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In modern societies, newly emerging infectious diseases spread
rapidly between regions owing to frequent contact between
people, causing considerable social and economic impacts.
In this study, first, a scale-free city network was established,
and then the shortest path between any two nodes was
determined. Second, the movement path of tourists was
designed based on the shortest path. Subsequently, every
infected person’s information, such as the city, infection time,
onset and hospitalization, was confirmed based on their
movement path. Third, the features of the transmission path and
time distribution of the epidemic were characterized after
summarizing the information. Finally, the reliability of the model
was verified. The number of citizens and tourists in every city
remained stable during this time. The results indicated that a
larger basic reproduction number (R0) and population outflow
rate signify a faster growth rate of infected people in each city in
the network. Compared with small and medium-sized cities, the
epidemic spread faster in central cities. Population mobility was
the decisive factor causing the spread of the epidemic to other
areas. Therefore, the rapid spread of epidemics can be prevented
by swiftly reducing the flow of people between cities.
1. Introduction
Infectious respiratory diseases are transmitted through the
mobility of people, which spreads an epidemic from one city to
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a whole nation or even worldwide. For example, the H1N1 influenza, which originated in the United

States and Mexico in April 2009, spread to 40 countries in a month [1]. In addition, the Omicron
variant of SARS-CoV-2 rapidly became the primary epidemic strain after it was first discovered in
mainland China in December 2021. Subsequently, it spread to 28 of the 32 provinces in the mainland
in less than six months [2,3]. Modern transportation facilitates people’s travel, and in turn, the
transmission of epidemics. For example, in China, the dense high-speed rail network that carries
hundreds of millions of travelling people spread the COVID-19 epidemic, which first appeared in
Wuhan in 2019, to several provinces and cities of the country through the transportation of people
during the Spring Festival. Because population mobility is crucial in transmitting an epidemic, the
dynamic epidemic transmission process through population mobility between different regions and
quantitative analysis of the epidemic trend should be studied. Such studies can provide a clear
understanding of the transmission mechanism of the epidemic to formulate targeted prevention and
control measures.

Cities that are connected through traffic constitute a complex network. In this network, nodes and
edges represent cities and traffic routes, respectively. However, obtaining real data regarding population
mobility is challenging because people can choose to travel by road, railway or civil aviation. Therefore,
a virtual city network is generally established to facilitate the research. The distribution degree of city
networks is uneven because there are central cities with large populations and well-developed
transportation, and there are small cities with small populations and inconvenient transportation
facilities. Nevertheless, some transportation networks among cities are scale-free [4,5]. Therefore, the
city network is assumed to be a scale-free network, implying that some nodes have many connections
while most of the nodes have fewer connections. Moreover, the degree of the network conforms to the
power-law distribution. The stronger the hub role of a city, the larger the number of people and
the higher the degree of the nodes.

A dynamic model should be developed to study the transmission of infectious diseases in the city
networks. Therefore, numerous models of infectious diseases have been established [6–12] that play an
essential role in comprehending the transmission mechanism of infectious diseases on complicated
networks. However, these models are multi-group models, i.e. macro models; hence, they cannot
describe the travel process at the individual level. In addition, some models do not follow the
research methods of infectious disease dynamics, although the spread of the epidemic in the city
networks has been established [8]. Few dynamic models have been used to simulate and analyse the
dynamic characteristics of epidemic transmission by population mobility in a city network.

The individual-based dynamic model can simulate the movement paths of individuals and their
complete infection process including onset, hospitalization and rehabilitation, from a micro
perspective. Moreover, it can aggregate individuals into groups to quantitatively characterize the
epidemiological features of the epidemic from a macro perspective. We have previously used
the individual-based dynamic model to study the transmission dynamics of various infectious
diseases. Although replacing differential equations with computer programming was a common point
in the studies conducted, the research subject and technical route of each model differed owing to the
different types of crowd activities studied. This study analysed the spread of infectious diseases
through the flow of people in an urban network. We first established a scale-free network, then
searched for the shortest distance between any two nodes, and finally designed a travel plan for the
population. On this basis, we simulated the transmission process of Omicron. The implementation
steps were as follows: first, we updated the local and foreign populations of each city in the network
daily. Then, we simulated the dynamic changes in population mobility and epidemic transmission by
combining them, adjusted the population mobility scale according to the patient’s hospital stay, and
finally counted the time distribution of epidemic transmission in each city. Consequently, we found
that the original intention, basic architecture, program design and discipline of this model differ from
those of previous studies.
2. Methods
2.1. Data source
Data such as the incubation period, symptom period, hospitalization rate and hospitalization period of
Omicron infection were obtained from the published literature. The network and population parameters
were assumed on the basis of objective facts. The parameters are listed in table 1.



Table 1. Model parameters.

description
distribution
characteristics numerical values sources

incubation period lognormal

distribution

m ¼ 5:2

s ¼ 0:87
[13]

proportion of patients requiring hospitalization to the

total number of patients

constants 0.02 [14]

duration of symptoms of the patients with mild

symptoms

constant 2–7 d [14]

delay between symptom onset and hospitalization constant 4–12 d [14]

length of stay constant mean = 4.0;

s.d. = 3.7

[15]

population outflow rate constants 0.01 assumed
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2.2. Model establishment

2.2.1. Prerequisite

(i) A certain proportion of citizens commute from their resident city to several other cities and return daily;
the route of each traveller is a loop. (ii) Tourists make a travel plan before the travel, including travel
destinations and stay duration at each destination. (iii) The shortest travel time between the two cities is
the standard for selecting the best route. Tourists do not enter the cities they pass through, and the
number of destinations per trip conforms to the Poisson distribution with a mean value of 1. (iv) Each
traveller’s travel time between any two cities in the network is fixed. (v) The first case emerges in City 1,
and all citizens are susceptible at the initial stage of the epidemic; the number of second-generation
infected persons of each infector conforms to the Poisson distribution with a mean value of R0. (vi)
Everyone will experience an incubation period after infection. Mild patients will recover after
experiencing a symptomatic period (infectious period) without hospitalization. By contrast, severe
patients will be hospitalized after the symptomatic period (infectious period). These patients will not
infect other patients during hospitalization because of protective measures implemented by the medical
staff; and patients recover after the treatment. Mild and severe patients will acquire immunity after
recovery. (vii) The travel plan of mild patients at the time of onset and severe patients before
hospitalization will not be affected. The severe patients will be hospitalized in the city which they are
visiting or residing in during infection, and they will continue to travel according to the original travel
plan after being discharged. (viii) The local citizens and foreign tourists in the city are evenly mixed and
randomly chosen as the next generation of infected people based on their population ratio.
2.2.2. Total framework

First, a scale-free city network was established. Then, the population of each city and the travel time
between any two cities were set, and the path between any two cities with the shortest travel
time was determined. Thereafter, the travel time of each shortest route and all contained cities were
saved in a data frame. Subsequently, the time cycle was started from the first day, and incremented
one day per cycle. At the beginning of cycle d, all tourists who ended their trip on day d − 1 were
returned to their origins. Then, the local tourists who started their trip on day d, from each city were
randomly selected based on the existing local citizens and the population outflow rate (i.e. the
proportion of the number of local citizens who travel to other cities every day to the total number of
local citizens in the city). The travel plans, i.e. the time of arrival and departure from each city of all
tourists in the network on day d, were saved in a data frame denoted Outlanders. Based on this data
frame, the city where the patients are infected, sick and hospitalized can be determined. Thereafter,
the epidemic spread according to the rule that each infected person causes new infected persons on
an average of R0, and the information, such as city, personal ID, time and city of infection and onset,
of all newly infected persons, patients and inpatients on the same day were saved in another data



set parameters and establish a scale-free network

determine the shortest path and travel time between any two
cities based on the network

determine the citizens travelling to other places of each city,
and the time they stay at each destination during the journey
on day d

determine the newly infected persons, patients, inpatients and
the information that includes the time and place when they are
infected, onset, or hospitalized in the entire network on day d

count the time distribution of infected persons and patients in
the whole network on day T

1~T
cycle

Figure 1. Framework of the proposed model.
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frame D. The time distribution of infected persons, patients and inpatients in each city was statistically
analysed after the time cycle ended based on D. The design framework and the global algorithm of the
model are shown in figure 1 and electronic supplementary material, figure S1, respectively.

2.2.3. City network establishment

The city network was established using the algorithm of the scale-free network model proposed by
Barabási & Albert [16]. Starting from three discrete nodes, a new node was added each time when
connecting it with three existing nodes. The probability of a new node connecting with an existing
node was proportional to the degree of the node. Notably, based on the growth and preferential
selection strategy, the scale of the network can eventually be made stable; in other words, the degree
distribution of the network will not vary with time. The nodes represented cities and the edges
represented traffic routes. The weight of each edge connecting the two cities indicated the driving
time, which was randomly selected in the 1–5 h range.

2.2.4. Finding the shortest path

The shortest route was defined as the path with the shortest driving time between two cities. Various
algorithms could be used to find the shortest path between two nodes in a network. In particular, the
Dijkstra algorithm was selected, which could find the shortest path from a single source point to other
nodes in a directed graph. Furthermore, the path that took the shortest time between two points could
be obtained by inputting a weight-directed graph [17]. The basic operation of Dijkstra algorithm is edge
expansion: when we search for the shortest path from point vs to vm, if there exists an edge from point
vi to vm, the shortest path from vs to vm can be expanded by adding the edge eim to the tail. The length
of this path is d [i] +wim. If this value is smaller than the current known value of d [m], replace the
current value of d [m] with the new value. The operation continues expanding edges until d [m]
represents the cost of the shortest path from vs to vm. After the algorithm is completed, we store the
shortest route and travel time between any two cities in the data frame Route. For the specifics
regarding the implemented algorithm, see the electronic supplementary material, appendix, lines 76–143.

2.2.5. Population mobility simulation

The number of foreign tourists and local citizens as well as their IDs in each city of the network must be
stored and counted every day owing to the mobility of the daily population. The specific steps
employed to perform this count were as follows: on day d, (i) count the tourists (local citizens) in each
city who returned to the origin on day d − 1. (ii) Randomly select the tourists who went out on day d
based on the existing number of local citizens (as patients do not travel during hospitalization, such
patients were removed from local citizens) in the city and the population outflow rate. (iii) Add their
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travel plans to the Outlanders data frame. The information in each row of the data frame includes the

traveller’s origin, personal ID and the time of arrival and departure at each destination. (iv) Delete the
corresponding rows of tourists who returned to the origins on day d − 1 in Outlanders after tourists in
all cities were added, so that the data frame always contains the information of all tourists on day d. The
city where each traveller was at any time could be determined from the data frame. For the specifics
regarding the implemented algorithm, see the electronic supplementarymaterial, appendix, lines 193–334.

2.2.6. Transmission of diseases

The time distribution of infected persons and patients in each city should be counted. Therefore, it is
necessary to determine the city where they were infected and attacked. For this, a four-row data frame
named State was established, and each column was used to save relevant information of each newly
infected person, patient, inpatient or discharged person (identified with numbers 1 to 4, respectively),
including the origin, personal ID and infection time (or onset, hospitalization, discharge). The
information of persons on day d, referred to as State0, was determined according to the time information
in State. Moreover, the city where each person was at the time of infection, onset and hospitalization (the
city was determined according to Outlanders if a person was exiting the city) was further determined
based on the information of each column of State0 and Outlanders on day d. If a column corresponded to
the infected person’s information, such as the origin, personal ID, infected time, infected city, the number
of second-generation infected persons and their infected time, it was added to the last row in data frame
D, which was used to save the information of all infected persons, and each row represented an infected
person. If a column of State0 corresponded to the information of a patient, inpatient or discharged
person, the city where the person was determined to be onset, hospitalized, or discharged, it was added
into D. After the above operations are completed, State0 must be deleted from State. For the specifics
regarding the implemented algorithm, see the electronic supplementary material, appendix, lines 336–484.

When the time cycle is over, we obtain D that fully records the information of all infected persons
from day 1 to day d. D describes the time distribution characteristics of the epidemic situation and the
entire process of infection spreading in the network.

2.3. Sensitivity analyses
Because the actual statistical data could not be used to fit data to estimate the parameters and verify the
reliability of the model, sensitivity analyses of the model were performed in terms of two important
parameters of the model—R0 and population outflow rate. Partial rank correlation coefficients (PRCC)
and Latin hypercube sampling (LHS) were used to conduct the sensitivity analyses. PRCC-LHS is an
efficient and reliable sampling-based sensitivity analysis method providing a measure of monotonicity
between a set of parameters and the model output after removing the linear effects of all parameters,
except the parameter of interest [18]. Each parameter interval was divided into N smaller and equal
intervals, and one sample was selected randomly from each interval [18,19]. A standard coefficient
denoting the correlation between the parameter and the model output was calculated. All analyses
were conducted using Matlab R2019a software (MathWorks, Natick, MA, USA).
3. Results
3.1. City network
The network consisted of 30 nodes. The larger the degree is, the larger the nodes are. As shown in
figure 2, City 5 had the largest degree—16. The average degree of the network was 5.4; the degree of
distribution is presented in figure 2b. Moreover, the city population distribution for different degrees
is shown in figure 2c. Considering the computing power and time cost, the city population was set to
be equivalent to the size of a small town.

3.2. Population mobility
The number of local citizens in the city decreased slightly in the early stages and remained at a constant
level over time, as shown in figure 3. The number of foreign tourists also remained at a certain level after
a sharp increase in the early stages and fluctuated in some cities.
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3.3. Epidemic transmission

3.3.1. Transmission chain

The first case emerged in City 1 (figure 4); hence, the epidemic first spread in City 1. Because the local
population was larger than the foreign population, most of the infected people were local citizens.
However, the epidemic gradually spread to other cities with the population flow. An infected traveller
from City 1 entered City 5, spreading the epidemic to the city. In addition, the arrival of infected
persons from other cities caused a new epidemic spread in the city over time.



city 1 city 5

Figure 4. Dynamic process of epidemic spreading from City 1 to City 5. The figure shows the epidemic transmission in City 1 and
City 5 from day 0 to day 20 for R0 = 9 and a population outflow rate of 0.01. The circle, oriented arrow, green circle, purple circle
and red circle indicate the infected person, transmission relationship, first case in the city, local infected person, and foreign infected
person in the transmission chain, respectively.

0 4 8 12 16 20 24 28 32 36 40

10000
9000

8000

7000
6000
5000
4000

3000
2000
1000

0

2000 2.0
1.8

1.6

1.4
1.2

1.0
0.8

0.6
0.4
0.2

0

� 104 � 104

1800

1600

1400
1200
1000
800

600
400
200

15000
all cities

15.0
13.5

12.0

10.5
9.0
7.5
6.0
4.5

3.0
1.5

0

13500

12000

no
. o

f 
cu

m
ul

at
iv

e 
in

pa
tie

nt
s

10500
9000
7500
6000

4500
3000
1500

1000
new infections
cumulative infections

new infections
cumulative infections

new infections
cumulative infections

city 1 city 5

900

800

700
600
500
400

300
200
100

0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40

0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40

0 4 8 12 16 20 24 28 32 36 40 0 4 8 12 16 20 24 28 32 36 40 0

40
80

120

160
200

240

280
320

360
400

20

0

40
60

80
100

120

140
160

180
200

20

0

40
60

80
100

120

140
160

180
200

2
4
6

8
10

12

14
16

18
20

2
4
6

8
10

12

14
16

18
20

4 8 12 16 20 24 28 32 36 40

no
. o

f 
ne

w
 in

fe
ct

io
ns

10000
9000

8000

7000
6000
5000
4000

3000
2000
1000

0

2000 2.0
1.8

1.6

1.4
1.2

1.0
0.8

0.6
0.4
0.2

0

� 104 � 104

1800

1600

1400
1200
1000
800

600
400
200

15000
all cities

15.0
13.5

12.0

10.5
9.0
7.5
6.0
4.5

3.0
1.5

0

13500

12000

no
. o

f 
cu

m
ul

at
iv

e 
pa

tie
nt

s
no

. o
f 

cu
m

ul
at

iv
e 

pa
tie

nt
s

10500
9000
7500
6000

4500
3000
1500

1000
new patients
cumulative patients

new patients
cumulative patients

new patients
cumulative patients

city 1 city 5

days

city 1 city 5

900

800

700
600
500
400

300
200
100

no
. o

f 
ne

w
 p

at
ie

nt
s

no
. o

f 
ne

w
 in

pa
tie

nt
s

1000
900

800

700
600
500
400

300
200
100

0

1000
900

800

700
600
500
400

300
200
100

all cities

new inpatients
cumulative inpatients

new inpatients
cumulative inpatients

new inpatients
cumulative inpatients

Figure 5. Time distribution characteristics of the epidemic transmission in different cities when R0 = 9 and a population outflow rate of
0.01. The first to third row represents the time distribution of infected persons, patients and inpatients, respectively. The solid line represents
the median number of newly increased persons, measured by the left coordinate axis. The dotted line represents the median of the
cumulative number of persons, measured by the right coordinate axis. The shadow represents the fluctuation range of 25–75%.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:221232
7

3.3.2. Time distribution of infected persons, patients and inpatients

The epidemic transmission process in City 1, City 5 and the combination of all cities is shown in figure 5.
In City 1, the peak time of newly infected persons and new patients was on days 20 and 23, with a
median of 641 and 455, respectively. The accumulative number of infected and onset persons on day
40 was 5371 and 4880, respectively. In City 5, the peak time of newly infected persons and new
patients was on days 29 and 33, with a median of 1178.5 and 942.5, respectively. The accumulative
number of infected and onset persons on day 40 was 11 990 and 10 795, respectively. In all cities, the
peak time of newly infected persons and new patients was on days 31 and 35, with a median of 9964
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Figure 6. Time distribution characteristics of infected persons with different values of R0 and population outflow rate ( pr). The first
to third row represents the time distribution of infected persons in the entire network when R0 = 6, 8 and 10, respectively. The solid
line represents the newly infected persons, measured by the left coordinate axis. The dotted line indicates the cumulative infected
persons, measured by the right coordinate axis.
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and 8472, respectively. The cumulative number of infected and onset persons on day 40 was 108 640
(with an infection rate of 99.4%) and 91 685 (with an attack rate of 83.9%), respectively. The number
of new inpatients fluctuated significantly. The cumulative median number of inpatients in City 1, City
5 and all cities on the 40th day reached 89, 97 and 651, respectively. Note that the infected persons,
patients and inpatients in cities included local citizens and foreign tourists.

3.3.3. Effects of different R0 and population outflow rates on the change in the number of infected persons

As shown in figure 6, at constant R0 and increasing population outflow rate, a faster increase in the
number of newly infected persons in the entire network, earlier peak appearance and larger median
at the peak were observed. At constant population outflow rate and increasing R0, similar changes in
the number of newly infected persons were observed. This result suggested that R0 and population
outflow rate were positively correlated with the growth rate of infected persons.

3.3.4. Increase trend in the number of infected persons in city networks

As shown in figure 7, the epidemic spreadmainly in City 1 before day 16,with a slow increase in the number
of infected persons. Moreover, infected people emerged in other cities and increased rapidly with
population flow. Note that the greater the degree of the city, the faster the increase in the number of
infected persons. The number of infected persons in all cities reached the theoretical upper limit by day 40.

3.4. Sensitivity analyses
In this study, sensitivity analyses were conducted with the model based on two parameters (R0 and
population outflow rate) and a continuous time series for the entire network’s cumulative number of
infected persons. We considered N = 50 samples from a uniform distribution for each parameter range.



t = 0 t = 12 t = 16

t = 20 t = 24 t = 28

t = 32 t = 36

~ 500 500 ~ 1500 1500 ~ 2500

3500 ~ 4500 4500 ~2500 ~ 3500

t = 40

Figure 7. Time distribution of the epidemic spreading in the city network for R0 = 9 and a population outflow rate of 0.03. The first
case emerged in City 1, and the cumulative number of infected persons in different cities at different time points is represented by
different colours.
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PRCCs near one indicates that the parameter strongly affects the output. By contrast, a value closer to zero
indicates that the output result is less affected by the parameter (figure 8). The results reflected that R0 is
positively correlated with the cumulative number of infected persons, which was consistent with the
objective facts. The impact of the population outflow rate on the number of infected persons was smaller
than that of R0. This was because the role of the population outflow rate is to spread the epidemic among
cities. Even if the population outflow rate is substantially low, the epidemic will spread in cities, which
has a relatively limited restrictive effect on the increase in infected persons in the entire network.

4. Discussion
4.1. Features of the research
Compared with previously published research, the proposed model has the following characteristics:
first, compared with several previous studies that considered individuals as nodes and the epidemic
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Figure 8. Sensitivity analysis of continuous time.
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transmission through contact as adjacent nodes, this model clearly restored the epidemic transmission
process through population mobility among city agglomerations, which was more in line with the
objective reality. Second, the population mobility and epidemic transmission was simulated entirely
by program design using the individual as a research unit. This approach could microscopically
simulate individual behaviour and macroscopically show the overall trends compared with dynamic
models based on differential equations. Third, the impact of several epidemic prevention measures,
such as blocking urban traffic, performing nucleic acid detection and monitoring foreign tourists using
electronic travel records, on the epidemic transmission trend could be discussed by developing an in-
depth model based on this research.
4.2. Population mobility
In practice, the probability of large cities being selected as travel destinations is higher than that of
small cities; thus, the probability of a city selection as a travel destination was considered proportional
to the degree of nodes. The simulation results showed that the population mobility did not cause a
sustained change in the city population number; however, it remained at a certain level, consistent
with the actual situation where the city population number was stable. Figure 3 shows that the local
population is relatively stable because the outflow and inflow of the local population are balanced. By
contrast, the number of foreign tourists showed significant fluctuations because of the strong
randomness of foreign tourists’ choice of travel destinations. Moreover, the number of local citizens in
the city was positively correlated with the number of tourists, with the exception of k = 7. This is
because when the program was designed initially, each traveller randomly selected the degree;
subsequently, the traveller selected the city with the selected degree when selecting his or her
destination. Three cities with a degree of 7 were present. Therefore, the number of tourists selecting
one of the cities could be reduced.
4.3. Transmission of epidemic
The emergence of the epidemic in all cities was due to the imported cases, except in the city of its origin.
Moreover, the higher the population mobility, the higher the number of imported cases. Figure 5 shows
that the peak time of newly infected persons in City 1, City 5 and all cities is postponed. This is because
the first case emerged later in City 5 than in City 1. Further, all cities represented the overall population of
the city agglomeration. Because most cities had a small degree, the peak time of city agglomerations
occurred at the time when the epidemic input was later. The number of infected persons and patients
in City 1 fluctuated slightly, indicating that the transmission trend of the epidemic was more specific
in the original place. Figure 6 shows that an increase in R0 and population outflow rate promotes
epidemic development in city agglomerations. In particular, the higher R0, the faster the epidemic
spread. By contrast, the larger the population outflow rate, the greater the number of floating
population, thereby promoting the spread of the epidemic to more cities. Figure 7 shows that as the
traffic connections with other cities increases, the floating population in the city increases, the risk of
epidemic spread is high and the epidemic spreads rapidly.
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4.4. Limitations of the model

The limitations of the model were mainly reflected in the following four aspects. First, because a virtual
model was established for research convenience, various assumptions were comparatively performed.
For example, the setting of parameters, such as population outflow rate, travel planning and travel
time of tourists, was simpler than the diversified choices of tourists in the real world. Second, the
transmission route of the epidemic is considered the most typical situation of human-to-human
transmission; the model excluded the situation in which SARS-CoV-2 could be spread by touching the
surface of objects. Third, vaccination, nucleic acid screening, health monitoring, traffic blockade and
other epidemic prevention measures were not considered. These measures should be further studied
based on the proposed model. Finally, the computational burden of the proposed model is high. If the
epidemic transmission is simulated on a large city network or even nationwide, a desktop computer
cannot be used to perform the simulations.
R.Soc.Open
Sci.9:221232
5. Conclusion
We developed a dynamic model of infectious diseases to discuss the relationship between population
mobility and epidemic transmission based on a scale-free network. Moreover, we deeply analysed the
mechanism of epidemic transmission in the network. The results showed that R0 and population
outflow rate were positively correlated with the spread speed of the epidemic. Compared with small
and medium-sized cities, central cities were more prone to the input and spread of the epidemic. The
results suggested that to control the epidemic effectively, the population flow between cities should be
reduced. Particularly, the central cities should restrict the migrant population strictly and perform
nucleic acid screening and health monitoring on time.

Data accessibility. All parameters analysed during this study are presented in table 1. Program codes of the model are
supplied in the electronic supplementary material [20] that can be consulted in Zenodo (https://doi.org/10.5281/
zenodo.6814620) [21].
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