on any cousiderable as.ont, :Ic breathnig ci the animatel machine .,plears to tecome mure libs it, and lie explosimn more distin. flll a: length the animal sems exhansted, and granes, as it were, under the tiemendous effort. But the engire, having mastered ti.e difficul1y, acquires vrlocity before it plonges imu the dark abyss of tue tumnel buler Paimrose hill. There tha peal of thun-- ler-ilie suililen immersion into cimmerian darkncss-i hee clash of ruverberated sounds in confined space-the atmospherit: chill that ruslies over the frameail combline a induce a momentary sluad. ler at the the wight of sume possible collision or catastropha in his subterrancan transit, which is inereased rather lian diministied lyy the gleams of dobinus light that occasionally break in from above, or the aparks of fire that issue every instant from the chimney, rendering "dalkness visible." On emerging from the gloomy and gelid cavern, every thing appears of
dazzling brightness, and we breathe wilh delight the pure aimosphere of Heaven.

The moment the lighest point of ele. vation on any frart of the road is gained, and a descent commences, the rngine with its long train, starts off will aug. menting velocity, dashing along like lighınine, and will u uniform growl or roar, like a continuous discluarge of distant artillery or thuoder. The scene is now erand-I hud alinost said terrific. Alihough it may be a complete callu, the wind appears like a lurricane; and, while the: train is flying along woe raised embankments, as near Waterford, it is impossilite not to feei some sense of danger, or an appreliension that somb unexpected inipediment may hurl the while cavalcade into the yawning gulf below!

The meeting of the trains flying in upposite directions ace scarcely less aniaating to the nerves than the transit through the cunuels. The selucity of their conrse-the propinquity, or npparent identity of the iron trajets along which these hissing metcors move, raise the involuntary but frightinl thught of a possible collision, with all its hurrible consequences 1 The period of suspense, however is lut momentery. Anciectrifying concussinn, as it were, of sense, sighr, and sound takes place, and, in a few se. conds, the object of terror is out of riew behind.

Eut such IIerculean lisbor cannot be carried on in so small a compass, without grent expenditure. The actomaton thirsis-lie knows the place of refresh. ment-utters a loud and piercing whistle or note ol preparation-slackens his pace -halts at the frumtain, and ingurgitate; a deluge of water to quench his burning dranght. In five minutes he is able to resew his giganifictask!

The stean-shriek is a new plenomenon on the railroid, and a very stariling one it is. By opeling a small valre in the boiler, a volume of steam is drivell with tremendous force and velocity, through a narrow a perture, in imitation ot a throat, cansing a shill shriek, unlike the vcice of man, or any kuuwn animal, but so lond as to be heard two miles off. It is a most unearthly yell, or screnm, or whistle, which was compared by a dis. tinguished poet, who sat beside me, to the cry of some ronstrous animal while being gored to death. It forms nuexcellent alarum, to clear the road for the train, and apprize those at the stations, that the engine approaches.

The railroadravelling possosses many peruliaritios, as well as advantages, over the common mode of conveyance. The velucity with which the troin moves through we air is very refreshing, even in the hottest washer, where the run is for some milas. The vibrutoly, or rathe: oscillatory motion communicated to the human fiame, is very diffirent from the jolting and swinging motions of the stagecoach, and is prolluctive of more salutiory effects. It equaliz's the circulation,

[^54]promotes digesiun, tranquilizes the serves, (afler tho open country is gained,) and uften causes sound sleep during the succeeding night, the exercise of this kind of travelling being unaccompanied by that lassitude, nching, and farigue which, in weakly constituions, prevints the nightly repose. I'lie railroad bids fair to be a powerful remedial ngent in many ailments to which the metrupolitan and rivic inhabitants are subject.

To those who are curiols, and not very timid, the open curriages ure far preferable to the closed ones, e'specially in fine weather. In bad weatier, and particu. larly at first, invalids may travel with more advantage under cover. I have un doubt, that to thmusands and tens of thonsands of valetudinarians in this over. grown Babylon, the run to Boxmoor, or I'ring and back. twiee or thrice a werli, will prove a means of preserving heatht and prolunging life, more powerful than all the drugs in Apothecaries' Hall.

In fine, a man may travel from the pole to the equatur-

"A Gadibus u*que ad Gangem,"

withoui seeing any thing half so astonishing as the wonders of the railruad. The panigs of Efna, and the convulsions of the elements excite a feeling of horror and rerror, without any thing of pride. 'I'he magic-the miracles of the railroad engender an exulting conscionsness of superiority in the geruins of man, more intense and conclusive than any effurt of poet, piliter, or plilusopher.
'The railroad journes', huwever, is not wilhout its inconveniences, many of which may be prevented by a little ingeullity. The greatest is the discharge of cinders. sume of them ignited, from the chimney, which are not only disingrecable but occasionally dangerims to the eyes of those in the open carriages. This might he previnued by an awning-a prutection which is mlopted on some railroals, and one that nust ultimately be adopted on all. It is a protection from the elements of fire and water which every company is bound to afford to the passengers, and is attended with tritling expense. Till then, glasses or a veil are the necessary guards lor the eyes.
'I'he transits of the tunnels, in bot weather, causing a sudden vicissitude of temperatire, to the exteat of 20 drg gees of the thermometer, or thereabouts, require somse precaninon on the part of sen. sitive invalids. A shawl or large handkerchief, llirown over the heal is a sufficient protection, and thase who do not take this measure, should keep their eyes shut during the passage, since sparks and cinders ase unavoidably thrown in closer showers over the passengers here than in the open space.

T'u speculate on the moral, physical, political and eronomical ellects and consequences of riilroails and steam naviga. tuon, when carried to their full extent is heyond my province-perhaps begond the bounds of linman forisight. If the semb-tivilized puisants of the renotest
isles of the Hrbrides, of Oikney, and of Shetland can even now, transmit, in a few hours the produce of thrir huts, their mountains, their moors, and their firm yarils. to the markets of Glasgow and Eilinburgh, so as in three or four days to pay the annual rents of their tenements and wildernesses, what may we not expect from the extension anil perfection of this facility of intercommunication? In days of yore, the imponderable products of the intellect travelled as slowle as the material merclandize of mankind. Trey will now be diffused, frum the centre to the periphary-from the remotest putines tu the fori of socieiy, with a rapidity little less than that of thought isself!! The ultimate consequences cannot be apprecialcd at present; but we may safely conclude that the bunevolent Author of our existence did not en. dow the mind of man with such extraordinary powers of invention, withont the Ilesign of final advantage to his physical wants, his sucial relations, and his spiritual nature.-From the Mellien Chirurgical Review, and Journal of Practical Medicine.

FUEL COAL, \&c.

In this climate, a supply of fiel is of the first necessily ; without it, the couniry coulll not be inhabited. Hitherto, the furests hinve afforded this supply, and will continue to do so, for years to come. But the fime will arrive, when we inuss look to other sources, for this indispensable article. The remark has often been made, that Western New. York is one of the most favored portions of the earth; the climate, the soil, the beautiful surface, the liakes, the water power, the saline springs, and various other natural adrantages combired, with the improve. ments of art, render it one of the most desiratle lands for the residence of an enlightened and happy people. Confining our view to this immeriate vicinity, and marking the rapid destruction of the forests, we shoul! find reasons to appretend that the inhabitunts of this beautiful land must, in progress of time, suffer great inconvenience from the want of that supply of fuel, whic! the temperature of the climate demands, as a necessary of life; unless, indeed, the people should turn their attention to the preservation and culture of trees, as they have done in some parts of Europe, particularly in Great Fritain. This undoubtedly would be in our climate, too uncertain; und besidr, when the plains ant genile slopes of the country are once brought into cullivation, it would be too unprofitable to convert them again into forests No reason but the necessity of the case, can justify the farmer in retaining any largo portion of his lind in an unproductive state. If the whole country were culti. vated, it requires no sagacity 10 discover, that its exports would be greatly increased, and of course, the value of farms enhanced to a corresponding extent.

The Legislature have directed that the persons employed to take the State Cen-
s:1s, shall ascertan the quantity of improved land in the several towns. It is supposed the town of Sencca presents about a fair average of improved land - among the old towns of Ontario Connty. By the census of 1825, the whole quar tity of land in the town is 46,100 acres, of which 24,676 were improved. and 21.424 unimproved. The census of $1 \$ 35$ dies not throw any light on this inquiry, but every one conversant with the country knows that the quantity of improved land now is greater than in 1825. If the same rule in taking the enumerations every ten years was adhered to, :he resuli would show, with some approach to ceitainty, how long the forests in this town, keeping in view ther increase by natural growth, would supply the inhabitants with fuel and timber tor other uses.

Is it unreasonable to suppose that'onefourth part of the land ir. this town is now in woots? If that be assumed as the proportion, we have now about 11.500 acres of wood land; which, at 60 cords to the acre, would afford 690,000 cords of wood. In 1835, the town of Seneca, including the village or Geneva, contanned 6,608 inhabitants, divided into about 1,100 faunilies; allowing each family to consume 30 cords of wood annually, (and which is thought by some to be below the average, and the whole of the present stock of timber would be consumed in 21 years, except as it might be restored by natural growth; and what the increase of maple, beech, and oak timber, such as generally grows in this town, may be estimated at, o:hers better informed can decide.
It is not presumed that this estimate is correct. Enough to say, that judicious rnen think it so tear the truth, as to be worth throwing before the public, that minds be:ter informed on the subject, may be called' to it, while there is time and opportunity for its consideration.

Refleciinn upon it at this time, will produce a general benefit. Even if men should becone convinced that the foresis cannot supply, at the present rate of consumption, fuel and tiinber for more than 25 or 30 years, there is no need of alarm. Coal of good quality, and in inexhaustible quantities, is within oar reach, and can be afforded here at a very reasonable price.
It has been the policy of this State to extend her Canals toward the deposites of coal in Pennsylvania, and that State is also constructing Canals and Railroads in this direction, and up to her line. In a few years, various avenues through the Chemung Canal, and Williamsport and Blossburg Ralroads, will be opened, affording to us supplies of coal, sufficient for our consumption, even if our woods were entirely exhausted.

With a view of showing the quantity of this coal at one point, the following extracis from a Surrey of the Coal region near Blossburg. made by Dr. Taylor, a scientific Minerulogist, are submitted:

Estima:ed Supply.
"Bcfore dismissing the important subject of Coal, it were well to offer, in this place, some approach to an estunate of the quantity capable of being worked within this district, and of which the enire bulk is nccessible by means of the projected railroad, and by the numerous laieral branches which may herealier proceed from it.
"Leaving out the remoter pnsitions where Coal and Iron Ore have been observed, we will confine our estimate wilhin the circuit of a few miles. There! now exissts suffisent evidence for concliding that twenty thonsand acres, smrounling Blossburg, are within the denomination of Coal lands. These are in:ersected longitudinally by the main valley of the Tloga, anit transversely by numerous deep ravines, descending 10 that river, at almost every point of the compass. This area is equal to about $32 \frac{3}{4}$ square miles, comprised within an oblong or oval, five miles broad by six and a half miles long. We will compute in ten thousand acres, or onc-half only, as neressary or available to the intended project. Enough has now been ascertained of the genlogical structure of the country, to show that no serious imperiments to practical operations, can be contemplated from the prevailing inclination of the strala. On the contrary, it is well known that zuch a depression is as likely to faclitate as to retard an exten ${ }_{\text {F }}$ sive system of mining, where the sites for commencing these opetations, are judicrously selected.
"But to escape all risk of exaggeration from such a cause, and to allowfor va- cant and inaccessible ground, we will admit one-half of this latter quantity to be under those circumstances, and the remainder will be that area which can furnish us mineral products upn the cheapest and simplest method of working. We have then to calculate on five thousand acres only. It has been shown that the gross contents of an acre of Coall land in Coal Run and Bear Creek, supposing every vein to be worked, and to be n. thicker than it shows in the out-crop, is more than thirty thousand tons, or 23,5co tons clear produce, deducting one-fourth for waste and ohstacles. In order to re duce it yet further wihhin the limits of effeclive operations, we will reduce this amount below one-half, and calculate only upon ten thousand tons of coal per acre, on an average. We will assume that one hundred thousand tons of coal per annuun, will be the ultimate demand. Then, with these datia before us, the result is, that ten acres per annum would firmsla the requisite supply of coal; and that, on the same ratio, it would be five hundred years before that area was exhausted.
"This statement will scarcely appear unreasonabie, when it is considered as bas been previously shown, that the clear produce of twelve acres from one vein
only, namely, that at Morris's Run, will supply the same amonn:; being of eufficient capacity to furnish an article of tonnage and freight for many years, adequate to defray the interest of the entire capial invested in the proposed undertaking; and to provide n fund for the supervision, repairs, and ulumate renewal, of the whole line of railroad."
This deposite is $\mathbf{4 0}$ miles south from the Chemung Canal. A company in Pennsylvania have commenced a railioad, 26 mules long, to the State line, and another Company in this State have also commenced one from the Cunal to connect wuh the other at the Slate line. Both are now suspended on acconnt of the pressure of the times. The Compauy in this Slate, have pellioned the Legislature for aid in construcimg therr road, and independent of the necessity of this coal to the publir, it is manifest that the trade in the arlicle will add greatly to the tolls of the Canals, especially to those of the Chemung and Cayuga and Seneca. These Canals are now unproduclive, and if by the loan of a moderate amount, the construction of ihese roads is instired, the State will reap a benefit through the increase of tolls on these Canals, far beyond the interest upon the money. When this communication is open, coal will be afforded at such a price as it is believed, will enable the farmer near the lakes, canals or railrads, to clear nearly the whole of his land, without fear of subjecting himself to the want of fuel.

It is of great consequence to have these works completed at an eady date. If it be true, that one-fourth of the country is now kept in an unproductive state, to afford a present and future supply of fuel, when there is an arlicle equally good, so near to us, and to be had at a moderate expense, it is a matter of deep concern to the country, that this coal should be brought among us; then every one can make the trial, and elect whether he will clear his land and depend on coal, or reject i, and retain his woords. If the coal is fourd to answer the purpose, it is manifest that the productions of the couthtry will be increased-the business of our lakes and canals extended, and the general wealit enlarged.
If land is valued at \$30 per acre, the man who retains 25 acres for his fuel, loses the interest on $\$ 750$ per annum ; or, in other words a capital to that amnunt is required to furnish the material of fuel upon which the labor of cutung and hanling is to beexpended. Conl requires no labor but hauling, and is then ready for the grate. So far, coal for blacksmin's use and furnaces, is nor mentione.l. It is a fact, ascerrained by the Agent of the Penneylvania Conipaly, (Mr. Dibblee, of New-York.) that blacksmith: draw this c ral from the mines a distance of 60 nules, in preference to buying charroal at four cents a bushel. In the manufacture of \mathbf{S} dht, also, it will foon be found indispensable. Were it not for our ability
to oblain coal, the price of salt would increase, as fuel became scarcer and dearer, but liaving this arricle at uniform prices, there is no danger of salt being very dear as wood becomes scarce.

These coal deposites, so near to our country, presents a most interesting subject for reflection. Without them, a large portion of the land minst always be kept in woots, for fael. Now, nearly the whole lind may be improved, and a small portion of the gain in proluctions will pay for the coal. We are insured a perpetual supply of salt at a cheap rale. The lakes an I valleys stretch toward the co.l, rendering its Hansportation cheap ly canals and railroads. Iron, also, in inex. hausible quantities, is found by the sile of the coal. Our country abounds in Plaster, which is denied to the coal and iron reglon. Wheat is congenial to our soil, and is not produced in large quantr. ties near the mines; so that, while we shall take from that region their coal and iron, we shall sead thein our salt, plas ter and bread stuffs. And thus the bounties of Providence will become pqua1 zed, while thousands of persous will find employment and raintenatice in effectung the exchange. Our position creates a natural relation to the coal region, which mutual inserest requires tu br perfected at the carliest practicable finie because the prosperity of both regions will be the immediate consequence Gen va Gaz.

ADAMS'S EQUIRUTAL CARRIAGFS.
There are at present to be seen al 'lattersall's some wheel carriages con. structed on a principle which seems tous to possess great advan:ages over the wheel carriages now in use. 'They arcalled Patent Equirotal Carriages, and are suzpended on rewulating bow springs.

The front wheels are as large as the hind ones. 'The springs are very flexible. and readily yield when the whechs are passing over obstacles. The two axles are catpoble of adjusting themselves ly the traction of the carriage, either in parallel or radiating lines, with each other, according as the carriage advances, either on straight lines or curves; and thas the fricti in arising from the unequal tracking of urimnary carriages is a voided. In consequence of the fiame work-technically called the "under carrage"—and, also, much of the iron work nsed in ordinary rebicles being dispensed wilh, and the springs relucet: in weight one hialf, the total weight is materially lessonsed.When toming a cornor, the weight is equally posed over the 1 wo axles, as when moving in a sliaight line. In ordinary curriates, the weight is firquently on threc wheels, wish the centre of gravity nearly over the base. In conse. quence of the power of radiation in both asles, sulficient friction may be obtained without injury to the carriage to arrest its motion diswn the steepest hill, or to stop it altogether on any slope whhout the and of the cumbrous dring chain and shoe.-

The driver may by backing stop his horses on a hill slope as easily as on a level. Owing 10 the peculiar mode of locking, the driver's seat turns with the horses, and thus he is nlways square behind them when turning, with his full power exerted in a straight line, ins ead of losing his purchase by a sideway pull. The carmages may, if required, the so filted up that all four wheels can, at the pleasire of the driser or sitters, he de. prived of their free rolling movement, and converted into drags, in case of the horses running away. By the subsitution of smooth turming centres, instead of the ordinary wheel jlate and perch bolt. which ratule, and by the intal absence of any other moving juinis, such as spring bolts and shackles, and by the springs being each composed of a single plate of steel, they are very free from noise and concussion. They are also vely pasy in the sitters from the peculiar construction of the springs, which permit a universal action both laterally and vertically, and also in a directon with the adranciner mution of the carriage. And, hy the flexible braces. the vibrating molion so frequeutly complained of, is enturely removed.

We have seen several of them, which are elegant in form, and we think they are likely 10 answer the expectations of the inventor, and he of alvantage to the public. 'Ihe principle on which they are con-tructed is applicalile to railroad catriages as well as those on common roads ; and by enabling the 1 wo axles 10 ailjusi themselves with each ollier, eilher in parallel or raditilng lines, will allow rail. roads to be safely and conveniently constructed on curves of comparaively short diameter, as well as in siraight lines. The princuple on which this is lone seems to be the lobal siparation of the axle of the fore wheals from that of the hind ones, so that each part motes freely on its own centre, while the connection of the parts of the cariage is presenvel indrpendenty of the perch or axletrees. Where the body of the cuach admits of it . or when it is composed of two parts, cach part may be said to have its scparate pair of wheelt, while the connection be. tween the parts is estiblished by a bn!l and sockei-joint, which admans of free yet safe motion.-English paper.

Whiful injerifes to haif, roads.
We are pleased to sue that the Senate of this stare is disposed 10 pass an enactment for the severe punishment of those who are wicked enough to endanger the lives of innoceat travellers, for the insignificant purpose of injuring a ral road conipany to the amonnt of a few dollars. One woilh suppose that no human being could be guiliy of snch despicable acts. But facts prove to the conirury. List summer, when the Utica and Schenectady Company sent a irain of cars ibrnugh in the night, some individual or indinicuals removed the rails of the road near an embanknent; and had not a person gone and met the cars, and told the engineer
of the circumstances no one can form an idea how many lives, would have been lost. No punishment could be too severe for men guilty of such a horrible act. If is a malicious attempt at cold blooded murder-not of the persons against whom hostility is entertaned. hut of innocent inoffensive strongers.
"The ccminitiee of the whole, Mr. F. P. Lavingston in the chair, took up the hill 10 punish wilful injuries to railroads. [The bill declares every person whoslaall wilfully, whim malicions intent, remore, bieak down or destroy any part of a railroad, or embankment, \&c., or place obstriuctions on the track, with like maliciors infent. guiliy of a misdemennor, funishatble by imprisonment in the state prison nol exceeding-years, or in a county jail not less than one year. The bill not 10 apply to cases where death to a human being shall result from the commission of etther of those offences Nukes the offender liable to the company, for treble damages. J-Rochester lirpublican.

Reminiscences

The town of Newport, Rhode Island, was formerly the handsomest and most flourishing lown in the United Siates. It his the finest barbor in the country, and seventy years ago, was the secoud town in the ciuntry, inferior in wealth and commerce only to Boston.

In 1760, Newioit contained 11,000 inhabiants, now it has on!y 6,000 . At than period, alahough lie country trade of New York was greater than that of Nowport, set ilie latter far exceeded New York, is ic foreign and domestic unvigation. Theres vere thenemployed at Nuwport, about 150 vessels in the foreign trade, and about 3 CO ors coasting voyagres. A line of Landon pacliets silled from there, and Aaron Loprz, an eminent Jew merchant, first irnsecuted the whaling business bryond the Falkland Islands, and was lhe owner of thisly vessels.

Ahout 14,000 hhds. of inolisses were anmually imported into the town, and distilled inturum in the isenty-two distillerics then in operalion it llat place. The rum was sent in Africa and exclianged fur slaves. Newport grew ric:l by the slave trade. Iler merchants lived like princos, will slaves 10 fan then while lhey slept, and wait on their capricious desircs when dwake. A few fragments of the shattered fabric of ancirnt pomp still remain to show us that luxury ami extavagance had taken deep l:old on the habits and customs of the people of Newfort. But an end cometh to all things. The prisent condition of sonce uf the descentants of those rich uen: furnishes a striking commentary on the folly of human expectations. I'he alushouse in that plice is the gloomy home of many of the poor, broken and friendless descendents of men who strutted ilrough life with all the ostentation of immense wealli.- N'ewturypart Herald.

REPORT ON INTERNAL IMPROVEMENT.

The able report of Mr. Ruggles; on this su!je-ct, in our State Legislature, bas exrited universal uttention and adinira. tion. Nothing can be more gralifying than to finl that able and intelligent men take so warm and active interest in thisubject. We may yet see our state regain her former rank in magnificence and utility of intermal inprovement.
'Tle report is on cur table and sha!! aplear as early as pos ible.

CLEANIMG WINDOW3.

The best and most effectual method of cleaning windows, looking-glasses, \&c. is stated by M. Fiomont, at Fiench philosopher, to be, firsi, to wash the window, and then, when it is nearly dry, to rub it with bloting perper.

List of Subscribers who have paid since

 the $\Sigma 3 d$ Jun. 18.s8.Gic. Duncan, if 1 lli :wis, to J : cary 1, 1838. J. 'I. Walsun, city, Uet. 1,1037 C. A. Burton, Gale a, IIl., Jati, 1, 1830
 Kuf.s Kimg, Albany, John Ju uern, Bu:lingtun, Vt., J. W. Shat, N. Luidun,
P. H. G.e n, Jo!:n C. Linton, Dover .illls, Va. Archd te Jolin, A Astria, C. E. Detmold, ci:y,
G. W. Lonhe,
New Uria G. W. Long, New Urha
N. J. Rilroc Co., G.F. Winslow, "ry, George Latferty, Hicke ford, Va . EJw. F'. Duyle, Grahanville, Pa, Hen-y Anthunly, ci. y,
J. B. Jarvis, do.,
H. B. Lawe, Covington, Gieo.

红争 Volume Six will be completed as speedily as possible. The next, or Volume for 1833, will be published in a more convenient form for preservation.
** Subscribers who desire to be sup. plied with missing numbers, will do well to apply for them soon. We shall always take pleasure in furnishing tinem if we have them to spare.

0 Particular attertion will be given to the procuring of all kinds of Instruwents required by Engineers.-Orders must be accompanied with the necessary funds or city acceptances.
For Saie. - A Level, made to order by Brown \& Hunt, and in first rale oriler. Enquire at this office.

SHEET LEAD, \&c.

THE Subseribers Manufacturers of Shees Lead, Leal Pipe, Ked Lead and Litharge-havi always an assuriment in store, ant for sa'e, at 175 Front Sitret, corner of 8urling Slip.

CORNFLL \& TUCKER.
IT Sheet Lead and fead Pipe fur rortificatious and Engineerung, Milled any thickness and size to order.
New- Jork, March 10, 1838.
$3 t$.

NOTICE TO CONTRACTORS.
Sraled proposals will ie received by the un uersigned, Acting Commissiener of Public Works, for the 51 h Judicial Circuit. Illinois. al his uffice in Canton, Fu ton coonty, on Tues day, the 17th day of April next, until 4 w'cluek. P. M of that day. for the Grading, Bridging and Masoury of iwenty-fisur miles of the Per, ria and Warsaw Railroad; extending from Peoria, on the lllinuis river, tweive imles west and from Warsa w on the Mississiplis, twelve miies east.
S_{i} aled proposnls will also be received at the Fingineer's uflice. in Quincy, Adams county. Illinois. on Mondav the 23:1 day ol April next, until 4 o'e'ock P. M of that day, for the grading, bridsing and masonry, of the Northern Cross Railroad, extending from Quincy to Columbus.
Pian and profiles, logether with specifica tinns of the manner of executing the wo k, will he exh bited at each office tell days previous to the days of letting. The portiuns of the above work to be put under contract are expensive. requ ring a large amgant of heavy excelvation and embankinent. Ti ey will be divided anto sections of aboul one mile in length.
Contractors will bo required to make an ef. ficinat commencement of their respec:ive jobs wi'hill vixty daya afterthe letting, and to have them fully completed on or before the first day of A ugust, 18:9.
Recommendations will he expected in all cases in which the comtractor is not personally known to the undarsigned, or the associate commissioner attellding the letting.

The country is dry, liealthy, and well sett'cá: provisions ara easily procured, and as the above with the other warks recent'y let, and now offered by the different commussion. ers of the State lo be let fex! spring. are the commencement of the ex ensive sysiem of internal improvements p ojected by the state of llinois. it is worlhy of tho attention of con. tractors abruad. J. WRIGHT,

Acting Commissinner. 5th Judicial Circuit.
Cauton, 1ll., Jan. 9, 1838.

FSEALED PIROPOSALS

FOR -o stru linga tone Lo k, anithro-p-fiwrih.; of a mile ol Canal along th Lowe- Rapids of Ruck River, wi" be reecivet on te l:lt! of May :cest, at ' e . . . n of Dix".., Oy ec uniy, IIf
The pla saml cifications ith work ay e exa inedun the day of iet ing.
Cerifficti's of \mathbf{c}-aractir anid qual fications fom
ill known aut wi.y ill be quirt d, unle s.ate co tra torisp o al'y know to he Con:missio er $0:$ the E gincer.

JAME W. STEPHENSON,
Acting Cu missun, er
fovig Upher Rand
N. B: Froposals for i pow Ig Upuer kajnd will b receeved hurtl after this leting, "inhich due notice wil be.gl cha.
Feb. 9, 1838.
6 w

NOTICE TO CONTRACTORS.

THE undersier ed, Acting Corm sinure of a'e Berard if P. c Whr s of i' e State of lllinais for he 6 th Jodic al Cirenit, will ruceiv.- at ' is a ffice, in
 of My, 1833, until 4 o'clock H. M., Staleal Pro gusas lor te Grieing Masomry, and Erilyese of l:cut: ilis of the Cemtral Lai nad, ixteraling fom Calen, Sou herly. This line corbaces a large prrtuen of hea y wo k, th serving : e als 11 tio of skilful aul cinimetent com: racior. Satis. factory. comurembla iont wi be rqui ed from contrictors nit pe una!ly nown to ilie Commi.. - ione or Engin er. Plans nud profies of t e line, aud draw nigs of the different cuntstructions will e -xhi' ite! , anll a!1. ceres ryy formation n ol ded. inn application to the umbersi net, or to the Engi II er of the work, foi lent days ; evosas io tie erting 'The work will be re uired to be commenced within forty days, and complin."ed within ghteen montha from th.0 illie of lelting.

JAMES. W. STEVEN:ON
Aeting Córmis roner fur 6th Judacial Circuit. Galen. ${ }^{2}$ Feb. 9,1800 ,
6.w

NOTICE TO CONTRACTORS.
Jamis River and Kanawha Imprıvement.
I'RUPUSALS will be received at :he effice of the Conjany, in tise city of Rich ond, in, it the 9ith day uf A pril next, for the construcition of all
 Al enture, and the dans across James-liser, at: atud, resicclively at tiee mouth of Tye River, J.shlla's Falls, al.d Sevin Islands.
'I'lie twa first of the a!, we natued dams will be al! it :i:' w drdife: long, aralabut 14 feet ligh. The furudatiot 8 are, f ruck.

Tue depth if water in \mathbf{t}.e summer sei son is gens rally frim ole t, fur fict.
"Ihe contract is will te requird by the terma if their a ree. ents, to complete the damis in the "nurat of the next sunn er ant fall; an! with a .iew it I! !s ! ject, poopusals are nilly i. .iltd from nen who have the nece sary saill and abulity to "e. omptish the laior.

The we denguarillo $k: t$ the sir-a of the Tye Ricurant Jushuas Fills danns, swill be offered for coniract at lie same tios.e.
The plans nd suenitications may beerthat the office of the subscriber in this city.

CHARLES ELLET, Jr.
Chief Engincer James liter \&- Kinavha umpany.

TO CONTRACTORS.

PROPUSALS will be recivid at the Office of The Engin cur of the Cemalal Raulread of Gicorgia, in Sasaniali, from lle lat to the 5 th of A ,rill, for gradeng $13 \frac{1}{2}$ niles of this road extembing to enoint 83 nites from thas city. The work will be divided into sections of a suiblile lerigh. The country is remaikably lnalihy, and the work being heavy, offers grial nducements to Cont acters. Prifies will be ruady for examination after lst of A pril.
The laying of the supurstructure of 7 aretions from the (thl to the 12 th, buth inclusive; a distance of 10 miles- the Connpany furnshing all uaternals --ally distance ture less fian 65 miles, mas be proIostl for. S. O. RF:YNOLDS,Chief Enginecrs. Sars.nnah, Gia Mash I, 1\&38.
$A_{1} 5$

NU'IICE 'TO CON'TRACIOKS.

Sealeil Pr, posa!s will ho recersed liy the untulersigned, acting eonmissioner fo the E'oard if Publie Wor' s if the st te of llanuis, fors the oth Judie inl cirenin at Peru Laselle cnumty, Illinois, on Monday the 25 th day of June next, until the hwr of fiter u'chaci. P. M. of alad day, for the c'carin srubbin s, \therefore ading, asonry and b i.f.eing ol iswent y-th. © niles nitue Central Kiiliruad, exteutiage fr on the Illiatiss Piver southerly eli, en .iles, also frum zaid river mintherl; eld ven miles.
The work ..ill he divided into sctions ol chivenis, t le.. th, anl moit of trem will emulrace jubs surt'y the atteltion of compurnt ant experin ned co. iracturs. anolng which will he several var'ucts,
 and $a^{\prime}: a$ sumic deep coiltings an: heavy em' a a:kme ts int rising the hluff.

Plar sated purfilis of the li ei, and dranitigs of the daf ent constrictions upen it , ingether with $s_{\text {, }}$ cifications of the man or of exculing the ucik will he extubied at t:ie Com issionere's offo. at Perruten da, y_{2} fevio .o suc' e day of letting, a dell oher infornation in refation to the werk vill be given on appli ation : t the shove office.
(ini r-ctars will lu' riquired io make sn efficient c murn ement of the ir jubs s.ithin 30 dlav: after tha ?etti and to have lliem fully con, let d u:s or efure 1'c first day ot Se, Ifulur, $18: 39$
Recomisendaition * sill be experted in all cases ith wheh t^{\prime} c contractors are not, er. arally known lo the under igncil or ' e ot' er associate Com: is--ioners ai e rling the le tiug.
Firr the infurnation of con'racturs ahr, ind, it is mentioniol-that this line of rad crose as t^{\prime} e llimais river al the lifall fots anh at navi- :ion, and termination of the Mi higa and Hishois C'anal, and is slluated in :he mi $1-t$ f a most rice and ierijle
 cali tee disised liy the rent actor.
Propurals for any of the - lu.e wo-k: :. ay le diectad to the unn'rersignod at anyti. .e revious to ihe hour of lething, pudors d wion sals tor oork to be let on tiwe ith of Juce, 183\%, a dioev nill be duly considered E. PFCK.

Chifage, Ill, Fcb. 12, 1839. mint jelo

AGENCY．

The Subscriber offers his services as $\mathbf{A g} \cdot \mathrm{nt}$ to procure Muchincry for Mills ，Sieam E：h－ gines，Loromotives，Printing Machines，Presses， Types and Fix／ures．
He will give prompt attention to all ordera entrusted to bin for exacution；and pledges himself to those who may employ him，that nn effort on his part shall be wanting to procure the best articlos to be had in the city－and to give satisfaction．
He will also eniploy Millwrigh＇s and Engi－ neors to erect Mills，and put the Engines and Machinery in operation．

Ordera accumpapied with the necessary funds，or salisfactory city acceptances，ahould be aduressed to D K．MiNOR， 30 Wall－8t．N．Y

FRAME BIRIDGES AGAIN．

The sulncriber will build Frame Bridges in any part of the Unitell States，Maryland not excepted and will extend lhem to as long a sjan，and war rant them to be as strong，durabie，and clicap as those made by any other metind．
Having no patent riveht，he ranimes norgents． A large number of bridges of his consiruc bon are to be seen．Young genilpmen，who wish．can be instructed in the true mattematical principies of huilding bridges，and the application of the same to practice．
Burlington，Vt，Jan． 1838

THE NEWCASTLE MANUFAC－ TURING COMPANY

Continues to furnish at the works situated in the town of Neweasile，Delaware，Locomotive and other Steam＇Engines．．．Jack Screws，Wrought－ rron wirk and Biass and Iron Cassinges，of all kinds connected with Sieamiboats，Ralroads，\＆c． Mill Gearing of every descripition；Cast Wheels （ehilled）oliany pattern and sizo，with axles fitted also with wrought Tipes；Springs．Boxis and Bults fore Cars；Driving and other Wheels for Locomot ives．

The works being on an extensive Scale，all or－ ders will he exceuted with promplnews and dispatch． Communications addressell to Mr．Willan！St Dobb，Sujerintendent，will meet with inmedate attention．ANORLEW C．GRAY，

President of the Neweastle Manufact＇g Co Neweaslle，Del．March 6， 1838.
$1 y$.

NEW ARRANGE．MENT．

mopea for inclined planes of railioads． WE the subscribers have formed a co partnership under the stylio and firm of Fulger \＆Culema：n，for the manufacturing and sriling of Rupes for inclined planes of railroads，and for other uses，offer to supply ropes for inclined planes，of any length required without splice，at short unice，the manufscturing of cordage，heretofore carried on by S．S．Durlce \＆ Co．，will the done by the $n \cdot \mathbf{w}$ firm，the same super intendent and machinery are employed by the new firm that were employed by S．S．Durice \＆Co All orders will be properly attemed tio，and ropes will be shipped ty any port in the United States．

12th munth．12th，1836．Hludson，Columbia County，State of New－York．

ROBT．C．FOLGER．
33－1f
GEORGE COLEMAN．

AMES＂CELFBRATFID SHOVELS， SPADES，\＆c．

300 dizens Ames＇superior lack strap shovels．
150 do．do．du．plain du．
150 do．do．do．cas steel Shoveld St Spades．
150 do．do．Gold－mintug Shovels
00 do．do．platrd $S_{\text {inaden．}}$
50 do．do．soiket Shivels and Spades
Together with Pick Axes，Churu Dril＇s and Crow Bars（steel pointed），manufactured froun Sulisbury retined iron－for aide ly the manufactuaing agents， WITHERELL，AMES \＆゚O．

No． 2 Liberty street，New－York． BACKUS，AMES \＆CC．

Fo． 8 State ar reet．Albany．
N．B．－A lso furnished to order，Shapes uf every description，made fro：n Sahisbury refined Iron．v4－it

MACHINE WORKS OF ROGERS， KETCHUM AND GROSVENOR，Palermin New．Juracy．The undersigned werive orders for the following aricles，orannfactured by thenl，of th． most anperior description in every paricular．Their works lwing extensive，and the number of hands empluyed being larg＂，they are enabled to executi both large ond amall orders with promptness and disjuatch．

RAILROAD WORK．
Locomotive S：eant－Engınes and l＇enders；Dri ving and other Lacomutive Whetls，Axles Spring and Flange l＇ires；Car Whee＇s of caat iron，fron a variety of patterns，and Chils；Car Wheels ut cast irun．with wrought Tires；Axles of luest Ame rican refined iron；Springs；Buxes and Bolts for ＇ars．
COTTON，WOOL，\＆FLAX MACHINERY
Of all descripitions and of the most improved pat lerns，Style，and Workıanship．
Mill Geering and Millwright work generally Hydranhe and uher Presien；Press Screws；Cal lomers；Lathes and Touls of all kinds；Iron ant Brasis Cas ines of all descriutions．
R（G）RS，KETCHUM \＆GROSVENOR．
Paterson：N．J or 60 Wall －st．Niw．York
51If

FRAME：BRIDGES．

THE undersigned，General Agent of Col．\therefore H．Long，io build Bridges，ur vend the right to uthers to build on his Putent Plan，wiud rispectfully infurm Ruilruad and Bridge Corpora－ tions，that he ts prepared to make coltr racts to build， and furnish all maternals fur superstructures of the kind，in anty part of the United States，（Maryland excerned．）
liridgee on the above plan are to be seen at the followi ol lacalities，viz．Un the main rinad leading fron Ballimure to Wash Ungon；two miles from the former place．Across the Motawankray river on the Miltary road in Maine．On the national road in $l l . a$ inis．at sunilry points．On the Baltimure and Susquelama Reilruad at lisee points On the Hudson end Paterenn Rairnail in two places．On the Boaton and Wurcerbir Ralroad，at several points．On the Boston and Providence Railruad．at sunalry points．Across the Contonciok river at Henmkar，N．H．Acruss the Souliegan river，at Miltiret．N．H．Across the Dunnecticut river，at Hancoced，N．H．Acruss the Andrascoggin river， at＇lumer Centre，Maine．Across the Kennelnec river，at Watirvilli，Msinc．Across the Genesce river，at Squakiehill，Monnt Morris，N．Y．Acrows the White River，at Harifurd，Vt．Across the Connecticnt River at Lelonon，N．H．Across the mouth pf the Braknr Straw Cireek，Penn．Across the nouth of the Catarangus Creek，N．Y．A Ruil road Brilge dingona＇ly acruss the Erie Canal，in the City of Ruchester，N．Y．A Railr aul Bridue al Upper Sill Water ${ }^{2}$ Orem，Maine．Thir Bridge is 500 feet in lengıh；one ul the spanz in over 300 fret． It is probilly the firmest wooden bridge cver buill in America．
Notwith－tanding his preseet engagements to build hetwren tweuty and thirty Railruad Bridges，and sevoral common bridges，speveral of，which are now in progress of con－truction，the subscriber will promptly attend to business of the kind to nuch greater extent and ou likeral terme．
Rechester，Jan．19th，1837．MUSES LONG，

STEPHENSON，

Builder of a superior style of Passenger Cars for Raiirouds，
No． 261 Elizalwetis street，near Bleceker street， NEW－YOAK．
RAILROAD COMPANIES would do well to examine these Cars；a siwelinn of which may bn sren wh the New．York and Harlaetn Railroad，now in 口iperalion．

ROACH \＆IVARNER，

Manufacturers of OPTICAL．MA IHEMA TICAL AND PHILOSOPHICAL IISTBU MENTS； 293 Bruadway，New．York，will kerp comstanly on land a large and gencral assortment of Instrumenis in their line．
Wholesale Dialeris hind Country Merchants sup pliel with SURVEYI IG CrMMPASSESS，BA ROMETERS，THERMONETERS，\＆e．\＆u．of their own mannfacture，warranted accurate，and a lower prices than can be had at any other cotablish－ ment．
Is Istruments made to order and repaired

RAILWAY IRON，LOCOMOTIVES， \＆e．太c．

THE subacribers oflier the following articles to

 sale：－Kailnay Iron，flat bars；with conntersunk holes arwl mitred joints，
lls
350 tuns $21, y, 15 \mathrm{ft}$ in length，keighing $4 \frac{68}{14} \mathrm{~s}$ per
280 ＂2＂1，＂－＂＂ 3 经＂

80 ＂1才＂4，＂．＂＂ $1 \frac{25}{150} \omega$
90 ＂ 1 ＂支，＂＂\quad 子
witn Spikes and Splicing Plates allaptell thereso To be mild free of duty to State governments，of incor orated companice．
Orders fur Peminsylvania Builer Iron executad．
Rail Rand Car and Locomstive Enpine Tires， wrought anel turned or unturned，ready to be fitted on the wheels，viz． $30,33,36,42,44,54$ ，and 60 inches diameter．
E．V．Patent Chain Cable Bolts for Railway Car a les，in lewglis of 12 feel 6 inchers，to 13 feet 2h， $22,3,3 \frac{5}{8}, 3431$ ，and ist inches diameter
Chaius for luclined Planes．shurt and stay linka， mantiactured from the E．V．Cable Boles，and proved ut the gremest strain．
India Ruliker Rupe for Inclined Planes，made from New Zealand Wax．
Also．Patrit Hemp Cordage for Inclined Planes， and Canal Towing Lines．
Patent Felt lior placing between the iron chatr and stone block of Edge Railiways．
Every description of Railway Iron，as well as Loconnotive Engmes，inported at the shortest notice， br the agency of one of onr partners，who resides in England fir this purposc．
A highly respectable American Engineer resides in Eruglansil firs the purpose of inspecting all Luco－ motivea．Machinery，Kailway Iron，\＆c．ordered through us．

A．\＆G．RALSTEN \＆CO．，
¥8 If
Plaladelphia，No． 4 South Front－st．

ARCHIMEDES WORKS．
 （I00 North Moore－street，N．Y．）

THE undersigned beg lease to inform the pro－ pricturs of liail Rualk，that they are prepared to furnish all kinds ot Machinery for Rail Roads，Lo－ comutive Elngines of any size，Car Wheels，such as are nuw in successful operation on the Canuden and Ambuy Rail Read，nune of which have fulled．－ Castings of all kirids，Wheels，Axles and Boxes， furnished at the shurtent nutice．

H．R．DUNHAM \＆CO．
NewYork，Feloruary 12h， 1836.
4－yt！

PATEN＇I RAILIOAO，SHIP AND BOAT SPIKES．

＊＊The Troy Ironand Nail Factory keeps con－ stanty fir sale a very extenxive assuranimen on Wrought Spikes and Nails，from 3 to 10 inches snanuliacture d by the sulscriber＇s Patent Machinery， which after five y cars successful operation，and now almost univessal use in the United Statey，（as arell as England，where the subscribs obluind a patent） are found superi ir tin any yet ever oflered in market．
Railroal companier niaj be enplid with Spikea having comotersink heads suitable to the hules in iron raiis，to any anoment and on shot notics．Al． rasost all the Railruads now in preyress in the United States are tastened with Spikes made at the above－ranud tactory－for which purpose they are lound invaliable，as thi ir alliesion is more than duubie any common Spikes nade by the hammer．
＊＊All ordere directed to the Agent，Truy，N．Y． will be punctually attended to．

HENRY BURDEN，Agent．
Troy，N．Y，July，I831．
${ }^{*}$＊Suikes are kept for sale，at factory prices，by I \＆J．Townsend，Albany，and the primcipal Jron Ve chan＇s in Albany and l＇roy；J．I．Brower， 222 Water－street，New－Yurk；A．Nu．Jones．Philadet phia；T．Janviers，Baltimure ；Degrand \＆Suith， Euston．
P．S．－Railroad companies would do well to for－ ward their urdore as early as practicable，os the subweriber is dexirous of extending the manufactur－ ing so as to kiep pace with the daily increasing demand firr hix Spikes．

1J23an
H．BURDEN．
G．Sfitchell，Printeé，2G：Louery，N．Y

$$
0
$$

[^0]: *The requests for information and for specimens. apply equally to glass manufactures and their produc tions.

[^1]: *The figure is omitted as the arrangment'of the apparalus can casily be car ceived.

[^2]: *One only has been covered with moveable type, the other has stereotype plates bound round it as a semporary arrangement.

[^3]: *The lower type-cylinder, which prints the other side of the paper, is tempurarily curered with s ereo. type plates, as before named.

[^4]: ${ }^{1}$ Mr Nicholson proposed to use wed colite type, and to affir them upon a cylisder, bus he did aut show any sufficient means of so afficing them.

[^5]: An Engincer ia desirous of oblaining a situation, on some work, either Railroad or Cana; be would have no objections co go un to any part of the United hitates.
 Ssiaisiactory reterences given as to character and apacity. Address W. H. W. at this vffice-posi
 مilif.

[^6]: * The above numbers for Scotiand and Ireland are unken from Mr. Leonard Honier's expellent Repint as Facicry Inspecior; the number for England is computed on the recognized datum thal it is twelve imes. greater fur the cotton trave than that of Scotland. For the last official detaile see the Appendix.

[^7]: * Even the eminent staterman lately selected by his Sovereign to wield the destinies of this commercial empire-Sir Rubert Peel, who drives his family consequence from the cotton trade, scems to be but little converaant with its nature and condition.-See Ur Carbuft's observations on the subjert, next page.

[^8]: Troy Iron Works, Nov. 15, 1836.
 $\therefore 7-10$

[^9]:

[^10]: * The sections of this bill which are takon from that reported by the Committee on Naval Affairs, in the senate of the United States, at the sension of 18:5-6, are marked by a note of reference to the sections of the dater.

[^11]: * 1. Of the bill reported in Senate U. S.
 † \$ 2. Of bill, \&e.
 \ddagger From $\$ 3$ of the bill reported, \&c.

[^12]: * From $\$ 6$ of the lnw riporicd in the Senato of \mathbf{U}. S., the period for making the inspections of the boilers, \&ic., is here propused to be extended to six ers.
 months.
 t From $\$ 7$ of the bill reported in the Senate, $\delta \mathrm{c}$. \ddagger The Commiliee propuce this section as a substithe fior the 16 th section of llam bill reported in the Scmute. That seetion requiting an examination of engmeers by the inspectores.
 IFrom \$13th of the hill reported, \&e,
 II From § 1 lh of the bill, \&c.

[^13]: * From 1 I2h of the bill, \&c.

 IS 1ath of biil reporled, \&c.
 is 18 lii of bill, dec, wih the addition of the provisu at the close of the seetion.

[^14]: * The carriago which performed this exploit, was

[^15]: Grooving and Lapping
 Bending and Glueing up
 Scribing
 Finishing of Joiner's work
 To make Glass or Sand Paper
 Polish Wainscot and Mahogany

 ## The Mason

 Different kinds of Masonry
 Methods of Joining Stone
 To clean or Polish Marble
 Cements
 The Plasterer
 Coarse Stuff
 Fine Stuff
 Stucco for inside Walls
 Gauge Stuff
 Bailey's Compo
 Higgins' Patent Stucco
 Plaster to imitate Marble
 Composition
 Lime Wash
 Plastering .
 The Pluner
 The Painter
 Materials
 A Preparation for painting Ceilings
 To whiten internal Walls
 To paint on Stucco
 Graining
 Colours
 General Remarks
 The Smith
 General Remarks
 Practical Geometry
 The Surteyor
 Mensuration of Superficies
 Measurement of Solids
 Measurment of Bricklayer's Work Chimneys
 Tiling and Slating
 Measurment of Carpenter and
 Joiners's Work
 Measurement of Mason's Work
 Plasterer's Work
 Painter's Work
 Plumber's Work
 Glazier's Work
 Statements of Bricklayer's Work
 Carpenter's Work
 Joiner's Work
 Mason's Work
 Plasterer's Work
 Plumber's Work
 Painter's Work
 Slater's Work
 Smith's Work
 Table of Cohesive Strength of Bodies Specific Gravity and Weight of Woods
 The Architect
 Syrian Architecture
 Persian
 Indian
 Egyptian
 Grecian
 Doric Order
 Ionic Order
 Corinthian Order
 Proportions of Corinthian Architecture
 Roman Architecture
 Roman Doric ditto
 Roman Ionic Order
 Roman Corinthian Order

[^16]: From the Mochenice' Magazine.
 Sir,-I send you an improvement of Dr.

[^17]: * Count Rumford's Essays, vol. 1. p. 258.-Boston edition.
 \dagger Accolding to ${ }^{\circ}$ Sir Humphrey Davy's Table of the Quantities of Soluble or Nutritive Matters afforded by different vegetable substances, 1000 parts of wheat afford 995, whole quantity of soluble or nu ritive matter, 765 of mucilage or starch, 190 of gluen or albumen. Potatoes afford by analysis, the sume materials, but in a smaller proportion and the addition of saccharine matter, viz: from 1000 parts, from 260 to 200, whole quantity of soluble matter, from 200 to 165 mueilage, or starch,

[^18]: * Although the application of heated air has been extended, and the subject tereated more at large since this paper was written, the detail of the discovery from Mr. Neilson to the late President, cannot fail to be interesting. In a luture volume, the Council trust to be able to add a further communica. tion from that gentleman on the subject.

[^19]: * That horso power being in all cases, accordiny to Mr. Watt's standard, a force of $33,000 \mathrm{lbs}$. acting through a space of one foot per minute.
 \dagger For the very full built forms, such as were used for the early stcam boats, built more than 14 years ago, the multipliers should be only 900 ; or for the very sharp improved forms bailt in the last two or hree years, 1100 .

[^20]: * This term is preserved to distinguish these Experiments from others of the same kind, which Mr. Macneill had previously made on the Grand Junction Canal, \&c.

[^21]: * L'inis gentleman has sinere succecdel to the Pluman Piote sorsinip of A.t. osomy, it the University of Cambridge, vacant by un appointment of Prolessor Airy às Astronu-mer-royal.

[^22]: *The late Mr. Telford.

[^23]: * From these quarries the large blocks of slone used in paving the breakwatcr aro tratien.

[^24]: * Strictly, the line m should be vertical, but, except where the heights and depths are great or the inclinations steep, the error from holding it perpendicular to the gradient is not of practical importance.
 \dagger If only the parabolic curve, and the tangential line m at its apex, be marked permanently on the scales, and the perpendiculars n, n, be traced on it as the occasion requires, one scale will be enough for every purpose, the division of the tangent m (by which, and the curve, the lines n, n are alsodetermined) being efiected by the use one point being thus gained, all the others of course follow by equidistances. When the latus-rectum is large, the parabola is more obtuse, and the lines n, n, better defined.

[^25]: * The mode of examination was that which Mr. Smeaton and Mr. Watt pursued in similar cases, viz., to form curves for representing each scale, the temperature, in degrees of the thermometer, being the ordinates, and the elasticities, in atmospteres, being the abscissæ of the curves.
 \dagger The French account of the occasion of making their experiments on the temperatures corresponding to different elasticities of steam, in 1829, contains the following passage:-"Science did not then pos" sess this knowledge, and engineers ap"pointed to superintend the construction of "steam engines, had no other guidance "than some discordant measures upon the "temperatures which correspond to the " elasticities between one and eight atmos"pheres; for higher pressures there was "no result of direct experiments, nor any "theory which could supply the deficien"cy."
 It is: afterwards stated that only one experiment by Mr. Perkins was obtained in England, and that is shown to be altogeth.

[^26]: * Oimerod's Cheshire, Vol. I. p. 285.

[^27]: * The Report of Profeasor Renwick's death was, luappils tinfounded. Eda.New-York Farmer.

[^28]: * Reference is here made to the prairies, which have no shelter for hogs. . In the woods adjoining, hogs live all winter on mast, and thrive well. The Wabash valley is famous for its hogs. I have kept a large herd of swine this past summer on the prairie. Timber will soon be planted, or sheds built, and then pork can be most easily raised on these lands.-H. L. E.

[^29]: Points of re-

[^30]: * This communication was received early in December." The completion of the work has since been retarded much beyond the time then expected, by va rioa unforeseen difficuities, which have increased the cotal cost to $\$ 227,000$. The railway was opened entirely to the Roanoke, and ite regular trade com. menced on March 30th, 183\%-Ed. Far. Reg.

[^31]: * Sturgeon's Annals of Electricily, Magnetiom, dec. No. 1. Vol. 1. October, 1836.
 1 Mr. Davenport appears to havo beon strictly the inventor of a method of applying galvanimm to produee nutary motion.

[^32]: * Professor of Cinenistry at tic University of Louvain, Belgium.

[^33]: * General Gideon Foster.

 I General Foster.

[^34]: * The acknowledgment of such a prineiple is conveyed in the story of the Turkish headsman, who was so dexterous in the use of his scyme:er, that he could cut through the neck of a culprit without disturling the head, when he moved his scymetar with grent swiftness.

[^35]: * Quarterly Journal of Agriculture.

[^36]: * Hoole's Select Works of Leeuwer.

[^37]: From Iho New-Yurk Cultivatur. dUTTON CORN:
 Northampton, Jan. 18th, 1837. Judge Boelhampton, Jan. 18th, 1837.
 Jolr Sir-The following

[^38]: * Description of a Bronze or Castiron Colum:al Lighihouse, \&c., by Captain Brown; R. N.
 \dagger The difference between sea and other water, in ope:ating wit the Galvanic battery, s much liss considerable than that between the latter a.ad distilled, but it is between salt and fresh that the practical question lies in the present case.

[^39]: * The Campeachy name of the Piseidia. erythrina, or rather Pampeacheana, auc waich I shall use hereafter instead of Cam. peachy Teak.

[^40]: * Not forwarded, but see Vol. 4, p. 24, first series of this Journal.

[^41]: * Previous to October, 1832, the duty levied upon elastic gum (as it was called) was $5 d$. per lb., or nearly $50 l$. per ton. Its extensive introduction was thereby entirely precluded. The Legislature have, subsequent to that period, reduced the duty 1011 . per ton ; hence its increased importation and consumption, which is still greatly increasing.

 The supply of this material is inexbaustible; the banks of the river Amazoll, as reported by Messrs. Enderby's agents sent out expressly for that purpose, are covered with forests of irees producing it in large quantities, and from Java alope the world might be suipplied.

[^42]: * It is the writer of this article, Cadet de Vaux, who speaks, and probably in relerence to the previous cdition of Rozier's Cour's Complet.-Eid. FAR. REG.

[^43]: * These are [rovincial names given to the different cxhalations, ior mofelles), as distinguished by their different poisonous effects on these exposed to their greatest power.-ED.

[^44]: * 'r.ue realer m.y form some notion o. this Parisian five ji is waen it is recolected, that at was buit betiore carrages weat in use.

[^45]: *. Testimonials of the superior quality of the hay were fur-ni-hed to the Society by the author, from Sir Joha Hop : of Pitikic, nud William Aitchison, I:sg. younger of Drummere.

[^46]: Engheer
 16－．St

[^47]: * A treatise has been just published by Professor Rennic, on paring and burning, in which he attributes whatever value it may have to the effeets of the fire, considering it "in the light of an To be Continued.

[^48]: MFCHANICS' MaG.IZIN:' AND JOLRNAL OF MECHANICS' N^{-} STITGTE,-Published by D. K. Minor, and G. C. Schaofer, No. 30 Wall- ${ }^{6}$ Baseinent story, at $\$ 3$ per annum in advance.
 ALiSO,-Publisticd at the Eame placa the RAILROAD JOURNAL at $\$ 3$ a year.
 The Now-York FARMLR and GALDENEIRS MAGAZINE, al 53 a year. i, hath in idvacer

[^49]: * The Chickasaw Bluff presents a front on the Mississippi river of about 4 miles, and is the best situation for a large commercial city, from the mouth of the Ohio to New.Orleans, Memphis is situated just below the mouth of Wolf river, and contains a population of about three thousand. A new city about two miles below, at old Fort Pickering, is being laid out, called Girand, to which a branch of our road will be carried. Girard is about half way between the mouths of. Wolf and Nonconnah, at the terminus of Nonconnal Ridge, extending cast 2.5 miles, and on which the railroad runs.

[^50]: MI PULLBLIEG WEEKLY, AT No. 30 WALL STREET, AT FIVE DULLARS PER INNUM, PAYABLEJN ADVANCE.

[^51]: * Propositions, it is understood, have been ro coived for the construction of a single track on piles, so far as the character of the ground'will admit of an adoption of the plan, at the rave of \$5,000 per mile, including iron for raik-plates, and all the materiels and labor requisite for its completion.

[^52]: - A central and direct line of railroad from Dorooit, vin Kalamazoo to Laka Micliges, it aiso in, progroen.

[^53]: SHEET LEAD, \&c.
 THE Subscribera, Manufacturers of Sheet Lead, Lead Pipe, Red Lead and Litharge--have always an assorment in store, and for sale, at 175 Front Street, corner of Burling Slip.

 CORNELL \& TUCKER.
 IT Sheet Lead and Lead Pipe for Forlificatinis and Enginecring, Milled any thickness and size to order.
 New- York, March 10, 1838. 3t:

[^54]: * Campluell.

