Reprint

ISSN 0973-9424

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND ENGINEERING APPLICATIONS

(IJMSEA)

www.ascent-journals.com

International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 10 No. III (December, 2016), pp. 213-224

FIXED POINT THEOREMS IN NORMAL CONE METRIC SPACE

R. KRISHNAKUMAR¹ AND D. DHAMODHARAN²

¹ Department of Mathematics, Urumu Dhanalakshmi College, Tiruchirappalli-620019, India ² Department of Mathematics, Jamal Mohamed College (Autonomous), Tiruchirappalli-620020, India

Abstract

In this paper, we proved some fixed point theorems in complete normal cone metric spaces, which are the generalization of some existing results in the literature.

1. Introduction

There exist a number of generalizations of metric spaces, and one of them is the cone metric spaces. The notion of cone metric space is initiated by Huang and Zhang [2] and also they discussed some properties of the convergence of sequences and proved the fixed point theorems of a contraction mappings cone metric spaces.

Many authors have studied the existence and uniqueness of strict fixed points for single valued mappings and multivalued mappings in metric spaces [1, 5, 6, 10]. In this paper discuss existence and unique fixed point in complete normal cone metric spaces, which are the generalization of some existing Contraction principle.

© http://www.ascent-journals.com

Key Words : Normal cone, Cone metric space, Fixed point.

²⁰⁰⁰ AMS Subject Classification : Primary 54H25; Secondary 47H09, 47H10.

Definition 1.1 : A subset P of E is called a cone if and only if:

- 1. P is closed, nonempty and $P \neq 0$
- 2. $ax + by \in P$ for all $x, y \in P$ and nonnegative real numbers a, b
- 3. $P \cap P^- = \{0\}.$

Given a cone $P \subset E$, we define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. We will write x < y to indicate that $x \leq y$ but $x \neq y$, while x, ywill stand for $y - x \in intP$, where intP denotes the interior of P. The cone P is called normal if there is a number K > 0 such that $0 \leq x \leq y$ implies $||x|| \leq K||y||$ for all $x, y \in E$. The least positive number satisfying the above is called the normal constant. The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is, if $\{x_n\}$ is sequence such that $x_1 \leq x_2 \leq \cdots \leq x_n \cdots \leq y$ for some $y \in E$, then there is $x \in E$ such that $||x_n - x|| \to 0$ as $n \to 0$. Equivalently the cone P is regular if and only if every decreasing sequence which is bounded from below is convergent. It is well known that a regular cone is a normal cone. Suppose E is a Banach space, P is a cone in E with $intP \neq 0$ and \leq is partial ordering with respect to P.

Example 1 : Let K > 1 be given. Consider the real vector space with

$$E = \{ax + b : a, b \in \mathbb{R}; x \in [1 - \frac{1}{k}, 1]\}$$

with supremum norm and the cone

$$P = \{ax + b : a \ge 0, b \le 0\}$$

in E. The cone P is regular and so normal.

Definition 1.2: Suppose that E is a real Banach space, then P is a cone in E with $intP \neq \emptyset$, and \leq is partial ordering with respect to P. Let X be a nonempty set, a function $d: X \times X \to E$ is called a cone metric on X if it satisfies the following conditions with

- 1. $d(x,y) \ge 0$, and d(x,y) = 0 if and only if $x = y \ \forall x, y \in X$,
- 2. $d(x,y) = d(y,x), \forall x, y \in X,$

3. $d(x,y) \leq d(x,z) + d(z,y), \forall x, y, z \in X,$

Then (X, d) is called a cone metric space (CMS).

Example 2 : Let $E = \mathbb{R}^2$

$$P = \{(x, y) : x, y \ge 0\}$$

 $X = \mathbb{R}$ and $d: X \times X \to E$ such that

$$d(x,y) = (|x-y|, \alpha |x-y|)$$

where $\alpha \geq 0$ is a constant. Then (X, d) is a cone metric space.

Definition 1.3: Let (X, d) be a CMS and $\{x_n\}_{n\geq 0}$ be a sequence in X. Then $\{x_n\}_{n\geq 0}$ converges to x in X whenever for every $c \in E$ with $0 \ll c$, there is a natural number $N \in N$ such that $d(x_n, x) \ll c$ for all $n \geq N$. It is denoted by $\lim_{n\to\infty} x_n = x$ or $x_n \to x$.

Definition 1.4: Let (X, d) be a CMS and $\{x_n\}_{n\geq 0}$ be a sequence in X. $\{x_n\}_{n\geq 0}$ is a Cauchy sequence whenever for every $c \in E$ with $0 \ll c$, there is a natural number $N \in \mathbb{N}$, such that $d(x_n, x_m) \ll c$ for all $n, m \geq N$.

Lemma 1.5: Let (X, d) be a cone metric space, P be a normal cone with normal constant K. Let $\{x_n\}$ be a sequence in X. If $\{x_n\}$ converges to x and $\{x_n\}$ converges to y, then x = y. That is the limit of $\{x_n\}$ is unique.

Definition 1.6 : Let (X, d) be a cone metric space, if every Cauchy sequence is convergent in X, then X is called a complete cone metric space.

Lemma 1.7: Let (X, d) be a cone metric space, P be a normal cone with normal constant K. Let $\{x_n\}$ be a sequence in X. Then $\{x_n\}$ is a Cauchy sequence if and only if $d(x_n, x_m) \to 0$ $(n, m \to \infty)$.

2. Main Result

Theorem 2.1 : Let (X, d) be a complete cone metric space and P be a normal cone with normal constant K. Suppose the mapping $T : X \to X$ satisfies the following conditions:

$$d(Tx,Ty) \le \left(\frac{d(x,Tx) + d(y,Ty)}{d(x,Tx) + d(y,Ty) + l}\right) d(x,y) \tag{1}$$

for all $x, y \in X$, where $l \ge 1$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x'$ converges to a fixed point, for all $x' \in X$.

Proof : (i) Let $x_0 \in X$ be arbitrary and choose a sequence $\{x_n\}$ such that $x_{n+1}=Tx_n$.

$$d(x_{n+1}, x_n) = d(Tx_n, Tx_{n-1})$$

$$\leq \left(\frac{d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1})}{d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1}) + l}\right) d(x_n, x_{n-1})$$

$$\leq \left(\frac{d(x_n, x_{n+1}) + d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}\right) d(x_n, x_{n-1})$$

Take

$$\lambda_n = \frac{d(x_n, x_{n+1}) + d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}$$

we have

$$d(x_{n+1}, x_n) \le \lambda_n d(x_n, x_{n-1})$$
$$\le (\lambda_n \lambda_{n-1}) d(x_{n-1}, x_{n-2})$$
$$\vdots$$
$$\le (\lambda_n \lambda_{n-1} \cdots \lambda_1) d(x_1, x_0).$$

Observe that (λ_n) is non increasing, with positive terms. So, $\lambda_1 \dots \lambda_n \leq \lambda_1^n$ and $\lambda_1^n \to 0$. It follows that

$$\lim_{n \to \infty} (\lambda_1 \lambda_2 \cdots \lambda_n) = 0.$$

Thus, it is verified that

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$$

Now for all $m, n \in \mathbb{N}$ and m > n we have

$$\begin{aligned} d(x_m, x_n) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m) \\ &\leq [(\lambda_n \lambda_{n-1} \cdots \lambda_1) + (\lambda_{n+1} \lambda_n \cdots \lambda_1) + \dots + (\lambda_{m-1} \lambda_{m-2} \cdots \lambda_1)] d(x_1, x_0) \\ &= \sum_{k=n}^{m-1} (\lambda_k \lambda_{k-1} \cdots \lambda_1) d(x_1, x_0) \\ \| d(x_m, x_n) \| &\leq K \| \sum_{k=n}^{m-1} (\lambda_k \lambda_{k-1} \cdots \lambda_1) \| d(x_1, x_0) \| \\ \| d(x_m, x_n) \| &\leq K \sum_{k=n}^{m-1} (\lambda_k \lambda_{k-1} \cdots \lambda_1) \| d(x_1, x_0) \| \\ \| d(x_m, x_n) \| &\leq K \sum_{k=n}^{m-1} a_k \| d(x_1, x_0) \|, \end{aligned}$$

where $a_k = (\lambda_k \lambda_{k-1} \cdots \lambda_1)$ and K is normal constant of P. Now $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 1$ and $\sum_{k=1}^{\infty} a_k$ is finite, and $\sum_{k=n}^{m-1} (\lambda_k \lambda_{k-1} \cdots \lambda_1) \to 0$, as $m, n \to \infty$. Hence $\{a_k\}$ is convergent by D'Alembert's ratio test, Therefore $\{x_n\}$ is a Cauchy sequence. There is $x' \in X$ such that $x_n \to x'$ as $n \to \infty$.

$$d(Tx', x') \leq d(Tx', Tx_n) + d(Tx_n, x')$$

$$\leq \left(\frac{d(x', Tx') + d(x_n, Tx_n)}{d(x', Tx') + d(x_n, Tx_n) + l}\right) d(x_n, x') + d(Tx_n, x')$$

$$\leq \left(\frac{d(x', Tx') + d(x_n, x_{n+1})}{d(x', Tx') + d(x_n, x_{n+1}) + l}\right) d(x_n, x') + d(x_{n+1}, x')$$

$$d(Tx', x') \leq 0 \quad \text{as} \quad n \to \infty$$

Therefore ||d(x', Tx')|| = 0. Thus, Tx' = x'.

Uniqueness

Suppose x' and y' are two fixed points of T.

$$d(x', y') = d(Tx', Ty')$$

$$\leq \left(\frac{d(x', Tx') + d(y', Ty')}{d(x', Tx') + d(y', Ty') + l}\right) d(x', y')$$

$$< 0$$

Therefore ||d(x', y')|| = 0. Thus x' = y'. Hence x' is an unique fixed point of T.

(ii) Now

$$d(T^{n}x',x') = d(T^{n-1}(Tx'),x') = d(T^{n-1}x',x') = d(T^{n-2}(Tx'),x') \dots = d(Tx',x') = 0$$

Hence $T^n x'$ converges to a fixed point, for all $x' \in X$.

Corollary 2.2: Let (X, d) be a complete cone metric space and P be a normal cone with normal constant K. Suppose the mapping $T : X \to X$ satisfies the following conditions:

$$d(Tx, Ty) \le \left(\frac{d(x, Tx) + d(y, Ty)}{d(x, Tx) + d(y, Ty) + 1}\right) d(x, y)$$
(2)

for all $x, y \in X$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x'$ converges to a fixed point, for all $x' \in X$.

Proof: The proof of the corollary immediate by taking l = 1 in the above theorem. \Box **Theorem 2.3**: Let (X, d) be a complete metric space and let T be a mapping from X into itself. Suppose that T satisfies the following condition:

$$d(Tx,Ty) \le \left(\frac{d(y,Ty)}{d(x,Tx) + d(y,Ty) + l}\right) d(x,y) \tag{3}$$

for all $x, y \in X$, where $l \ge 1$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x'$ converges to a fixed point, for all $x' \in X$.

Proof: (i) Let $x_0 \in X$ be arbitrary and choose a sequence $\{x_n\}$ such that $x_{n+1}=Tx_n$. We have

$$d(x_{n+1}, x_n) = d(Tx_n, Tx_{n-1})$$

$$\leq \left(\frac{d(x_{n-1}, Tx_{n-1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}\right) d(x_n, x_{n-1})$$

$$\leq \left(\frac{d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}\right) d(x_n, x_{n-1})$$

$$\leq \left(\frac{d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}\right) d(x_n, x_{n-1})$$

Take

$$\lambda_n = \frac{d(x_{n-1}, x_n)}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}$$

we have

$$d(x_{n+1}, x_n) \le \lambda_n d(x_n, x_{n-1})$$
$$\le (\lambda_n \lambda_{n-1}) d(x_{n-1}, x_{n-2})$$
$$\vdots$$
$$\le (\lambda_n \lambda_{n-1} \cdots \lambda_1) d(x_1, x_0)$$

Observe that $\{\lambda_n\}$ is non increasing, with positive terms. So, $\lambda_1...\lambda_n \leq \lambda_1^n$ and $\lambda_1^n \to 0$. It follows that

$$\lim_{n \to \infty} (\lambda_1 \lambda_2 \cdots \lambda_n) = 0.$$

Thus, it is verified that

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0.$$

Now for all $m, n \in \mathbb{N}$ we have

$$\begin{aligned} d(x_m, x_n) &\leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m) \\ &\leq [(\lambda_n \lambda_{n-1} \dots \lambda_1) + (\lambda_{n+1} \lambda_n \dots \lambda_1) + \dots + (\lambda_{m-1} \lambda_{m-2} \dots \lambda_1)] d(x_1, x_0) \\ &= \sum_{k=n}^{m-1} (\lambda_k \lambda_{k-1} \dots \lambda_1) d(x_1, x_0) \\ \| d(x_m, x_n) \| &\leq K \| \sum_{k=n}^{m-1} (\lambda_k \lambda_{k-1} \dots \lambda_1) d(x_1, x_0) \| \\ \| d(x_m, x_n) \| &\leq K \sum_{k=n}^{m-1} a_k \| d(x_1, x_0) \| \end{aligned}$$

where $a_k = \lambda_k \lambda_{k-1} \cdots \lambda_1$ and K is normal constant of P. Now $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 1$ and $\sum_{k=1}^{\infty} a_k$ is finite, and $\sum_{k=n}^{m-1} (\lambda_k \lambda_{k-1} \cdots \lambda_1) \to 0$, as $m, \to \infty$. Hence $\{a_k\}$ is convergent by D'Alembert's ratio test, Therefore $\{x_n\}$ is a Cauchy sequence. There is $x' \in X$ such that $x_n \to x'$

$$d(Tx', x') \leq d(Tx', Tx_n) + d(Tx_n, x')$$

$$\leq \left(\frac{d(x_n, Tx_n)}{d(x', Tx') + d(x_n, Tx_n) + l}\right) d(x_n, x') + d(Tx_n, x')$$

$$\leq \left(\frac{d(x_n, x_{n+1})}{d(x', Tx') + d(x_n, x_{n+1}) + l}\right) d(x_n, x') + d(x_{n+1}, x')$$

$$d(Tx', x') \leq 0 \quad \text{as} \quad n \to \infty$$

Therefore ||d(x', Tx')|| = 0. Thus, Tx' = x'.

Uniqueness

Suppose x' and y' are two fixed points of T.

$$d(x', y') = d(Tx', Ty') \leq \left(\frac{d(y', Ty')}{d(x', Tx') + d(y', Ty') + l}\right) d(x', y') \leq 0$$

Therefore ||d(x', y')|| = 0. Thus x' = y'. Hence x' is an unique fixed point of T. (ii) Now

$$d(T^{n}x',x') = d(T^{n-1}(Tx'),x') = d(T^{n-1}x',x') = d(T^{n-2}(Tx'),x') \dots = d(Tx',x') = 0$$

Hence $T^n x'$ converges to a fixed point, for all $x' \in X$.

Corolary 2.4: Let
$$(X, d)$$
 be a complete metric space and let T be a mapping from X into itself. Suppose that T satisfies the following condition:

$$d(Tx,Ty) \le \left(\frac{d(y,Ty)}{d(x,Tx) + d(y,Ty) + 1}\right) d(x,y) \tag{4}$$

for all $x, y \in X$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x'$ converges to a fixed point, for all $x' \in X$.

Proof: The proof of the corollary immediate by taking l = 1 in the above theorem. \Box **Theorem 2.5**: Let (X, d) be a complete cone metric space and P be a normal cone with normal constant K. Suppose the mapping $T : X \to X$ satisfies the following conditions:

$$d(Tx, Ty) \le \left(\frac{d(x, Ty) + d(y, Tx)}{d(x, Tx) + d(y, Ty) + l}\right) (d(x, Tx) + d(y, Ty))$$
(5)

for all $x, y \in X$, where $l \ge 1$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x'$ converges to a fixed point, for all $x' \in X$.

Proof :(i) Let $x_0 \in X$ be arbitrary and choose a sequence $\{x_n\}$ such that $x_{n+1}=Tx_n$.

$$\begin{aligned} d(x_n, x_{n+1}) &= d(Tx_n, Tx_{n-1}) \\ &\leq \left(\frac{d(x_n, Tx_{n-1}) + d(x_{n-1}, Tx_n)}{d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1}) + l}\right) (d(x_n, Tx_n) + d(x_{n-1}, Tx_{n-1})) \\ &\leq \left(\frac{d(x_n, x_n) + d(x_{n-1}, x_{n+1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}\right) (d(x_n, x_{n+1}) + d(x_n, x_{n-1})) \\ &\leq \left(\frac{d(x_{n-1}, x_{n+1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}\right) (d(x_n, x_{n+1}) + d(x_n, x_{n-1})) \\ &\leq \left(\frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l}\right) (d(x_n, x_{n+1}) + d(x_n, x_{n-1})) \end{aligned}$$

Take

$$\lambda_n = \frac{d(x_{n-1}, x_n) + d(x_n, x_{n+1})}{d(x_n, x_{n+1}) + d(x_{n-1}, x_n) + l},$$

we have

$$d(x_{n+1}, x_n) \leq \lambda_n (d(x_n, x_{n+1}) + d(x_n, x_{n-1}))$$

$$(1 - \lambda_n) d(x_{n+1}, x_n) \leq \lambda_n d(x_n, x_{n-1})$$

$$d(x_{n+1}, x_n) \leq \frac{\lambda_n}{(1 - \lambda_n)} d(x_n, x_{n-1})$$

$$\leq \frac{\lambda_n \lambda_{n-1}}{(1 - \lambda_n)(1 - \lambda_{n-1})} d(x_{n-1}, x_{n-2})$$

$$\vdots$$

$$\leq \frac{\lambda_n \lambda_{n-1} \cdots \lambda_1}{(1 - \lambda_n)(1 - \lambda_{n-1}) \cdots (1 - \lambda_1)} d(x_1, x_0).$$

$$\leq \gamma_n d(x_1, x_0)$$

where

$$\gamma_n = \frac{\lambda_n \lambda_{n-1} \cdots \lambda_1}{(1 - \lambda_n)(1 - \lambda_{n-1}) \cdots (1 - \lambda_1)}$$

Observe that $\{\lambda_n\}$ is non increasing, with positive terms. So, $\lambda_1...\lambda_n \leq \lambda_1^n$ and $\lambda_1^n \to 0$. It follows that

$$\lim_{n \to \infty} (\lambda_1 \lambda_2 \cdots \lambda_n) = 0.$$

Therefore

$$\lim_{n \to \infty} \gamma_n = 0$$

Thus, it is verified that

$$\lim_{n \to \infty} d(x_{n+1}, x_n) = 0$$

Now for all $m, n \in \mathbb{N}$ we have

$$d(x_m, x_n) \leq d(x_n, x_{n+1}) + d(x_{n+1}, x_{n+2}) + \dots + d(x_{m-1}, x_m)$$

$$\leq [\gamma_n + \gamma_{n+1} + \dots + \gamma_{m-1}]d(x_1, x_0)$$

$$\leq \sum_{k=n}^{m-1} \gamma_k d(x_1, x_0)$$

$$\|d(x_m, x_n)\| \leq K \|\sum_{k=n}^{m-1} \gamma_k d(x_1, x_0)\|$$

$$\|d(x_m, x_n)\| \leq K \sum_{k=n}^{m-1} \gamma_k \|d(x_1, x_0)\|,$$

where $a_k = \gamma_k$ and K is normal constant of P. Now $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} < 0$ and $\sum_{k=1}^{\infty} a_k$ is finite. Since $\sum_{k=n}^{m-1} \gamma_k$ is convergent by D'Alembert's ratio test, as $m \to \infty$.

Therefore $\{x_n\}$ is a Cauchy sequence. There is $x' \in X$ such that $x_n \to x'$ as $n \to \infty$.

$$d(Tx', x') \leq d(Tx', Tx_n) + d(Tx_n, x')$$

$$\leq \left(\frac{d(x', Tx_n) + d(x_n, Tx')}{d(x', Tx_n) + d(x_n, Tx') + l}\right) (d(x_n, x') + d(Tx_n, x'))$$

$$\leq \left(\frac{d(x', x_{n+1}) + d(x_n, Tx')}{d(x', x_{n+1}) + d(x_n, Tx') + l}\right) (d(x_n, x') + d(x_{n+1}, x'))$$

$$d(Tx', x') \leq 0 \quad \text{as} \quad n \to \infty$$

Therefore ||d(x', Tx')|| = 0. Thus, Tx' = x'.

Uniqueness

Suppose x' and y' are two fixed points of T.

$$d(x',y') = d(Tx',Ty') \leq \left(\frac{d(x',Ty') + d(y',Tx')}{d(x',Tx') + d(y',Ty') + l}\right) (d(x',Tx') + d(y',Ty')) \leq 0$$

Therefore ||d(x', y')|| = 0. Thus x' = y'. Hence x' is an unique fixed point of T. (ii) Now

$$d(T^{n}x',x') = d(T^{n-1}(Tx'),x') = d(T^{n-1}x',x') = d(T^{n-2}(Tx'),x') \dots = d(Tx',x') = 0$$

Hence $T^n x'$ converges to a fixed point, for all $x' \in X$.

Corollary 2.6: Let (X, d) be a complete cone metric space and P be a normal cone with normal constant K. Suppose the mapping $T : X \to X$ satisfies the following conditions:

$$d(Tx, Ty) \le \left(\frac{d(x, Ty) + d(y, Tx)}{d(x, Tx) + d(y, Ty) + 1}\right) (d(x, Tx) + d(y, Ty))$$
(6)

for all $x, y \in X$. Then

- (i) T has unique fixed point in X.
- (ii) $T^n x'$ converges to a fixed point, for all $x' \in X$.

Proof: The proof of the corollary immediate by taking l = 1 in the above theorem. \Box

References

- Geraghty M., On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604-608.
- [2] Huang L. G., Zhang, Cone metric spaces and fixed point theorems of contractive mappings. J. Math. Anal. Appl., 332 (2007), 1468-1476.
- [3] Jachymski J., The contraction principle for mappings on a metric space with a graph, Proceedings of the American Mathematical Society, 136(4) (2008), 1359-1373.

- [4] Kannan R., Some results on fixed points-II, The American Mathematical Monthly, 76(4) (1969), 405-408.
- [5] Kirk W. A., Contraction Mappings and Extensions, in Handbook of Metric Fixed Point Theory,1-34, Kluwer Academic, Dordrecht, The Netherlands, (2001).
- [6] Krishnakumar R. and Marudai M., Cone Convex Metric Space and Fixed Point Theorems, Int. Journal of Math. Analysis, 6(22) (2012), 1087-1093.
- [7] Krishnakumar R. and Marudai M., Generalization of a Fixed Point Theorem in Cone Metric Spaces, Int. Journal of Math. Analysis, 5(11) (2011), 507-512.
- [8] Krishnakumar R. and Dhamodharan D., Some Fixed Point Theorems in Cone Banach Spaces Using Φ_p Operator, International Journal of Mathematics And its Applications, 4(2-B) (2016), 105-112.
- [9] Krishnakumar D. and Dhamodharan D., B₂ Metric Space and Fixed Point Theorems, International J. of Pure & Engg. Mathematics, 2(II) (2014), 75-84.
- [10] Subrahmanyam P. V., Remarks on some fixed point theorems related to Banach's contraction principle, Journal of Mathematical and Physical Sciences, 8 (1974), 445-457.