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ADVERTISEMENT. 

The Committee appointed by the Royal Society to direct the publication of the 

Philosophical Transactions take this opportunity to acquaint the public that it fully 

appears, as well from the Council-books and Journals of the Society as from repeated 

declarations which have been made in several former Transactions, that the printing of 

them was always, from time to time, the single act of the respective Secretaries till 

the Forty-seventh volume; the Society, as a Body, never interesting themselves any 

further in their publication than by occasionally recommending the revival of them to 

some of their Secretaries, when from the particular circumstances of their affairs, the 

Transactions had happened for any length of time to be intermitted. And this seems 

principally to have been done with a view to satisfy the public that their usual 

meetings were then continued, for the improvement of knowledge and benefit of 

mankind : the great ends of their first institution by the Boyal Charters, and which 

they have ever since steadily pursued. 

But the Society being of late years greatly enlarged, and their communications more 

numerous, it was thought advisable that a Committee of their members should be 

appointed to reconsider the papers read before them, and select out of them such as 

they should judge most proper for publication in the future Transactions ; which was 

accordingly done upon the 26th of March, 1752. And the grounds of their choice are, 

and will continue to be, the importance and singularity of the subjects, or the 

advantageous manner of treating them : without pretending to answer for the 

certainty of the facts, or propriety of the reasonings contained in the several papers 

so published, which must still rest on the credit or judgment of their respective 

authors. 

It is likewise necessary on this occasion to remark, that it is an established rule of 

the Society, to which they will always adhere, never to give their opinion, as a Body. 
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upon any subject, either of Nature or Art, that comes before them. And therefore the 

thanks, which are frequently proposed from the Chair, to be given to the authors of 

such papers as are read at their accustomed meetings, or to the persons through whose 

hands they received them, are to be considered in no other light than as a matter of 

civility, in return for the respect shown to the Society by those communications. The 

like also is to be said with regard to the several projects, inventions, and curiosities of 

various kinds, which are often exhibited to the Society; the authors whereof, or those 

who exhibit them, frequently take the liberty to report, and even to certify in the 

public newspapers, that they have met with the highest applause and approbation. 

And therefore it is hoped that no regard will hereafter be paid to such reports and 

public notices ; which in some instances have been too lightly credited, to the 

dishonour of the Society. 

I * S H 
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| NATURAL 
i Hi STORY. 



li |Sk NATURAL 
HISTORY. 

PHILOSOPHICAL TRANSACTIONS 

OP THE 

ROYAL SOCIETY OE LONDON. 

Series A, VOL. 222. TITLE, &c. 

TITLE, CONTENTS, INDEX, &c. 

A YOL. 222. 

Printed and Published for the ROYAL SOCIETY by 

HARRISON AND SONS, Ltd, 44-47, ST. MARTIN’S LANE, LONDON, W.C. 2. 

Printers* tn Ortrwarg ta $§isi iHajc^tn. 

1922. 

Price One Shilling. 



PUBLICATIONS OF THE ROYAL SOCIETY OF LONDON. 

ABSTRACTS of the PAPERS printed in the PHILOSOPHICAL TRANSACTIONS of the ROYAL 

SOCIETY of LONDON. Yols. 1 to 6 (1800-1854), 8vo, at 5s. each. (Yols. 3 and 6 out of Print.) 

PROCEEDINGS of the ROYAL SOCIETY of LONDON, being a continuation of the foregoing 

Series. Vols. 8 to 14, and 16 to 74 (except Vols. 20, 21, 22, 50, 51, 74), 21s. each, cloth. Vol. 75 

is composed of Obituary Notices of Fellows Deceased, 1898-1904. Price 10s. With Vol. 76 the 

“ Proceedings ” appear in enlarged form and in two series—A, Mathematical and Physical, published 

at 20s.; B, Biological, published at 25s. Subscription prices in advance—Series A, 15s. per Vol.; 

Series B, 20s. per Vol. _ 

A GENERAL INDEX TO THE PROCEEDINGS OF THE 
ROYAL SOCIETY. 

Vols. 1-75. Covering the Period 1800-1905 (under authors’ names). Price 5s. Half-price to 

Fellows of the Society. 

THE YEAR-BOOK OF THE ROYAL SOCIETY, 1922. 

Principal Contents:—List of Fellows, Committees, &c.; Statutes and Regulations ; Business of the 

Society during 1921, including Anniversary Meeting, Council’s Report, and Treasurer’s 

Accounts; Arrangements for 1922. Demy 8vo, pp. 198. Price 7s. 6d. 

THE ATOLL OF FUNAFUTI, 
BORINGS INTO A CORAL REEF AND THE RESULTS. 

Royal 4to. 428 pages, with numerous Plates and Diagrams, and Separate Portfolio of Geological 

Maps and Sections. Price 30s. To Fellows of the Royal Society, 20s. 

REPORT TO THE GOVERNMENT OF CEYLON 

ON THE 

PEARL OYSTER FISHERIES OF THE GULF OF MANAAR. 
By W. A. Herdman, D.Sc., F.R.S. 

(With Supplementary Reports upon the Marine Biology of Ceylon by various Naturalists.) 

Parts I.-V., 1903-1906. Royal 4to. 20s. each. To Fellows of the Royal Society, 15s. each. 

FOOD (WAR) COMMITTEE. 
REPORT ON THE FOOD REQUIREMENTS OF MAN, AND THEIR VARIATIONS 

ACCORDING TO AGE, SEX, SIZE AND OCCUPATION. 

Fcap. folio. Price Is. 6d. 

REPORT ON THE COMPOSITION OF POTATOES GROWN IN THE UNITED KINGDOM. 

Fcap. folio. Price 2s. 

REPORT ON THE DIGESTIBILITY OF BREADS. 

Fcap. folio. 36 pp. and 2 Charts. Price 2s. 

REPORTS OF THE GRAIN PESTS (WAR) COMMITTEE. 

Ten parts. 8vo. No. 1 (out of print). No. 2, price 2s. No. 3, price Is. No. 4, price Is. No. 5, price Is. 

No. 6, price 2s. No. 7, price 2s. No. 8, price 2s. No. 9, price Is. 6d. No. 10, price Is. Qd. 

Published for the Royal Society by Harrison and Sons, Ltd., 44-47, St. Martin’s Lane, London, W.C. 2. 



PUBLISHED AT THE OXFORD UNIVERSITY PRESS, BY HENRY FrOWDE, AMEN CORNER, LONDON, E.C. 

Atlas folio. Price £3 3s. 

(A reduction to Fellows of the Royal Society.) 

THE SIGNATURES IN THE FIRST JOURNAL-BOOK AND THE 
CHARTER-BOOK OF THE ROYAL SOCIETY. 

Being a Facsimile of the Signatures of the Founders, Patrons, and Fellows of the Society from the 

year 1660 down to the year 1912. 

Price 15s. (A reduction to Fellows of the Royal Society.) 

THE RECORD OF THE ROYAL SOCIETY. 
Crown 4to. Third Edition, 1912. 

Containing a full Account of the Foundation, History, &c., of the Society, with a Chronological List 

and Alphabetical Index of the Fellows from the Foundation to the year 1912. 

Price 15s. (A reduction to Fellows of the Royal Society.) 

CATALOGUE OF THE PERIODICAL PUBLICATIONS IN THE LIBRARY 
OF THE ROYAL SOCIETY, 1912. 

Crown 4to. 455 pages. 

Published at the Cambridge University Press, Fetter Lane, London, E.C. 

CATALOGUE OF SCIENTIFIC PAPERS FOR THE 19th CENTURY. 
COMPILED BY -THE ROYAL SOCIETY. 

The volumes are on sale as follows:—Vols. 1-6 (1800-63), cloth (vol. 1 in half-morocco), £4 net; balf- 

morocco, £5 5s. net. Vols. 7, 8 (1864-73), cloth, £1 11s. 6d. net; half-morocco, £2 5s. net. Single 

vols., cloth, £1; half-morocco, £1 8s. net. Vols. 9, 10 (1874-83), cloth, £1 5s. net; half-morocco, 

£1 12s. net. Vol. 11 (1874-83), cloth, £1 5s. net; half-morocco, £1 12s. net. Vol. 12 (Supple¬ 

mentary, 1800-1883), cloth, £1 5s. net; half-morocco, £1 12s. net. Vol. 13 (1884-1900—A to Bzowski), 

Vol. 14 (C to Fittig), Vol. 15 (Fitting to Hyslop), cloth, £3 3s. net; Vol. 16 (I to Marbut), cloth, 

£5 5s. net. 

SUBJECT INDEX OF SCIENTIFIC PAPERS. 
Large 8vo. 

Vol. I. Pure Mathematics. 28s. cloth. 40s. half-pigskin. 

Vol. II. Mechanics. 21s. cloth. 35s. half-pigskin. 

Vol. III. Physics. Part I. 24s. cloth. 37s. 6d. half-pigskin. Part II. 21s. cloth. 35s. half-pigskin. 



RECENT PAPERS IN THE ‘PHILOSOPHICAL TRANSACTIONS.’ 

Series A.—Mathematical and Physical. 

A 596. Eddy-Current Losses in Cylindrical Conductors, with Special Applications to the Alternating 

Current Resistances of Short Coils. By S. Butterworth, M.Sc. Pp. 44. Price 4s. 

A 597. The Influence of Satellites upon the Form of Saturn’s Ring. By G. R. Goldsbrough, D.Sc., 

Armstrong College, Newcastle-on-Tyne. Pp. 30. Price 2s. 

A 598. The Analysis of Sound.—Part I. The Experimental Analysis of Sound in Air and Water: Some 

Experiments towards a Sound Spectrum. By Guy Barlow, D.Sc. (Wales, Lond., Birm.), 

F.Inst.P., Lecturer in Physics in the University of Birmingham, and H. B. Keene, D.Sc. 

(Birm.), F.Inst.P., Lecturer in Physics in the University of Birmingham. Part II. The 

Theory of Analysis of an Electric Current by Periodic Interruption. By Guy Barlow, D.Sc. 

Pp. 36. Price 3s. 

A 599. Lagrange’s Ballistic Problem. By A. E. H. Love, F.R.S., Sedleian Professor of Natural 

Philosophy in the University of Oxford, and F. B. Pidduck, M.A., Fellow of Queen’s College, 

Oxford. Pp. 60; 2 Plates. Price 5s. 

A 600. The Aerodynamics of a Spinning Shell.—Part II. By R. H. Fowler and C. N. H. Lock. 

Pp. 21. Price 2s. 6d. 

A 601. Bakerian Lecture.—Optical Rotatory Dispersion.—Part II. Tartaric Acid and the Tartrates. 

By Thomas Martin Lowry, F.R.S., and Percy Corlett Austin. Pp. 60. Price 7s. 6<2. 

A 602. On the Mathematical Foundations of Theoretical Statistics. By R. A. Fisher, M.A., Fellow of 

Gonville and Caius College, Cambridge, Chief Statistician, Rothamsted Experimental Station, 

Harpenden. Pp. 60. Price 7s. 

A 603. Bakerian Lecture.—On the Spectrum of Hydrogen. By T. R. Merton, D.Sc., F.R.S., 

Professor of Spectroscopy in the University of Oxford, and S. Barratt, B.A., Balliol College, 

Oxford. Pp. 32; 1 Plate. Price 4s. 

Series B.—Biological. 

B 379. On the Calcification of the Vertebral Centra in Sharks and Rays. By W. G. Ridewood, D.Sc. 

Pp. 97. Price 10s. 

B 380. The Life-History and Cytology of Synckytrium Endobioticum (Schilb.), Perc., The Cause of 

Wart Disease in Potato. By K. M. Curtis, M.A., M.Sc., D.I.C., F.L.S. Pp. 70; 5 Plates. 

Price 10s. 6d. 

B 381. Title, Contents, Index, &c., Vol. 210. Pp. 10. Price Is. 

Volume 210 (1921), 480 pp., with 16 Plates, Price £3 5s. 6d. 

B 382. On a Periodic Structure in many Insect Scales, and the Cause of their Iridescent Colours. By 

H. Onslow. Pp. 74; 3 Plates. Price 10s. 6d. 

B 383. The Asymmetry, Metamorphosis and Origin of Flat-Fishes. By H. M. Kyle. Pp. 55; 7 Plates. 

Price 10s. 

B 384. Regeneration and Reproduction of the Syllid Procerastea. By E. J. Allen, D.Sc., F.R.S., Director 

of the Plymouth Laboratory. Pp. 47 ; 6 Plates. Price 17s. Gd. 

B 385. The Breeding Places of the Eel. By Johs. Schmidt, D.Sc., Copenhagen. Pp. 30; 2 Plates. 

Price 4s. 

B 386. Observations on the Skull in Foetal Specimens of Whales of the Genera Megaptera and 

Balcenoptera. By the late W. G. Ridewood, D.Sc. Pp. 64. Price 5s. Gd. 

foLiinclin Cloth cases for„i>mding the volumes of the ‘Philosophical Transactions.’ Price 3s. Gd. 

Published for the BOYAL SOCIETY by 

Harrison and Sons, Ltd., 44-47, St. Martin’s Lane, London, W.C. 2. 



PHILOSOPHICAL TRANSACTIONS 

OP THE 

ROYAL SOCIETY OF LONDON. 

Series A, Vol. 222, Pp. 1-43. 

THE EMISSION OF ELECTRONS UNDER THE INFLUENCE 

OF CHEMICAL ACTION. 

O. W. RICHARDSON, F.R.S., 

WHEATSTONE PROFESSOR OF PHYSICS, UNIVERSITY OF LONDON, KING’S COLLEGE. 

m 

Printed and Published for the BOYAL SOCIETY by 

HARRISON AND SONS, Ltd., 44-47, ST. MARTIN’S LANE, LONDON, W.C. 2. 

13 rtuter^ in ©riltnarj) Id 

1921. 

Price Four Shillings. 

A 594. 30.4,21 



PUBLICATIONS OF THE ROYAL SOCIETY OF LONDON. 

ABSTRACTS of the PAPERS printed in the PHILOSOPHICAL TRANSACTIONS of the ROYAL 

SOCIETY of LONDON. Yols. 1 to 6 (1800-1854), 8vo, at 5s. each. (Vole. 3 and 6 out of Print.) 

PROCEEDINGS of the ROYAL SOCIETY of LONDON, being a continuation of the foregoing 

Series. Yols. 8 to 14, and 16 to 74 (except Vols. 20, 21, 22, 50, 51, 74), 21s. each, cloth. Vol. 75 

is composed of Obituary Notices of Fellows Deceased, 1898-1904. Price 10s. With Vol. 76 the 

“Proceedings” appear in enlarged form and in two series—A, Mathematical and Physical, published 

at 20s.; B, Biological, published at 25s. Subscription prices in advance—Series A, 15s. per Vol.; 

Series B, 20s. per Vol. 

A GENERAL INDEX TO THE PROCEEDINGS OF THE 
ROYAL SOCIETY. 

Vols. 1-75. Covering the Period 1800-1905 (under authors’ names). Price 5s. Half price to 

Fellows of the Society. 

THE YEAR-BOOK OF THE ROYAL SOCIETY, 1921. 

Principal Contents:—List of Fellows, Committees, &c.; Statutes and Regulations ; Business of the 

Society during 1920, including Anniversary Meeting, Council’s Report, and Treasurer’s 

Accounts ; Arrangements for 1921. Demy 8vo, pp. 201. Price 7s. 6d. 

THE ATOLL OF FUNAFUTI, 

BORINGS INTO A CORAL REEF AND THE RESULTS. 

Royal 4to. 428 pages, with numerous Plates and Diagrams, and Separate Portfolio of Geological 

Maps and Sections. Price 30s. To Fellows of the Royal Society, 20s. 

REPORT TO THE GOVERNMENT OF CEYLON 

ON THE 

PEARL OYSTER FISHERIES OF THE GULF OF MANAAR. 
By W. A. Herdman, D.Sc., F.R.S. 

(With Supplementary Reports upon the Marine Biology of Ceylon by various Naturalists.) 

Parts I.-V., 1903-1906. Royal 4to. 20s. each. To Fellows of the Royal Society, 15s. each. 

FOOD (WAR) COMMITTEE. 

REPORT ON THE FOOD REQUIREMENTS OF MAN, AND THEIR VARIATIONS 

ACCORDING TO AGE, SEX, SIZE AND OCCUPATION. 

Fcap. folio. Price Is. 6d. 

REPORT ON THE COMPOSITION OF POTATOES GROWN IN THE UNITED KINGDOM. 

Fcap. folio. Price 2s. 

REPORT ON THE DIGESTIBILITY OF BREADS. 

Fcap. folio. 36 pp. and 2 Charts. Price 2s. 

REPORTS OF THE GRAIN PESTS (WAR) COMMITTEE. 

Ten parts. 8vo. No. 1 (out of print). No. 2, price 2s. No. 3, price Is. No. 4, price Is. No. 5, price 1*. 

No. 6, price 2s. No. 7, price 2s. No. 8, price 2s. No. 9 (in press). No. 10, price Is. 6d. 

Published for the Royal Society by Harrison and Sons, Ltd., 44-47, St. Martin's Lane, London, W.C. 2. 



PHILOSOPHICAL TRANSACTIONS. 

I. The Emission of Electrons under the Influence of Chemical Action. 

By O. W. Richardson, F.R.S., Wheatstone Professor of Physics, University of 

London, King s College. 

Received October 21,—Read November 18, 1920. 

§ 1.—Several investigators have claimed that electrons are emitted from metals under 

the influence of chemical action, but the only claim* which seems well substantiated is 

that of Haber and Just,| who found that when drops of caesium or of the liquid alloy 

of sodium and potassium are attacked, at a low pressure, by a number of chemically 

active gases, the drops lose a negative but not a positive electric charge. The electric 

currents set up with the drops negatively charged are stopped by the application in a 

suitable manner of relatively small magnetic fields. This shows that the currents are 

carried by electrons emitted from the drops.J 

The object of the present investigation has been to obtain quantitative information 

about this interesting phenomenon, and, more especially, to ascertain the magnitude of 

the kinetic energy of the emitted electrons and the mode of its distribution among them. 

The importance of the subject lies in the fact that it is the only way, so far as I am 

aware, in which any information at all can be made available as to the distribution of 

energy among the individual products—molecular, atomic, ionic or electronic—of a 

chemical reaction. The majority of the experiments have been directed towards obtain¬ 

ing the curves showing the relation between the chemical electron current and the 

applied electromotive force for the case of a small spherical source concentric with a 

large spherical electrode. If the currents are small and the gas pressure is low, so that 

the motion of the liberated electrons is determined entirely by the applied electric field 

and is interfered with neither by the molecules of the gas nor by the fields of force arising 

from other electrons, we should anticipate that these electron currents would exhibit 

saturation with zero applied potential difference ; subject to the additional proviso 

* Possibly some of the cases examined by Reboul (‘ C. R.,’ vol. CXLIX., p. 110 (1909), and vol. CLII., 

p. 1660 (1911)), may turn out to be an exception to this statement. 

f ‘Ann. der Physik,’ vol. 30, p. 411 (1909)"; ibid., vol. 36, p. 308 (1911). 

J A survey of the previous work in this and allied fields, together with an account of the results of some 

of the earlier experiments of the present research, will be found on pp. 290-298 of my book ‘ The Emission 

of Eleetricity from Hot Bodies ’ (London, 1916). It will be seen that the e-arlier experiments gave results 

which differ in some important particulars from those obtained later under more satisfactory conditions. 

Cf. also ibid., pp. 49 et seq., and pp. 128 et seq. 

VOL, CCXXII.—A 594. B [Published April 30, 1921, 
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that the electrons are liberated by the chemical action in such a manner that for practical 

purposes they can be considered to be clear of the fields of force of the atoms or mole¬ 

cules of origin. As to the validity or otherwise of this last assumption there was no 

prior evidence, but the experiments show that it is at least approximately satisfied and 

that small accelerating electric fields have little or no effect in increasing the electron 

emission. Subject to the validity of the assumptions referred to, the currents in any 

accelerating field should be constant, whilst their values in any retarding field will be 

a measure of the number of electrons whose kinetic energy when emitted exceeds the 

equivalent applied retarding potential difference. It should, in fact, be equal to the 

number of such electrons divided by the electronic charge. A characteristic curve 

satisfying such conditions for the case of the concentric spherical electrodes will there¬ 

fore solve the problem so far as the total kinetic energy is concerned. Stated in this 

way the matter appears very simple, but it has been found in practice to be fraught 

with very serious difficulties which have taken a long time to overcome. 

In all the experiments the metal acted on was a liquid alloy of sodium and potassium. 

In the majority of them this had an initial composition corresponding to the formula 

NaKo. The alloy of this formula appears^ to have the lowest melting point, and it is 

a quite mobile liquid at room temperatures. In some of the early experiments an alloy 

of higher melting point having the initial composition NaK was used. This fact will 

be mentioned when it is necessary to refer to those experi¬ 

ments. Where no specific reference to the composition of the 

alloy is made, it can be assumed that it was close to that 

given by the formula NaK2. There is reason to believe that as 

the alloy is used the potassium is consumed faster than the 

sodium, with a consequent increase in the viscosity of the 

alloy. This effect is not so noticeable with the alloy NaK2 as 

with NaK, which after a time becomes almost solid. 

After a certain amount of preliminary skirmishing with 

apparatus of different designs, that finally used in the measure¬ 

ment of the characteristic curves for concentric spheres is 

shown in a working drawing in fig. 1. The supply of the 

liquid alloy was kept in a glass reservoir (a sejDarating funnel) 

vertically above the tube A to which it was sealed. Between 

A and the reservoir was a glass stop-cock for regulating the 

flow of the alloy. A fine platinum wire trailed down the 

extension BC and was sealed through the glass between A and 

the stop-cock, and so brought to the outside of the apparatus 

for the purpose of applying any desired potential to the alloy 

in the tube BC. The dilated portion B of the tube AC was ground to fit air-tight into 

the neck of the main bulb I), and the joint could be sealed with mercury or wax at the 

* H. Le Chatelier, ‘ Recueil de Constantes Physiques,’ p. 352, fig. 3 (Paris, 1913). 
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lip E. Below C the glass tube was drawn out to a fine nozzle, and the lower end of 
the tube about C was silvered, and the silver coating connected through to the alloy 
inside by a platinum wire sealed through the glass. The object of this was to 
maintain the outside of the tube at a definite electrical potential and to prevent 
trouble due to charges developing on the glass surface. Matters were so arranged 
that the nozzle was about a millimetre above the centre of the copper sphere F. This 
was attached to a stout wire supported by glass and connected through to the outside 
by the platinum seal shown at H. Part of the weight of the sphere was taken by a 
copper pin which butted into a small hump blown in the tube wall at M. The copper 
sphere, which was 5 cm. in diameter, was provided with openings in front and behind 
as indicated at C4 for the purpose of throwing a powerful beam of light of suitable 
frequency on to the drops which formed at the nozzle. The light was supplied by a 
Westinghouse Cooper-Hewitt quartz mercury vapour lamp and admitted through a 
tube sealed into the main bulb. This tube is at right angles to the plane of the figure, 
which does not show it. The end was ground flat and closed with a thin quartz plate 
cemented on with sealing-wax. The copper electrode F was provided with holes at the 
top and at the bottom. The drops fell through the lower hole into the bulb J, which 
was closed by a stop-cock below K. The alloy in J was connected to earth by the sealed 
platinum wire K. When a sufficient amount of the alloy had collected in J, dry carbon 
dioxide or nitrogen could be admitted at N, and the alloy forced back into the reservoir 
by a system of tubes and stop-cocks not shown. In this way a sample of the alloy 
could be used a considerable number of times without dismembering the apparatus. 

The side tube N led to the phosphorus pentoxide bulb, the MacLeod gauge, the gene¬ 
rator of inert gas just referred to, the pumping system (Gaede mercury pump and Geryk 
backing pump), and the generator of the chemically active gases under consideration. 
This consisted of a closed vertical tube about 5 mm. in diameter provided with a stop¬ 
cock and connected with a point near N through about a metre of similar glass tubing 
running horizontally. The gases dealt with were carbonyl chloride (COOL), chlorine 
(Cl2), hydrochloric acid (HC1) and water vapour (H20). The three first were 
condensed into the generating tube by means of liquid air in a thermos vessel 
placed outside it, and the amount released into the apparatus could be varied by 
manipulating the height of the liquid air outside the generating tube. The water 
vapour was supplied from mixtures of water and sulphuric acid or from crystals of 
CaCl2 6H20. 

Most of the experiments deal with C0C12- Except in the most recent experiments 
this was prepared by boiling a mixture of 20 parts chloroform, 50 parts potassium 
bichromate and 400 parts sulphuric acid in a flask with a reflex condenser attached. 
The gas was freed from hydrochloric acid by bubbling through water, from water by 
bubbling through sulphuric acid, and from chlorine by passing through a U-tube con¬ 
taining small pieces of antimony, and then condensed in a freezing mixture of ice and 
salt. For the most recent experiments we have been able to secure a pre-war sample 

b 2 
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of COCl2 by Kahlbaum. This seems to have the same properties as that which was 

prepared in the laboratory. The chlorine used was prepared by the action of hydro¬ 

chloric acid on manganese dioxide, washed through sulphuric acid and condensed by 

liquid air. As a source of HC1 gas strong hydrochloric acid was taken and the pressure 

reduced by cooling it to a low temperature. For H,0, either water was taken and the 

vapour pressure reduced by mixing it with an excess of sulphuric acid, or crystals of 

CaCL 6H20 cooled below the room temperature were used. 

The electrical arrangements were for the most part of an ordinary character and 

do not call for detailed description. The currents were measured by a quadrant electro¬ 

meter having, except when otherwise stated, a sensitiveness of 570 divisions per volt. 

It is necessary that this instrument should be sensitive, as, although the currents dealt 

with are of considerable magnitude, the differences of potential to be investigated are 

small. One quadrant was connected to the point H in fig. 1, and the other to earth. In 

most of the experiments capacities varying from 0 -01 to 1 mfd. were added to the earthed 

quadrant to reduce the deflections to convenient proportions. Potentials varying 

continuously by any desired amount between ± 20 volts could be applied to the drop, 

by means of a sliding contact on a rheostat fed by a battery with one end earthed, 

and were read by a double-scale Weston Voltmeter. 

In some of the preliminary experiments the alloy was forced through the nozzle in a 

fine stream by admitting inert gas to a pressure of several atmospheres to the space 

above the main body of the alloy in the reservoir. This method was found to be unsatis¬ 

factory, as the stream was apt to get diverted on to the copper ball, owing to some minute 

particle of solid getting into the nozzle or to some slight deposit forming unsymmetri- 

cally at its edge. In the experiments for which data are given the driving pressure 

was only the atmospheric pressure, and the alloy flowed in a steady succession of uniform 

spherical drops. These were about 2 mm. in diameter and flowed at the rate of about 

6 drops a minute in the experiments on which reliance is placed. Different nozzles 

have been tried and other conditions varied, so that experiments have been made 

with drops from about 1 mm. to 1 cm. in diameter and flowing at rates between about 

1 per minute and 15 per minute. So far as I have been able to ascertain, the effects 

recorded are not influenced appreciably by the size and rate of the drops. The size 

(about 3 mm. diameter) and the rate (about 6 per minute) chiefly aimed at Avere 

chosen as being convenient to work with and easy to attain. It should be 

mentioned that with very slow drops irregular results may be obtained, as the 

emission is greatest when each drop starts, and falls off as the surface becomes 

protected by a layer of the reaction products. This effect is always present, but it 

does not appear to lead to serious trouble if the number of drops is not under four 

per minute. 

With the viscous alloys containing a high percentage of sodium, exceptionally large 

and slow drops can be obtained. Some of these formed so slowly that they became 

covered with a visible white coating of the reaction products. As the drop increased in 
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size this coating would fracture from time to time, exposing the bright alloy underneath 

the crack. Simultaneous with each fracture a sudden increase of the rate of electro¬ 

meter deflection could be observed, owing to the increased emission from the clean 

alloy. Needless to say, no quantitative data are obtainable from experiments under 

such conditions. In the experiments on which reliance is placed, the rate of the drops 

was so rapid and the pressure of the attacking gas so low that no visible change occurred 

in the appearance of the surface of the drops. 

In general it has not been found possible so to regulate the pressure of the attacking 

gas that the saturation current would stay constant. There is, however, no great diffi¬ 

culty in maintaining conditions so that the saturation current increases or diminishes 

in a regular manner with lapse of time. For example, a common method of procedure 

in dealing with COCl2 has been the following :—Initially the COCl2 would be strongly 

cooled by immersion of the generating tube in liquid air. The cock between the gene¬ 

rator and the testing apparatus would then be opened and all the gas pumped out of the 

whole apparatus to a pressure of 0 -001 mm. or less. The connection to the pumps 

would then be shut off and this vacuum would be maintained, provided the COCl2 was 

well immersed in the liquid air. The alloy would then be allowed to drop, charged to 

a suitable negative potential, and the copper ball connected with the electrometer. If 

the electrical conditions were satisfactory there would be no deflection under these 

circumstances. The next step would be gradually to reduce the depth of immersion 

of the COCl2 in the liquid air. This could be done by turning a screw table which 

supported the thermos bottle below the generator. Meanwhile continuous observation 

was kept on the electrometer spot, and at a certain stage a small movement would set. 

in, showing that some active gas was beginning to reach the apparatus. It was generally 

convenient to raise the thermos bottle a little at this stage, as owing to a lag in the 

thermal changes the lowering process was generally somewhat overdone before the 

effects were perceptible. At about this stage transient effects would frequently be 

observed. These may be attributable either to a more volatile active contaminant 

present in the chemical used, or to some small trace of the latter which had condensed 

on the upper walls of the generator. These walls would no doubt warm up quickly 

when the liquid air was reduced. These transient effects would disappear after a little 

while, and the electron currents under a given applied voltage would be found to increase 

very steadily and deliberately as the generating tube gradually warmed up. If the 

rate of increase became inconveniently large, it could be checked by raising the liquid 

air and repeating the processes substantially as described until a complete set of observa¬ 

tions had been obtained. 

In some cases it was found preferable to work in a reverse manner, by allowing an 

excess of the active gas to flow into the apparatus and to observe the phenomena under 

examination as this gas was consumed. The consumption takes place rather slowly, 

probably owing to adsorption of the gas by the walls of the apparatus. A typical 

example of the diminution of the saturation current with time after admitting COCl2, 
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at a low pressure, is shown in fig. 2. The three curves correspond to units of current 

diminishing approximately by successive factors of 10, according to the different 

capacities, given on the respective curves, added to the electrometer system. 

At the beginning of this experiment the pressure was less than 0 -001 mm. and the 

admission of the COCl2 did not show any ascertainable increase. It was therefore at 

most 0-001 mm. After 20 minutes the pressure had risen to 0-0015 mm., after 70 

minutes it was 0-003 mm., and after 100 minutes 0-004 mm. These data strongly 

suggested that the admitted CO CL was mainly adsorbed and did not make itself felt 

on the gauge until the chlorine had been fixed and the carbon monoxide, a much less 

adsorbent gas, liberated. It will be seen that the chemical emission is most vigorous 

at first and rapidly falls off. The rate of decay, whether considered absolutely or in 

proportion to the amount of emission, steadily diminishes with lapse of time. This 

probably means that the active gas initially is that in the immediate neighbourhood 

of the drops, whereas later on it diffuses from more remote parts of the apparatus. It 

is probable that the rate of emission is proportional to the chemical action occurring, 

and that this is likewise proportional to the partial pressure of the active gas at the 

surface of the drop. 

Whilst fig. 2 exhibits the decay of the effect in a typical way under the conditions 

referred to, it is not typical of the conditions holding during the majority of the measure¬ 

ments, when a much higher degree of constancy of the saturation current was attained. 

For example, in one set the saturation current only varied between the limits 26 -5 and 

31-5 during the whole experiment, which lasted over two hours. However, this change 

with time was always present and its effect had to be eliminated. To accomplish this, 

determinations of the current under varied conditions, as, for example, under different 

voltages, were alternated with measurements of the saturation current under some 
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standard voltage. The results were then expressed as fractions of the standard satura¬ 

tion current ruling at the time the particular measurements were taken. The instanta¬ 

neous value of the standard current was ascertained in various ways, depending on the 

rapidity with which it was varying. When the variation was small it was sufficient to 

take the arithmetic mean of the determinations of the standard current immediately 

preceding and following the measurement of the current under the given conditions. 

For somewhat larger degrees of variation the geometric means of the corresponding 

current values were found to give reliable results. Where the rate of variation was 

still more rapid, it was necessary to note the times of the various measurements, to plot 

a curve like fig. 2 showing the value of the standard current as a function of the time, 

and to ascertain from this curve the instantaneous value of the standard current at the 

time of the particular experiment. This method is, of course, one which is reliable 

under any circumstances; but, generally speaking, the rate of change of the standard 

current was so slow that it was not necessary to record the times at which the different 

measurements were made. This was an advantage, as each experiment involved a 

large number of settings and readings. The experimental manipulation was not par¬ 

ticularly easy in any event, and each additional item which had to be recorded made 

a series of operations increasingly tiring and correspondingly liable to involve erroneous 

records. 

This preliminary discussion will, I hope, give a general idea of the method of experi¬ 

menting adopted. It will probably be more profitable to leave further details until 

the results of the particular experiments are dealt with. 

§ 2.—The Characteristic (Current — E.M.F.) Curve for Carbonyl Chloride. 

These data all refer to the system in which the source of emission is a spherical drop 

of the alloy NaK2 of radius about 1 mm. surrounded by a concentric spherical electrode 

of copper of radius 2 -5 cm. The pressure of the gas in the apparatus increased fairly 

uniformly with the duration of each experiment, the extremes of pressure recorded lying 

between the limits 0 -001 mm. and 0 -087 mm. With the exception of one experiment, 

the final pressure did not exceed 0 -020 mm. It is probable that, in the exceptional 

case in which the final pressure of 0 *087 mm. was recorded, there was a small leakage 

of air from outside the apparatus. The data afford no evidence that the maximum 

pressure of the C0C12 ever exceeded 0 -001 mm., and it may have been much less. The 

pressures recorded are those of the unabsorbed products of the reaction, and are 

therefore probably due to carbon monoxide. The sensitiveness of the electrometer 

was 570 divisions per volt, and the capacity of the electrometer and its connections 

0-00012 mfd. 

In most of the series of measurements a determination of the photo-electric current 

under the same voltage, due to the blue light from the mercury vapour lamp transmitted 

through a Wratten filter No, 50, was made immediately after each determination of 
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the chemical current. The actual measurement made was that of the combined photo¬ 

electric and chemical emission, but the instantaneous value of the chemical current 

could be obtained from the determination immediately preceding after allowing for 

its variation with the time, and thus the value of the photo-electric current obtained 

by subtraction. The light transmitted by the filter is not strictly monochromatic, but 

for most practical purposes it can be regarded as consisting of the violet group hung 

between 4347 and 4358. Whilst I have not made a spectrographic examination of the 

light transmitted by this filter, it probably lets through a certain amount of the group 

4046-4077 and a smaller amount of 4916. Consequently no particular quantitative 

reliance is placed on these photo-electric data, but they afford a valuable indication 

as to the difference between the chemical and photo-electric characteristic curves and 

also supply a useful guide as to the state of the surface of the alloy. Later on, when 

accurate photo-electric information became imperative, a monochromatic illuminator 

and a set of light filters were obtained. The reliability of these later photo-electric 

measurements, in so far as it is dependent on the monochromatism of the light used, is 

to be regarded as of a distinctly higher order than those dealt with in this part of the 

paper (see p. 23 et seq.). 

Preliminary tests with this apparatus showed that the chemical-effect currents were 

not increasing appreciably when the negative (accelerating) potential on the drops was 

increased from 2 to 3 volts ; so that — 3 volts was adopted as the potential for measuring 

the standard current. The procedure adopted, when photo-electric measurements 

were included, was first to measure the current with the light cut off at — 3 volts, then 

with the light still cut off at the voltage under test, say, x volts, then at x volts with 

the drop illuminated, then at — 3 volts again with the light off, then with the light off 

at a new voltage, say, y volts ; then at y volts with the light on, then at — 3 volts with 

the light off again, and so on, until a complete set of data had been obtained. From 

these results the values of the relative chemical currents, i.e., the values of the fraction 

obtained by dividing the current at the voltage under test by the instantaneous standard 

current and also the values of the photo-electric currents at the different voltages, 

were calculated in the manner already explained. When no photo-electric measure¬ 

ments were made the procedure was the same, except that the measurements with 

the drop illuminated were omitted. In all cases the successive settings and readings 

were made as rapidly as possible. 

At first sight the results got in this way seemed very inconsistent. For example, in 

different experiments made at intervals perhaps of some weeks, but under conditions 

which were identical so far as I could ascertain, the relative currents at zero volts (as 

compared with — 3 volts as standard) would differ by 100 per cent, or more. Later 

on it appeared that the current at zero volts had vanished altogether, and that the 

current, instead of being approximately saturated, was increasing rapidly between 

— 2 and — 3 volts. However, when the precaution was taken of ensuring that the 

standard current was really on the saturation part of the curve, and when the results 
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of the whole of the completed experiments were plotted and compared together, it 

was found that there was a definite method about these variations. This will be recog¬ 

nised from an inspection of fig. 3, which shows three of the characteristics as actually 

determined. The numbers alongside the crosses on curve 1 express the order in which 

-— --->- 

the different points were determined. It will be seen that each characteristic is 

consistent enough in itself. The variability, normally about 5 per cent., which seems 

rather pronounced on the flat part of the curves, is due to the cumulative effect of the 

errors inherent in the determination of the currents. The percentage error should be 

independent of the magnitude of the currents, and consequently is not so noticeable 

on the lower parts of the diagram where the relative currents are smaller. It is 

probable that the main source of error lies in the variation of the rate of emission 

with the growth of the drops, and it will be noticed that it is most pronounced in 

curve III., where the drops were formed with exceptional slowness (at the rate of 4 in 

90 seconds). However, I believe that the accuracy of the measurements is sufficient 

to establish the conclusions which it is intended to draw from them. 

It will be noticed that the shapes of the curves are all much the same, the most notice¬ 

able difference being that they are spaced widely apart on the voltage axis. In fact, 

it is clear from an inspection of fig. 3, that if any two of the curves are given suitable 

horizontal displacements, they can be made nearly to coincide with the remaining one. 

The explanation of such a result seemed obvious. The shapes of the characteristic 

curves are the same in the different experiments, but they occur at different places 

along the voltage axis. Now the voltage Y plotted along this axis is that given by a 

VOL. CCXXII.—A, c 
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voltmeter connected, in effect, across the gap between the drop of alloy and the copper 

sphere. The actual difference of potential across this gap is not equal to V, but is equal 

to V + Iv where K is the contact potential difference between the surfaces of the alloy 

and the copper sphere. If now the value of K is changing between one experiment 

and another, the observed results are completely accounted for. It will be necessary 

that K should exhibit an extreme variation of as much as 2 -5 volts, but this does not 

seem a surprising requirement when it is remembered that the contact electromotive 

force between the alkali metals and copper is comparable with this amount. The 

changes in the contact electromotive force which occur are to be attributed to changes 

in the surfaces of the alloy and of the copper due to the gases and vapours to which 

they are exposed, and to changes in the copper surface due to splashing with the alloy 

and possibly to absorption of the vapours of the alkali metals by the copper. 

To test this hypothesis, all the sets of observations with C0C12 which were sufficiently 

complete to form a reliable guide were collected together and the relative currents in 

terms of the standard tabulated. In cases such as curve IY. in fig. 3, where the current 

was not saturated at — 3 volts, the standard voltage was chosen about 3 volts negative 

to a voltage at which the current was about 50 per cent, of the final saturation value. 

The precise value of this voltage does not matter much, as the current in this region 

is not varying with the voltage to an extent ascertainable by these experiments. What 

is important is that the standard current should be saturated, and it was convenient 

to employ the least voltage that would make sure of this. It was also felt that until 

more information was available about the phenomenon, it was desirable to employ as 

the voltage for the determination of the standard current a voltage which would occupy 

the same position on each characteristic. For example, it was not, and is still not, 

known with certainty whether there is a small variation of current with voltage on the 

flat parts of the curves. If there is any such change, the values of the relative currents 

would be affected by the value of the voltage at which it was decided to measure the 

standard saturation current. The method adopted ensures that there are no errors 

arising from considerations of this character, which would be appreciable in comparison 

with the unavoidable experimental error. In all the curves but two the original three- 

volt standard could be retained. In fact, it approximately satisfied the condition just 

described, the current at zero volts in these cases being on the rapidly rising part of the 

characteristic. 

The relative currents thus obtained were then plotted for each series against the 

actual volts given by the voltmeter and the amount of displacement along the voltage 

axis was judged, which would be necessary to bring all the curves as nearly as possible 

to coincidence. This amount is, of course, in general different for the different curves, 

but is the same for every experimental point belonging to any one curve. The dis¬ 

placements are not applied to the curves, which constitute a secondary inference from 

the experimental data, but to the primary source of evidence, the experimental points 

themselves. The absolute position of the composite curve in relation to the scale of 
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voltage is at present an entirely arbitrary matter, in default of any knowledge of the 

actual contact difference of potential Iv occurring in any single experiment. The 

displacements have, however, been so chosen as to bring the point A (fig. 4), formed by 

the intersection of a horizontal line through the standard saturation value unity and 

the dotted extension of the straight or slightly concave part FB of the characteristic, 

over the zero on the volt scale. 

That the point A will not be far from that which corresponds to the condition of zero 

electric field between the two electrodes, i.e., V + K = 0, might be anticipated on the 

following grounds. The data in fig. 3, and still more in fig. 4, indicate that there is no 

considerable direct effect of the applied field in helping the electron emission. In fact, 

I have frequently made explicit tests to see if the part DE of the curve slopes upwards, 

as appears to be suggested by the points in fig. 4, but I have never been able to convince 

myself that it does. Some experiments have given a small increase, some a small 

decrease, and others no change with rising voltage. This is a point which deserves 

further examination, but if there is any effect * of this kind it is certainly small. It 

is presumed, of course, that the voltages used in such tests are not such as to generate 

appreciable ionization in the surrounding gas. Inasmuch as the direct effect of the 

electric field is negligible, the curving of the part BCD of the characteristic is to be 

attributed to such secondary factors as the mutual repulsion of the electrons, electron 

reflection at the copper electrode, the return to the drop of some of the emitted electrons 

owing to collisions with gas molecules, and the effects of the holes in the copper sphere. 

Inasmuch as under ideal conditions in which the electron-emission or saturation current 

is very small, the vacuum is so high that gas collisions are negligible, there is no 

electron reflection at the receiving electrode, and the receiving electrode is a complete 

sphere, in the absence of electric field across the gap every electron once emitted from 

the drop will reach the copper sphere, because there is nothing to turn it back or to 

enable it to go elsewhere. Thus under such ideally perfect conditions the characteristic 

will consist of a flat saturation part AE intersecting with a part such as AFG, in which 

the emitted electrons are returned to the source by the opposition of the retarding field. 

This argument does not establish the coincidence of the point A with the zero potential 

difference, inasmuch as there is nothing a priori which enables us to foretell the shape 

of the part AFG. I have, however, succeeded in making independent experiments 

which determine, within limits, the contact difference of potential K and the charac¬ 

teristic curve for the chemical emission simultaneously. These experiments, which 

will be described later, fix the position of true zero volts somewhat to the left of the 

point A. 

Fig. 4 shows the results of displacing the data along the voltage axis in the manner 

I have explained. The magnitudes of the displacement, and certain details which may 

* For a case in which there is a definite indication of diminishing currents with rising voltage on this 

part of the curve, see p. 25 infra (fig. 12). 

f1 5! W LJ 



12 PROF. 0. W. RICHARDSON ON THE EMISSION OF ELECTRONS 

be of importance relating to the different series of observations, are set forth in the 

following table and remarks :— 

Table I.—COCL. 

Number of 
series. 

Mark indicating 
experimental 

points of series 
on curves. 

Initial pressure, 
millimetres of 

Hg. 

Final pressure, 
millimetres of 

Hg. 

Displacement in 
volts from volt¬ 

meter readings to 
scale position in 

fig. 4. 

Date. 

I. X 0-0015 0-016 + 1-00 3/8/1916 
II. o 0-004 0-020 + 1-45 25/7/1916 

III. k 0-001 0-011 + 0-55 25/9/1916 
IV. 0 0-003 0-087 + 3-30 2/11/1916 

V. © 0-002 0-012 + 2-62 3/11/1916 
VI. O 0-001 0-038 16/9/1916 

(The numerals I., &c., and marks x , &c., are relevant to the data in figs. 3 and 5, as well as in fig. 4.) 

Remarks on each Series. 

I. x.—Generator adjusted at the beginning of the experiment and later. The 

effect rose slowly after each adjustment. Chemical saturation current: minimum 

value 45 divisions per minute with cap. 0-01 mfd., maximum 200 divisions per 

minute, cap. 0 *04 mfd. Saturation photo-electric current, 64 divisions per 

minute with 0 *04 mfd. Maximum chemical and photo-electric effects thus of 

same order of magnitude. Gas was pumped out in the middle of these experi¬ 

ments without affecting the results. These observations were very consistent. 

The only apparent defect was a small insulation leak which had to be allowed for. 

The slight variability of this makes the point of intersection of the curve (I., 

fig. 3) and the voltage axis a little doubtful. A test at the end of the series with 

the mercury line 4355 gave 252 divisions per minute and with the green line 

0 -7 division per minute, the capacity being 0-01 in each case. 

II. O .—Generator adjusted at the beginning and again at the middle of the series. 

Effect rose before and after adjustment. Maximum chemical saturation current, 

160 divisions per minute, minimum 42 per minute ; X 4355 photo-electric satura¬ 

tion current, 160 divisions per minute ; all with capacity 0 -02 mfd. Six drops per 

minute, diameter of drops 3 to 4 mm. 

HI- —Generator not adjusted in these experiments. Chemical effect dropped 

steadily most of the time, then rose a bit towards the end and fell oh again. 

Chemical saturation current: maximum 28 divisions in 60 seconds, capacity 

0 -03 mfd. ; minimum 37 per minute, capacity 0 -01 mfd. X 4355 photo-electric 

saturation, 53 per minute with 0-03 mfd. capacity. Four drops in 90 seconds. 
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IV. 0 .—Generator adjusted twice. Clieniical effect rose after first adjustment. 

After second it fell, then rose again. It was large most of the time. Chemical 

saturation current: maximum 700 divisions per minute with capacity 0 -04 mfd., 

minimum 7 divisions per minute with capacity 0-01 mfd. There was no detect¬ 

able photo-electric current with X = 4355 in this experiment. An effect equal 

to about 1 per cent, of the chemical emission should have been detected. Con¬ 

siderable gas pressure was present, and there may have been a small air leak 

into the apparatus. Six drops per minute. 

V. ©.—No adjustment of generator in this series. Chemical effect small but very 

steady, only varying between 26 -5 and 31 -5 divisions per minute with 0 -01 mfd. 

capacity: photo-electric X 4355 saturation, 300 divisions per minute with 

0 -01 mfd. 

VI. •.—No adjustment of generator. Chemical saturation current rose gradually 

from 18 to 268 divisions per minute with 0-01 mfd. and then fell to 120 per 

minute. Photo-electric 4355, saturation current 240 divisions per minute with 

0 -01 mfd. 

An examination of the foregoing remarks shows that the series of observations I. to 

V., which are comprised in fig. 4, embrace a wide variety of conditions. Thus the satura¬ 

tion chemical current is varied over the range from 700 divisions per minute with 0 -04 

mfd. or 8 -2 X 10~10 amperes to 7 divisions per minute with 0 -01 mfd., or 2 -05 X 10~12 

amperes. The photo-electric saturation currents under practically the same illumina¬ 

tion in each case varied between the limits 8 -8 X 10“11 amperes and something under 
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3 X 10-13 amperes. The pressure of gas in the apparatus covered the wide range from 

0 -001 mm. to 0 -087 mm. In the different series the chemical saturation currents rose 

or fell with time or did each of these alternately. In one series it was almost constant. 

In one case the standard photo-electric current Avas 10 times as great as the standard 

chemical current, in another it was less than 1 per cent, of it, whilst in another case these 

currents were about equal. The number of drops per second varied between 1 in 

10 seconds and 1 in 22| seconds, possibly more. The size of the drops probably varied 

also. 

In spite of these wide changes in the conditions, all the points in fig. 4 fall close to 

the continuous curve drawn. It is not certain that they are not all coincident with 

this curve within the limits of likely experimental error, with the single exception of 

the observation marked a. An examination of the data makes it practically certain 

that the electrometer was not functioning when this observation was taken, as the 

photo-electric observation immediately following it also gave a zero deflection when 

it should have given a measurable deflection according to the run of the rest of the 

photo-electric curve. 

The coincidence of the points with the smooth curve in fig. 4 proves that this curve 

gives, approximately at any rate, the true shape of the C0C12 characteristic, and confirms 

the suspicion that the moving about, along the volt axis, as in fig. 3 of the experimental 

curves, is due to changes in the contact potential between the surfaces. 

The plot of VI. • did not agree with series I. to V., and is not included in fig. 4, 

but is shown separately in fig. 5, together with a copy DEF of the composite curve in 

fig. 4 shifted 0 -25 volt to the right of its position in that diagram. In this experiment 

the points to the right of + 1 volts were taken first and the others later. It will be seen 

that the first five points taken agree with fig. 4, but the later points would have to be 

given a different displacement to bring them on to the common curve. This seems a 
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clear indication of a change in the contact potential difference between the surfaces 

taking place during the course of a single set of observations. 

§ 3.—The Characteristic Curves for Chlorine. 

The manipulation in the case of chlorine was very similar to that in the case of COCl2 

and the results are of the same general character. Two typical characteristics as 

actually determined are shown in fig. 6. The curves show a flat saturation part for 

accelerating voltages exceeding about four. There is the same tendency to haphazard 

displacements of the curves parallel to the voltage axis as in the case of C0C12. 

The magnitude of this displacement seems, however, to tend to be smaller with 

chlorine, the maximum separation I have observed in six characteristics taken 

with this gas being 0 *95 volt. The fact that the two curves shown in fig. 6 

do not appear to be parallel is due to the distortion caused by the different vertical 

scales. The standard current has the arbitrary value 1 -09 in one case and 0 -95 in 

the other. 

As in the case of C0C12, the various series have been reduced to unit saturation current 

and displaced by varying amounts along the vertical axis to form a composite curve. 

The various data referring to the relevant experimental series are given in the following 

table and remarks :— 
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Table II.—Cl2. 

Number of 
series. 

Mark indicating 
experimental 

points of series 
on curves. 

Initial pressure, 
millimetres of 

Fig. 

Final pressure, 
millimetres of 

Hg. 

Displacement in 
volts from volt¬ 

meter readings to 
scale position in 

fig. 7. 

Date. 

I. X 0-003 0-080 0-00 20/4/1917 
II. o 0-002 0-052 -0-10 22/4/1917 

III. 4 0-002 0-002 -0-25 22/4/1917 
IV. □ 0-002 0-040 - 0-55 22/4/1917 
V. © 0-003 0-100 - 0-70 17/4/1917 

VI. 9 0-002 0-080 + 0-25 25/4/1917 

[The numbers I., &c., refer to the curves in fig. 6 as well as fig. 7.] 

Remarks on each Series. 

I. x .—-No adjustment of generator. Chemical saturation current increased uniformly 

and slowly from about 200 divisions per minute to about 800/min. and photo¬ 

electric (4355) saturation current equal to about 100/min., all with additional 

capacity 0 -01 mfd. Pump stopped and gas allowed to accumulate. 

II. O.—No adjustment. Chemical saturation current increased slowly from 310/min. 

to 508/min., photo-electric 60/min., all with 0-01 mfd. Pump stopped and gas 

accumulating. One drop per minute. 

III. —No adjustment. Chemical saturation current increased slowly from 10/min. 

to 15/min., and then towards the end rose rapidly to 300/min.; photo-electric 

12/min. ; all with 0-01 mfd. In this series the chlorine was kept immersed in 

liquid air and the pumps running continuously. One drop per minute. 

IV. □.—No adjustment. Chemical saturation current increased slowly from 250/min. 

with 0-02 mfd. to 500 per minute with 0-04 mfd., photo-electric 18/min. with 

0-02 mfd. Pump shut oh and gas accumulating. One drop in 110 seconds. 

V. ©.—Chlorine generator shut off from apparatus and effects presumably due to 

chlorine adsorbed in the apparatus. Chemical saturation current fell slowly, 

the measured limits being 135/min. and 97/min. with 0-000121 mfd., but this 

difference is partly exaggerated by errors of measurement. Photo-electric 

370/min. with 0-000121 mfd. Pump shut off and products accumulating. Six 

drops per minute. 

VI. ®.—Chlorine generator shut off and other arrangements as in V. ©. Chemical 

saturation current rose slowly from 209/min. to 258/min. with 0-000121 mfd. 

Photo-electric (4355) saturation current 1300/min. with 0 -000121 mfd. One drop 

in 110 seconds. 
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These data show that the experimental conditions under which chlorine has been 

tested cover a wide range as in the case of COCl2. Thus the chemical saturation current 

is varied between the limits 500/min. with 0*04mfd., equal to 5-9 X 10~10 amperes, 

and about 3 -5 X 10-13 amperes. The photo-electric saturation current varies between 

about 3 X 10~11 amperes and 10~12 amperes. The chemical emission increases and 

decreases with time in the different series ; sometimes it is almost constant, at others 

it is changing rapidly. The pressure of gas in the apparatus ranges from 0 -002 mm. 

to 0 TOO mm. The chemical effect is nearly 60 times the photo-electric in one series, 

whereas it is only about one-sixth of the photo-electric in another, and this ratio has 

intermediate values in other cases. In five of the series the gaseous products of the 

reactions occurring were allowed to accumulate, whereas in one of them the pumps 

were run continuously. The rate at which the drops fell was varied between 1 in 10 

seconds and 1 in 110 seconds. 

In spite of this wide variation in the conditions, all the points fall on the smooth 

curve m fig. 7 to the degree of accuracy which it seems reasonable to expect. An excep¬ 

tion is perhaps furnished by the 3 points x of series I. at — 2 -5, — 3 and — 4 volts. 

It is unlikely that chance errors, which would have to be rather large in any event, 

would make these three points, which were determined in succession at the beginning 

of the series, lie so persistently to the right of the graph required by the rest. It seems 

likely that we have here another example of a change in the contact potential taking 

place during the actual course of the experiments, as in the case of series VI. with COCl2. 

Some of the points in I. x , II. ©, and VI. ® might seem to suggest a slower voltage 

approach to saturation than the normal, and it was thought that this effect might be 

VOL. CCXXII.-A, D 
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attributable to tlie rather high gas pressures which developed in these experiments. 

The fact that III. in which the pressure was kept down to 0 -002 by operating the 

pumps continuously, does not show this tendency, would seem rather to support such 

a contention. An examination in detail of the data, however, is against it. For example, 

in I. x and VI. • the currents at the high voltages were measured at the lower pressures 

and in II. © conversely. On the whole it seems likely that any such appearance is 

illusory and, except in the case of I. x , where a displacement caused by change in 

contact potential during the series seems probable, due to chance errors. 

It appears, then, that fig. 7 determines the shape of the chlorine characteristics. No 

determination of the contact potential with chlorine present has yet been made, so that 

the true zero on the volt scale in fig. 7 cannot yet be assigned with certainty. All that 

can be said at present is that an examination of the relative positions of the chemical 

and of the photo-electric curves which were taken at the same time shows that the true 

zero of fig. 7 lies to the right of — 2 -2 volts. 

§ 4.— Hydrochloric Acid. 

The effects given by this gas are of a much smaller magnitude than those given by 

carbonyl chloride and by chlorine. It was impossible to make accurate measurements 

of them with the apparatus used with the latter gases, and such fragmentary data as 

were obtained only enable qualitative statements to be made. The characteristics 

appear to be similar generally to those given by the other gases, and to drop from satura¬ 

tion to zero current within a range comparable with one volt. 

§ 5.—The Characteristic Curves for Water. 

These experiments were made in 1915 with an apparatus which differed in some details 

from that shown in fig. 1 and used in the experiments described up to this point. Instead 

of the glass tube ABC of fig. 1, the alloy was fed into the testing vessel through a copper 

tube fitted with a tapered silver nozzle. Tins had a fine hole bored vertically down 

the centre and was screwed on to the copper tube. The other electrode was 7 -5 cm. 

in diameter. The alloy used was also different, having the composition NaK instead 

of NaK2. The electrometer sensitiveness was 540 divisions per volt and the capacity of 

the electrometer and connections 0 -00032 mfd. There is an element of doubt about 

the correctness of the voltmeter set up which was used in some of these early experi¬ 

ments, and I am only prepared to state the applied potential differences as relatively 

correct. The units are probably volts, but they may be as small as 0 -6 volt. The 

data for the series of observations which were completed are given in fig. 8, and some 

of the details in Table III. and in the remarks which follow. 
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Table III.—H20. 

Number of 
series. 

Mark indicating 
experimental points 
of series on curves. 

Displacement on volt¬ 
meter scale from- 

voltmeter readings to 
scale position in 

fig- 9- 

Date. Page of notebook. 

I. X - 1-15 1915 Vol. 1, p. 77 
II. o - 0-75 1915 ,, P- 74 

III. k 0-00 1915 „ P- 68 
IV. □ - 1-00 1915 „ p. 55 
V. © - 1-30 1915 ,, p. 54 

VI. m + 0-05 6/8/1915 t > 2, p. 52 
VII. A - 1-00 13/8/1915 ” „ p. 58 

[The numbers I., &c., and marks x , &c., refer to figs. 8 and 9 equally.] 

Remarks. 

Tlie gas was not allowed to accumulate, but the pumps were kept running continuously 

in all these experiments. The gas pressure is not recorded, but probably it did not 

d 2 
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much exceed 0 -002 mm. at any time. In V. © the water vapour was obtained by 

placing crystals of CaCl2 6H20 in the generating tube and immersing it in ice. In 

IV. □ the same crystals were used but the container was immersed in a mixture of 

ice and salt. In all other cases mixtures of sulphuric acid with different suitable propor¬ 

tions of water were used, and the mixture was kept at the temperature of the room- 

In VII. A equal parts of the two liquids were taken. The water vapour was given off 

quietly and the liquid did not boil. In I. to V. the drops fell at the rate of about one 

per minute, in VI. at the rate of seven per minute. After VI. a large structure with a 

wart-like appearance had grown on the end of the nozzle, and in VII. the globules came 

out of this structure. They were very large and looked dirty when attacked by the 

IT20. In the previous experiments, in which much larger currents were obtained, the 

oxidised layer either looked quite white or was invisible. It was noticed that the 

oxidised metal showed no appreciable photo-electric effect with the quartz mercury 

lamp except just when the oxidised skin broke and the bright metal shone through. 

In series I. to V. the electrometer deflections were reduced by adding suitable capacity 

from an adjustable air condenser. The added capacities are not recorded in these 

cases. In VI. 0 -2 mfd. was added from a standard condenser and the maximum satura¬ 

tion current was about 50 divisions per minute. In VII. the capacity was that of the 

apparatus alone (0*00032 mfd.) and the saturation current was 50 divisions per minute 

in tliis case also. VI. and VII. probably correspond respectively to the largest and 

smallest effects dealt with. 

In fig. 8 the individual data I. to VII. are plotted as they were experimentally deter¬ 

mined. The points for I. x and V. © fall so close together that they appear to fall 

on a single curve. The same applies also to each of the pairs IV. 0, VII. A and III. 

VI. §j|. Thus the seven sets of data appear to fall on four distinct curves. However, 

these curves are all nearly parallel to one another, just as was the case with the curves 

for C0C12 and Cl2. They have therefore been subjected to the same treatment, namely, 

given the arbitrary displacements which are recorded in Table III. parallel to the volt 

axis. The result is shown in fig. 9. It will be seen that, with the exception of the points 

marked a, b and c, all the points then lie on a single smooth curve to within the degree 

required by the probable experimental errors. Of the excepted points, b is doubtful 

owing to a rapid variation of emission with time when it was taken, and a and c should 

not, except for the sake of having a complete record of the observations, have been 

included in the diagram, as they are determined by minute deflections comparable in 

magnitude with the variations in the natural leak of the electrometer system in this 

particular experiment. 

Fig. 9 shows that the form of the characteristic curve for H20 is of the same general 

nature as those for Cl2 and C0C12. No determinations of the contact potential K with 

water present have been made, so that the position of the true zero of potential difference 

on fig. 9 is uncertain. 
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difference 

§ 6.—Location of Zero on the Volt Scale for COCl2. 

A knowledge merely of the shapes of the characteristic curves does not enable us 

to say much very positively about the kinetic energy of the liberated electrons, owing 

to the uncertain and changeable contact potential difference. In fact, it is necessary 

to find the position on the volt .scale which corresponds to zero electric held between 

the electrodes, either by a determination of the contact potential difference for some 

particular case or by something which is equivalent to this. In principle the position 

of the zero on the volt axis can be found from a study of photo-electric data. Experi¬ 

ments by the writer and Prof. K. T. Compton,* in which a structure similar to that used 

in the preceding experiments was employed, namely, a small photo-electric source at 

the centre of a large spherical electrode, have shown that the photo-electric characteristic 

curves have the form shown in fig. 10. They consist of a flat part AB joined to a sloping 

part such as AC or AD, whose slope diminishes with diminishing wave-length of the 

monochromatic exciting light. The sloping portions all converge to a common point A 

of the saturation part of the characteristic independently of the wave-length used. 

A is the position of the true zero of potential difference, and, in fact, these small currents 

are completely saturated in any accelerating electric field, however small. Thus one 

method of locating the zero would be to find the convergence point A to the saturation 

value of different monochromatic characteristics such as CA, DA. This would, of 

* ‘ Phil. Mag./ vol. 24, p. 575 (1912). 
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course, have to be done simultaneously with the measurements of the chemical emission, 

and an examination of the preceding data will show that it is hopeless to attempt to 

determine this point accurately under these conditions. For it is just as the currents 

approach the maximum value that the absolute errors become largest and the exact- 

location of the points becomes most difficult. This difficulty can be avoided if we can 

make an auxiliary determination of v0 the threshold frequency of the light which is 

just high enough to excite any photo-electric emission at all. For if D is the point 

where the foot of a characteristic such as DA for some particular frequency v cuts the 

volt axis and DE is denoted by V, then 

eV = h(v - i'0) 

where e is the charge on an ion, h is Planc!k’s constant and e and V are in the same 

absolute units. By using very large photo-electric currents, points such as D can be 

determined with great accuracy and comparative ease, whereas increasing the magnitude 

of the emission does not diminish the inaccuracies to which determinations of points 

like A are liable. 

Data to which this second method can be applied were obtained in connection with 

the Series I. x C0C12 of 3/8/1916 (p. 12). Observations at the end of this series showed 

that with the blue filter the photo-electric saturation current was 248 divisions per 

minute, and that with the green filter it was only 0 -6 div./min. At the same time the 

chemical saturation current was 4-0 divs./min., a capacity of 0-01 mfd. being included 

in each of these measurements. The pressure of the reaction products had risen to 

0-016 mm. at this stage. The fact that the blue light of wave-length 4347-4358 and 
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frequency G -89 X 1014 gave a large deflection shows that this frequency was considerably 

higher than the threshold value. If the small value of the current with X 5460, fre¬ 

quency 5 -49 X 1014 could be relied on as genuine, it would establish v<s as very close to 

X 5460 and just on the low-frequency side of it. On the other hand, if this small deflec¬ 

tion is spurious or due to a trace of light of higher frequency mixed with the X 5460, 

the threshold value must be well on the low-frequency side of X 4350 on account of the 

large deflection given by X 4350. This experiment shows that v0 was somewhere 

between 5-49 X 1014 and 6 -89 X 1014 at this stage. A plot of the photo-electric data 

got during series T. x shows that the photo-electric current with X 4350 met the voltage 

axis at — 0 -20 volt. This was immediately below the 

point at which the chemical current attained 0 -50 of its v \ Fig.II. 
saturation value. Taking the frequency as 6-89 X 1014 

for X 4350 and 5-49 X 1014 for X 5460, the value of 

(v — i/0) h/e is 0 -58 volt for vt> = 5-49 X 1014 and zero for 

„0 = 6 -89 X 1014. Thus the true zero must lie between 

a point which is coincident with the — 0 -20 volt on the 

voltage scale and with the 50 per cent, point on the 

chemical characteristic and a point which is 0 -58 volt 

negative to these points. At this period the contact 

potential difference between the two electrodes then 

was between 0 *2 volt and 0-78 volt, and the true zero 

between the points where the chemical current had 

attained between 0 -50 and 0 *86 of its saturation value. 

Comparing with the composite curve in fig. 4, this makes 

the true zero lie between -f 0 T2 and +0-70 volt on that 

diagram. It must be definitely to the right of + 0 *70 

on account of the large deflections given by X 4355, but 

how far to the right these data do not determine. 

The importance of fixing this zero led me to make a 

renewed attack on this part of the problem recently. 

For success in this determination it is necessary to have 

a series of intense sources of monochromatic radiation 

not too far apart on the frequency-scale. It is also 

necessary to carry out the successive measurements with the utmost rapidity. 

By this time the apparatus shown in fig. 1 had come to grief and a new 

testing vessel of simpler construction, shown to scale in fig. 11, was employed. 

Apart from the smaller dimensions, the principal change consists in the substi¬ 

tution of a cylindrical copper electrode, 2 cm. in diameter, instead of a spherical 

one. The alloy used was NaK2 and the COCl2 was the Kahlbaum specimen already 

referred to. The monochromatic sources were the lines of the mercury arc 

spectrum projected on to the drops by a Hilger glass monochromatic illuminator. 
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Some useful data pertaining to the lines used are collected in the following 

Table :— 

Table IV.—Mercury Spectrum {visible). 

Colour. 
Wave-length between 

(cm. X 105). 
Frequency (prer second). Relative intensity.* 

Yellow. 5-769 and 5-19 X 1014 23-6 
5 • 790 

Green.. 5-460 5-49 X 1014 18-7 
Blue. 4-916 6-10 X 10u 1-0 
Violet 1. 4-347 and 6-89 X 1014 14-7 

4-358 
Violet 2. 4-046 and 7-40 X 1014 8-2 

4-077 

In addition to the illuminator, I had the use of a large selection of colour filters kindly 

lent by Messrs. Hilger. Unfortunately, those which might have been useful cut down 

the working radiation too much. For monochromatism the dispersion of the illumi¬ 

nator has therefore alone been relied on. As a matter of fact, the lines were all sharp 

and widely separated, and no trouble has been experienced, owing either to overlapping 

or to stray light of other wave-lengths. The lamp was run at the maximum brightness 

at which it could be depended on to run smoothly and remain constant. To prevent 

trouble due to stray light it was necessary to enclose the lamp in a large tin box, and 

to prevent over-heating a water-cooling system had to be provided. Once the apparatus 

was adjusted the successive lines could be rapidly thrown on the drops simply by 

adjusting the screw setting of the illuminator. In every case the satisfactoriness of the 

mechanical setting was confirmed by visual observation. 

Very steady conditions have been obtained with these arrangements. The data for 

two determinations of the characteristic curves with this apparatus are shown in fig. 12. 

One of these, x, was taken the same day as and immediately preceding the determina¬ 

tion of the true zero to be described in a moment, and the other, O > as early as possible 

the following day. The smooth curve is drawn to the first set of points marked x , 

and mil be seen to cover them very closely. The first set marked x agree with the 

second, except that (1) they lie about 0 T2 volt to the right, indicating a change by 

this amount in the contact potential difference between the two experiments, and (2) 

they give higher values for the small currents at the foot of the curve on the left-hand 

* These energy measurements are taken from a paper by E. S. .Johansen in ‘ Strahlentherapie,’ vol. 6, 

p. 55 (1915), and are for a different design of lamp which ran on 220 volts, taking 2 • 6 amperes with 128 volts 

between the proles of the arc. The quartz mercury vapour lamp used in these experiments ran on 200 

volts and took 3-0 amperes with 150 volts between the poles. No doubt the relative intensities of the 

lines will vary to some extent with different installations, but for the present purpose it is only necessary 

to know the relative energies approximately. 
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side. These small currents are important, and the collective data bearing on them will 

be considered later. An examination of the experimental conditions on which the 

results plotted in fig. 12 are based shows that the values denoted by © are here liable 

to much more serious errors than those denoted by x , which therefore are alone relied 

on in obtaining this part of the curve. The numbers written alongside the points 

marked 0 indicate the order in which these points were determined. It should be 

mentioned that point 1 is unreliable owing to a very rapid change in the standard current 

when it was determined. 

The second series of points indicate a small but definite falling off in the saturation 

currents with rising potentials. This may be due to some bias of chance errors, but 

it does not seem likely to be, as the data for the first series also support it. There is no 

evidence of such an effect in the COCl2 data for the spherical electrode plotted in fig. 4, 

but it may be masked by the errors of observation. In fact, the experimental data 

which look most reliable for this part of the curve point to a rising current with rising 

negative voltages in those experiments. On the other hand, although the matter was 

not explicitly tested at the time the experiments were made, the chlorine data which 

form the basis of fig. 7 show, on re-examination, a distinct drooping tendency towards 

higher voltages. The evidence is thus not clear that this tendency is peculiar to the 

cylindrical anode. It may be illusory, but that is unlikely. It may be a general effect 

present with the spherical electrodes, but masked by errors. There are several physical 

effects which the electric field might exert on the drops which might give rise to such 

a phenomenon. 

VOL. ccxxn.—A. E 
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Apart from the hump near — 2 volts, the characteristic in fig. 12 is not very different 

from that in fig. 4. The horizontal stretch from the 50 per cent, point to the 1 per cent, 

point is for fig. 12, x , 1 -40 volts, as compared with the value 1 -20 volts of the stretch 

from the 50 per cent, to the 1 per cent, point for the curve in fig. 4. On the other hand, 

the stretch from the 90 per cent, to the 50 per cent, point in fig. 12 is only 0 -46 volt, 

whereas it is 0 -65 volt in fig. 4. The total stretch from the 90 per cent, to the 1 per cent, 

point is practically the same in both cases, the difference between the two curves being 

that fig. 12 is relatively steeper near the top. The data in fig. 12 are only relied on to 

give the shape of the characteristic. It is not supposed that the relative currents and 

voltages had these values when the photo-electric data were being determined. The 

instantaneous values of the relative chemical currents were determined at the same 

time as the photo-electric data. 

In taking the data in fig. 12 the pressure in each series was less than 0-001 mm. at 

the beginning and equal to 0 -004 mm. at the end. 

The determination of the threshold frequency v0 was carried out immediately after 

the series x of fig. 12 was completed, the pressure in the apparatus being 0 -0045 mm. 

The measurements are shown in the following table, — 3 being used for the saturation 

voltage :— 

Table V. 

Nature of light 
used. 

Electrometer de¬ 
flection in scale 

divisions per minute. 

Additional capacity 
microfarads. 

Deflection due to 
light. 

Deflection per unit 
light energy. 

No light. 47 0-01 
A 4055 162 0-01 116 14-15 

No light. 45 0-01 
A 4355 160 0-01 117-5 8-00 

No light. 40 0-01 
A 4916 39 0-01 0-5 0-5 

No light. 37 0-01 
A 5460 35 0-01 -0-5 - 0-027 

No light. 34 0-01 

The deflections in the second column when no light was used are due to the chemical 

effect which was falling slowly and steadily during these experiments. The values in 

the fourth column are got by subtracting the instantaneous chemical effect (got by taking 

the means of the preceding and following measurements) from the combined effect due 

to light and chemical action when the light is on the drop. The values in the last column 

are got by dividing those in the fourth column by the relevant energy data given in 

Table IV. 

The deflections per unit-light energy are plotted against the frequency of the exciting 
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light in fig. 13. According to measurements of the writer and K. T. Compton,* curves 

plotted from such data intersect the frequency axis at the threshold frequency v0. If 

we assume the half-millimeter deflection with X 4916 to mean something, this fixes the 

position of v0 at the point A or 6-02 X 1014. On the other hand, if the reading at 

X 4916 is disregarded, it follows from a consideration of the X 4055 and X 4355 points 

alone that the intersection cannot lie to the right of the point B or 6 -25 X 1014, which 

is the point where a straight line through these two points meets the axis. Thus this 

experiment establishes the value of v0 as lying between the limits 6-02 X 1014 and 

6 -25 X 1014. It is unfortunate that the line X 4916 is so weak, otherwise these limits 

could be narrowed very considerably. 

Immediately after determining v0 the measurements for determining the intersection 

of the photo-electric characteristic for the line violet 2 (X 4046 to 4077) with the voltage 

axis were taken. The pressure was still 0 -0045 mm. The photo-electric currents, in 

scale divisions in 60 seconds with 0 -01 mfd. additional capacity connected with the 

electrometer, were as shown in the following table in the order in which the points 

were taken:— 

Table VI. 

Volts . . . - 3 — 1-8 - 1-0 — 1-2 — 1-1 — 1-3 
Current . 112 101 0-5 12 3 29-5 

These data are plotted in fig. 14, from which it will be seen that the photo-electric 

characteristic for frequency 7 -40 X 1014 cuts the voltage axis at — 1 -07 volts. Thus 

the true zero on the volt scale at this time was — (1 -07 — h/e (v — i/0)), where 

v — 7 -40 X 1014 and h/e, — 4 -124 X 1(T15, is expressed in appropriate units to give 

volts. Now h/e (v — v0) is equal to -569 or -474 volt, according to which of the 

limiting values of v0 determined above we take. Adding 1-07 to these, it follows that 

* ‘ Phil. Mag.,’ vol. 26, p. 562 (1913). 

E 2 
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we have ascertained the position of the true zero at that time as lying between the 

limits — 1 -544 and — 1 -639 volts. 

The next point is to ascertain what was the position at that time of the chemical 
characteristic curve in relation to the volt scale used. Relevant chemical data were 
taken at the same time as the photo-electric data given in Table VI. An examination 
of these data shows that with —1-00 volts the chemical current was then 34 per cent. 
of its saturation value at — 3 volts. It follows that for any C0C12 characteristic curve 
for this apparatus the true zero will lie between the limits of 0-54 and 0 -64 volts to 
the right of that voltage for which the current is equal to 34 per cent, of the saturation 
value. Applying this to the curve, points thus :—- x , in fig. 12, the two limiting values 
are given by the two broken vertical lines at — 1 *78 and —1-88 volts respectively. 
The inclined broken line represents the tangent to the characteristic at the point of 
inflection. It will be seen to intersect the horizontal line through the unit 3-volt satura¬ 
tion current value at the same point as the vertical line through the right-hand zero 
limit, to the accuracy within which the lines can be drawn. Thus the true zero lies 
between the intersection of the tangent at the point of inflection and the horizontal 
saturation current line and a point one-tenth of a volt to the left of this intersection. 

These results support the conclusions already drawn from less complete data in the 
experiments with the spherical anode. In that case the true zero was only located 
to within 0 -58 volt, but it was definitely placed to the left of the corresponding inter¬ 
section. It therefore seems reasonable to assume that either with spherical or cylin¬ 
drical anodes the true zero in this potential scale lies a fraction of a volt to the left of 
the point of intersection of the tangent at the point of inflection with the horizontal 
saturation line. Considering the nature of the experiments, the location of this zero 
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to a higher degree of accuracy than one-tenth of a volt would obviously be a matter of 

some difficulty. 

The data now under consideration clearly determine the contact differences of poten¬ 

tial ruling between the electrode surfaces during the experiments. If v is the velocity 

with which the electrons reach the receiving surface, V the retarding potential recorded 

by the voltmeter, K the contact potential, then for illumination by light of frequency 

v of a source whose threshold frequency is v0, in general, 

im,v2 = h (v - v0) — e(V + K). 

At the intersection of a curve such as that in fig. 14 with the volt axis, Y is just suffi¬ 

ciently great to reduce v to zero. Calling this value of Y, V0, clearly 

K = h/e (v - „0) - V0. 

For the experiment to which fig. 14 refers, V0 = — 1 -07, v = 7 -40 X 10u, and j/0 is 

between 6-02 X 1014 and 6-25 X 10u. Consequently the contact potential K was 

between the two limits 1 -544 and 1 -639 volts. For the slightly different conditions 

ruling when the curves in fig. 12 were taken, the limits for the contact potential would 

be:—For the full curve with points thus, ©, 1 *62 and I -72 volts; for the series with 

points thus, x , l -78 and 1 -88 volts. 

§ 7.—The Approach to the Voltage Axis. 

It is well known that photo-electric characteristic curves for monochromatic illu¬ 

mination approach the voltage axis at finite angles, indicating a finite limit to the 

maximum kinetic energy, whereas the characteristic curves for thermionic electron 

currents approach this axis asymptotically. An examination of figs. 4, 6, 7 and 12 

suggests that in this respect the chemical electron curves differentiate themselves from 

the photo-electric and resemble the thermionic ones. The point is an important one 

for the interpretation of the results. It is, perhaps, not so easy to be sure about it as 

might appear from an inspection of the diagrams, inasmuch as in many cases this part 

of the curves depends on the measurement of small deflections liable to considerable 

errors. Probably the best way of testing this question is by photo-electric and chemical 

curves taken simultaneously, since any errors will then be liable to affect both curves 

in a similar manner. Fig. 15 shows the results of such an experiment with chlorine 

using the spherical electrode. The points marked x represent the relative chemical 

currents, and those marked © the relative photo-electric currents taken simultaneously. 

The values are relative to the — 3 volt values, and the currents were not saturated at 

this voltage. Some trouble arose during the measurements on the saturation part of 

the curve, and the value of the saturation current could not be got accurately, so that 

the vertical scale may be a little different from that of most of the other figures in this 
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paper. This experiment leaves little doubt as to the reality of the gradual approach 

to the voltage axis in the case of the chemical effect. It is the more convincing because, 

during the determination of the two points at 0 and — 0-5 volts, the standard current 

at — 3 volts was increased to about 450 divisions per two minutes (cap. 0 -01 mfd.); 

whereas, during the determination of the rest of the points in fig. 15, the standard 

current varied between 20 and 30 divisions per two minutes, with the same capacity. 

Notwithstanding this very great change in the absolute value of the standard current, 

the two end points are seen to fall on the same curve as the rest. The actual numerical 

values may be of interest and are given in the next table:— 

Table VII.—Chlorine. 

Applied volts (voltmeter 
readings). 2-5 2-0 1-6 1-3 1-0 0-8 0-5 0 

Chemical effect currents 
(scale divs. per 2 mins.) 18 11 6 3 2 1 8 2 

Relative chemical currents 0-78 0-43 0-24 0-116 0-068 0-05 0-025 0-004 

Relative photo-electric 
currents . 0-51 0-16 0-00 0-00 0-00 0-00 0-00 

The sensitiveness of the electrometer was 570 divisions per volt, the added capacity 

0 -01 mfd., making the total capacity equal to 0 -01012 mfd. ; the pressure was 0 -002 mm. 

throughout and the pump running continuously in this experiment. 
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Fig. 16 shows some similar data for COCl2, except that the photo-electric and chemical 

curves were not taken simultaneously. The photo-electric curves, with the mercury 

lines A 4046 to A 4077, were taken the day before the chemical data, and no doubt 

there was some alteration in the contact potential between the electrodes in the interval 

between the experiments. The chemical data shown by crosses are a replot of those 

similarly indicated in fig. 12. The photo-electric data, shown thus ©, are actual 

currents in scale divisions per minute, with a capacity of 0-01053 mfd. and an electro¬ 

meter sensitiveness of 1100 divisions per volt. The saturation current was 130 in the 

same units in these photo-electric experiments. These curves again show quite clearly 

the reality of the small currents with relatively large opposing voltages for the chemical 

emission. The actual data for fig. 16 are shown on the next page. 

The second, third and fourth rows in this table and the last but one refer to the chemical 

emission, the fifth, sixth and seventh and the last to the photo-electric. The corrections 

for the electrometer drift in the fourth and seventh rows have been reduced respectively 

to the same units as the corresponding deflections in the second and fifth. Assuming 

that the determinations are liable to errors of the same magnitude as this drift, an 

assumption which is certainly conservative, the small chemical current at + 0-12 volt 

should be reliable to within 30 per cent, and the errors in the others are comparatively 

trifling. The same test applied to the photo-electric data shows that the value at — 1-0 

should be correct to 16 per cent-., the value at — 0 -4 meaningless and the others reliable. 

With regard to the small electrometer deflections recorded in some of these experiments, 

it should be pointed out that these can be measured with considerable confidence when 

the large capacities employed are added to the instrument. The pressure during these 

chemical measurements varied between the limits of 0 -002 and 0 -004 mm., and during 

the photo-electric between 0 -.0015 and 0 -0025 mm. 
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On referring to fig. 12 it may be noticed that the values taken the following day and 

shown thus © on that diagram, are not in good agreement with the crosses on this 

part of the curve. However, they are nothing like so reliable. The reading at + 0 T2 

volt is only 15 per cent, of the electrometer drift; that at — 0 T2, 37 per cent.; that at 

— 0-42, 80 per cent. ; and it is not until the comparatively large relative current at 

— 1-0 volt is reached that the accuracy becomes better than that of the worst point 

shown in fig. 16. 

§ 8.—The Effect of the Different Gases on the Photo-electric Threshold Frequency. 

In the one case for which this frequency has been closely estimated (COCb) we have 

seen that it was very near to X 4900 (6-02 X 1014 < v0 <6-25 X 1014). This Va is 

not to be regarded as a reliable constant, but one which varies with apparently trifling 

changes in the conditions. Thus in one C0C12 experiment no photo-electric current 

could be got with the full light of the mercury lamp through the blue filter (mostly 

X 4355). The chemical effect was working quite well and there was nothing otherwise 

to differentiate this experiment from others which gave quite large photo-electric currents 

with X 4355. With this exception, so far as I can recollect or tell from the record, 

measurable photo-electric currents were always obtainable with X 4355 both in COCl2, 

chlorine and water vapour. With COCl2 it is probable that the threshold frequency was 

always higher than that of the green line X 5460 (frequency 5 *49 X 1014). At any rate, 

tests made from time to time with the green filter never gave any deflections which 

could be relied on to mean anything. As regards chlorine, all that can be said is that 

the threshold frequency was less than that of X 4355 (6-89 X 1014) in all the experiments 

here referred to. In some of the tests with water vapour present it was found that 

not only X 4355, but also the green line X 5460 and the yellow line X 5769 — X 5790 

gave photo-electric currents. The same was true of the light from a photographic 

dark-room lamp, and photo-electric currents were also obtained with the radiation from 

an incandescent lamp filtered through a solution of iodine in carbon disulphide of such 

strength as to make the lamp quite invisible through it. Evidently when water vapour 

is present the threshold frequency can lie in the infra-red part of the spectrum. 

§ 9.—Analysis of the Curves. 

The obvious way of attacking the problem of the distribution of kinetic energy among 

the emitted electrons is to take the curves, such as figs. 4, 7 and 12, and find the incre¬ 

ments in current corresponding to equally spaced intervals dY along the voltage axis. 

These will be proportional to the number of electrons whose energies lie between eV 

and e (V + dY). This method will certainly give correctly, to the degree of accuracy 

within which it can be operated and to the accuracy within which V is known, the 

distribution of velocity among the electrons as they in fact reach the receiving electrode. 

VOL. ccxxn.—A. F 
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It is not so reliable a guide to the distribution among the electrons as emitted at the o o 

source, on account of the difficulty in estimating the effects of the factors enumerated 

on p. .11 ante, which tend to prevent the attainment of saturation at zero field, in modi¬ 

fying that distribution before the electrons reach the receiving electrode. The picture 

may also be distorted owing to the inexact location of the true zero of potential differ¬ 

ence. A study of similar phenomena, as displayed bv tliermionically emitted electrons, 

supplies a useful guide towards the interpretation of the present chemical data. In the 

thermionic case it is found that such factors exert their major effect in distorting the 

original distribution in the neighbourhood of zero field, and the shapes of the curves in 

the larger retarding fields are little affected. Thus this method of analysis leads to 

much more reliable results for the faster than for the slower electrons. 

Such an analysis, when applied to fig. 4, is shown in fig. 17, curve 1. ; when applied 

to fig. 7, in fig. 17, curve II., and when applied to fig. 12, in fig. IS. In each case an 

assumed zero has been taken which mav be considerably wrong in the two curves in 

fig. 17. but which cannot be out by more than 0-10 volt in fig. 18, if, as I believe, the 

experimental determinations are reliable. Curves I. and II. of fig. 17 are seen to be 

verv much alike and considerably different from fig. IS. The data in fig. IS which are 

here referred to are the experimental points marked thus 0. The meaning of the 

crosses and the full curve on this diagram will be explained below. However, all three 

have certain important points in common. They show a distribution, such that fol¬ 

low energies the number within a given range dE — edX varies only slowly with E 
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(or V), whereas for high energies, i.e., further to the right on each diagram, it falls off 

very rapidly. Moreover, the shape of the rapidly falling part of the curve is much the 

same in each case, and in fact on this part of the curves the ordinates are very nearly 

proportional to e~aV, where « is a constant for any one curve. This can be seen if 

the logarithms of the ordinates are plotted against V when the points fall very nearly 

on a straight line. On the other hand, the slowly varying part of the curve shows 

distinct indications of possessing a maximum in fig. 18, whereas in curves I. and if. 

it falls away continuously from the initial value. This disagreement at low energies 

suggests trouble from the factors referred to above and points to the desirability of 

keeping for the present to the high energy part of the curve in trying to find an inter¬ 

pretation of the results. The outstanding feature of this part of the curve is the fact 

that it falls away very approximately in proportion to the factor e~aV, which at once 

suggests a Maxwell distribution of energy among the electrons, since this distribution 

is dominated by a factor of this form. I have therefore calculated the currents which 

would be obtained on the assumption that the energy of the electrons is a Maxwell 

distribution pertaining to some, as yet undetermined, temperature T, and compared 

the results of the calculations with the experimental data. 

For a small source surrounded by a large electrode the direction of motion is imma¬ 

terial, and it is only the magnitude of the total kinetic energy which determines whether 

the emitted electrons will reach the receiving electrode against a given retarding poten¬ 

tial difference. If the distribution is Maxwellian, the proportion with energies between 

u and u -f- du is equal to 

A _ — 
j^r/udue «, 

where A is an undetermined constant and k is Boltzmann’s constant. They reach the 

surrounding electrode if u^eV. Hence the current against'an opposing potential 

difference V is 
A 

FT2 
u due kT 

ev 

kV 

It T 

e 
eV 
ItT 

if i() is the value of i when Y = 0, i.e., the value of the saturation current. If the currents 

are expressed as fractions of the saturation value, the proportion of the maximum current, 

or, what is equal to this, the proportion of the emitted electrons, having energies between 

the limits eV and e (Y + dY), is given by 

«V 

FT2 
Y dVe~ kT. 

The following table of values of these various quantities calculated, to the accuracy 

of the slide rule, for T — 1500°K, taking e = 4 -8 X 1CT10 and k = 1 -346 X 10“16 will 

f 2 
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be found useful. These values happened to be computed for T = 1500 in connection 

with another matter. However, since all the functions are homogeneous in Y/T, they 

can at once be applied to any other temperature T1 by simply multiplying all the voltages 

by P/1500. Of course, in dealing with the values of d j the appropriate value of the 

factor has to be used. This can readily be ascertained for any values of T and dV 

from the numbers in the second column of the table. 

Table IX. 

V. eV 
&T ' 

t>
|H

 
<W

I ^
 

1 /, , eV\ _eV 

(i+it) "■ 
eV _«I 
Yfe 

0 0 1 1 0 

0-05 0-398 0-672 0-268 

0-10 0-795 0-452 0-809 0-360 

0-20 1-59 0-205 0-528 0-326 

0-30 2-385 0-0926 0-314 0-222 

0-40 3-18 0-0418 0-175 0-133 

0-50 3-975 0-0189 0-0940 0-0751 

0-60 4-77 0-00855 0-0493 0-0408 

0-70 5-565 0-00386 0-0253 0-0214 

0-80 6-36 .0-00175 0-0129 0-0111 

0-90 7-155 0-000787 0-00642 0-00563 

1-00 7-95 0-000355 0-00318 0-00282 

M0 8-745 0-000160 0-00156 0-00140 

1-20 9-54 0-0000730 0-000768 0-00070 

1-30 10-335 0-0000331 0-000374 0-00034 

1-40 11-13 0-0000148 0-000179 

1-50 11-925 0-0000068 0-000088 

eV — 
A set of values of — e_tT is plotted, on an arbitrary scale, in curve III., fig. 17. 

The right-hand part of this shows a close resemblance with the rapidly dropping parts 
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on the right-hand sides of curves I. and II., but the low-voltage parts of the curves 

are quite different. Apart from the difference in shape, the low-voltage parts of I. and 

II. are much broader than in the case of III. relative to the rest of the figure. How¬ 

ever, the breadth here is determined entirely by the assumed position of the zero. In 

curve II. this is at 1 volt in fig. 17 and corresponds to the zero in fig. 4. This zero has, 

however, been shown to be at least 0T2 volt outside the possible limits for the true 

zero as determined by the photo-electric data, and it may quite well be out by as much 

as half a volt. In that case curve I. would have to come up from the volt axis at about 

1 *5 volts instead of at 1 volt, which would have made the curve show a much stronger 

resemblance to curve III. The position of the true zero for the chlorine data plotted 

in curve II. is still more doubtful. These curves illustrate well the difficulties involved 

in the analysis of the energy distribution unless the position of the zero is correctly 

known. 

In fig. 18, which refers to the data for COCl2 with the cylindrical electrode, the position 

of the actual zero is known to within 0-10 volt, and it is obvious that these experimental 

points (marked thus ©) show a much closer resemblance to the requirements of the 

Maxwell distribution. The crosses in this figure do, in fact, represent a Maxwell dis¬ 

tribution for the temperature T = 3600°K, and the same range dV = 0 -20 volt as the 

experimental points deduced from fig. 12, and the full curve is drawn to meet the theo¬ 

retical points. It will be seen that the points given by the experiments are very close 

to the theoretical curve, and, in fact, the agreement is as close as could be expected^ 

except in the immediate neighbourhood of the maximum. As has been explained 

already, there are disturbing causes which are likely to produce deviations in this region, 

and these deviations should be in the direction indicated by the discrepancy shown 

by the diagram. It should be pointed out that the only quantity which can be arbi¬ 

trarily varied in fitting the theoretical curve to the experimental points is the single 

parameter T. The only other variable entering is the stretch dV, which is already 

fixed by the way in which the experimental points are reduced from the observational 

data. Given T and dV¥ the value of the ordinate for any particular value of V is deter¬ 

mined absolutely. 

I believe that the data exhibited in fig. 18 furnish strong evidence that the distribu¬ 

tion of energy among the chemically emitted electrons is of a very simple character 

and is identical with that which would be possessed by the molecules of a gas at a certain 

definite temperature. The fraction where kinetic energy lies between u and u -f- du 

appears, in fact, to be given by 
dn du u -A 

n JcT JcT 

For COCl2 acting on NaK2 the value of T appears to be close to 3600° K. The evidence 

would, of course, be stronger if it were unequivocally supported by the analysis of 

figs. 4 and 7. It may be that too much emphasis is being laid on the uncertain data 

and the disturbing causes which affect curves I. and II. of fig. 17. It may be that 
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there is something real in the extra width of the low-voltage parts of the curves. Some¬ 

thing of this kind might arise on the not improbable contingency that, in reality, more 

than one temperature T is involved. It is impossible to give a definite answer to such 

questions until more experimental evidence is forthcoming, but another basis of judg¬ 

ment on the data now available may be got by treating them a little differently. 

Instead of dealing with the proportion of electrons whose energies lie between eY 

and e(V + dV), I shall now calculate the fraction of the saturation current which will 

be able to flow against an opposing potential Y on the assumption that the initial velocity 

distribution is a Maxwell distribution for some temperature T, and compare the result 

with the experimental characteristic curves. The values of such currents for T = 1500 
/ ey\ . 

are the values of ^1 + —) e 7'T in the fourth column of Table IX. for the voltages m 

the same row given by the first column. For any other value T1 of T the corresponding 

T1 
voltages are obtained by multiplying the values in the first column by the ratio ^ - - . 

In determining the appropriate value of T the values of have been made to fit the 

experimental characteristics at 0 -314 and at 0 -0493. Unless the position of the zero 

on the voltage scale is known, it is necessary to fix two points in this way in order to 

determine the scale of T. Once this is done, all the other points are given by the corre¬ 

sponding numbers in the fourth and first columns of Table IX., subject to the transforma¬ 

tion of the voltages in the first column in the ratio of the temperatures. Incidentally 

it may be remarked that this process, subject to the correctness of the hypothesis, gives 

the true zero as the point at which the value of i/i0 becomes unity. This affords a 

further check on the interpretation of the data. The results of this treatment are shown 

in figs. 19, 20 and 21, which will now be considered in turn. 
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The full curve in fig. 19 is a replica of fig. 12, and the crosses denote the series of 

experimental points on which it is based. The auxiliary series of points in fig. 12 have 

been left out for clearness. The currents calculated as explained are shown by the 

points marked thus •, and when necessary the curve joining them is indicated by a 

broken line. This line, therefore, gives the characteristic as it would be if it were deter¬ 

mined entirely by the distribution of velocity of the electrons, and if this were a Maxwell 

distribution for the temperature T = 3300°K, which is the value given by fitting the 

points referred to above. It will be seen that the theoretical curve agrees with the experi¬ 

mental characteristic for all retarding voltages exceeding about —0-20 volts. There 

is a small deviation in the neighbourhood of zero volts which is the counterpart of the 

discrepancy between the theoretical curve and the experimentally derived points in 

fig. 18 in the same region. This process places the true zero voltage at —1 -84 volts in 

figs. 12 and 19 ; the limits assigned by the photo-electric measurements were —1-78 

and —1-88 volts, and the value here found lies almost midway between them. 

Fig. 20 deals similarly with the earlier data for COCl2 given by the spherical electrode. 

The full curve is the composite curve of fig. 4 and the points © denote the best single 

set of data on which this curve is based. The crosses denote the calculated values 

on the assumption of Maxwell’s distribution, the fit at the two assigned points requiring 

a value of T = 3000 in this case. The broken lines show the theoretical characteristic 

as thus calculated. It will be seen that the agreement with the composite curve is satis¬ 

factory at the higher retarding voltages (shown on the left of the diagram), but that 

the deviation in the neighbourhood of zero volts is much more considerable than in 

fig. 19. However, this deviation is greatly minimised if the circular points are considered 

rather than the composite curve, and it may be that the rather considerable errors in 

the determination of this part of the curve have displaced it unduly to the right-hand 
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side. In any event the deviation is of such character and magnitude that further 

investigation may assign it to causes outside the energy distribution. The true position 

of zero volts given by this calculation is + 0 -40 volts on the scale and is well within 

the limits, marked by vertical lines at A and B on the diagram, set by the photo-electric 

observations. 

It will be seen that figs. 18, 19 and 20 lead to three separate estimates of the value 

of T for the case of COCL, viz., 3600, 3300 and 3000. Of these the first and second use 

the same experimental data but treat them in different ways. The third employs 

different data but treats them in the same way as the second. The mean of these 

determinations is T = 3300°Iv. It is probable that an agreement to within 10 per cent, 

of the value of T is as much as it is reasonable to expect at the present stage of develop¬ 

ment of the subject. 

Turning to fig. 21, the full curve is a copy of the chlorine curve in fig. 7 and the broken 

curve represents the theoretical characteristic assuming a Maxwell distribution, the 

calculated points being shown by the crosses. The value of T for this curve was found 

to be 4350. The general appearance of fig. 21 is the same as that presented by the 

C0C12 data in fig. 20, and, in general, the same remarks apply to both curves. The 

triangular area CDE, which measures the discrepancy between the calculated curve and 

the experimental characteristic, is somewhat larger in fig. 21 than in fig. 20, but the 

increase is only about in proportion to the greater horizontal extension of the chlorine 

diagram corresponding to the higher value of T. Whatever the difference between 

the full and broken curves is due to, it is probably caused by similar factors operating 

in the case of both gases. The value of the true zero given by the calculated curve in 

fig. 21 is — 3T1 volts, which is well to the right of the left-hand limit —2-17 volts 
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set by the photo-electric currents and shown at A. The right-hand limit could not be 

determined at this stage. 

Another estimate of the value of T for chlorine can be got by assuming that for COCl2 

and comparing the widths of corresponding parts of curves such as I. and II. in fig. 17. 

Keeping to the rapidly falling parts of these curves, which are comparatively free from 

errors due to the uncertain zero and to the disturbing causes in its neighbourhood, I 

find that the width from the 66§ per cent, point to the 4 per cent, point, is for chlorine, 

1 *387 volts, and for C0C12, 0-840 volt. Taking the value of T for COCl2 to be 3300, 

this would give the value for chlorine as 3300 X -= 5450. This is considerably 

higher than the value got from a study of fig. 21, but it will be remembered that the 

corresponding operation on fig. 20 also gave a low value for COCl2. Under the circum¬ 

stances probably the best estimate that we can make for chlorine is the mean of the 

two values, viz., 4900°K. 

In each case the position of the true zero given by assuming the Maxwell distribution 

falls within the limits set by the direct photo-electric measurements. If we assume 

that the position of this zero is correctly fixed in this way, we can get another check 

on the relative values of T. The displacement in volts from the zero to the place where 

the current is a fixed small fraction of the saturation value, small enough to avoid the 

disturbances in the neighbourhood of zero volts, should be in the proportion of the 

respective values of T. The three sets of data give the following residts, using 0 -05 

as the value of the small fraction :— 

COCl2 Cylindrical anode—- 

zero . . . . = 1 -84 

5 per cent. . . = 0-52J 

COOL Spherical anode— 

zero . . . 

5 per cent. . 

Cl2 Spherical anode— 

zero . . . . = 3 -11 

5 per cent. . . = 1 -36 J 

>Dk Displacement =1-32 volts. 

= 0-40| 
^ ^ >Displacement = 1 -20 volts. 

1 Displacement =1-75 volts. 

The numbers 1 -32, 1 -20 and 1-75 are in the proportion 3300, 3000 and 4400, and 

are therefore in agreement with the values already obtained. 

§ 10.—Thermo-chemical Considerations. 

An upper limit to the value of T can be obtained from thermo-chemical data. From 

£ Recueil de Constantes Physiques,’ pp. 333 and 339, it appears that the heats of certain 

relevant chemical reactions are as follows :— 

VOL. CCXXII.—-A. G 
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2K + Cl2 —> 2KC1 + 208 -1 X 103 gm. cals. 

2Na + Cl2 —^ 2NaCl + 197 X 103 gm. cals. 

2C + 02 + 2C12 —> 2C0CL + 88 - 2 X 103 gm. cals. 

2C + 02 -—> 2C0 4- 52 -2 X 103 gm. cals. 

The data are for solid K, Na, KC1 and Nad, for carbon in the form of diamond, and 

for gaseous d2, 02, CO and C0C12, in each case per gramme molecule, with the equations 

as written. It is difficult to conceive of any way in which the average energy of the 

electrons could exceed the equivalent of the heat of formation of two molecules of KC1 

from two molecules of K and one of Cl2 ; in fact, it is practically certain to be much 

less than this. In general, if H is the heat available in gm. cals, per gramme molecule 

we shall have as a limit for T 

where k is Boltzmann’s constant 1 -346 X 10-16, J is the mechanical equivalent of 

heat 4 T84 X 107, and N is the number of molecules per gramme molecule 6 -2 X 1023. 

If we put H = 208 -I X 103 this gives as a limit for T the value 69 - 7 X 103. This is 

about 14 times the value deduced from the experiments. However, something has 

to be subtracted from the value of H for the unknown heat of formation of the liquid 

alloy from the solid constituents, and the assumption that the whole heat of the reaction 

is passed on to one electron is only worthy of consideration for the purpose of fixing a 

limit for T. It is much more likely that, the heat available is evenly divided among the 

different atoms taking part in the reaction. The number of these is doubtful owing to 

the somewhat uncertain degree of association of the reacting atom with its neighbours 

in the alloy. It is also possible that the actual reaction in which an electron is expelled 

is not correctly expressed by the equation of the end products written above, but is 

some intermediate reaction, such as 

K + Cl2 —> KOI + Cl 
or 

NaK2 + Cl2 —> NaK + KC1 + Cl, 

or the like. In such a case the value of the heat available may be quite different from that 

given by the end products. It is impossible to make any precise statements where 

the data are so indefinite, but I feel that when all these factors are taken into account 

the value of T given by the experiments on chlorine is a reasonable one. 

This position is strongly supported when the value given by C0C12 is compared with 

that given by Cl2. It is most likely that the mechanism of the reaction is much the 

same in both cases, any difference arising mainly from the fact, that the Cl2 is now 

loaded up with the CO group. This would have two effects. It would reduce the 

total amount of energy available by the difference of the heats of formation of CO and 

COCL>, i.e., by 18 X 103 gm. cals, for each gramme molecnle of COCL, and it would 
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increase by two the number of atoms among which the energy is divisible. Let us 

consider a supposititious case in order to see what the effect of these differences will be. 

If we assume 6 as a reasonable number of atoms, including electrons as a special kind 

of atom, to be concerned in the reaction which emits an electron in the case of chlorine, 

there will be two more, or eight, in the case of COCl2. Six atoms in the case of Cl2 

require a value of H = 88 -4 X 103 to give T = 4900. This value of H is about half 

the total given by the equation of the end products after making a probable allowance 

for the unknown heat of formation of the liquid alloy, and is thus not unreasonable if 

the reaction in which the electron is emitted is of an intermediate type. The value of 

H for the case of COCL now becomes 88 -4 — 18 = 70 -4, and one-eighth of this is 8 -8, 
J_ 

&N 
which on division by § ^ gives T = 2950, a value quite near to that given by 

the experiments. This argument shows that the values of T deduced from the 

experiments are not in conflict with thermo-chemical data so far as our knowledge of 

the reactions enables us to apply it. 

In conclusion I wish to thank my assistant, Mr. J. W. Burrows, for his invaluable 

help. I also gladly acknowledge my indebtedness to the Government Grant Committee 

of the Royal Society for a grant which has defrayed part of the cost of the apparatus and 

materials used. 
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II. The Problem of Finite Focal Depth revealed by Seismometers. 

By George W. Walker, A.R.C.Se., M.A., F.R.S., formerly Fellotv of 

Trinity College, Cambridge. 

Received March 25,—Read May 12, 1921. 

The results discussed in this paper were obtained about five years ago. Except for a 

brief reference in ‘ B.A. Reports,’ 1917 (“ Seismology ”) they have not been published. 

There were two reasons for this delay : (1) additional data were desired in a matter of 

somewhat critical importance in the measured properties of the earth ; (2) my official 

duties left little spare time for the pursuit of a purely scientific branch of seismology 

which required a good deal of tentative numerical computation. 

At the present date it appears that one must abandon all hope that additional results 

Avhich were expected from Russian observatories can be obtained. Moreover, it appears 

very doubtful if relevant data from any of the Allied countries can be expected for some 

years to come. Accordingly, publication of the results so far obtained now seems 

desirable, and may serve to show how urgent is the need for the equipment of a few 

seismological observatories capable of obtaining the data that are wanted. 

A brief introduction to the problem is necessary, although it covers ground which is 

fairly familiar to those interested in seismometry. 

If we have complete data giving the brachistochronic time for a seismic ray (say the 

P wave) to travel from a given point on the earth’s surface to any other point on the 

surface, it is possible to calculate the way in which the speed of propagation of the ray 

varies with the depth. Two methods are open : (1) we may use the differential equation 

for the path of the ray, or (2) we may use the integral equation obtained from this. 

Both methods correctly carried out must give the same result, and it is merely a question 

of convenience which one adopts. By using a comparatively rough graphical method 

based on (1), Wiechert and Zoppritz showed, about 14 years ago, from their accumulated 

data that the speed for the P wave increases from 7-17 km./sec. at the surface to 12-7 

km./sec. at a depth of 1500 km., while from 1500 km. to over 3000 km. depth the speed 

increases but slightly. No data are available for investigating greater depths. 

More recently Knott Roy. Soc. Proc.,’ 1918-1919) applied the second method to 

the same data as was used by Zoppritz, and his results do not differ materially from those 

of the earlier and rougher method, 

A very important supposition has to be made, however, before either of these methods 

can be applied. That is, that the true focus is either at the surface or so near the surface 

that a small correction can be made for it. If, however, the focus is at a considerable 
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and unknown depth both methods fail, as is obvious from the consideration that, since 

all the rays we can observe must have passed out from the focus, we have no data for 

the comparatively large range of distance AB on the surface for which brachistochronic 

rays would not penetrate as deep as does the observed seismic ray. In fact, another 

unknown element enters into the connexion between the observed time curve and the 

variation of speed with depth. 

A finite depth of focus implies a minimum angle of emergence at some point on the 

earth’s surface and a point of inflexion on the time curve, and vice versa. Now, in 

considering Zoppritz’s accepted time curve for P, we recognize that up to A — 1000 km. 

the curve is probably hypothetical, but from 1000 km. to 13,000 km. there is no indication 

of a point of inflexion. It is not until we come to consider Galitzin’s direct measure¬ 

ments of the angle of emergence that we are confronted with a most marked minimum 

angle of emergence near A = 4000 km., implying a point of inflexion on the time curve 

and a very considerable depth of focus. As Galitzin’s observations form the whole 

basis of this paper, they are reproduced here (although published elsewhere), as the 

reader may desire to have them convenient for direct reference. 

Table I. 

Epicentra] 
distance. 

A in kilometres. 

For P. 

e from time 
curve. 

e computed. 
e observed at 

Pulkovo. 

0 

O. 

0 

O 

22 

O 

500 11 23 — 

1,000 21 27 — 

1,500 30 32 — 

2,000 37 37 — 

2,500 44 42 48 
3,000 49 47 44 
3,500 53 52 43 
4,000 57 54 42 
4,500 60 58 43 
5,000 63 60 44 
5,500 65 62 46 
6,000 65 62 48 
6,500 65 63 51 
7,000 65 63 54 
7,500 66 63 58 
8,000 66 64 62 
8,500 67 64 65 
9,000 67 65 67 
9,500 68 66 68 

10,000 69 67 70 
10,500 70 67 71 
11,000 70 68 72 
11,500 71 69 72 
12,000 72 70 73 
12,500 73 71 73 
13,000 74 72 74 
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The quantity e is called the apparent angle of emergence at the surface, and is defined 

by 
tan e = Z/H 

where 
Z is the observed vertical component of displacement 

and 
H is the observed horizontal component of displacement. 

Thus e is the direct subject of measurement by vertical and horizontal seismometers. 

The angle e is called the true angle of emergence of the brachistochronic ray. It cannot 

be directly measured, but may be calculated from the time curve for P by the formula 

cos « = V, Ta , 

where Vi is the speed for longitudinal waves at the surface, and T the time is supposed 

expressed in terms of the epicentral distance A. 

When the conditions of reflexion are examined it can be shown that for a longitudinal 

ray incident 

cos e — Vi 

V2 {* (1 — sin e)}\ 

where V2 is the surface speed of transversal waves. 

It is seen from the table that the values of e calculated from Zoppritz’s curve do not 

agree with the values of e directly measured at Pulkovo. The discrepancy is so marked 

that we may set aside the supposition that the Pulkovo values are merely instrumental 

errors. In a matter so important Galitzin would hardly have published them if he had 

not felt assured that they were substantially correct. There remain two alternatives : 

(1) that the ratio Vj/Vg for Pulkovo depends on the angle of impingence in such a way as 

to exactly annul the discrepancy. The probability of such compensation of actual facts 

to explain a theoretical formula must be regarded as small, and so we are left with 

alternative (2) that within the limits of possible error in the time curve we can modify 

it so as to agree with the direct measures of e. We shall show that this alternative is 

quite possible within quite a large range of A. But we must at once point out the 

somewhat startling consequence of accepting the Pulkovo numbers as correct. 

It has been shown that a ray which emerges with a minimum angle must have set out 

from the focus in a direction at right angles to the radius vector from the earth's centre 

to the focus. Thus for a minimum angle at A = 4000 km. we find that even for a 

uniform earth the depth of focus required is about 0-2 of the earth’s radius, or about 

1250 km. The actual value may be a little less or a little more, according to the way 

in which speed varies with the depth. Anyhow, this is a much larger estimate of depth 

than has formerly been suggested, viz., of order less than 100 km. 

h 2 
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2500s SR PS 

Uniform earth E = 6370 km. Focal depth = 0-2 B. Vi/V-> = ^3. Y: = 10 km. per see. 
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A number of novel consequences with regard to reflexion follow if we admit such a 

great depth of focus, so that before showing how a time curve can be deduced from the 

Pulkovo observed angles e, we may within advantage consider what is to be expected 

in a uniform earth, as thereby we shall be in a better position to deal with what may 

be inferred from the observed data. 

We shall select for discussion a uniform earth R = 6370 km., depth of focus = 0-2 R, 

with Yj/Va having the theoretical ratio \/3, while Vx is taken as 10 km./sec. These 

numbers are taken partly for convenience of calculation and partly to get as near as 

possible to the actual case. 

The times for P and S may be computed for different epicentral distances from the 

trigonometrical formula for the paths traversed. The results for epicentral distances 

from 0 degree up to 180 degrees are shown in fig. 1. We may note that the point of 

inflexion on the time curve is very ill-defined, and might easily escape detection by 

direct observations of the time. 

The direct measurement of the angle of emergence is, however, fairly precise, and 

from such measurements we can, in fact, calculate the time curve more accurately than 

we can determine it by direct observations of the time. 

We may further note that the time increases but slowly for the first 1000 km., and 

since the angle of impingence for this region is not far short of 90 degrees, the true P 

might escape observation by horizontal seismographs, since the ground motion is almost 

entirely vertical. 

Passing to waves reflected at the surface, we consider first waves which maintain their 

longitudinal character throughout. We may call them PR . . . PR„ waves. The 

simplest way of computing is to choose the point at which the first reflexion takes place 

and then calculate the epicentral distance to the final point of emergence (the station). 

The results are shown in figs. 2 and 3, where, in order to lead up to the large depth 

of focus, we have first shown the effect for depth 0-01 R (about 64 km.). We find that 

for this depth we cannot get a reflexion at all until A is about 23 degrees, and that for 

A > 23 degrees there are two PR w'aves, the reflexion taking place at two different 

points, and they occur at different times. For depth as small as 0 • 01 R we see that we 

can proceed to PRre, where n is moderately large. 

When we pass to a focal depth 0 • 2 R we find that the smallest epicentral distance for 

which we can get PR is 103 degrees, and beyond this we have two PR’s. But when we 

try to calculate the PR2 we find that the least epicentral distance is over 180 degrees, and 

so we stop. The corresponding times for PRX are calculated and shown in fig. 1, and 

we note that the earlier arrival refers to the PRX which is reflected at the smaller 

distance from the epicentre. Figs. 2 and 3 are equally applicable to S waves in which 

the vibration is at right angles to the diametral plane through focus and station. The 

times for the SR waves are shown in fig. 1. 

We consider next waves which undergo change from longitudinal to transversal, or 

vice versa, on reflexion. PS or SP, which for a very shallow focus would arrive together 
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on the seismogram, are now totally separate phenomena for a deep focus. Fig. 5 shows 

that PS camiot occur imtil A is 149 degrees, and beyond this there are two PS's for any 

given A. There is no PS2 until A exceeds 180 degrees, and we do not pursue it. The 

times of PS are included in fig. 1. Fig. 4 explains the position as regards SP . . . SPx. 

We cannot get an SP wave at all until A — 11 degrees, and thereafter it may continue 

to be shown up to 180 degrees, the point at which reflexion takes place approaching the 
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epicentre as A increases. At A = 99 degrees a second SP wave makes its appearance 

and may continue up to 180 degrees. The times for these are included in fig. 1, dotted 

lines showing the limiting waves SPx. 

From A = 11 degrees up to A = 99 degrees the reflexion of S waves with vibration 

in the diametral plane through focus and station is complex, and i t is thus natural to 

suppose that this is the region within which the manufacture of Rayleigh waves goes on. 

Ep/central Angle of Ist Reflex/on , 
SPn waves. PS waves. 

We should infer that these would not appear until A =11 degrees, but for greater A ’ s 

we should have a continuous succession of contributions of Rayleigh waves starting 

immediately after S. We need not confuse this with the long-wave phase, which 

appears to be a crustal phenomenon. 

This now completes the effects to be expected for the hypothetical case selected. If 

it is desired to look into the question of magnitude of the effects at different points, 
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the investigation might proceed by aid of the tables and diagrams in ‘ Phil. Trans. 

Roy. Soc.,’ vol. 218, A, p. 373, etc. We shall only point out that, on account of the 

large angle of impingence in some regions, some of the P effects would only be shown 

on vertical component seismographs. 

The preceding discussion on elementary lines of the effect of finite depth of focus has 

led to inferences which differ in a very marked degree from those we are accustomed to 

draw from actual seismograms. 

Naturally our results are qualitative in the first instance, and we must be prepared 

to find quantitative alterations when data for the earth are available. For example, 

we may be prepared to find that the epicentral distances at which PR, SR or PS start are 

less than the values we have calculated. In the case of SR or PS this may be so (we 

have not yet the required data to decide the matter), but in the case of PR, Galitzin’s 

data, which we have taken as our basis, settle this at once. Anticipating the proof 

which will be given later, we find that PR starts at 11,000 km., which is only slightly 

less than the 103 degrees calculated. This, however, implies that the effects hitherto 

interpreted as PRa, PR2, etc., cannot be so described, but in place we may be able to 

interpret them as Sl\, SP2, etc. Their capricious occurrence in practice favours this 

suggestion, and direct test can be made by means of the vertical component 

seismograph. 

There are other possibilities as well as serious difficulties when a deep focus is con¬ 

sidered, but we cannot discuss the problem with advantage until we have the requisite 

data. Hence we now proceed to show what may be deduced from Galitzln’s data 

themselves and what additional data are wanted before proper tests can be applied. 

Fig. 6 shows in graphical form the Pulkovo observed angle of emergence e for various 

epicentral distances A. No data are given for A < 2500 km., and the dotted part 

from A = 0 to A = 2500 km. is hypothetical. It is certain that e must be 90 degrees 

at A — 0. 
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From the formulae, p. 3, we have 

V ~ = {J(l - sin e)Y 

so that we can at once calculate V9 -r— as a function of A from the numbers in fig. 6, 
dA 

The results are shown graphically in fig. 7. Graphical integration of the curve now 

gives us 

I = f IK1 — sin e)}hdA 

as a function of A, whence 

I 
T = A + — , where A is a constant, 

' 2 

gives T as a function of A. 

Table II. gives the value of the integral I for different epicentral distances. Since 

Zoppritz’s time curve meets with general acceptance for the purpose of determining 

epicentres, we first seek to see how far we can fit our new time curve with Zoppritz’s. 

Taking first Zoppritz’s value for V2, viz., 4-01 km./sec., we find that the two curves fit 

over the range 6000 km. to 12,000 km. with a discrepancy + 11 seconds, but the discrepancy 

rises to 100 seconds at 3000 km. Taking a larger V2 one can fit the curves together over 

various ranges. For example, taking V2 = 5-63 km./sec. we get the values shown in 

Table II., where over the range 3500 km. to 8000 km. the discrepancy ranges through 

only ± 5 secs., an error we might quite well admit. But large differences must arise 

towards the epicentre, for on the present view A must be a substantial number repre¬ 

senting thn time from focus to epicentre. No special significance is to be attached to 

the above calculation beyond showing that in the middle range of distances we need 

not make any large departure from Zoppritz’s time curve. 

VOL. OCXXII.-A I 
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Table II. 

j 

A kins. e. I. 1/5-63 
secs. 

Z 
secs. 

Z - 1/5-63 

0 
O 

90 0 0 0 0 
500 79 25 4 69 65 

1,000 69 95 17 136 119 
1.500 61 203 36 199 163 
2,000 54 344 61 257 196 
2,500 48 512 91 310 219 
3,000 44 699 124 358 234 
3,500 43 894 159 402 243 
4,000 42 1,096 195 442 247 
4,500 43 1,299 231 478 247 
5,000 44 1,497 266 512 246 
5,500 46 1,688 300 542 242 
6,000 48 1,871 332 572 240 
6,500 51 2,044 363 601 238 
7,000 54 2,205 392 631 239 
7,500 58 2,351 418 660 242 
8,000 62 2.481 441 688 247 
8,500 65 2,596 461 716 255 
9,000 67 2,700 480 743 263 
9,500 68 2,797 497 769 272 

10,000 70 2,888 513 795 282 
10,500 71 2,972 528 820 292 
11,000 72 3,055 543 844 301 
11.500 72 3,133 556 867 311 
12.000 73 3,209 570 888 318 
12,500 73 3,283 583 909 326 
13,000 74 3,355 596 929 333 

We now proceed to show how a direct test may be applied to the Pulkovo data, and one 

which will give a determination of A and V2. 

If e is the emergence angle of a ray, then the Pulkovo data gives us two distances, 

say, J2 and d2, for which e is the same. We hence infer that a PR wave will be reflected 

at Jj and pass to ejjicentral distance 2A1Ar d2, and another PR wave will be reflected 

at J2 and pass to distance 2d2 + ^i- E.g., e = 48 degrees gives = 2500, and A2 = 

6000, from which we get distances to station 11,000 km. and 14,500 km. 

In this way fig. 8 has been determined directly from the Pulkovo data. It shows that 

the least distance at which PR occurs is 11,000 km., and for greater distances there are 

two PR waves for a given epicentral distance. The curve is in very close agreement 

with the theoretical curve in fig. 2. 

The test of the validity of the Pulkovo data is, then, whether for A > 11,000 km. we 

can identify the two PR waves on the seismogram. The Pulkovo Bulletins for 1913-1914 

show quite a number of records for A > 11,000 km., and it would seem desirable that 

a careful study of the seismograms for such distances should be made. Should the 

search prove successful the curve fig. 8 will then give two distances, A1 and A2, for which 
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A — 2JX + J2 and A = 2zl2 + A1} and there is a check on this by means of the 

measured e for the two waves. Further, if I, and I2 are known integrals for A, A1 

and d2 and TV and T2, the observed time intervals between P and the two PR waves, 

we have 
Tj = 2A -f- (2lx —p I2 I)/V2 

and 
T2 = 2A + (2L + P - I)/V2, 

which theoretically suffice to determine A and V2. 
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Fig. 8. 

It is manifestly a matter of great importance in seismology to settle whether the large 

depth of focus suggested by the Pulkovo observations can be maintained. 

If confirmation is obtained by the research suggested above, the problem of deducing 

the focal depth and the velocity at any depth must be attacked anew. The two things 

are related, and it looks as if the process of analysis would be largely tentative. In any 

case, it is clear that the speed at any depth cannot be uniquely determined until the 

focal depth is fixed. But one might hazard a guess that a large depth of focus would 

probably lead to a smaller variation of speed with depth than has been deduced by 

Zoppritz. 

An investigation on S waves might proceed on similar lines, although the relation 

between the angle of impingence and the apparent angle of emergence is more complex 

than for P waves ; c/. ‘ Phil. Trans.,’ lx. ante, p. 378. 

The equations are 

cos e = V2 , 
2 dA ’ 

tan e 
V2 sin e' tan 2e 

Y1 sin e 
where cos e' — ^ cos e. 

Vo 
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The matter is further complicated by the circumstance that for a certain range of A 

the reflexion of S waves vibrating in the diametral plane is complex. Some attempts to 

estimate e for S waves were given in the paper referred to, p. 388, but they are isolated 

results, and what we require is a systematic investigation for a large range of A. 

In the absence of such data we may tentatively proceed a little way in the problems 

arising from finite depth of focus by adding to the time curve obtained from the Pulkovo 

data the values of S — P given by Zoppritz, which are known to be not seriously in error 

over the middle range. Although I have made some calculations in this direction, one 

cannot proceed very far. and it is an obviously unsatisfactory method. 

Summary. 

Observations of the emergence angle of P waves at Pulkovo suggest that the depth of 

focus is of order one-fifth of the earth’s radius. It is shown that important modifications 

would have to be made in the interpretation of seismograms and in the attempt to deter¬ 

mine how speed of propagation depends on depth. It is further shown that an important 

test of the accuracy of the Pulkovo values can be made by a careful scrutiny of seismo¬ 

grams for distances > 11,000 km. Further progress cannot be made until this research 

has been carried out, and until we have corresponding measures of the angle of emergence 

of S waves by means of three component seismometers. 

jUU-bCNiil 
2 6 SEP. 1921 
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Introduction. 

It is well-known that a considerable proportion of the effective resistance of inductive 

coils when used at radio frequencies is caused by the eddy-currents set up in the wires 

of the coils by the alternating magnetic field in which they are situated, and that in 

extreme cases the alternating current resistance may amount to more than one hundred 

times the direct current resistance. It is therefore important to have reliable formulae 

for the eddy-current resistance of such coils in order to determine the conditions which 

will reduce the eddy-current losses to a minimum. 

The simplest case, that of a long straight cylindrical wire under the action of its own 

current, has been treated by Kelvin,* Rayleigh,! Heaviside,! and others. The 

general effect is known as the “ skin effect,” because the current tends to concentrate 

more and more upon the skin of the conductor as the frequency increases. 

The case of two parallel wires forming a go-and-return circuit has been considered 

theoretically by Nicholson,§ and experimentally examined by Kennelly.|| Kennelly 

found that when the wires are close together, the added resistance due to the proximity 

of the wires may be of the same order as that due to the simple skin effect. 

Nicholson’s theoretical treatment includes the possibility that the dimensions of 

the system may be comparable with the wave-length of the disturbance. His formula 

is very complicated and difficult to apply numerically. A formula {formula (47)} 

* ‘ Math, and Phys. Papers,’ vol. 3, 1889. 

t ‘ Phil Mag.,’ vol. 21, 1886. 

J ‘ Electrical Papers,’ vol. 2, p. 64. 

§ ‘ Phil. Mag.,’ vol. 18, p. 417, 1909. 

|| ‘ Trans. A.I.E.E.,’ vol. 35, part 2, p. 1953, 1915. Curtis (‘ Bull. Bureau of Standards,’ 1920) has 

recently published a formula for this case which gives agreement with Kennelly’s results. 

VOL. CCXXII.-A 596. K [Published September 10, 1921, 
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for this case is obtained in Section 8 of the present paper. This formula is shown 

(Section 9) to give results in close accordance with Kennelly’s observations. 

In order to reduce the eddy-current losses solid wire is often replaced by stranded 

wire in which a bundle of thin separately insulated wires are interlaced symmetrically 

with each other, the notion being that the sum of the eddy losses in the individual wires 

shall be less than the eddy loss in the corresponding solid wire. Lindemann* verified 

this experimentally at certain frequencies, but also found that if a solid wire coil and 

stranded wire coil were compared at various frequencies, the stranded wire coil increased 

in resistance more slowly at the lower frequencies but less slowly at the high frequencies, 

until above a certain frequency the stranded wire coil had a greater effective resistance 

than the solid wire coil. 

HowEf has treated the problem of straight stranded wire conductors, assuming the 

eddy losses to increase as the square of the frequency, and from his formulae has shown 

that at high frequencies it is difficult to make the resistance of the stranded wire less 

than that of solid wire of equal section. 

In view of the extensive use of stranded wire in the construction of coils for high- 

frequency currents it is important that the limitations of stranded wire in reducing 

effective resistance should be known, so that the present investigation includes the 

consideration of such coils. From the formulae obtained, conclusions are drawn in 

regard to the utility of stranding and in regard to what degree of stranding it is necessary 

to employ, before any improvement over solid wire coils may be expected. 

In formulae hitherto given for the effective resistance of coils, one or other of the 

following limitations occur :— 

(1) The coil is very long. 

(2) The frequency is limited to so low a value that the “ square of frequency” law 

holds. 

(3) The coil is wound with wire of square section. 

The formulae deduced in this paper differ from those already established in that— 

(1) The dimensions of the winding sections of the coils are small compared with the 

coil radii. 

2) There is no limitation imposed upon the frequency. 

(3) The wire is taken to be circular. 

In regard to (1) it is shown that coils of this type have better alternating-current 

time constants than long coils. 

In regard to variation with frequency, the factor governing the upper limit to the 

application of the square law is the magnitude of //R0 where / is the frequency and 

R0 is the direct current resistance per unit length of the wire used. If (in C.G.S. units) 

* ‘ Deut. Phys. Gesell.,’ 1909, p. 382 ; 1910, p. 572. ‘ Jahrbueh der Drahtlosen Telegraphie,’ 1911, 

p. 561. 

f ‘ Roy. Soc. Proc.,’ A, vol. 93, p. 468, 1917. 
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//Rt) is less than 0-225 the eddy-current losses vary as (//R0)2 to an accuracy of one 

per cent. At higher frequencies the variation is slower, the ultimate rate of variation 

being as (//R0)k A knowledge of these limiting rates of variation enables an immediate 

explanation to be given of Lindemann’s results with stranded wire coils. 

A solid wire in a given alternating field has eddy losses which are a function of 

//R0 = <p (//R0) say. If the solid wire is replaced by s strands of the same total metallic 

section, the loss per strand in the same field is 0 (//sR„) and the total loss in the 

s strands is s</> (//sR0). 

Thus, as regards the losses due to the general field of the remainder of the coil, we must 

replace <p (//R0) by S0 (//sR0) in passing from solid to stranded wire. 

At low frequencies <j, (//R0) = C (//R0)2 where C is a constant independent of the 

stranding, so that the respective losses are C (//R0)2 and Cs (//sR.,)2 = C (//R0)2/s. 

The effect of stranding at low frequencies is thus to reduce these losses in the ratio 1 Js. 

At high frequencies </> (//R0) = C' (//R0)® and the losses are C' (f/R0f and 

C's (//sRq)® = C's® (f[R0f, or the effect of stranding at high frequencies is to increase 

the losses in the ratio s-/1. 
Since in inductive coils the general field produces the main losses, Lindemann’s 

results are explained. 

(A). Eddy-Current Losses in a Cylinder in an Alternating Magnetic Field. 

(1) The cylinder is supposed to be non-magnetic and to have electrical conductivity k. 

Its radius is a. The magnetic field is perpendicular to the axis of the cylinder and does 

not vary along the axis ; otherwise its form is general. The field alternates with 

frequency co/27r, and the alternations are so slow that the dielectric current can be 

neglected in comparison with the conductance current. This means that the wave 

length of the disturbance producing the field is large compared with the dimensions 

of the cylinder. On the other hand, the cylinder is supposed to be long enough to 

render its end effects negligible. 

The procedure is to represent the electric and magnetic forces by rotors* Eeiu>t, &c. 

The values of these rotors are found at all points in terms of the (given) undisturbed 

field. Then by application of Poynting’s Theorem over unit length of the surface of 

the cylinder, the energy flow into the cylinder is determined. 

This energy flow may be regarded as made up of two portions, one continuous and 

the other alternating. The former portion is the energy dissipated by eddy-currents 

set up in the cylinder. 

(2) Take the axis of the cylinder as the axis of a right-handed system of cylindrical 

* These are the rotating vectors used to represent these quantities on the vector diagram. The term is 

chosen to distinguish them from the space vectors which are also involved in the problem. 

K 2 
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co-ordinates (z, r, 0). 

are 

With the assumed conditions the electromagnetic equations 

• t} 1 cE • n 

— = - — , twit = 

r cd 

8E 

dr 

1 0 (Qr) 

r dr 
1 0P 

r 00 
= 4-7T&E 

L 
> (1) 

in which P, Q represent the components of the magnetic force acting along and 

perpendicular to r, and E represents the electric force acting parallel to 2. 

Eliminating P and Q, the equation to be satisfied by E is 

1 0/ 0E\ 1 02E 

r dr\ dr) r2 dd2 
47T^.«E, . (2) 

the normal solution of which is 

E = R(l cos nd + S„ sin nO,.(3) 

in which R„ and S„ are functions of r both satisfying the equation 

.(4) 

Writing A2 = —4Trkiw and putting x for Ar, (4) may be written 

&2Rfl + (a^—n8)R„ = 0,.(5) 
in which 

S- = x~ . 
ax 

This is the general differential equation for the Bessel functions, so that inside the 

cylinder the appropriate solution of (4) is 

R„ = A„J}1 (\r),.(6) 

the second solution being excluded, since the electric force is not infinite at the axis. 

Outside the cylinder k is zero, so that the solution of (4) is 

= Bnrn + Cn/rn.(6 a) 

except when n — 0, in which case 

Ra = B0 log£ r+C0 (6b) 

In order to maintain the continuity of E and — at the boundary of the cylinder, 

A„, Bn, C„ must satisfy the relations 
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A„J„(Xq) = Bnq”+Cn/qn 1 

AnXaJ'„(\a) = n (Bnan—CJan)) 

A0J0 (Xq) = B0 log, a + C0 

AA^J'o (Xa) = B0 

or, expressing A„, Cn in terms of B„ and making use of the properties of the Bessel 

functions, 

A„ = 2nBnan/\aJn_x (\a) 

Cn = BMq2nJn+1 (Xa)/J„_! (Xa) 

A0 = Bo/XaJ'o (Xa) 

C0 = Bu {J0(Xa)/XaJ'0 (Xa)-log, a} J 
The general solution of (2) is the sum of the normal solutions of the type (3), so that 

the electric force may be expressed as a Fourier series, whose form inside the 

cylinder is 

Ei = B0 Jp(^) nB,iq"Jn (Xr) + 22 
XaJ'o (Xq) i Xq J„_j (Xq) 

cos (n6 + an), (8) 

and outside the cylinder is 

X'qJ'o (Xq)/ 
+ 2 BJ(?,n «\2n JB+i (xq) 

r) JB_x(Xq) 
cos (nO + a.,,). . (8a) 

The corresponding series for P and Q follow by differentiation using the relation (1). 

The combination of the cosine and sine terms into the form cos (nO + an) is permissible, 

since the ratios of the arbitrary constants are the same for both the sine and cosine 

series. The values of B„ and an may be determined when the form of the undisturbed 

field is given. 

(3) Energy Dissipation in the Cylinder.—-From (8a) and (1) the values of E and Q 

at the surface of the cylinder are 

E = BoXo+ 2 B„q" (1 +x») cos [n0 + «„) 
1 

(9) 

Q = |bo+ 2nB„q” (l — x„) cos (n6 + a.n) j-.(10) 
coq L i J 

in which 

Xn (Xq)/JB_i (Xq) 
2 

Xo = J o (Xq)/Xq J'0 (Xq) = i(l+Xa)-ri75 
a a 

If e, q represent the instantaneous values of E and Q, the rate at which energy flows 
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into the cylinder through a small area da about the point a, 6 is eqda/^ir by Poynting’s 

theorem, and the integral rate of flow into unit length of the cylinder is 

~\ .(12) 
47T Jo 

Now, by (9) and (10), e and q have the forms cos [n6 -f- an) and cos (nd -f an) 

respectively. 

Using these forms in (12), and remembering that 

cos (nO + an) cos (md + an) dS = 0, n ^ m, 
Jo 

the integral rate of flow becomes 

j(2 u0v0 + Zu„v„).(13) 

To determine the products unvn, the obvious method is to determine the real parts 

of the complex coefficients in (9) and (10). The product unvn expressed as a function 

of time would then be of the form wn cos wt cos (wt + <pH), so that the rate of energy 

dissipation in the cylinder would be \wn cos <pn. 

A better method is to make use of the method of conjugates. If U', V' are the 

conjugates* of two complex quantities U, V; u, v their real parts, then 

M = i(U + U'), u = HV+Y'), 
so that 

uv = i{TJ + TJ'){V+Y'). 

Further, if U, V rotate with time in the same sense, U', V' will rotate in the opposite 

sense, so that UV' and VU' will not rotate. The steady portion of uv is thus 

i(UV' + U'V). 

Applying this to the present case, the steady flow into unit length of the cylinder 

is from (9), (10) and (13) 

w = i{B0B',(Xl,-x'„)+i.i«!,*B.B'.(x.-x',)|1' 

in which as before the accents denote conjugates. 

Now is a function of \a and A2 = -j-4ttMo, so that, putting 

z2 = A-akwa3,.(14) 
Xn may be written 

Xn = (pn{z)~i^n{z).. (15) 
from which 

i {Xn — Xn) = 2^n(2), 

* If U = Ac‘^, then U' = is the conjugate of U. 
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and when n = 0 

^(xo-x'o) = ~2+W iz)- 

Using these expressions in the equation for W with (Bn) for the modulus of B,„ 

+ (Bn)2a2n\frn(z) 
1 

(16) 

The energy dissipation in unit length of the cylinder is thus expressed in terms of 

coefficients Bn depending on the form of the applied magnetic field and of functions 

\[sn having argument z — 2a (tt&co)4- The functions <pn, \\rn are discussed in the next 

section. As regards the coefficients B„, if the components of the magnetic force in the 

undisturbed field are P0, Q0 these components may be expressed in the forms 

P,, = 2K/ 1 sin(w6 + aJi) 
i 

Q0 = — + 2 Knrn_1 cos (nd + an) 
r i 

at all points outside the cylinder as these expressions are derivatives of a potential 

function satisfying Laplace’s equation and constant along the axis of the cylinder. 

Further, by differentiation of (8a), similar expressions to (17) are obtained, when 

X is made zero—that is, when the disturbance due to eddy-currents in the cylinder is 

removed. These expressions are identical with (17) if we make 

Bo: iwK( Oj Bn = iwKn/n. 

Hence, using K„ in place of Bn in (16) 

W = L 4ft) (K„F U +bh(z)\ + 2(K.)*«V. (*)/» (18) 

(4) The Functions <pn mid \t,n.—Tliese functions are defined by 

<pn(z)-i\[rn(z) = J/i+] ! W-iz). 

Series formulae for these functions have been developed by the author.* 

The cases n = 1 and n — 2 are the most important ones, and in these cases <f> and \Jr 

may be expressed in terms of ber and bei functions as follows :—- 

Let 

X (z) — ber2 z + bei2 0 

Y (2) = ber'3 z + bei'2 z 

Z(z) = ber z ber' z + bei z bei' z 

W (2) = ber z bei' z —bei z ber' z 

(19) 

* Butterworth, ‘ Proc. Phys. Soc. Lond.,’ vol. XXV, p. 294, 1913. 
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Then 

(2) 

\M2) 

2W(Z) 
2 X(a) 

2 Z(z) 

z X(z)' 

02 
M = 4ZM_1'I 

' 2 V (z) 1 

, M_ 4ff(i) 8 
^0-ay(z) ^ j 

r • 

The combinations W/X, Z/X, W/V and Z/V are tabulated.* 

In the limiting cases of z very small or very large, it may be shown from the formulae 

already cited that and \Jsn assume the following simple forms:— 

z small 

2 large. 

0;! = -2z4/(2n)2 (2n + 2) (2n + 4) 

\Jsn = z2/2n (2n + 2) 
(21a) 

0. = -1, 'A,, = 2n/\/2z.(21b) 

In regard to the limitations of (21a), the following table of values of y^15 ip-2 (the 

functions most generally used) has been calculated:— 

z. 0i- 02- 0l/22- 021*- 

0-0 0-0000 o-oooo' 0-1250 0-04167 
o-5 0-03119 0-01041 0-1248 0-04164 
1-0 0-1215 0-04149 0-1215 0-04149 
1-5 0-2458 0-0918 — — 

2-0 0-3448 0-1563 0-0862 0-03908 
2-5 0-3770 0-2244 — — 

3-0 0-3600 0-2827 0-0400 0-03141 
3-5 0-3257 0-3212 — — 

4-0 0-2920 0-3389 — — 

4-5 0-2643 0-3408 — — 

5-0 0-2416 0-3337 — — 

For -0-j, (21a) is a good approximation up to 2 = 0-5 and a fair approximation up 

to z = 1. For higher values of n the range of (21a) increases. 

In regard to (21b), its region of application has not been reached at 2 = 5, but if 

we take a second approximation we find, when 2 is large, 

zVi = \/2z-l, 2> 2 = 2\/22-6.(21c) 

These formulae give the following values for \/r15 \Js.2:— 

2 = 2 3 4 5 

x/rj = 0-457 0-360 0-291 0-243 

= — 0-086 0-276 0-332 0-326 

* Savidge, ‘ Phil. Mag.,’ 6, 19, p. 49, 1910. Rosa and Grover, ‘ Bull. Bureau of Stands.,’ p. 226, 1912. 
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while the actual values are 

V'i = 0-345 0-360 0-292 0-242 

= 0-156 0-287 0-339 0-334 

so that if 2 is greater than 3 the values given by (21c) are fair approximations to 

the true values. The values of \jsx and \Js2 from z = 0 to 2 = 5 are plotted in fig. 1. 

(5) Eddy-Current Losses at Low Frequencies.—The argument 2 is related to the 

radius and conductance of the cylinder and the frequency of alternation of the field 

by the formula 

22 = Airkiaa2. 

If R0 is the electrical resistance per unit length of the cylinder, the formula may be 

written 

s2 = 4«/R..(22) 

The frequency w/2tt will be defined to be low when 2 is less than unity, so that the 

VOL. CCXXII.—A. L 
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condition of low frequency is w < Iv0/4. When this holds, formula (21a) applies in 

regard to so that by (18) the rate of dissipation of energy is 

W = ^ R0 (K„)2 + 
CO 

It, 
] 

5(1 
(K0)2+ 2 (K„)2a2n/2rr2 (2n + 2) . . (23) 

Now by (17) the terms involving K0 are due to a held whose components outside 

the cylinder are Q„ = K0/r, P0 = 0. This held can only be due to a current of 

magnitude I = |-K0 distributed symmetrically round the axis and ho wing parallel to 

the axis. 

Hence the energy dissipation due to such a current is 

W1=iRo(1+*j^)T (24) 

This is the usual formula for the skin effect at low frequencies. 

If a uniform held H is acting on the cylinder, then H = K,, K2 = K, = ... =0, so 

that the energy dissipation due to a uniform held H is 

W2 = KHV/R0.(25) 

The remaining terms are due to non-uniformity of the held. 

If the external held is expressed in a Fourier series of the form (17), and if the 

coefficient of the term cos (nQ -j- an) in the series for Q0 has the value L„ at the surface 

of the cylinder, then this portion of the held contributes an amount 

wWL2„/2n2 (2n + 2) R0 
to the energy dissipation. 

The way in which n occurs in this expression shows how unimportant are the higher 

terms of the Fourier series in producing eddy losses at low frequencies. 

The assumption that the external held is uniform and has its central value will, 

therefore, in most cases give a good approximation to the actual loss when the 

frequency is low. In illustration, suppose the external held to be due to a thin wire 

carrying current I, and stretched parallel to the cylinder at a distance D from the 

axis. The value of Q0 in the plane common to the axis and the wrire is 2l/(D — r), 

or, in ascending powers of r, 

so that 

21/ r_ 

D 1 + D + D2 + 

L n 
21 

D D" ’ 

and therefore the energy dissipation is 
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In the extreme case in which the wire touches the cylinder, the sum of the series 

becomes 
2 

— -1 = 0-64493. 
6 

Upon the assumption of a uniform field, the first term of the series would be the only 

one employed; and as this is 1 /2, the correction due to non-uniformity of the field is 

a multiplying factor ranging from 1-00 to 1-29. 

If there are two thin parallel wires and the cylinder is situated symmetrically between 

them, the axes of wires and cylinder being coplanar, the alternate terms of the series 

(26) vanish, and the losses become 

4« VI2/ 1 1 a4 1 a8 \ 

1\D2 \122 324 D4 526 IF ' ' ’ 

if the currents flow in opposite directions in the two wires, and 

4a>VI2/ 1 «2 1 a6 

mr \¥s D“2 4^5 D6 " 

when the currents flow in the same direction. 

When the wires touch the cylinder, (27) reduces to 

and (28) to 

4m2I2 

K(l 

7T 
- l0ge 2 x 0-54055 

4w2I2 

V24 
£7+log, 2-1 

A. ,2T2 
X 0-10438. 

_ti0 

(27) 

(28) 

4 2I2 
The uniform field theory would give V—x 0-5000 and zero respectively for these 

cases. 

(6) Eddy-Current Losses at High Frequencies.—At very high frequencies 

\fsn = 2n/v/ 2 z = n\/ R„/2m, 

so that by (18) the energy dissipation is 

W = iVEWS {i (K„r + S (K,,)2 a2*}.(29) 

The first term is due to a current I = |K0 distributed symmetrically round the axis 

of the cylinder and flowing in a direction parallel to the axis, and when this is the only 

factor producing the field the energy dissipation is 

w, = iv/iWai2. 

This is the formula for the skin effect at high frequencies. 

(30) 
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The energy dissipation due to a uniform field H is got by putting K: = H, 

K> = K3 = ... = 0, giving 

W2 = iH2aVlW2..(31) 

If the field is non-uniform, a comparison of (29) with (17) shows that the various 

harmonic terms in the field produce terms of equal importance in the expression for 

the eddy-current losses. 

The examples of the last section give, for the single thin wire, 

and for the pair of wires, 

a-D2 
W = 

iy-a4 
I2\/R0w/2 or lVR„»/2. .... (33) 

according as the currents flow in opposite or the same direction in the two wires. 

As regards (32), it is seen that the uniform field theory may be applied if we take as 

the uniform field the field at the point wrkere the tangent plane through the wire 

touches the surface of the cylinder. 

(B). Eddy-Current Losses in Two Parallel Cylinders Carrying 

Equal Currents. 

(7) If the field acting on the cylinder is due to currents in neighbouring cylinders, 

then, because of the distortion of the current distribution in these cylinders, the external 

field acting on the cylinder under consideration is itself variable with frequency, and 

the assumption that this field is that which would occur if all eddy-currents are absent 

will lead to wrong results. The case of two similar parallel cylinders carrying equal 

currents may be solved by considerations of symmetry. 

(8) Let the cylinders each have radius a, and let the distance of their centres be D. 

Take two systems of cylindrical co-ordinates (fig. 2), the first system (r, 0A) having 

A as origin and AB as the line of zero 0, and the second system (/, dB) having B as 
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origin and BA as the line of zero 0. Consider the field at the point C external to the 

cylinders situated on AB and due to two current systems flowing in the two cylinders 

parallel to the axes and symmetrical on either side of AB. By symmetry an of equation 

(17) is zero; and since 6 is zero, we have from (10), using K„ instead of B„, for the first 

system of co-ordinates, 
TV co f t„ \2 n 1 

(34) Q = ^+S K„r~> 11 - (2.i x. 

for the second system 

Q = U”+ 
/■ 

(35) 

Also, if the currents are equal and similarly directed in the two cylinders, 

K'n = — K n ; 

Iv'n — -f-Kw. 
if oppositely directed, 

Further, (34) may be divided into two portions, 

and 

O — y TV w 
bh - — - f ^TTi x» 

Q, = 2 Knrn~\ 
1 

(36) 

(37) 

the former arising from causes inside the cylinder A, and the latter from causes outside A, 

which in this case are located inside B, and therefore Q2 has also the value 

K'o “ V, a O — y tv' '%2 — f ■" n 

2 n 

V /n + l x»- 

Equating (37) and (38), 

Kb V, TX / a 2 n 

2 Knrn~l = - - K' ,/n + l x»- 

(38) 

(39) 

Putting K'n — +Kn, r' = D—r, expanding the right-hand side of (39) in 

ascending powers of r, and equating coefficients of rn~l, a series of equations are 

obtained to' determine K„ in terms of K0. Now if I is the total current in either wire, 

K0 = 21, so that the method yields the values of K„ completely. Thus, in the case where 

the currents are similarly directed, Kfn = — Ivn; and on equating coefficients we 

find 
Kpi = —’2\fx + (K]Cs) A (K2gt) yu"^2+ ... 

K2a2 = — 2l/*3+2 (Kxa) Abr + 3 (K,«2) /a%+ ... 

K3a3 = — 2l/u:!+ 3 (Kxa) fdxi + 6 (K/r) nX2 + ■ 

in which p = a/D and is less than 1/2. 
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Solving by successive approximations to the order (W4, 

Kl« — — 2I/X {l+^Xi + yW4 (xY + Xs) + •••} 

K 2a2 = -2Im-(1+2m2Xi+...) 

Kyr = — 2l/us (1 + ...) 

(40) 

In the expression for the eddy-current losses (18) the moduli of the complex quantities 

K15 K2j K3 are required, which, from (40) with x?l = <pn — i\tsn, are 

(Kj)' — — {1 + 2/U0, + m‘ (202 + 30," — \fs{) + 

(K2)- = ^-(1+4^'^!+...) 

(K3F = j|(1 + ...) 

(41) 

Substituting in (18), the energy dissipation per unit length in either cylinder is 

given by 

W = 0)1" ~ 11 + ( 20, + ^ y^) + /W4 (202 + 3 /y + 30," — \\r{ + ) j 

When the currents are in opposite directions a similar treatment gives 

W = ml2 [| +i^. + W, I1 +/(3^-*a-2^-^*+i|5/J J 

In (42) and (43) the term 

0)1" (— +1^2 

• (42) 

• (43) 

is due to the ordinary skin effect. Since 2oojz2 = iR0, this term may be written 

|Tt0I2 {1+F (z)} in which F (z) {= p0-2} is plotted in fig. 3 up to 2 — 5. When z is 

greater than 5, then, by (21c), 

F(s) = (v/22-3)/4.(44) 

This is shown in fig. 3 by the broken line A. 

The next term, /PA,, is due to the proximity of the two cylinders when they are so 

far apart that the quantity in { } may be regarded as practically unity. It would 

have been the term obtained by assuming the current in the second cylinder as 

concentrated on the axis and producing a uniform field of strength 2 1/D on the first 

cylinder. Including the proximity effect to this order we may write 
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in which d ( = 2a) is the diameter of either cylinder, and G (z) = \z\j,, is plotted in 

fig. 3, its limiting value 

G(2) = (v/22:-1)/8 .(46) 

being indicated by the broken line (B). 

Finally the expression included in { } includes the effect both of disturbance of 

current distribution due to proximity and of non-uniformity of the field. 

At low frequencies, by (21a), <pn is negligible and both (42) and (43) give for { } 

1 i 1 2 , 1 4 | 
1 T "Q/W + ] 8^ + ••• • 

This is identical with the result obtained for the thin wire (Equation 26), so that at 

low frequencies the distortion of distribution due to reaction of eddy-currents is quite 

negligible, and the effect of non-uniformity of the field will give in the extreme case 

where the cylinders are touching a correcting factor of amount 1 *0456 to be applied to 

the result obtained by the uniform field theory. 

At frequencies so high that (21b) holds, the factor { } becomes 
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when the currents are similarly directed, and 

ld-3/x2+10/D 

when the currents are oppositely directed; while, if distortion is neglected, its value is 

1 +/r-f-p.4 

by (32). Thus the effects of distortion and of non-uniformity of field are equally 

important. When the currents are similarly directed the distortion is such as to tend 

to reduce the losses, and when the currents are oppositely directed the losses are 

increased. 

The term involving /D will contribute less than 1 per cent, at high frequencies if 

D > 2-5d with the currents oppositely directed, and if D > 2d with the currents 

similarly directed. 

To this accuracy we may write for any frequency 

in which 

W = pi, jl + F(z) + G(z) (46) 

If we assume the remaining terms to be in geometrical progression (46) may be 

written 

W 2 XV> l + F (2) + G(z) 

i-|h(z)f 
(47) 

At low frequencies this formula gives 1 • 043 as the correction for non-uniformity 

when the cylinders touch, and will certainly hold to 1 per cent, up to D = 2d at 

extremely high frequencies. 

H (2) is plotted in fig. 4, up to z — 5, the curve I holding when the currents are 

oppositely directed, and II when the currents are similarly directed. 

Since the effective resistance R/ of a coil system is such that 

W - ART2, 

the.effective resistance (apart from electrostatic capacities) per unit length of a pair of 

parallel wires is given by the formula* 

IV = R0 |l+F(2) + 
1- 

G(zj 
H (z) 

in which d is the diameter of either wire D the distance of their centres, and F, G, H 

are functions of 2 { = 2 v7eo/R0} drawn in fig. 3 and 4, and tabulated below. 

* At extremely high frequencies it may be shown that ratio of the resistance of a go-and-return system 

to the skin resistance is given by D/ jD-—d2. Formula (48) is then 3 per cent, in error when d = 0-8D. 
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Values of F, G, H in Formula (48). 

w/2tt = frequency. 

R0 = D.C. resistance of cylinder per centimetre. 

z. F(2). G (z). 

I 

I. 
Currents 
Opposite. 

4 (z). 

II. 
Currents 
Similar. 

0-0 0-000 0-000 0-0417 +0-0417 
0-5 0-000326 0-000975 0-042 +0-041 
1-0 0-00519 0-01519 0-053 +0-033 
1-5 0-0258 0-0691 0-092 +0-001 

. 2-0 0-0782 0-1724 0-169 -0-056 
2-5 0-1756 0-295 0-263 -0-114 
3-0 0-318 0-405 0-348 -0-152 
3-5 0-492 0-499 0-416 -0-170 
4-0 0-678 0-584 0-466 -0-176 
4-5 0-862 0-669 0-503 -0-181 
5-0 1-042 0-755 0-530 -0-185 

Large (V2z-3)/4. (v'2?-l)/8 0-750 -0-250 

(9) Test of Formula (48) by Comparison with Experimental Results.—An extensive 

series of measurements of the resistance of a go-and-return system of parallel conductors 

has been made by Kennelly, Laws and Pierce.* 

* ‘ Trans. American Inst. El. Eng.,’ Yol 35, Part 2, 1953, 1915. 
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The wire used was copper of diameter 1-168 cm., and the frequencies employed 

ranged from 60 to 5,000 cycles per second, so that the range of z in formula (48) is from 

0• 84 to 7 • 7. The spacing (D — d) varied from 0 • 03 cm. to 60 cm., so that the observa¬ 

tions afford a very complete check on the adequacy of the formula. 

The resistance of the loop, which for direct currents was of the order 0-01 ohm. was 

measured by an alternating current bridge. In this method variation of contact 

resistance would probably be the chief source of trouble. As to whether this effect is 

appreciable, may be judged by a comparison of the tabulated direct current resistances 

after allowing for temperature variations. In fig. 5 this is done by plotting the 

resistances on a resistance-temperature diagram. Of the five groups of observations at 

spacings 60 cm., 20 cm., 6-4 cm., 0-8 cm., 0-03 cm., four show to within half a per 
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cent, a linear increase of resistance with temperature, this increase agreeing with the 

temperature coefficient of copper. The fifth group, that corresponding to the spacing 

6-4 cm., is low. The discrepancy is removed if we suppose the measured resistance in 

error by 4 per cent. (0-0004 ohm). 

In the following tables the ratio of alternating current resistance R' to the direct 

current resistance R has been calculated from formula (48) and compared with the 

observed value. This ratio is not independent of the temperature as the eddy-current 

resistance varies with temperature in a different way to that of the direct current 

resistance. The value of z has been calculated using that value of R which corresponds 

to the temperature of the observation as deduced from fig. 5. 

Tables comparing observed values of the effective resistance of twro parallel wires 

with the calculated values :— 

0 — temperature of observation. 

/ = frequency in cycles per second. 

It = direct current resistance. 

Rs—R = increase in resistance due to skin effect. 

RP = increase in resistance due to proximity of wires. 

R' = Rs+RP = total alternating current resistance. 

Table I.—Spacing = 60 cm. 

6° C. 23-5 24-2 25-0 25-6 26-2 27-1 27-4 27-9 

/ . 60 306 888 1600 2040 3065 3950 5000 

fRs/R. 1-0047 1-108 1-560 2-045 2-270 2-708 3-030 3-372 
Calculated^ RP/R Negligible — — — — — — — 

[R'/R . 1-0047 1-108 1-560 2-045 2-270 2-708 3-030 3-372 
Observed R'/R . 1-0038 1-111 1-587 2-042 2-279 2-694 3-034 3-361 
Difference per cent. . +0-1 -0-2 -1-4 +0-2 -0-4 +0-5 -0-1 +0-3 

Table II.—Spacing = 20 cm. 

6° C. 17-2 15-2 15-2 15-0 14-9 ■ 15-2 15-4 15-3 15-4 

/. 60 288 868 1663 2061 3063 3112 3860 5040 

r Rs/R 1-0048 1-106 1-578 2-120 2-328 2-775 2-790 3-075 3-472 
Calculated^ RP/R 0-00004 0-0006 0-002 0-002 0-003 0-003 0-004 0-004 0-004 

ffit'/R 1-0048 1-107 1-580 2-122 2-331 2-778 2-799 3-079 3-476 
Observed R'/R 1-0058 1-106 1-584 2-120 2-313 2-755 2-781 3-067 3-446 
Difference per cent. -0-1 +0-1 -0-3 +0-1 +0-8 +0-8 +0-5 +0-4 +0-9 

m 2 
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Table III.—Spacing = 6-4 cm. 

6° C. 18-5 18-9 19-3 20-4 20-7 20-9 21-0 21-0 21-6 
/ . 
Calculated 

60 266 582 923 1465 2019 1992 3028 3960 5320 

Rs/R 1-0048 1-088 1-340 1-602 1-984 2-280 2-268 2-728 3-075 3-470 
Rr,/R 0-0003 0-0045 0-0099 0-0132 0-017 0-021 0-020 0-026 0-031 0-036 
R'/R 1-0051 1-093 1-350 1-615 2-001 2-301 2-288 2-754 3-106 3-506 

Observed R'/R 
Difference per 

1-0087 1-100 1-354 1-640 2-037 2-344 2-322 2-851 3-145 3-558 

cent. ... —0-4 -0-6 -0-3 — 1-6 -1-8 -1-9 -1-5 -3-6 -1-2 -1-5 

This group is abnormal on the resistance-temperature diagram. If we assume IT 

and R as measured are both too small by a constant amount = 0-04 R, the group 

becomes normal on the resistance-temperature diagram and gives the following values 

replacing the observed R'/R :— 

Corrd. Obsd. 
R'/R 1-008 1-096 1-343 1-617 2-000 2-296 2-275 2-784 3-062 3-466 

Difference per 
cent. -0-3 -0-3 +0-5 -0-2 +0-0 +0-2 +0-6 -1-1 +1-5 +1-5 

Table IV.—Spacing = 0*8 cm. 

6° C. ... 16-3 16-5 16-9 17-2 17-8 18-0 18-3 18-4 
/. 
Calculated 

60 239 671 1068 1509 1991 1988 2486 3028 3880 4900 

Rs/R ... 1-0050 1-073 1-424 1-732 2-028 2-283 2-280 2-517 2-744 3-067 3-409 
Rp/R ... 0-0052 0-061 0-187 0-254 0-314 0-382 0-380 0-424 0-477 0-550 0-620 
R'/R ... 

Observed 
1-0102 1-134 1-611 1-986 2-342 2-665 2-660 2-941 3-221 3-617 4-029 

R'/R ... 
Difference 

1-0124 1-132 1-604 1-981 2-330 2-643 2-638 2-912 3-179 3-587 3-955 

per cent. -0-2 +0-2 +0-4 +0-3 +0-5 +0-8 +0-8 +1-0 +1-3 +0-8 +1-8 

The calculated values are in general too high. A spacing 0-85 cm. would give the 

following calculated values and differences:— 

R'/R ... 1-0100 1-131 1-602 1-973 2-326 2-646 2-641 2-920 3-197 3-589 3-998 

Difference 
per cent. -0-3 -0-1 -0-1 -0-4 -0-2 +0-1 +0-1 +0-3 +0-6 +0-1 +0-4 
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Table V.—Spacing = 0-03 cm. 

6° 0. ... 21-1 21- 4 21 5 21 5 21 2 21 0 20 9 21 0 21- 1 
/ 60 236 740 1000 1473 2038 3058 3918 5170 

Rs/R ... 1 -005 1 068 1 464 1 658 1 995 2 31 2 74 3 06 3 46 
Calculated < Rp/R. 0-015 0 165 0 759 1 00 1 37 1 83 2 56 3 09 3 72 

Lr'/r. 1-020 1 243 2 223 2 66 3 37 4 14 5 30 6 15 7 18 
Observed R'/R. 1-017 1 244 2 231 2 688 3 460 4 272 5 522 6 449 7 512 
Difference per cent. +0-3 -0 1 -0 4 -1 1 —3 2 -3 •5 -4 3 -5 0 -4 5 

The calculated values are in general too low, but with so small a spacing R/ is varying 

rapidly. The formula gives the following values of R//R when the wires touch - 

R'/R. 1-021 1-253 2-288 2-75 3-52 4-35 5-64 6-57 7-71 

Difference per cent. +0-4 +0-7 +2-6 +2-2 +1-7 + 1-4 +1-8 + 1-6 +2-7 

In Tables I. and II. the skin effect is the only one of importance and very good agree¬ 

ment is obtained. These tables really check the experimental observations as the skin 

effect formula is well established. Tables IV. and V. form the real test of the proximity 

effect. It is seen that the small discrepancies are sufficiently accounted for by a slight 

adjustment (0-5 mm. at most) in the spacing. In Table III. the skin effect is pre¬ 

dominant, but there is a rather large discrepancy. It is noteworthy that this group 

also shows a discrepancy on the resistance-temperature diagram, and that both the 

discrepancies are removed if we assume the measured values of R' and R to be both 

in error by 0 • 04 R. 

(C) Losses in Parallel Wire Systems and in Short Coils. 

(10) When the field acting upon the cylinder is uniform and has magnitude H, then 

by (18) the eddy-current losses per unit of length are given by 

W = \wo?Hh/n (z), 

or eliminating w by <o = z2R0/4, and putting z2\]sl = G {.z), 2a = d, 

W = 1R0 d2G (z) I-P,.(49) 
€) 

Consider a system of parallel wires each of diameter d and occupying a square space 

of side D. Let these wires carry equal currents I in the same direction. Then, if the 

spacing is not too close, the currents may be supposed to be concentrated on the axes 

and producing uniform fields acting on the other wires, The field acting upon any wire 

s may be written Hs = 2lkJD where ks is a numerical quantity depending upon the 

distribution of the wires and the position of the wire s in the system. By (49) the eddy- 

current loss in the wire s due to the field of the neighbouring wires is 

■W=PW^G(*)F.(50) 

per unit of length. 
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If there are n wires each of length l, the total loss due to the proximity of the wires 

will therefore be 

Aviators*,*; 

or if the wires are connected in series to give a total direct current resistance R = R0wZ, 

the added resistance due to the proximity of the wires is 

in which 

= W»R G (z) 

1 n 
un = 

n i 

(51) 

(52) 

and depends only on the geometry of the axes of the wires. 

The total resistance (apart from capacity effects) is got by adding the skin effect to 

(52) so that the formula for the alternating current resistance R' of the parallel wire 

system is 

R' = It jH- F (z) + un ~ G (s)|.(53) 

This formula may also be applied to circular coils if the winding section is small in 

comparison with the radius. It remains to determine the values of un. 

(11) Single Layer Systems.—If all the axes lie in one plane (fig. 6), then, numbering the 

wires 1, 2, 3.s.... n from left to right, 

1 1 
hs —-h —— + • • • + 

s s+1 n—s 

From this formula the following values of A;/ are calculated :— 

s ' n = 4 n — 8 n = 16 n = 24 

1 3 • 35 6-70 11-00 14-00 

2 0-25 ' 2-10 5-06 7-30 

3 0-25 0-61 2-82 4-63' 

4 3-35 0-06 1-61 3-1.4 

5 0-06 0-89 2-16 

G 0-61 0-42 1-49 

7 2-10 0-14 0-98 

8' 6-70 0-02 0-62 

9 &c. 0-36 

10 0-18 

11 0-06 

12 0-01 
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OOOOOOOOOOOOOOQO 
Eig. 6. Single layer 16-wire system. 

Curve A slrows the distribution of effective resistance produced by eddy-current losses due to tie proximity 

of tie wires. 

Curve B siows tie distribution of tie losses ttrougiout tie system. 

The value of un when n = go is obtained as follows. Consider a long strip of width 

l composed of N7 parallel wires each carrying a current I. The field at a distance x 

from the edge in this strip is 2NI log (l — x)jx. and the mean square field is 

-i6NT(i-i+i-i + 
= lVN2r. 

Hm2 = 4N2!2 Ur 

But since N = 1JD, 

so that 
un =‘-§-7r2 = 3 ‘2899. 
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Tlie tabulated values of un when plotted against 1 Jn (fig. 7) enable tlie value of un 

to be determined for any number of wires. 

(12) Distribution of Losses in Single Layer System.—The energy loss in the wire s, 

due to the fields of the other wires, is proportional to Jcf. From the table for Jcf it is 

seen that this is greatest in the end wires. Thus, in the case of four wires, 93 per 

cent, of this loss takes place in the two outer wires and only 7 per cent, in the two 

inner wires. For a greater number of wires, if the system is divided into four equal 

sections the distribution of loss is still such that approximately 93 per cent, of the loss 

occurs in the two outer sections. This may be of importance in measurements of 

effective resistance based on the determination of the increase in temperature of the 

system, and account should be taken of the possibility of a temperature distribution for 

alternating currents different from that for direct currents. 

(13) Distribution of Resistance in Single Layer System.—Tlie distribution of eddy-current 

losses throughout the system does not represent the distribution of effective resistance. 

In fact the energy required to produce the losses in any wire is supplied by the currents 

flowing in the other wires, and therefore the other wires behave as if certain resistances 

were added to them. 

In order to determine these equivalent resistances, consider two coils (I) and (II) 

carrying currents I15 I2 which produce fields acting on a cylinder carrying no current. 

Ultimately these currents will be assumed equal, so that for simplicity they will be 

considered in phase. Let the fields in the neighbourhood of the cylinder due to these 

currents have intensities 

Hj = all5 Ho = /3I2 (54) 

and let them be inclined at an angle <p. 
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By (49) the eddy-current loss in the cylinder is 

W = y (H12 + H22+2H1H2 cos 0) 

= y (a2I12 + /32I22+2a/3l1I2 COS 0).(55) 
in which 

y = iR0 d2G (z). 

Now, instead of the cylinder being present, suppose the two circuits carrying the 

s 

currents I15 I2 to be linked by the resistance system shown in fig. 8. The rate of 

dissipation of energy by this system is 

W' = i {R1I12+RJ22+R3(I1-I2)2} 

= i(R1+R3)I12+i(R2+R3)I22-R3I1I2,.(56) 

W' is identical with W if the resistances have the values 

B] = 2a (a + /3 COS 0) y, R2 = 2/3 (/3 -f a COS 0) y 

R3 = — 2 (a/3 cos 0) y 

In the case Ijl = I2, no current flows through R3, so that the potential differences 

produced by the eddy losses in the cylinder are then such that they may be represented 

by the resistances R15 R2 in series with the respective coils. 

Applying to a single layer system, suppose we require the resistance to be added to 

a wire s which would represent the contribution of s to the eddy losses in the whole 

system. Let the wire s be the coil (I), another wire r be the cylinder, and the 

remaining wires be the coil (II). al is the field acting on r due to the current in 

s, /3l is the field acting on r due to the currents in the remaining wires, so that 

(a-f-/3 cos 0) I is the nett field acting on r resolved in the direction of al. Since in 

. the single layer system the fields due to individual wires are collinear, (a-j-/3 cos 0) I 

is the total field in which the wire r is situated. It is to be regarded as positive 

when the field due to s is the same sense as the total field. 

VOL. ccxxii.—A. N 
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Hence if Hr is the whole field acting on r, and Hr, that portion of the field contributed 

by the wire s, the resistance to be added to the wire s to imitate the eddy losses in the 

remainder of the system is 

Remembering that 

(58) may be written 

fr = s-1 r=n 'l 

= 2 H„-H,+ Z H„-H„ 
r L r = 1 r = s+1 J 

21 H =2I/1_, , 1 N 
1 (r-s)D’ r D \r * n + r, 

ftp. = unR ^ G (z), . . . 

(58) 

(59) 

where uns is a numerical quantity depending on the number of wires and the position 

of s. 

The general distribution of resistance is sufficiently illustrated by the case of a 16- 

wire system The values of uns for this system are found by the above method to be 

f 1 2345678 

16 15 14 13 12 11 10 9 

uns = —0-19 +0-08 0-17 0-22 0-25 0-27 0-28 0-29 

The values of uns when added should give the value of un for the whole system. Thus 
i = 16 

2 uns = 2-74, and this agrees with the tabulated value of un for the 16-wire system. 
s = 1 

As regards the negative value of for the extreme wires, it must be remembered 

that the equivalent resistances for each wire are such as to imitate the potential differences 

produced by the eddy losses in the wires, and it is quite possible that the phase relations 

may produce a rise in potential in phase with the current in part of a system. The 

only condition that is essential is that the value of un for the whole system shall be 

positive. Curves A and B of fig. 6 (p. 79) show the distribution of proximity resistance 

and of loss respectively for a 16-wire system. 

(D). Single Layer Solid Wire Coils. 

(14) Single Layer Coils. Effect of radius of curvature of Coils.—A single layer circular 

coil, whose width of winding is small compared with the radius of the coil, differs only 

slightly from a straight parallel wire system, so that formula (53) will hold for a coil of 

this kind as a first approximation. The slight differences which occur, due to helicity 

of winding and owing to the fact that the wire (regarded as a cylinder under the 

action of a transverse field) is curved, are probably too small to be measurable and . 

the mathematical difficulties too great to make a theoretical treatment possible. 

A more important difference is the modification of the transverse field acting on the 
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individual wires. In a straight single layer system the field acting on one wire is per¬ 

pendicular to the surface of the layer, bub in a single layer coil nob only is this normal 

field modified but there also exists a component of the field acting along the surface of 

the layer. The case where the number of wires in the coil is large will alone be 

considered. 

Solenoiclal Coil.—Let the mutual inductance (M) between two equal parallel coaxial 

circles of radius a and separation b be mitten 

Then* 

M = 4,-rraf (2a/b), (60) 

/(/*) = log 4^-2 + f-1 (log 4/* + £)—frf -4 (log 4fx-U) 
fX 

~6 (log 4m--M&) +. 
M 

(61) 

so long as p < 1. 

From this expression it is readily shown by differentiation and integration that the 

radial and axial components of the field at the point on the prolongation of the surface 

of a cylindrical coil distant £ from the edge are given by 

n being the number of turns per unit of length and I the current. 

When £ is very small, HN tends to the value Hu—h, in which 

H0 = 2»I log. . . (63) 

and is the field due to a straight strip of width b, while 

h = 2nl [f -2(1°g4/x-i)-M4(log4/x-io) + ^5V^(l°g 4p-ff&)...} . (64) 
Ip m P- J 

p = 2 afb. 

Ht tends to the value 

Ht = -i I (log 4/1-1) + * 4(log4/l- J)-^y(log4/i-fi) + ...} (65) 
l jv P H- V- J 

p - 2a/b. 

To find the normal and axial components at any point on the surface of the coil, 

* Butterworth, ‘ Phil. Mag.,’ vol. 31, 216, 1916. 

N 2 
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divide the coil into two portions A and B to the left and right of the point in question. 

Then the two components of the field are 

(Ho-H'oMfc-V), Ht + H't 

where the accented letters refer to the field due to the portion B, and the unaccented 

letters to that due to A. H0 — H'0 is the normal field for a straight strip, and h — h' 

the correction on the normal field due to curvature, while HT — H'T is the field tangential 

to the layer due to curvature. 

Formulae (64) and (65) give the following values for h and HT :— 

b/2a h/2nl Ht/2wI 

0-1 0-025 0-369 

0-2 0-079 0-595 

0-3 0-149 0-767 

0-4 0-229 0-902 

0-5 0-313 1-010 

0-6 0-400 1-096 

0-7 0-486 1-167 

0-8 0-569 1-225 

0-9 0-651 1-273 

1-0 0-728 1-313 

from which the values of h — In', HT — H'T may be calculated for any point on the surface 

of a coil if b/2a < 1. 

For the eddy loss formula we require the mean square field acting on the coils ; that is, 

denoting H0 — H'0 by H, h — h' by H15 HT -j- H'T by H3, we require the mean value of 

(H —H1)2+H/ = H2—2HH, + H,2+H22 

throughout the surface of the coil. 

As regards the integrations required in determining this mean value, the integral of 

H2 leads to the straight system formula; that of H,2 and Hy may be carried out by 

approximate methods, since By and f t,2 are finite throughout the range of integration. 

The integral of H-Hj is obtained as follows. Choose the length of the coil as twice the 

1 +x 
unit of length so that H/2nl = lo 

1 — x 
at a point on the surface distant x from the 

centre. Suppose Hx may be expressed in the form 

H j — cl T f3x T ~yX T OX/1 T 

The integrals required are then of the form 

sn 1 + X 7 
x log --ax. 

-i f —x 
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When s is even these integrals are zero, and when s is odd have the values 

4 
s+ 1 

1 + 1 + k + 
+ \ 

Neglecting terms beyond x4 in the series for H, 

j HHj dx =4wl 

There is no need to evaluate (3 and S for H, (xj — H, (—x:) = 2x1 (/3 -f- Sx2), which 

immediately gives (3 + §<i if we put a** = 2/3. Greater accuracy may be obtained 

by suitably choosing a series of values of x, &c., to take into account the higher terms 

of the series, but the above expression is sufficient for the present purpose. 

The evaluation of the integrals by the above methods leads to the following table of 

values for un in applying formula (53) to solenoidal coils of length 6 and radius a. 

Single Layer Solenoidal Coils. Radius = a. Length = b. un in formula (53). 

bj2a = 0-0 0-2 0-4 0-6 0-8 1-0 

un = 3-29 3-63 4-06 4-50 4-93 5-28 

The assumption un = 3-29 -f- 6/a will give results which do not differ by more than 

2 per cent, from the above values. 

Flat Coils.—By methods similar in principle to those used in determining the values of 

un for solenoidal coils, the following values of un have been found :— 

Single Layer Flat Coils, r = inner radius. R = outer radius. 

rj R = 1-0 0-9 0-8 0-7 0-6 0-5 

un = 3-29 3-36 3-58 3-84 4-24 4-78 

(15) Single Layer Coils at High Frequencies.—When z is greater than 3, F (2) and G (2) 

assume the simplified forms 

F(s) = (a/22 —3)/4, G (2) = (y/22—l)/8, 

so that formula (53) becomes 

R' = a + /3z,.(66) 
in which 

« = iR(2-«„d2/D2), /3 = ^|L(2 + m^7D3). 

Now und2/D2 seldom exceeds 6, so that a/(3 will usually lie between -1-6*7 and — 0-4. 
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Even when z is as small as 3, a is therefore less than \($z. For most purposes it is suffi¬ 

ciently accurate to take 
R' = (3z.(67) 

From the relation z2 = 4W/R0 we may write 

2 = 0-0479 s/fjW, = 830/v/RVv,.(68) 

in which / is the frequency in cycles per second, X the wave-length in metres, P'0 the 

resistance of the wire of the coil in ohms per 1,000 yards. 

Hence (67) becomes 

R' = A/v4 = AV/,.(69) 

where A and A' are given by 

A - 146-7 (:2+und2/D2) R/\/R'0 1 

A' = 8 • 47 x 10-3 (2+und2/D2) R/VW, j 

(16) Comparison of Formula (69) with Experimental Observations.—Lindemann 

and Huter* have measured the effective resistances of a series of single layer coils over 

a range of wave-lengths to which formula (69) is applicable. 

Their method was to bring the coil into resonance with an air condenser at the required 

wave-length and to measure the effective resistance in this condition by adding a known 

non-inductive resistance and observing the reduction in current. The method measures 

the resistance of the whole circuit of which the coil is a part, so that the resistance of the 

coil may be deduced if the resistances of the non-inductive portions of the circuit are 

known, and the condenser is assumed to be free from loss. 

Their results included four solenoidal coils wound with thick solid wire, and for these 

coils they found that the effective resistance could be expressed in the form 

Pd = A/VX + B/X2.(71) 

The data given by Lindemann and Hu ter for these coils enable the value of A in formula 

(70) to be calculated. The results are given in the following Table, which includes also 

three other coils measured by a similar method at the National Physical Laboratory. 

It is seen that the value of A as calculated from formula (70) is in good agreement 

with the value of A determined experimentally. In the calculation, the value of un 

taken has been the value given in the short table for solenoidal coils in Section 14. 

These values have been deduced upon the assumption of a large number of turns. 

Calculations based on the value of un, as deduced from a straight system containing 

the same number of wires as there were turns in the coil, were found to give a value 

of A which in every case was lower than the value deduced from observations. 

* ‘ Verb. Deutsch. Phys. Gesellschaft,’ vol. 15, 1913, p. 219. 
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Table.—Effective Resistance of Single Layer Solenoidal Coils. 

Coil. 
Radius 

a 
Length 

b 
Turns 

Dia¬ 
meter 

of 
Direct 

Current 

Induct¬ 
ance 

L 

Experimental. 
Calcula¬ 

ted Obsr. 

Range 
of 

Wave- 
cm. cm. n. wire 

d mm. 
R ohms. micro¬ 

henries. A. B. 
A. length 

metres. 

1 15-5 1-8 7 2-2 36 9-5 2-14xl04 10-4 L.H. 
2 9-75 2-6 11 2 0-0382 43 11-8 2-15 xlO4 11-2 L.H. 100 

3500 
3 11-3 2-0 13 0-71 0-425 75 25-1 7-4 x104 25-5 N.P.L. 150 

600 
4 10-0 6-5 18 3 — 80 14-3 7-0 x104 13-2 L.H. — 

5 9-8 2-ls 15 1-1 — 84 25-5 7-0 xlO4 25-6 L.H. — 

6 11*75 1-0 13 0-71 0-444 100 49-0 6-8 xlO4 50 N.P.L. 200 
600 

7 8-75 7-3 40 1-62 0-193 320 56 1-7 xlO6 55 N.P.L. 600 
1500 

The direct current resistances were not known in the cases of the coils 1, 4, 5. For 

the calculation of A, their values were deduced from the dimensions of the coils using the 

resistivity of copper as given by the known direct current resistance of Coil 3. 

It was to throw some light upon the properties of the second term (B/x2) in Linde. - 

mann’s equation that the three coils marked N.P.L. were measured. Coil No. 6, which 

was wound with D.S.C. wire and held together by wax and silk without any other frame, 

was measured first to confirm Lindemann’s results. The observations are given below 

for this coil and are typical. In the Table, R4 is the measured resistance of the coil. 

R' is obtained from Rt by dividing by (1 — W2LC)2, where C is the measured self 

capacity of the coil. The values of A and B are deduced by plotting R'^/x against X~3/’2 

(formula (71)). 

Coil No. 6. L = 100-0 microhenries. C = 20 /ifx F. 

X 
metres. 

Ri 
ohms. 

R' 
ohms. a/ jk. B/X2. 

R' 
(formula (71)). 

206 7-2 5-00 3-4.2 1 * 6i 5-03 
229 6-2 4-64 3-24 1*3! 4-55 
260 5-2 4-l6 3-04 l-0i 4-05 
294 4-3 3-6! 2-85 0-79 3-64 
350 3-5 3-l0 • 2-64 0-56 3-20 
463 2-8 2-6., 2-2s 0-3o 2-60 
500 2-6 2-4c 2- R 0-2t 2-46 
543 2-5 2-3s 2*10 0-23 2-33 
584 2-3 2-30 2-0, 0-20 2-2o 
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Coil No. 3 was of bare wire and supported by eight pieces of ebonite upon which equi¬ 

distant grooves had been cut to keep the wires in position, these ebonite pieces being 

spaced equally round an octagonal wooden frame. The arrangement involved no metal 

except the wire of the coil. Coil 3 approximately imitates Coil 6, except that the insula¬ 

tion had been removed and the spacing increased. Coil No. 7 was wound on a wooden 

frame with D.S.C. wire and no wax. It is included in the table to increase the range 

of inductance and to put a severe test on the curvature correction for un. 

In regard to the second term in formula (71), it is interesting to notice that if B is 

divided by L2, the result is of the same order of magnitude for all the coils tested although 

the inductance increases nine fold. Thus :•— 

Coil No. : 1 2 3 4 5 6 7 

B/L2 = 16-3 11-6 8-5 10-9 9-9 7-2 16-7 

A leakage of conductance G would contribute a term «2L2G to the expression for the 

effective resistance. In terms of wave-length this becomes 3-56 L2G/a2 if A is in 

metres, L in microhenries, and G in micromhos. In order to imitate the resistance 

B/\2 by such a leakage the value of 1 /G must range from 0 • 2 to 0-4 megohm to give the 

values observed for B. 

As to whether leakage is the cause of the second term in Lindemann’s equation, and 

as to whether it lies in the coil or the remainder of the circuit is a matter which requires 

further investigation. There is no doubt, however, that the first term of Lindemann’s 

equations may be closely predicted by formula (69). 

(17) Conditions for Minimum Eddy-Current Losses in Single Layer Coils.—The 

inductance of a single layer solenoidal coil of radius a and length 6 may be written 

L = 4tt«62X/D2,.(72) 

in which D is the distance apart of two consecutive turns and X is a function of a/b. 

The effective resistance of the coil is by (53) 

R’ = R {l + F + uvGd2/D2).(73) 

where F, G depend on the frequency and diameter of wire only, while un is a function of 

a/6. The values of X and un for the range of a/b 1 - 0 to 2-4 are given below, the latter 

being obtained by interpolation from the table of Section 14, and the former from 

Rayleigh’s formula 

X = log, 8a/b— l/2 + 62/32a2 (log, 8«/6—£).(74) 

ajb = 1-0 1-2 1*4 1-6 1-8 2-0 2-2 2-4 

un = 4-29 4-10 3-98 3-87 3-80 3-73 3-69 3-65 

X = 1-651 1-816 1-958 2-084 2-195 2-296 2-388 2-466 
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With wire of a given diameter, the value of R'/L depends upon the values of D, a, b. 

If the length of wire (l) is also fixed, a may be expressed in terms of l, D and b, since 

l = 2tt ab/JJ..(75) 

Writing D = gd, b — we have from (72), (73), (75) 

The minimum value of R'/L is required for variations of g and tj; the former gives 

the best spacing of the wires with a coil of given shape, and the latter gives the best 

shape. 

Best Spacing.—(76) is minimum with regard to variation of £ when 

f = 3«„G/(1 + F)>. . . ..(77) 
and then 

R'/L = fE(g-J{3G(l + F}»^.(78) 

Condition (77) shows that at the best spacing the proximity losses are one-third the 

skin losses. If the best spacing is not employed, then, writing R'/L = r, and letting 

toj be the values of r, f when the spacing is best, 

T/r« = i(f/fo)i{S+te/f)2}.(79) 

from which the following values are found:— 

£/£0 (= D/D0) = 0-6 0-7 0-8 0-9 1-0 1-1 1-2 1*3 

t/t0 = 1-120 1-053 1-019 1-004 1-000 1-003 1-012 1-023 

i/io — 1-4 1-5 

t/To = 1-037 1 • 055 

Best Shape.—Keeping the best spacing, the best shape i§ that value of ajb which will 

make (ajbf uJ/X. a minimum. The following values are obtained from the table given 

above for un and X :— 

a/b = 1-0 1-2 1-4 1-6 1-8 2-0 2-2 2-4 

X/w„* {a/bf = 1-147 1-165 1-172 1-174 1-172 1-167 1-161 1-152 

so that if condition (77) is possible the best shape is ajb = 1-6, and then 

R'/L = 1‘872R (d/l3)* {G (l +F)3p.(80) 

When z is very large, F = 2, G = \/2z/4:, so that at very high frequencies 

R'/L = 0'557Rz (d/l3)% 
or with 

R - ipllird2, 22 = 2tr2fd3/p, 

R'/L = 3T 5{fp/ld)K 

VOL. CCXXII.-A. o 

(81) 
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If the frequency / is not sufficiently high for the approximation to hold, (81) must be 

replaced by 

R'/L = y (z) .(81a) 

in which y (z) = 3T5 {G- (l + F)3}*/2 an<^ Fas the following values :— 

2 = 1-5 2-0 2-5 3-0 3-5 4-0 4-5 5-0 oo 

y(z) = 3-81 3*61 3-53 3-48 3-43 3-41 3-39 3-37 3-15 

It is seen that y (z) does not vary much throughout a large range of frequency, and if 

the formula 
R'/L = 3-4 {fp/ld}*.(81b) 

is used this will represent the best value of alternating current time constant attainable so 

long as 2 is greater than 2. Taking for copper p = 1,600 C.G.S., expressing/ in terms of 

wave-length \ (in metres), and supposing L to be in microhenries, l and d in centimetres, 

R'/L = 2-35 ly/ldk. 

Thus A in Lindemann’s formula cannot be less than 

Kin. - 2-35 LKid. 

In illustration we have for coils No. 1, 2, 3 of the table of Section 16, 

Am,„. = 7-1, 8-6, 22 
while 

AraiJAaetual==0-75, 0-73, 0-86. 

The ratio 2-35 L/A\/ld may be taken as a measure of the efficiency of any coil. 

Condition that Equation (77) may he satisfied.—Since, if the best spacing is used, 

ajb = 1 -6 is always the best shape, we have from (77), with un — 3*87, 

(D/d)2 = 11-61G/1+F..(82) 

This gives the following values for Djd :— 

2 = 1-0 1-5 2-0 2-5 3-0 3-5 4-0 4*5 5-0 

D Id = 0-425 0-885 1-36 l-705 1-89 1-97 2-01 2-04 2 • 075 

2 = 6-0 7-0 8-0 9-0 10-0 inf. 

D /d = 2-14 2-17 2-20 2-225 2-245 2-41 

Now D jd must always be greater than unity in practice, so that if 2 is less than 1 •61 

close winding is the best. When 2 exceeds 1-61, spacing rapidly becomes advantageous, 

the best spacing at very high frequencies being D = 2 • 4d. As regards departure from 

the best spacing, the table of t/t0 shows that the time constant will vary by less than 

1 per cent, from the best value if D/D0 lies between 0 • 85 and 1 • 18, by less than 5 per cent, 

if D/D,, lies between 0*79 and 1 -28. 
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If close winding is employed (keeping ajb = 1*6), the losses at high frequencies will be 

42 per cent, greater than when the proper spacing is employed. Fig. 9 summarizes the 

R' = Alternating current resistance, L = Inductance. 

t = R'/L , to = Minimum R'/L. 

z = 830/ VR'oA , R'0 = D.C. resistance in ohms per 1,000 yards. 

A = Wave-length in metres. 
Frequency high if z >2. 

At high frequencies best shape is a/b = 1-6, best spacing (average) is Djd — 2. 

At low frequencies best shape (average) is a/b = 1*4 and close winding is the best. 

results of this section. The full crave gives the best spacing, and the broken curves show 

the limits allowable if losses 1 per cent, and 5 per cent, greater than the minimum losses 

are permissible. The figure may be used to grade coils for different ranges of frequency. 

Thus the 5 per cent, limit will be attained if below z = 2 we make a/b = 1-4* and 

employ close winding, and above z — 2 we make ajb — 1-6 and space the wire so that 

* Between z = 0 and z = 1 • 6 the best value of a/b rises from 1 • 2s (the steady current value) to 1-6. The 

value a lb = 1- 4 will never produce a loss exceeding by 0-2 per cent, the minimum loss. 

o 2 
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D = 2d. In estimating, for a given diameter of wire, the wave-length at which 

spacing should be employed, the formula 

K'oX = 172,000 .(83) 

(deduced from (68) with z — 2) is useful. Thus, with No. 28 S.W.G. wire, E/0 in ohms 

per 1,000 yards is 140; so that if X is less than 1,230 metres, spaced winding should 

be used. 

Flat Coils.—A similar treatment for flat coils has yielded the following results:— 

Spacing becomes advantageous at practically the same value of z (viz., 2 = 1-6) as 

that for solenoidal coils. At any value of 2 greater than 1 • 6, the best ratio of inner to 

outer radius is r/~R — 0-60, and the best spacing is 1-04 times that for solenoidal coils. 

When both these conditions are satisfied the eddy-current losses in the flat coil are 

5 per cent, greater than those in the solenoidal coil wound in the best way with the same 

wire. When 2 is less than 1 * 6, close winding is the best, and the best ratio of radii 

varies from 0-4 to 0*6. The value r/R = 0-5 will therefore be the best ratio to take 

for a range of working from 2 = 0 to 2 = 1 • 6. 

(E). Single Layer Stranded Wire Coils. 

18. Single Layer Stranded Wire Coils.—If we replace the solid wire in a coil by a 

number of insulated parallel filaments of the same copper section and connected in 

parallel, the direct current resistance of the coil will be unaltered, but for alternating 

currents the distribution of current between the filaments will not be uniform unless 

the filaments are interwoven in such a way that they traverse similar paths. 

As a non-uniform current distribution will cause increased losses, and twisting will 

produce increased length in the filaments, it is a matter for investigation as to what 

gain may be expected by using stranded wire coils. 

It will be assumed that each strand traces out a helix about the axis of stranding, 

the angle of which is a. Actually the radius of the helix will vary along a particular 

strand ; but this need not be considered in getting the average result, as we may pass 

from one strand to its replacing strand, and thus keep at the same distance from the 

axis throughout the length of the stranded Avire. The further assumption that a is 

constant throughout the section Avill assure that there are the same number of strands 

in the same axial length of any layer whatever its distance from the axis. 

19. If r is the direct current resistance per unit length of one strand, the skin resistance 

of each strand in unit axial length of the wire is 

r0 sec a {1 + F (2)} 

where 22 = -/.aA2, S being the diameter of one strand. Upon this must be superposed 

the resistances representing the losses due to two fields:— 

(a) A field Hj due to the strands in the same turn of the coil as that in which the 
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strand in question is situated. This field is normal to the axis of stranding and tangential 

to the cylinder on which the strand is wound. 

(b) A field H2 due to the remaining turns in the coil. This field will also be assumed 

to be normal to the axis of stranding, and will have two components Ifi cos 0 tangential 

to the cylinder ana H, sin 0 normal to the cylinder, 0 being the angular position of the 

element under consideration. 

Thus an element of one strand is situated in a nett field whose components tangential 

and normal to the winding cylinder are TI, -f- H2 cos 0, H2 sin 0. These may further 

be resolved into components along and at right angles to the direction of the element, 

viz. :— 
Hi = (H,+ H2 cos 0) sin a, 

Hb = (Hj + ELj cos 6) cos a, H2 sin 0. 

Now, as regards the axial component of the field, it may be shown that if a cylinder 

is placed with its axis along the direction of an alternating field, the losses in the cylinder 

are one-half the losses which would occur if the cylinder were placed at right angles to 

the field. 

Therefore the loss in an element d\ of one strand due to the fields H,, H2 is by (49) 

dW = ir0d\<l2G(2)(HB2+iHA2). 

Now, as we pass along one strand, the value of 0 increases uniformly as we are rotating 

relative to the field H2. Hence the average loss in one strand is got by replacing HA2, 

Hb2 by tlieir mean values throughout a complete cycle of 0 ; that is, HA2, HB2 are replaced 

by 

sin2 a (H/ + 1H/), cos2 a (H,2 + fH22) +Pf22 

The loss per unit axial length of the stranded wire is thus 

W = -|-r0 sec aG (z) S2 {Hj2 (l —■\ sin2 a) + H22 (I — \ sin2 a)}. 

(20) Since each strand carries the same current, the value of II, at a distance r from 

the axis is 21 r/a02, where I is the whole current and a0 the over-all radius of the stranded 

wire, the number of strands being assumed large. 

Again the number of strands crossing an annular belt of width dr in the cross-section 

of the wire is 2rs dr ja2, s being the whole number of strands. The mean value of II 2 

throughout the section is therefore 

812 f°r3dr/a06 = 212/a2 = 8l2/d2, 
Jo 

in which d0 — 2a0. 

The field H2 is the same as that for the corresponding solid wire coil, and the mean 

value of H2 throughout the coil is 4m„F/D2, D being the distance apart of consecutive 
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turns. Using these values in W and adding the skin losses, the following formula is 

obtained for the effective resistance of a stranded wire coil:— 

(84) 

in which 

R0 (= rjs) is the direct current resistance per unit length of the equivalent solid wire, 

s — No. of strands, 

8 = diameter of each strand, 

a = angle of twist, 

d0 = over-all diameter of stranded wire, 

D = separation of turns in coil; 

R' = R, sec a 1 + F (z) + s2<fG (z) | sin- a)+ ^2(l — i sin2 a) 

while in the calculation of F and G, z2 — irhwS2. 

(21) If the twist is so small that sin a = a, (84) becomes 

R' = R„ 1 + F + s2d2G JL ,Un 
d2 D2 + W 1 -t F 4- Lu n G 

sfS2 

D2 

(85) 

The correction due to the twist will therefore be less than 1 per cent, if a < 0-14 

radian (8°). In determining the most efficient coil only the main term in (85) need be 

considered. 

(22) The quantities fixed will be taken to be the length of wire, the number of strands, 

and the diameter of each strand. Under these conditions it is clear from (85) that the 

best value of d0 is d0 = D, as adjustment of d0 will have a negligible effect on the 

inductance. Then 

R' = R„ 1 + F + G (2 + un) (86) 

The best value of D and shape of coil then follow by a method identical with that for 

the solid wire coil, except that sS replaces d, and 2 + un replaces un. 

The method gives as the conditions for the best time-constant 

a/b = 1 '5.(87) 

(D/sS)2 = 17'76G/(l+F).(88) 

and the value of the time-constant is then 

R'/L = Filly (z) y/fp/lsi,.(89) 

y (z) being calculated from the diameter of a single strand using (81a). 

(23) Limits of Application.—The quantity sS2 is the diameter of solid copper wire 

having the same section as the copper section of the stranded wire, so that if it were 

possible to pack the circle I) entirely with copper, D2/s82 could never fall below unity. 

Actually the limit is greater than unity, partly because the wire is circular, but also 
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because of twisting and the need for symmetrical distribution. Tlius if three wires 

each of diameter S are arranged so that their centres form an equilateral triangle, the 

diameter of the cylinder in which these wires can be twisted is 

(l + 2\/3) nS = 2155nS, 

in which n is a factor greater than unity, introduced to allow for insulation between 

contiguous wires. Denoting D2/sS2 by /a2 the value of /a for the three-wire system is 

l-244w. If three three-wire systems are twisted, then, assuming rigidity, the over-all 

diameter of the resulting nine-wire system is (2-155)2 nS, and the value of /a is 

(1 • 244)2 n. 

Generally, if the operation is repeated p times, the result is a ?>p system for which 

D = (2‘155)p nS, M = (U244)pn. 

Applying this result to (88), it is seen that, as G/(l -f- F) increases with frequency, there 

is a lower limit of frequency below which the conditions may not be satisfied. If we 

depart from the condition of best internal space the resulting increase in R//L follows 

a law similar to that for solid wire. If we allow a 10 per cent, variation, the actual value 

of /a may range between 0‘63 p0 and 1 -75 p,0 where /a0 is the ideal value of p, and this 

may be used to extend the lower limit of the range of application. At the higher 

frequencies, although G/l -|- F tends to the finite value 1/2, the spacing required is so 

large as to give unpractical coils. 

If we set as practical limits to n the values 1-1 and 3-3, and allow a 10 per cent, 

variation, the wave-length limits for copper wire of the usual gauges used in stranding 

are given in the following table :— 

Table giving Limits of Application of Formulae (87), (88), (89). 

A = Wave-length in metres. 

Wire No. S.W.G. 42 40 38 36 

No. of strands : 
fA = 0 0 0 0 

3 < 
\x = 430 630 960 1570 

fA = 10 10 20 30 

9 i 
U = 600 850 1330 2150 

fA = 80 120 180 290 
27 1 

\a = 900 1290 2030 3200 

fA = 140 200 300 500 

81 1 
\a = 1270 1800 2800 4500 
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The shorter wave-length assumes n — 3 • 3 and the longer wave-length assumes n — 1 • 1. 

If we introduce a third system with n — 2-2 for the mid-regions, a choice of one or 

other of these systems will enable the time-constant (89) to be secured to within 10 

per cent, throughout the range of the table. The table shows clearly the transference 

of the applicability of the results to the regions of lower frequency as the stranding 

becomes finer. The observed inferiority of stranded wire coils at short wave-lengths 

is thus due to lack of internal spacing at these wave-lengths. 

(24) Comparison of Stranded Wire Coils with Solid Wire Coils.—Assuming both coils 

to have the same length of wire, the same total copper section and wound to give the 

best time constants, the ratio of the time-constants is by (81a) and (89), 

t'It = l'llly {z)/sy (s*z),.(90) 

since sS2 = d2 and 2 is proportional to d. 

In (90) r = R'/L for the stranded wire coil and T that for the solid wire. Now, the 

ratio y(z)/y(sh) lies between 1 and 2l for all possible values of 2 and s, so that the 

formula 
t'/t = 1-2/s1.(91) 

may be taken as comparing the two cases. 

For the 3-system we have therefore 

s = 3 9 27 81 

t'/t = 0-91 0-69 0-53 0-40 

when the same length of wire is used in both coils. 

If coils of equal inductance are compared, the conditions are different, as the spacing 

for stranded wire coils is not the same as that for solid wire coils. In fact, throughout 

the range for which spacing is advantageous, 

I) = 2d 

for the solid wire coils, and for stranded wire coils on the 3-system having the same 

copper section, 

D = (1-244)pnd. 

For coils of the same shape and of radius a, the inductance L is proportional to 

a3/D2 and the length of wire l is proportional to a2/D. Hence, to keep the inductance 

constant, l3/D must be constant. We have then 

l oc D.3, a cc D'1, 

and from (89) 
R'/L oc D-A 
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Thus, if accented letters refer to the stranded wire coils, the relative values for equal 

inductance are 

(I'/l)3 = (a'/aj1* = (V2UYn/2 

and 
t'/t=V2/su {(l’2U)pn/2}\ 

in the extreme case, when s = 81, p = 4. n — 3-3, V = 1 -581, a' = 2 -5a, t fr = 0*32. 

(25) Modification of Formula when Strands are few in number— The value of the 

field Hj was calculated on the assumption of a large number of strands, giving 

Hj2 = 8l2/d02. If there are two touching strands each of diameter 8, the field acting 

on one strand due to a current 1/2 in the other is I/<5, and d0 (the diameter of the 

circumscribing circle) is 28. Hence, for this case, H/2 = 4l2/d02. The factor 2/df in 

the formula (84) must therefore be replaced by 1 /df. With three strands whose 

centres form an equilateral triangle of side 8, Hx2 = 4l2/3S2 and d0 = 2*155(5, so that 

2jdf is replaced by 1*55jdf. 

With four strands in square order, the centres form a square of side 8, Hx2 = 9l2/8<52 

and d0 = 2*414(5; 2/df is replaced by 1 -65/df. These new values react on the 

conditions (87), (88), (89) ; the “ shape ” condition (87) is practically unaltered. The 

“ spacing ” condition (88) gives slightly too high a value for D, viz.:— 

S = 2 3 4 

D/D0 — 0*90 0*96 0*97 

where D0 is the value calculated by (88) and D the true value. 

The factor 1*111 in (89) must be replaced by 1 *054, 1 *078, 1 *084 when s = 2, 3, 4. 

These differences are small, so that the theory may be safely applied even when the 

strands are few. 

(F). Many-layered Coils. 

(26) Coils of Many Layers.—Let the winding section of the coil be b x c. Let c/b 

be small, and let b be small compared with the radius of the coil. Let there be m layers 

in the depth c and n turns per layer. 

The field at any point in the section will have two components H4 and Hc parallel 

to b and c respectively, which will act independently in producing eddy-current losses. 

As regards Hc, the field acting on a single wire is the same as that for a single layer 

coil for which D = b/mn. Thus the added resistance due to the action of Hc is 

^tt2HG (z) (mnd/b)2, 

d being the diameter of the wire and R the direct current resistance of the coib 

As regards H4, each layer behaves as a current sheet having current density nl/b. 

VOL. CCXXII.-A. P 
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In the immediate neighbourhood of the sheet the component of the field parallel to 

the sheet is 
k — 2-n-nljb 

and reverses its direction as we pass through the sheet. 

Assuming li to be constant throughout the depth c, the field acting on the first layer 

is (m — 1) k, on the second layer (m — 3) h, and generally on the rth layer (m — 2r — 1) h. 

The mean square value for all the layers is therefore 

h2 {(m—l)2 + (m—S)2 + (m—s)2+...}/m — (m2—l)h2/S = |-7i-2(m2— l) (nl/b)2. 

Upon applying this result to (49) it follows that the added resistance due to the 

action of H/( is 
^7r2 (m2-l) RG (z) (nd/b)2. 

Adding these resistances to the skin resistance, the formula for the resistance of a 

many-layered coil is 

It' = R (l + F + -g-7r2(2m2— l) (nd/b)2G}.(92) 

The corresponding formula for a stranded wire coil is obtained by replacing F by 

F 4- 2s2$2Q/d2 and d by sS. F and G in this case are calculated, using the diameter 

of a single strand. 

Assuming that the correction for curvature for the many-layered coil is of the same 

form as that for the single layer coil, the following formula includes all the previous 

formulae— 
R' = R (1+ F + MG).(93) 

in which for solid wire coils 

M — un (2m-—1) (ndfb)2.(94) 

and for stranded wire coils 

M = 2 (s Sfd0)2 + un(2m2—l) (ns S/b2)2,.(95) 

(27) Best Conditions for Many-layered Coils.—If different coils are wound with the 

same length and diameter of wire on the same shape of frame, and with the same 

spacing between the wires but with different radii, then the inductance will varv as 

mr- while the resistance will be of the form 

a + 6m2, 
in which 

a = R {l+F—un(nd/b)2G}, /3 — 2u„(nd/b)2 G. 

At low frequencies F and G are negligibly small, so that increasing the number of 

layers will always improve the time-constant. At high frequencies the best time- 

constant is obtained when 

a = 3 /3m2. 
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which gives 
6m2+ I = (l+F )/Gun{nd/b)2.(96) 

Assuming the condition such as to make m large, 

6 (mndjb)2 = (i + F)/w„G,.(97) 

an expression determining the total number of turns (N = m X n). With this value 

of N we obtain from 

L = 4ttN2«X(^), l = 2-7raN, 

the relation 

L2 = - X2 f 
irCi CC \oUn\jr/ 

for the inductance of the coil, and this leads to the same value for ajb as for single* 

layer coils, viz.:— 
a/b = 1-6, un = 3’87 .(98) 

When both conditions are satisfied 

R'/L = 1'187y (2) \/fpjld.(99) 

When 2 > 1, condition (97) with un — 3-87 shows that (mnd/b)3 < 3; and since ndjb 

is of the order unity, m will not exceed 2. Many-layered coils are therefore only of 

advantage when z < 1. When this is the case, G = z4/(34: and F is negligible. 

Condition (97) may then be written, when ajb = 1*6, 

Ndfb - 1-66/z2; 

or, expressing z in terms of wave-length and diameter, and assuming the wire to be of 

copper of resistivity 1600 C.G.S. units, 

N = 2'8 x 10~4Xa/<73,.(100) 

A being the wave-length in metres, a the coil radius in centimetres, and d the diameter 

of the wire in millimetres. 

For stranded wire coils of the same total copper section the conditions are 

ajb — 1*6 

N = 2’8x10-4A a\/7/d3,.(101) 
while 

R'/L = ri87y (z)\/fp/lsS,.(102) 

d being the diameter of the equivalent solid copper, S the diameter of one strand, 

s the number of strands, and z is calculated from the diameter of a single strand. 
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Thus the gain in time-constant by using stranded wire is 1 /s*; but, in addition, a larger 

number of turns, and therefore an increased inductance, may be obtained with stranded 

wire, while maintaining the best conditions. 

(28) Design of Coils of Large Inductance.—If a coil of large inductance is required 

to have minimum effective resistance at a specified wave-length, the conditions 

ajb = 1*6, 

N = 2’8 x 10~4Xa x^s/d3,.(A) 

together with the formula for the inductance 

L = 25'5N2«,.(B) 

determine the radius, shape and number of turns for a given diameter of wire. 

Usually these coils are required to resonate with a condenser of given capacity. 

In this case, if C is the resonating capacity in micro-microfarads, 

X2 = 3'55 x 10-3LC.(C) 

Eliminating L and X2 between (A), (B), (C), we find 

a3 = 1‘4 x 108cZ6$C, 

a relation independent of the number of turns. Thus, whatever inductance is used, 

the coils must all have the same radius if wound with the same type of wire. In 

illustration, let the wire consist of nine strands, each of diameter 0-2 mm., and let the 

resonating capacity be 1,000 pp. F. 

Then 

s — 9, d — \/sS = 0*6, 
from which 

a == 9 cm. 

Thus, if L = 20mh, N = 297. As the winding length b — 5*6 cm., this could be 

arranged by having 6 layers of 50 turns each. To avoid large self-capacities the 

winding should be “ sliced.” 
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IY. The Influence of Satellites upon the Form of Saturn's Ring. 

By G. R. Goldsbrougii, D.Sc., Armstrong College, Newcastle-on-Tyne. 

Communicated by Prof. T. H. Havelock, F.R.S. 

Received February 17,—Read May 26, 1921. 

§ 1. Introduction. 

In his “ Adams’ Prize Essay”'* for the year 1856, Maxwell showed that the rings 

of the planet Saturn could only be stable for small disturbances on the theory that 

they were composed of meteorites sufficiently small. This has been confirmed since 

by spectroscopic evidence and is now generally accepted. In continuance of the 

same idea, the various divisions of the rings have been accounted for by presuming 

that, in those positions where a single particle moving in a circular orbit about the 

planet would have a period simply commensurate with that of one of the nearer 

satellites of Saturn, instability would result. This idea has been fully emphasized 

recently by Lowell.! His observations at Flagstaff have disclosed a large number 

of additional divisions in the rings (see Appendix to this paper). They have the 

appearance of fine lines traced on the surface of the rings. In each case Lowell is 

able to show that the divisions occur at intervals of periods commensurable with that 

of satellite Mimas. The periods have the ratios such as §, Tfir> ^, xt, &c- Lowell 

has stated the argument for this view in ‘ Bulletin,’ 32, p. 189. If the action of one 

body upon another revolving about a third be examined by the method of the 

variation of arbitrary constants, in the expressions for the periodic inequalities 

in the radius vector and the longitude, there appear terms of the type 

[C/(pn — qn')\ cos {(pn — q?i') t + Q}, where n and n' are the mean motions of the 

perturbing and perturbed bodies, p and q are integers, and the remaining quantities 

are constants. It is clear that when the ratio n/n' is approximately equal to q/p, 

then the inequality will become very large. 

We may take a satellite of Saturn as one of the bodies and one of the particles 

forming the ring as the other ; if n/n' = q/p, approximately, then the particle will 

* Maxwell’s ‘ Collected Works,’ I., p. 288. 

f Lowell, ‘ Observatory Bulletin,’ No. 66. 

VOL. CCXXII.—A 597. Q [Published October 13, 1921. 
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depart considerably from its unperturbed path and collision with other particles will 

result. In this way the divisions in the ring have been explained. 

Some doubt has been cast upon this theory, and it has been shown* that even 

when n and v! are commensurable, a closer examination of the motion leads to the 

conclusion that the denominator will not vanish. 

It is also noticeable that this explanation takes no account of the attraction of the 

numerous particles upon one another, which may be considerable. 

A re-examination of the matter is made in the present paper. As the satellites of 

Saturn are all approximately in the same plane as the ring, the problem is formulated 

in two dimensions only. The satellite is assumed to follow an unperturbed circular 

orbit, and the problem reduces to a slight variation of the “ restricted problem ” of 

three bodies. We shall consider the effect of this satellite upon a number of particles 

forming a single ring round the planet, subject to their mutual attraction as well as 

that of the satellite and of Saturn. The actual Saturnian rings are supposed to be 

composed of a number of such rings arranged concentrically. These will have some 

effect one upon the other, but, for the present, this effect is disregarded. 

In his paper, Maxwell considered the single ring of particles only. He found 

that the equations of motion could be satisfied by assuming that the particles rotated 

round the primary in a circle with suitable angular motion. He then examined the 

effect of a small arbitrary disturbance upon them, and his results show that the 

disturbances would remain small if the masses of the particles were sufficiently small. 

That is, the ring would be “ ordinarily ” stable. 

In the present paper the plan is different. The disturbance of the ring of particles 

by the satellite is examined, with a view to determining under what conditions the 

departure from a certain fixed circle will be large. It is clear that if the departures 

do become large, collisions with adjacent rings of particles will result, and the particles 

will leave the vicinity of the original circle irrevocably. In this case a division in 

the ring will result. It is with this meaning that the terms stability and instability 

have been used in the paper. But-, as will be pointed out again in its proper place, 

the orbits in which the departure from the circular form does not become great with 

increase of time may yet become “ ordinarily ” unstable if further small arbitrary 

displacements are imposed upon them. 

The results of this paper will therefore indicate some, but not necessarily all, of the 

positions of divisions in the rings due to instability of whatever kind. 

In §§ 2 to 4 an analytical theory is fully worked out on the supposition of equal 

particles in each ring. In § 5 it is shown how amendments may be introduced to 

cover the case of unequal particles. The application to the Saturnian system is given 

in § 6, and the last paragraph summarises the results obtained. 

* Tisserand, ‘ Mec. Celeste,’ vol. iv., >p. 420. 
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§ 2. Formation of the Equations. 

Let M be the mass of the primary and m' the mass of the principal satellite which 

is assumed to describe an unperturbed circle round the primary. Take the origin at 

M. Let there be n particles forming a ring round the primary, subject to attraction 

from M, m', and one another, and let the mass and co-ordinates at time t of particle X 

be mA, rA, 0A- If the co-ordinates of m' at the same time are r\ 0', then the motion 

of particle X will be produced by forces which are the derivatives of the function 

where 

and 

F 
M + m\ ^ m' m'rK 

n Aa r 
if cos(0'-0A)+ Z 

Da, 

-2^cos(0,,-0a); 
r, 

A A2 = r/2 + rA2—2rVA cos {6'-Of, 

DAm2 = rf + rK2-2rlxrx cos (0Jli-0A). 

The equations of motion of mK are then 

I §l 
rK dt 

(d0a\2 

\dt) 

{r/0f 

3F ] 

0rA ’ I 
t 

fdF | 

n dof J 

(i) 

As we are assuming that m! describes an unperturbed circle, 

r' = a' and 6' = wt + e', 

where w'2a'3 = M + rn' — M, with sufficient approximation. 

Let us assume now that the remaining particles are moving in the vicinity of the 

vertices of a regular polygon of radius a. Then we may put 

r a — a + p\, 

6x — dot + e + X . 27rjn + crA, 

for all values of X from 1 to n, where p and a are assumed small, so that squares, 

products, and higher powers of them and their first derivatives with regard to the 

time may be neglected. 

The equations (l) now reduce to 

Q 2 



104 DR. G. R. GOLDSBROUGH ON THE INFLUENCE OF 

d2 d 2 a /3F\ , „ / 32F 
_ Pa_2«„ - = (gjVJo (^T/o 

/ ^2T1 \ 3 F 

M00>- /xK/1 0 

32F n d2rrA 9 clp± /_1 0F\ „ 

at at \rK dOjo ** r^dr^d0a -o 

+ 
M TxdO^ddJ o J 

L 
• (2) 

In order to determine the derivatives, we write in the formula for Aa, 0A = 0'-0A, 

and a = T\/r'. Then 

A,v 1 = {l + a2—2a cos 0x} 'F/ 

= {^b0 + 3X cos 0 + ... + bl cos i<p + ...} -f-r' 

by Fourier’s series. 

This series will be taken as absolutely and uniformly convergent. 

We find then 

oF M + toa to x 360 06t- • 1 to' 
— =-v- + 7.7' i + ...+ „ 1 cos ub + ... f-- cos 0 
0rA ?V r 0a 0a r j r2 

- y. [rx-rM cos (0M —0A) . cos(0M—0X) 

1 TO 3 J-^A/x *. 2 

rF 
"/V o „ ^ , ,x crKor 

0 M + tox , to' 02 /17 , 7 • \ 
• I—u (2^0 + + ^i cos «0 ...) 

W r'3 0a2 

-TO,, 
1 3 (n-?v cos(0^-Oa))21 

M id 3 M L-L/X/i I) 5 -L'A/x 
PA 

+ ~«iu 
cos (0M —0a) + 3 {n-?y cos(0M-0x)} {r>t-rACOs(0^-0A)} 

Da T) 5 J-'Ajx 

+ 2 cos (Om-0a) 

2 0l'F 
/M00,0Ca 

'TO 0 /7 • .7 * \ TO « ^ — (67 sm 0 + ... + ?64- sin ?0 +...) — ^ sin 0 o-a 

V 
TO,, 

vy sin (0m-0a) _ 3 {rA—^ cos (0m-0a)} rx7y sin (0M-0X) 

sin (0M —0X) 

T) 3 J-^/xA T) 5 J-^A/x 

r 2 (<rM —crA), 

1 3F to' / -7 \ to' • 
^3ft'7Vl(",+!S'Sln¥+'"^?5Sm^' 

-TO,, r- sin - F sin (0,-0t) 
I) 3 
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2 
H- 

82F m! 0/7 -7 \ 
— {b1sm <p+ ... + ibi sin i<p + ...) 

r,2rx 0 a 

- sin *>•••) 
rrK 

• 2m„ 

+ 2m„ 

3ry sin In-iy cos (OM-0A)} 
I) 6 J->A 

Pa 

sin (0„ —6>a) _ 3?y sin (flM-0A) {rM-rA cos (0M-flx)} 
T) 3 J-'A/i Lb 5 A/x 

+ ~ sin (0^—0X) Pm> 

2<t, 
02F 

11 ?’a00m8^a 

m 

r r 

to i *27 * \ 
— ( ... JO, COS Up ...) + —f-2 COS (ji (T\ 

+ 
rM cos (0M —0A) _ Sr2rx sin2 (0m-0a) 

n 5 
J-'A/x 

- — COS (0,,-0a) (ay— 0a). 

In the summations of the right-hand members, /x takes all integral values from 

1 to n, except ^ = A. 

The zero values of these derivatives are obtained by putting 

v' — a', r a = a, 

Whence 

where <p now is 

and 

Then 

(aF/3n), = 

9' = o/t + e', 6X = wt +e + \2iTr/fl. 

A a2 = a'2 + a2—2aa' cos <p 

(to' — ft)) t-\-e —e — \2irjn ; 

DAm = 2a sin (,u — A) 7r/n. 

\ _ M ml I-ydb db. m 

d-■ +^b^+-+sr00S!>+-J"^00^ 

— --—:-7-r-7— 4-5COS (yU —A)27r/n 
4«2 sin (/x —A) 7r/n a2 v 7 7 

82F \ 

drxdrj 0 

"9 (M + Wa) , to' 82 /1? i7 • \ 
-^ ^2(2^0 4 • • • +0;- cos 20+ ...) ar 

v J_1 3 V 
' x ,'>77, < - — - k 

n M [8a3 sin3 (/* — A) Trjn 8a3 sin (yu —A) tt/wJ _ 
PA 

+ 
COS (jit — A) 2irj n 

+ 
_8a3 sin3 (/m — X) 7r/n 8a3 sin (yu — A) 7r/ 

+ 
2 cos (/x —A) 27r/n 

a° Pm> 
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wtr„ 
' aaF 
00M0?v<j 

m! 3 
(0i sin 0 + ... +10,-sin r%2 sin 0 

n/2 0 a a 
<T\ 

+ zmu 
S cos 1 !.p—a) 1 7r/ll 

8 a2 sin: 31 (,u-A) 1 TTj hi 
+ 

n 

a~ 
[crIJL — <TK), 

1 0F 

■l\ 00A/O 

= (... + ibi sin id>...) 
a a 

m • 
—77. sm 0 
a 

+ cos(m-A)W» —t sin fju—X) 2~/ 
_4«2 sin2 (m—A) ~jn cd 

n 

:2F 
nv 

7\0?V00/*/ 0 

m' _0_ 

ar2a da 

J 

(0j sin 0 + ... + ?'0, sin 70...) 

— 4-2 (0j sin 0-j- ... T ?0, sin i<j>...) — 
f 3 cos ( yU— A) 7r/n 

l8«3 sin2 (p —A ) "!n 
Pa 

+ S??1M 
0 cos (/U—A) irln 2 - / . Xo / 

- Q , • -w-TV / + —3 sm U - A) 2 7T n 
L 8a sm (/*—A) 7r/n a 

Pfo 

02F 
-(X,, 

\rKdduddJ0 

n' 77 -97 \ m! 
— (0j cos 0+ ... + % bl cos ?0 ...J -I—^ cos 0 

/^/ cl 

m 

a!a 
Ta 

+ 
cos (fx — X) ‘hrjn _ 3 sin2 (yu—A) 271-/71 

_8a2 sin2 (yu — A) tt/ii 32a2 sin5 (// — A) 7r/n 

— -^2 COS (/X — a) 27r/n (cr^ —crA). 
a _ 

I11 the summations of the right-hand members, 77 takes all integral values from 

1 to n, except yu = A. 

Next assume that all the small particles forming the ring are equal to one another. 

That is mA = m. 

Further, let /3A+1 = /3/>A, for all values of A. 

Then 

PA PA + n /d pA> 

whence 

18* = 1; 
or 

(3 — cos + / sin , where 1 = y/( — 1), 
71 7i 

and s takes all integral values from 0 to n— 1. 

The quantities appearing under the signs of summation are then : 

m 

n CL 

m 

2 9 COS (ya-A) 277/71 = —^; 
; CL 

- — sin (// — A) 27r/n = 0 ; 
/x CL 

. m 
- =“K; 

4a2 sin (,u —A) n-jn a2 
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^ m COS ju — X) 2Trjn {cos s p — X) 27r/n + t sin s p — X) 2nfn} — 1 

7 8a3 sin3 .P -X) n/n 

:«3V 

+ $ — 
7 8a3 

— X) n/n j si 

cos s(p—X)27r/n + i sin s( p-X •27r/n +1 

sin (/x — X) 77/ 

n2 5 (/x—X) 7r/n cos2 (p — X 

'n 

1 7r/n] m T 
=- a3 X) 7r/n 4 sin3 ( 7~/n i 

cos (p — X) 7r/ll 

sin21 (p-X' ) n/n 
——r—4—{cos s (p — X) nln + L sin s (p — X) irln— 1 
— X) itfn 

COS 1 [p—x) 1 n/n sin 5 ( ,/x-X) • 7r/n 

sin21 [p—x) 1 7Tj In 
= £ — M • 

a 8 a * 

V Wl COS (p — X) 7rln r / _ \ / • / . \ / oi TO ii- 

? to’ sin’ („-x) ,/n {C0S 8 (,<“X) 7r/,l + < Sln s (""x) 7r/’l + S' = ' «’ M-; 

cos ( p—X)2n/n 3 sin2 ( p- 

sin3 {p—x )n/ hi 4 sin5 (p 
{cos 6- (p — X)2-n-/n + i sin s (/x —X) 2~/n— 1} 

a2 n. 

[ t sin2 s \ (p —x) 1 7r/n . COS2 1 [p—x) • 7r/n 

l2 sin31 U—x) I./ n 
+ 4 sin (p — A) tr/n 

N„ 
a 

The quantities K, Ls, Ms, Ns can readily be found by direct summation when n, the 

number of particles, and s are known. 

In re-writing the differential equations (2), we may now omit the suffixes of panda-. 

Change the independent variable from t to cf> — (a/ —«) t + e— e—X . 2n/n. Also put 

m/M = v, m'/M = v, w'/co = k, (k — l)_1 = k, and, to secure homogeneity, replace 

p by ap. Let us further assume that o2aA = M, and co'2a'3 = M (the latter holds very 

approximately when m' describes a circle), so that we have a/a' = («'/«)'. 

The differential equations then become 

“jA — 2k -y- = KK A' — (T&0 + ... + b{ COS 1(f) + . . . ) — KKV — KK A' COS (p 

d(p“ <X0 pa 

+ 

+ 

3k" + /c“/c “v ——g ('^'^0 T ... U 6, COS i<f) T ...) — /caLs 
la" 3~2 

2/%/ 3 
/c /c -v — (4 sin 0 + ... + ?’4 sin i<f> + ... — sin <p) + /c2wMs 

oa 
and 

+ 2 k~ — vkku (b1 sin (p + ... + ibi sin icp + ...) — vkk1'1'3 sin <f> 

ci~<p a<p 

V, ! 

L 
r 

+ ' 2 /‘/s 
VKK ... +i~sin i<p+ ...)— vkk2,3 (... +ib{ sin i<p+...) 

OCX. 

— mAM. 

— vk2k"^ ( ... + l2bi COS i(f) + ...) + vkk" COS (p + 1'K2NS O- . 

(3) 
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The equations (2) may be replaced, under the suppositions made, by equations (3). 

Equations (2) form a system of n pairs of linear equations of the second order. The 

complete integral will therefore involve 4n arbitrary constants. The system of 

equations (3) will give the same result, for the solution of (3) will be a function of s 

involving four arbitrary constants. By giving s its n values, 0, 1, 2, ..., (n— l), we 

arrive at the complete integral involving 4n arbitrary constants. 

Now it has been shown by Tisserand# that for large values of n, whatever the 

value of s may be, the limiting value of Ls is 0'0194n3, Ns = 2LS and Ms = 0. 

These values largely simplify the discussion of the stability of the system. 

Lastly the equations (3) may be written, for convenience, in the form 

p" — 'Ikct' + (Oj,o + 0i,i COS 0 + ... + 0],COS V 0 ...) p 

+ (02,i sin 0 + 022 sin 20+... +02>r sin r<p +...) o- 

= 03, o + 03 i COS 0 + ... + 03j r COS V(p + ... 

it -f- 2Kp T (0i_ i sm (p T 0j o sin 20 + ... 4~ 0^ r sm vcp -1- ...) p 

+ (05,0+0.5.1 COS 0+ +05,r COS ?'0 + •••) O' 

= 0fi, 1 sin 0 + ... 4- 06,r sin r<p + ... 

(4) 

The values of the quantities 0 are : 

0 1, 0 

-527 
q 2 1/2/200,) 2T 

— OK —WV K K ——5 + VK 1js 

pa“ 

©l,r = 

02, r = 

0 3,0 

02.! = 

e3,r = 

04. r = 

©5,0 - 

05,, = 

06, r = 

06,1 = 

/ 2 /2 e br 
■v K K 

ca" 

/ 2 /4/3l, 
— V K K V -- 

da 

1 / 2 /*l3 OOp 2 TV 
2,V K K —-VK IV 

ca 

/ 2 r*i3 d&i / 2 /*/, 
V K K 77-1 —VKK 13 

da 

/ 2 /->/3 OO 
V K K -- 

36, 
ca 

ttVAi,; 
0 a 

— w2Ns ; 

AYV6r ; 
/ 2 /'2/3,,7 

vk k V0r ; 

/ 2 /*/37 / 2 /«/, 
VK K V1 — VK K 3 

(r *0) 

(r s* 0, l) 

(r * 0) 

(7-^1) 

(5) 

* ‘ Mec. Celeste,’ vol. ii., p. 184. 
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The best methods of determining the values of br, and its brst and second 

derivatives for known values of u, or aja', are given by TisserandA The complete 

evaluation of a number of these quantities for various ratios, applicable to the solar 

system, is given by Ponteooulant.I For the purpose of estimating the order of the 

numerical values of the quantities 0rs, we may take the highest ratio a likely to 

occur as that of the outer edge of the ring to the mean distance of Mimas. This 

ratio is 07461 (see Appendix for data). Pontecoulant gives the values for 

rx = 072333, which we may use to avoid laborious calculation. If we take 7 = 7. 10~8, 

the value for Mimas, we find 

03iO = -20-2590 + 67530^; 

0i,i = — 1 ’35 . 1CU6, 0i,2 = -P53 . 10“6, 

021 = -4M7.1CT7, 02,2 = —7'39 . Itr7, 

03,o = -F46 . 10~7—179.10-7K, 0;. 2 = 

05,o = — 13'5060rLs. 

It is clear that, compared with 0, 0, all products and squares of the remaining 0’s 

may be neglected. 

01)3 = —1'63 . 10~B... ; 

02,3 = -9-34. 10“6...; 

4'07. 10-7, 03,2 = 3'69 . 10-7... 

§ 3. Solution of the Equations. 

{a) The complementary function. 

The equations 

p" — 2/co-' + p20i,r cos rcj) + <t202.r sin r<p = 0, 

rr" + 2Kp + pA04, r sin r<f> + cr205, r cos r<f> — 0. 

belong to the class of homogeneous linear differential equations with periodic 

coefficients. The integral is known to be the sum of the forms e':f (</>), where J (</>) 

is a periodic function of cf> with the same period as the coefficients in the equations (6). 

Equations of this form in one dependent variable have been discussed by Whittaker,J 

Young,§ Ince,|| and BakerA The present solution is a simple extension of the work 

of these writers. 

Let 
P = cAA, 
t = erAX, 

* ‘ Mec. Celeste,’ vol. i., p. 270, et scq. 

t ‘ Systeme du Monde,’ vol. 3, pp. 353-376. 

\ ‘ Pioc Inter. Congress Math.’ vol. 1, 1912; ‘Proc. Edin. Math. Soc. xxxii., p. 76. 

§ ‘Proc. Edin. Math. Soc.’ xxxii., p. 81. 

|| ‘ Monthly Notices R.A.S.’ lxxv., 5, p. 436. 

1 H. F. Baker, ‘Phil. Trans.’ A., vol. 216, p. 129. 
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where A and X are, as has been said, purely periodic functions of period 2?r. On 

substituting in equations (6) we find 

c2A + 2cA' + A"—2/c (cX.+ X') + AZ0,. r cos + X202, r sin r<p = 0 

c3X + 2cX/ + X// + 2k (cA +A') +A204,r sin /’0 + XZ0-,r sin r<p = 0 

Let us now assume that A and X can be represented in the most general way by a 

series of terms in 0 with suitable coefficients, the coefficients being periodic functions 

of (p with period 27r. That is, let 

A = A0 sin (n<f> 

X = X,, cos 

-r) + ttAr.s0r s + ttttB,,,p.?0,S0P,q+ 

-t) + 2£Xr. ,0r.. + SSSSY* ?0r. s0p> q+... 

5 

In these expressions A0 and X0 will be arbitrary constants, n is an arbitrary 

integer* and t a parameter which will be defined presently. 

We shall assume that the index c is of the form 

ttc 0 - r, s ^r, s 1-,u" r, s, p. q 0,. S®p, q + 

Then, if we substitute these values in equations (7) and equate to zero those terms 

which do not involve any 0 except 04,o and 05iO, which are large compared with the 

others, we find 

{ (0i,(j — n2) A0 + 2/cnX0} sin (n<p — r) — 0, 

{2/cuAy + (05iO—n") X0} cos (ncp— t) = 0. 

On eliminating A„ and X0 we find 

(0iiO—n2) (06iO—n2) —4/cV = 0 (9) 

In general, the given values of 01O and 05 O will not satisfy the identity (9) for any 

integral value of n. Let us replace 01O by cq 0, where cq,0 is a quantity which 

satisfies the relation 
(rq.u-rA) (05iO-»2)-4<cV = 0. (10) 

For some suitable value of n, it will usually be found that «10 approximates closely 

to 0], o. 

Following the method of Whittaker previously referred to, let us now assume 

that 

(Qi.0—n2)(Qbi0—n2) — (ali0— na) (05lo—nJ) — -turiS6r_s-\-S^SvriSiP<s0rtS0p<g+ c. , 
or 

4 k n 
0i,o-n2+ 2 +star,seAS+ttttbr_s^qer,sep<q+, 

0; n — n 
(11) 

7 5 0 

* The use of n is to be distinguished from a former use where it referred to the number of particles in 

the ring. 
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We now substitute the assumed values for A, X, c, 0M) in equations (7) and equate 

to zero the coefficients of each term in Gr s, 0ns, Qp q, &c. It will be found that the 

relations (8) are satisfied identically. Two conditions further must be imposed in 

order that all the unknown coefficients may be determined. These are : 

(i) The term cos (n<p — r) must not appear in the series for A ; 

(ii) The solutions for A and X must be purely periodic with period 2tt. 

The condition (i) amounts to a definition of r, and condition (ii) secures that no 

part of the exponent shall appear in the periodic series. Further, these conditions 

determine uniquely the undetermined coefficients in the series for 01>o and c. The 

work from this point is purely mechanical though long. The following sample 

sufficiently indicates its character. 

On equating to zero the terms involving 01-r we find 

2cUrnA0 cos (n<p —r) + A!f^r—2/ccJirX0 cos (n<p—t) 

— 2/cX'j,r + ah„Aj.r + rAu sin (hep — r) + A0 cos r<p sin (rup—r) 

— 2chrnX„ sin (n<p — t) + X\r + 2kcurA„ sin (n<p—r) + 2k A'h+ ©g^X^r 

In the case when r is not 2n or n, it is clear that 

o y (12) 

- 0 

"1, r and «i ,r = 0. 

Equation (12) then reduces to 

A"hr—2«-X/lir + ali0Alir + ^A0'[sin {(w+r)f-T}+ sin {(n—r) <p —r}] = 0 

X/ri,r+ 2/vA/1,r + 05tOXlr 

Solving in the usual way we find 

= 0. 
■ (13) 

■A-l.r — 

X1>r = 

A0n2{(n + r)2 — 05-o} sin | (n + r) A,/n2 {(m —?■)-’ — Or.,,} sin {(n-r) 0-t} 

2r (2n + r) («i,<A,o—n2 (■n + r)2) 2r (2n—r) {eq „05,0—n2 (n-r)2} 

A0?i2k (n + r) cos {(n + r) <p — r } A„nk (n — r) cos {(n—r) <p — r}' 

r (2n + r) {ah0Q5t0—n2(n+r)2} r(2n-r) {aliO05fO—n2 (n — r)2} 

In the special case where r = n, we have 

cUn = 0, nUr, = 0, 
and 

A"!.,, —2/r,X/liB + ali0Ajill.+2-A0 [sin (2rnp—r) — suit} = 0, 

X,/],fl + 2/fA,li„. + 05>oXljW = 0. 

From which 

a = A„ (4n2-©,,,„) sin (2n<p-r) A0 
n l a -A Cl \ ' ’ 

Y — 2 
Ai,« — 3 

6 (4n4—aliO05,o) 

2 «-nA,) cos (2U({> — t) 

4n4—a1)0©5,i 

L0 
2«j, o 

. 0 
n 2 

(14) 

and 
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Again, in the special case where r — 2n, we find in place of equations (12), the 

following 

2ch2nnA0 cos —r) + A"h2n — 2KCh2nX0 cos (n0 — r) —2kX.\%2„ ') 

+ cq 0A, ,„ + cq o„A0 sin (n0 —t)+|A0 {sin (3n0 —t) — sin (n0 —t) cos 2t j 
, x • o i n I (15) 

— cos (?i(p —t) sm 2t ! =0, j 

2c1>2n'/iiX0 sm {n<p r) + A 1,2?! + 2/cc1j2KAq sm (n<p r) + 2kA i,o„ + 05,oXi,2n = 0. J 

In order to avoid the explicit appearance of 0, we must have 

al 2n = If cos 2t. 

Since we have already stipulated that A must not contain any term in cos (n0 —r), 

c, 2n must be so chosen as to make quantities involving cos(n0 — r) annul. Hence we 

must have 

{2ci,o»nA0— 2/cCi,2nX0—|A0 sin 2t} cos (n</>—t) — 2/X'i,2n = 0, 

i. 2c1j2bwX0 + 2/cCj,2?,Auj- sm (n<p t)+X i,2« + 05,oXi,2h = 0. 

Whence 
n (e5,„-vr) sin 2t 

1,a* 4KA,0-n‘) ’ 

v _ x (w2-«i.o) (05,o + w2) sin 2tA0 sin (n0-T) 
-^1,2 n — 8 / 4 \ • 

KU («1,005.0 -n) 

To the value for Xli2„ must be added the further particular solution arising from 

the term |-A0 sin (3n<f> — r) in (l5). It is 

a = (05,o — 9n2) A0 sin (3n0-r) 

1’2" 16Ko05.o-9n4) 

Y _ 3ukA0 cos (3n0 — t) 

8 (cq.o05.o-9n4) 

Proceeding in this way, we have the following results 

Terms not involving argument 0 : 

In A 

In X 

In c 

Also 

A0 sm {n(j>—t). 

X0 cos (n<j>—t). 

None. 

2KnX0 = - (auo—n2) A0, 

cq.o = n2 + 4K2n2/(05,o—n2). 
when 
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Terms involving argument 0, r, where r is not n nor 2n: 

«1 ,r = 0, CUr = 0, 

_ _ Aon2{(w + r)2-0,,„} sin\(n + r)c/j-T} A„w2 {(n-r)a-05iO} sin {(n-r) >/,--} 

2r(2n + r) («i.o0ft.o-»*(» + *’)*) 2r(2n—r) \aU0O5,0-n2 (n-r)2} 

A0712k {n + r) cos {(n + r) </> — t} Aun\ (n — r) cos {(n —r) </> —t} 
X1>r + - 

r(2n+r) {au0O5!0-n3 (n + r)2} r (2n-r) {«j!O05iO-n2 (^— 

Terms involving argument 0ljfl: 

«l.n = 0, C, „ = 0, 

A] ,n 

X,„, 

A„ (4n2—05,o) sin (2n<p — r) A() sin r 

6 (4n4-«,iO05,o) 2a1>0 

2/mA„ cos (271(f) — t) 

Terms involving argument 0i,2«-' 

\ cos 2t, ], 2/? Cl,2» 
_ n (0fl,o—n2) sin 2t 

4 (®i, o0,5,o 'A ) 

A _ (05.Q~ 9^2) Ap sin (3n0 — r) 
l’2" 16(0,000,0-9;^) 

Y 3n/cA0 cos (3n^ —t) (n3—aL0) (05,o—n2) sin 2tA0 sin (n0 —r) 

^ ~ ~~ 8 («liO05.o-9n4) _ ’ 8kU («,,o05,o-9w4) 

Terms involving argument 02,rJ where r is not n nor 2n: 

= 0, Co r = 0, 

A, r = 
W2 •! 0fl.o— 1 (n + r)2} X0 sin {( n + r) <t>~T| r + n3 {05,q 

4/0 

-1 ̂ ~r/ OX„s:,i{( (p-r} 

4r (n + r) 00.5,0 tt? (n+r )2} !*- - c) {«, 005,0“ n3 (n-r Y} 

Y _ X0n2/c(n + r) cos {(n + r) L X„n\- (n-r) cos {(n-r) «/> — r j- 

2,r — 2r(n + r){alt0Q-„'Q—na(n + i')i} ' 2r (n-r) {«1,o05iO — n3 (n—r)3} 

Terms mvolving argument 02,„; 

«2,„ = 9,. Co, „ = 0, 

Ft i, o 

_ x„ (05,o 4;i2) sin (2iup-r) X, sin 2r 

2’" 6Ko0s,o-4n4) 

Y _ 2Xnrn cos (2n<ft —r) 

2’5i_“ 3(a1,A,0-4w4) 
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Terms involving argument 02 2)): 

Kr(i cos 2t 

«2,2» = 
05, 0 — A 

2 ’ ^2, 2)! 
«-n2 sin 2r 

3 ( ^ ^'1.005. u) 

A?. •>.„ — 
(05,o-9n2) X0 sin (3n0-r) 

9n*—alt0Q6t0 

v 3*-nX0 cos (3rub — r) , (0= 0 + n2) «-^X0 sin 2t sin (nd> — r) 

x- = 8(9)4*-«,.„es,u) + - ' 2(e,„-„>)(,l<-aI.Aj 

Terms involving argument 04 r, where r is not n nor 2n: 

C4,r = 0, a4,r = 0, 

A„w2/c (n — r) sin {(n —r) 0 — rj 
A4, 

X4„. = 

A .07/2/C 1 [w + f) 1 sin {( (n + r) 0 t} 

r i (2n + r) 1 {« 1,00.5,0 -n2( n + r)2} 
+ ■ 

A„n2 {I [w + r] >2 —aj.ol cos {(n + r)0 —r} 
2/0 (2n + r) » {«i, 005,0—n2{ [n + r] >2} 2 r (2n—r) {a^Q-.^-ri2 {n-rf} 

Terms involving argument 04„ : 

c4,« = 0, a4i„ = 0, 

3 («i,0 

An(An2 

05,0 — 

0+ o) 

4n4) 

1 cos 

? 

(271(f) — t) 

6 1 («1,O0 5,0 1 ̂ } ) 

An COS T 

20, 5, 0 

Terms involving argument 04 2„: 

nr cos 2t 
a C, a„ = 4,2rt , . 2 5 ^4,2)1 

05,0-W 

nA sin 2t 

(«l,O0.5,O-«4)’ 

A4,o 2r 
3rnA0 sm (3n<p— t) 

8 («i,o0o,o-9«4) 

v _ (9n2 —ah0) A0 cos (3n0 —t) , An cos 2t cos (n0—t) 
X j, v,/ — :". /’ .. 7\ 

16Ko05,o-9<) ' 2(05,o-n2) 

(r0.o + ^2) sin 2tA„ sin (n<f> — t) 

4 («i,o05,o-^4) 
+ 

Terms involving argument 0SiW when r is not n nor 2n: 

C-o,r = 0, +v, = 0, 

^ _ X„nA (n + r) sin {(n + r) 0 — t \ _ X0nA (n—r) sin {{n—r) 0 —t} 

r (2n + r) {«itO0.%o—w2 (n + r)2} r (2n—r) {«i,o05,o—^2 (n—r)2}’ 

X0n2 {i (n + ry ®l,o) • cos { (n + r) d> — r | 

2/- (2n + r ) {«i,o< A,o — n21 (n + 'r) »2} 

X0n2 {. (n—r): 0+0J ■ cos {( 1 ■o 10- -t} 
2r (2n—r ) {«l.u< A,o—w 2I (n—r) >2] > 
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Terms involving argument 05 n : 

a-0,n = 0, c5,„ = 0, 

2~X()k2u sin (2n<p — r) Xu cos r 

3 K A., ~4a4) 2e5,0 ’ 

X„ (in2 —a,,„) cos (2 

6 («1,0^5,0 — 4n4) 

Terms involving argument 05, 2„: 

n2) cos 2- 
«5.2» 

(05.0 -'ll2) 

U (^l.n — W2) sill 2t 

4 (^i,o^o.o n/) 

4 — 

Y — 
2n 

3uvXn sin (.3n<p — t) 

8 (9;i4-«i,u05,o) ’ 

9(n2-d,.0) i X„ cos l (3 71(f) — t) , 1 (rq,0-rr) cos 2tA„ cos (71(f) —T) 

16(9 n4 ^5,u) ► 4an I (O.5,o-—-n2) 

(<<-'i.n + n2) («,,„- n2) (sin 2rA0 sin ( {n<f> — t) 

8 ku l («i,o05,u-n4) 

Terms involving powers products of the 0’s follow in similar fashion. 

If we summarize the parts specially recpiired, we find 

(01,0—n2) (05,o-^J) = 4/c2n2 + ^- (0,5,o — n2) cos 2t0],2)1—ku cos 2t02, 2(t + cos 2Tt A, 2,1 

-i («i,o~n2) cos 2-7-03,2«+•■•;• • (17) 

and 

2c(rq,A,o-n4) = bl'( (05,u — n2) sin 2t01i2«—icn2 sin 2t02,2„ + «:h" sin 2t04,2„ 

— bl («1,0 — W2) sin 2t0.3, 2n + • • • ; • • (18) 

where, as already stated, 

(«i,o — n2) (05,u—n2) — 4kV. 

It is necessary to examine the expressions just obtained in order to see whether 

the complete integral of equations (6) has been found. 

The integer n is determined so as most nearly to satisfy the relation 

(0i,o-^2) (05,0—w2) = 4kV, 
when 

©1,0’ 05,o and k are known. 

The negative value of n will also satisfy this relation. 

On solving equation (17), for each value of n there will be, in general, two values 

of 2r, equal and opposite in sign. So that altogether there are four distinct values 

of 2t obtainable. Each of these with the corresponding value of n will give a 
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different value of c on substituting in equation (18), and different values for A and X. 

Hence there are four distinct solutions and these when multiplied by arbitrary 

constants will give the complete primitive of equations (6). 

(b) The Particular Integral. 

We have now to determine the particular integral of equations (4). We shall assume 

only one general term on the right-hand side and take the complete solution as the 

sum of a series of the corresponding solutions. The equations may therefore be 

written 

/j" — 2kct' + /j-0] cos rep + cr—61, r sin rep = |-03 

<t" + 2Kf> + /A04 r sin rep + oA05, cos rep = 0. 

Assume 
P — e a, 

and 
rr — C A, 

where X and A as before are functions of ep. On substituting in equations (19) and 

reducing, we find 

—m2A+2nnA/ +A" — 2/c (cm'X. + X') + A20,ir cos rep + XSQ2,r sin rep = 

—wi2X + 2miXf + X" + 2k (cm A + A') + A^04,sin rep + XS05j r cos rep = 0. 

As a solution we now take 

A = Ao + 2XAr,se,..s + 2XXXBr,s,p,?er,50p,2+ 

x = x0+^xr.A.(t+^^Yr,s.p>9er.se/„?+.... 

In these summations all the 0’s in the coefficients of p and a are to be included 

except 0, 0 and 05iO. A0 and X0 are constants, and the other coefficients functions 

of ep. 

Now substitute these expansions for A and X in (20), and equate to zero the terms 

involving no 0 except 0] O and 05 O. We then have 

—m2A0—2/fimXu + 0liUAo = T03>J)I, 

— ?n"Xu -i- 2/umA(, + 05j 0XLi = U. 
Whence 

A0 = i03.m(05,o-^2) 6- {(0IiO-?n2) (05,o—m2)—4/Pm2}, 

Xu = —KimG3lll -T- {(0^o —m2) (05jU-m2)-4/c2m2}. 

Next, taking the coefficient of 0Lr, we have the equations 

on Ahr + 2tmA r + A 4 r — 2/c (i?)iXjir + X,lir) + 0ji(lA],o + An cos r<p = 0 

on Xj_r-t- 2unX l r + X i+2/c (jttiAj r + A/j!r) + 05 0Xj r = 0 

* The use of in here to represent an integer is to be carefully distinguished from its previous use to 

represent mass. 
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We shall form the solution by taking only F'"*’ in the term cos r</>. Changing the 

sign of r will then give the other part. Assuming that A, r and Xlir vary as e^, we 

have 

Alr ( —m2—2mr—r2 + 0]O) —2/a (m + r) X1<r = —|-A0, 

Altr(m + r) 2/a + X1>r (— m2—2tnr — r2 + 05>o) = 0. 

From these 

and 

-|A0 {05,o- (m + r)2} -r-[{0JiO- (m + r)2} {05>o- (m + r)2}-4/c2 (m + r)2], 

+iK ■ 2/a (m + r) -i-[{01)O— (m + r)2} {05)O- (m + r)2} - 4/c2 (m + r)2]. 

On determining the corresponding values for the term and combining the two, 

we have 

A,,r = -|Aoet,'</>{05.o- (m + r)2} + [{0liO— (m + r)2} {05,o- (m + r)2} -4/c2 (m + r)2] 

—iA0e~{05,o—(m—r)2} ^[{0i,o-(w->\)3}{0o,o- (m-r)2}-4/c3(m-r)2], 

Xlir = A0e‘rVi (m + r) 4- [{0liO— (m + r)2} {05,o— (m + r)2} — 4/c2 (m + r)2] j 

+ A0e-1,A« (m-r) 4- [{01>o- (m-r)2} {05,o- (m-r)2}-4/c2 (m-r)2]. J 

(23) 

Expression (23) shows that A1>r and Xlir are factored by A0, which is a multiple of 

08_m. Now the terms in the expansions of A and X that we are seeking are A] r0i r 

and Xl r0i r. Since both of these involve the product 03> m0lr, if is clear that they 

may be neglected in comparison with the values of A0 and X0. 

We have further to determine the parts of A and X arising from a term — 06, 
21 

in the right-hand member of the second equations (4). These can be written down 

from the results already given, and are 

X0 = ^ 06,m (05il)-m2)-+ {(0,., -m2) (05,o-m2)-4/c2m2}, 

A0 = /cm06iM + {(0i,o—m2) (05,o-m2)-4/c2m2}. 

Hence to the degree of accuracy we are using, wa may summarise the results as : 

P = X [03jm (05jO —m2) cos m<j> + 2/cm06im cos m^]■+[(©!,0—m2) (05iO—m2) —4/c2m2], 
m 

o- = 2 [2/cm03im sin m0 + 06,m (05,o-m2) sin m<j>] +-[(0liO-m2) (05,o-ma)-4K?m2]. 
Ill 

Except when the denominators are small, it is seen that, owing to the very small 

factors 03 m and 06 m, the values of p and a derived from the above equations are very 

small. 

VOL. CCXXII.-A. S 
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§ 4. Discussion of the Solutions of the Equations for the Case of Equal Particles. 

(i.) The complementary function. 

Equations (17) and (18) which determine the value of the exponent c, may be 

. re-written here, 

(eli0—w2) (0,,o—?T) = 4/cV+{|(e5i0-n2)eli2)l 

— KnQ2,2n + KnQ4'2n — \ («1,0_^) ©5,2/i} C0S 2t 

2c((q,u0r,,o-W4) = {^(05,o-W8) 0i,2#-^30a,2» 

+ KU-eh 2n - f)i (alt.0 - n2) e3i 2n\ sin 2r J 

In these a1<0 is determined by the relation 

(«i,o-W2) (e5,n-W2) = 4d)f. 

It is noticeable that the coefficient of sin 2r in (26) is n times that of cos 2t in (25). 

Owing to the smallness of the quantities 0 (excepting 01O and 05O), it is clear that 

the coefficients of cos 2t and sin 2r are both very small quantities. Now real values 

of c are only given by real values of r, and conversely. Hence in order that (25) 

may give real values of r it is necessary that the expression 

(0i,o-^2) (05,o-^2) -4K2n2..(27) 

should be less than, or at most equal to, the coefficient of cos 2t. That is, the real 

values of c will be in the vicinity of these values of k that make (27) vanish. The 

actual limits of the zone in which real values of c are found will be given by 

(0i,o — n2) (00,0 — rf2) = 4/obr± ||-(05,o —w2)0i,2« + /cr60o 2„±^n04i2„- i(«i,o — 005.2,,} • (28) 

There are four groups of signs possible in this expression, and there will result four 

values of k. The outermost and innermost of these will define the zone in which 

some real value of c appears, and this zone will be the zone of instability. Owing, 

however, to the extreme smallness of the coefficient of sin 2t in (26), it is clear that c 

will be extremely small, in general; that is, the modulus of instability will be small 

and departure from the zone will be slow. In one case, however, c may be quite 

large. That is, when the coefficient of c, aliO05)O—w4, is exceedingly small. 

Each of the quantities 0 is a function of or of k. Further 0, 0 and 0,0 involve 
v a 

both the mass of the particles and the number of them. Both of these are entirely 

unknown. All that can be said is that Maxwell’s criterion,# that is, 

< 
P 

3’ 

* Tisserand, ‘ Mec. Celeste,’ vol. ii., p. 184. 
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where v is the ratio of the mass of a particle to the mass of Saturn and p is the 

number of particles in the ring, must he fulfilled. 

v appears in the expressions for 01O and 05iO in the form i/Ls. It has been 

mentioned that L, < 0’01S4n3 for all values of ,s\ Hence iLs < 0'0194m3. For the 

present we shall regard vLs as a variable parameter and discuss the solutions relative 

to this parameter. 

In order to locate the zone of instability, we equate expression (27) to zero. 

Writing it in full, but omitting the term involving /, which will be exceedingly 

small and will hardly affect the result, we find 

{(•3 — vlus) k2p7i2} {2kLs./c2 + 7?2}—4:K2n2 — 0.(29) 

This equation, regarded as involving an unknown quantity n2//c", is precisely the 

equation used by Maxwell to determine the condition of stability of the ring of 

particles when unperturbed by any satellite. The condition of the reality of n2/ic2 

leads to the upper limit for v just quoted. In our problem we may take the unknown 

quantity as K2/n2, and then assuming a value for vLs, solve the equation. The values 

of k (for differing values of n) will give the position of the zones of instability of a 

ring of particles of mass and number assumed. Or, conversely, taking a position of 

instability, as shown by telescopic observations of the ring, we may determine the 

corresponding value of jfLs, which establishes the order of value of the mass and 

number of particles at that point. 

I have found that the latter process leads to no satisfactory result, and hence I do 

not record the work. 

It is interesting to examine the meaning of the condition previously referred to, 

that the maximum instability is found when (cq,o05,o—n*) is approximately zero. On 

referring again to equation (28), it is clear that the broadest zone of instability 

will be found, owing to the extreme smallness of the last member, when 

(0liO — w2) (05,o—n2) —4k ii2 changes most slowly with k. This will occur when the 

equation (29) has equal roots. Equal roots appear when, by the variation of the 

parameter kLs, k/h passes from real to imaginary values, or when* 

vLs = 0-039. 

This is the upper limit of the criterion previously quoted from Maxwell, and 

would imply that all the particles were of such mass and number as to be on the 

border-line of instability. 

When i/Ls has this value, we find that 

2i'Ls (3 — iTj5) k1 — n* = 0 ; 
or 

05,001,0 —^ = 9. 

* Tisserand, loc. cit., p. 183. 

S 2 
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Whence, by (ll), 
a )0e5,0-^4 = -05,o {22«ri s^r, S T 

This right -hand member is of the same order of value as the factor of sin 2t in (26). 

In this case, then, c may assume a high value. But it is noticeable that only at the 

limit of Maxwell’s relation is great instability to be found. 

When expression (27) has a value far from zero, either by virtue of the value of 

k/oi or the value of it is clear from (25) that 2t is imaginary and hence c is 

imaginary, the solution being stable. 

It might be inferred from this that if values of rL5 were chosen such that 

Maxwell’s relation were not fulfilled the effect of the satellite would be to stabilise 

what would otherwise be an unstable system. As pointed out already, however, the 

original equations and their solutions, as given here, simply give the motion of the 

particles in the vicinity of certain circles. In some cases the motion may be such 

that the particles depart rapidly from this zero circle; this we have termed 

instability. In other cases the solutions may indicate that the particles never move 

far from the zero circle ; and this type of motion we have termed stable. But it is 

clear that if a small arbitrary displacement were given to each of the particles in the 

latter case, nothing in this paper precludes the possibility of their departure finally 

from the zero circle. That is, they may be again unstable. What we have found 

here is a series of orbits for the particles when subject to the attractions of Saturn, a 

satellite, and one another. Those in which the particles have large inequalities result 

in collisions with the neighbouring rings of particles and hence a complete departure 

from their former positions. Those which have no large inequalities and hence avoid 

collisions with neighbouring rings of particles may yet prove unstable when an 

arbitrary disturbance is further imposed upon them. 

(ii) The particular integral. 

In the expression (24) there appears a denominator of the form 

(eli0-on2) (05il)-m2) -4Af.(30) 

Here on takes all positive integral values including zero. When the conditions are 

such, therefore, that expression (30) is approximately zero, the term in the particular 

integral will become very great and departure from the orbit will result. This 

expression is the same as (29), which, it has been pointed out, gives the positions of 

the unstable solutions of the complementary function. It may therefore be said that 

all the unstable positions are in the vicinity of the zero values of (30), and the 

following remarks apply equally to both parts'of the solutions. 

Referring to the form (29) it is seen that there are two variables, k/oi and rL^.. For 

a given value of rLs there are in general two values of k/n, and for a given value of k/oi 

there are two values of iLs. In the figure (p. 125), the relation between k/oi and kLs 
is shown graphically, only those values of vLs which satisfy Maxwell’s criterion being 



SATELLITES UPON THE FORM OF SATURN’S RING. 121 

chosen. It will be seen that k/u increases slowly from unity as increases from 

zero, until jL, reaches the value 0‘039. At this point the curve turns back and rises 

rapidly to an asymptote at i/Ls = 0. 

In the case when expression (30) is exactly zero, it is seen from elementary principles 

that the independent variable 0 would appear explicitly. With passage of time, 

therefore, p and <t would increase linearly in magnitude and there would be complete 

departure of the particles from the vicinity of r = a. 

§ 5. Case where the Particles forming the Ring are of Unequal Masses. 

The previous equations (2) were reduced to the form (3) on the supposition that all 

the masses mK were of the same value m, = j/M. We now proceed to the modifica¬ 

tions introduced when these masses are all distinct in value. 

Equations (2) with the same reductions as before, but maintaining the separate 

values mx, become : 

// o ' 2 eu / J d i i a — 2/ot a — k k 3" J — P A v —j (|f>0 + ... + b, cos icj>+ ...) — cos (/>, — k2E 
a a “ J 

+ 
rl2 

3 A + A'V {if + ...+f cos i<p + ...) - ^ pK + 2/c2 Gja> xp,j_ 

+ [/tY*V -j-[b1 sin 0 + ... + iblsin i<p+ ...) — kk'\' sin <p — /c2Hx] <rK 
clot 

+ 2/c2 J, /X, A^”/X 5 

(t,,a+2Kp\ — A-V'/s (6X sin 0 + ... +ibi sm «0+ ...) — vff'3 sin 0 + wc2Eh 

' 2 V K K ... +i C~i sin i<p+ ...) + iYV(... + ib{ sin ?0 ...) 

-PF\ 

+ [ — v kk ^ (... + i2b, cos i(p T ...) + vkk2 cos 0—/AHA] vx 

+ 2/e2 J' 

*^"A 1"" 2/c'G/x, AP/x 

/x, A^/x 

(31) 

In these equations 

E 2 WR /. 
M [4 sin (/x—X) 7i-/w 

+ cos (/x — X) 2~/u f ^ 

U1 _ y mv- J- A - 
i M [8 sin3 {/a—X) 7r/n sin (/x—X) 7r/n 

G ^ ( cos (/x —X) 2 7rjn 
+ 

M [8 Sill3 (/x — X) 7r//4 Sill (/x — X) irjn 
+ 2 cos (« — X) 27rf 5 
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Ha = 2 
"V ^^/x cos ( [p — A) 1 Tr/il 

1 8 sill21 [p—a) i —j u 

T = J cos ( 

M'A M l 8 sin2 
-r-7-r sin \jj. — A 6it u ' 5 

/n v1 ' J 

f COS (/x—A) irjn • i ,. \ 0 / 1 
-—r-7--r—-sin U —A) 2tr/n f > 

U sill2 (/x-A) it In v 7 7 J 
j,-' .... V J_'■ 

M [4 sin" (/x —a) 7rjn 

■P' _ y 
A , M 

f 3 cos (/x —A) tt/w\ 

1.8 sin2 (/x—A) 7r/nl 

= i ~ 4~r'~r +2sin (^~x) 2™a4’ M [ 8 sin \/ul — A) -/a } 

r'os l ii — A1 27tIn, i • 
N. ( cos (/x — a) 2~/n ;Y sill" (/U —A) 27rjn 

7 M 18 sin3 (m 1 •S’
 i 

sin5 (ju — \)-jr/n 

g; 

H'a 

j;,a 

These equations may be written, with a slq 

0 from those formerly obtaining, in the form, 

J f COS (fjL -A) i 2 ’7t/ti db sm" (/x — A ) 2tr/ll 

M [8 sin3 ( — A) l tt/u sin5 ( M a) irfn 
..1 (3 

■ of the quantit 

p"\ — 2/fCr'A + {0lir COS V(f>} + 
r 

r<p} 

ft i o > 
(T aT 6Kp 

r 2GM \pn + <rA2 { 02, T sin r< lx r 
+ hTJFi ao> = 203, r cos r<p, 

M r 

2Kp\ + pK3Z {04,r sin r<{>} +r2G'N^ + crA2 {05>r cos r<j>} 
r fx r 

+ /c22 = 20e, r sin 
/x r 

8 

We shall determine the particular integral arising from one term of the right-hand 

member of the first equation, writing it typically |-03,metm<h 

Assume that 

px = Kelm\ 
and 

o-a — NAe 
for all values of A. 

Equations (33) then become 

—m~Ax + 2miA A + A a*t2/c (i?tiXa4-XT)T' Aa2 |0],r cos 

+ /c22AmCtm, a + XA2 {02 r sin r^>| + /c"2XMJ^, A = ^03, m, 

—m2XA + 2imX\ + X"A + 2/r (mAA + A'a) + Aa2 {04,r sin r<J>} 

T /c22A^Gy, A -j- XA2 {05 r cos T<p } + v2XMJ7m A = 0. 

(34) 

There are n pairs of equations in this form corresponding to the n values of A. 
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As a solution we now take 

Ax — Aq +22A^s0rs+ , 

Xx = X^+22X^A,s+ • • • , 

with the same restrictions as before. 

Substitute in (34) and equate to zero the terms involving no 0 but 0JiOx and 05iO\ 

Then, for all values of X from 1 to n, 

—m2Aq — 2/a?nXo + 0* 0 -A-o + A2Aq G/Xx + +—Xq A |-03i, 
/X fX 

—m_Xf + 2/ctmAo +05,o Xo + /c2XAq G^ x+^ XXf, J^x = 0. 
• (35) 

These 2n equations can be solved by the usual processes to give the values of the 

constants A* and X*. It is not necessary for us to work out the results in detail, it 

is sufficient to note that the determinant of the left-hand members will appear as the 

denominator in each case. The determinant is the following : 

m2+ 0} 
2fi 

K VJ2,1 ) K ' t3, 1 , • 
2/U 

. . , K VjT?l> ! — 2/ctm , AT,. i , AT3i j, 
2 T 

• • , K ° n, 1 

2 Kim , 
2 rd / 

K Lx 25 ! . 
2 

* ^3,15 • 
2 pi / 

... /cu,^ , — m2+0jjO, AJ',,! , AJFi, 
2 T/ 

• • ) * 0 n, 1 

2GT 
K VJf] 2 5 —m2 + 0fiO, 

2n 
K VT3)2 , . x-2G • • 5 ^ 71, 2 5 — 2/am , aj3i3, 

2 T 
• • , K n, 2 

AG'j, 2 > 2 Kim , 
2 rif 

l< Lr3>2, • 
2 pi/ 

• • ? % ^ 2 5 +J/1.2 ? -m2+0?o, /c2J'3>2, 
2 T' 

... , K J „j2 

2 G 
K V-71, n i AG2, n , AG3> „, .. , —m2 + 0"; o; 2 1 

K 1, n 5 K Js, n J AJg, ..., — 2/am 

t 
*g1iB , 

2 fir 
K 'jr 2, n ) 

2p 
K ' J3, n• • .. , 2/am ; 

2T/ 
* l,n 5 

2 7' 
* 5 2. H , AJ'g, „, .. ,-7H*+0? o 

This determinant corresponds to the denominators in expressions (24). When it 

vanishes or becomes small, it is clear, as before, that the terms of the solution tend to 

become large, and instability follows. 

In estimating the values of F, G, IT and J, which appear in the above determinant, 

it is to be noted that mjM is exceedingly small for all values of /x. But the quantities 

in which it appears may be large by virtue of the small denominators which are 

involved. In the expression for FA, the term 3/sin (/u — X) i-fn may be neglected in 

comparison with the first term for large values of n. Also, A —. .. ,  --—r will 
1 h „ M 8 sin tr/n 

lie between zero and ~ X —t-—-r—r- since all the signs are positive, if 777 is the 
M 8sm3 (fx-\) ir/n s F 

greatest value of mIM appearing in the ring. Hence FA lies between zero- and 

0'0096 n3m/M in value. 

In the same way the value of G^x will arise almost wholly from the first term. 

The largest value it may have will be 771 A/StFM or O'OOIrdm/M . EA, IIx, JM,x, Efi, Ffi and 

G^ x are seen to be one order lower in the reciprocal of sin (/* — X) 7r/n and therefore 

may be neglected. Hfi has the limit — 0'0192n3m/M, and A the limit — 0'008rFm/M. 
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We shall assume that the number of particles in any ring is large. It is probable 

that they vary in magnitude from the infinitesimally small up to the limit given by 

Maxwell. Hence the values of the expressions Fx, Gyx, H\ and Jfi will vary over 

a range of values, between the given limits, as X takes its successive values. 

Reverting to determinant (36), we see that it may now be written 

m2+0] 2p 
o ? K 'Jr2i i , kTTs.j,. K'2G — 2 Kim , 0 0 ,.. ., 0 

0 0 o ; -m2 + Q l0, M'xi , •; * J'/M 

KJG],2 5 — wr + Gj.o, GG3'2, • ., k2 G„,2 ; 0 — 2 Kim , 0 ,.. ., 0 

0 , 2 Kim , o o ; 
2T' K 1,2 ) -m2+ei0, k2J'3,2,.. 2T' 

• 5 K ° >1,2 

aW, „ > k2G2, „ K a j • •, —nr + 0i>o j 0 0 0 ., — 2Kim 

0 , 0 0 ,. ., 2 Kim ; ^2'Fl,n , ic2J'2, n > K2'Ill” — ?U3 + 05,o J 

For all conditions satisfying Maxwell’s criterion, the quantities GKix, J\ifl will be 

small. So that, provided k2 is not too great, the value of the determinant (37) will 

be small for those values of k that satisfy the relation 

—m2 + 0])O, 0 0 — 2 Kim , 0 0 = 0 ' 

2 Kim, , 0 0 ill? 4 0(o, 0 0 

0 —m2 + 0f_ o, . 0 0 — 2 Kim , . 0 

0 2iam , . 0 0 -m2 + Gl 0, . 0 

0 0 .., -m2 + 9G, 0 0 ... 2 Kim 

0 0 .., 2Kim , 0 0 -m2+0’ltl > 

This relation is satisfied by those values of k which satisfy the equation 

(— m2 + 0\o) (— m2 + 0x5jO) — 4«:2m- = 0, ...... (39) 

where X takes all its integral values in turn. Further it is easily shown that, on any 

distribution with n large, — FA = TH\. Hence we fall back upon the same type 

of equation as we had in the case of equal particles (equation (29)) where we replace 

vLs by Fx. 

Instead of treating the equation (39) separately for the various integral values 

of X, since n is large, we may imagine a single equation with the assumption that 

FA is an arbitrary variable parameter. The determinant (37) will then be small, and 

instability result for all the values of k given by (39), for all values of the parameter 

Fx that exist. With a wide range of values of FA corresponding to a wide range in 
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the magnitudes of the masses of the particles, we may expect to find a broad region 

of instability. 

It can readily be shown that the condition (39) would also be produced if the 

general case of unequal particles were solved for the complementary function in the 

same way as has been done for the case of equal particles, which produced (29). 

This work is not reproduced owing to the length and complexity of the expressions, 

and also because the results are wholly contained in the condition (39) produced from 

the particular integral. 

§ 6. Application of the Results to the Saturnian System. 

Equation (39) written out in full is 

{/c2(3 —FA)-bm2} {2FA/c2 + m2}-4/cW = 0. . . . (40) 

In this equation m is any integer and FA may vary between zero and 0'0096n3m/M. 

As the distinctions indicated by the suffix A are 

now of no importance, it may be dropped. The 

solutions of (40) will give approximately the 

positions where divisions in the Ring of Saturn 

may be expected. 

For any given value of F, there are four 

values of /c/m, two pairs equal with opposite signs. 

For any given value of /c/m there are two values 

of F; one, however, being greater than the 

Maxwell limit, is excluded. The limiting value 

of F for real values of /c/m is 0'039. This is, 

of course, the same result as that found by 

Maxwell. 

The relation between /c/m and F is shown in 

the figure, and the table shows actual numerical 

values. 

We may readily assume that in the existing 

Rings of Saturn there are particles of all masses 

from the infinitesimal to Maxwell’s upper limit. 

These will give rise to varying values of F, 

depending upon the masses of the particles 

adjacent to the particle under consideration. The 

maximum value of F is itself small compared with unity ; we shall then arrive at a 

limit of /c by taking F = 0 in equation (40). We find thus that the boundary of a 

division should occur at /c/m = 1, for each integral value of"m. 

VOL. CCXXII.—A. T 

Values of vLs or A 
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vhs or F. «/ m. 

m = 1. m = 2. 

al a’. a/a'. 

0 1 CO 0 1 0-6299 
o-oi 1-0395 3-9336 0-0243 0-8223 0■6456 
0-015 1-0639 3-1412 0-1534 0-7745 0-6549 
0-020 1-0910 2-6509 0-2102 0-7349 0-6656 
0-030 1-1750 2-0156 0-2810 0-6333 
0-038 1-3353 1-5772 0-3981 0-5117 
0-039 1-4424 — 0•4549 

Remembering that k — —w («/—o>) *, w2a3 = w'2a3, we find : 

For m — 1, co = oo, a/a' - 0, 

m = 2, o)/(o' = 2 , a/a' = CT62996, 

m = 3, »/«' - | , a/a' = 076289, 

m = 4, co/a/ = -f- , a fa' — 0‘82524. 

[It should be remarked that a positive value of k gives positions without the 

satellite orbit, and a negative value of k gives positions within. As k appears in (40) 

in the form of a square, both positive and negative forms result. We should 

therefore have the same phenomena in a ring of particles beyond the satellite orbit 

as we find within]. 

The result a = 0 implies a division of the ring at the origin. This would fall 

within the planet itself. But if the zone consequent upon the variation of F is 

extensive, it may extend beyond the surface of the planet and show a clearance 

of particles there. 

For m = 2, a/a' = 0'62996. In the case of satellite Mimas this should indicate 

the commencement of a division in the ring at distance 16 '9/r. Cassini’s Division 

begins at lhTZ" and ends at 17'64'h This agreement is very remarkable. 

Reference to the figure shows that in the vicinity of /c/m = 1, #c increases with F. 

But as k increases so does a)a’. Hence the instability caused by the larger values 

of F should be in positions corresponding to larger values of k, that is, to larger values 

of aja'. In other words, the division should extend outwards. This agrees with the 

observational data just quoted. We may then attribute the production of Cassini’s 

Division to Mimas. 

For n = 3, a/a' = 076289. 

For satellite Mimas, this should cause a division at distance 20'46//. This is just 

beyond the outer edge of Ring A, which terminates at 20'OlA 

Considering next the satellite Enceladus, we should find a division at the origin 
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for n — 1, and at distance 21*69" for n — 2. The last is again just beyond the limits 

of Ring A. 

The remaining satellites all produce instability at the origin, but the other points 

at which this occurs are outside the existing ring. 

We may use the observations of the dimensions of Cassini’s Division to determine 

the maximum value of F appearing. As we have already found, the inner edge 

corresponds closely to F = 0. The radius of the outer edge is a = 17'64//f. Hence 

for satellite Mimas a/a' = 0'65781, giving k/iu = 1'0720. 

If now equation (40) be solved for F, taking this value for /c/m, the result is 

F = 0'0173. Hence we may conclude that F ranges from zero to 0*0173. 

Using this value of F, we now proceed to the study of the roots of equation (40).. 

Solving, we find 
K/m = ± F0720 and K/m = ± 2*8917. 

Take m = 1. Then 

a/a' = 0*1712 and a/a' = 0*7535. 

We may expect to find a clearance of particles from a/a' — 0 to 0*1712; and from 

a/a' = 0*7535 to unity. 

The first gives the extent of the clearance near the origin. 

For the various satellites its dimensions are : 

Mimas. 

Enceladus 

Tethys 

Dione . 

Rhea . 

Titan . 

a = 4*59", 

a = 6*16", 

a = 7* 30", 

a = 9*34", 

a = 13*07”, 

a = 29*94". 

The radius a = 9*34" indicates approximately the inner radius of the Crepe Ring,, 

while a — 13*07" indicates more closely the inner radius of Ring B. 

Applying the second ratio, a/a' = 0*7535, to Mimas, we find radius a = 20*2". 

There should be a clearance of particles from 20*2" up to the satellite itself. This 

indicates with considerable precision the termination of the whole ring, which has a 

radius 20*01". 

These results are subject to modification owing to the effect of the oblateness of 

the planet Saturn and the influence of one ring upon another. But the agreement 

of theory and observation in this first approximation is sufficiently remarkable. 

The interpretation of the effect of Dione and Rhea on the inner parts of the ring 

is not clear. From the theory one would expect that any satellite could affect a 

clearance of particles from the origin up to a radius given by a/a' = 0*1712. In that 

case Titan, the largest of the satellites, should dissipate the whole of the existing 

rings, for this ratio carries us far beyond the outer radius. 

T 2 
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There are therefore two facts to explain. First, the existence of the Crepe Ring 

within the dissipative area of Rhea, and second, the existence of the bright rings 

within the dissipative area of Titan. In connection with the first, Lowell has noted 

a definite black band within Ring B, so that there is a clearance of particles between 

the Crepe Ring and the bright rings. It would appear as though the dissipative 

power of the satellites was only effective near the outer boundary of the unstable 

area about the origin. To discuss this, let as examine the analytical results. 

It has already been pointed out how very small the exponent c is, as given by (18), 

indicating a very slow rate of dispersion. Consider, instead, the numerators of the 

expressions (24), the vanishing of the denominators of which causes the instability. 

The numerators are small because of the quantities 03j))l and 06>jra. In the case under 

discussion, in = 1. From (5) 

eaa = /*¥*'• 

e6a = „v 

Using the well-known expression for bu* we find 

03, j = AY4M fa2 + ftfa4+...} 

= v {w'/w— 1} “2 {f a4 + fib!a” + ... } 

0<5, i = v k2 ia (a + fa3 + r4^-a0...) — a2} 

r r / / 11—2/3 4. 4-5 6 1 
— V 1} \-g-a +x%2‘a ...}. 

For small values of a, w'/co is small, and the value of (w'/co— l)~2 will be greater than, 

but not far from, unity. Hence the values of 03il and 061 depend approximately 

upon the fourth power of a or ala'. It is clear then that the numerators in (24) will 

be vanishingly small except for the larger values of a/cd. 

The physical meaning is that, while instability will always take place when the 

denominators vanish, the rate of dissipation will be small except for the largest values 

of a which are permissible. There will also be a uniform grading in the rate of 

dissipation as a increases. 

Applying this result to the case of Saturn’s satellites, we may expect to find 

actually a clearance only near the outer limits of the areas under consideration. The 

areas of clearance of the first three satellites fall within the body of the planet. 

Dione causes the clearance between the surface of the planet at S’65" and TSI", 

which is approximately the commencement of the Crepe Ring. The limit of the area 

of clearance of Rhea is 13‘07", and only near that boundary is the action effective, 

the Crepe Ring being undispersed in the weaker part of the field. The bright rings 

are clearly in the weak part of Titan’s field of clearance, and so continue to exist. 

It is obvious, however, that with passage of time the Crepe Ring will be dispersed 

by Rhea and the whole by Titan. 

* Tisserand, vol. i., p. 272. 
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We have found the maximum value of F appearing as 0*0173. It was previously 

shown that the limiting value of F was 0'0096nswl/M. Hence 

0'0096u.3m/M = 0*0173, 
which gives 

0*0173 

0'0096?i3 

= 1*8 /nz. 

That is, the size of the largest particles is just below that given by Maxwell’s 

criterion. 

§ 7. Summary and Conclusion. 

(1) Assuming that a planet is surrounded by concentric rings of particles performing 

approximately circular orbits when unperturbed, and that the influence of one ring 

upon another may be neglected to a first approximation, the effect upon these rings 

of a satellite performing also an unperturbed circular orbit is discussed. 

If the particles in the rings are all equal, it is shown that we should expect, 

in certain places, large perturbations to take place, such that the particles in a 

particular ring would leave that ring and mingle with those of other rings, and so 

leave a “ division.” 

(2) As there is no reason to believe that the particles in any ring are all equal, the 

analysis is extended to cover the case of unequal particles. 

We assume that in any ring the number of particles is large, and that therefore we 

shall probably have one specimen at least of all particles from the smallest to 

the largest. 

It is then shown that the divisions would become more extended, and therefore 

more readily visible. 

(3) On the supposition that some of the particles at any rate are indefinitely small, 

we obtain Cassini’s Division at once. On making use of the dimensions of this 

division to estimate the greatest magnitude of the particles in any ring, we find the 

following results :— 

Satellite Mimas should produce a clearance of particles from radius 20*2// up to 

itself. The ring should therefore terminate at 20*2". Observation shows that it 

terminates at 20*01". 

Satellite Mimas should produce a division from radius 16'9// to 17*64//. (This last 

measurement was used as a datum for estimating the magnitude of the greatest 

particles.) Observation gives the limits of Cassini’s Division as 16*87" and 17*64". 

Satellite Dione should produce a clearance of particles from the region of the 

surface of the planet up to radius 9*34". The Crepe Bing is observed to begin with 

a diffused edge at 10*83". 
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Satellite Rhea should also produce a clearance of particles up to radius 13 "07". 

The inner edge of Ring B is observed to commence at 13 "21". 

The existence of the Crepe Ring in a dissipative area is also discussed. 

(4) By the inclusion of the effect of the oblateness of Saturn and the influence of 

one ring of particles upon another these results might be still further improved. 

The theory presented therefore gives a closely quantitative account of the salient 

features of Saturn’s Ring. The numerous smaller divisions observed by Lowell and 

others are not accounted for ; but, for the reasons given in § 4, their existence is not 

excluded. 

(5) The dimensions of Cassini’s Division show that particles of all sizes up to a 

limit just short of that imposed by Maxwell for stability exist in the rings. 

Appendix on the Data of the Problem. 

I. Dimensions and divisions of the ring in seconds of arc at mean distance^ :— 

Distance from centre of planet to— 

Inner edge of Crepe Ring . . 10-83" 

Inner edge of Ring B O 0 

Bl 

. . 13-00" 

. 13-39" 

B2 . 14-04" 

Divisions of Ring B -< 
B3 

B4 

. 14-74" 

. 15-32" 

B5 . 15-69" 

-B6 . 15-95" 

Outer edge of Ring B . C> O . 16'87" 

Inner edge of Ring A . . 17-64" 

Division in Ring A . . . 19‘00" 

Outer edge of Ring A . 0 0 . 20‘01" 

II. Equatorial diameter of Saturn . . 17-30" 

III. Elements of satellites :— 

Mean distance. 
Mass 

as fraction of Saturn. 

Mimas. 26'82// 7 . 10-8 

Enceladus. 34M3" 25.10-8 

Tethys . . . . . 42-66" 11.10-7 

Dione. 54-59" 18'7 . 10-7 

Rhea 76-38" 4 . 10-6 

Titan. 174-8" 2'1 . 10-4 

* Lowell, ‘Observatory Bulletin,’No. 6S, and “Lecture” on April 26, 1916, in ‘Journal of Royal 

Astron. Soc. of Canada.’ 
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Introduction. 

A method of analysing an alternating current termed “ Analysis by Periodic Inter¬ 

ruption ” was worked out by G. Barlow in May, 1916, and is described by him in some 

detail in Part II. The present paper, Part I., gives an account of certain experiments 

in which this method has been applied to the analysis of sound vibrations in air and 

water with the object of obtaining “ sound spectra.” The principle of the method 

may be stated as follows. The alternating current circuit contains a direct current 

galvanometer and also an interrupter of which the speed can be varied over the whole 

range of frequency to be investigated. Generally the type of interrupter used is such 

that the intervals dining which the circuit is open 

(a) A±\—7/*\ yT\—7 and closed are equal. When the interruptions 

synchronize with any component A sin 2rent of the 

current, fig. 1 (a), the galvanometer responds by 

giving a steady deflection of magnitude depending 

on the phase difference. Fig. 1 (b) shows interrup- 

n m V////////A 

(h) 

n. -r v///////MMw/A ' 

(C) 

V) 

tions and current in the same phase. Practically 

it is better toallow a slight difference in frequency ; 

the galvanometer then oscillates slowly to and fro 

as the phase alters. The maximum amplitude of 
Fig. 1. Interruption of a simple harmonic 

current at frequencies n, »/2, »/3. the galvanometer swings is then proportional to the 

amplitude A of the component current—actually 

it measures AJti. In making the analysis the frequency of interruption is slowly increased 

over the whole range. The approach to the condition of synchronism is indicated by 
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a rapid oscillation of small amplitude followed by slower oscillations of greater amplitude 

until the maximum is reached. Afterwards the oscillations die down in the reverse 

order. This characteristic motion exhibited by the galvanometer will be referred to 

by the term “ response.” In this way the amplitude of each component may be deter¬ 

mined. At the same time the corresponding frequency is obtained by observing, at 

the moment of maximum, the frequency at which the interrupter is driven. For a 

component of given amplitude the range of frequency over which the response is greater 

than half its maximum value, and which may be called the “ width of response,” is 

the same at all frequencies. For example, if a response at 10/sec. falls to half value 

for frequencies of interruption of 9 and 11/sec., then one at 1000/sec. will fall to half 

value at 999 and 1001/sec. It will therefore be seen that it is necessary to have perfect 

control over the speed of interruption, especially in the higher frequency region, and 

the same time must be spent in sweeping over a range such as 1000-1100/sec. as over 

10-110/sec. In measuring a response the rate at which the speed of interruption may 

be changed is conditioned by the period of the galvanometer. It is necessary that the 

speed should not change sensibly during an interval of time of the order of the galvano¬ 

meter period. The galvanometer may be of any type, but its vibrations should be 

well damped so as to be nearly dead-beat. A suitable period is 3 seconds. Under 

these conditions the width of response is 0-7/sec. 

It is a peculiarity of this method of analysis that a single simple harmonic component 

of frequency, n, gives rise to responses not only when the frequency of interruption is 

n, but also when it is \n, \n, \n, &c., and these responses have amplitudes j, y of the 

fundamental response. These responses will be called “ Subharmonics.” Their origin 

is made clear in fig. 1, which also shows why the even-order subharmonics \n, \n, \n, 

&c., are non-existent. When the alternating current represented by (a) is interrupted 

at its frequency n, all the negative elements are suppressed as shown in (b), giving a 

unidirectional current in the galvanometer. When interrupted at \n, as in (c), an 

equal number of positive and negative elements are passed through giving no resultant 

current in the galvanometer. But when interrupted at \n as represented in (d), there 

is a resultant current due to the odd positive elements. This is the third order sub¬ 

harmonic, and it will be seen by comparing (b) and (d) that it has one-third the magnitude 

of the fundamental. 

The presence of these subharmonics is not so objectionable in practice as one might 

expect, in fact their frequencies and relative magnitudes have on certain occasions 

assisted in the identification of the fundamental with which they are associated. There 

is a close analogy with grating spectra, inasmuch as each subharmonic corresponds to 

a spectrum of a different order. The even orders are absent just as in a grating where 

the opaque and transparent parts of the grating-element are equal in width. If the 

intervals of make and break are unequal, then the even-order subharmonics are 

introduced. 

A type of interrupter has been constructed in which by repeating the sequence of 

u 2 
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nmmm- vmm/imz 

Fig. 

wmmx- -mm, 

intervals shown in fig. 2 it has been found possible to eliminate the subharmonics \n, 

Ttn, Ytn, &c., in addition to the even orders. The 

fundamental response is reduced to three-fourths 

of its usual value, and there are certain other 

disadvantages suggested' by the few experiments 

which have so far been made. 

In order to analyse by this method of periodic interruption mechanical vibration of 

a solid body or of sound waves in air or water, the vibration must be converted into an 

electrical current which in wave-form faithfully represents the original motion. Some 

-distortion of the wave-form would not be a serious objection, provided it followed a 

simple relation allowing correction to be made. Actually very few methods of con¬ 

verting vibration into current are available, and none of these is free from objection. 

Among the most practicable are —• 

(1) Variation of electrical resistance by pressure, e.g. carbon microphone. 

(2) Variation of electrical resistance by change in thermal conditions, e.g. Tucker 

Hot Wire Microphone. 

(3) Electromotive force generated by induction, magnetophones, &c. 

It may be pointed out that all these methods depend on induction (assuming a trans¬ 

former is used in (1) and (2)), and the final current therefore represents the velocity of 

the vibration under investigation, but this is not an objection from the point of view 

of analysis. 

For, suppose the original vibration is resolved into simple harmonic components— 

<h sin (2irnvt -f oti) + a2 sin (27rn2t + a2) + &c. ; 

then, assuming no other form of distortion, the current will be proportional to 

2x^1 nx cos (2trnxb -f ax) -|- 2tta2n2 cos (2trn2t -f- a2) -f &e. 

The analysis of this current will then give correctly the frequencies of all the com¬ 

ponent vibrations, but in each case the amplitude is magnified in proportion to the corre¬ 

sponding frequency. The product 2nan, representing the maximum velocity, is itself 

an appropriate measure of the importance of the component, as the relative energies 

for different components are proportional to (an)2. 

In the present experiments the determination of the frequencies of the components 

has been effected with all the accuracy desired, but as it has not yet been found possible 

to avoid selective action due to resonance of diaphragms, the amplitudes of the com¬ 

ponents are not faithfully represented. No attempt has been made to deduce the 

absolute amplitudes of motion of the original vibration. 

When the components of a vibration have strictly commensurable frequencies, as 

in a harmonic series, the phase relations of the components are quite definite, and the 

determination of the relative phases might be of value—in fact it would be necessary 
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if it were required to reconstruct tlie wave-form of the vibration. It would not be 

difficult to adapt the method of analysis by interruption for the determination of phase- 

difference, but no experiments in this direction have yet been made. Hence at present 

the method is incomplete in that it fails to take account of wave-form. If the wave¬ 

form were required it would appear simpler to deal with it directly by means of an 

oscillograph method than to build it up from a complete analysis. 

Apparatus. 

Brass 
sUp 

hEbonLte, 

~ Shaft 

The interrupter (fig. 3) consisted of a brass cylinder made up of five discs ; the first 

was complete and served as a slip-ring, the other four contained" ebonite segments giving 

respectively 1, 4, 16 and 64 interruptions per 

revolution of the cylinder. Contact was made / 4'/6 64_ 

by means of two small brushes cut from -2\, mm. 

sheet brass, each brush possessing four or five 

separate fingers. One brush pressed lightly on 

the slip-ring, the other on whichever disc was 

the most convenient for the frequency under Bbo/ule 

examination. The electric contact was found Breuss 

to be satisfactory when the surfaces were kept 

clean and well lubricated with machine-oil. The 

cylinder, insulated with ebonite, was mounted 

directly on the shaft of an electric motor the 

speed of which could be regulated over the range 3-30 revs./sec. The four discs gave 

overlapping ranges of interruption frequencies with a total range of 3 to over 2000/sec. 

It was required that the rotation of the interrupter should be extremely uniform and 

perfectly under control. This is especially important for analysis at high frequencies ; 

thus for 1000/sec. an irregularity of rotation of 1 in 2000 would in one second completely 

reverse the phase of the response, and with a galvanometer of 3 sec. period the full 

value of the response would not be obtained. 

Much preliminary work was done in examining the conditions necessary for steadiness 

and smooth running of small motors. Two forms of apparatus have been constructed :—- 

Brass brushes 

Fig. 3. Interrupter. 

(1) A Siemens-Sch ticker t 12-volt i1(i h.p. motor was directly coupled to a fly wheel 

(radius 11 cm., mass 7|- kgm.) to prevent sudden changes of speed. This apparatus, 

which was used in nearly all the laboratory experiments, was suitable for exact measure¬ 

ments, as the motor could be made to run very slowly over any required small range 

of speed, and this range could be repeated by using the finger as a brake on the fly¬ 

wheel. Since plain lined bearings were used, there was the disadvantage that the 

ultimate speed attained was limited only by the work done in friction, and this varied 

with the state of the lubrication. The great weight of the flywheel made this frictional 
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work so considerable compared with, the power of the motor that it was not feasible 

to use an eddy-current brake to give further stability. 

(2) This apparatus (fig. 4) was made as light as possible so as to be easily portable. 

Fixed Lens 

The shaft of a Siemens-Schiickert 12-volt, ^ h.p. motor was lengthened and fitted 

with a couple of ball-bearings carried by brackets from a rigid base-plate. No fly¬ 

wheel was used, the required steadiness being given by an eddy-current brake consisting 

of an aluminium disc (radius = 7 cm.) attached to the shaft and spinning between the 

four poles (distant 5^ cm. from the axis) of an electromagnet excited by a constant 

current. In this case the friction of the bearings only formed a small fraction of the 

total work done. 

The different circuits were excited as follows :— 

Armature.6 volts, 0-3 amperes. 

Field.6 ,, 3 

Brake.2 ,, 1 ampere. 

Except in special cases the whole range of frequency could be covered by variation 

of the armature current alone. 

In addition to portability (the total weight was 8 kgm.) this apparatus possessed, 

on account of its small inertia, the advantage of extreme rapidity in attaining a steady 

speed. For a given adjustment the final speed was reached in about 3 seconds from 

rest, whereas the former apparatus required 10 minutes. 

The chief source of trouble in obtaining a constant speed was found to be due to 

irregular variations in brush-contact on the commutator of the motor. Both carbon 

and solid copper brushes were found to be unsatisfactory on this account. These were 
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eventually replaced by springy brushes built up of long thin strips of phosphor-bronze, 

each strip being slit longitudinally into alternately two and three fingers. In this way 

a number of independent contacts was obtained, and much steadier conditions of running 

of the motor were secured. Even with the improved brush design occasional irregu¬ 

larities in speed still occur, and are usually traceable to the contact conditions on the 

commutator. This appears to be the outstanding difficulty in obtaining a constant 

speed of revolution with an electric motor. 

The speed of the motor was measured by a stroboscopic method.* For this purpose 

the shaft carries a cylinder the surface of which is divided into 21 rings. Each ring is 

marked out into 20, 21, 22 . . . 41 equally spaced black squares with white intervals, 

and for ease in identification every fifth ring is tinted red. The stroboscopic cylinder 

is viewed through double slits mounted on the prongs of a maintained fork (64/sec.) 

giving 128 views per second of the rotating patterns. The speed is determined by 

observing the number of the ring which appears to be stationary. When, as is generally 

the case, no ring is exactly stationary, then two consecutive rings are seen to rotate 

slowly in opposite directions with different speeds. By measuring the rate of progression 

of one of these the required frequency may be obtained with a degree of accuracy limited 

only by the constancy of the motor speed. In practice it is sufficient to interpolate by 

estimation, as this can be done without giving an error in the frequency of more than 

per cent. 

The laboratory experiments were made with a Broca galvanometer (10 ohms), and, 

when required, a transformer having a primary resistance of 4 ohms and secondary of 

90 ohms. At the reservoir a Broca galvanometer (100 ohms) was used, and also a 

transformer with resistances 60 and 110 ohms. The period of the galvanometer was 

in both cases adjusted to be 3 sec., and then made almost dead-beat. For the purpose 

of dealing with vibrations of great complexity, it would appear quite practicable to 

modify the present apparatus to give a photographic record of the “ spectrum.” 

Analysis of a Current. 

Before proceeding to analyse sound vibrations the following experiments were made 

to test the reliability of the method by applying it to analyse alternating currents of 

known characteristics. 

(1) Simple Harmonic Current. 

The current was generated in a small coil, wound in the form of a figure 8, by the 

motion through it of a U-shaped magnet (made from a piece of knitting-needle 4 cm. 

long) attached either to the prong of an electrically maintained fork, or in the case 

of the lower frequencies to an electrically maintained steel strip. 

* Rayleigh, ‘ Phil. Mag.,’ 1907. 
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The amplitude of the current i0 in c.g.s. units was calculated from the formula 

JN . 27-na 

= v/Pd + l^V'L1" 
where, 

J = magnetic flux cut by one turn of the coil per cm. displacement, directly 

determined by means of a ballistic galvanometer. 

N - - number of turns on the coil, usually 1-10 turns. 

n = frequency. 

a — amplitude of motion of the magnet, determined by a microscope with eye¬ 

piece scale. 

R = resistance of the circuit (9 ohms) in c.g.s. units. 

L = self-induction of the circuit. The only appreciable self-induction was due 

to the Broca galvanometer (-0073 henry). 

On interruption the current measured by the galvanometer response is iQjn, and 

from the known sensitiveness of the galvanometer (35 div. per microampere) the magni¬ 

tude of the response can be calculated and compared with the observed value. 

The results for experiments made with frequencies ranging from 1-2000/sec. are 

given in the following table :—- 

Frequency. 
n. 

Amplitude of 
motion. 

a. 

Amplitude of 
current, 

io- 

Galvanometer 
deflection 
(observed). 

Galvanometer 
deflection 

(calculated). 

1-07 
cm. 

0-200 
amp. 

0-67 X IO-6 70* 73 
6-4 0-170 3-4 35 38 

11-5 0-210 3-1 38 34 
14-9 0-200 3-8 47 43 
27-5 0-210 7-4 70 83 
95 0-200 11 -0 120 120 

500 0-025 14-3 190 160 
990 0-002 1-26 20 14 

2040 0-003 3-8 42 40 

The experimental error is likely to be greatest in the case of the two highest frequencies 

owing to the small amplitudes to be measured. Moreover, the 2040 fork had to be 

sustained by bowing. The agreement between the observed and calculated values for 

all frequencies is as good as can be expected, but it only holds if account is taken of 

self-induction, since at the higher frequencies the correction for impedance is very 

large. 

* Galvanometer with 9-4 sec. period, giving 340 div. per microampere. 
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The currents were very nearly pure, but contained traces of the even harmonics. 

Thus the analysis for the 95 fork gave the current-amplitudes of the components n, 

2n, 4n, in the ratio 1 : : (.10-. These harmonics may have been present in the fork 

vibration, but it is more likely that they were produced by want of uniformity in the 

magnetic flux of the U-magnet. The so-called subharmonic responses described above 

were also observed. 

(2) Close Pair of Simple Harmonic Components—Resolving-Power. 

The current was produced by putting in series two U-magnet generators on separate 

forks of frequency 64/sec., which could be adjusted to have a slight difference of frequency 

by means of sliding loads on one of them. The responses were examined for each alone, 

and then for both together. When the difference in frequency was reduced to 0-6/sec. 

the two components could still be resolved, owing to a distinct drop between the two 

maxima. Separation was also effected when the components were very unequal in 

magnitude, e.g. a ratio 5:1. In all cases the double nature of the response was at 

once evident from the characteristic beating of the galvanometer oscillations, whereby 

it was readily distinguished from that due to a single frequency. When the components 

are unequal the beating is more distinct on the side of the smaller. The difference in 

frequency of the components can be determined directly by the frequency of the beats 

without observing the positions of the two maxima. 

Experiments on resolving-power were not made at higher frequencies, but theory 

shows that two components with the above limit of frequency-difference should be 

resolved whatever their absolute values, e.g. 1000 and 1000-6/sec. 

(3) Current Containing Harmonic Series. 

Two types of current were produced simultaneously from the same electrically main¬ 

tained fork with mercury contact, 32/sec.—the first by induction in a couple of turns 

of wire round the electromagnet of the fork, the second by using a small air-transformer 

consisting of a few turns of wire (giving negligible self-induction) in which the current 

in the primary was interrupted by a separate platinum contact attached to the fork- 

prong and dipping into mercury. The level of the mercury was adjusted to give equal 

time intervals of make and break. By means of a “ throw-over ” key the amplitude of 

corresponding harmonics in the two currents could be compared. 

YOL. ccxxii.—-A. X 
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Harmonic. Frequency. 
Current-amplitude 

with iron-transformer. 
Current-amplitude 

with air-transformer. 

1 32 280 215 
2 64 150 10 erratic 
3 96 240 210 
4 128 210 20 erratic 
5 160 180 205 
6 192 175 30 erratic 
7 224 135 200 
8 256 150 20 erratic 
9 288 100 190 

10 320 130 40 erratic 
11 352 85 180 
12 384 80 20 erratic 
13 416 85 160 
14 448 65 20 erratic 
15 480 150 160 
16 512 135 120 fairly good 
17 544 140 170 
18 576 140 140 
19 608 415 145 
20 640 120 130 
21 672 110 100 
22 704 120 120 
23 736 95 100 
24 768 100 80 
25 800 90 130 
29 928 85 90 
32 1024 90 100 
33 1056 70 100 
35 1120 60 130 
37 1184 70 130 
40 1280 95 120 
41 1312 80 110 
48 1536 60 90 
49 1568 50 60 

After the twenty-fifth the examination of several harmonics was omitted. The table 

shows that the current produced by the air-transformer consists of practically odd 

harmonics only, until the higher frequencies are reached, and their amplitudes are 

nearly equal. This is what would be expected from the nature of the make and break. 

(4) Complex Current. 

In this experiment six maintained forks were used with their U-magnet generators in 

series. The current-amplitude and frequency were first measured for each generator 

taken separately, then all were excited and a complete analysis made. This “ spectrum” 

is given in fig. 5. It will be seen that all six primary constituents were found, together 

with their various subharmonics, and also a weak octave of the fork A, 



DRS. GUY BARLOW AND H. B. KEENE ON THE ANALYSIS OF SOUND. 

- 

mo - 

.VO 
^l*o - 

SlK—; 
yffj- 

MS H 

Sl<* - 

N> 

WN ■ 

^ “ 

Mb 
k(®\- 

ku*- 

qj^- 

»»■ 

■ 

GEi 

OS 

<0 

^0 

Nh- 

«v. 

Ml*- 

-S 

o 

^(T) — 

Nh - 

M$3- 

me; - 

M3 sqh- 
M$ M|k- 

■3 TO 

;n 
jj ; 
<0 : 
% > 

o • 
-N 

: 
is 3 

$ 

S 

o 
<v m 

O O O CM 

O 
<v 
C/2 

T 
CO 
m 

’33 
>> 

13 
5 

*4—1 o 
o 
bo 

o3 
Ph 

f-t 3 
O 

<v 

o o 
*4-4 o 

U1 
’ C/2 

. K*p> 
13 

-I 

in 
.'ob 

K 

141 

9 



142 DBS. GUY BARLOW AND H. B. KEENE ON THE ANALYSIS OF SOUND. 

The frequencies and amplitudes of the primaries were as follows :— 

Frequency. Amplitude 
(Galvanolneter response). 

A. 23-9 90 
B. 64-6 42 
C • • • • • • 69-4 62 
D ..... 98-8 68 
E. 219-5 55 
F. 502 130 

These values are sensibly the same as were obtained in the separate examination except 

for some small differences in amplitude easily accounted for by unavoidable variations 

in the amplitudes of the forks during the experiment. As the whole range explored 

extended from 3 -2000/sec. and every response found was critically examined, this 

analysis occupied a long time—about four hours. 

In the diagram the response F is shown accompanied by companions F' and F", 

forming a triplet. These companions are due to irregularities in the spacing of the 

segments of the 64 interrupter-disc. They are always given with this disc, but not with 

the others in which, presumably, the spacing is more uniform. 

When two responses occur close together the amplitude of each is reinforced by the 

other. Several such examples occur in the diagram, notably in the case of A and C/3. 

Analysis of Sound in Aim 

(«) Magnetophone Receiver. 

A Graham’s Patent “ Loud-talking Apparatus ” (iron diaphragm 10 cm. diameter, 

0-061 cm. thick) was placed in series with the Broca galvanometer and interrupter. 

This instrument, although not extremely sensitive, proved to be satisfactory for analysing 

sounds. Examples of some of the experiments made are here briefly indicated :—- 

(1) Bowed fork, n = 512, at 8 metres gave a good response at this frequency. 

(2) Voice, singing a note, n — 256, with moderate intensity gave a deflection off 

the scale. 

(3) Organ pipe, blown at a distance of a few feet. Analysis gave the fundamental 

n = 531 and also the third harmonic. The change to the octave on over-blowing 

was readily shown. 

(4) In determining the frequency of a fork it is not necessary that the vibration 

should be sustained. By tapping a 640 fork with a rubber hammer the frequency 

was determined by the interrupter to \ per cent. 
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(5) In a similar way tlie fundamental frequencies were found for three metal dia¬ 

phragms (3 in. diameter). The values obtained were 345, 890, 1520/sec. 

(6) Highly damped vibrations. The resonator box belonging to a standard 384 fork 

was tapped in front of the trumpet of the magnetophone. The maximum deflec¬ 

tion was obtained at 344/sec., and the fork itself gave a response at 382/sec. 

In those cases in which the vibrations are not sustained there is no regular response, 

but merely a kick on the galvanometer for each excitation. At any one speed the kicks 

may be of either sign, and they vary in magnitude over a certain range according to 

the phase-difference. The frequency is determined by the interrupter speed for which 

the range is a maximum, but, as would be expected, this maximum becomes ill-defined 

when the vibrations are highly damped. 

In the above experiments electrically maintained forks were not used owing to their 

direct magnetic action on the magnetophone. 

(b) Carbon Grannie Microphone Receiver. 

An ordinary commercial instrument (G.E. Co.) of the “ solid-back “ type with conical 

mouthpiece was suspended by thin rubber cords. Some preliminary experiments in 

which the receiver was enclosed in an exhausted vessel showed that no appreciable 

vibrations were communicated through the supports to the microphone when suspended 

in this way. 

The electrical connections are shown in fig. 6. When required an additional resistance 

was placed in the galvanometer circuit to 

reduce the sensitiveness. As compared with 

the magnetophone the microphone has the 

following advantages:— 

(i.) Greater sensitiveness. 

(ii.) It is non-inductive, and therefore not 

affected by stray alternating fields 

from electric forks. &c. 

The disadvantages are :— 

(i.) Resonance : The above receiver has a 

natural frequency about 1030/sec. 

(ii.) The mean resistance during vibration differs from the normal resistance (it is 

actually increased), and therefore the starting and stopping of a sustained 

sound gives kicks (in opposite directions) on the galvanometer. 

(iii.) The resistance, and consequently the sensitiveness, is therefore subject to uncon¬ 

trollable variation. 

(1) Pure Tones.—A fork 512, mounted on its resonator, when bowed or struck near 

the receiver gave, on analysis, deflections off the scale. 

B/vcxl Galvcuzointber 

-nsm- 
90 co 

^ Interrupter 

1 MMiarruneta’ 

r-iMt 
T Volts 

Microphone 

Fig. 6. 
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When bowed 8 metres away a response 150 div. was obtained. (The magneto¬ 

phone gave 20 div. under the same conditions.) When a 512 resonance box was placed 

in front of the microphone the response was increased to over 200 div. 

Fork 2048 bowed at 2 metres gave 200 div. 

It was noticed that the overtone of a certain pipe blown gently gave abnormal dis¬ 

turbances of the microphone without the interrupter. This disturbing frequency was 

found to be about 1030/sec. Starting and stopping a 1024 fork gave violent kicks on 

the galvanometer, indicating a large increase of microphone resistance during the 

vibration. This change of resistance was shown directly on the milliammeter in the 

microphone circuit. This effect suggested that the microphone would be abnormally 

sensitive to a note of about this frequency. This was actually the case ; thus it was 

shown that the microphone as a detector was as sensitive as the ear for this particular 

frequency. E.g., fork 1024 when bowed in adjoining room with doors shut was detected 

by the galvanometer ; to the ear the note was only just audible. 

Also this instrument was extremely sensitive to taps on a fork resonator-box, and 

also in a less degree to almost any sharp taps given by wooden objects—e.g., putting 

down tool on table or walking about on wooden floor ; locomotive whistles from the 

railway near by were especially effective. 

(2) Note from Harmonica/ (Ellis).—The note selected had a fundamental frequency of 

66/sec. All harmonics up to the twentieth (the analysis was not carried further) were 

observed and their amplitudes measured. The results are given in the following table :— 

Harmonic. Frequency. Resjoonse. Harmonic. Frequency Response. 

1 66 100 11 726 70 
2 132 100 12 792 10 
O 
O 198 50 13 858 15 
4 264 40 14 924 5 
5 330 60 15 990 SO 
6 396 20 16 1056 60 
7 462 50 17 1122 60 
8 528 14 18 1188 10 
9 594 25 19 1254 5 

10 660 50 20 1320 10 

It will be seen that some of the harmonics are as important as the fundamental. 

The fifteenth, sixteenth and seventeenth harmonics are probably enhanced on account 

of their frequencies being nearly in resonance with the microphone. The subharmonics 

are not recorded in the table. 

In illustration of the complexity arising from the subharmonics of strong harmonics, 

the following example from another experiment is given :— 

The harmonica! note 263/sec. contained a strong fourth harmonic of frequency 

263 X 4 = 1052. This was greatly enhanced on account of its being so nearly in 
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resonance with the microphone. The subharmonic series of 1052 was in consequence 

pronounced. Thus in the experiment a marked response 

was observed at 151, which is 1052 -f- 7 nearly, i.e. the 

seventh subharmonic of the fourth harmonic of the funda¬ 

mental vibration. In practice the presence of the sub¬ 

harmonics is generally of less inconvenience than this 

example might suggest, but it will be seen that analysis 

is particularly affected if the receiver possesses strong 

resonance-points very much above the region of frequency 

under analysis. 

(3) Complex Sound.—In order to test the reliability of 

the analysis, it was thought desirable to produce a complex 

sound containing known constituents each of which could 

be examined separately. Four electrically maintained forks 

were placed on the same table, and grouped in front of the 

microphone receiver suspended on rubber cords indepen¬ 

dently of the table. The four forks selected had the 

following frequencies:—A 71-3, B 89, C 100, D 261/sec. 

With all forks sounding together a careful analysis was 

first made, in which each response was examined separately 

in order to determine accurately its magnitude and 

frequency. The result of this analysis is shown in fig. 7. 

It will be observed that the following frequencies were 

present:—- 

(i.) The four fundamental vibrations A, B, C and D. 

(ii.) Weak octave of C. Those of A and B were not 

observed, while the octave of D was out of range. 

(iii.) All the important subharmonics of A, B, C and D, 

except in those cases where they were masked by 

other responses, e.g., AD was missed, as it was 

nearly coincident with the fundamental B. 

With the exception of uncertain responses at 158 and 

161 /sec., all frequencies found in the analysis are accounted 

for. The frequency 161 may be due to a combination- 

tone, either D — C — 161, or A -f- B = 160-3. A separate 

investigation showed that this response only occurred when 

the forks A and B were sounding together, and that it was 

not always present even under those conditions. 

The analysis was now repeated by making a rapid sweep 
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of the whole range by continuously increasing the speed of interruption without stopping 
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to examine the separate responses. The results of this sweep are given in fig. 7, 

where it will be seen that no important vibrations were missed, and that their 

frequencies were obtained with almost the same degree of accuracy as in the more 

careful analysis. As would be expected, the amplitudes as determined in this rapid 

sweep were generally less than before, and could only be determined roughly. 

Other experiments which cannot be described here have shown that all responses, 

however small or irregular, which occur in an analysis can always be accounted for. 

In fact, analysis has sometimes indicated the presence in the source of quite unsus¬ 

pected vibrations which have been afterwards shown to exist by other means. 

Replacing the galvanometer by a telephone, a weak sound of machine-like quality 

was heard, the frequency I ) = 261 being most pronounced, and also a marked throbbing 

which was probably associated with the heating of B and C (89 and 100). 

(4) Analysis as affected by a General Background of Sound.—The object of these 

experiments was to determine to what extent a definite vibration could be masked by 

the presence of a general “ background ’’ of sound. A suitable background was found 

to be produced by placing a roaring bunsen near the suspended microphone. As heard 

in the telephone this background completely masked the note from a 256 maintained 

fork, so that one could not detect when the fork started or stopped. On analysis it 

was found that the background alone gave a disturbance on the galvanometer at all 

frequencies of interruption, while the fork response was 15 times that due to the back¬ 

ground, showing that in this case the analysis is vastly superior to the ear using the 

telephone. Similar experiments were made with a 512 fork, but it was found much 

more difficult to mask this note, two roaring bunsens close to the microphone being 

required. The analysis appeared less efficient in distinguishing the fork note from the 

background, the ratio of fork response to background disturbance being of the order 

8:1. The galvanometer disturbance due to the background showed a maximum when 

the speed of interruption was of the order of 1000/sec. Previous experiments have 

shown that this is the resonance region of the microphone. 

The masking effects of backgrounds appear to be of considerable interest and im¬ 

portance, and require fuller investigation. 

Analysis of Sound in Water. 

It was decided to give special attention to low frequencies ranging from about 

5-150/sec. A number of low-frequency sounders and receivers of different types were 

used, and will be described before the experiments. 

(a) Sources of Sound. 

(1) Cylindrical Sounder. (A type used by Lord Rayleigh for experiments in air, 

‘ Phil Mag.,’ 1907.)—This was a metal can maintained in bell-like vibration by means 
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of an electromagnet excited by a current of about 1 ampere from a spring-interrupter 

using 4 volts. Two sizes of this type of sounder were constructed. These were generally 

driven at their natural frequencies. 

Length ..... 

Diameter ..... 

Thickness ..... 

Natural frequency in water 

No. 1. 

12-8 cm. 

7 • 8 cm. 

0-68 mm. 

Ill /sec. 

No. 2. 

16-1 cm. 

9-4 cm. 

0 • 30 mm. 

21 /sec. 

With these sounders the intensity fell off exceedingly rapidly with the distance, probably 

owing to consecutive segments moving in opposite phases causing short-circuiting of 

the vibrations in the water. They have also directional properties, the sound being 

sent out radially with four symmetrically placed maxima. The rapid falling off of 

intensity with distance is an advantage in tank experiments, where multiple reflections 

are a source of disturbance. 

(2) Double Diaphragm Sounder.—This is non-directional, and on account of its great 

range has been used in most of the experiments carried out in the reservoir. 

It consisted of a shallow cylindrical cavity closed by two vertical metal diaphragms, 

one of which carried at its centre an electromagnet, and the other an equal mass of soft 

iron (fig. 8). The electromagnet was excited by an intermittent current from a spring- 

interrupter. The space between the diaphragms 

communicated with the water by a small hole at 

the bottom. The apparatus could be used either 

completely filled with air or filled with water, 

with the exception of a small chamber of about 

30 c.c. near the top of the cavity, in which the 

air remained trapped. The sounder was held by 

a 12-ft. iron rod, by means of which it could be 

lowered over the side of a boat to the desired 

depth. When used air-filled, a long piece of 

pressure tubing was attached to the cavity and 

air pumped in until the air-bubbles escaping from 

the hole at the bottom were seen rising in the 

water. In the boat from which the sounder was 

hung were the cells (4 volts) and the spring- 

interrupter, these being connected by long leads 

to the electromagnet within the sounder (current 

2-2| amperes). The boat could be anchored in 

jDb’ chamber 

30 cc 

-Diaphragm^ 
O’Srnm. 

A ! 

/f- cm 

i 
i 
* 

Fig. Double diaphragm sounder 

(section). 

any desired position, and the apparatus when once adjusted would run for hours at 

a time without attention. 

The natural frequency of this sounder depended on the internal conditions. The 

VOL. CCXXII.-A. Y 
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restoring force on the diaphragm was mainly due to the elasticity of the air in the cavity 

(the restoring force due to the elasticity of the diaphragm being relatively unimportant) 

giving when air-filled a natural frequency of about 67/sec., the exact value increasing 

with the depth of the sounder below the surface, the variation being roughly \ per cent, 

per foot. Although the effect of introducing water into the cavity is to increase the 

effective inertia of the diaphragms, the frequency is raised on account of the greatly 

increased restoring force given by the residual air. With the 30 c.c. of ah' generally 

used the natural frequency was about 123/sec. In practice the sounder was generally 

driven near the natural frequency corresponding to the working conditions ; the 

maximum energy is then emitted, and as a nearly pure tone. If driven at much lower 

frequencies the intensity was diminished, and, as would be expected, any harmonic near 

resonance with the natural frequency of the diaphragm became prominent. 

(3) Single Diaphragm Sounder.—A thin iron diaphragm was bolted on to the end 

of a massive cylindrical iron pot (fig. 9). A mass (380 gm.) of soft iron was attached 

to the centre of the diaphragm, behind which the exciting magnet was rigidly held. 

The cavity was always air-filled at the pressure of the surrounding water in order to 

avoid distortion of the diaphragm. The sounder was hung from a punt by a double 

chain at a depth of 4| feet. 

The instrument was found to be unsatisfactory in practice owing to the extreme 

sensitiveness of the diaphragm to changes of pressure due to small variations in depth. 

It had a natural frequency in water of 47/sec., a value much higher than was expected. 

The effect of the restoring force due to the air-cavity can be avoided by using a single 

diaphragm with both sides in contact with the water, but such an instrument would 
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not be an efficient radiator for low frequencies in consequence of short-circuiting action 

referred to above, and also it would be bi-directional. 

(4) Evinrude Row-boat Motor.—To obtain a more powerful and complex source an 

Evinrude row-boat motor was used. 

This was a 2-3 h.p. single-cylinder, two-cycle petrol motor fitted with a two-blade 

propeller. In most of the experiments it was attached to the stern of a 13-ft. centre¬ 

board sailing dinghy, which either circled round the receiving instrument or was kept 

in a fixed position, about 100 feet out, by steel wires made fast to posts on the bank 

of the reservoir. The frequency of the piston, which must be regarded as the funda¬ 

mental frequency, could be varied from about 10-11 /sec. when the boat was fixed, 

while a frequency of 14-5/sec. could be obtained when the boat was in motion. During 

a single experiment the motor was found to run at a very constant frequency, and 

proved to be a very convenient source of vibration for the purpose of analysis. 

(h) Receivers. 

In all the water experiments described below attention was usually confined to the 

range of frequency 5-150/sec. 

In order to obtain a faithful analysis the receiver should be either non-resonant or 

its resonance frequency should be well above the range under investigation. In the 

latter case the receiver will be insensitive in this range, and the results of the analysis 

will be complicated by the disturbance of subharmonics of the diaphragm frequency 

(see p. 144). We did not succeed in devising an ideal receiver for low-frequency vibra¬ 

tions, although fairly satisfactory results were obtained with the Rubber Diaphragm 

Receiver. Owing to damping the latter did not give unduly sharp resonance, and its 

resonance frequency could be varied to eliminate selective action. 

(1) Metal Diaphragm Receiver.—The construction of this instrument is shown in 

fig. 10. Owing to the thinness of the diaphragm, it is 

necessary to compensate the external water-pressure. 

This was done by putting the air cavity in communica¬ 

tion with a cylindrical reservoir the lower end of which 

was provided with a small hole to admit the water. If 

the cross-section of the cylinder is sufficiently great, then 

it is easily seen that the level of the water in it will not 

alter much with change in depth, and hence the air- 

pressure in the instrument will remain approximately at 

the pressure of the water outside. By adjusting the level 

of the reservoir with respect to the diaphragm, the 

compensation can be made exact for any particular 

depth. 

Fig. 10. Metal diaphragm 

receiver (section). 

The microphone v7as attached by its base to the centre of the diaphragm, and enclosed 

y 2 
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in a small sealed box. The diaphragm was ol tinned iron, 10 cm. diameter and 0‘3 mm. 

thick, and with a natural frequency in water of 120/sec. 

(2) Rubber Diaphragm Receiver with Adjustable Natural Frequency.—With this instru¬ 

ment the object was to obtain a much lower natural frequency. The effect of the air- 

cavity in giving an additional restoring force to the diaphragm, as already referred to 

under Sounders,” has now to be taken into account. In this receiver the diaphragm 

was made of very thin rubber, so that the restoring force was almost entirely due to 

the enclosed air. Advantage was taken of this fact to make the instrument of adjustable 

frequency by changing the volume of the air-cavity behind the diaphragm. The prin¬ 

ciple of conqDensation for hydrostatic pressure described above was again applied. 

The diaphragm, with the microphone attached at its centre, formed one end of a 

brass tube 30 cm. long and 5 cm. in diameter, the opposite end being closed by a screwed 

cap (fig. 11). Inside the brass tube was a solid brass plunger the position of which 

could be varied by means of a detachable rod. A very small hole in the plunger allowed 

equalisation of pressure on either side, while at the far end of the cylinder was a side 

tube communicating with two symmetrically placed compensating chambers. The 

total volume of the cylinder was 600 c.c., and the chambers were 500 c.c. each. This 

allowed a compensation to be made for depths down to 40 feet. For convenience in 

setting the chambers, a scale of depths was marked on the sides. 
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Using the full volume of the tube, the natural frequency was 40/sec., and when the 

plunger was pushed up within a few centimetres of the diaphragm the natural frequency 

became about 100/sec. There was considerable damping, as a result of which the 

natural frequency was not pronounced, and was difficult to determine. 

Listening Arrangements.—In most of the experiments it was found useful to put a 

telephone in the receiver circuit in place of the galvanometer and interrupter in order 

to listen to the sound. Such observations are recorded below as “ sound in 

telephone.” 

In the case of low-frequency vibrations, e.g. 50/sec., the sound in the telephone does 

not give a reliable indication of the character of the vibration in the water, since for 

such a frequency, the telephone responds only to the harmonics, and if they are not 

present then no sound is heard. 

A Broca tube also served as a useful listening device. The diaphragms were flat 

sheets of tinned iron, 15 cm. diameter. The natural frequency in water was approxi¬ 

mately 100/sec., and showed marked timing with depth due to change in pressure. 

The sounder 123/sec. could be heard at a distance of 400 yards. 

It was found that a short length of rubber tube, 1 cm. external diameter, walls 2 mm. 

thick, formed a simple type of non-resonant Broca tube. The lower end was sealed 

and weighted with a lead sinker, the upper end was connected to a stethoscope. 

Except the cylindrical sounder first described, both sounders and receivers were 

non-directional. 

(c) Reservoir Experiments with Sounders. 

The Barnt Green Fishing and Boating Club kindly gave permission to make use of 

Great Bittell Reservoir (near Birmingham), together with a number of boats, &c., for 

experimental purposes. The reservoir has an area of 100 acres, with a maximum depth 

of 40 feet. The receivers were connected to the shore by cable, and the analysis was 

made in the boathouse where the interrupter and 100-ohm Broca galvanometer were 

set up. With few exceptions it was found impossible even in the calmest weather 

to use the receivers when hung from a moored boat, since a very small motion at the 

point of support produced a large disturbance on the galvanometer. Satisfactory 

results were only obtained when the receiver was either hung from a tripod or placed 

directly on the bottom of the reservoir. The tripod was constructed from bamboos 

11 feet long and provided with a sinker on each foot. When in the required position, 

the lowering rope was sunk with a lead weight in order to prevent surface disturbances 

being directly communicated to the apparatus. In some experiments a small cork 

marker was used to indicate the position of the tripod. 

Determination of Natural Frequency of Sounders and Receivers in Water.—This pre¬ 

sented considerable difficulty, and it may be of interest to indicate the different methods 

which have been used. 



152 DRS. GUY BARLOW AND H. B. KEENE ON THE ANALYSIS OF SOUND. 

Sounders :— 

(i.) A platinum contact was attached to the diaphragm, and the sounder made self¬ 

driving after the manner of an electrically maintained fork. The frequency was 

then determined either by analysis of the current induced in a single turn of 

wire acted on inductively by the circuit, or by analysis of the current generated 

by a U-magnet attached to the sounder diaphragm. The platinum contact 

worked quite well under water, but this system of driving the sounder was not 

suitable for general use. 

(ii.) With the sounder immersed, the diaphragm was gently tapped with a rubber 

hammer at intervals of 1 second, and an analysis made of the current induced 

in the windings of the electromagnet, as in earlier experiments on the analysis 

of damped vibrations. 

Receivers :— 

(i.) By experiments in which a sounder was driven at various frequencies and the 

receiver used to obtain a resonance curve. 

(ii.) The natural frequency of the diaphragm was excited by impulses such as an oar- 

splash or a tap on a neighbouring boat. In the latter case the analysis showed 

in addition the natural vibration of the boat. 

(iii.) A method more satisfactory than the last was to analyse the general water 

disturbance on a rough day. (Compare experiments on Analysis of Background, 

p. 146.) 

Metal Diaphragm Receiver (Natural frequency, 120/sec.).—This instrument in mode¬ 

rately calm weather could be used, when hung from an anchored boat with a galvano¬ 

meter disturbance of no more than about 1 div., corresponding to a faint background 

in the telephone. Under rougher conditions a strong diaphragm noise was produced 

in which on certain occasions the separate impulses could be identified with the lapping 

of the water against the boat. The sounder could be distinctly heard at a distance 

of 60 feet. 

With this instrument remarkable variations of the intensity of the sound with depth 

were observed, showing the existence of an almost silent layer on the bottom. Slowly 

raising the receiver from the bottom to the surface showed a rapid increase in the first 

6 feet, followed by a slower falling off towards the surface, the maximum occurring at 

6-9 feet from the bottom. The observed amplitude at 6 feet was in some cases 25 

times that at 1 foot from the bottom. The sound in the telephone varied in a similar 

way. These effects as tested by the telephone appeared to be the same in different parts 

of the reservoir, where the depths were 12, 18 and 32 feet, and independent of the fre¬ 

quency which ranged from 60-130/sec. Sounds due to taps on the boat, splashing of 

oars, &c., and also natural disturbances, were modified in the same way. No definite 

effect of this kind was observed when using the other receivers of lower frequency. 

The amplitude of the vibration fell off with horizontal distance from the source with 
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remarkable rapidity. Putting amplitude oc ——-— , the value of the index p (see 

below) is generally 3 to 3-5, which makes the energy fall off with the sixth or seventh 

power of the distance. This gives rise to considerable difficulty in making exact measure¬ 

ments, as a large error is introduced by a small change in distance. 

The variation in amplitude with distance and depth is shown in the following 

examples 

Depth of Frequency Depth of Depth of Horizontal 
Response. Index f. water. of sounder. sounder. receiver. distance. 

ft. ft. ft. ft. 
12 105 6 On bottom. 4 Off scale > 250 

45 18 
75 3 / 3*5 

15 124 10 9 40 270 \ 
9 80 25 / O ’ O 

9 130 <5 
\ 
/ >2-6 

On bottom 80 3 
6 80 16 

17 66-5* 3 11 135 7 \ 3-0 
11 60 80 / 

On bottom 60 3 
9 60 150 
3 60 80 

Rubber Diaphragm Receiver.—When hung from a boat in very calm weather the 

galvanometer showed oscillations of 20-40 div. with an occasional 200 divs., but on 

the bottom the disturbance was reduced to 1-2 div. A residual disturbance of this 

magnitude was always present under the cpiietest conditions, even when out of the 

water, and this may represent the natural limit of steadiness of the microphone. The 

instrument was used either on the bottom or on the tripod, and even then quiet weather 

was essential. On a windy day there were large disturbances always closely associated 

with the gusts. Their magnitude was not changed by altering the natural frequency 

of the receiver. | 

With this apparatus a number of experiments were made in which the sounder was 

* In this case the weak octave 133/sec. present in the sounder was reinforced by resonance with the 

receiver. This response varied with depth in the same way as the fundamental. 

j Some experiments made in the laboratory at a later date furnished the explanation of these disturb¬ 

ances. It will be seen from the construction of the apparatus that slow pressure changes can be com¬ 

municated to the air cavity through the compensating reservoirs. Such pressure changes would not produce 

any motion of the diaphragm. The effects on the microphone are due to the direct action of the air pressure 

on the lid of the button. This was confirmed by blowing air into the cavity of the instrument. It was 

then found that when the microphone was subjected to a sustained additional pressure the microphone 

current showed a rapid increase followed by a slow exponential recovery, the transformed current causing 
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driven successively at different frequencies. Since the driving current contains har¬ 

monics the forced motion of the sounder will also contain these harmonics, and if the 

frequency of one of them is near the natural frequency, then on account of resonance 

that harmonic will be very prominent, and may be much greater than the fundamental. 

But the receiver also has a selective action, and will enhance by resonance any harmonic 

which is near its natural frequency. These effects were observed in the analysis but 

will not be further described. 

The variation of amplitude with distance was determined using the two sounders near 

their natural frequencies, and the results obtained are given in the following table :— 

Depth of 
water. 

Frequency 
of sounder. 

Depth of 
sounder. 

Depth of 
receiver. 

Horizontal 
distance. 

Response. Index p. 

ft. ft. ft. ft. 
18 44-5 4-5 12 57 

150 
190 \ 

9 / 

3-1 

17 58 9 On bottom. 60 
165 

180 \ 
<5 / 

>3-5 

The high value of the index is in agreement with the results obtained with the Metal 

Diaphragm Receiver. 

A particular source of disturbance with-the Rubber Diaphragm Receiver was found 

to be due to the vibrations caused by trains passing at a distance of rather more than 

a quarter of a mile. The effects were noticed when analysing in the region 30-40/sec., 

where on occasions definite responses of over 100 div. were obtained. These disturb¬ 

ances greatly added to the difficulty of the experiments, especially when examining 

vibrations of very small amplitude. 

(d) Sound Spectrum of Evinrude Motor (Reservoir experiments). 

A description of the motor together with the general arrangements has already been 

given (p. 149). Analysis was made with both receivers. They were either placed on 

the bottom or hung from the tripod 6 feet above the bottom. In each case a spectrum 

was obtained consisting of a harmonic series, n. 2n, 3n, 4n, &c., having for its funda¬ 

mental the frequency n of the motor. In general the higher harmonics have smaller 

intensities, and only in a few special cases could measurements be extended beyond 

the first ten harmonics. 

the galvanometer to give a complete oscillation, as would be expected. The exponential recovery, which 

extended over some 15 sec., was evidently due to the air leaking into the partially air-tight button. The 

whole effect completely disappeared when a small hole was drilled through the side of the button. 

It was thought that the instrument might now be less sensitive to low frequency vibrations. An experi¬ 

ment in a tank showed that for a frequency of 100/sec. the sensitiveness was reduced to about one-half. 

It would thus appear that in the reservoir experiments the wind pressure was transmitted through the 

water to the receiver. The metal diaphragm receiver did not show these effects since its button is enclosed 

in a sealed cavity. 
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The Rubber Diaphragm Receiver was found to be much more satisfactory than any 

other type tried, and was used in all the experiments described below. 

Variation of Spectrum with Motor Speed.—It was soon found that even under closely 

identical conditions the character of the spectrum often differed greatly on repeating 

the experiments. It has not been found possible to explain this variation completely, 

but it is partly due to change in motor frequency. Experiment showed that quite small 

variations in the motor frequency—variations originally regarded as of little conse¬ 

quence—may greatly affect the relative intensities of the “ lines ” in the spectrum. 

There are several ways in which this may take place :— 

(i.) In the experiments the motor speed was always changed by altering the phase 

of the ignition ; this may result in a change in the character of the vibration 

of the motor itself. 

(ii.) Mere change of speed may bring certain harmonics into, or out of, resonance 

with natural frequencies of the boat. 

(iii.) Change of speed may bring certain harmonics into resonance with the receiver. 

Experiments show that (iii.) at least is an important factor. Unfortunately, the 

frequency of the Evinrude motor (with boat fixed) can only be varied by about 10 

per cent., i.e. from 10-11/sec. 

Three examples of the variations in the spectrum are given in fig. 12, where the 

Fig. 12. Variation of spectrum of Evinrude with motor speed and natural frequency of receiver. 

Depth, 15 feet. Receiver on bottom. Distance 13 feet; broadside on. 

VOL. CCXX1I.-A. Z 
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harmonic series for low and high speeds are represented by continuous and broken lines 

respectively. All three experiments were carried out under identical conditions as 

regards the position of the receiver, which was placed on the bottom at a depth of 

15 feet. The only difference made in the conditions was in the natural frequency of 

the receiver : in the first experiment this was made as low as possible, about 40/sec., 

by using the full volume of the air-cavity ; in the second it was raised to about 80/sec., 

and in the last to about 100/sec. The last two natural frequencies are only known 

approximately. 

It will be seen that in all three cases the responses n, 2n, 3n, are increased with increased 

speed. In the first experiment 4n is very prominent, and showed a decrease with speed, 

evidently due to its being put out of resonance with the diaphragm. The effect of 

diaphragm resonance is also shown in the second and third experiments, which give 

strong responses near 80 and 100 respectively, frequencies for which no responses were 

detected in the first experiment. On the other hand, there seem to be certain perma¬ 

nent features in the spectrum—for example, the third harmonic for the lower speed 

always being very weak, and the harmonic near 68 being always prominent. These 

characteristics may be associated with either the boat or the motor. 

Variation of Spectrum with Direction.—The receiver was placed in various directions 

with respect to the axis of the boat, the distance from the propeller being constant. 

Variations in the spectrum were observed, but as consistent results were not obtained 

on repeating the measurements for any one position, no definite conclusions can be 

drawn. In general the experiments showed that direction has no marked influence on 

either the intensity or distribution in the spectrum. 

Variation of Spectrum with Depth.—It Avas not possible to moor the motor-boat in the 

deeper parts of the reservoir. Some experiments were therefore made with the motor 

circling round a cork marker indicating the position of the receiver, which Avas—(a) on 

bottom, (6) on tripod 6 feet above bottom. The depth of water Avas 26 feet, and the 

radius of the circle either 20 feet or 60 feet. The spectrum of the boat in motion did 

not differ essentially from results obtained Avith the boat moored in shalloAV water. 

The motor frequency Avas 14-2/sec. instead of 10-11/sec., so that no exact comparison 

is justifiable. The intensities observed were less than those for equal horizontal dis¬ 

tances in shallow Avater, but not in greater proportion than is accounted for by the 

greater actual (oblique) distance betAveen receiver and boat. 

Variation of Amplitude with Distance.—Experiments Avere made to determine the 

variation of amplitude Avith distance in the case of the most prominent vibrations up 

to the fifth harmonic. The most useful results would be obtained at distances great 

compared Avith the dimensions of the boat, but on account of the rapid decrease in 

intensity it Avas quite impossible to make observations at distances greater than 70 feet. 

At these distances disturbances Avere comparable in magnitude with the effects to be 

observed. 

Since the source is on the surface and receiver on or near the bottom, any change in 
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distance also involves a change in direction with respect to the vertical, and if nodal 

planes exist in the water one would expect a more complex relation than that given 

by the former experiments using non-directional sounders. There is the additional com¬ 

plication due to reflection from top and bottom, which will be different in the two sets of 

experiments owing to the sounder always being placed below, instead of on, the surface. 

Putting, as formerly (p. 153), amplitude qc ———^-— . the values of the index p for 
(CtlStflllCG j 

the different harmonics are given in the following table :— 

Depth of 
water.* 

Frequency, 
n. 

Responses at horizontal distance. Index p. 

ft. 
13 11-1 (14 ft.) (24 ft.) 

n 90 25 2-4 
2 n 210 100 1 -4 
on 130 37 2-3 
4 n 230 60 2-5 
5 n 40 7 3-2 

16 11-2 (134 ft.) (21 ft.) (43 ft.) (69 ft.) 

n 80 25 5 0 2-4+ 
2 n 45 25 10 0 1 *3f 
3 n 45 10 10 5 
4 n 140 70 23 10 1-6| 

26 11-2 (21 ft.) (42 ft. 
Boat 

rirplinty 
n 28 15 0-91 (1-1)4 

2 n 14 5 1-5 (1-6)4 
3 n 25 3 3-1 (4-9)4 

The distances given in the table are 

horizontal distances, and these differ from 

the true distances more in deep than in 

shallow water. This correction has not 

been made, as it does not appear to lead to 

a simnler law. 

In fig. 13 the values of the log (amplitude) 

are plotted against log (distance) for the 

third experiment in the table, in which the 

greatest range of distance was covered. 

It will be seen that the graphs for n, 2n and 

4n are practically straight lines giving a 

constant value for p as determined by the 

slope of the line in each case. The results 

20 

/■o 

4-n. 

Lop dLstcuuze^ 

1-0 

Fig. 13. 

/■x j-i- /■6 r-8 20 

Variation of amplitude with distance- 

index graph. 

* The receiver was 6 feet above the bottom, 

f From graph, fig. 13. 

\ These values of p are calculated for the oblique distances. 

z 2 
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for 3n are quite abnormal, as no falling off in amplitude was observed for the distances 

21 feet and 43 feet. This is the only occasion on which such an effect has been recorded, 

and may be accounted for by accidental disturbance. 

The table shows that in any one experiment the various harmonics have different 

values of the index p, indicating that the character of the spectrum really changes with 

the distance, but the values of p depend on the experimental conditions. The range 

of p is from 1 to 5, and in general the higher harmonics fall off most rapidly with the 

distance (i.e., have larger values of p) and the harmonic 2n least rapidly of ail. It is 

not known whether this peculiarity of 2n is associated with the absolute frequency or 

with the propeller action in which this vibration may have its origin. 

The distances were always measured from the propeller, but it appeared that the 

propeller only acts as an additional source. One can see the sides of the boat vibrating, 

and in calm weather the ripples radiating from the stationary boat are quite evident. 

On several occasions the boat-vibration was examined by placing in the boat a 

frequency-meter of the vibrating reed type. Within the range of this instrument 

(25-50/sec.) responses were obtained corresponding to the harmonics which were simul¬ 

taneously detected in the water. With the rubber diaphragm receiver used in these 

experiments the sound in the telephone was distinct up to 50 feet. Listening directly 

with the Broca tube and rubber tube, the sound was poor even at distances of about 

20 feet. 

Subharmonics.—In the diagrams representing the spectrum of the Evinrude motor 

the subharmonics have, for the sake of clearness, been omitted. As the higher har¬ 

monics are generally small, and not observable beyond the tenth there were very few 

subharmonics to confuse the analysis. Most of the subharmonics were below the funda¬ 

mental, and this region was disregarded in the analysis. The fundamental response 

often showed some irregularity due to the superimposed subharmonic 4(3/^). 

The measurement of the amplitudes of the vibrations up to the tenth harmonic occupies 

about 10 minutes. 

Analysis by Telephone.—It is interesting to note that by putting a telephone (in place 

of the galvanometer) in series with the interrupter the fundamental frequency (10/sec.) 

of the Evinrude motor can be determined with great precision, as the beats are very 

marked when the interrupter is running near that frequency. Also the frequency of 

the harmonics can be determined in a similar way, although with them the effect is 

not so evident. 

PART II.—THE THEORY OF ANALYSIS OF AN ELECTRIC CURRENT BY 

PERIODIC INTERRUPTION. 

The present paper contains an account of the theory of the analysis of an alternating 

current by the method of periodic interruption. The experiments in which this method 

has been applied for the analysis of sounds in air and water are described in Part I. 
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Let the current to be analysed be a function of the time expressed by 

y=f( 0 

and represented by (a) in fig. 14. We may regard the effects of interruption as merely 

Fig. 14. Interruptions of current. 

the result of multiplying the instantaneous value of the current y by a factor which 

has periodically the values 1 and 0. For equally spaced interruptions of frequency n* 

and giving equal time intervals for open and closed circuit, this factor is represented 

graphically by the periodic form (b) (fig. 14), and has for its expression the Fourier 

series : 
2 

tt+ - (sin nt + 1} sin 3nt + 1- sin but + &c.). 

The resulting intermittent current, represented by (c) (fig. 14), is therefore given by 

y' = ■<■§•+— (sin nt + \ sin 3nt + \ sin 5nt+ &c.) \f(t) 

This expression must now be resolved into S.H. components. These may then be 

regarded as forces of S.H. type acting on the galvanometer system—or on the telephone 

diaphragm—and giving rise to a forced motion which is readily calculated. If the 

galvanometer possesses very little damping, only those components which have a fre¬ 

quency near that of the galvanometer will produce any appreciable motion. But we 

shall suppose, in accordance with experimental requirements, that the galvanometer 

is heavily damped, and for convenience we shall here take it as being exactly “ dead¬ 

beat.” Lhider these conditions there will be no resonance, and a component is only 

* The quantities n, nv, no, p, &c., really angular velocities, are, for the sake of brevity, here referred to 

as frequencies, the 2it being everywhere omitted. They are strictly the radian frequency of phase change. 
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effective in producing appreciable motion when its frequency is less than that of the 

(undamped) galvanometer. The full amplitude of the component is not exhibited by 

the galvanometer unless the component has zero frequency ; if it has half that of the 

galvanometer the amplitude of the motion produced is 80 per cent, of the full value (see 

fig. 15, which shows how the forced amplitude varies with the frequency j) of the force). 

On the other hand, a telephone in the circuit will render audible only those com¬ 

ponents which, are of sufficiently high frequency to excite the diaphragm and the ear. 

If the circuit contains appreciable self-induction the effects of interruption are greatly 

complicated—at least theoretically—and special assumptions as to the conditions which 

hold at “ break ” must be made in order to proceed with the investigation. The general 

effect will be to round off the sharp corners at “ make ” and “ break ” in curve (c) 

(fig. 14) as represented in curve (d). Provided the “ time-constant ” of the circuit is 

small, only the components of high frequency will be seriously modified by self-induc¬ 

tion. The order of frequency affected is 1 -j- (time-constant), or R/L if the circuit has 

resistance R and induction L. (For a Broca galvanometer alone R/L is about 

1200/sec.) 

Actually we are not likely to be greatly concerned with the modification introduced, 

for this would imply that we are using the analysis to determine a component of fre¬ 

quency so high that, on account of ordinary impedance, it already must have undergone 

considerable distortion. We shall, therefore, neglect self-induction and proceed to 

consider certain special types of current. 

Then 

(1) Steady Direct Current, 

y — A, a constant. 

y' =-b (sin nt +/ sin 3nt + &c.). 
2 7T 

The galvanometer is deflected by A/2. The sound in the telephone is represented by 

the uneven harmonic series of tones with the interruption frequency n as fundamental. 

This is the interrupter note ” ; it is characterised by the wave-form (b) (fig. 14). "When 

n is very low only the numerous high harmonics in the audible region are effective, 

and the sound is well described as a purr. As n is increased the note becomes more 

musical in quality, and its pitch is recognisable. 

(2) S.H. Current, 

y = A sin nxt. 

Putting A sin nj, in place of/(f) in the general equation for y', this may be written : 

A A 
y' = /—sin nxt-|— {cos (n — n{) t — cos (n + nj) t + l cos (3n—n^ t — \ cos (3n + ?q) t 

Zj IT 

+ l cos (5n—Ui) t — i cos (5n + n,) t+ &c—}. 
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The tones present are therefore 

nx, ± ij 3n* F nx, on F tti) cYc. 

The difference tones n — nx, 3n — nx, &c., have zero value of frecpiency when 

with the amplitudes 

These represent the fundamental and “ subharmonic ” responses. 

We shall now suppose we are running through the fundamental response so that 

n — Hi nearly. Put n — nx — p where p is the small difference in frequency between 

interrupter and current. In going up, i.e. with increasing speed, through the response 

p changes from negative to positive. 

The general expression may now be written 

n ni> 3wn jDffi tYc., 

A 

7T 

rA. 
7T 

l — , &c. 
7r 

y' = ~ sin nxt + — {cospt — cos (2n—p) t + } cos (2n+p) t—-$ cos (4n—p) t 
A IT 

+ -g cos (4n+p)t — } cos (6n— p) t + &c.}. 

The frequencies of the components are 

p, nu 2n + p, 4n ± p, Gn + p, &c. 

The galvanometer responds to p. It is seen that there is a series of beating tones, 

2n, 4n, Gn, &c., and all these beat with the same frequency 2p, i.e. twice the frequency 

of the oscillations of the galvanometer at the same instant (confirmed by experiment). 

The amplitudes of the beating tones are never equal, but they tend to equality for the 

higher harmonics of the series. This explains the beating which is heard in the tele¬ 

phone even when nx is well below the limits of audibility. 

For synchronism (p = 0) there is produced the single note of fundamental nx con¬ 

taining the even harmonics 2n, 4w, &c. The original tone nx may be inaudible, and in 

any case it is weakened by interruption, but the addition of the harmonics will in general 

render audible the resulting note nv. 

AVhen n is near 2nx put n — 2nx = p. The component frequencies are then 

nu nx + p, 3nx -j- p, 5nx + 3p, lnx + 3p, &c. 

In this case there is no galvanometer response. There is only one beating pair, nx, 

nx + p, the amplitudes A/2, A/n of which are sufficiently near equality to give a marked 

beating, but, of course, this will not be heard unless nx is within the audible range. 

It will be noted that the beats have the frequency p in this case, instead of 2p as above. 

Similarly, when n is near 3nx it is easily shown that there is no response and no beating. 

[Confirmed by experiment.] 
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Now take n near \n1 and put 3n — nx — p. Tlien 

y' = ~ sin nxt + — {cos (2n—p) t— cos (4n—p) £ + g- cosy>£ — ^ cos (6n—p) t 
A IT 

+ g cos (2n+p) t. — } cos (8n—p) t+A cos (4n+p) t — &c.}. 

Hence the frequencies are 

p, nl, 2n + p, 4n + p, Qn + p, &c. 

T'lie galvanometer responds to p ; this is the third order subharmonic of amplitude 

A137i. The beating pairs all beat with the same frequency 2p, but their amplitudes 

are more unequal than in the case of the fundamental response. 

(3) Harmonic Series. 

Let the original current be 

y = Aj sin np A2 sin 2nj -j- A3 sin 3n^t + &c. 

without regard to phase differences between the constituents. 

The interrupted current is now made up of groups of components, there being one 

group associated with each harmonic. It is sufficient to consider only the case of 

synchronism with the fundamental of the series, i.e. when n — nx nearly. Putting 

n — nY — p as before, the resulting tones may be tabulated thus :■—- 

Amp. ratio. Ar A2. As. a4. K 

1 
%■ 

p 2 n—p 
2 nv 

n—2p 3n—2p 
3 nv 

2n—3p 4n—3p 
4%. 

3 n—4p bn—4p 
5 nv 

4w—5p bn—bp 

* 2 n-\-p 4 n—p n-\-2p bn—2p 3 p 6n—3p n—ip In.—4j> 2n—bp 3n—bp 
1 
5 4 n+p 6 n—p 3n-\-2p In—2 p 2n-\~3pt 8n—3p n-\-ip 9 n—4p bp 1 On—bp 
1 6 n-\-p Sn—p bn-\-2p 9n—2p in-\-3p 10 n—3p 3w+4p lln—ip 2n-\-bp \2n—bp 

The interrupted current may be regarded as made up of 

(а) \ (Ax sin nxt + A2 sin 2nxt -|- &c.). 

This is the original note with half the amplitude. 

(б) - (Ai cos pt + lA-i cos 3pt -j- ;iA5 cos 5pt + &c.). 
71 

This is the galvanometer response, which now has a complex character due to the 

superimposed subharmonics of 3n,, 5nu &c. 
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(c) The beating tones 

~[(h l) 2n ± p, 
IT 

(i i) ± p, (l, y) 6n ± p, &c.] beating at 2p, 

— [(1, 1) n ± 2p, 
7T 

(1j ■5) + 2p, (|, y) 5n + 2p, &c.] beating at 4p, 

^[(i,n-2»±3p, 
7r 

(1, 4) 4n ± 3p, (b i) bw ± 3p, &c.] beating at Qp, 

&c., 

where the numbers in ( ) brackets indicate the relative amplitudes of the beating pairs. 

The sound in the telephone is, therefore, remarkably complex. It will be noticed 

that the constituents of the original note (a) have frequencies which may be written 

n 4- p, 2w -f- 2p, 3n + 3p, &c. 

and these can be associated with components in (c) to give beating at frequency p. This 

appears to be the explanation of the curious fact that in an experiment with a current 

rich in harmonics the beating heard agrees in frequency with the galvanometer oscilla¬ 

tions p, although with a S.H. current the beating frequency has the double value 2p. 

Examination of the above table shows that this abnormal beating at p depends essen¬ 

tially on the co-operation of consecutive harmonics of the original current. In all cases 

the ear appears to appreciate only the slowest beats which are present. 

The more general case in which the interruptions are of unequal intervals and unequally 

spaced may be treated in a similar way to the above. It is only necessary that the 

interruptions shall be strictly periodic so that they may be represented by a Fourier 

series. 

Simple Response.—If the galvanometer system has a natural undamped period — 

and is made exactly dead-beat, the equation of motion due to a S.H. force is 

x + 2n0x + n2x —‘F cos pt. 

The solution of this for the steady state gives the amplitude of motion 

a — 
F 

<+p2 

When the frequency p of the force becomes very small compared with that of the galvano- 

F 
meter n0, the amplitude has the maximum value am = — corresponding with the centre 

n0 
of the response. 

Hence 
2 a n0 

n2+p2 

2 A VOL. CCXXII.-A. 
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Plotting ajam against p/n0 we obtain the response curve (eequation y — - 
\ 1 

shown by the full line in fig. 15. The amplitude falls to half value when p = 

+ ®7 

± 

Fig. 15. Response curve. 

i.e. when the difference in frequency between interrupter and current is equal to the 

natural frequency of the galvanometer. 

[For the galvanometer with period 3 sec. used in the experiments the half-value 

amplitude is given for a true frequency of -J/sec., or the “ width of response ” is f/sec. 

The true frequency of the forced motion of this galvanometer over the range of the 

response is indicated on the lower scale in fig. 15.] 

Resolving Power.—Consider first the case of two equal components. Let 

am — maximum amplitude for each separately, 

q = frequency difference, 

au a2 = response amplitude, for one component alone, at frequencies \q and q respec¬ 

tively from the maximum. 

The superposition of the two response curves is shown in fig. 16. The degree of reso¬ 

lution is determined by the ratio 

_amplitude at central dip 

amplitude at summit on either side ' 

2 

d- 
Approximately this ratio is , neglecting a slight displacement of the maxima. 
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If we take for the limit of resolution a ratio 5/6, i.e. a drop of 16 per cent, at the 

centre, this corresponds to the condition q = 2n0. Hence the least difference of fre¬ 

quency resolvable is twice the frequency of the galvanometer. For the experiments 

this limit is f/sec., but practically a rather higher degree of resolution was obtained. 

Undoubtedly this is due to the fact that the above ratio is that of the maximum ampli¬ 

tudes obtained by taking the two vibrations always in the same phase. If they are 

taken in opposite phases the two peaks are completely separated, as indicated by the 

dotted curve in fig. 16. The motion of the galvanometer is in general compounded of 

Fig. 16. Resolving power. 

two S.H. motions of different amplitude and different frequency, but the maximum 

excursion is the easiest observed. Midway between, the two components become equal 

in amplitude and frequency, giving rise to pronounced beating. The beats have a 

frequency which is variable between the two peaks, but on either side it has the constant 

value q. For extremely close components (q/n0 very small) practically the whole 

response is characterised by beating with frequency q, so that from this point of view 

the resolving power is unlimited. With components very unequal in magnitude the 

presence of the companion is generally detected by beating on one side only of the 

response. This will be understood by examination of fig. 15, where the response curve 

due to a companion of amplitude f of the primary is represented by the broken line. 

The region of most distinct beating is where the two amplitudes approach equality. 

Time Required for Analysis.—We shall suppose that the interrupter frequency n is 

• • • (1/Tb 
increasing at a uniform rate, — — c, in going through a response due to an isolated 

OjL 

component of frequency nx. It is required that the value of the maximum deflection 

shall not possibly be less than a certain fraction, say 90 per cent., of the full response 

obtained by an infinitely slow rate. Measuring the time t from the instant of synchronism, 

we may put n = nx -f- ct. 

If at the instant t — 0 the phase difference between current and interrupter happens 

to be 0, or n, the conditions will be as favourable as possible. It is only necessary for 

this phase condition to persist practically unchanged for a time interval sufficient for 

the galvanometer to deflect. For a galvanometer in the dead-beat condition this interval 
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is approximately -fT, where T is the period when undamped. A phase change of + 
71 

8 

may be allowed at either end of the interval, which we may take as extending from 

t = — |T to t — -j-jT. Then since n— is the phase change per sec. at t, the required 

condition is expressed by 

therefore 

Hence the limiting rate is ~jsec. Thus in the experiments, with T = 3 sec., unit 

range 1 /sec. can be covered in 4^ sec. But since the phase at synchronism may be 

unfavourable, the rate must be much slower than the above limit—probably about 

XTS the rate. 

The investigation shows that the limiting rate is the same at all frequencies, and it 

is inversely as the square of the galvanometer period. The result is of importance in 

considering the possibilities of making a photographic record of a spectrum by a con¬ 

tinuous sweep through the whole range of frequency. 
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PART I. 

1. Introduction.—The first part of this paper, written by Love, contains a theoretical 

solution of the problem of rational hydrodynamics which has been named by writers 

on ballistics, Lagrange’s problem ” ; the second part, written by Pidduck, gives 

the application to ballistics. 
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In tlie problem* * * § it is supposed that a given mass of gas, which is initially in a uniform 

state, is contained in a segment of a tube of uniform section. At one end the segment 

of the tube is bounded by a fixed transverse section, and at the other end the tube is 

closed by a piston of given mass, which is initially at rest and is free to move along the 

tube without resistance. It is required to find the subsequent states of the gas and 

the motion of the piston. 

Under the pressure exerted by the gas the piston begins to move, and wave-motion 

of finite amplitude is set up in the gas. The waves are plane. The theory of plane 

waves of expansion of finite amplitude has been the subject of much study,f chiefly 

in connection with the question of the initiation and maintenance of surfaces of 

discontinuity. The difficulties associated with this question do not arise in Lagrange’s 

problem, because the waves that are generated are always waves of rarefaction, and 

there is no tendency to discontinuity in waves of this type. Among the results that 

have been obtained in the theory of plane waves of finite amplitude, two are specially 

important for our present purpose. The first of these is that there exist waves of the 

type known as “ progressive waves,” and that they are the only ones that can advance 

without discontinuity into gas at rest. They are sometimes described as “ motions 

compatible with rest.”J The second important result is that the equations governing 

the propagation of waves which are not compatible with rest can be integrated.§ Such 

waves will be described in the sequel as “ compound waves.” 

The most important writings in which Lagrange’s problem is dealt with are the 

memoir of Hugoniot cited above, H. Hadamard’s ‘ Legons sur la Propagation des 

Ondes,’ Paris, 1903, and a memoir by F. Gossot and II. Liouville in ‘ Memorial des 

Poudres et Salpetres,’ vol. 17, 1914, p. 1. 

The problem is not rendered essentially more difficult if it is supposed that the 

segment of the tube occupied by gas is bounded by two movable pistons of given 

masses. Provision can be made for the case of a fixed end by taking the masses of 

the two pistons to be equal, for then there is never any velocity at the section midway 

between them. 

The tube will be thought of as running from left to right. When the pistons begin 

to move progressive waves set out, one from the left-hand piston with a front proceeding 

towards the right, the other from the right-hand piston with a front proceeding towards 

the left. These waves meet at the middle section, and from that section there then 

sets out a compound wave, which has an advancing front, proceeding towards the right, 

and a receding front proceeding towards the left. This wave will be described as the 

* S. D. Poisson, “ Formules relatives au Mouvement du Boulet . • • extraites des Manuscrits de 

Lagrange,” Paris, ‘ J. Ec. Pol.,’ call. 21 (1832). 

f Reference may be made to Lamb’s ‘ Hydrodynamics,’ cli. 10. 

f H. Hugoniot, Paris, ‘ J. Ec. Pol.,’ call. 57 (1887) and call. 58 (1889). 

§ B. Riemann, 1 Gottingen Abli.,’ vol. 8 (1859-60) ; also £ Ges. math. Werke,’ Leipzig, 1876, 

p. 145. 

2 B 2 
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“ first middle wave.” When the advancing and receding fronts of the first middle 

wave reach the pistons the original progressive waves are obliterated, reflexions take 

place at the pistons, and new compound waves are generated at the pistons and encroach 

upon the first middle wave. These waves will be described as the “ first reflected 

wave from the left ” (or “ from the right ” as the case may be). The reflected waves 

meet at or near the middle section, from which there then sets out a new compound 

wave called the “ second middle wave.” This wave again has two fronts, one advancing 

and encroaching upon the first reflected wave from the right, and the other receding 

and encroaching upon the first reflected wave from the left. The two fronts eventually 

reach the pistons, and then the second middle wave will have obliterated the first 

reflected waves, and will itself be reflected so as to give rise to new compound waves 

setting out from the pistons. These will be called the “ second reflected wave from 

the left ” (or “ from the right ” as the case may be). The motion goes on in this way 

until a piston reaches an end of the tube if the tube is of finite length. 

In what follows Articles 2-9 are devoted to giving such an account of the theory 

of plane waves of finite amplitude as seems to be necessary for the discussion of the 

problem. Although so much has been written about the subject, it appears to be 

impossible to find what is wanted in a suitable form. Articles 10, 11 contain the formulas 

relating to the two progressive waves. These are already known from the work of 

Gossot and Liouville, but it seemed to be desirable, for the sake of completeness, 

to obtain them anew. Articles 12-17 deal with the first middle wave. Sufficient 

indications of the method of determining this wave have been given by the same writers 

for the case of equal pistons. The really formidable difficulties of the problem begin 

to present themselves when an attenqit is made to discuss the waves reflected from 

the moving pistons. In Articles 18-25 an approximate method of solution is found. 

It seems to be capable of giving results for the first reflected waves correct to any desired 

order of accuracy. In Articles 26-31 the second middle wave is determined. However 

far the approximation to the first reflected waves is carried, the second middle wave 

answering to them can be found by the method here given. Articles 32-40 are devoted 

to the determination of the second reflected waves. The method used for the first 

reflected waves does not give a sufficiently close approximation, and a new method is 

applied. Numerical calculation of a particular example showed that all information 

that can be of practical importance may be obtained from a solution which does not 

go beyond the determination of these waves. The results of this calculation belong 

properly to the second part of the paper. 

Theory of Plane Waves of Finite Amplitude. 

2. General Equations.—The motion is supposed to take place in an unlimited straight 

tube of uniform cross-section «. Let x be a co-ordinate measured along the tube, 

and specifying the position at time t of a plane of particles, which, when t — 0, is in 
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the position specified by x0. At the time t = 0 the gas is supposed to be at rest. Let 

p0 and p0 denote the undisturbed pressure and density, supposed uniform, and let p, 

p, u denote the pressure, density and velocity at time t for the particles specified by x0. 

The equation of continuity is 

and the equation of motion is 

dx 

Pten = P°> 

d2x dx _ dp 

dt~ dxn dx0 

On introducing u, which is dx/dt, these equations become 

du _ p0 dp du 

dx0 p2 dt ’ dt 

1_ dp 

po 

It is supposed that p is a uniform function of p, and it is convenient to introduce, 

after Riemann, a quantity a- by the defining equation 

d°=) V {%) dp 
and the condition that 0 when 

~+njp- = o, 
ct ex.. 

0. Then the equations become 

du M+III = 0' -0 

where II is a function of p defined by the equation 

II _ P_ 

Po /©• 
The quantity II, which is of the dimensions of a velocity, may be regarded as a known 

function of <x. The value of II when p — p{) is the velocity of sound waves of small 

amplitude in the undisturbed state of the gas. This will be denoted by a. The equations 

are of Lagrangian type, and £0 and t are the independent variables, idle quantities 

p and p, like II, can be regarded as known functions of <r. The value of a- when p = p„ 

will be denoted by <ru. 

3. Progressive Waves.—Two quantities r and s may be introduced, after Riemann, 

by the equations 

<t+u = 2 r, (t—u = 2s, 
or 

a — r + s, u — r—s. 

The equations of continuity and motion then give the two equations 
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If s is constant, the second of these equations becomes an identity, and the first can 

be integrated in the form 
r = F (x0—Il£), 

where F denotes an arbitrary function. This can be proved easily, and the equation 

can be written 
X0-Ut = /(<r). 

In lilce manner, when r is constant, the first of the two equations becomes an identity, 

and the second can be integrated in the form 

Xo+Ut =f(a■). 

A motion with constant r or constant s is described as a “ progressive wave.” A 

wave with constant s is propagated in the direction of increase of x, with velocity II, 

which depends upon the constant value of s and the local value of r. This is the velocity 

relative to the medium, not the velocity relative to the tube. Similar statements hold 

for a wave of constant r. 

4. Motion of a Junction.—When a wave is transmitted into gas at rest, or into a 

region where there is some other state of motion, there may be discontinuity in the 

values of the pressure, &c., in the two regions separated by the front of the wave. We 

consider here the case where there is no such discontinuity, but, while the pressure, 

&c., have the same values on the two sides of any plane x = const., the laws of variation 

of these quantities on the two sides of a wave-front are different. We describe such 

a moving wave-front as a “ junction.” Our immediate object is to determine the 

velocity of a junction relative to the medium. We shall attain this object by supposing 

that there are very slight differences between the values of any of the quantities on 

the two sides of the wave-front. 

Let w denote the velocity of the junction relative to the medium. In a very short 

time St a mass equal to p^w St has its motion and state changed from those specified 

by u, p, p, to those specified by u + Au, p -f- Ap, p -f Ap. The increment of 

momentum must be equal to the impulse of the difference of pressure, and therefore 

we have the equation 
p0ww St Au = o) Ap St. 

Further, the work done during the interval St by the external pressures on the ends 

of this element of mass must be equal to the sum of the increments of the kinetic and 

intrinsic energies of the element. Now the changes of state being adiabatic and very 

slight, the increment of the intrinsic energy per unit of mass may be put equal to 

-pA(l/P), 

and therefore we have the equation 

a>(p+Ap)(u + Au)St — apuSt = Tfp0wlV St {(m+Aw)‘-M2| —p0cowStpA(l/p). 
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The two equations containing Ap and Au give 

Ap = p0w A u 
and 

p Au + u Ap — p0wu Au + p0w (p/p2) Ap. 

The terms uAp and ppvuAa in the second of these equations cancel, and then, by 

eliminating Au between the two equations, we find 

9 p2 Ap 
w = 2 pr~ 

Po &P 

Since there is no actual discontinuity and p is a uniform function of p, we may replace 

Ap/Ap by dp/dp, and thus obtain the equation 

ivu = 
p2 dp 

p2 dp 

which shows that the velocity of the junction relative to the medium is that which 

was previously denoted by 11. 

If motion is set up in one part of the gas, and advances into previously undisturbed 

gas, the value of p at the junction is po, and therefore the velocity of the front of the 

wave, relative to the medium or to the tube, is that which has been denoted by a. 

5. Nature of the Motion in a Compound Wave.—Important results can be obtained by 

regarding x0 and t as functions of r and s. On interchanging the dependent and inde¬ 

pendent variables in the equations 

— + JT— = 0 — -II — =0 
dt 0XO ’ dt dx0 

we obtain the equations 
dX0 _ TT ft _ Q 

05 05 

0X°+n^ = 0. 
dr dr 

Now the differentials of x0 and t are always connected with those of r and s by the 

formulae 

dx0 = 
dx0 

dr 
dr+d-^ds, 

05 
dt = ?^-dr+^ds. 

dr 05 

Hence the places in the medium, and the times, at which any particular value of r is 

found, vary according to the formulae 

dx0 = ^ ds = II ^ ds, 
05 05 

dt — ds — 
05 

and thus it appears that any value of r is transmitted through the medium, in the 

direction of increase of x, with the velocity II. In like manner it can be shown that 

any value of s is transmitted in the opposite direction with the same local velocity. 
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We have seen that the velocity of a junction relative to the medium is the value of 

II at the junction, and it follows that the value of r remains constant along a junction 

which travels in the direction of increase of x. If the junction travels in the opposite 

direction, the value of s at the junction remains constant. 

The motion consequent upon any initial conditions consists in the transfer of the 

existing values of r and s through the medium with the variable velocity already described. 

New values of r and s can be generated at boundaries and transferred through the 

medium. 

6. General Analysis of Compound Waves.—When the dependent and independent 

variables are interchanged in the equations 

^ + n|^ = o, 
dt dx0 

dU T-r 0<T +n — 
dt dx„ 

= 0, 

there result the equations 

a t 3X0 TT 

du da 
= 0, 

da du 
- 0. 

The first of these shows that there exists a function Z of a and u which has the properties 

expressed by the equations 

x0 = - II t = 
az 
du 

and then the second shows that Z satisfies the differential equation 

d_ 

da 
- 0. 

If Z can be found in accordance with this equation, the values of xt) and t answering 

to any simultaneous value of a and u can be deduced. 

There is a relation between Z and x, which can be obtained very simply by introducing 

for a moment a quantity m by the equation 

^ = a//3’ 
for then we have 

-^=-^dP = dm, 
11 p 

and it follows that we have at once 

X,, — 
az 
CV3 

7T5 — 
dx 

dxt, 

t = 

u 

r X 

du 

dx 

dt ' 

and 
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These are the relations of duality familiar in discussions of partial differential equations,* 

and we may put 
dx z x0 

, dx 

dx0+t dt ' 

Actually Z could differ from the right-hand member of this equation by a constant, 

but as such a constant woidd be irrelevant, the above will be taken as the relation 

between Z and x. 

The equation satisfied by Z can be written in either of the forms 

or 

0^z (~Ldii)dz_vz 
da-2 \II Cla) 3<x 3U2 

d2Z fJ_dll)fcZ 3Z' 

dr 05 \2II d<rj\dr ds / 
- 0. 

7. Relation between Pressure and Density.—The analysis of the problem is not rendered 

more difficult if the adiabatic relation between pressure p and volume v is taken in 

the form p (v — b)y = const, instead of the more ordinary form pvy = const., and 

the former is more suitable for the applications which we have in view. We shall 

accordingly take the relation between pressure and density to be 

IV 
d> p[-~} =p%r~d) 

i iV 

d —pi I_ 

Po fi-p 

\(y—1)/2 

where (3 and y are constants. Then the following results can be obtained without 

difficulty :— 

_ * 2 J Poy(fi-po)' 

y— 1 I. fipo 

9’ i p„y (ft—p<>) 

dpo 
Tn 

— 1 

a _ f po yd 

Pn{d — Po)j 

P = P» (o-/o-0)2n+1, 

II = a(o-/o-0)2n, 

where 2n has been written for (y + l)/(y — 1). 

The equation for Z can now be written 

S2Z . 2n cZ b2Z 
\ ^2 
)(T OU 

+ 

or 
92Z 

dr ds 
+ _»_ (P + 3Z'| = 0. 

r + s\dr os. 

* The reduction of the equations governing the propagation of plane waves of finite amplitude to a 

single partial differential equation of the second order was effected byRiEMANN, who worked with “ Eulerian 

equations. The use of the principle of duality to connect Z and x was noted by Hadamard. 

C VOL. CCXXII.—A. 
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8. Integration of the Equation in Special Cases.—When n is a positive integer, the 

equation can be integrated. We write for a moment D for cj?u, and observe that, if 

D were a constant, the equation 

02Z 2n 0Z 

0(T2 
+ - D2Z = 0 

would be a form of Riccati’s equation, and could be integrated in the form 

z = (I i-V-1 (g<TDA+e~aDB), 
\cr Her: u 

where A and B are independent of a. Treating them as functions of u, we obtain the 

general primitive of the equation for Z in the form 

+ u) +f — 

<T j 

9. More General Integration.—Interpreting the variables r and s as the co-ordinates 

of a point in a plane, Riemann showed how to integrate the equation for Z when the 

values of this function and its first differential coefficients are given along an arc of a 

curve in the plane. If A" satisfies the “ adjoint ” equation 

caY 

dr ds 

f 
—11 

Y 

the integral 

J jv (A 
or L 

. + ^ 
cs r + s 

-h — 
cr 0s/ \r + s 

_ 1 [z (W 
ds r \ dr 

= 0,- 

nV 

r + sJ J _ 
dr ds, 

taken over any area in the plane, is equal to 

JI V CS ^ or c.s 
+ 

n 

r + s 

)Z 
■> 
CS / 

c V 

3r 0s 
—n 

\ 

or r + s 
dr ds. 

and therefore vanishes. It follows that the line-integral 

3Z nZ 

ds r + S/ 
*+z(A nX 

7- + S 

taken round the boundary of the area vanishes. 

Let the values of Z and its first differential coefficients be given along an arc AC of a 

curve, and let P be a point which is not on the arc. Through P let lines PA and PC 

be drawn parallel to the axes of r and s, and let the area of integration be that bounded 
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by the arc AC and the lines CP and PA. 

integral is 

I V J CP 

cZ nZ ' 

\ ds + r + s 
ds, 

which may be written 

[vzi- [vz]c- f 
JCP OS r + sj 

The contribution of CP to the line- 

~.c 

The contribution of PA to the line-integral is 

L av nV 

dr r + s 
dr. 

- Y 

Fig. 1. 

Now we can find a function to satisfy the equation for V, to make V = 1 at P, and 

so that, along CP, where r has the same value as at P, 3V/ds = nV/(r + s), and along 

PA, where 6- has the same value as at P, 3V/3r — nV/(r + s). Then the value of 

Z at P is 

[VZ]C- 
AC 

V az ■ "Z-U+zf---^ 
\ or r + sj 

o + , 
cs r + sj 

) dr. 

The required function V can be shown, after Riemann, to be given by the equation 

V = ,vB) *<«> !-«- l.f), / | o 

where F is the symbol for the hypergeometric series, 

(r-F) js-s') 

{r + s) (r' + s') ’ 

and r', s' are the co-ordinates of P. 

It may be observed that if n is an integer the series terminates, and V like Z is 

expressible in a finite form. 

It will be useful hereafter to note the formulse 

0V nV 

dr i ■ + s 

3V nV 

ds r + s 

_ (r + s)11 ~ (s + /) (,s- — s') y / 

(r' + .s')n+1 dr 1 

_ (r + 6-)'‘~2 (r + s') (r — r') d y , 

(r' + s')n+1 dr K ’ 

1 —n, 1, £), 

1 —n, 1, 0- 

The Progressive Waves in Lagrange’s Problem. 

10. The Progressive Wave from the Left.—Let the positive sense of the axis of x be 

from left to right, and let the initial positions of the two pistons be given by x0 = 0 

and x0 — c, where c is positive. We shall denote the mass of the piston at x0 = 0 by 

M, and that of the other piston by m. 

2 c 2 
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The progressive wave generated at the piston M is determined by the equation of 

motion of this piston. This equation is 

M cu 
M a7 = -(’yP> 

and it must hold at x0 = 0 for all positive values of t. It may be written 

\ 2n + l 
r C U [ (X 

M—- = —«Po( — 
dr 

and, since in the progressive wave s is constant and equal to -br,,, or a- 

clt = — 

u = <r0, ]t 

gives 
M Irr \2»+l 
M /5e) dc 

Mpo \er 

from which, since a = <x0 when t — 0. we have at x0 = 0 

t_ M<r0 ;y„y p 
2nu>p0\\rr / J 

Put for brevity 
H = M cr0CT / 2 y , 

then we have the values of <r and / at x{] — 0 connected by the equation 

Now in the progressive wave we have 

."r0-IP =f(rr), 

where the function / is to be found from the condition that at x0 = 0 the above relation 

holds between <r and t. Hence we find 

/w=-h{i-Q t 
and the progressive wave formula can lie written 

at + H fey- 

x0 + R VJ 

In the motion described by these formulae any plane of particles, specified by a value 

of in the interval \c > xv > 0, remains at rest until t = x0jci, and then moves with a 

velocity u, which is equal to <x — er0. Therefore the value of x answering to these 

particles at any subsequent time is given by the equation 
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or 

x = x0 + dt = ay + 
Zola 

J'<T 

(<To-o-) 
<Z0 

jU 
x0+H 

a 

_ 
0-0 
N7TI aor> 0?o 

x = x0 + — (ay + H) 
ct 

2 n 

2n -1 

This equation holds so long as the plane of particles is in the region occupied by the 

progressive wave. In particular, the displacement of the piston M is given by the 

equation 
2 n 

2 71 — 
I \ H /' 2 n 
[^,-rr) — + I “ 

a 2n — \ 
cr-cr,, 11, 

in which 

a 

Tlie corresponding values of Z are found from the formula 

in which 

to be 

Z 
dx 

OXa 

+ ut—x, 

(•*-' _ A) ft pll p 

0a*o p ’ p0 ft—p 

H ( 2 n _ <t(I 

a \2n— 1 fT" 2n— 1 

11. The Progressive Wave from the Eight.—The equation of motion of the piston 

m is 
cu 

m — = top, 
ot 

and we put 
h = mn-lla/2u(,g)ir 

Since in the progressive wave r is constant and equal to or o- + u — o-0, the values 

of or and / at 2y = c are found to be connected by the equation 

and then the progressive wave formula is found to be 

at + h _ / ajV” _ 

c + h —ay \<t! 

The value of x for any plane of particles specified by a value of ay in the interval 

hc < < c, and for any time later than that given by t = (c — ay)/a, is found to be 

given by the equation 
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x ----- x0+ — (c + h—x0) 
a 

2 n 

L l \ o- / 2n—1 IW 
O”0 

2n—1 

which holds so long as the plane of particles is in the region occupied by the progressive 

wave. In particular, the displacement of the piston m is given by the equation 

2 n / \ h ( 2n \ 
■ = C + ---((ru-(r)- - --- <r-<r0 t, 

2/1—1 a \2n—\ 

in which 

rr ! 

The formula for Z is found to be 

(2n— l) a 0 lAo-/ a 

The First Middle Wave. 

12. Conditions satisfied at the Receding Front.—In the progressive wave from the 

left s is constant and r variable. The greatest value of r, which is the undisturbed value 

1<t0, travels at the front of the wave, and continually diminishing values of r, generated 

at the piston M, travel after it. Similar statements, with r and 5 interchanged, hold 

for the progressive wave from the right. The fronts of both waves travel along the 

tube with velocity a. When they reach the middle section, a compound wave begins 

to be generated there, and transmitted in both directions, encroaching upon the original 

progressive waves. This wave has a receding front, along which s is constant, travelling 

towards the left, and an advancing front, along which r is constant, travelling towards 

the right. The constant values of r and s at the two fronts are equal, and each of them 

IS -Tyc y. 

At the receding front the variations of x0 and t are connected by the equation 

clxt] + II dt = 0, 

while the values of xu, t and a are connected by the progressive wave formula, which 

can be written 

.r„-ID + H (l — 

so that the variations of x0, t and II are connected by the equation 

day— (II dt-\-t dll) — cZII = 0. 
a 
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On elimination of dx0 there results the equation 

2Udt+(t+^jdU = 0, 

which can be integrated in the form 

(t + — ) II = const. 
\ a J 

To determine the constant there is the condition that when x0 = \c and t — \cja, the 

value of II is a. Hence at the receding front we have 

(ai + H)2ri = (!c + H)2a, 

or 
(x0 + H)(^ + H) = (ic + H)2. 

13. Conditions satisfied at the Advancing Front.—At the advancing front we have 

in like manner 

/ h 
dx0—lldt — 0 and c + h—x0 — II it + — ) = 0, 

a! 
leading to 

{at + Kf\\ = {fic + hf a 
and 

(c + h—x0) (at + h) = {fie + h )2. 

14. Conditions determining the First Middle Wave.—It will now be convenient to 

restrict the value of n to be an integer. This happens when y has one of the values 

3, 5/3, 7/5, 9/7, 11/9, . . . With a view to applications, in which the value of y 

is 1-2 nearly, we shall take the value 11/9 for y, or 5 for n. Then in any compound 

wave Z has the form 

(l AY J*'(* + «)+f(<r-u)\ 

V 3cr) 1 (T j 

or 

105cr_9 F (a + u) — 105cr_8 F(I) (cr + u) + 45<r“7 F(2> (cr + u) — lOcr-6 F(3) (cr + u) + cr^5 F<4) (tr + u) 

+ 105o-_9/(cr — u)— 105o-_8/(1) (rr — u) + 45cr“7,/(") (cr — u) — lOcr-6/(3) (cr — ?/) + cr_5/(4) (<r — u), 

where F(1), F(2), and so on stand for the first, second, &c., differential coefficients of 

the function F with respect to its argument. We have to determine the unknown 

functions from the values of Z at the advancing and receding fronts. 

At the advancing front, where r = -|o-0 and o- = |cru -)- s, we have 
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and at the receding front, where s = |<r0 and o- = |o-0 + r, we have 

\9 
'Z = -i-H % \ + S (|<r„-r). 

a l\%<r0 + rj J a ~ 

15. Determination of the First Middle Wave.—To determine Z from these conditions 

we may have recourse to Riemann’s method, taking the curve AC to consist of 

segments of two lines AB and BC, which meet at 

the point B, where r = s — and are parallel 

C b respectively to the axes of s and r. 

We have then 
A 

CP 

Fig. 2. 

This equation is 

J AB 

(f+ 
5Z ^ 

els + j | Z| / 3Y oV 
) dr 

\ ds r + s) J PA V dr r + s/ 

if + 
5Z \ 

\ds + f Z| (SV 5V\ 
1 dr 

\ 0S r + s) ! 'bc \dr r + s) 

[vz]P-[vz]c-1 z(?-—)<*»+f z(A_At 
J cp \ds r + s/ Jpa \dr r + s 

dr 

or 

+ [vz]B-[vz]v-| z(v-—)*+[ 2(!r-—)*■ = <>> 
Jab \cs r + sj Jbc \cr r + s/ 

Z(r'.s') = [VZL-CVZL + tVZt + f^zg--Z(W ~—)dr, 
r + s/ bc \ or r + sj 

where /. s' are the co-ordinates of P. Also at A we have 

r = K « = s', { = 0, V = (1 Z=Mc + h)^U T^-r) -1 - (b»-sf), 
\ r + s J a IA£<r0 + s7 J a 

so that 

\9 
O’,, 1 ha. 

[YZ], = i (c+h)*\.ljrj£fr- h (K-o (tedft 

At B we have 

so that 

At C we have 

aO-'-fs'NK + s')4 Vr' + s' 

Z = 0, t S 2 » j 

r = A » = K i = 0. V = (hkf, Z = — 1H 2t {(i-q-,)”-1 + - (fr.-e), 
\ r +s J ci [\2°'o_tn/ J ci 

[YZ]C = — J,H — __W+^Yl . H/i _ a /icr0 + 7A5 

al(r/ + P)5(K + />')4 V r' + s' ) J + a ^ 0 M r' + s' 

so that 
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Along AB we have 

Z = i (c + h) % { ( V1 _ 1 [ _ 1 (fas), 
a l\^-er0 + .S/ J a 

where 

so that 

rX AX - Li'7" aT'L■...:fi.L(Xo+iii (20 — 18O0 + 42O£2—280£3), 
05 r + s {r' + s'Y v " ~ 

_ (A^-X^-A) 

(r' + s') (i+i + '^) 

(c + A) <Tn 0 1/ u 0 

9« 1 x / -4-hi-.-*) 2trots/ J a 
(K + *0 &-r') 

{r' + s'Y 

20 (!<r0 + .sf + 180 ;^„-7-0(5-^)(^„+5r 
r' + s' 

Along BC we have 

+ 420 V-K-t g ^^o + -v>') +280^°’° r,^* 
(■r' + s')2 {r' + s'f 

ds. 

Z - - AH <r° 
a 

where 

a I VAo-o + r 

hX - XX = fe.+r') (+2.-^3^±!')’ (20— 180f + 420('2 —280<;s), 
dr r + s (r + s )b 

so that 

0Y 5VX 

? _ _ (+°'o~g/) O’ —^0 

'(,•'+*') (K+O 

z +- 
bc \ or r + s 

dr 
Ho-,, J 

l V^CTq + ? 
i} + f(ko-r) 

(Ao-p + H) (Aq-o—X 

(r' + s')6 

20 (A+, + >f + 180 X).X A^)(Xo+.r)“ 

+ 400 (Aa-p—s')2 (r-r'Y (A«r„+r) _ (A<r0-*T (r-r'f 
+ (ffi + .ffi2 +-8U (r' + s'Y 

dr. 
{r' + s'Y 

There is no difficulty in the integrations. After they have been performed, we may 

suppress the accents on r' and s', and so obtain the formula for Z in the first middle 

wave expressed as a function of r and s. We find, for example, as the coefficient of 

(c + //)rr0 0a the expression 

9 /Aq'o+-X (Aq-p + s) (Aq'o—r) 
r + s/ \ r + s (r + s)6 

9f704 —5 (A<t0 + s) 

-i 8 Ho4 - 90rr+ (A°"u + s) + 15 (A<r0 + s)4} 

— X°~"+/ "—-X 1189rr,,4 — 42O0-/ (A+. + *) + 270(T(l2 (Acro + ,<?)“ —35 (Ao-o + s)4} 
(r + s)8 

- {l26o-04—420o-03 (A^u + s) + 540(r02 (A+Ws)2 -315o-0 (A«t0 + s)3 

+ 70 (As-o + s)4}• 

2 D VOL. CCXXII.-A. 
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In this expression we put 

b(T„ — r — (■g'O'o + s) — (?" + s) = 2" (<t0 + rr — u) —rr, 

and find that the expression is the same as 

where 

0i i(T—u) 
i 

Tcrs rf — -r(<T0 + o- — u)° { 126rr04— 21 Oaf (<r0 + fr — u) + 135(T02 ((T0 + cr — ll)2 

— -}~<r0 (rr0 + nr — uf + (<r0 + a — uf} • 

The remaining terms in the expression for Z may be treated in the same way, and we 

obtain finally, as the expression for Z in the first middle wave, 

y _ (C + h) o-Q fl _8 Y J01 {(T — u)I li_ /1 _3 V fft {g-u)\ 

9Cl \<j cm 1 (T j <1 \cr cay { rr j 

_H(T|, A _0_ \4 [ 0! (rr + u)\ _ H / 1_ jf \4 I fi (o- + m) [ 

9a \ rr 3oy' 1 (T J « \(T Ocr/ I. rr j 

in which the expression denoted by 0i has been written down, and f, is given by the 

formula 

fi(o--ri) = - —9 (o-o + cr-u)" (o-u —<T + u)"- 

It may be observed that the differential coefficient of the function <px is given by 

the equation 

0i(1)(rr —= ~ Jf'y-frr —w)4 (rr„ — rr +U)4. 
Zi 

Although the actual calculation of Z is rather long, it is comparatively easy to verify 

that the form obtained satisfies the conditions by which Z was determined. 

16. Transformation of the Formula.—The form taken by Z in the first middle wave 

is 

I 1 ? Y [3>i (<r + u) +'k1(rr-u) l 

Vd~J l 7 1’ 
where 

'hi (rr + U) = — 0! (<r + ll) — — fl (rr + u,), 
y ct w 

Ti ((T — u) = ^ ^ 0-11 01 (rr —w) + - f, (rr—a), 

so that dy and 4y are rational integral functions of the tenth degree. Now it is impor¬ 

tant to observe that when 1 8, 

rr errj {_ rr J 
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while for v — 9 we have 

/'! _o V j ffiT 1 

\<T 007 l O’ J 
(2.4.6 

8)-C£ 
< 

rx 
)9l 
T 

and for c = 10 we have 

/I 3 \4 f(a- + -M)10l 

\<T d<T/ 1 iT j 
2rt (2.4.6.8 . 10) + 

It follows that the expression for Z can be written either in the form 

or in the form 
£f 

Qi (o- + w)\ 
7 J 

+ lvT + L xu, 

z = (-JLV |2iLr!41 +k,+ku, 
\(T per/ [ o- J 

where 

K, = 2 .(2.4.6.8) x the coefficient of (<r—u)9 in dq (cr—u), 

Lj = —2 . (2.4.6.8 .10) x the coefficient of (0-—u)10 in dq (<r—u), 

\ = 2 .(2.4.6.8) x the coefficient of (a- + u)9 in ffi, (<r + u), 

b = 2 .(2.4.6.8.10) x the coefficient of (o- + u)w in ffi, (a- + v), 

and Qt and qx are certain rational integral functions of the 9th degree. The explicit 

expressions are 

Ki = — ^ (c + h) (o-Ja), L, = —lila, - gH<rja, h = — H/a, 

+ ~945~x 2^] (315<r°8 ^ + u)-^^o{cr + uy + S7S(r0i(<T + uy 

— 180o-02 (fr + n)‘ + 35 (<r + u)9}, 

and qx (cr—u) is obtained from Qj (ar + 11) by writing — (cr—u) for (er + u). 

17. Incidence of the First Middle Wave on the Pistons.—The values of all the quantities 

at the piston M, at the instant when the first middle wave reaches it, are to be found 

from the formulae, connected with the receding front of the wave, by putting x0 = 0. 

We see that the receding front reaches the piston M at the time T1} where 

T _ (h+W _ 1 
«H a ’ 

that the corresponding value of o- is 2l5 where 
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that the corresponding values of r, s, u are R,, Sl5 Uu where 

Rj — 2^"0) ^5] — 2°"u) U"j {rr0 ■—'l)) 

and that the corresponding value of Z is Zl3 where 

7   H Jj.il_ y hi h 
A ” ~ l'1’ ^ W1 6 \zj I a 

In like manner we see that the advancing front reaches the piston m at the time 

tu where 

, (h+h)2 h 
ah a ’ 

and that the corresponding values of a, r, s, u, Z, are a-,, r1} su uu zu where 

/. yu 
ft' \ x / 1 \ 

7\ — “2cr0, — Wi zh), — °"o °T> °T — \ i Fc + hJ 

The First Reflected Waves. 

18. Conditions determining the First Reflected Wave from the Left.—After the instant 

t — T] the formulae belonging to the progressive wave from the left cease to hold in 

the neighbourhood of x0 = 0, and a new compound wave, the first reflected wave from 

the left, is generated there and encroaches upon the first middle wave. The junction 

is characterized by the value R, of r. The conditions determining the reflected wave 

are the condition which holds at the junction, where r = R1; and the condition which 

holds at the piston, where xl} = 0. It is further necessary that x0 should vanish when 

r = Rl and s = Si. 

The condition which holds at the junction is that the value of Z, calculated from 

the formulae belonging to the reflected wave, should be equal to that calculated from 

the formulae belonging to the first middle wave when r = Rx. The condition which 

holds at the piston is the equation of motion of the piston, viz., that at x0 = 0 

du 
M = 

The condition that xl} should vanish when r = R: and s = Sx is the condition that 

oZfdar should vanish for these values of r and s. 

To express the condition which holds at the piston in terms of Z we substitute 

p0 (cr/cro)11 for jo, and 
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for nufct. Then we have 

M 9^0 _ _i(T \u / 9>r0 dl 9a'0 dt \ 
o»p0 9(7 \(r0y \9<r 9u 9u 9or / 

Again we substitute — II 9Z/9a for x0 and 9Z/9u for t, and put 9Z/9<r — 0, obtaining 

the equation 
9^Z ffiZ _ / 92Z \2 = _ 10IW0 9dZ. 

9(72 9U2 \dcrdvj a<ru 9o-2' 

The condition which holds at the junction is that 

Z — V J kb (q- + U 
\rr daj 1 (7 

)l + + LjU 

for all values of <r and u for which o- + u = 2R:. 

19. Determination of the First Reflected Wave from the Left.—These conditions can be 

satisfied by assuming for Z the form 

Z = f-+ 
\(7 err 

i 9 Y/Fik+y) + Ki + Lj u, 
<7 

expanding the unknown function F, in the series 

Fi (cr+w) — A0 + Aj (cr + u—2li,) +A2(rr+u — 21k)2 + ..., 

and finding the coefficients of this series. 

The condition which holds at the junction determines the coefficients A0, A,, ..., A4. 

The condition that 9Z/9o- vanishes when r = lb and s = S: determines the coefficient A ,. 

The remaining coefficients are to be determined by the condition which holds at the 

piston. 

We have 

Z = 105 F,0+«) tuPWO+O , ,UVJI0+«) 45 

-10 F,(a (<r + «) ^ F,«U+o) , J, 
+ Kj + LiU, 

from which we find 

K = 0,(28,), A, = 0«'(2K,), 2! A, = Q,I2I(2K,). 31 A,- Q,«(2B,), 4! A, = Q,»(2B,). 

We have also 

9Z q . r 
= —94o Ul±u) +!)45 F»'(^ + m) „,,-,FiaO + ») 

10 420- 
cr cr 

+ 105 
F,B)Q + «) _ Wm) 

cr" (7 or 
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and the condition that this vanishes when r = R, and s = S, gives 

— U45Al]+945^_4202^A, + io5?1^ —15ii^ + ^||5 = Or 

thus determining the coefficient A5. It is seen easily that 5! A5 = Q1(5)(2RJ). lllo UUUCLIillJULIllg rllG AAJclllL JLcIl u xA.5. J. U IS StJtUl f ctMlJ UJld U D i 2A5 = 

Now when cZ/ro- = 0 the differential equation for Z shows that 

02Z 02Z 

Also we have in general 
a-x2 du2 

^=105F"^tl)-105^^+J5F“'h+"l-10F"^+B) + ^ 
OU2 cr9 <ts o-' crb 

™ = -945F-,1><y»)+a45P<3h+it)-420F'°1h + M) \ y 
ccrcll 

, lQ5W*(<r + u) 15W»i* + u) F/6) (o- + n) 
cr7 <r6 a5 

and therefore when PZ/ro- = 0 we have the equation 

(T^{ 105F/2) -105<rF ® + ±5<t2F1w -1 O^F/5’ + ^F®}2 

-{945F1(1)-945o-F](2) + 420<r2F1(3)-105o-3F1(<)+15(r4F1(5)-a-5F1(6)}2 

+1 OH (<r010/rt){105F/2' — 105o-Fj(3) + 45cr2Fj(4) — 1 OtFF/'^ + eFF/65} = 0 

as well as the equation 

9 4 5 F, — 9 4 5 <tF:n) + 4 2 0a2F'(2) -10 5 o-3F,(3) 

The equation expressing the condition which holds at the piston is linear in F/6’, 

and therefore can be solved for F,(i;) without ambiguity. As it holds for r = lb and 

s = Si, it determines the coefficient A,;. The equation in question holds for all values 

of <7 and u for which the equation expressing the vanishing of cZ/ca- holds, and it can 

therefore be differentiated totally with respect to cr. u being treated as a function of <r 

in accordance with the equation cZ/oo- = 0. This process yields an equation which 

determines the coefficient A; without ambiguity. A second differentiation yields an 

equation from which the value of the coefficient As may be found. By proceeding in 

this way we may obtain as many of the coefficients A as we wish. 

This method of determining the coefficients A,,, A7, ... is not very well adapted to 

numerical computation, and other methods will be explained presently. 

20. Determination of the First Deflected Wave from the Right.—The junction of the 

reflected wave and the first middle wave is characterised by the value of s. The 

conditions determining the reflected wave are the condition which holds at the junction, 

where s = su and the condition which holds at the piston, where = c. Further, 

x0 must be equal to c when r = rx and s = s,. 
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At the junction, where s = su the value of Z must be the same whether it is found 

from the formulae belonging to the reflected wave or from those belonging to the first 

middle wave. At = c the equation of motion of the piston, viz., the equation 

dll 
m— = orp 

must hold. The equation — 11 cZfdcr = c must hold at r = r, and s = s\. 

To express these conditions it is convenient to write 

then Z' satisfies the same differential equation as Z, and cZ'/co- vanishes when xt, = c. 

The condition which holds at the junction is that 

z = (- ff +kl+i,u 
\<T dcr/ l cr J 

for all values of a and u for which cr — u = 2sj. 

The condition which holds at the piston is that 

FZ' _ / d2Z' Y = lOAo-,,10 FZ' 
dcr2 du2 dcr on) acr11 dcr" 

when dZ'/dtr — 0. 

These conditions can be satisfied by assuming for Z the form 

z = (I A4 1 ! cor,,11 , v — f ----1- /, (cr — u) 
cr j 945a J V 

+ k\ + k i'll, 

expanding the unknown function /j in the series 

f\ — a0 + ax (cr — u — 2+) + a2 (cr — u — '2sx)2 + .... 

and finding the coefficients of this series. 

For the coefficients a0, o1} ..., we find 

®o + 
Ccr, 

Hi 

945a 
= q, (2s:), ax = q1(1,(2.?1), 2! a2 = q1(a)(2s1), 3! a3 = q1(3)(2.sq), 4! a4 = (2s,). 

The coefficient a, is given by the equation 

a„ 
-945^+945^-420 

a Q * 

O’, 
2 + 1053-15 

4! a4 5 ! a- 
— + -A = 0. 

a, cr, cr, cr, 

The remaining coefficients can be determined from the condition which holds at the 

piston in the same way as the corresponding coefficients in the formula belonging to 

the first reflected wave from the left could be determined. 
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21. Relation between Pressure and Velocity at a Piston.—The equation in terms of 

cr and u, which holds for the first reflected wave from the left at x0 = 0, is the relation 

between the pressure on the piston M and its velocity during the time that the wave 

is being generated. It may also be interpreted as the equation of a certain locus in the 

plane of r and s. This locus passes through the point (Ifi, Sj), and we may take its 

equation to be of the form 

-R, = B, (a-S.) + (B/£,) + (B.,/2,a) (s-SJ’ + 

Now if the coefficients B were known, we could determine x0, as a function of r and s, 

from the known value, zero, of the function along the locus and the values of its differen¬ 

tial coefficients along the same curve. These differential coefficients also are known 

along the locus. To prove this and obtain formuke for these differential coefficients, 

we write X for x0 and observe that the equations of Article 6 show that X satisfies 

the differential equation 

A /19X\ =i/F?X\| 
dll ' 11 du) da II da 

which can be written either in the form 

ffix_ ioax_^x = ( 
ccr1 or da du2 

or in the form 
a2x 5 /ax 9X\ _ 

dr ds r + s \ dr ds / 

Further at x0 = 0 we have 

and 

where dajdu is to be found from the equation connecting r and s. Thus we have along 

this locus 

The equation for X is similar in form to that for Z, and may be solved by Riemann's 

method. When this is done the coefficients B in the equation of the locus may be 

determined by identifying the values of X at r = Rx with those given for x0 by the 

formulae for the first middle wave. 
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22. Integration of the Equation for X.—We write tlie equation 

a2x 5 /ax , ax\ _ n 
"1—^— ) — U, 

dr 8s r+s \ 3r 3s 

and consider also a function Y which satisfies the adjoint equation 

Y 
a’Y ■ 5 (A+ 3) + = 0. 

Then the integral 

dr ds \dr . 3 s/ \r + sj 

/3X 5XY1 3 [X/3Y | 5Y 

dr \ds r + s/} 06* l \dr ' r + s. 
dr ds 

taken over any area in the plane of (r, s) 

vanishes, and therefore the integral 

[Y(S#- —) ds + x( ~ + —) dr 
J \ 3s r + s/ \ dr r + sJ 

taken round the boundary of the area also 

vanishes. 

We take the area of integration to be 

bounded by an arc of the locus along which 

X = 0, and two lines parallel to the axes of s and r and meeting at the point P. where 

r = r’ and s = sf. Let these be the lines PA and PC. Then we have 

A + ^U+f Y("P_iXU+x/3Y^Y 

= 0, 

Fig. 3. 

[Yx]a_ [yx]p- jpix^i + JacY^ - 

+ f x(A+^)*- 

or, since X = 0 on the arc AC, 

[YX]P = j Y jfds— J x(^ + iL)*+f X(^Y 
Jac 3s J pa \ds r + s1 Jcp \dr r 

cp \dr r + s 

3Y 5Y 

+ s 
dr 

We choose Y so that, at P, Y = 1, along PA, where r = /, 3Y/3s — — 5Y/(r + s), 

and along CP, where s = sf, cYjdr — — 5Yj(r + s). Then the value of X at P is 

The requisite form of Y is 

Y = 

Jac 

r' + s'\5 

Y A ds. 
j ds 

r + s 
F(0, -5, 1, D, 

2 E VOL. CCXXII.-A . 
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where 

and we have 

_ (r-rp (s-sp 

i (r' + s') (r + s) ’ 

X(r', S')=f 
Jac \ocr au j 

1+ ^ 

= I Y —-L (d--1) du 
Jac <t ^ fda\ ~ \du 

\duj 

= -5H - */. 
Acer 

23. Determination of the Coefficients B.—The integral | (Y/cr)du may be evaluated 
Jac 

approximately by assuming, as in Article 21, that the equation of the locus, of which 

AC is an arc, is of the form 

(r-RO/Zj - B^+B^+B3^3+..., 

where S stands for (s — Sp/Z^ Then along AC we have 

u-Ux = S1{(B1-1)^+BA2 + B:/+...}, 

du = Zx {(B1-l)+2B2<S+3B3«Sa+...} dS, 

I = (AqT E +80 (q-D (»-+210 (7 A (y f+. 
o- cr* [ (r' + Spcr (A + Sp2cr2 J 

Also any inverse power of a can be expanded in powers of 0 by means of the equations 

o- = Zx {1 + (Bx +1) S + BA2 + B:i<b +...}, 

<r~K = 2rCi-f 
(T —Z, . K (k+ l) f<T — N J2 

which give 

+ 
2! 

rr~K — V -K U - d2 i-UB1+i)j-{,b2-Ao_1)(b1+i) 

- [*,-,(.+1) (B. +1) B2+ ill±Pi£±2) (B1 +1)»| s> 

- t-B.- AnP b2>-« (<+i) (b1+1) b8+ ^+iH..-+2) (B,+If B2 

(B. + l)‘ i*- _ y(/c+f)('c + ^)(/c + S) 
4! 

To obtain the expression for X on r = Rx we have to put Bx for r', so that 

r-r' = 21(B1^+B/ + B3^+...), 
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and for s —s' we have to put t1(S—S>), where S' stands for (s' — SJ/Sj. If the expan¬ 

sions are carried as far as the fourth order, the result is that, to the fifth order in S', 

(Y/<r)du = (Bj —1) <$'+ {B2— (3Bj —2) (Bj —1)} S'2 
AC 

+ (B3-3B2(2B1-1) + (7B12-6B1 + 2)(B1-1)} J'3 

+ {B4-2B3(3B1-l)-3B/+|-B2(42B12-33B1 + 5) 

-|(28B18-21B12 + 9B1-2)(B1-1)}<5'4 

+ {B5-iB4(30B1-7)-6B2B3+TLrB3(210B12-108B1 + 7) 

+ £B22 (105B4-27) -lYB, (560B43-462B42 + 81B, - 7) 

+ H126B14-56B13 + 21B12-6B1+1)(B1-1)} S'5. 

Now at any point (Rx, s') on r = R4 the formula for the first middle wave gives 

Xa = + Kj + L {ii 

a 

cr„ 
■945Q, (2Rj) +9450-Q/13 (2R4) -420cr2Q1(3) (2R4) + 105o-3Q4(3) (2R,) 

-1(2R,) +o-5Q1(5) (2R4)}, 

in which we have to put cr = ^1(1+^'). Then, since x0 vanishes with S', we have 

without any approximation 

*0 = - ^ [{945Z1Q1(1) (2R,) -8402^ ® (2R>) + 315213Q1(3) (2R4) -60^14Q1(4).(2B1) 

+ 5215Q1(5)(2B1)} S' 

+ { — 420212Q1(2)(2R1) + 315213Q1(3)(2B1) — 90214Q1(4)(2R1) +10215Q1(5)(2R1)} S'2 

+ {1052i3Q1(3)(2R1) -60214Q1(4)(2R1) + 10215Q1(5)(2R1)} <i'3 

+ { -15214Q«(2R1) + 5215Q1(5)(2R1)} «i'4 

+ 215Q1(5)(2R1)r], 

The coefficients B1} ... , B, can be determined successively by equating the 

coefficients of powers of S' in the expressions for I (Yfa) du and —x0/5H. If 
Jac 

additional coefficients B6, , are desired, they may be found by equating to zero 

the coefficients of powers of S' higher than the fifth in the expansion of (Yfa) du. 
Jac 

The expansion of x0 (R4, s') in powers of S' may, of course, be found from the expression 

for Z in the first middle wave without transformation to the Q form. In particular it 

may be proved that B4 = 6 — 4S4/or0. 

24. Second Method of determining the Coefficients A.—When the coefficients B are 

known, the coefficients A6, ... may be found in the following way. 

2 e 2 
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Since x0, which is — a (0-/0-0)10 9Z/cV, vanishes at all points of the locus 

*-B, = P, (s-S1) + (Bi/2])(s-S1)2 + (Ba/213) (s-S, 

the expression 

945F!(2?’) — 945crF1<1)(2r) + 420<x2F1(2)(2r) — 105cr3F1(3)(2r) + 15o-4F1(4)(2r) — cr5F1(o)(2r), 

in which 
F, (2r) = A0 + A1(2r-2R1) + A2(2r-2R1)2 + ..., 

must become identically zero on substitution of 

for r—Rx and of 
(B^ + B2<52+B3d3 + ...) 

21{l+(B1 + l)<S+B83a+B838+...} 

for rr. Now the powers of cr/Sj and (r — ~R1)/%1 can all be expanded in powers of S, 

and then the coefficients of the powers of $ in the expansion of 

can be ecpiated severally to zero. The equations thus arising give the values of 

A6, A7, ... , successively. Suppressing the algebra, which is rather long, we may write 

down the results in the following form :— 

The equation for A6 is 

The equation for A7 is 

2B1^4wtI = 2B12(945 ^-945 +420 
Z{ \ 2/! 2/j Zi 

+ 2B, (Bx+1) 

(B1 + l)2(420 

!LAi_i05 5-^ + 15 — 
v 6 -v 5 1 % 
z-1 - 

5! 945 2^ + 840 3^ _ 3:5 4__A4 + 60 5_ 

^-315^ + 90^-10^ 

+ B2^945 ^ —1050 + 525 ^^-150 ilA-4+25 
V • wj "1 —1' ■—1 

+ 
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The equation for A8 is 

8! As 3! A, 4Bi3 ^8 = 46,3/945 Ai_f^_945 iIAi+420 5! As inc 6! A, , 1C 7! A7\ 
2 5 ■105 

2‘+i5^v 

+ 6B12(B1 + l)(-945 ?iAi+840RA-315^#;+60iiA-5B4l' 
\ ^1 ^1 ^1 / 

+ 6B1(B1+1)3(420 ^ ^ -315 4 : ^4 _l an ^ ‘ _ i n (j • + 90 V 5 -10 
V 4 

+ 3 (B4 + l)3 ( -105 44+60 4 • i _ y q 5 ! A,^ 
V « n V 5 / «] / 

+ 6B1B2(945%4-2-1050^2 + 525^4-4-150^^ + 25^4l6-2^A7 
■^i . 

5* 8 
-1! 

3! A, 
+ 3(B1+1)B2(-1050^A2 + 1050 ■450 

4! A4 , 4 AA 5 ! A, , 6! A, 
? e 100 S' 5 -'1 

10 V 4 ^1 

+ 3B3 ( 945— —1050 + 525 
\ -'I —a' 

3|Ai,_150 4LA4 iOS5!A5 

"l6 
+ 25 S' 5 -n 

_o 6 • Ac 
V 4 ^1 

The equation for A9 is 

2Bj 
49! An 

2Bj4 945 
4! A4 

S' 6 
^1 

— —945 
5! A 

+ 4B13(B1 + 1) ( -945 

V 5 ■+ 
4! A4 

S' 6 

- +420 

+ 840 

6! A„ 
S' 4 ■*1 

5! As 
S' 5 
^1 

5-105 A+ +15 8!A, 

-315 6! A6 
S' 4 ^1 

+ 60 
7! A7 

s'3 
-5 

8! A,\ 
>► 2 / 
^1 / 

+ 6B12(B] + J)2(420 ilA_3i5 44 + 90 44-10 ' 1 
—'i S' 4 ^1 

S' 3 
^1 

+ 6B, (B, +1 )3 ( -105+A + 60 AA _ ! 0 51A 
*1 s' 4 ■'l 

+ 6 (B1+l)4( 15 44-5 5! A-5 
S' 8 —I1 S' 5 ■*1 

+ 12B42B J945 2^3 - 945 ^5^ + 420-105 ^4^ +15 ^nr - \ *1 / 

+ 6B1.(3B1 + 2) B2(-945'^4^ + 840^4-4-315^r^+60^4:S-5^4Z) 
.^i / 

V 5 -'1 

+ 6 (Bj +1) (3B4+ l) B2 (420 

+ 3 (B4+ l)2 B2( -315 

3 ! Aa c 1 K 4 ! A4 
_ -315 
V 7 V 8 
^1 -<1 

+ 90 44-10 ^^8 
< 5 
^1 V 4 ^1 

3! A3 
■ S' 7 “*1 

f 180 
4! A< 

S' 6 ^1 
•30 

5! AA 
s' 5 j «1 / 

+ 3B22 ( 420 — 525 -^4+300 44 ~100 44 +20 44 ~ 2 44) 
wi ^i -n -a —1 1 

+ 66^3 (94544-105o44+52544-150 
S' 8 
-O S* 7 S' 6 -'l 

5! A. 6! A, .-,7! A, 
S' 5 S' 4 •" S' 3 *"1 ~<1 —1 

+3 (Bt+1) b3 (-1050 44+1050 44 -450 44+100 44 -11° 44 
5 "1 ^1 ^1 ^1 ^1 

fn 1 r A4 inf;A2! A2 ^ 3 ! As i ka 4 ! A4 , OR 5 ! A5 0 6 ! AH^ 
+ 3B4 945 -1050 

S' 9 1 S' 8 
^1 

s' 7 
— 1 

- —150 
S' 8 
^1 

25 
S' 5 2 S' 4 i 
*-n —j / 

The method avails for the calculation of as many coefficients as may be desired 
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25. Third Method of determining the Coefficients A.—Another nearly equally effective 

process for finding the coefficients A3, A7, ... , is founded upon an expression for t, valid 

at the piston M. 

The equation of motion of the piston shows that at x0 = 0, 

cu _ qcr11 

dt 10Hcr010 

and the differential of u is always 

du 

dx0 
dx0+ ~ dt 

ot 

so that, at x0 — 0, t can be expressed as a function of s by the equation 

10H cr, 10 

a 11 {(B1-1)+2BA + 3B3^+ 

and thus t — Tx can be expanded in powers of S or (s — Si)/Si. Also, since t = ?Z/3w, 

and T, is the value of t given by putting r = Bx and s = Sx in the formula for the first 

reflected wave from the left, we have 

t-T, = ■) 
V 

V 8 
n 

+ 45 F/3)(2r) F1(3)(2R1) 
CT 

-10 
fF,M (2r) _ F,W(2R,)1 fF,w(2r) _ F,'»(2R,) 

' "i .6 -y 5 cr V B 
-1! cr° 

so that a different form of expansion can be obtained for t—Tv By equating coefficients 

of different powers of $ in the two forms of expansion we obtain again a series of equa¬ 

tions giving the values of A6, A7, ... , successively. The results may be recorded as 

follows :— 

The equation for A6 is 

105{-9(B1+l)++2B1++] -105 U8(B|+l)AA+2B,qA 

+ 45+7 (B1+l)AA + 2B1fiA[-10{-6(Bi + l)i^TL‘ +2B.51A' 
V 6 
“*1 J — l5 

+ +5(B1 + l)5i++2B15i+} = -Xo|^)°(B1-l). 
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The equation for A7 is 

105 { -9Bj + 45 (B, +1)*} A. + 2 {Ba—9B, (B1 +1)} AA + |! B,1AA 

-105 

+ 45 

-10 

2! 

{ — 8B2 + 36 (B, +1)“} AA + 2 {B„—8B, (B,+1)} AA + £ B,2 4! A- V 6 S,’ 2! 

-7B2+28(Bl + l)2}+++2{B3-7BI(B1 + l)}+A + ^B,1+A s' 

4! A., 

■<i 

{-6B2+21(B1 + l)!}i^ + 2{B2-6B1(B,4 1)}AA + £b,»6! A“ 
S' 8 
“*1 

+ 

S,5 2! 

{-5B2+ 15 (B, + l)s} Ar +2 {Bj—5B, (B1 +1)} AA + f-B,*AA 

S' 4 
-^1 -1 

The equation for A8 is 

105 

-1o5(A{B,-^(B1 + 1)(B1-1)}. 
CO \ 1 / 

{-963+90.(6,+1)B2-165 (B1 + l)3}|i + 2{B3-9(2B1+l)B2 + 45B1(B1+l)2}^^ 
^1 

S' 8 

-105 

+1 {2B1B2-9B12(B, + l)} ^A +1 B.’AA 

{-8B3 + 72(B, + l)B2-120(B1 + l)“}+A 

+ 2{B3-8(2B1 + 1)Bj + 36B1(B1 + 1),}8! A” S' 7 ^1 

+ 45 

+ £ {2B1B2-8BI’(B,+ 1)} ±iA + |b,s AA 

{-7Bj + 56(B1 + 1)B2-84(B,+ l)s} +A 

+ 2 {B3-7 (2B1 + 1)B2 + 28B1(B1+1) 
21 4! A4 

S' « 

+ | {2B.B.-7B,* (B, + 1)}NA + | B,*6! A' S' 4 

-10 -6B3 + 42 (B, +1) B2—56 (B, +1 )3} 
4! A4 

S' 8 

+ 2{B3-6(2B1+1)B2 + 21B1(B1 + 1) ,21 5 ! A, 
J S' 5 

92 ! A 93 7 ! A 
+ |j {2B,B2-6B,2 (B1+1)} AA + h B.3 +A 

*1 -I 

+ {-5B3 + 30 (BJ+ 1) Ba —35 (B, + l)3} ++ 

+ 2 {B3—5(2B, + 1)B2+15B1(B1+1)2} 
6! A,3 

S' 4 

= -10-(f-n)"{BJ-Y(3B1 + l)B2 + 22(Bl + l)’(B1-l)}. 
CO \^i, 

+ % {2B,Ba—5B,’ (B,+1)} At3 + |i B,» A^ 
\ 10 
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The equation for A9 is 

105 { - 9B4 + 9 . 10 (B, +1) B3+ B32- 3 9 ' \(;V-- (B1 +1 )2 B, 
l 2! 3! 

+ 9,10.11.12(Bi + i), 

4 ■ 

+ 2<jB4-9(2Bi + l)B3-9B3a+^(3B1+l)(Bi+l)B3-’K^V llBi(B1 + lf 
3! 

A A 
V 9 

J 

2! A., 

-^1 

+ |^{2B1B3+B/-9B1(3B1 + 2)B2+^Abi2(B1 + 1); 

93 a I A 94 R t A 
+ fj {ZBfB2-9B* (B1 +1)} —F + fi ^r-jf 

— 105 [...] + 45 [...] —10[...] 

3! A, 
V 7 ^1 

+ A -5B4+5.6(B1 + l)B8+^B/-3^|[^(B1 + lpBa+5-64!7-8(B,+ l) 

+ 2^B1-5(2B, + l)B»-5Bi,1+%f (3B1 + l)(B1 + l)Ba-^|AB1(B1 + l)“ 

5! A, 
V 5 

6! A, 
V 4 
-<l 

9,2 5 . 6 + |2B,B, + B/-SB, (3B, + 2) B3+ ^Bf (B, + l): 

+ | {3B,*Ba—5B,a(B, +1)} AA 4 J7Bi* -A" 
o I hi 4 1 —n 

7! A7 
V 3 
^1 

= -ioAA“ 
a \St 

B - AA (2B, +1) B„-ii B/+ AA B9Bi +1) Ba 

11.12. 13 (Bt + 1) 

3! 4 
(Bi—1) 

where the law of formation of the terms that are not written down is sufficiently obvious. 

The formulae of this article may, of course, be transformed into those of the previous 

article by means of the relations by which the coefficients B were expressed in terms 

of the differential coefficients of Q1} and the relations by which the coefficients A15 ..., A-, 

were expressed in terms of the same differential coefficients. They are useful in 

numerical work as affording a verification of the values obtained for the coefficients 

Ag, A7, ..., from the previous formulae. 

Formulae similar to those of the present and preceding articles may be obtained for 

the coefficients in the expression for Z belonging to the first reflected wave from the 

right, but it seems hardly worth while to write them down. 

The Second Middle Wave. 

26. Method of determining the Second Middle Wave.—The first reflected wave from 

the left meets that from the right at the place and time determined by substituting 
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Rx for v and sx for s in the formulae belonging to the first middle wave. When they 

meet, the first middle wave becomes obliterated, and the. second middle wave begins 

to be generated at the time and place in question, and encroaches upon the two first 

reflected waves. 

To determine the second middle wave we have the conditions that at its advancing 

front, where r = Rl5 the Z belonging to it is equal to that belonging to the first reflected 

wave from the right, and at its receding front, where s — sx, the Z belonging to it is 

equal to that belonging to the first reflected wave from the left. Riemaxn’s method 

may be applied in exactly the same way as in Article 15. If P is the point (/, s'), A 

the point (Rl5 s'), B the point (Rl5 s,) and C the point (/, Sj), we have 

Z(r', s') = [VZ]1-[VZ]B + [VZ]C+ Z 
Jab 

/3Y _ _5V N 

\ds r + s 
W[ z(AA^ 
/ Jbc \or r + s 

dr, 

At A we have 

r = R,, s = s', £ = 0, V = - /Rm+3' 
/\5 

r' + s' 

and Z is the result of substituting R, for r and s' for s in the formula 

Z = i1 + Z1„+(ilV‘ 
<T OCT, 

At B we have 

1/ ccr 10 

<x l945a 
Vfx{(r-u) 

r = Rj, s = su g = v = &py<i-*o{+9or-uor+Ton 

and Z is the result of substituting Rt for r and s, for s in the formulae for the first middle 

wave, or in those for either of the first reflected waves. For the present we shall denote 

it by ZB, and observe that it is independent of r' and s'. 

At C we have 

r = r', s = Si, f = 0, V = 
fr' + Sj 

\r' + s' 

5 

and Z is the result of substituting r' for r and sx for s in the formula 

Z = KI + L1«+ (-A)‘jF| {a + u)\- 
\cr dcrj l cr ) 

Along AB, where r = Rx and s increases from s' to sl3 we have 

T 3 \4 f 1 [ ccr,, 
Z — ^ + 1^ (Rj— s) + 

cr 3cr 

1U 

crl945a ’) 

= (Pi + g/)(I^-^)(Ri + s):<(2Q-180^ + 420g3-280f)> 
cs r + s (r' + s)b (r' + s') 

(R,—F) (s—s')m 

^ (r' + s')(-R1 + sy 

2 F VOL. CCXXII.-A. 
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and along BC, where s = and r decreases from W to r', we have 

V XT , T t \ , /I 3 \4fFi(o- + w) Z = Kj + Lj (r-SiH - r- —-- 
\cr dcrj { cr 

|V__5V = (si + 7-;)(gi ^)fe + r)'i(20-180^+420f-280r), 
dr r + s (r + sf 

,= (r—r') {sx — s') 

(r' + s') (r + Sj) 

The value of Z at (/, s') can be regarded as a sum of terms with the coefficients 

ZB, hi, lx, ccr010/945a, ct0, , K1; L1; A0, A1; ... , 

and each of these terms may be found from the formula for Z (rs') by performing the 

integrations where necessary. The result will be to exhibit Z (r', s') as a sum of terms 

with these coefficients. 

27. Determination of the Second Middle Wave.—No integration is needed in order 

to obtain the term which has ZB as a factor, but it is important to observe that Vn, 

as a function of r' and s', can be expressed either in the form 

or in the form 

v„ = | (R,+s.) (± Ife+_+.4+'±M 

1 3 yrtz-R,)4 (/+«,)*! 
Vu = f(R1 + Sl) igX 

cr 

We shall suppress the accents on r' and s' so as to express the value of Z at (r, s). The 

term with coefficient ZB is 

-I (R,+s,) zc (i £J j(gxD1p,±M‘ 
cr 

The term with coefficient hx is 

2ki p J f(s-s,)«(s + R,)n . 
cr 

The term with coefficient lx is 

(SR^A^-g) (^R^j , 
cr 

The terms with coefficients ccr™/M5a and a0 are 

cr 010 i \/l 0 

° —+a° 945a 

1 ( s — sl 

a VRj + Si 
1 + 4 

s + Ri 

Rj + 
+ 10 

+ 20 

£+RiV 

Ri + Sj 

g + RiX3 

vRi+5j 
+ 35 

s + Rj 

Ri + sxJ J _ 
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Tlie terms with coefficients au a2, a3 are 

-20, £ 
_cr VRj + ^i/ [ \R1 + 5j/ + 

+ iol'£±Iii)%i5/s+RJ-Yl 

2^(R1+S,)li|J 
1 ( 8-8, 

R, + 84 
1+2 

/ s + R, +3(S+s1y+4|'|_fELy+6('s±R,'‘ 

3 ' \R, + 84 

1 / 8~8, 
(J R, + Si 

uii+sir \ih+sj+ \ih+si 

s + Hi \ . /U + RA2 /s + R, 1 + 
R1+V + VR1+.iy ^\Ri+sJ ^Xlli+sJ L 

+ + 
s + R, 

The terms with coefficients a4, a5, ..., are 

4~ 11 AY J(£— 

and so on. 

The term with coefficient K, is 

(T ++)■{+«■ 

!K, 
1 3 V (»• + »,)»1 

cr dcrf { a J 

The term with coefficient L, is 

2 T A 0 \4 f(r-Ri)4 (58i-4R,-?-)(r + 6-1)5l 

15 Ao-aJl cr j 

The terms with coefficients AU5 Al5 A2, A;i are 

l(.r-Z.KA4 ji + 4 ( A +10 YI±£l\ , 
Lo-Ua + .s-Y l UR + 8,/ UR + 8,/ ' VRj+Sj 

+ 20(£±£lV'+35/ r +«i VI 
R, + s, 

• 2 A, (Rj + 81) 
i__a_ 
cr 8cr 

1 (r—Ri 

cr UR + 81 
1+3 

r + 81 \ 
+ 6 

r + 8. 

Ri + S,/ \Ri+8i 

+ 101aU) +15(bi++s.) } 

2!Aj(B,+5i)11^‘[^L(^)*{1+2(£^) + 3(|^)+4(^)V5(|±^)*}; 
cr 8cr 

-2»AS(RI+«.)’( — 
1 /r—Ri 

cr VRj + 81 
1 + 

/ 'T + 8] 

VR1 + 81/ VRj + Si/ ^VR]+8i/ VRx + 8iV /_ 
+ + Y + (r + s 1 y + ^ r + 8, Y| 

The terms with coefficients A4, A-, ..., are 

-.asm «4*jrm 
and so on. 

2 f 2 
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28. Indication of a General Method.—If the coefficients a or A with suffixes exceeding 

10 were all zero, the expression for Z in the second middle wave could be transformed 

at once to the form 

/I 5 V [Q2(<r+u) 

' (T 3 <j) [ <X 
+ K2 + Lg'U, 

or to the form 

+h+,u. 
(T 

But if these coefficients do not vanish a transformation of the same kind is still possible. 

We have, for example, 

255 ! (o-2+ 1 lu2), 

275 ! u (3cr2-f 1 lu2), 

and thus Z can be expressed either in the form 

(i + K2 + L2u + M2 (o-2 + 1lu2) + N,u (3o-2 +1 lu2) + ..., 

or in the form 

(~. ) I(^———j + k2 + l2u + m2 (cr2 + 1 lu2) + n2u (3o-2 + 1 lu2) + ..., 

where the factors whose coefficients are written K2, L2, ... , or k2, l2, ... , are the 

homogeneous rational integral functions of u and u of degrees 0, 1, 2, 3, ... , which 

satisfy the differential equation for Z. 

When this transformation is effected we may proceed to determine the second reflected 

waves. The first stejD is to find sets of coefficients analogous to A0, ... , A3 and 

aw ... , ab. The next is to find sets of coefficients analogous to Ifi, B_,, ..., determining 

the loci in the plane of (r, s) along which x0 = 0 and x0 — c during the time that these 

reflected waves are being generated. By means of the coefficients analogous to Bl5 

B,,, ... , sets of coefficients analogous to A6, A7, ... , and a6, a-, ... , may be found, and 

thus the second reflected waves may be determined. 

From the formulae for Z in the second reflected waves that in the third middle wave 

may be found, in the same way as the formula for Z in the second middle wave was 

found from those in the first reflected waves. 

The method of solution can be continued, and gives a theoretically complete solution 

of the problem ; but when arithmetical computation is attempted, failure may arise 

through approximate equality of groups of terms with opposite signs, so that some 

quantity, which ought to be calculable to five figures, for example, may only be calcu- 
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lable to three. This difficulty was found to present itself in the calculation of the second 

reflected waves by this method, and another method had to be sought. An account 

of this will be given in the theory of the second reflected waves. 

29. Pistons of Equal Mass.—A considerable reduction in the number of coefficients 

to be calculated is effected by supposing the two pistons to have the same mass. When 

this is so H = h, and hereafter we shall write everywhere h for H. The calculation of 

Ay, A1? ... , A5 is then simplified a good deal. Further, it appears that the coefficients 

a differ only in sign from the coefficients A, or we have 

an = ■A 0> a, = -A 1? 

It is now unnecessary to calculate separately the pressures, velocities, displacements, 

and times at the two pistons. We shall speak of the piston specified by x0 = c as the 

shot,” and of the piston specified by x0 = 0 as the “ image of the shot.” AVe shall 

generally calculate the pressures, &c., for the image of the shot, because a slight simpli¬ 

fication is effected by putting x0 equal to zero. 

30. Incidence of the Second Middle Wave upon the Pistons.—The value of s at the 

receding front of the second middle wave is that which has been denoted by s1: and 

in the case of equal pistons it is the same as R: or —|-cr0. This is therefore the value 

of s at the image of the shot at the instant when the receding front of the second middle 

wave reaches it. It will be denoted by S2. The corresponding value of r may be found 

from the formula 

r-R, = Bj (s-Sl) + (B.Jt1)(s-SlY + ... 

by putting S2 for s. It will be denoted by R,. From this the corresponding value of 

o- may be found. It mil be denoted by S2. The corresponding value of u, which is 

R2—S2, will be denoted by U2. The corresponding value of Z, denoted by Z2, can be 

found most simply from the formula for the first reflected wave from the left. We 

have 

Z3 = K1 + L1U2+105 Fl (2fi) -105 Fl<1^R2) +45 -X0 
^2 ^2 ^2 

V 5 

where 

Ft(2R2) /2A10 f Ao _ Aa /2Ri —2R2\ 
221u \tj XffV Si / 

1 2!_A2 /2R1-2Ray 
2! Sx8 V ^ ) 

F1‘1>(2RS) AiY. fA, 2! A., /2R;-2Ro\ 
S' 9 
w2 w U,9 Si® \ Sx ) 

1 3! As /2RX — 2R2\2 

+ 2! td V Si ) 

1 3! A,/2R1-2R2\3 

1 4!A4/2Rx-2R2\3 
3! Si6 \ Si / 

J 
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F1(2)(2R2) 
s'8 ^2 

Ft(3)(2R2 
"S' 7 ^2 

2! A2 3! A, /2Ri —2R. 
V 8 2d \ t, 

1 4! A, 

2! 2d 

3!AS 4! A4 /2Rx-2Rs 

Si7 2d V s, 

2l 

+ 
2! 2d \ 2X 

Fd4)(2R2) _ ' tiY 14! A4 5! A5 /2R,! - 2R2 

\^2‘ S' 6 ^2 
s' / s' b s' 5 \ v 
■i-/ 1 -^i —i \ -^i 

+ —. 
2! V \ 2 

5! AS| ( 2Rx-2R2 

2d V 2x 

6! A« ( 2Ri — 2R2 
V 4 -a l 2t 

7! A, / 2Ri — 2R2 

2d \ 2a 

+ 

+ 

+ 

31. Transformation of the Formula for the Second Middle Wave.—In what follows 

we shall disregard coefficients A beyond A9; if it were desired to include further co¬ 

efficients A some of the formulae would require modification, but there is no difficulty 

arising from the convention to stop at A9. The most effective transformation of the 

formula for Z in the second middle wave is found by putting for ZB the value derived 

from the first reflected wave from the right, viz. :— 

ZB = ki+li (Ri —Si) + 
T ccr, 10 

+ 
«0 + ai (2s —2si) + a2(2s — 2st)2 + ... 

)■ = Ri, s = St 

so that the terms contributed to Z by ZB come to 

—if j^i (Fi + Sif + 105 (\ —+cioj —105 (Rj + Si) cti 

+ 45 (R! + 5i)32! a2— 10(R1 + s1)33! a3+ (R1 + s1)44! a4 

(i a V f(* 

and then, before putting R, for sl5 or — A0, — A1} ..., for a0} au ..., transforming tin 

terms contributed by A0, A,, A2, A3 to the form 

i _0_\4 

cr dcr) 

+ li+ 

i {A. + 2A! (r-R.) + 2aA2 (»— R1),+2,A3 (r-R,) 3} 

'A, 
■56 TT^f+UO 

Wi+sJ 

f Sj+r ' 

\Ri + / 
■120 1 si + r V + 35/ Si + ^Yl 

vRi+s-i v Ri + Si1 .1 

.MAu^ij _21(^)q56(^)+50(^y+15(A±r.j} 

+ Mt±f*{_6 (^)h i7 (ggf -16 (^y+5 (££)} 

_ 2% (K, + s,)» f _+ 3 /Jill.Y-3 ('A+AV + (-fUV 
Ri+ i/ \Ri+sJ \Ri+si/ J_ 
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The first line of this expression, with the terms contributed by A,, A-, , makes up 

3 V [Fx (<r + ^)\ 

da) | <x j 

and the remaining lines are unaltered when — s is written for r. 

The terms contributed by Kj and Lj are the same as 

K1 + L1W—|Ki + A A 
S^CBa + sY 

(T 
? 

and thus the Z of the second middle wave is expressed entirely as the sum of the Z of 

the first reflected wave from the left and a function of the form 

A JLY j0a (<T—U) 
\a da) \ a 

Further, noting that with equal pistons h = L,, we see that (f>., (a—u) contains no 

terms of degree higher than the ninth in s or \ (a—u). Also we'see that it can be 

expressed as a rational integral function of (s—s1)/(R1+s1) of the ninth degree, and that 

it contains no terms of degree lower than the fourth. Since Z and dZ/da are continuous 

at s = s1 with the Z and dZ/da belonging to the first reflected wave from the left, the 

function <y2 can contain no terms of the fourth or fifth degree in (s—s^/fR, +S,). The 

vanishing of the coefficients of these terms does not introduce any new condition. On 

replacing a0, ... by — A0, ..., we have the result that in the second middle wave 

Z = Ki + \i\U + 

where £ is written for (s—$i)/(Ri + .§i), and = Rx == S2, while >;6, >/7, >/8, >/9 are given by 

the equations 

>76 = — 3 (Kj — ki) ^ ))— —— (^r') + 280£0 + 140^i+ 62(,2 +23^3+ 6v,t—(6 
2*2 'Ll Cl \2v2/ 

>n = 4(K1-^1)^i-9-6^-^J0-240^-120f1-52^-18f3-4f4-^ 

= — I (Ki — ki) - Y ——— ( a) +70f0 + 35{i+ 15(,2+5^3 +^4 — is, 
A2 2 / Cl \ Ag/ 

>79 
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in which 

A0 /ZA10 
S/0 \t 

= ^ > &=-2A 
A, 2K, /2iV“ 
v 9 \y 

-<1 '"2 

<>3 — 2 —r 
2 ! A2 /2Ph\2 fti' 

-'l y / \y ^1 / \^2. 

10 

>_ 4 3! A3/2Ri\3/Si\10 p ,41 A4/2R1\VS1Y° , . 5! A5/2RAVSiY0 

& ;; xa7 UJW’ ^ vsJvv* *5 Lr’ sh sx W’ 

, __4 61A./2RA7SA10 c « 7!A7/2RAV^Y° p _ 8! A8/2RAV^Y0 
^•6 45 ^4 / '^/5 ^ 3 15 3 I'C I \ s? I 5 315 ^2 \ V / \ J wi / \^2/ V 2 \ V / W / ■<1 \ ^1 / \^2/ 

o9 2 8 3 5 
9! A9/2EA9^10 

2, \ Sj / 
M \ / £1 

The Second Reflected Waves. 

32. Relation between Pressure and Velocity at a Piston.—The relation between pressure 

and velocity at the image of the shot is an equation connecting r and s, which holds at 

£0 = 0, and can be interpreted as the equation of a certain locus in the plane of r and s. 

This equation can he written in the form 

(r-R3)/22 = B'A + BVf+B'3<f+ 

where S stands for (s —SL,)/S2, and the coefficients B' are at present undetermined. 

To determine these coefficients we have recourse to the method of Articles 21-23. 

During the progress of the second reflected wave from the left, the value of x0 at any 

point in the region occupied by it can be expressed in terms of the values r1 and s' of 

r and s, which occur simultaneously at the point, by the formula 

e 

x0 — — 5h f (Y/cr) du, 
Jac 

wherein the integral is taken along the locus from the point A, where r — r', to the 

point C, where s = s'. In this integral 

u—VJ 2 

du 

cr = 

Y 
cr 

M(B/1-l)<i + BV3+By3+ 

S2{(B'1-1)+2BV+3B^3+ ...}dS, 

s2{i + (b/1+i)^+bv2+b'3^+ ...}, 

+30 +310 Cr + 
<r \ (A + s') or (A + s')2<A -} 
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On putting R2 for r', we have the value of x0 along the junction of the second middle 

wave and the second reflected wave from the left expanded in a series of powers of S', 

or (s' —S2)/lS2, in the form 

= - 5 /*. [( b\ -1) +{ b'2 - (3 b\ - 2) ( b'i -1)} r 

+ {B/3-3B,2(2B/1-l) + (7B?-6B'a + 2)(B/1-l)}r 

+ {B/4-2B,3 C3B'i — 1) -3B'22-±B'2 (42B?-33B/1 + 5) 

-|(28B'13-2lB,12+9B'1-2) (B\-l)} T 

+ {B'5-iB/4(30B/1-7)-6B/2B/3 + T1oB/3(210B/12-108B/1 + 7) 

+ }B'22 (10 5 B'i - 2 7) - ^B'2 (5 6 OB? - 4 62 B? + 81 B'x - 7) 

+ Hl26B/14-56B/13+2lB/12-6B'1 + l)(B,1-l)}r+ ...]. 

Now at any point (R2, s') on the same junction the value of x0 can be obtained by 

forming — II 3Z/3cr, where 

Z — Kx -r B4 u + ( — _ 
\cr dcr 

1 3 \4 fFi (cr + u) 
cr 

, V io ~r ^2 — —) j— {n^h—>n£‘ + m£s— 
cr dcr/ [cr 

and 
II = a (cr/cr0)10, £ = (s-S2)/2Ei, 

and putting therein 

cr — R2 + 6y3 u — R2—s', s — s', s'—S2 = t2S', 

and the result can be expressed in terms of S' in the form 

Xo 
a 

945Fi(2R2) _945 (1+^IY^2B*) +42Q (1 + ^F1(2Y2R2) 
2,2 a2 

-h>5 (,+sr?J^A+15 (1+,yrq2Ea) _ (1+y).F.y 

■ 

+ m(w) {945^6-945 x 3 (1+^)^5 + 420xV-(i+<5/)2^4 

-105 x 15 (1 + S'fS'3 + 15 x *£- (1+S'Y S'*-^(l+S'f S'} 

-m(r)1 {945<i/7 —945 x^ (l +8') S'6 + 420x^- (l + S')2S'» 
\2Ri/ 

_ 105 X (1 + S')3Sri+ 15 X (1 + S'Y r-4^ (1 + S')5 S'2} 

+ m l^j {945<T8- 945 X 4 (1 + S') Sn+ 420 x 14 (1 + S')2 S'6 

-105 x 42(1+^)3<5/5+15 x 105(1+ ^)4^/4-210 (l + S')5S'3} 

_>79(^r)y l945^9—945 x f (l+#)#*+420x 18 {l + S')2Sn 

-105 X 63(1 + <r)3<i/6+ 15 X 189(1 + S'YS'b-^(l +S')5S'i} . 

2 g VOL. CCXXII.-A. 
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The terms independent of S' in the right-hand member of this equation add up to zero, 

for x0 vanishes at (R2, S2) ; and, by equating the coefficients of powers of S' in the two 

expressions for x0, equations are obtained from which the values of the coefficients B' 

can be found successively. 

33. Relation between Velocity and Time at a Piston.—The time at which any par¬ 

ticular simultaneous values of r and s occur at x0 = 0, can be found by the method of 

Article 25, and thus the relation between velocity and time at the image of the shot 

may be traced. We can write down the equation 

t-T, = —10- |v" f ferI{(B',-l) + 2BV + 3B'/+ ... }ds, 
Cl A2 ^2/ 

in which 

S = {s-Sa)/2a, O- = N2{1+(B'1 + 1)^ + B'/ + BV3+...}, 

and thus t—T2 can be expanded in powers of S in the form 

t — T2 = Ci<i + c2S2 + Cg^3 + ..., 
where 

Ci = — 

Co = — 

Co = 

c4 = 

c, = — 

10 h/<r0 

a 

10 h. f CTo 
| 

a \S2 

10h, 1 (To 
a ( \^2 

10 hi w 

a ( VS2 ■ 

1—
>

 

0
 

Wo 

a ' -—3 

10 

(B'i-1), 

10 

\10 

{B'3-V(3B'1+l)B'a + 22(B'I+l)!!(B'1-l)}, 

,10 

\10 

ifi(B'1+l)s(B'1-l)}, 

+W (5B', + 3) B'a2 - W (5B'. ■-1) (», +1 f B'„ 

W(B'. + 1)‘(B'.-1) /) 

34. Displacement of a Piston.—To obtain the displacement of the image of the shot, 

we have to find the value of x at x0 = 0 in terms of simultaneous values of r and s 

occurring on the locus 

r-ll2 = B\ (s—Sa) + (Bh/Sa) {s-S2)2+(B'ftf) {s-S2)3+ .... 

Now, when x0 = 0, we have x = ut — Z, and for the value of x at (R>, S2), denoted by 

X2, we have X2 = U2T2—Z2, so that when x0 = 0, we have 

x-X2 = ut-U2T2-(Z-Z8). 
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Also we have 

;-z3 = f <r’s) dZ 7 dZ , 
5— du + — dcr, 

(R,, S,)OU GO~ 

where the integral is taken along the locus, and, since dZ/dcr vanishes along the locus, 

we get 
f(r,.) f* rlf 

= ut — U2T2— tdu — u —ds, 
“ V,s2) Js.2 ds 

ry* __ rp 
iA>2 

in which 

u = U2 + 22{(B'1-1)^+By2+By3+ ... }, 

t = T2 + Ci^ + c2S2 + cf? + ..., 

5 = S2+t2S. 

It follows that, at x0 = 0, x is given by the equation 

x X2 = UaCi^T {U2c2+i-—2C1 (Bfi— l)} c>2 + {U2C3 + fp2c2 (Bfi — l) +-§fS2CiB/2} S" 

+ {U2c4 + f£2c3 (Bh —l) + p2c2B'2+iS^B's} 

+ {U^+P^BW) +p2c3B/2 + p2c2B/3+iS2c1BV; <f+ ... , 

which may be written 

x—X2 = £1$ + ^2<i2 + £j<53 + .... 

The formulse which have been obtained avail to determine the displacement, velocity 

and pressure at the shot or its image at any time during the progress of the second 

reflected waves. 

35. General Method for the Second Reflected Waves.—We shall need-to be able to calcu¬ 

late Z, t and x0 for any simultaneous values of r and s that can occur in the second 

reflected wave from the left. It is best to obtain formulse for t and x0 separately, and 

not to deduce them from the formula for Z by differentiation, because the formulse 

will be approximate, and to obtain the terms of any particular order in t, for example, 

by differentiation of Z it would be necessary to obtain the terms of order higher by one 

in the formula for Z. The method of determining the formula for xu has been indicated 

already in Article 32, and the work will be completed presently. The formulse for t 

and Z will be found by similar applications of the method of Riemaxn. We begin with 

the formula for t. After finding formulse for x0, t, Z, we can calculate x from the equation 

36. Method of Determining t.—The value of t along the locus x{l = 0 has been found 

in Article 33. To obtain the differential coefficients of t along the same locus we have 

the equations 

+ n 7— = 0. 
cu OCT 

(^Xq | | ( t _ „ 

a <r du~ ’ 

2 G 2 
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dx0 

0cr 
10 h 

-M£) 
dxg 

du 

10 h 
da 

du 

<T 1 — 
da- 

da 

where dajdu is to be found from the equation of the locus. Thus we may write 

dt 

0(7 

10 W1 
acr11 

da 
du 0£ _ ,0Ao-010 1 

7 -7 _ ~ ’ 

i-d 
du aa11 /cto-y 

\du J \du J 

Now let (rs') be any point P, and let lines PA, PC parallel to the axes of s and r 

meet the locus in A, C, as in fig. 3 in Article 22. Then, since t satisfies the same differen¬ 

tial equation as Z, the integral 

fv(|*+5-)<fe + « 
j \as a/ 

dr 

taken round the contour formed by the arc AC and the lines CP, PA vanishes, and 

therefore we have the equation 

or, on putting 

the equation 

But we have, along the locus, 

0C = dd_ 

ds da 

dd 

du 
1 0 1 

aa11 da 

du 

5//<t010 du 
a a11 ds 

and, by the theory of Article 25, the expression last written is the same as the value of 

Ttdtjds along the locus, or we have 

At' 
— = 1 (c i + 2 c2S + 3c30- +...). 
os 

Also along the locus we have 

d — ClS + c2S2 + c3S3 + ... . 
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Let s, denote the value of s at A. Then at A we have 

s = Si> v = (f±ff, 

t' — C A + cA2 + C3^A3 + • • • ) 

where SA stands for (sA — S2)/S2. 

Along AC we have the formulae already written for t' and dt'/ds, and we have further 

v = C-Aj(1-20£+90^-140f3+7°O> i = 

|^-5 - = (:s'~'s2/7’ + ,9^(20-l80^+420^-280r)> 
Or (t 1 - 'b (r' + s? 

and we have to put 

ds = tadS, dr = S2(B/1 + 2B/A+3B/3(f + ...) dS. 

The limits of integration are <iA and S', which is (s'—S2)/S3. 

The value of SA is to be found by reversing the series 

r-S2 = (s—S3) {B', + (BVSa) (,-S.) + (B's/S/) (s-S.,)2 + ...}, 

and putting r' for r and sA for 5. If we write e' for (/ —R,)/S2 the result is 

? __ _£_[ ’ 2 /2 , 
A Bh B?e 

f2B? B'a 1 /5B? 

IB? B?J VBV 
+ 

BT B? 
/4 

, BV B'22B' B'» B'2B', Ru 
+ (14B7 “1TW+3bv + 6T?T_bv;/ 

Thus Sx is known in terms of r'. 

37. Formula for the Time.—We work out the formula for t' or t — T2 in terms of S, 

or (s — S2)/S2, and e, or (r— R2)/2h, at any point answering to simultaneous values of 

r and s which can occur in the second reflected wave from the left. For this we first 

perform the integrations with respect to r and s and then suppress the accents on S' 

and e. We record the results as far as terms of the fourth order. 

The terms of the first order present themselves in the form 

/ 1 + e + bv \5 

\ 1 + e + cf / 
Aa + 

(l + e + d) 
;5 \c\ (S—SA), 

and it is simpler to leave the factors 

/ f + e + (1a V' 1 
\1 +e+S/’ (l+e + S)5 
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as they are, rather than to expand them in powers of <?, and S. In like manner the 

terms of the second order are 

i+«+V\"aii+ i 
1+e + A 2A (l+e + d) 

the terms of the third order are 

1 + e + 3 

5 

;{£ea+io,(B',+ 3)} 

1 + e + d 
c3^a3+ ^Y+e + ^)5 i2c3+ ac2 (B'i + 2) +fci (B'j +1) (B'j + 5) +fciB'2} (c>,! —<V) 

+ - Cxe ($ — $A)- — 
(l+e + 8) 

-cxB\ (S + 2Sx)(S-SAy, 
(l +e + S)' 

and the terms of the fourth order are 

y-j——r i CA4 + ^ + {i"c4+fc3 (3Bh + 5) +fc2 (B'i +1) (B'x + 3) + fc2B'2 

+ 4 Ci (B'j +1)2 (B'i + 7) +-§Ci (B'i + 3) B'y+fciB'g} (d4 — SA) 

+ ^Y~t+3)'; +^Cl +} 6 +2dA) ~4)2 

— (1+6+ ^ 1^C2®/l + ^Cl®/]1 (SBh + ll) + ‘265CiB'2} (da+2<5A^+3^A3) (8—flA)2. 

38. Formula for Z.—We write 71 for Z —Z2, and seek first a formula for 71 along the 

locus x0 = 0. The value of 71 along this locus is given by the equation 

Z'=r P<2o-+f?cfa, 
J(R2. S2)0(7 cu 

where the integral is taken along the locus dZ/dcr — 0, so that 

71 = f t^ds = So f(T2+c1^+c/+...)(B,1-l + 2BV+3BV2+...)^. 
j St ds J o 

Thus the value of 71 along the locus can be expanded in powers of S in the form 

71 = d1$+d282+dsS»+..., 
where 

d1 = SaTJ(B,1-l)> 

C?2 = S2{T2B'2+iCl(B,a-l)}3 

d, = S3 {T3B'a + |c,B'2+ic2(B'1-l)}, 

d, = ^{T.B'. + fcB^ + ic^+^fB'.-l)}, 

d-0 — S2 {T2B'5+|ClB'4+lc2B'3+|c3B'2+ \Ci (B i-1)}, 
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We require also the differential coefficient dZ'/ds along the locus, and this is given 

by the equation 

= —t— — (T2 + Ci<5 + C2cP+ ...). 
cs 

The value of Z' at any point (rs') is then given by the equation 

Z' K .0 = [VZ'L + J (f - £) Z' *•+ (f+f) V *, 

in which V has the same form as in Article 36, the value of Z! at A is 

diSA + d2SA + d3SA3 +..., 

and the integration is taken along the locus. 

The result may be recorded in a similar form to that for t' in Article 37. The terms 

of the first order in the formula for Z! are 

the terms of the second order are 

/ 1 + e + $A\5 i ? 2 1 
^) dA2 - 

\l+e + Sj W2"A (l+e + <i)5 

the terms of the third order are 

{P2 {Cl + 5T2(B'1 + l)} -K.} 

yyyyyj d3SA — yyyyyy, [3^3 {c2 + 5(+ (B'i +1) + 10T2 (Bh +1)3+ 5T2B'2} 

—-f {d2 + 4ch (Bh + l)}] 

+ 10 10 

(l+e + J)6 3 

and the terms of the fourth order are 

(S2T2-dJ B\ (S + 2Sa) {S-SJ - , S2T2e ($-SaY, 
(l+e + <5)6 

'AtsY1a‘” (TT7M?’[i2s {C3+ 5ca (B'I+1} + 10Cl <B''+1)2+5Cl]B'a 
+ 10T,(B'1-H),+20T,(B'1 + 1)B',+5T,B'!>} 

- f {d, + id, (B', +1) + 6d, (B', + 1 f + id,B'a}] (S'- V) 

- (1 + * , [VS. {«i■+ 4T„ (B\ +1)} + W (BV-5)] e (S + 2iA) (i■-4)a 

+ —-—7[|S3 {ciB,i + 4TaB'i (B'i + 1) +'I2B'j} — 3 ! '-4li\ diB: (3+ 9) -t-2c?,B 2}J 
(1+6 + 0/ 

x(^+2W + 3iia)(i-ii)!. 
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39. Formula for x0.—A formula lias been obtained in Article 32, and can be written 

in the form 

x«(r',s') = -5/if (/AAY|i + 30fc=/Ak_A)+ ...)?3(B'1-i + 2By+3Bya 
/ [ (r +s ) cr J <x 

in which we have to put 

r' + s' = $2 (l 

(7 - S2 {1 + (B'i +1) ^+Bb<52 + B/3<i3+ ...}, 

...) dS, 

r-r' = S2{B\S-e' + B'2$2 + B'3$3+ ...}, 

6- / = mss'). 

After the integrations are performed the accents on S' and e are to be suppressed. The 

result may be recorded in the form:—The terms of the first order in the expression for 

T T*P 

-5h{l+e+$y{B\-l){S-SA), 

the terms of the second order are 

-5h (1 +e + S)5 {B'o-3 (B'i +1) (B\-l)} {S2-SA2), 

the terms of the third order are 

— 5h (1 + e + Sf {B'3 - 2 (3B\ +1) B'a + 7 (B\ +1 )2 (B\ — 1)} (<f - Sf) 

-150/i (l+e + SY {±(B\-1) e-iB\(B\-l) (S + 2SA)} (S-SA)2, 

and the terms of the fourth order are 

-5h(l+e + Sf {B'4 —3 (2B'] +1) B'a—3 B'f + 2lB'i (B\+l)B'2 

-14(B'1 + 1)3(B'1-1)}(^-^a4) 

— 25A (l + e + (i)4 [{2B,2—7 (BA +1) (B'l— 1)} e(3+2<SA) 

{(3B'i —l) B'2—7Bd (B'j + l) (Bh — 1)} (^2 + 2dA<i + 3^A2)] [S—Sff. 

40. State of the Gas at any Time.—With a view to applications it is important to 

indicate how the state of the gas may be determined at any time, or when the shot and 

its image have both travelled an assigned distance. We shall suppose that the time 

in question is an instant during the generation of the second reflected waves, before the 

second middle wave is obliterated. Then the central part of the tube is occupied by 

the second middle wave, and beyond-the junctions the rest of the tube, up to the shot 

and its image, are occupied by the second reflected waves. 

An assigned position of the shot and its image answer to a given value of x, and the 

corresponding value of S is to be found by solving the equation for x given in Article 34. 



ON LAGRANGE’S BALLISTIC PROBLEM. 215 

This is the value of 8 at the image of the shot, and the corresponding values of r and .s 

at the image of the shot are given by formulae in the same article. Also, 8 being known 

for the image of the shot in this position, the value of t is given by the formula of Article 

33. Let this particular value of t be denoted by T3, and in like manner let the values 

of the various quantities at the image of the shot at this time be denoted by attaching 

a suffix 3 to the letters, thus :—R3, 8a. 

In the second reflected wave from the left the values of r that occur lie between R, 

and R3. To each such value, when t = T3, there answers a value of s and therefore of 

8. If in the formula of Article 37 we put T3 for t and the chosen value for r, the formula 

becomes an equation giving 8. The chosen value of r determines the corresponding 

values of e and oA, and the deduced value of 8 determines the corresponding value of s. 

Then, simultaneous values of r and s being known, all the quantities can be determined. 

It seems to be most appropriate to assume a series of suitable values of r and calculate 

the corresponding values of s. The process of finding 8, by trial, may be simplified by 

means of a theorem to the effect that the loci, in the plane of (r, s), which answer to 

constant values of t and x0, are equally inclined to the axis of r. To prove this we 

have 
du 

dc , ' t = const. 

dt jdt 

0 ct du 

dXo fdx o 

0^7/ 0CT 

do- \ 
du) xo = const. 

or 
/dr — ds\ _ ldr + ds\ 

\d'V + ds It — const. \dr dsjxo = const. 

or 

dv)t = const. 

+ 
xo = const. 

= 0. 

This theorem shows that a point of given r on the locus t = Ta is not far from the image 

in r = R3 of the tangent at (R3, S3) to the locus, along which x0 = 0. Hence a first 

approximation to the s answering to a given r is 2S3—sA, where sx depends upon r in 

the known way, and therefore a first approximation to the required value of 8 is 

2 Sa-SA. 
The junction of the second reflected wave from the left and the second middle wave 

is characterized by the value R3 of r. If, then, the process indicated above is carried 

out for the value R3 of r, the result is to give a pair of simultaneous values of r and s, 

which can occur in the second middle wave at the time when t — T3. Another pair of 

simultaneous values can be found by finding the common value of r and s which occurs 

at the central section at the same time. This is to be done by putting r = s and t — T3 

in the formula giving t in the second middle wave, and solving the resulting equation 

for r by trial. When this is done we shall have two pairs of simultaneous values of r 

and s which occur in the left-hand half of the central part of the tube at time T3, and 

they are the extreme values of r and s which can occur in that part at that time. To 

obtain other pairs, we may choose an intermediate value of r, substitute in the equation 

giving t the value T3 of t and this value of r, and find s by trial. For a first approximation 

2 H VOL. CCXXII.-A. 
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we may assume that the required point (r, s) is on the straight line joining the two 

extreme points whose co-ordinates have been determined previously. 

Alter these preliminaries the way is prepared for the numerical computation of any 

special case. 

PART II. 

41. Numerical Constants.—Prof. Love’s investigation was undertaken in order to 

throw light on a vexed question of internal ballistics, namely, how the mass of the 

propellant should be taken into account in calculating the velocity and pressure in a 

gun. Its completion has been delayed not only by the analytical complexity of the 

problem, but also by the time required for the numerical computations. In his original 

paper Lagrange set out from a certain state of the gas assumed as a first approximation, 

namely, one in which the velocity, at a given epoch, changed uniformly from one end 

of the gas to the other. Restricting attention to the case of a very heavy gun, the 

total momentum of gas and projectile is then (M + |C)V and the total kinetic energy 

L(M+^C)Y2, where V is the velocity of the projectile, M its mass, and C that of the 

propelling charge. Lagrange recognized that this state of motion is dynamically 

possible only in the limiting case of small charges, but made no real progress towards 

the theory for finite charges, the development of analysis being then inadequate to the 

problem. Since the ratio C/M in modern guns, though less than with gunpowder, is 

still of the order the importance of a full numerical discussion of Lagrange’s problem 

is evident. The calculations which follow were begun by Prof. Love, who determined 

all the fixed coefficients and the position and velocity of the projectile at various epochs. 

After verifying these figures I undertook the calculation of the distribution of pressure 

in the gas, at the times when a new type of wave was either being generated or extin¬ 

guished, and at the half intervals. Instantaneous combusion is assumed, as it appears 

hopeless to attempt to allow for the gradual burning of the propellant which occurs 

in actual guns. 

It is assumed that the propellant is cordite M.D., for which the maximum pressure 

for different densities of the gas, after explosion in a closed vessel, has been measured 

by Noble.* The results at medium pressure are represented approximately by the 

formula 

Pol1 -l) = 9500, 
\po 1 

giving the pressure p0 in .kilograms per square centimetre when p0 is in absolute measure. 

This is the formula used in calculating initial pressures. The subsequent expansion of 

the gas is adiabatic, and will be represented by an equation of the form 

/1 \r 
_£> (-1 ) — const. 

V / 

* Sir A. Noble, ‘ Phil. Trans.,’ A, vol. 205, p. 201, 1906. 
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It appears probable, for various reasons, that the mean adiabatic index y is in the 

neighbourhood of 1-2. As we are restricted to a special set of values the value 

11/9 = 1-22 is selected. 

The problem discussed in detail is that of a gun of 15 cm. calibre, mass of projectile 

50 kg., charge of propellant 12 kg., distance travelled by the projectile from its initial 

position of rest to the muzzle 6 metres, initial volume of gas behind the projectile 

(chamber capacity) 30 litres. It is not, of course, possible with instantaneous combus¬ 

tion to keep the maximum pressure the same as it would be in a gun, though the muzzle 

velocity is much the same. The maximum pressure in this case is 6333 kg./cm.2. Had 

the pressure been kept down to 3000 kg./cm.2 by taking a smaller charge, the problem 

would have been less representative as regards muzzle velocity, and as regards the ratio 

of the masses of propellant and projectile. 

In order to exhibit both the pressure in the gun and the degree in which the back 

particles partake of the motion of the projectile, eleven planes are taken at equal distances 

apart in the undisturbed gas, the end planes coinciding with the breech and the base 

of the projectile respectively. The horizontal line at the top of Plate 1 shows their 

initial positions. These eleven planes of particles are traced throughout their motion. 

The particles originally half-way between the breech and the base of the projectile may 

be called the middle particles,* and we shall choose, as epochs for the curves of pressure 

(Plate 1), the times at which a “ junction ” is either at the breech or the base of the 

projectile, or has just reached the middle particles. A junction is marked with a black 

circle on the figure. 

42. Details of the Calculation (Plate 1, curve 1) (Article 10).—The early stages of 

the calculation call for no comment. We have <x0 = 960,536-7 cm./sec., p0 = 0-4, 

p0 = 9500yo0/(l —/j0) = 6333-3 kg. /cm.2, c = 339'5305 cm. (the initial distance from 

the breech to the base of the projectile is \c = 169'76525 cm.), a — 177,877-1 cm./sec., 

h = 778-0909 cm. The progressive wave which starts out from the base of the projec¬ 

tile reaches the middle particles (x0 = \c) at time t = 0-0004772 sec. Particles between 

there and the breech are still at rest : from these particles to the base of the projectile 

the velocity of the gas increases almost uniformly to the value 99-6 m./sec,, and the 

pressure falls to 5651-3 kg./cm.2. The fall of pressure is remarkable considering that 

the projectile has only moved a distance of 2-4 cm. from its initial position ; and we 

observe a finite discontinuity in the pressure gradient on the two sides of the junction. 

(Plate 1, curve 2).—The progressive wave reaches the breech at time t = 0-0009544 

sec., when the projectile has moved a distance of 9-28 cm. from its seat and has a 

velocity of 187-7 m./sec. The pressure falls from 6333-3 kg./cm.2 at the breech to 

5097-2 kg./cm.2 at the base of the projectile. 

(Plate 1, curve 3) (Articles 12, 16-17).—The first middle wave begins at the epoch 

just mentioned, by reflexion of the progressive wave at the breech. To find when it 

* These particles must be distinguished from those of the “ middle section of the theory, which here 

correspond to the breech of the gun. 

2 H 2 



218 MESSRS. A. E. H. LOVE AND F. B. PIDDUCK 

reaches tlie middle particles, i.e., when the progressive wave has receded to x0 = \c, 

we solve the equation (x0+h) (at+h) = (/i + ^c)2, giving t = 0-0014785 sec. The 

velocity of the projectile at this time is 275-4 m./sec., its displacement 21 -4 cm. The 

pressure falls from 5151 -6 kg./cm.2 at the junction to 4598-7 kg./cm.2 behind the projec¬ 

tile. In the first middle wave trial and error begins. At the breech u = 0 and <r0/o- 

is found by trial to give the correct value of t. For intermediate points we have theoreti¬ 

cally to find both u and <r by trial to make x0 and t correct. Actually the smallness of 

u allows us to neglect powers of uja above the second, so that the pressure follows an 

approximately parabolic law. The difference of pressure in the first middle wave is 

quite small. At the breech we have 5170-9 kg./cm.2, an increase of only 19-3 kg./cm.2 

over that at the junction, as against a drop of 552-9 kg./cm.2 from the junction to the 

projectile. 

(Plate 1, curve 4).—The first middle wave reaches the projectile at time 

t = Tj = 0-0021170 sec., when the displacement of the projectile is — Xx = 42-191 cm. 

and its velocity —Ux = 37175-64 cm./sec. = 371-8 m./sec. The remaining constants 

at this epoch are Rx = 443,092-1, Sx = 480,268-8, Sx — 923,360-9. The pressure falls 

slightly from 4169-1 kg./cm.2 at the breech to 4102-5 kg./cm.2 at the base of the 

projectile. 

(Plate 1, curve 5) (Articles 18-25).—The first reflected wave begins at t = Tx. For 

the constants we find 

log (A0/V) = T99416, log (A,/^9) = 9'98722, log (-2! Ajtf) = 7'66552, 

log (3! Ag/Sd) - 5-20603, log (-4! A4/Sx6) = 4*53510, log (5! A5/2X5) = 3'35986, 

log (6! Afi/Xd) = 2-69991, log (7! A7/2X3) = 1*49726, log (8 ! A8/Sx2) = 0*02177, 

log (9 ! A9/Sx) = 0-29583, 

log Bx = 0*33341, log B, = 0-84347, log Bs = 1*66011, log B4 = 2*49429, 

log B5 = 3-33303, log B6 = 4-18096. 

Kj = -670-58, log (— Lj) = 3*64091. 

To find when the first reflected wave reaches the middle particles, we know that 

r = Bj along a junction with the first middle wave, and s is found by trial, from the 

formulae of the first middle wave, to give xu = \c. Knowing r and s, t is known : we 

find t = 0-002898 sec. The part of the first middle wave which still remains is treated 

as before. The pressure falls from 3316-0 kg./cm.2 at the breech to 3304-3 kg./cm.2 

at the junction. A long process is required to find the pressure in the first reflected 

wave. Writing </> = (r —Bi)/-i aud S = (s — Sx)/—1? at the base of the projectile 

([> = BX()+By2 -f.,. B,;(k is a known function of S. We expand the formulae of 

Article 20 to give t+h/a, x0 and (Z — K1 — L1n)/~1 explicitly in terms of <j> and S, and 

try different values of S until t has its required value 0-002898. Then the pressure at 
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the base of the projectile is known, and also its velocity and final position. For other 

points <p and S have to be found to make both x0 and t correct : the adjustment is facili¬ 

tated by the fact that uniform division of x0 corresponds approximately to uniform 

division of <p. At the junction (xQ = \c) cp = 0, and at the base of the projectile (x() = 0) 

<p = —0-019578. Taking four values of </> equally spaced between these, and finding 

S to give the correct t, we have four points which correspond nearly to 10, 20, 30 and 

40 per cent, division of the initial gas, and are easily adjusted to exact value by inter¬ 

polation. The pressure falls from 3304-3 kg./cm.2 at the junction to 2970-3 kg./cm.2 

at the base of the projectile. The projectile is displaced 75-4 cm. from its seat, and 

has velocity 466-2 m./sec. 

(Plate 1, curve 6).—The first reflected wave reaches the breech at time t = 0-003859 

sec., where the pressure is 2610-5 kg./cm.2 Other points are found as in the last para¬ 

graph. The pressure at the base of the projectile is 2161-6 kg./cm.2, the displacement 

of the projectile 124-3 cm., and its velocity 550-4 m./sec. 

(Plate 1, curve 7) (Articles 30-31).—The second middle wave begins at the above 

epoch t = 0-003859, pushing back the first reflected wave along a junction s = R,. 

This junction reaches the middle particles at time l = 0-005154. In the part of the 

first reflected wave that still remains the pressure falls from 1708-2 kg./cm.2 at the 

junction to 1535-2 kg./cm.2 behind the projectile. The displacement of the projectile 

is 202-1 cm. and its velocity 632-5 m./sec. The second middle wave differs from the 

first reflected wave by the presence of four additional terms with coefficients given by 

log {-m {tJZU,)6} = 3fl4397, log {>,7 {%,/Zll,)1} = 3‘52835, 

log { -m {to/ZRy)8} = 3-60452, log {m (22/2Kx)9} = 3’34841, 

where = 814,358-3 cm./sec. ; also — 466-85. At the breech u = 0 or 

cp — S = (Sx—Rj)f%1} leaving 0 to be found by trial. The pressure at the breech is 

1728-0 kg./cm.2. For intermediate points we take a number of values of 0, find a by 

trial to give the correct t, then calculate x0 and interpolate. 

(Plate 1, curve 8).—The second middle wave reaches the base of the projectile where 

s = S2 = Rx, r = R2 = 371,266-2, giving a = t2, t = T2 == 0-007137 sec. This point 

is found without trial. The pressure at the base of the projectile is 1030-2 kg./cm.2, 

its displacement — X2 = 335-6 cm., and its velocity — U2 = 71,827 cm./sec. — 

718-3 m./sec. The value of Z is Z., = —177-0. At the breech we have a pressure of 

1085-7 kg./cm.2. Other points are calculated as in the last paragraph. We have 

F7 (2Ra) 

S210 

0-00034563, 
F,(1) (2Ra) 

V 9 
^2 

= 0-0000015953, 
F^ (2R2) _ 

V 8 
■‘"'2 

- - 0-000020614, 

= 0'00017489, = - 0-0005648, 
F/5)(2R,) 

V 5 
— 9 

= - 0-004338. 
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(Plate 1, curve 9) (Articles 32-40).—The second reflected wave begins at the base 

of the projectile at time T2 and pushes back the second middle wave along a junction 

r = R,. Thus cp is known, and the value of $ corresponding to an assigned x0 is found 

by trial. We find that the junction reaches the middle particles at time t = 0*01023 

sec. The pressure at the breech is 650*0 kg./cm.2, at the junction 641*0 kg./cm.2. For 

the constants of the second reflected wave we have 

log B'j = 0T8668, 

log Bk = 1-99012, 

log c4 = B81519, 

log & = 6-01358, 

log Bb = 0-27390, 

log {—Ci) — T'08789, 

log (—c5) = 2-56985, 

log (-&) = 6-85566, 

log B'3 = 0-82262 

c2 — 0"10720, 

log A = 3-94418, 

log & = 7-62931. 

log B'4 = 1-40104, 

log(-c3) = P00167, 

log (-ft) = 5-07447, 

The method of calculation of the pressures in the second reflected wave has been described 

in Article 40. The pressure at the base of the projectile is 581*6 kg./cm.2, where the 

displacement is 571 • 9 cm. and the velocity 801 *3 m./sec. 

The projectile is so near the muzzle at time t = 0*01023 that a fresh chart for the 

muzzle epoch (displacement 600 cm.) is unnecessary. We find for the time to the 

muzzle t = 0*01058 sec., for the muzzle velocity 807*7 m./sec., and for the pressure 

at the base of the projectile at this instant 552*6 kg./cm.2. 

43. Results.—The pressure results are collected in Table I., from which Plate 1 is 

constructed. Plate 2 shows the pressures at the breech and at the base of the projec¬ 

tile, their ratio, the mean pressure, the displacement and velocity of the projectile, and 

a certain “ energy factor ” as functions of the time. The mean pressure (P in Table I.) 

is that which the cordite gases would have after adiabatic expansion, at uniform density, 

to the volume which they actually occupy at time i. The work of expansion in these 

circumstances will be ecpial, not to the kinetic energy of the projectile, but to a greater 

kinetic energy corresponding to a fictitious mass M + aC, where 

The energy factor ” a may be expected to vary with the distance travelled by the 

projectile : the lower values given are only approximate. 

It is difficult, after a glance at Plate 2, to resist the conclusion that the motion is 

tending to a limiting form, in which the pressure is approximately represented by 

/ (2/o) i> P)> with suitable functions f, </>. The energy factor a oscillates about a mean 

value of approximately 1/3, and the range of oscillation diminishes in time: similarly 

the pressure ratio oscillates about a value of approximately 0*9. Moreover, the latter 

value, like the former, can be obtained from Lagrange’s approximation by suitable 

treatment.* If p' is the pressure at the breech andp that at the base of the projectile, 

* F. Gossot and R. Liouville, ‘ Memorial des Poudres et Salpetres,’ vol. 13, p. 51, 1905. 
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p'/p is the ratio of the momenta of gun and projectile, that is (M+-|C)/M, so that the 

pressure ratio is approximately ^ = O'893. The agreement is to be expected ; 

for Table I. shows how little, relatively, yjy0 varies with y0, so that Lagrange’s approxi¬ 

mation leads to little error in the total energy and momentum. 

44. Calculation of Recoil.—Prof. Love’s theory also enables us to calculate the distance 

recoiled by a very heavy gun while the projectile is travelling to the muzzle : this is 

important since the distance can also be found experimentally. We take from Plate 2 

the values of p' and p at intervals of 0 • 0005 sec. to the muzzle, and calculate j p' dt 

and p dt by approximate integration. These quantities are proportional to M/W 

and MV, where M', M are the masses of gun and projectile and V', V their velocities. 

A second integration gives M'S' and MS, where S' and S are the distances travelled by 

gun and projectile. For the muzzle epoch we find, in the present problem, M'S'/MS = 

1 /0-879. The recoil distance S' of the gun is therefore the same as for a massless pro¬ 

pellant and a projectile of mass M/0-879 = 56-9 kg., an addition of 0-57 times the 

mass of the propellant to that of the projectile. Lagrange’s approximation gives 

0-5. Cranz* measured the recoil distance of a rifle, with comparatively slow combustion 

of the propellant, and obtained factors 0-496, 0-497, 0-477, mean 0-493. The theory 

of limiting motion would seem to apply with almost equal force to the case of slow 

combustion ; and thus we may regard Cranz’s experiment as confirming the recoil 

factor | and therefore (indirectly) the energy factor 1/3. Prof. Love has worked out 

the energy factor for a light projectile of mass 25 kg., and 12 kg. propellant, at epochs 

corresponding to (4) and (8) in Table I. The values are 0-335 and 0-333. 

45. A Special Solution of the Hydrodynamical Equations.—Prof. Love’s theory having 

suggested the possibility of the motion tending to a limiting form, it remains to show 

that the hydrodynamical equations admit of a particular solution in which the pressure 

is of the form f(y0) <j> (t). We shall see that the pressure ratio and energy factor corre¬ 

sponding to this exact solution agree closely with those already calculated, and thus 

support is lent to the view that the limiting motion would be developed sooner or later 

with other initial conditions, e.g., with gradual introduction of gas from a burning 

propellant. If yt) is, as above, the initial distance of a particle from the breech and y 

its distance at time t, the general hydrodynamical equation is 

1 
^2 C y , ^ 

po Vs = po [-I 
ct \p0 r 

(i oy 

po cyo 

-Y-l l O  ° y 
po 

Write temporarily x = yw z = y—p0yThen 

02 c z 

dt“ 
YPo 

po 
(1—po)" 

o2„ /0„ 0 z cz 

dx \ dx. 

-Y-l 

* C. Cbanz, ‘ Zeitschr. f. d. ges. Schiess-u. Sprengstoffwesen,’ vol. 2, p. 345, 1907. 
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A solution of the type z — f(x) </> (t) is possible if and only if 

f" (x) = Afix) {/' (x)}y+\ {0 (t) }y <p" (it) = B, 

where A and B are constants connected by the equation 

B = ypo 
po 

(l—/°o)7 A. 

If S is the area of the cross-section, the equation of motion of the projectile, which is 

supposed to be at x = b, is pS = Mf(b) q>" (t). Now in general 

P = Po {l-po)y {/' [x] cp 

Hence the equation of motion of the projectile is satisfied if 

MB/(6) = SP,(l-P„)M/'(&)}-\ 
or 

A = 
ybf(b){f{b)Y 

where e = C/M = SbpJM is the ratio of the mass of the propellant to that of the projec¬ 

tile. Writing w = / (x) and q — dwjdx, the first integral of the differential equation 

for w is 
7_x 2 1 

^ A (y— l) a2—w2’ 

where a is a constant. Since f(x) vanishes with x, the final integral is 

1 
2 1 ' (a2—w2) 

Jo 
y-1 dw — 

U(v-i) 
X. 

Writing c — f (b) for the length of the column of gas at the instant considered, we have 

therefore 

(a2—w2)y~l div — 
[A (y-l) 

Substituting for A we have 

f (b) = (y-1) e 

Y-l 

b, {f(b)y-' = 
i 

A (y — 1) a2—c2 

O 

°'-bc ' A (y-l) - sb^r 

so that 

j■ (a2—w2)y~l dw = ———(a2—c2)y~l. 
Jo 2y C 

This equation determines cja, and when it is known w is given by 

1 {a2—w2)y~l dw — ^-—— («2—c2)?-1 -• 
Jo 2yC 0 

VOL. CCXXII.—A. 
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The pressure ratio between the two ends of the gas is R = {f'[0)/f'(b)}y, where 

if (W (O)K1 = a2/(a2—c2). Hence 

Writing c = a sin 0 we find It = cosm 0, where m = 2y/(y—l) and 9 is found by trial 

from the equation 
sin 9 f m_, 
—cos 
COS @ J o 

In the case of y = ll/9, m — 11, we find, after some analytical reduction, the 

expansion 
R — 1—1^4- 7.5 2 14913 3 , 
11 — 1 + STTVD6 + 

valid for small values of e. Either method gives R = 0-894 for e = 12/50, the corre¬ 

sponding value of 0 being 8° 9' 6". It will be noticed that although R is not equal to 

(l+de)-1 to the second order, the approximation is still a remarkably good one. The 

present theory will appear more satisfactory, as it is based on an exact solution valid 

for all values of e. 
As regards the energy factor, the previous definition in terms of the work done from 

an initial state of uniform density is not convenient, as this state is not one of the previous 

states of the gas. We may, however, define the energy factor in such a way that the 

kinetic energy of the gas is ae times that of the projectile.* 

Corresponding to the initial distance x from the breech we have in general w = a sin <p, 

where 

1 cos”1-1 cj)d(p = K^,. 
Jo 1 b 

and 
e cosm6 
m sin 0 

The corresponding velocity is V sin </>/sin 9. If x + dx corresponds to <p + d(p, 

Kdxjb = cos”1-1 (pdcp. The kinetic energy of the gas is 

! CV2 

2 K sin26> 
cosm 1 cj) sin2 (j>d<p, 

and that of the projectile |-MV2. Hence by definition 

r» 
cos”1 1 (p sin2 <pd(p, 

Jo 
a — 

e cos”‘ 9 sin 9 

* This was not done above because the problem would naturally present itself in the other form in 

practical calculations, where we should seek a factor which will make the kinetic energy of the projectile 

equal to the work of an assumed massless propellant. 
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where 6 is given by the equation already written down. Using the reduction 

formulae we find 
e — m sin2 A 

(m + 1) e sin2# ’ 

giving a = 0'325 when m — 11 and e = 12/50. The expansion formula, to the first 

power in e, is 

“ — rib e- 

46. Application to Ballistics.—To resume, Prof. Love’s theory supports the factors 

-o- and | up to considerable values of C/M, and shows further that the ratio of the pressures 

on projectile and breech (Plate 2) begins at once to oscillate about its mean value, 

reaching its first minimum when the projectile has travelled a distance of only two-thirds 

of a calibre. We may remark that no support is lent to the theory which appears to be 

favoured by Charbonnier* of more or less violent impulses of pressure on the base 

of the projectile : the discontinuity is at most one of pressure gradient, which becomes 

less and less as the motion proceeds. What would happen with gradual introduction 

of gas from a burning propellant is more conjectural, but nevertheless it seems of interest 

to examine the consequences of the assumption that the limiting state of motion, contem¬ 

plated above, is developed almost at once, and maintained ever after. The considerations 

which we shall advance have no pretence to rigour.f 

It is usual to measure maximum pressures in guns by crusher gauges placed at or near 

the breech. Let P be the pressure at the breech, P(l— C/2M) that at the base of the 

projectile at any time, powers of C/M above the first being neglected. Compare the 

actual motion with that for a massless gas of the same thermodynamical properties, 

and a projectile of mass m. Then for identical motion of the two projectiles, with 

m/ M = 1+C/3M, 
p _ m 

P(l—C/2M) “ M’ 

or p/P = 1—C/6M. In order to keep up the parallelism of motion we have to ensure 

that equal quantities of propellant are burnt in equal times. The rate of regression of 

the surface of colloidal propellants at different pressures has been measured by Vieille 

in a famous research.^ Mansell, who examined cordite M.D. by Vieille’s method,§ 

found a rate of regression in a closed vessel approximately proportional to the pressure. 

If D and d are the diameters of cordite in the two cases (or more generally numbers 

proportional to the linear dimensions of the grain), equal generation of gas corresponds 

approximately to the condition 
d _ p 

D ~ P (1 — C/4M) ’ 

* P. Charbonnier, ‘ Traite de Balistique Interieure,’ Paris, 0. Doin, p. 91. 

| See also F. Gossot and R. Liouville, loc. cit., pp. 50-58 ; vol. 17, pp. 61-66, 1914. 

J P. Vieille, ‘ Memorial des Poudres et Salpetres,’ vol. 6, p. 256, 1893. 

§ J. H. Mansell, ‘ Phil. Trans.,’ A, vol. 207, p. 243, 1908. 
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since P(1 — C/4M) is the mean pressure in the first gun. Hence we find that the relation 

of the ballistic constants in the two guns is 

w 

W 
c 

12M’ 

C_ 
6M' 

The first two equations give the projectile and the size of cordite to be used in the ideal 

calculation, the third equation the ratio in which the calculated maximum pressure is 

to be increased. The theory would be seriously invalidated if the ratio of the pressures 

recorded by crusher gauges in the breech and in the base of the projectile is not approxi¬ 

mately 1+C/2M, and does not apply to extraordinary experiments with very quick 

combustion (for which the pressure ratio is, of course, nearly 1). 

From a few calculations I have made with full charges in guns, it appears that the 

empirical rule of adding one-half of the mass of the propellant to the mass of the projec¬ 

tile, without other change of ballistic constant, gives approximately correct pressures, 

while muzzle velocities are about Id per cent. low. The fraction one-third gives approxi¬ 

mately correct muzzle velocities, but maximum pressures about 4 per cent. low. 

An important factor in the future progress of internal ballistics would seem to be 

the determination of the rate of regression of colloidal propellants as a function of both 

temperature and pressure. Hitherto only the latter has been taken into account, 

although some experiments of Wolff* show a falling off of the rate for small charges 

in a very small closed vessel, which appears to be due to loss of temperature. The effect 

would be enhanced in a gun, where the whole mass of gas is cooled by expansion, instead 

of being cooled relatively strongly near the surface. One consequence of diminished 

burning would be the occurrence of unconsumed cordite at velocities higher than those 

which Sebert and Hugoniot’s formula would give 'with a burning constant derived 

from experiments in closed vessels. 

* W. Wolff, ‘ Kriegstechnisdie Zeitsckr.,’ vol. 6, p. 1, 1903. 
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VII. The Aerodynamics of a Spinning Shell.—Part II. 

By R. H. Fowler and C. N. H. Lock. 

Communicated by H. W. Richmond, F.R.S. 

Received August 17, 1921,—Read February 9, 1922. 

§ 1. Introduction. 

In a previous paper* the authors, with others, have described observations of the 

angular oscillations of the axis of a 3-inch shell over the first 600 feet from the muzzle 

of the gun, and from an analysis of the observations have obtained information about 

the forces due to the air. In the experiments, shells were fired from two guns giving 

different degrees of axial spin to the shell. While the shells fired from the gun giving 

the more rapid spin were all stable, most of the shells from the other gun were slightly 

unstable, this condition being shown by the much larger maximum yawf developed. 

These unstable rounds were not analysed in (A) as no suitable method of doing so had 

then been devised.t The analysis of these rounds, about one-third of the number 

fired, forms the subject of the present paper ; the results confirm those of (A) and 

provide some additional information. 

The information as to the force system obtained from the stable rounds was 

confined to yaws up to 7 degrees or perhaps 10 degrees ; by analysis of the unstable 

rounds this information is extended, though in a fragmentary manner, over the region 

up to 35 degrees of yaw. On the other hand, no information has been derived from 

the observed damping of the unstable rounds. The observations are, in respect of 

the damping, clearly in qualitative agreement with the theory and results of (A), but 

no method has been devised of making a quantitative analysis of the damping. 

The force system on a model shell was also determined at low velocity in the wind 

channels of the National Physical Laboratory. The results are shown in fig. 2 of (A) 

* “ The Aerodynamics of a Spinning Shell,’' ‘ Phil. Trans.,’ A, vol. 221, p. 295 (1920). This paper 

will be cited as (A). The experiments analysed here and in (A) were carried out for the Ordnance 

Committee, and the. results are published with their sanction. 

f The “ yaw ” is the angle between the axis of the shell and the direction of motion of its centre of 

gravity. 

t As will appear later, the ordinary solution in elliptic functions of the equations of motion of a top 

is not adequate for this purpose in the case of large yaws. 

VOL CCXXII.—A 600. 2 K [Published March 15, 1922. 
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and have been used in both papers for extending the results down to low velocities, 

as in figs. 1 and 2, here. 

Shells of four different types, I.-IV. were used. Types I.—III. were of the same 

external shape (form A), with three different positions of the centre of gravity. 

Type IV. was of a different external shape (form B). The details are given in (A).* 

The experimental data, which have already been discussed in (A), consist of the 

mass, principal moments of inertia, and position of the centre of gravity for each type 

of shell ; rough values of the forward velocity over the whole range of 600 feet from 

the muzzle of the gun ; the spin of the shell, deduced from the rifling of the bore; the 

yaw and orientation of the shell’s axis at a number of points along the range, deduced 

from the shape and orientation of the holes punched by the shell in cardboard targets. 

These cards were set up at intervals of about 60 feet for all the unstable rounds, and 

it appears from figs. 12 of (A) and figs. 3 and 4 of this paper that they were close enough 

together for satisfactory curves to be drawn through the observed points representing 

the variation of the yaw S and its azimuth <p over the whole range. 

§ 2. The Equations of Motion. 

It is convenient to recapitulate the notation of (A). Suppose that OA denotes the 

direction of the axis, OP the direction of motion of the centre of gravity of the shell ; 

then AOP = S, and <j> is the angle that the plane AOP makes with a fixed plane 

through OP. M (= u sin S) is the couple in the plane AOP which tends to increase S, 

A, B and N are the principal moments of inertia and the axial spin of the shell, and we 

write Q = AN/B. Then the equations of motion will be taken in the formf 

S'2 + cf)rj sin3 j ^ d cos S — E,.(l) 

sin2 d + Q cos S = F,.(2) 

where E and F are constants. The various assumptions underlying equations (1) 

and (2) are discussed in detail in (A). If ,u is constant the equations are, of course, 

of the same form as the ordinary integrals of energy and angular momentum for a 

spinning top, and the complete solution hi elliptic functions is standard. 

When M is an arbitrary (odd) function of $ the top solution no longer applies, but 

a solution in elliptic functions is still possible if M has the form X sin $ 1—Y (1—cos cf)}, 

where X and Y are constants. This more general form allows the first two terms in 

the expansion of an arbitrary M to be catered for and can represent M adequately 

* Loc. cit., p. 316 and fig. 6. See also fig. 1, liere. 

t (A), loc. cit., p. 334, equations 3.404, 3.405. For the underlying assumptions see (A) Part I., pp. 301 sqq., 

311 sqq. These equations are, strictly speaking, not referred to fixed axes, hut are approximate equations 

referred to axes changing direction with OP. Dashes denote differentiations with respect to the time t. 
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over a wider range of values of §. By suitably adjusting X and Y, which define the 

couple, and the initial conditions, a curve showing the variation of S with the time 

can be obtained which agrees closely with observations over a complete half-period, 

so that the above expression for M appears to be adequate up to values of § of 35 degrees.* * * § 

Our original approximation with Y = 0 fails in general when <5'> 10 degrees. The 

observed curves suffice to determine X and Y for each round, and as observations 

were taken for a number of different values of the muzzle velocity, M is determined 

by the experiments over a limited range, as a function of the two variables, v, the 

velocity of the shell, and S. 

In solving the equations of motion it is convenient to express the couple by means 

of the non-dimensional coefficients s and q defined by the equation 

M = BQ2 {l — 4g.s- (1 — cos d)}.(3) 
4zS 

It will appear that the motion with S permanently zero is stable or unstable 

according as s > 1 or s<l. For the rounds here analysed, s lies between 1-06 

and 0-83. 

In expressing the results in a standard form it is convenient to use a different 

non-dimensional coefficient /M, which is independent of the mass, moments of inertia, 

size and velocity of the shell, and depends only on the shape of the shell and the 

non-dimensional variables v/a and S, where a is the velocity of sound. This is defined 

by the equationf 
M = pv2r3 sin d fu (v/a, S),.  (4) 

where p is the air-density, r the radius of the shell, and the quantities involved are 

expressed in consistent units. 

According to (3), /M is practically constant so long as 8 < 7 degrees, and the value 

of /M (v/a, 0) is strictly comparable with similar values obtained in (A) by analysis 

of the stable rounds on the assumption that fu is independent of 8. 

§ 3. Final Results of the Experiment, 

Fig. 1 shows curves of /M (v/a, 0) as a function of v/a for the four types of shell 

corrected for the effect of the cardsJ. They are reproduced without alteration from 

figs. 4 and 5 of (A) and represent the results for the stable rounds. § The values 

derived from the present analysis of the unstable rounds are plotted for comparison ; 

* When the yaw exceeds 30 degrees the fit is less satisfactory {e.g., III., 11-13). 

f Loc. cit., p. 302, equation 1.103. 

j § 10 below. 

§ The curve for type II. is not actually given, but the data for drawing it can be found in (A) (fig. 13, 

p. 352). 

2 K 2 
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they show remarkably good agreement between the new results and the old. This 

confirms the substantial truth of the whole theory ; in particular, the agreement of 

the results for the two twists of rifling verifies that the couple M is unaffected by a 

change in axial spin in the ratio 3 to 4. 

Fig. 1. Values of tlie couple coefficient/M (v/a, 0) and the normal force coefficient /N (v/a, 0) plotted 

against vja, corrected for the effect of the cards. The full curves for/M for types I.-IV. are reproduced 

without alteration from (A). The plotted points show the means of observations here analysed for the 

first and second half-periods, and the numbers against them show the number of rounds contributing to 

each mean. The group marked * was analysed in (A) by a different method with identical results. The 

origin of/j, for type IV. is displaced downwards 4 units. 

The full curve (V) for fs (shells of form A) represents the complete results of the experiment. The 

dotted curve reproduces the partial results of (A). 

Curve I.—for 3-inch shells of form A with centre of gravity 4-20 inches from the base. (Type III.) 

Curve II.—The same with centre of gravity 4-73 inches from the base. (Type I.) 

Curve III.—The same with centre of gravity 5-08 inches from the base. (Type II.) 

Curve IV.—The same for form B with centre of gravity 4-965 inches from the base. (Type IV.) 

Curves of /M sin S, the complete moment coefficient, considered as a function of 

botli variables vja and S corrected for the effect of the cards, are plotted against 

S in fig. 2. The information is somewhat fragmentary : in addition to wind channel 

results, values of /M, when d>10 degrees, are available for shells of type I.—III. for 

two velocities near v — a. For type IV. (pointed shells) values of /M for large $ are 

wanting in this region, but exist for two high velocities, and one less than a. 
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Some general information can be deduced from tliese curves. At high velocities 

(v/a = 2-0) and large values of S the couple coefficient actually falls below its low 

Fig. 2. Curves of the complete couple coefficient /M (v/a, 8) sin 8 against 8 for various values of vja 

(as shown against the curves). The curves stop at the greatest value of 8 for which observations are 

available. 

The origins of all the curves except for type III. are displaced upwards and can be recovered from the 

fact that all curves pass through their respective origins. The scale of 8 is in degrees. 

velocity (wind channel) value (fig. 2) ; the curve of the couple coefficient against yaw 

has here a large curvature downwards. It is, on the other hand, almost straight in 

the region of the velocity of sound. 
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We may notice also the peculiar behaviour of rounds III. (11-13), fig. 3,* in which 

the motion seems to become quite irregular from round to round after the first 

maximum yaw is attained. As these are the only rounds in which a yaw of 35 degrees 

or more is developed, it seems likely that some peculiar change in the type of the 

airflow occurs at or about this angle, analogous to the phenomenon of “ burbling.5 

Rounds IV. (10-12) have the smallest velocity of any group fired ; the agreement 

of fM for these rounds with wind channel results for the whole range of S, figs. 1 and 2, 

is very satisfactory. 

The new values of/M (v/a, 0) can be used to correct slightly the mean curves of/M, 

and from the modified curves the value of /N, the coefficient of the force normal to 

the shell’s axis at small yaw, may be re-determined by the method used in (A), §1-13. 

The re-determined curve for fs is shown in fig. 1. The values differ only slightly from 

the former values, and the main features of the fs curve are fully confirmed. 

The final results of the complete experiment, stable and unstable rounds alike, 

corrected for the effect of the cards, have been combined together to give the final 

values of fu (v/a, 0) for shells of types I. and IV. and fy (v/a, 0) for type I. shown in 

Table I., which replaces the corresponding Table I. of (A). 

Table I.—Final values of fu (v/a, 0) and fs (v/a, 0) for shells of type I. and/M {v/a, 0) 

for shells of type IV., embodying the results of the whole experiment. The effect of 

the cards has been corrected for as far as possible, and this table supersedes Table I. 

of (A). 

v/a. 

Shells of type I. Type IV. 

/m (v/a, 0). /n (v/a, 0). /m (v/a, 0). 

Wind channel 8-57 3-34 8-95 
0-7 8-6 3-35 9-0 
0-8 9-05 4-0 9-7 
0-9 10-35 5-2 11-1 
1-0 11-55 5-25 11-75 
1-1 11-55 4-7 11-6 
1-2 11-25 3-9 11-4 
1-3 10-9 3-7 11-25 
1-4 10-55 3-85 11-1 
1-5 10-3 4-0 11-0 
1-6 10-05 4-15 10-95 
1-7 9-85 4-3 10-9 
1-8 9-65 4-5 10-8 
1-9 9-4 10-75 
2-0 9-15 — 

* Also (A), p. 349, fig. 12b. 

f This term is commonly applied to the sudden increase of turbulence behind an aerofoil at the critical 
angle. 
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§ 4. The Solution of the Equations of Motion. 

We shall now solve the equations of motion (1) and (2), assuming that M is of form (3). 

We take first the case of rosette motion, in which zero values of S can occur, so that we 

may assume the initial conditions 

S=0, S'= bQ. 

Eliminating f and writing sin ho = y we get 

M'2 = O2 (62 (i — 2/2) —2/2H-2/3 (i — 2/2) (i/^ —4g2/2)}.(5) 

The right-hand side is a cubic in y2 whose roots are such that it may be written in 

the form 
iy'2 = 4:qQ2 (h2 + y2) [d2-y2) {f2-y2), (iff1 < 1 < l/a2). . . . (G) 

Formulae connecting* h, a and / with b, q and s may be obtained most conveniently 

by putting y2 = 1, y2 — 0, and by differentiating with respect to y2 and putting 

y2 = 0. The resulting formulae are 

iq(l+h!)(l-a*)(f3-l) = 1,.(7) 

4 qa?h?f‘ = 6%.(8) 

4q (a2/2 — a2h2—h2f2) = — b2 + l/s — 1.(9) 

A solution of (6) is obtained by assuming, in the usual notation of Jacobian elliptic 

functions, 

where the constant g and the modulus k of the elliptic functions remain to be determined. 

If we solve (10) for cn2 u and differentiate, we get 

leading to 

t r a2{\—q2)yy' 
—sn u cn u dn u u = , 

('a-gV) 

y 
U 

n 

«4(i -g2) 
{a2-g2y2) (a2-y2) {a2 (l-k2) + {k2-g2) y2}. 

Comparing this with (6) we may write u' = ± XQ, X constant, and obtain 

f = cf/g3,. 

7.2 _ U2 (t — k2) 
!> - 7 9 •> 5 ....... 

kr-gr 

q 
X2g2 (kr-g2) 

a^l-g2) 

(11) 

(12) 

(13 

* This a has, of course, no connection with the velocity of sound. 
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Since y = 0 when t — 0, we may write u = K—XQ£, where K is the complete 

elliptic integral of the first kind to modulus k. Treating Qt as independent variable, 

the final form of our solution contains four constants a, X, k and g, which must be 

completely determinable in terms of s, q and b, so that there must be an independent 

relation between a, X, k and g by which any one can be found when the other three 

are known. To determine them it would be necessary to solve (5), the original cubic 

in y2. To analyse the experiments, however, we have to solve the inverse problem 

of determining s, q and b when a, X, k and g are known. In practice g is small so 

that, as a first approximation, we may use the following simplified form of (10) :— 

y = a cn (K — .(14) 

where a, k and X may be treated as independent. By fitting a curve of this type to 

the curve of observed values of y (sin Jri) against Qt, we can determine the constants 

a, X and k. It is at once clear that a — sin where a is the maximum yaw, but 

we shall continue to call this constant a for shortness. The value of g can then be 

obtained from the identical relation in terms of a, k, X, and the curve re-calculated by 

formula (10) if g is large enough to make it worth while to do so. After that the 

values of a, X and k could be re-adjusted and the process repeated. Theoretically, 

we could presumably arrive at the precise solution in this manner by a limiting 

process. Practically, in nearly every case, the first approximation with ^7 = 0 is all 

that is required. 

The values of s, q and b are given by simple formulae in terms of a, X, k and g. From 

(8) and (9) we get 

l/s— 1 = 4q (o/Jrf ‘ + a?f2 — a2h2 — h) ; 

on substituting for q, h2 and f2 from (11)—(13), this reduces to 

l/s — 1 = 4X” ■ — cos 2k + 
cos2 k (d2—3g~) [ 

2 I 5 
1 ~9 J 

• • (!5) 

where k — sin «-.* In practice either a or cos k, or both, are small and g is of the same 

order as a ; the second term inside the bracket may then be neglected in determining s, 

in which case the value of g is not required. This, as we shall see, is really a consequence 

of the smallness of b, its mean value in practice being about 0-015. For q write 

equation (7) in the form 

4(Z+ = 4 q(Jrf--Jr+f-), 
l—a 

and substitute for q, h2 and f '2 in the right-hand side, gettin 

1 4X 

1 — a? ' a2 l 
4g — — --- + —— -j sm" k + 

cos2 k (a2 — 2f/)\ 

'1 —g2 J 
16 

* This k will not be confused with the k of (A), loc. cit., p. 328, which is the damping coefficient depending 

on the cross-wind force. 



THE AERODYNAMICS OF A SPINNING SHELL. 235 

Finally equation (8) gives 

7 a 4X2a2 cos2 k 

The equation for g is obtained by substituting for q, h2 and/2 in (7), which becomes 

4X2(l — a2) (a2.—g2) {d2—g2-\- (l — a2) k2} — a4 (l— g2) = 0 ; . . . (18) 

this is a quadratic for g2, whose solution may be written 

g" = sin2 \cl ^1 - , (sin = a),.(19) 

where 0 is given by 

cot 0 = XF cot2 \v-— (tan2 |-a)/4X.(20) 

The ambiguity is settled in practice by the fact that g2 must be small if equation (14) 

is to be taken as a first approximation to the solution. In practice, as we have said, 

b is small. Valuable information as to the nature of the solution is, therefore, obtainable 

by considering its limit as b -> 0. This gives us a guide as to the actual relative order 

of all terms. 

Let us suppose then that b -> 0, that s and q are definite constants, and let us assume 

that g is of the same order as a, which by (19) and (20) must be the case unless X -> 0. 

Then equation (17) shows that \2a2 cos2 k/(1 —g2)^0, and, therefore, in the limit, 

1 j s — l = — 4X2 cos 2k.(21) 

Equation (21) shows that, if s ^ 1, X -> 0 is impossible. Hence in all cases (s ^ 1) 

our assumption as to g is justified and a cos k -> 0. This also justifies our previous 

statement concerning (15). There are now two cases according as s < 1 or s > 1. 

Case (i).—s <1. We are supposing that s— 1 is fixed, so that as b -> 0, 5—1 is large 

compared to b. To satisfy the signs of (21) we must have k > 45 degrees. This 

implies sin2 k>|, so that (16) becomes in the limit 

4 q = 1 —a" 
- + 

4X2 sin2 

a~ 

It follows that a 0 is impossible, and therefore cos k 0, k -> 90 degrees, and a and X 

tend to definite non-zero limits. The limiting forms for 1/s, q and g2 are easily found 

to be 
1/s—1 = 4X2,.(22) 

4q = — sec2 |-a + 4X2 cosec2 /a..(23) 

g2 = sin2 ^ol {1— (tan2 Ta)/4X2},.(24) 

VOL. CCXXII.—A. 2 L 
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in which we have replaced a by sin \a. These formulae are good approximations in 

practice, when s is not too close to unity. The half-period L>T* (= K/x) tends to 

infinity, but so slowly that no difficulty occurs in practice. Since a, the maximum 

yaw, does not tend to zero with b, the initial disturbance, we have here what may be 

called the unstable case. 

Case (ii).—5> 1. We now must have /c<45 degrees and, therefore, as cos2 k>|, 

a->0 at the same rate as b ; this is the stable case in the usual sense. Equation (16) 

shows further that k -> 0, and, therefore, by (15), X has a definite limit determined 

by 

1-1/s - 4X2. 

For given q equations (16)-(20) determine the limiting ratios of b : sin \a. : Jc: g. 

The case in which 5=1 and b ^ 0 can be treated in a similar way. It is found that 

k -> 45 degrees and a and X both tend to zero like ^/b. 

§ 5. Rounds with a Non-Zero Minimum Yaw. 

We shall only consider cases in which the minimum yaw (3 is small, and shall take 

as initial conditions 

$ = (3, S' = 0, sm S — b\Q. 

The equations of motion become 

<p' sin2 S— Qbi sin /3 + Q (cos (3—cos S) = 0,.(25) 

S'2 + cp'2 sin2 S—Q2&i2 + I ~d cos (5 = 0.(26) 
Jj3 B 

If we write yd = sin2 J<5 — sin21/3, yl vanishes initially and the equation for yx may be 

written 

4y\~ = IE {bi (cos (3—yd) -y{- bx sin (3 

+ {sm2%/3 + y12)(cos2^(3-y12)[l/s-4q(sm2%/3 + yi)']}. . . . (27) 

We identify (27) with the equation 

Vi2 = IqQ2 {hf + yd) {a*-y2) {fi-y/2),.(28) 

in which ad = sin2 \ol—sin2 \(3. Equations (10)—(13) retain their form, and (7)-(9) 

become 

(bi sin ^(3 + cos ^/3)2 = 4 q (hd + cos2 j^/3) (J\2—cos2 ^(3) cos2 |-a, . . . (29) 

b2 — (bi cosjf/3—sin^/3)2 = 4,q{h2—sin2^) (/13 + sin2-g-/3) sin2|-a, . . . (30) 

— b{ + (1 /.s-) cos /3— 1 — 4y sin2(2 cos2 T/3—shr T/3) = 4<q{a2 f2—h2a2—h2f[2). . (31) 

* T is the time interval between a zero or minimum and an adjacent maximum of the yaw. 
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The solution is 

or 

The values of s and q in terms of A, sin \rt, k and g will differ from the values they 

had before by terms of the order sin2 or h sin kft which are negligible in practice 

compared to af. Hence the previous solution may be applied provided that (32) 

replaces (10) in calculations of the curve of sin as a function of Qt. For convenience 

in computing, (32) may be put in the form (neglecting g2) 

Vi = 
a{ cm u 

1 —g2 snHT 
(u = K — \Ot), 

•2i* -2i n (sin2Ta—sin2T/3) cir n 
sm i^-snrp = 1-2 - 

L —g sir u 
(32) 

s;n i ;; _ sill cos x _ sin sin y 

where 

sm 6 cos 0 

tan 6 = sin |-a cot x/sin |-/3, cos x = cn u. 

Formula (17) remains a valid approximation for 62 provided b2 is defined by (30). 

(33) 

§ 6. A Discussion of the Probable Effects of Damping, and Other Factors Omitted in the 

Foregoing Solution. 

Up to this point we have assumed that the motion in yaw is exactly periodic with 

half-period LiT. This would be exactly true if the couple M were a function of <5 only, 

OP a fixed straight line, and no other couples existed. In actual fact, M is a function 

of the forward velocity and therefore of the time ; OP changes direction under the 

influence of gravity and the cross-wind force, and other couples besides M act on the 

shell, depending on the angular velocity of the shell. All these factors cause progressive 

changes in the curve of yaw from period to period ; for the case of the stable rounds 

they have been discussed at length in (A), where it is shown that they do not appreciably 

affect the determination of M at any velocity for small values of S. In particular, 

the effect of gravity is almost entirely allowed for by using (as we do) the true yaw 

and not the angle between the axis of the shell and some fixed straight line. As explained 

in (A)* the shape of the hole in the cards determines the true yaw and not the angle 

between the axis of the shell and the normal to the card. 

There is no reason to expect that any of these damping effects will be relatively 

more important for an unstable than for a stable shell, except for the change of M with 

the velocity. Although the change in velocity over a single period is always small, 

yet when s is less than or nearly equal to unity a small change in M will cause a fairly 

* Loc. cit., p. 318, footnote. 

2 L 2 
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large change in the type of motion. This is shown clearly in fig. 3, round III. 16, 

where the decrease in amplitude and the change from an unstable to a stable type is 

quite marked, but still not sufficient to introduce any error in the determination of 

the couple for a single half-period. The effect is illustrated by the change in s in 

successive half-periods (Table III.), which is in general in the direction, and roughly of 

the amount, required by theory. 

Fig. 3. The observed and calculated motion in yaw, compared for selected rounds. The plotted 

points show the observed values of sin ifS plotted against Qt for rounds III. (11, 16) and IV. (8, 9). The 

continuous curves are the result of calculations described in detail in §§ 6, 8. Short vertical lines mark 

the positions of maxima and minima, and the origins of co-ordinates. The values of the constants used 

are as follows :— 

III. 11. (a) k = 80 degrees ; (b) k = 85 degrees, g2 = 0 ; (c) k = 85 degrees, g~ — — 0-185. 

III. 16. (a) k = 80 degrees ; (b) k = 60 degrees, /? = 0 ; (c) k = 60 degrees, sin = 0-037 ; 

(d) k — 40 degrees, sin = 0-037 ; (e) k = 0, with third order contact with (a) at maximum. 

IV. 8. (a) k = 85 degrees ; (6) k = 75 degrees, sin = 0-034. 

IV. 9. (a) k = 60 degrees ; (b, c) k = 70 degrees. 

It appears that a change in M with v cannot alter an initial rosette motion into one 

with non-zero minimum yaw. This alteration, as in the stable case, must be due to 

the other couples depending on the angular velocity of the axis, and to the sideways 
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motion of the centre of gravity, which function as damping forces as explained in (A).* 

No means of dealing with these effects theoretically has yet been devised for the case 

of large yaw ; the observed changes are clearly of the general type which one’s experience 

of the stable case would lead one to predict. 

§ 7. The Motion in cp. 

It is not difficult to write down a formal expression for the motion in <p. If we take 

equation (25) and substitute for sin ^ from equation (32) we obtain after reduction 

12 . bQ sin 

12 
+ 

^ 1 + cos S 

M2 sin |-/3 

+ 
(l + cos S) y2' 

1 —g2 sn2 u 

1 + cos S 1 + cos S (1 —g2) sin21-/3 sir u + sin2 -g-a cn2 u 

where b is defined by (30). Now even when a is as big as 30 degrees there is still only 

a maximum difference of 7 per cent, between 1-j-cos S and 2, and this maximum is 

only effective for a short part of each period. Hence, for almost all purposes, we are 

still justified in replacing 1-j-cos $ by 2f. In order to integrate this equation we notice 

that X12dt — - du and that 1 = 0 or u = K corresponds to the minimum. Thus, 

<P — 00 ++ 
b sin |-/3 (1 —g2 sn2 u) du 

2A J u (1 —g2) sin2sn2 u + sin2 cn2 u 
(34) 

This equation contains an elliptic integral of the third kind which can be evaluated 

in 6-functions. We have not, however, made this evaluation or calculated any actual 

0-curves from (34) mainly because it does nob appear that any further information as 

to the forces acting on the shell would be obtained thereby. We shall content ourselves 

in this paper with a statement of sufficient theoretical results to show that the observed 

^-curves are qualitatively of the form to be expected from (34). A more detailed 

discussion of these curves, however, would, we think, be of some interest. 

It is convenient to treat the motion by using the variable — <p—0„—M2L 

When /3 is zero, (p’ will be constant and equal to ^L2 to our present approximation ; 

with y and as polar co-ordinates the motion then consists of an oscillation in a straight 

line through the origin, for y/ — 0. In the general case we may eliminate dt between 

equations (33)' and (28), and on substituting for b from (30) obtain an equation for 

dyld\]s in the form| 

I- 
V 

fi + sin2 

(35) 

If we assume that 7q2 and f2 are large compared to sin2 -|a, the last two brackets 

* In particular see p. 313. 

f It is easy to estimate the precise effect of this approximation in the simple case of the rosette motion. 

The error caused is always very small. 

f In deducing (35) we replace 1-j-cos 3 by 2. 
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in (35) are effectively unity, and the equation reduces to that of an ellipse in polar 

co-ordinates with axes sin |a, sin|/3. This tends to a straight line as the limiting 

form when /3 -> 0. 

The same (simplified) relation between 8 and f was obtained in (A)* for the case 

of small yaw only. The elliptic motion may be calculated most easily by recognising 

that \!/ is the auxiliary angle 0 of equation (33) so that 

<P — <po + + 0. 

The conditions under which this approximation is valid may be seen by reference to 

equations (11) and (12) which are satisfied by ff, /q2 and cq2. We notice that/y is 

never small compared to unity and tends to infinity as q, and therefore g tends to zero ; 

while /q2 may be comparable with rq2 unless k is small. Thus the approximation is 

really only valid for s > 1, in which case it applies even if (3 is not small compared 

to a. Finally, if 1—k2 is small, equation (12) shows that /q2 will be small compared 

to cq2, and the third bracket in (35) will be more important than the second near a 

minimum of y ; this indicates that the shape of the (y, \L) curve there approximates 

to an hyperbola instead of to an elongated ellipse ; the curve may also no longer be 

re-entrant, the total change of f in one period differing from +tt. 

Examples of all these results may be seen in fig. 4, in which the observations for 

three different rounds are plotted with (y, g,) as polar co-ordinates. For round I. (5), 

for which (3 is small and the shell just stable, we find the expected elongated ellipse-like 

curve, with a slowly-developing minor axis caused by the damping factors. In III. (16) 

k — 80 degrees for the first half-period, diminishing to 40 degrees for the third ; a 

considerable minimum yaw developes and the curve is less like an ellipse, though the 

maxima are still nearly 180 degrees apart. Finally, in IV. (8) k = 85 degrees, falling 

to 75 degrees, and the shape of the curve near the minimum clearly resembles an 

hyperbola ; we may guess then the angle between the two maxima is somewhere about 

100 degrees instead of 180 degrees. 

Lastly, a word must be said about the observational determination of Q, which is, 

of course, theoretically determined by the muzzle velocity, twist of rifling and moments 

of inertia of the shell. In all cases the slope of the ^-curve over the first half-period, 

or rather more, is uniform and well determined. Since (3 appears to be really very 

small initially one may expect from theory the slope of this part of the curve to be 

|Q whatever the value of k. The agreement between this observed slope and the 

calculated value of i} is satisfactory. 

§ 8. The Method of Analysis. 

The method of analysis of the sin Id-curves will now be explained with reference 

to fig. 3. After the observed values of sin |d have been plotted against {It, the values 

* Loc. cit., p. 346, equation 4.06. 
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of Qt corresponding to the ends of half-periods can be determined from the symmetry 

of the curve, with the exception of the start of the first half-period. This must, of 

course, be near the muzzle, but need not be actually at the muzzle, and its precise 

0 1 2 3 4 5 6 7 

Scale of cms. 

Fig. 4. Curves showing the observed angular motion of the axis with (sinJS, as polar 

co-ordinates (\p = —<£o—ffit). The circles show the observed points and the curves are 

drawn freehand through them. 

For I. (5) 1 cm. represents 0-01 in sin|-8. 

For III. (16) and IY. (8) 1 cm. represents 0-02 in sin-IS. 

position must be guessed. The values of sin-|a can be obtained from a rough curve 

drawn freehand through the observations. Each half-period is then analysed separately 

and the only additional constant (when (3 = 0) required for computing a curve, by 

the approximate formula 

sin = sin |-a cn (K—\Qt, k), 

is the value of k or sin k. This may be approximated to with the help of the following 

artifice. Draw by eye a cosine curve (fig. 3, III. 16, first half-period) to have third 

order contact with the observed sin |^-curve at the maximum and to cut the axis 

at T. Then the ratio of NT to the half-period NP must be nj2K. For all curves of 

the form y = A cn (K—fix), for different values of k, have' third-order contact at the 

maximum ordinate, and a cosine curve is the limiting case, in which Iv = \n. A first 

estimate of k can usually be made by this method to the nearest 5 degrees, when 
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k > 45 degrees. If necessary, similar curves are drawn for otlier values of k (rounds 

III. 11, III. 16) and the true values of k, sin \rt and <dT (the length of the half-period) 

finally settled by interpolation. 

If required a curve can be calculated by the exact formula (10) after g has been 

determined by (19), but the change of shape is negligible unless sin \ol and, therefore, g 

is very large. An example of the effect of including g is shown in fig. 3 for III. (11), 

but round III. (11) and its companions are the only ones in which g had any sensible 

effect. Rounds IV. (8 and 9) illustrate the effect of a considerable alteration in b 

(representing the initial disturbance) in causing, when s < 1, a considerable change in 

period but only a small change in amplitude. The fit obtained between calculated 

and observed curves is generally good. The selected curves in fig. 3 are a fair sample 

of the whole. 

When the minimum yaw (3 is not zero the curve is first calculated as above, as if 

j3 ~ 0, and then corrected by (33), using the observed value of (3, which is obtained 

like ol from a rough curve. An example of such curves will be found in fig. 3 for the 

second half-period of IV. (8) and the second and third half-periods of III. (16). After 

the (3 correction has been put on, the value of k may require readjustment to obtain 

the proper fit. 

The values of k, sin \a and iiT so determined are given for each half-period of each 

round in Table II., together with sin|/3 and X obtained from the equation X = K/QT. 

We then obtain s, q and b from equations (15)-(17).* From the values of s and q and 

the other observational data we can calculate /M sin ^ as a function of vja and § from 

formulae (3) and (4). The results are shown in figs. 1 and 2, and Tables I. and III., 

and have already been discussed. 

The damping effects appear in the variation of the various constants from one 

half-period to another. In general, s increases approximately at the rate required by 

theory, i.e., inversely as the square of the velocity at the middle point of the half- 

period:f 

* When k is much less than 45 degrees the method breaks down, as k cannot be determined satisfactorily 

from the observational curves. The method explained in (A), p. 343, could then be employed. This is 

equivalent to assuming q = 0 and using formula (16) to determine k given sin \cl and A. Under these 

conditions sin Ja is so small that the value of q does not appreciably affect either the value of s or the shape 

of the curve of/M against S. 

| Theoretically, s should increase while q should remain roughly constant. But sin \cl is common to 

the first and second half-period, while A is determined mainly by the shape of the curve near the maximum. 

Hence, in general, k alone varies between the first and second half-periods. It appears that the result of 

varying k only in formulae (15, 16) is to produce a fictitious decrease in q while the increase of s is diminished 

as may be seen in Table II. For this reason mean values for the whole period are used in constructing 

figs. 1 and 2. 
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Table II.—General Table of Results. 

Column 1. 

33 

33 

33 

2. 
3. 

4. 

5. 

6. 
7. 

8. 

33 9. 

Number of round and number of half-period for the round (in brackets). 

Muzzle velocity, f.s., for round or mean for group. 

Air density p, lb./(ft.)3, and temperature,0 F. 

12 (= AN/B), radians/sec. 

12T, radians, where T is the observed duration (sec.) of each half-period. 

Observed values of sin |a, where a is the maximum yaw. 

Observed values of sin -J/3, where /3 is the minimum yaw. 

Values of k, degrees, where k (= sin k) is the modulus of the elliptic 

function which fits the observations. 

Values of \(= K/liT), where Iv is the complete elliptic integral of the 

first kind for the value of k in (8). 

1 2 3 4 5 6 7 8 9 ft 

I. 8 (1) 1049 0-0792 84-2 17-5 0-276 79 0-172 
I. 9 (1) 1084 43° 86-9 19-8 0-251 — 83 0-154 

(2) 16-2 0-251 — 70 0-155 
I. 10 (1) 1084 86-9 15-2 0-245 75 0-182 

I. 17 (1) 1312 0-0812 105-2 16-6 0-192 75 0-167 
(2) 

O
 O

 13-8 0-192 0-020 65 0-167 
I. 18 (1) 13-5 0-203 — 75 0-205 

(2) 12-0 0-203 0-049 70 0-209 

1.5 (1) 1582 0-0782 ] 25-4 13-8 0-108 40 0-130 

(2) 45° 15-6 0-108 — 57 0-133 
(3) 12-0 0-070 — 20? 0-135 

1.6 (1) 13-6 0-118 — 45 0-136 

(2) 14-4 0-118 — 35 0-120 
1.7 (1) 24-0 0-090 — 56 0-086 

(2) 19-5 0-090 0-018 0? 0-082 

II. 11 (1) 1107 0-0807 81-9 18-2 0-161 57 0-114 

(2) 42° 14-6 0-161 0-055 20? 0-112 
II. 12 (1) 20-8 0-148 — 52 0-095 

(2) 16-4 0-148 0-075 35 0-105 
II. 13 (1) 22-0 0-183 — 70 0-114 

(2) 

i 
14-4 0-183 0-046 53 0-138 

1 1 i 1 1 1 
VOL. CCXXII.-A. 2 M 
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Table II. (continued). 

1 2 3 4 5 6 7 8 9 

II. 14 (1) 1334 0-0812 98-6 18-4 0-135 60 0-119 
(2) O

 o
 

19-8 0-135 0-014 55 0-105 
II-15\(1) 16-6 0-122 — 48 0-117 
* 16/(2) 15-9 0-122 0-012- 35 0-111 

III. 11 (1) 1077 0-0807 99-0 34-0 0-332 84 0-107 
III. 12(1) 42° 32-0 0-290 — 85 0-120 

III. 13(1) 28-4 0-301 

. 

85 0-135 

III. 14(1) 1312 0-0812 120-4 22-0 0-204 78 0-135 
(2) o

 o
 

17-2 0-204 — 70 0-146 
111.15(1) 18-0 0-207 — 75 0-154 

(2) 14-5 0-207 0-053 55 0-141 
(3) 13-9 0-187 0-053 55 0-147 

ILL 16(1) 21-8 0-204 — 80 0-145 
(2) 15-6 0-204 0-037 60 0-138 
(3) 17-0 0-179 0-037 40 0-105 

IV. 10 (1) 884 0-0807 62-5 16-5 0-233 70 0-152 
(2) 42° 13-3 0-233 — 50 0-145 

1 IV. 11 (1) 21-0 0-225 — 78 0-142 

(2) 15-0 0-225 — 50 0-129 
IV. 12 (1) 20-0 0-207 — 77 0-145 

(2) 14-5 0*207 62 0-153 

IV. 7 (1) 1553 0-0779 109-7 15-5 0-213 83 0-226 
S IV. 8 (1) 47° 18-0 0-199 — 85 0-213 

(2) 13-0 0-199 0-034 75 0-213 
IV. 9 (1) 11-5 0-218 __ 70 0-218 

IV. 1 (1) 2130 0-0782 150-6 12-5 0-160 66 0-187 

(2) 45° 12-9 0-160 0-018 65 0-179 
IV. 2 (1) 18-0 0-157 —• 82 0-187 

(2) 14-2 0-157 0-013 70 0-176 
IV. 3 (1) 17-0 0-160 — 80 0-185 

(2) 14-8 0-160 —■ 75 0-187 
IV. 5 (1) 15-5 0-160 — 74 0-175 

(2) 

1 | 

13-9 0-160 0-015 70 0-180 

* II. (15 and 16) are practically indistinguishable. These values refer to their mean. 
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Table III.—Mean values, for each group, of s, q and v ; the corresponding values of 

vja and /M (vja, 0) ; and the percentage spread in s. Each half-period is treated 

separately in each group. 

Group. s. 
Percentage 

spread 
in s. 

7- V. vja. h• 

I. 8-10 (1) 0-896 0-8 0-213 1063 0-965 11-80 
I. 9 (2) 0-932 — 0-084 1053 0-956 11-56 
I. 17, 18 (1) 0-892 4-3 0-578 1297 1-181 11-61 
I. 17, 18 (2) 0-908 5-5 0-597 1264 1-150 12-01 
I. 5-7 (1) 1-000 2-3 0-398 1560 1-413 10-56 
I. 5-7 (2) 1-007 5-6 0-507 1517 1-375 11 -08 
I. 5 (3) 1-060 — • _ 1494 1-354 10-86 

II. 11-13 (1) 0-977 3-1 0-068 1094 0-994 10-34 
II. 11-13 (2) 1-014 5-5 -0-04 1075 0-977 10-30 
II. 14-16 (1) 0-987 2-1 0-284 1315 1-198 10-20 
II. 14-16 (2) 1-006 3-2 0-066 1286 1-171 10-47 

III. 11-13 (1) 0-946 2-6 -0-119 1063 0-966 13-08 j 
III. 14-16 (1) 0-931 1-8 0-203 1296 1-180 13-10 
III. 14-16 (2) 0-959 3-6 0-118 1263 1-150 13-43 
III. 15, 16 (3) 0-990 3-7 — 1239 1-128 13-52 

IV. 10-12 (1) 0-934 0-3 0-146 877 0-797 10-00 
IV. 10-12 (2) 0-975 3-8 0-033 866 0-787 9-79 
IV. 7-9 (1) .0-852 4-5 0-793 1532 1-385 11-40 
IV. 8 (2) 0-864 — 0-820 1488 1-345 11-93 
IV. 1-3, 5 (1) 0-897 3-5 0-987 2102 1-905 10-80 
IV. 1-3, 5 (2) 0-907 3-5 0-885 2052 1-860 11-20 

The values of fu here given are not corrected for the effect of the cards. 

§ 9. The Values of b. 

The value of b represents the initial angular velocity of the axis of the shell, for at the 

beginning of the first half-period rosette motion may be assumed and S' = b{}. The 

values of b for each round are given in Table IV. 

Table IV.—Values of b ( — S'0/Q), where V0 is the initial angular velocity of the axis 

of the shell. 

Group. Values of b. Mean. 

I. 8-10 0-018 0-011 0-023 0-017 
I. 17, 18 0-017 0-022 0-019 
I. 5-7 0-021 0-023 0-009 0-018 

II. 11-13 0-020 0-017 0-014 0-017 
II. 14-16 0-016 0-018 0-018 0-017 

Group. Values of b. Mean. 

III. 11-13 0-007 0-006 0-007 0-007 
III. 14-16 0-011 0-016 0-011 0-013 
IV. 10-12 0-024 0-013 0-013 0-017 
IV. 7-9 0-012 0-007 0-032 0-017 
IV. 1-3, 5 0-024 0-008 0-010 

0-015 0-014 

M 
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They represent the size of the initial disturbance which upsets the nose-on motion, 

and vary irregularly in any one group, as might be expected. Their general size, 

however, is remarkably consistent from group to group. The corresponding values 

for the stable rounds and rough values for some of the rounds here analysed have been 

discussed by us in a previous paper.* The further results here given confirm the state¬ 

ments of that paper ; the mean value of b for any group is practically constant some¬ 

where between 0-01 and 0*02 for all groups fired. 

§ 10. Allowance for the Effect of Cards. 

In obtaining figs. 1 and 2 and Table I., but not in other cases, a small correction 

has been made to the value of the couple to allow for the impulsive action on the shell 

when it strikes a card. The amount of this correction was calculated from a few special 

rounds fired with cards on the far screens only. The following argument indicates 

that the effect should be roughly proportional to the couple due to the air and 

independent of other factors except the number of cards and the muzzle velocity. 

The effect of each card may be considered as an impulsive force whose moment about 

the centre of gravity is roughly proportional to sin d. If the cards are (as they were) 

uniformly distributed in space and therefore in time, there will be a total impulse per 

second which is proportional to sin S, and if the cards are not too far apart this is 

equivalent to a steady couple roughly proportional to the couple due to the air. The 

correction worked out in the case of the stable rounds at from 3 per cent, to 4 per cent, 

depending on the -muzzle velocity. In view of the preceding argument the same 

corrections are applied here. 

§ 11. Concluding Remarks. 

In view of possible future experiments it is of interest to compare the merits of the 

stable and unstable rounds for the purpose of this analysis. A large proportion of 

the rounds analysed in (A) had a stability coefficient s of about 1 • 8. The advantages 

of this are that the theory of the motion is practically complete, and in addition to 

the values of /M as a function of v/a rough values of the damping factors were obtained, 

which could be greatly improved if a longer range were available. The maximum 

yaw, however, is small, so that small errors in the determination of the yaw are 

important, while the periods are short so that, unless the cards are close together, it is 

difficult to draw curves through the observation points with sufficient certainty to 

determine the periods accurately. 

For the unstable rounds here analysed the theory is imperfect as regards the 

determination of damping. But a small change in the value of the couple M will 

* ‘Proc. Camb. Phil. Soc.,’ vol. XX, p. 311, 1921. 
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make a large change in the type of motion, so that the method is now a very sensitive 

one for determining the couple, and no great accuracy of observation is required. 

The yaw developed is also much larger, so that values of the couple are determined 

over a larger range of yaws. 

From the point of view of general aerodynamical theory the results form a preliminary 

contribution to the problem of determining the force system impressed by the air on a 

body moving unsymmetrically through a fluid at velocities at which the compressibility 

of the fluid produces marked effects. 
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1. Optical Rotatory Power op Tartaric Acid and the Tartrates. 

The optical rotatory power of tartaric acid was discovered in 1832 by Biot (£ Mem. 

Acad. Sci.,’ Paris, 1835, vol. 13, Table G, p. 168 ; paper read November 5, 1832), who 

devoted one of Ms longest memoirs (£ Mem. Acad. Sci.,’ 1838, vol. 15, pp. 93-279 ; paper 

read January 11, 1836) to a detailed account of its properties when mixed with water, 

with alcohol and with wood-spirit. 

Biot found that tartaric acid, when ££ dissolved in different fluid media, exercises on 

the planes of polarisation of light a special power, which distinguishes it from all the 

other substances hitherto studied.” These had agreed with quartz in obeying, at least 

approximately, Biot’s Law, according to which ££ the rotation of the different simple 

rays is reciprocal to the square of their wave-lengths ” (£ Mem. Acad. Sci.,’ 1817, vol. 2, 

pp. 49, 57 and 135 ; paper read September 22, 1818). This agreement had been verified 

in the case of turpentine, alone and mixed with ether, and of cane-sugar dissolved in 

water (i.) by comparing the tints with those produced by equivalent plates of quartz, 

and (ii.) by eliminating the effects of rotatory polarisation with the help of a quartz 

VOL. CCXXIT.-A 601. 2 N [Published April 11, 1922. 
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plate of opposite sign acting as a compensator (‘ Mem. Acad. Sci.,’ 1817, vol. 2, 

pp. 103-114). When tartaric acid was compared with quartz,however, no such parallelism 

was observed, the rotations for the chief colours being as follows :— 

Red. Orange. Yellow. Green. Blue. Indigo. Violet. 

Quartz. 

Tartaric acid . . . 

O 

18-99 

38-7 

O 

21-40 

40-29 

O 

23-99 

42-51 

O 

27-86 

46-11 

O 

32-31 

44-40 

o 

36-13 

42-9 

O 

40-88 

39-38 

(‘ Mem. Acad. Sci.,’ 1838, vol. 15, p. 236). Similar phenomena were observed when 

tartaric acid was dissolved in alcohol (ibid., p. 245) ; but Biot found that “ when it 

combines with basic substances in the same media, it loses its special action and imprints 

on the products the properties common to all other bodies endowed with rotatory 

power ” (£ Mem. Acad. Sci.,’ 1838, vol. 16, p. 229 ; paper read November 27, 1837). 

Biot’s experiments on tartaric acid and the tartrates covered so wide a range that 

the whole of the work described in the present paper may be regarded as a logical exten¬ 

sion of his investigations, aided on the physical side by modern optical theories and 

by modern apparatus, and on the chemical side by structural formulae and by stereo¬ 

chemical notions which were only struggling for recognition even in the closing years of 

Biot’s life. The contributions which he made to the fundamental problem of deter¬ 

mining the form of the curves of rotatory dispersion are discussed below in a separate 

paragraph, but reference may be made here to a few of the many topics covered by his 

investigations. 

(a) Influence of Water on the Rotatory Rower of Tartaric Acid. 

Biot discovered that ££ in aqueous solutions of tartaric acid at a given temperature, 

the rotatory power of the acid calculated for each simple ray is always of the form 

A + Be, where e represents the proportion by weight of water in the solution ” (£ Mem. 

Acad. Sci.,’ 1838, vol. 15, p. 216 ; compare ibid., p. 207), the specific rotation being 

therefore a linear function of the concentration. This linear law was first described in 

a sealed communication deposited in the Archives of the Academy on August 25, 1834, 

and opened on December 7, 1835. A note added on the latter date (£ Comptes Rendus,’ 

1835, vol. 1, p. 459) stated that the law was an approximation which did not apply to 

dilute solutions. Biot made use of the linear law to construct a diagram (£ Mem. Acad. 

Sci.,’ 1838, vol. 15, fig. 4, facing p. 652), in which the rotatory power for light of different 

colours is shown as a series of straight lines inclined at different angles to the axis of 

concentration. This diagram shows a marked similarity to the “ characteristic diagram ” 

constructed 75 years later by Armstrong and Walker (£ Roy. Soc. Proc.,’ 1913, series 

A, vol. 88, pp. 388-403), the chief difference being that the rotations for green light are 
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represented by a line inclined at an arbitrary angle, instead of at 45 degrees, to the 

horizontal axis ; the anomalous dispersion in concentrated solutions is shown by the 

intersection of the lines showing the rotatory power of the acid for light of different 

colours, and the removal of some of the more obvious anomalies on diluting the solutions 

is shown by the gradual separation of the lines until they follow the normal sequence 

of the primary colours of the visible spectrum. 

(b) Rotatory Power of Amorphous Tartaric Acid. 

Our own investigations (pp. 266 to 271) have shown that Biot’s linear law is only 

an approximation, and that an equation with five arbitrary constants would probably 

be required to express completely the relationship between rotatory power and concen¬ 

tration. With the help of his diagram and formula, Biot was, however, able to calculate 

by extrapolation the rotatory power of pure anhydrous tartaric acid at different tem¬ 

peratures and for light of different colours. In particular, he concluded that the rotatory 

power A of the anhydrous acid for the red light transmitted through glass coloured by 

cuprous oxide would change sign at 23° C., being positive above this temperature and 

negative below it (‘ Mem. Acad. Sci.,’ 1838, vol. 16, p. 269). This prediction was verified 

dramatically some years later when Laurent in 1849 discovered a method by which 

moistened tartaric acid could be fused and cooled to a transparent glass in thicknesses up 

to 76 mm. (‘ Ann. Chim. Phys.,’ 1850, vol. 28, p. 353). Biot then found that the hot, 

pasty acid produced a strong dextrorotation, which became negative on cooling. A 

70 mm. column of the acid at + 3*5° C. gave ared = —3*28°, when [a]r8d — —2,787°, 

agreeing very closely with the value [a]red = —2*752° calculated by extrapolation 

from the rotatory power of concentrated aqueous solutions of the acid {ibid., p. 366). 

(c) Rotatory Power of the Tartrates. 

Whilst his first long memoir on tartaric acid (“ Methodes mathematiques et experi- 

mentales, pour discerner les Melanges et les Combinaisons, definies ou non definies, qui 

agissent sur la Lumiere Polarisee ; suivies d’applications aux combinaisons de l’acide 

tartrique avec l’eau, l’alcool, et l’esprit de bois,” ‘ Mem. Acad. Sci.,’ 1838, vol. 15, 

pp. 93-279) dealt with solutions of the acid in water, alcohol, and wood spirit, his second 

memoir (“ Memoire sur plusieurs Points Fondamentaux de Mecanique Chimique”; 

‘ Mem. Acad. Sci.,’ 1838, vol. 16, pp. 229-396) described the changes which are produced 

in the rotatory power of tartaric acid by adding other acids (sulphuric, hydrochloric and 

citric, loc. cit., 271-304), alkalis (potash, soda and ammonia, loc. cit., 307-377) and earths 

(alumina and beryllia, loc. cit., 377-385). The action of alkalis was of special interest in 

that the tartrates derived from them showed none of the anomalies of the acid, their 

rotatory dispersion conforming approximately to the law of inverse squares and agreeing 

generally with that of quartz. Our own measurements have shown that this conclusion 

2 N 2 
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is broadly correct, since aqueous solutions of sodium tartrate show a closer approxima¬ 

tion to the requirements of Biot’s Law than in the case of any other substance that we 

have yet investigated ; the agreement is, however, even here not exact, and the complex 

character of the rotatory dispersion of the acid is shown, although in a much less striking 

way, in the salts derived from it. 

(d) Influence of Boric Acid. 

Of wider general interest is Biot’s discovery of the remarkable exaltation of rotatory 

power which is produced by the addition of boric acid to tartaric acid. The properties 

of the boro-tartaric solutions were first described in outline in his sealed note to the 

Academy (‘ Comptes Rendus,’ 1835, vol. 1, p. 458, compare £ Mem. Acad. Sci.,’ 1838, 

vol. 16, p. 271), but a detailed description was given ten years later as part of a long 

memoir 44 On the employment of polarised light to study various questions of chemical 

mechanics” (‘Aim. Chim. Phys.,5 1844, vol. 11, pp. 82-112; see also ‘Ann. Chim. 

Phys.,’ 1860, vol. 59, pp. 229-256). It is characteristic of the thoroughness with which 

Biot worked, that he extended his observations to include not only aqueous solutions, but 

also glassy amorphous mixtures of the two anhydrous acids (‘ Ann. Chim. Phys.,5 1850, 

vol. 28, p. 368). The exaltation of rotatory power which Biot observed on the addition 

of boric to tartaric acid appears in many other substances which resemble tartaric acid 

in containing two hydroxyl-groups attached to adjacent carbon-atoms. It is generally 

accompanied by an increase of electrical conductivity, and in recent years has been 

made the basis of a general method of determining the configuration of hydroxylic- 

compounds of the sugar group (see especially Magnanini, 4 Zeitschr. physikal. Chem.,5 

1890, vol. 6, p. 67 ; 4 Berichte Deut. Chem. Ges.,5 1891, vol. 24 ref., p. 894 ; Boeseken, 

4 Berichte,’ 1913, vol. 46, p. 2612 ; Irvine, 4 Trans. Chem. Soc.,5 1914, vol. 105, p. 898 ; 

1915, vol. 107, pp. 1221 and 1230). 

Later workers, whilst confirming the accuracy of his general conclusions, have added 

many details to the broad outlines of Biot’s work. Thus Arndtsen (4 Ann. Chim. 

Phys.,5 1858, vol. 54, p. 411), during a summer spent in Paris, showed that Biot’s 

maximum in the green disappeared at the violet end of the spectrum at concentrations 

below 20 per cent, of tartaric acid ; Krecke (4 Archives Neerlandaises,5 1872, vol. 7, 
p. 107) showed that even in a 50 per cent, solution the maximum vanished at the violet 

end of the spectrum when the temperature was raised to 50° C. ; and Wendell 

(4 Wiedemann’s Ann. Phys. Chem.,'1898, vol. 66, pp. 1149-1161) confirmed the observa¬ 

tions of Arndtsen and of Krecke as to the displacement of the maximum towards 

the violet by dilution and by heating, and the increase of rotatory power which accom¬ 

panies these changes. Lereschkin (4 Berichte Deut. Chem. Ges.,5 1899, vol. 32, pp. 

1180-1184), working in the opposite direction, observed in a supersaturated solution at 

20° C. a negative rotatory power, analogous with that which had been recorded by 
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Biot for the anhydrous acid, and by Arndtsen Ann. Chim. Phys.,’ 1858, vol. 54, 

p. 415) for very strong alcoholic solutions ; this negative rotation for dark-blue light 

became positive for light of longer wave-lengths, reaching a maximum dextrorotation 

in the yellow region of the spectrum. Winther (' Zeitschr. physikal. Chem.,’ 1902, 

vol. 41, pp. 181-189), who made a detailed study of the effects of temperature and 

concentration on the rotatory power of the acid in aqueous and in alcoholic solutions, 

extrapolated to 100 per cent, tartaric acid, and concluded that the maximum might 

be displaced still further, disappearing at the red end of the spectrum when the tem¬ 

perature of the anhydrous acid fell below 20° C. This conclusion was not confirmed 

by Bruhat (‘ Trans. Faraday Soc.,’ 1914, vol. 10, p. 89), whose extrapolation gave a 

maximum between the yellow and the red, whilst his observations of the glassy acid at 

15° C. indicated that a maximum could still be seen in the red region of the spectrum. 

New ground has been broken in the detailed investigation by Winther and by 

Patterson of the tartaric esters which show similar anomalies to those which Biot 

had discovered in tartaric acid.* Very noteworthy also is the achievement of Bruhat 

(iloc. tit.), who by means of special apparatus succeeded in measuring the rotatory power 

of fused and superfused tartaric acid for several wave-lengths at temperatures from 

180° to 15° C., thereby bringing the acid into line with its esters as they had been investi¬ 

gated 12 years earlier by Winther. The investigation of tartar emetic and of the 

related compounds of arsenic and bismuth has also given interesting results, which 

are described in detail below (pp. 284 and 285). 

2. Rotatory Dispersion in Quartz and in Tartaric Acid. 

Biot’s measurements of the optical rotatory power of tartaric acid indicated the 

existence of two types of rotatory dispersion, which may be described provisionally as 

the “ quartz type ” and the “ tartaric acid type.” Since these correspond to some 

extent with the later classification of rotatory dispersion as normal and anomalous, or 

as simple and complex, it will be desirable to set out the essential features of these 

various methods of classification. 

(a) Biot’s Two Types. 

Biot divided optically active substances into two groups according as they obeyed 

the law of inverse squares, a = Z;/\2, or showed large deviations from this law. The 

maximum in the optical rotatory power of tartaric acid, which he observed in the green 

region of the spectrum, was merely an incidental feature in the exceptional behaviour 

of the acid, and did not receive any of the emphasis which has since been placed upoii 

* For a study of the form of the dispersion-curves for ethyl and methyl tartrates see Lowry and Dickson, 

* Trans. Chem. Soc.,’ 1915, vol. 107, pp. 1173-1187 ; Lowry and Abram, ibid., pp. 1187-1195. 
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it.* On tlie other hand, the extreme sensitiveness of the rotatory power of tartaric 

acid to changes of temperature, concentration and solvent was regarded by Biot as 

one of the chief anomalies in the behaviour of this exceptional substance. Biot had 

laid stress on the fact that the optical rotatory powerf of a substance was usually hide- 

pendent of the conditions under which it was observed ; thus the rotatory power of 

turpentine was not affected by diluting it with other essential oils (‘ Mem. Acad. Sci.,' 

1817, vol. 2, p. 115), or with ether (ibid., p. 116), and it even retained its optical activity 

when examined as a vapour in a column 30 metres in length (ibid., pp. 126-133, 

compare Gernez, ‘ Ann. de l’Ecole Norm.,’ vol. 1, p. 1) ; cane sugar, too, showed a 

very similar rotatory power when examined in the amorphous solid state as “ barley 

sugar ” and when this same product was dissolved in water (‘ Mem. Acad. Sci.,’ 1835, 

vol. 13, pp. 126-132). The marked influence on the rotatory power of tartaric acid of 

dilution with water or of addition of boric acid was therefore attributed to chemical 

changes just as definite as those involved in the conversion of the acid into its salts. 

This early view, which had fallen into disrepute for many years, has now become promi¬ 

nent again, more especially as an explanation of variations of rotatory power in those 

cases of anomalous rotatory dispersion of which tartaric acid is still the chief type. 

(b) Normal and Anomalous Rotatory Dispersion.I 

Only a short time elapsed before Biot’s law of inverse squares was recognised as 

being inexact. Biot had suspected almost from the first that small variations of dis¬ 

persive power might exist in different compounds ; in 1836 he obtained clear evidence 

of this fact by balancing against one another columns of turpentine and of oil of lemon 

which produced approximately equal and opposite rotations, when he found that “ the 

compensation of the deviations, although very close for all the rays, was, however, 

neither complete nor general ” (‘ Comptes Rendus,’ 1836, vol. 2, p. 543) ; cane-sugar 

* For early examples of this emphasis, see Arndtsen, ‘ Ann. Chim. Phys.,’ 1858, vol. 54, p. 409 ; Krecke, 

‘ Arch. Neerlandaises,’ 1872, vol. 7, p. 114 ; Landolt, ‘ Liebig’s Annalen,’ 1877, vol. 189, p. 274. 

t Biot described as the molecular rotatory power of substances (‘ Mem. Acad. Sci.,’ 1838, vol. 15, p. 95 ; 

compare ‘ Mem. Acad. Sci.,’ 1835, vol. 13, p. 116) the rotation that would be produced by a column 1 mm. 

thick and of unit density; this is one-hundredth part of what is now called the specific rotatory power of 

the substance. 

1: The term “ normal dispersion ” was used by Arndtsen in 1858 (‘ Ann. Chim. Phys.,’ 1858, vol. 54, 

p. 412) to describe the case in which “ the angle of rotation increases continuously with the refrangibility 

of the rays." The term “anomalous (rotatory) dispersion” appears to have been introduced in 1877 by 

Landolt (’ Liebig’s Ann. der Chemie,’ 1877, vol. 189, p. 274), who described under this heading (1) a 

maximum which travels from the violet to the green region of the spectrum as the concentration of the 

aqueous solution of tartaric acid increases, and (2) a reversal of sign in the rotatory power of the anhydrous 

acid and of its alcoholic solution. Krecke, five years earlier (; Arch. Neerland.,’ 1872, vol. 7, pp. 98, 110 

and 114), had referred less specifically to the “ remarkable anomalies ” which are observed in the optical 

properties of tartaric acid. 
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and invert-sugar gave, on the other hand, a very exact compensation (‘ Ann. Chim. 

Phys.,’ 1844, vol. 10, p. 35). After Biot’s death the law of inverse squares was generally 

abandoned, even as a first approximation. The result was most unfortunate, since the 

experimenters who proved the inaccuracy of Biot’s formula did not possess the 

mathematical skill that was required to replace it by another formula that was more 

exact. There can be little doubt that, as more exact methods of measurement were 

developed, Biot himself would have investigated the deviations from this law, and might 

well have discovered the small but important correction which Drude introduced 

many years later when he wrote a = k/(\2—\2) instead of a — k/\2. 

This discovery was extremely likely in view of the fact that, as early as 1817, Biot, 

in applying the law of inverse squares to the rotatory power of quartz, had used a 

graphical method in which virtually the reciprocal of the rotatory power was plotted 

against the square of the wave-length* (‘Mem. Acad. Sci.,’ 1817, vol. 2, plate 3 facing 

p. 136). This device of plotting 1/a against X2 is, however, the simplest method of 

checking the validity of Drude’s formula, and has been used extensively in recent years 

as a convenient test for this purpose (Lowry and Dickson, ‘ Trans. Chem. Soc.,’ 1913, 

vol. 103, p. 1075 ; Lowry and Abram, ‘ Trans. Faraday Soc.,5 1914, vol. 10, p. 104 ; 

compare also Frankland and Garner, ‘ Trans. Chem. Soc.,’ 1919, vol. 15, p. 640, 

footnote, and Rupe and Akermann, ‘ Ann. der Chem.,’ 1920, vol. 420, p. 12). The 

mere, plotting out on Biot's original plan of a series of accurate experimental data 

would therefore have disclosed to him both the existence arid the magnitude of Drude’s 

correction. 

In the absence of Biot’s mathematical genius, however, nearly all the work on rotatory 

dispersion during the next half-century became semi-qualitative in character, the data 

being represented by curves of unknown form, instead of by mathematical equations. 

This fact affords an explanation of the exaggerated importance which was attached to 

the more conspicuous anomalies, as well as of the utter confusion into which all attempts 

to classify rotatory dispersion fell. Thus, in the absence of any precise knowledge of 

the real form of the dispersion curves, Krecke seized upon “ the anomaly that, in con¬ 

centrated solutions of tartaric acid, the green rays are turned more than the red and 

violet rays ” (‘ Arch. Neerlandaises,’ 1872, vol. 7, p. 114). Landolt in 1877 recognised 

two anomalies, namely, (i.) that in aqueous solutions of tartaric acid “ if one increases 

the concentration, the maximum rotation wanders [from the violet] towards the red 

end of the spectrum, and in solutions containing 50 per cent, tartaric acid, the green 

rays are most strongly deflected,” (ii) “ that tartaric acid in the anhydrous state must 

deflect the rays C D E to the right, b F e to the left, and that for a certain kind of light, 

whose wave-length lies between the lines E and C, there can be no rotation at all ” 

(‘ Liebig’s Ann. der Chem.,’ 1877, vol. 189, p. 274). 

* The lengths of the columns of quartz required to produce a rotation of n-j2 were plotted against the 

square of the wave-length as a series of straight lines diverging from the origin where l = 1/a = 0 and 

A2 = 0 ; Drude’s equation gives straight lines diverging from 1 /a = 0, A2 = Ao1. 
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From this time onwards attention became concentrated almost exclusively upon the 

maximum and the reversal of sign, but more especially upon the maximum, the presence 

or absence of which became almost the sole criterion for discriminating anomalous from 

normal rotatory dispersion. Thus Grossmann speaks of “ anomalous rotatory dispersion 

and change of sign of rotation ” as if they were two totally distinct phenomena (£ Trans. 

Faraday Soc.,’ 1914, vol. 10, p. 61), whilst Winther actually limits the idea of anomalous 

rotatory dispersion to those cases in which there is a maximum in the visible region of 

the spectrum ; he therefore speaks of a dispersion-curve as becoming “ normal, in that 

the maximum passes into the ultra-violet,” whilst a curve which cuts the axis is described 

as “ normal with a maximum in the infra-red ” (’ Zeitschr. f. Physikal. Chem.,’ 1902, 

vol. 41, p. 188 ; and 1903, vol. 45, p. 337). 

A much more rational description has been given by Tschugaeff, who states that 

“ most of the colourless active bodies exhibit normal rotatory dispersion, the numerical 

value of the optical rotation continuously increasing with decreasing wave-lengths,” 

whilst the term anomalous “ is generally applied to those cases in which the optical 

rotation passes through a maximum or through a zero value or decreases with 

decreasing wave-length ” (‘ Trans. Faraday Soc.,’ 1914, vol. 10, p. 70). This 

qualitative description is in close agreement with “ An Exact Definition of Normal and 

Anomalous Rotatory Dispersion ” (Lowry, £ Trans. Chem. Soc.,’ 1915, vol. 107, 

p. 1195), which has recently been put forward as a result of exact analyses of the 

mathematical form of a large number of typical dispersion-curves. These analyses 

have shown that in practice a clear distinction may be drawn between “ anomalous ” 

curves, which cut the axis of zero-rotation, and “ normal ” curves, which do not cut the 

axis ; the normal curves rise steadily from zero towards an infinite rotation as the 

wave-length decreases, and are similar to rectangular hyperbolas in their general 

appearance ; the anomalous curves exhibit, in different regions of the spectrum, all the 

features that have been described as anomalies, including an inflexion, a maximum, a 

reversal of sign, and other related characteristics which appear simultaneously whenever 

the curve is drawn across from one side of the axis to the other. 

(c) Simple and Complex Rotatory Dispersion. 

About 1898, Drude (see ' Theory of Optics,’ 1907, p. 413), making use of the electronic 

theory of radiation, expressed the variation of rotatory power with wave-length by 

means of the general formula 

a = 1 2 = 2 }” (approximately) 
A A — A„ 
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where the “ dispersion constants ” A„2, corresponding with the natural free periods 1/a„ 

of the electrons, were deduced from measurements of refractive dispersion as expressed 

by the equation 

N2 = E + 2 M. 
AJ-A„ 

in which N is the refractive index and E is the dielectric constant of the 

medium. 

In those cases in which only one electron need be considered, the magnetic rotation 

could be expressed by an equation 

which involved four constants, of which two could be derived from measurements of 

refraction. 

The importance of these equations did not appear immediately. Very few experi¬ 

mental data were available, and Drude applied his formulae only to the magnetic 

rotations of carbon disulphide and of creosote and to the natural rotatory power of 

quartz, which he expressed by the two-term equation 

h h 
a = —---71 

A" —Aj. AJ 

containing two arbitrary constants ku k2, and one constant, A12, derived from measure¬ 

ments of refraction ; the dispersion constant of the second term was omitted as being 

negligible in comparison with A2. Perhaps on account of the lack of suitable data, the 

new formulae were not applied to any single member of the vast array of optically active 

organic compounds which have been prepared and studied, more especially from the 

time of Pasteur onwards. 

In view of the very limited application of these formulae by Drude himself, the 

indefinite number of arbitrary constants which they contained, and the fact that a 

complete knowledge of the refractive dispersion of the medium was presupposed, it is 

not surprising that Drude’s formulae remained almost barren so far as their immediate 

application to measurements of rotatory dispersion was concerned. Fifteen years of 

work on rotatory dispersion (‘ Phil. Trans.,’ A, 1912, vol. 212, p. 261 ; 1 Trans. Chem. 

Soc.,’ 1913, vol. 103, p. 1062 et seq.) have, however, provided ample data for testing 

the validity of these equations, and have established beyond question the fact that they 

are adequate to meet all the requirements of the most diverse and of the most exact 

measurements of rotatory dispersion. In the case of some scores of organic compounds, 

2 o VOL. CCXXII,—-A. 
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both the optical and the magnetic rotations* can be expressed by a single term of the 

general equation (Lowry and Dickson, c Trans. Chem. Soc.,’ 1913, vol. 103, pp. 1067- 

1075 ; Lowry and Abram, ‘ Trans. Chem. Soc.,’ 1919, vol. 115, p. 300 ; Rupe and 

Akermann, ‘ Ann. der Chem.,’ 1920, vol. 420, p. 4) ; liquids such as ethyl and methyl 

tartrates and aqueous solutions of tartaric acid, which show anomalous rotatory dis¬ 

persion, require two terms of opposite sign (Lowry and Dickson, ' Trans. Chem. Soc.,' 

1915, vol. 107, pp. 1173-1187 ; Lowry and Abram, ‘ Trans. Chem. Soc.,’ 1915, vol. 107, 

pp. 1187-1195) ; quartz, although showing no obvious anomalies, requires three terms 

of Drude’s equation in order to express the most recent measurements that have been 

made of its rotatory dispersion (Lowry, ‘ Phil. Trans.,’ A, 1912, vol. 212, p. 261). This 

determination of the exact form of the curves has led to an extremely easy and con¬ 

venient classification of rotatory dispersion, as simple when one term of Drude’s equation 

is sufficient and complex when two or more terms are required (Lowry and Dickson, 

‘ Trans. Faraday Soc.,’ 1914, vol. 10, p. 102). The complex curves are only anomalous 

when they cross the axis of rotations and exhibit a reversal of sign ; but a simple mathe¬ 

matical analysis has established the conditions under which a complex curve, expressed 

by two terms of Drude’s equation, ceases to be normal and becomes anomalous in the 

sense of the exact definition already referred to (£ Trans. Chem. Soc.,’ 1915, vol. 107, 

p. 1198). 

3. The Origin of Anomalous Rotatory Dispersion. 

(a) Anomalous Rotatory Dispersion as a Problem in Chemical Mechanics. 

The present paper follows one on rotatory dispersion in quartz. It may be regarded 

as supplementing that paper by extending the new series of exact measurements from 

the first to the second of Biot’s types of rotatory dispersion. It also carries the work 

forward from optically active crystals to optically active liquids, and so opens up again 

the complex chemical problems which led Biot to describe most of his work on tartaric 

acid as a study in chemical mechanics rather than as an investigation of the physical 

properties of the acid. It is this underlying chemical interest that more especially 

* The magnetic rotatory dispersion in carbon disulphide can be expressed, at least as well by a simple 

two-constant equation a. ~ k/p2 — 0-055), as by the four-constant equation used by Deuce. Thus the 

five lines quoted by Drude (‘ Theory of Optics,’ 1907, p. 431) give for k the values :— 

C. D. E. F. G. 

k = 0-2224 0-2221 0-2226 0-2236 0-2224 

whilst the observed and calculated dispersion-ratios compare as follows :— 

Observed.'. . 0-592 0-760 1-000 1-234 1-704 

Cal. (four constants). 0-592 0-762 0-999 1-232 1-704 

Cal. (two constants). 0-593 0-762 1-000 1-228 1-706 

Later measurements (‘ Trans. Chem. Soc.,’ 1913, vol. 103, p. 1074) agree still more closely with a simple 

constant equation. 
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distinguishes the work on tartaric acid from that on quartz, and gives to it its own 

peculiar importance. From the physical point of view the contrast is not great, 

and almost the whole of the advantage rests with the quartz, the large rotatory power 

of which renders possible an accuracy of measurement that is probably at least 100 

times greater than in the case of any other medium. But whereas the rotatory power of 

quartz is influenced only slightly by the experimental conditions, tartaric acid is subject 

to drastic changes of rotatory power as a result of very small changes of circumstance. 

In recent years this extreme sensitiveness has been regarded by many writers as an 

inherent quality of the physical property of optical rotatory power ; but all the new 

evidence goes to show that Biot was right in attributing it to chemical changes in the 

optically active liquid. One point must, however, be made clear immediately : whatever 

the nature of these chemical changes may be, they must proceed to equilibrium with 

very great rapidity, since even the most careful experiments (‘ Trans. Chem. Soc.,’ 1915, 

vol. 107, pp. 1177 and 1189) have failed to detect any lag in the adjustment of rotatory 

power in the tartaric esters when conditions have been altered. In this respect these 

changes may be compared with the dissociation of nitrogen peroxide, with the dissocia¬ 

tion and association of water, or even with the phenomena of ionisation in aqueous 

solutions, all of which appear to depend on very rapid or instantaneous reactions. 

Under these circumstances, only static methods of investigation are available, i.e., the 

liquid must be proved to be complex by recognising in it the attributes of a mixture, 

rather than by isolating its components and watching them change gradually into one 

another with lapse of time. 

(b) Anomalous Rotatory Dispersion observed in Natural and Artificial Mixtures. 

What evidence is there, then, that tartaric acid gives rise to a complex product 

when it is dissolved or melted in order to convert it into an isotropic, optically active 

medium ? Biot found evidence of widespread chemical change in the progressive 

alterations of rotatory power that were produced alike by the addition of water or 

alcohol, of soda or potash, of ammonia, and of sulphuric and boric acids ; but this 

argument is obviously limited to the changes which accompany dissolution and cannot be 

applied to the mere fusion of the anhydrous acid. A more general argument is afforded 

by the experiments in which Biot attempted to neutralise the optical rotatory power 

of lsevorotatory turpentine by compensating it with a column of dextrorotatory oil 

of lemon (‘ Comptes Rendus,’ 1836, vol. 2, p. 543) ; not only was the compensation 

“ neither complete nor general,” but “ when the principal section of the analysing prism 

coincided with the original plane of polarisation, there was produced an extraordinary 

image of blue-violet colour, dark, and sensibly free from red : and, on turning the prism 

a little to the right or to the left of this position, the tint of the image varied in a con¬ 

trary sense to the refrangibility, things which are entirely different from those which a 

single one of the two essences could produce alone.” Similar effects were observed in 

2 o 2 
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artificial mixtures of lsevorotatory turpentine with dextrorotatory camphor, as well as 

in some natural turpentine-oils. 

On the basis of Biot’s experiments, as well as of his own observations of the unequal 

dispersive power of different liquids, Arndtsen (‘ Ann. Chim. Phys.,5 1858, vol. 54, 

p. 421) put forward for the first time a precise explanation of “ the singular dispersion of 

the planes of polarisation of tartaric acid,” as follows 

“ If one should imagine two active substances which do not act chemically upon 

one another, of which one turns the plane of polarisation to the right, the other to the 

left, and, in addition that the rotation of the first increased (with the refrangihility of 

the light) more rapidly than that of the other, it is clear that, on mixing these substances 

in certain proportions, one would have combinations which would show optical pheno¬ 

mena precisely similar to those of tartaric acid, as M. Biot has already proved by his 

researches on different mixtures of turpentine and natural camphor. One might then 

regard tartaric acid as a mixture of two bodies differing only as regards their optical 

properties, of which one had a negative rotatory power, the other a positive rotatory 

power, and of which the rotations varied in different proportions with the refrangihility 

of the light.” 

This hypothesis, made more than 60 years ago, appears to us to afford a correct 

explanation of the peculiar rotatory dispersion of tartaric acid and its derivatives. 

In its support we submit (i.) the mathematical evidence that the form of the dispersion- 

curves is in harmony with this view, and (ii.) the chemical evidence that mixtures of 

isomerides in equilibrium actually exist, e.g., in the case of nitrocamphor, and that 

their behaviour is in accordance with that which must be postulated for the “ two kinds 

of optically-active molecules ” assumed by Arndtsen. 

(c) Anomalous Rotatory Dispersion produced by the Partial Compensation of two 

Simple Dispersions. 

The measurements described below afford strong support to Arndtsen’s theory, 

since it has been established by visual and photographic readings that the dispersion 

curves for tartaric acid, like those of its esters (‘ Trans. Chem. Soc.,’ 1915, vol. 107, 

pp. 1173-1195), can he represented over a wide range of wave-length and to a close degree 

of approximation by two terms of Drude’s -equation, thus 

/’] JC‘2 

This equation is a direct mathematical expression of the view that the anomalous 

rotatory dispersion of tartaric acid is produced by the counterbalancing action of two 

components of opposite rotatory power and unequal dispersion. It is, however, not in 

itself a conclusive argument for the presence of two kinds of optically active molecules 
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in these liquids since the two compensating terms in the equation may be due to (i.) two 

electrons with opposite influence on the rotatory power, as in the case of quartz, where, 

however, they do not give rise to anomalous dispersion, (ii.) two radicals of opposite 

activity united hi one molecule, as in the cases of Lmenthyl d-camphor /3-sulphonate 

(Tschugaeff, £ Ber. Deutsch. Chem. Gesell.,’ 1911, vol. 44, p. 2023 ; 1912, vol. 45, 

p. 2759; compare c Trans. Faraday Soc.,’ 1914, vol. 10, p. 73) and Gmenthyl 

d-diphenylmethylacetoacetate (Rupe and Kagi®, £ Ann. der Chem.,’ 1920, vol. 420, 

p. 38) ; (iii.) two molecules of opposite rotatory power, either easily convertible, as in 

the case of the isomeric nitro-camphors (Lowry, ‘ Trans. Faraday Soc.,’ 1914, vol. 10, 

p. 100), or fixed, as in the artificial mixtures of Biot (‘ Comptes Rendus,’ 1836, vol. 2, 

p. 543), and of von Wyss (‘ Wiedemann’s Ann. Phys. Chem.,’ 1888 [2], vol. 33, p. 567). 

To decide between these three possibilities, further consideration is needed both of the 

chemical and of the physical properties of the solution as set out in the following 

paragraphs. 

(d) Dynamic Isomerism as an Explanation of Anomalous Rotatory Dispersion. 

The view that the two terms in the equations showing the effect of wave-length on 

the rotatory power of tartaric acid and its derivatives are due to two electrons, as in the 

case of quartz, is rendered improbable by the fact that substances of similar type do 

not show this effect. Thus, if tartaric acid be regarded as a dicarboxylic acid of the 

sugar-group, belonging to the C4 series and containing two asymmetric carbon atoms, 

it might be expected that the methyl-glucosides, which belong to the C6 series and 

contain five asymmetric carbon atoms, would give even more complex dispersion-curves ; 

actually, however, their dispersion can be expressed accurately by a simple one-term 

formula. The hypothesis of two radicals of opposite optical activity is even less easy 

to apply to tartaric acid, unless some form of molecular rearrangement is first postu¬ 

lated, since the two active radicals of which it is composed are not only of the same 

sign, but are of identical structure, and would therefore give identical rotatory dispersions. 

It is, indeed, impossible to discover, in the simple structural formula 

HO.CO.CHOH.CHOH.CO.OH, 

commonly assigned to tartaric acid, any justification for its anomalous rotatory 

power, and some change of molecular structure appears to be inevitable if its 

peculiar physical properties are to be accounted for, since the complex dispersion of 

the acid is just as exceptional amongst simple organic compounds as would be the 

appearance of a bright blue or green colour in a simple compound of the alcohol or 

sugar group. If then, some form of molecular rearrangement must be assumed, no 

simpler hypothesis can be adopted than that of Arndtsen, which suggests that the 

rearrangement is incomplete, so that one of the two compensating factors required to 

account for the complex or anomalous dispersion of the medium is merely the original 
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form of the acid, whilst the other is a product of change, of opposite sign and unequal 

dispersion, but of a character sufficiently commonplace to give rise to a simple, instead 

of a complex, dispersion-curve when studied as a separate entity. This product might 

be an ion, a hydrate, a polymer, or an isomer of the original form of the acid ; but, 

since the amorphous acid and its liquid esters exhibit a full range of anomalies in the 

absence of any solvent, the first two possibilities are ruled out, and the alternatives are 

reduced to two, involving (i.) polymerisation or depolymerisation as suggested by 

Wendell (‘ Wiedemann’s Ann. Phys. Chem.,’ 1898, vol. 66, p. 1156), or (ii.) isomeric 

change. These alternatives may even be combined, since when isomeric change takes 

place, it is not unusual for one or other of the isomers to undergo association if the 

physical and chemical conditions are favourable. 

Arndtsen’s hypothesis may then be interpreted in the light of modern knowledge, 

by suggesting that tartaric acid and its esters afford yet another example of “ dynamic 

isomerism ” or reversible isomeric change. This phenomenon was discovered in 1877 

by Butlerow (' Liebig’s Ann. der Chem.,’ 1877, vol. 189, p. 77), who made use of it 

in order to account for the production of two types of derivatives from prussic acid, 

a result that could be explained most readily by assuming that the liquid acid was a 

mixture of the two parent-compounds, thus 

CHs.CiN -4- H.C:N^HN:C< ■> CH3.N:C< 
v__J 

Methyl cyanide. Prussic acid. Methyl isocyanide. 

These two isomerides have not yet been isolated, although Butlerow was able to 

demonstrate the existence of a similar equilibrium between two isomeric olefines when 

isodibutylene was dissolved in strong sulphuric acid. If tartaric acid gave rise, when 

fused or dissolved, to a similar mixture of isomerides with suitable optical properties, 

Arndtsen’s hypothesis would afford a complete explanation of the anomalous dispersion 

of the acid. 

(e) Plastic and Fixed Derivatives of NitrocampJior and of Tartaric Acid. 

Nitrocamplior, which exists in solution in two optically active forms, of opposite sign 

and unequal dispersion, affords a still more striking example of dynamic isomerism. 

The ordinary form of the compound is laevorotatory, but its rotatory power in freshly 

prepared solutions changes from left towards right, giving rise to the phenomenon of 

mutarotation, or change of rotatory power with time (Lowry, ‘ Trans. Chem. Soc.,’ 

1899, pp. 75, 211) as the result of a reversible isomeric change, which can be expressed 

by the balanced equation : 

CH.NO, C:NO.OH 
c8h14< I x c8h14< | 

CO xco 

N itrocamphor. Pseudonitrocamphor. 
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In the case of nitrocamphor, only one form of the parent substance is known, 

although derivatives of both types have been prepared, including dextrorotatory salts, 

such as 

C:NO. ONa 
C,H„< | 

CO 

and a dextrorotatory anhydride 

,C:NO.O.ON:a 
c8H]4< >CSH 

'CO oc/ 
8J~L14 

derived from the acidic pseudo-form of the nitro-compound. 

In the case of 7r-bromonitrocamphor, however, both isomers have been isolated and 

have been found to change in opposite directions to an equilibrium mixture of 

intermediate rotatory power {ibid., p. 225). 

.CH.NO* XkNO.OH 
C8H1;3< I t C8H13Br ; I 

xCO xCO 

Nitrocamphor agrees with tartaric acid in that its optical rotatory power is 

exceptionally sensitive to changes of conditions, no doubt in part as a result of the 

displacement of the point of equilibrium, e.g., in different solvents. As in the case of 

tartaric acid, the rotations may even exhibit a change of sign under some extreme 

conditions; thus in certain oxygenated solvents nitrocamphor, which is usually laevoro- 

tatory, gives small dextrorotations, just as dextro-tartaric acid, when dissolved in an 

excess of alkali, may give small hevorotations (see pp. 280-282 below). 

It is, however, characteristic of nitrocamphor that it is able also to give derivatives 

of fixed type (compare the conversion of prussic acid into methyl cyanide and methyl 

isocyanide) in which the plasticity of the parent substance has disappeared. Thus by 

chlorination nitrocamphor is converted into two derivatives of the normal nitro type, 

whilst in the formation of the anhydride and of the salts a complete conversion into 

the acid pseudo-nitro type takes place. The chloro-nitrocamphor corresponding to 

nitrocamphor itself gives [a]D —5° in chloroform, whilst the anhydride gives [a]D -f- 167° 

in chloroform. 

In the case of tartaric acid, it has been less easy to discover fixed derivatives to 

correspond with these compounds, since (as has already been noted) the esters show 

just the same anomalies as the acid itself, and any molecular rearrangement which 

involves the hydrogen atoms of the carboxyl groups is therefore ruled out as an explana¬ 

tion of the flexible rotatory power of the acid. Biot in 1835 (; Comptes Rendus,’ 1835, 

vol. 1, pp. 458-459) appeared to have found a solution of this problem when he stated, 

in his sealed note to the Academy, that “ The combinations of tartaric acid with solid 

bases, also with boric acid, give products endowed with rotation towards the right; 
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but the relative intensity of these rotations for the different simple rays, obeys the 

general law of this phenomenon, to which tartaric acid alone is a marked exception, at 

least among all the bodies which I have been able to study hitherto.” 

Preliminary observations appeared to confirm Biot's observations, since the dis¬ 

persions of the tartrates in aqueous solutions not only approximated very closely to the 

requirements of the simple dispersion formula, but, in the case of sodium tartrate, 

showed a surprisingly close agreement with the law of inverse squares. The conclusion 

that the rotatory dispersion of the tartrates is “ simple ” was, however, open to grave 

suspicion on account of the extreme smallness of the dispersion-constants, corresponding 

with absorption-bands not far removed from zero wave-length. Moreover, on calculating 

a simple dispersion formula for sodium tartrate from the data for Hg 5461 and Hg4359, 

selected from a particularly long series of readings (including 16 wave-lengths in the 

visual and 6 wave-lengths in the photographic region of the spectrum, instead of the 

short series of four or five wave-lengths which we have generally used in investigating 

cases of simple rotatory dispersion), we obtained an unmistakable series of positive 

differences from red to green, negative between green and violet, and positive again 

beyond the violet mercury line. These differences were observed in two solutions of 

different concentrations, and could not therefore be accidental. It was therefore clear 

that the curves for the metallic tartrates were not really simple, but complex, with a 

large positive and a small negative term, so that the anomalies would be pushed right 

out into the ultra-violet region of the spectrum where the solutions are too opaque for 

observation by ordinary methods. 

In the case of boric acid we were more fortunate, since when an excess of boric acid 

was added to tartaric acid the aqueous solution of boro-tartaric acid gave a simple 

dispersion curve, with a normal value, 0-0246, for the dispersion-constant A02. Boro- 

tartaric acid then appears to be a “ fixed ” derivative of tartaric acid, in which the acid 

has been locked up in one of its two alternative forms. A similar result was obtained 

with tartar emetic, which gives very large dextrorotations, but a perfectly simple 

dispersion, with a dispersion-constant A02 — 0*0494. Boro-tartaric acid, which has 

many analogies amongst the polyhydric alcohols of the sugar group (see p. 252) is 

probably 

HO.B \ 
O—CH.CO.OH 

O—CH.CO.OH 

and it is possible that the simple character of its rotatory dispersion may be due to the 

bridge between the two asymmetric carbon atoms which is shown in this formula. 

The search for a “ fixed ” derivative of the elusive lsevorotatory modification of the 

acid proved even more difficult than in the case of the dextrorotatory component. 

The negative rotations discussed on pp. 280 to 284 of this paper are usually complex 

in their dispersion, but we were fortunate in discovering that the lsevorotatory solutions 

obtained by dissolving tartar emetic in an excess of alkali are not only comparable in 
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rotatory power with the parent substance, but like it exhibit a perfectly simple rotatory 

dispersion, with a dispersion-constant \02 = 0*0627. 

After the mathematical evidence set out under (c) above, the discovery of these fixed 

compounds is the most important evidence that has yet been put forward in support of 

Arndtsen’s hypothesis. If it is difficult to discover in the formula commonly assigned to 

tartaric acid any physical basis for the anomalous optical properties of the acid and of 

so many of its derivatives, it would be at least equally difficult to discover either in 

boro-tartaric acid or in tartar emetic any factor which would account for the disap¬ 

pearance of the anomalies, apart from the view which has already been advanced that 

in these compounds the plastic acid has been fixed in one of its labile forms. 

4. Experimental Methods. 

The experimental work described in the present paper was undertaken with the 

object of applying to the problems investigated by Biot the exact methods of measuring 

rotatory dispersion which have been developed during the past 15 years, and which 

have already been applied (as described in the preceding paper of this series) to the 

exact determination of the optical rotatory power of quartz. Thus Section 5 describes 

a critical investigation of the relationship between the rotatory power and concentration 

of aqueous solutions of tartaric acid, and a detailed study of the deviations from Biot’s 

linear law, as revealed by exact measurements for a series of eight wave-lengths in the 

visible region of the spectrum. Section 6 describes an investigation of the relationship 

between optical rotatory power and wave-length for a series of aqueous solutions of 

tartaric acid ; this was undertaken in order to test in the case of tartaric acid the equa¬ 

tions which had already been proved to be adequate to express the anomalous rotatory 

dispersion of the tartaric esters. The remaining sections of the paper deal with the 

influence of various chemical agents on the rotatory power of tartaric acid, in extension 

of the early pioneering work of Biot. 

The optical apparatus used in the experiments on tartaric acid was the same as that 

which has already been described in the preceding paper of the present series. An 

important improvement has, however, been effected in the matter of light-sources. In 

the experiments on quartz the cadmium lines were read with the help of light derived 

from an open arc burning between electrodes of a cadmium-silver alloy (Lowry, ‘ Phil. 

Mag.,’ 1909, vol. 18, pp. 320-327). Five years later a description was given of “ An 

enclosed cadmium arc for use with the polarimeter ” (Lowry and Abram, ‘ Trans. 

Faraday Soc.,’ 1914, vol. 10, pp. 103-106); this arc was of an experimental type, requiring 

the continuous use of a Gaede pump to maintain the vacuum, and merely served to 

show how very valuable an efficient lamp of this type would be in all optical experiments 

which demand intense sources of monochromatic light. During the period covered by 

the experiments now described we have had the privilege of using the enclosed cadmium 

arc designed by Dr. Sand and described by him at the Manchester meeting of the British 

Association (‘ B.A. Report,’ 1915, vol. 85, p. 386). This lamp has proved to be per- 

2 P vol. ccxxn.—A. 
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fectly adapted to the work we have been doing, and in some respects is even more 

convenient than the mercury arcs which are now available for experimental work. The 

importance of this development maybe shown by the statement that whereas twentyyears 

ago the sodium light was the only practical light-source for use in polarimetry, this line 

is now usually left to the last because it is more troublesome and in every way less 

satisfactory to read than the lines derived from the enclosed mercury and cadmium arcs. 

Photographic observations form an essential feature of the experiments which are 

now described. The method used was described in outline in 1908 (‘ Roy. Soc. Proc.,’ 

1908, A, vol. 81, 472-474), but has reached its highest development in connection with 

observations of the rotatory power of quartz for ultra-violet light, of which a detailed 

account will be given in the third paper of the present series. 

5. Specific Potatory Power of Tartaric Acid for Light of Different 

Wave-Lengths. 

A long series of observations was made, in order to establish standard values for the 

specific rotatory power of tartaric acid in aqueous solutions at 20° C. Similar observa¬ 

tions have been made by a number of observers using monochromatic sodium light 

(Pribram and Glucksmann, : Monatshefte,’ 1898, vol. 19, p. 136), or patches picked out 

from a continuous spectrum, with the help of a spectroscope or by means of light-filters 

(Wendell, ‘ Wied. Ann.,’ 1898, vol. 66, p. 1153 ; Winther, ‘ Zeitschr. Pliysikal. Chem.,’ 

1902, vol. 41, p. 166) ; but no values have been given hitherto for the pure light-sources, 

derived from the spectra of mercury and of cadmium, which have now become the 

common standards in polarimetric work. The values placed on record in Table I. make 

good this deficiency ; they also provide data for testing, for a considerable series of 

pure monochromatic light-sources, the linear relationship between concentration and 

rotatory power which was put forward by Biot in 1834, as well as the parabolic relation¬ 

ship used by Winther in 1902. 

In order to secure exact values for the specific rotatory power of the acid, all the 

solutions for these experiments were prepared from exactly-weighed quantities of acid 

and water. Two samples of acid were used, one of them (for which we are indebted to 

Messrs. Bennet, Lawes & Co.) being a specially pure sample, containing less than 0-05 

per cent, of ash, and practically no trace of lead. In order to avoid changes of concen¬ 

tration caused by evaporation, the precaution was taken of using solutions which had 

not been filtered ; small traces of insoluble matter were found to come almost exclu¬ 

sively from the Wedgwood mortar used to powder the crystals, and, when the further 

precaution was taken of merely crushing the crystals in an agate mortar, the amount 

of solid undissolved was negligible. The rotations of the solutions were determined in 

a polarimeter-tube 6 decimetres long, which had been calibrated to check the length of 

the column, and was maintained at a constant temperature by a rapid flow of water at 

20° C. Two, three, or even four series of readings were taken, as shown in Table I., 

with solutions prepared independently of one another, until it appeared probable that 
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the casual errors had been reduced to a few hundredths of a degree. Table I. shows the 

observed rotations, a, and the specific rotatory powers [a] derived from them, for 11 

solutions containing from 5 to 55 grams of acid in each 100 grams of solution ; the 

corresponding molecular rotatory powers are also shown in the table. 

The data used in testing Biot’s linear law and Winther’s parabolic formula are 

shown in Table II. Biot’s linear law, although based originally upon somewhat rough 

measurements, is very good as a first approximation. Thus, in fig. 1, in which the 
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molecular rotatory power of the acid is plotted against the percentage by weight of 

water in the solution, the curves are seen to be inflected, but the deviations from the 

linear law, though quite real, are by no means conspicuous. More remarkable still is 

the fact, which Biot discovered in 1850, that extrapolation by means of the linear law 

leads to substantially correct values for the specific rotatory power of the anhydrous 

glassy or amorphous acid. In our own calculations we have used,- for each of a series 

of nine wave-lengths, a linear formula based on the values for the specific rotatory powers 

of the acid in solutions containing 55 and 85 per cent, of water ; the rotatory powers 

of the anhydrous acid, as shown under e = 0 in Table II., are derived by interpolation 

from the observations of Bruhat (‘ Trans. Faraday Soc.,’ 1914, vol. 10, p. 89), and 

the differences between the observed and calculated values are :— 

1-2, 1-5, 1-6, 1-7, 1-7, 1-7, 1-8, 0-6°, Mean 1-5°. 

This agreement is remarkably close, having regard to the facts that (i.) the linear law 

is only an approximation, (ii.) the extrapolation covers nearly half of the total range of 

concentration, and amounts in the case of the violet mercury line to an extension of 

over 12 degrees in the range of rotatory powers. 

In view of the fact that the linear law is valid to this extent over the wide gap between 

the anhydrous acid and its saturated solutions in water, we were prepared to find that, 

although closer examination would show marked deviations in the values for dilute 

solutions, no substantial errors would occur in the case of the more concentrated solu¬ 

tions. This anticipation was, however, by no means correct. Basing the linear formula 

again on the rotatory powers of the acid in solutions containing 55 and 85 per cent, of 

water, we find that the deviations which are produced by increasing the concentration 

to ivater 45 per cent., acid 55 per cent., are even greater than those which result from 

diluting to ivater 95 per cent., acid 5 per cent. ; and this is true, not only for one wave¬ 

length, but for the whole range of wave-lengths shown in Table II. The linear law is 

thus shown to be even less exact in concentrated than in dilute solutions. 

A natural sequel to the recognition of the fact that the linear law is inexact, is the 

introduction of a third term into the equation, which thus changes from 

= Aj + BjC to : Ao + BjC + . 

This method of expressing the specific rotatory powers of the acid was adopted by 

Winther in 1902. Its application to the data now recorded is shown in Table II. 

The parabolic formulae were all based on the readings for solutions containing 55, 70 

and 85 per cent, of water ; in a few cases these readings may have been less exact than 

others that might have been selected ; but no great advantage would have been obtained 

from any laborious attempt to smooth the values or to adjust the curves, since the 

general results were perfectly obvious when the errors were examined over the whole of 

the series of nine wave-lengths. Within the range from 55 to 85 per cent, of water, the 
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agreement was much, better than with the linear formula, as was inevitable since there 

was exact agreement at three points instead of two ; in the more concentrated solutions, 

also, the parabolic formula gave rather better results than the linear law ; but in the 

more dilute solutions the errors were increased very considerably by the introduction 

of a third term, with the result that outside the limit of 55 to 85 per cent, of water, 

the parabolic was distinctly worse than the linear formula. 

The real character of the deviations was only revealed when the errors of the various 

formulae were plotted against the concentrations as in figs. 2 and 3. As in the case of 
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solution volumes (Bousfield and Lowry, ‘ Phil. Trans.,’ A, 1905, vol. 204, p. 283) 

the errors in the measurement of specific-rotatory power increase with dilution, so that 

the course of the curves becomes uncertain as the proportion of water increases towards 

100 per cent. It is, however, quite evident that the curve of errors, fig. 3b, for the 

linear formula intersects the zero-line at three points between e = 0-45 and e—\. 

Any attempt to flatten this curve, by the addition of a third term containing e2, is 

obviously doomed to failure, since the curvature from the straight line is in opposite 

directions at the two ends, and cannot be covered by a section of a parabola. The type of 

formula used by Winther is therefore only of value for interpolation over a narrow range, 

and is even worse than a simple linear formula for extrapolation. This is true not only 

for dilute solutions, where the errors immediately become larger, because the curvature 
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is in the wrong direction, but also for more concentrated solutions, as may be seen by 

comparing Bruhat’s experimental values for the anhydrous acid, e = 0, on the one 

hand, with the values of At in the linear equation, which showed deviations amounting, 

on the average, to 1-5°, and on the other hand, with the values of A, in the parabolic 

equation, which gives errors as follows :— 

3-3, 2-9, 4-1, 4-5, 5-1, 4-5, 4-5, 4-3, Mean 4-1°. 

The complete course of the curve of rotatory power against concentration is shown, 

for the violet mercury line, by the heavy curve a in fig. 3. The ordinates of curve b 

represent the errors of a linear formula which is correct at 55 and 85 per cent, of water ; 

the curve c shows the errors of a parabolic formula which is correct at 55, 70 and 85 per 

cent, of water. The error (-(-0-6 degrees) in extrapolating by means of the linear 

formula to the anhydrous condition is shown on the left-hand side of the diagram, 

where a broken line is used to cover the interval between 0 and 45 per cent, of water 

in which no experimental values are available. A similar prolongation of the curve of 

errors on the right-hand side of the diagram indicates the most probable value for infinite 

dilution. If the aqueous solutions contained only an anhydrous acid and a fully- 

hydrated acid, both of constant specific rotatory power, the relationship between rotatory 

power and concentration should be expressed from end to end, if not by the straight 

line d, at least by a simple uninflected curve. The actual deviations from this ideal 

straight line are shown in fig. 3 by measuring the ordinates downwards from d instead 

of from the horizontal axis of zero rotation. It will be seen that this curve of 

deviations (which are all negative in sign) shows one minimum and two maxima, so 

that the exact relationship between rotation and concentration could only be expressed 

by an equation containing at least five arbitrary constants. 

In view of the complexity disclosed by this preliminary analysis, we have not thought 

it worth while to pursue the subject further, except to point out that in the case of 

each wave-length it is possible to use a linear formula (as indicated by the straight 

line e, and the curve of errors c, in fig. 3), which is substantially correct both for the 

anhydrous acid and for aqueous solutions from, say, e = 0*6 to 0-9, but widely 

divergent outside these limits. A series of values calculated from such a linear 

formula, for the mercury violet line, is given under [a,,] in Table II. ; this formula is 

correct for the anhydrous acid e = 0, and gives a ± error at three other points lying- 

near e — 0-63, e — 0*80 and e = 0*91. 

6. Rotatory Dispersion in Aqueous Solutions op Tartaric Acid. 

In order to determine the exact form of the curves of rotatory dispersion in aqueous 

solutions of tartaric acid, eight solutions were originally prepared and examined, con¬ 

taining from 5 up to 70 grams of tartaric acid in 100 c.c. of solution. In two cases the 

readings were confined to the seven visible cadmium and mercury lines ; in four other 
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cases the series was extended to wave-length about 4150, by the inclusion of photo¬ 

graphic readings, and in the case of two of the strongest solutions, readings were taken 

for 21 and 26 lines, extending to wave-lengths 4005 and 3941 respectively. 

These solutions were filtered, in order to facilitate the reading of the more difficult 

blue and violet lines. The concentrations, as well as the specific and molecular rotations 

derived from them, were therefore less certain than those set out in the preceding section, 

and, when the latter had been completed, the earlier observations were regarded as 

obsolete, with the exception of the two long series which covered a very wide range of 

the spectrum, and were specially well adapted for testing the form of the dispersion- 

curves. The rotations for these two solutions are set out in Table III. (a) and (b). In 

order to bring them into line with the standard series of readings of Table I. the true 

concentrations of these two solutions were found by interpolation from the standard 

series, the concentrations deduced in this way being e = 0-4590 and 0-5875, or 69-90 

and 49-96 grams of tartaric acid in 100 c.c. of solution, as compared with the nominal 

values of 70 and 50 per cent. After making these very small corrections, the specific 

and molecular rotations of the two long series were included with the shorter standard 

series of Table I. amongst the data used in discussing the relation between rotatory 

power and wave-length. 

The calculated rotations shown in Tables III. and IV. are derived from an equation 

of the Drude type containing one positive and one negative term, thus 

~k'2 

But whereas in the case of quartz the data are now so extensive and so accurate that 

five arbitrary constants can be determined exactly, the range and accuracy of the data 

in the case of tartaric acid and other optically-active organic compounds are only suffi¬ 

cient for the exact determination of three arbitrary constants ; in other words, the 

effect of a small alteration in any one of four constants can be eliminated almost entirely 

by suitable alterations in the other three. This limitation has already been discussed 

in the case of ethyl tartrate, the rotatory-dispersion of which can be calculated almost 

equally well from formulae in which the dispersion-constants are :— 

(i) v2 = 0-035, X22 = 0'065, 

(ii) Xx2 = 0-030, X22 = 0-070. 

(iii) V2 = 0-025, X22 = 0-080, 

where the sum of the dispersion-constants Xff and X22 is almost constant (Lowry and 

Dickson, ‘ Trans. Chem. Soc.,’ 1915, vol. 107, p. 1186). The best results are therefore 

obtained by assuming a steady value for one of the two dispersion-constants in a series 

of related compounds ; thus, in 22 independent series of observations of tartaric acid 

and its esters, the value Xff = 0-030 may be maintained for the smaller of the two 
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dispersion-constants. This may be regarded as substantially correct for the whole of 

the series, since, in case after case, independent calculations have given numbers lying 

within a narrow range on either side of this average value. 

Having thus established a fixed value for the smaller dispersion-constant, the magni¬ 

tude of the larger dispersion-constant \22 may be deduced with a very fair degree of 

accuracy. Thus in the case of methyl and ethyl tartrates the values were as follows — 

Methyl ester. Ethyl ester. 

Pure ester.  0-054 0-056 

In ethylene chloride or bromide .... 0-058 0-061 

In formaldehyde. 0-070 0-070 

The concordance in the values for the two esters when examined under similar condi¬ 

tions is a very fair indication of the accuracy of the dispersion-constants deduced in 

this way. 

In the case of the two concentrated solutions of tartaric acid, the values of the second 

dispersion-constant deduced independently were 0-074 and 0*073. With these values, 

a close agreement was found between the observed and calculated rotations as set out 

in Table III., both in the visual and in the photographic regions. This agreement, 

following upon a similar concordance in 12 long series of observations of methyl and 

ethyl tartrate, is sufficient to establish the general validity of the two-term equation as 

an expression of the complex rotatory dispersion both of tartaric acid and of its esters.* 

It is then a simple problem to study the variations of the four constants of this equation 

as the concentration of the solution is increased or diminished. Preliminary observations 

indicated that the dispersion-constant \.f for tartaric acid in aqueous solutions might, 

with advantage, be reduced from 0-074 for solutions containing 70 grams of acid in 

100 c.c. to 0-065 for solutions containing 5 grams in 100 c.c. ; but this diminution could 

not be confirmed in the more exact, though rather less extensive, observations set out 

in Table I. We have, therefore, preferred to make use of constant values, Ai2 = 0-030, 

A/ = 0-074, for the two dispersion-constants of this series of solutions rather than to 

introduce small variations which would merely have led to irregularities in the values 

of the “ rotation-constants ” ^ and k2. The observed and calculated values of the 

molecular rotatory powers at eleven different concentrations are set out in Table IV. 

Table V. shows, for the 13 solutions for which data are given in Tables III. and IV., 

the magnitude of the four constants of the two-term equation, together with the wave¬ 

lengths at which the principal anomalies are found, namely, the inflection of the curve 

at A,,, the maximum at A^ and the reversal of sign at Ap. These latter have been 

calculated from the equations, as a convenient method of interpolation ; wave-lengths 

* In the case of the acid there are indications of a predominance of negative errors between the green 

and violet mercury lines ; this is, perhaps, an effect of ionisation, since nothing of the sort has been noticed 

in the case of the esters. 

2 Q VOL. CCXXII.—A. 
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which depend on extrapolation beyond the range of the experimental data are printed 

in italics. 

From Table V., and from the graphical representation of fig. 4, the following con¬ 

clusions may be drawn :—- 

(1) The reversal of sign (which has been observed hitherto only in the anhydrous 

acid, in alcoholic and in super-saturated aqueous solutions or in the ultra¬ 

violet region of the spectrum) is here recorded with the help of the camera, in 

the extreme violet region of the spectrum in unsaturated aqueous solutions 

containing only 50 grams of tartaric acid in 100 c.c. of the solution (e = 0-5875 

or P = 41-25 per cent.). 

(2) The maximum rotation, which has usually been said to vanish on dilution, is here 

retained on the less refrangible side of the violet mercury line even at a con¬ 

centration of only 5 grams per 100 c.c. This fact is of interest in connection 

with the statement of Arndtsen that at concentrations below 20 per cent, by 

weight “ the dispersion becomes normal in so far as the angle of rotation 

increases continuously with the refrangibility of the light; yet the rotation 

increases so little from the ray F to the ray e, that one cannot doubt that it 

would have a maximum in the violet part of the spectrum ” (‘ Ann. Chim. 

Phys.,’ 1858, vol. 54, p. 412). Our observations prove the reality of this 

hypothetical maximum, whilst, at the same time, they show the futility of any 

definition of “ normal dispersion ” which depends merely on the removal of 

the maximum from the easily-visible into the violet or ultra-violet region of 

the spectrum ; a similar usage of this term by Winther has already been 

criticised (Lowry, ‘ Trans. Chem. Soc.,’ 1915, vol. 107, p. 1195) on the ground 

that it implies a physiological definition of a purely physical property. Anoma¬ 

lous dispersion depending on the imperfect compensation of two simple rotatory 

dispersions of opposite sign may, as a matter of actual fact, be rendered normal 

by displacing the maximum to infinite wave-length in the infra-red ; but any 

displacement in the opposite direction only exaggerates the invisible maximum 

in the ultra-violet region.* 

7. Tartrates of the Alkali-Metals. 

In his sealed note, communicated to the Academy on August 25, 1834, Biot referred 

for the first time to the rotatory power of the tartrates in the following terms —“ The 

combinations of tartaric acid with solid bases give products endowed with rotation 

towards the right ; but the relative intensity of these rotations for the different simple 

rays obeys the general law of this phenomenon, to which tartaric acid alone is a marked 

exception, at least, among all the bodies which I have been able to study hitherto ” 

(‘ Comptes Rendus, 1835, vol. 1, p. 458). A detailed study of the tints produced by 

* For a series of curves illustrating this point, see ‘ Trans. Chem. Soc.,’ 1915, vol. 107, p. 1200. 
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aqueous solutions of potassium, sodium and ammonium tartrates (‘ Mem. Acad Sci.,’ 

1838, vol. 16, pp. 304-317) showed that these agreed very closely with those produced 

by quartz plates of suitable thickness, and with those calculated from Biot’s law. A 

similar conclusion was reached by Ivrecke, who measured the rotatory powers of the 

potassium, sodium and ammonium salts over the range from 0° to 100° C., and concluded 

that “ the tartrates examined obey the laws of Biot ” (‘ Arch. Neerland.,’ 1872, 

vol. 7, p. 114). Krecke’s figures actually show small regular deviations in the case of 

potassium and sodium tartrates, and very marked deviations in the figures for ammonium 

tartrate and for Rochelle salt. Thus his figures for [a] X2 are as follows :— 

Tartaric acid 50% 

„ . „ 50% 
Potassium tartrate 20%.. 
Sodium tartrate 20% 
Ammonium tartrate 10% 
Rochelle salt 20% 

C. D. E. b. F. 

o 

0 2,427 2,227 1,602 1,533 1,331 
100 5,792 5,289 4,942 4,928 4,646 

0-100* 9,407 9,245 9,166 9,285 9,479 
0-100* 9,067 8,977 8,863 8,798 9,166 

25 13,376 12,860 11,948 12,081 12,608 
0-100* 8,179 7,944 7,542 7,508 7,673 

The figures for tartaric acid, which are given for comparison, show the sensitiveness 

of the free acid to changes of temperature, as well as its complete liberation from the 

requirements of Biot's law. Thus the specific rotatory power of potassium tartrate for 

sodium light decreases by 3 per cent, only, from 27-223° to 26-415°, on raising the 

temperature from 0° to 100° C. ; that of the sodium salt increases by 2 per cent., from 

25-702° to 26-256° between 0° and 75° C., and then diminishes again to 25-211° at 

100° C.; whilst in the case of Rochelle salt there is a regular increase of 9 per cent, 

from 21 -820 at 0° to 23-993° at 100°. The rotatory power of the free acid, however, is 

practically three times as great at 100° as at 0° C. 

Our own observations of the rotatory power of the tartrates of the alkalis are set out- 

in Tables VI., VII., VIII. and IX. As in the two long series of readings of tartaric 

acid, filtered solutions (made up volumetrically) were used to facilitate the reading of 

the more difficult wave-lengths ; their exact concentrations were then determined by 

comparing the readings for Hg 5461 with those made with unfiltered solutions, prepared 

gravimetrically from samples of the various salts in which the proportion of moisture 

had been checked by analysis. In the case of the ammonium salt, which decomposes on 

drying even at moderate temperatures, standard solutions for the determination of 

concentrations were made by adding the calculated amounts of a titrated solution 

of ammonia to weighed amounts of tartaric acid in a stoppered flask and diluting the 

solution to a known weight. Densities of all the solutions were also determined. The 

data used in these calculations are shown in Table X., where also are given a number 

% Average values. 
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of molecular rotations for sodium light, by means of which a comparison may be made 

with rotations interpolated from the earlier data of Thomsen (‘ Jour. Prakt. Chem.,’ 

1886, new series, vol. 34, p. 74) and of Patterson (‘ Trans. Chem. Soc.,’ 1904, vol. 85, 

p. 1120). 

Our measurements of the molecular rotations of the tartrates show a close general 

agreement with the requirements of Biot’s law, but with small deviations of a different 

type from those recorded by Krecke. Thus whilst his values for [M] A2 always passed 

through a minimum in the central portion of the spectrum, ours either pass through a 

maximum as in Table VI., or rise progressively as the wave-length diminishes as in 

Tables VII., VIII. and IX. In the case of sodium tartrate (22 • 54 gr. of Na2H4C406.2H20 
in 100 c.c. of solution, Table VI. (a)) the agreement of our numbers with the require¬ 

ments of Biot’s law is remarkably close ; thus the product [M] A2 has the value 20 • 29 

in the visible red region at wave-lengths 6708 to 6438, and the value 20-31 in the extreme 

violet at wave-lengths 4072 to 4005, rising in the intermediate region to a shallow 

maximum 20-68 in the blue at wave-length 4678 ; if all the 22 readings are considered 

the average value of [M] A2 is 20-40, the maximum errors are +0-28 and —0-23, and 

the average error is only +0-11 or 0-5 per cent. 

In view of the smallness of the deviations from Biot’s law, it seemed probable that 

a complete agreement might be obtained between the observed and calculated values 

by using a “ simple ” dispersion formula containing a second arbitrary constant. In 

each case, therefore, the constants of the “ simple ” formula [M] = Jc/{\2—A02) were 

calculated in the usual way from the rotations for the two dominant mercury lines 

Hg5461 and Hg4358, as shown in Table XI. 

Special attention should be given to the values of the dispersion-ratio” a4358/a546i, 

shown in the last column of Table XI., which increases and diminishes with the 

magnitude of the “ dispersion-constant ” Ay2. The latter constant being the square of 

a real quantity must always be positive, so that the smallest value for this dispersion- 

ratio is that given by Biot's law, where al,2 = 0, namely, 

_ (5461)   1 A70 
<*5461 " (4358)"' 

The ratios shown above come nearer to this minimum than in any case hitherto 

investigated, and in one of the solutions of sodium tartrate, where A02 falls to 0 • 00032, 

this minimum is almost attained. Some of the lowest values previously recorded are 

shown in Table XII. 

These figures show that the dispersion-ratio rarely falls below 1 • 630 or the dispersion- 

constant below 0-018; in other words, the absorption-band which determines the 

position of the vertical asymptote of the dispersion-curve maybe pushed out so far as 

A = % 0-018 = 0-135/x or 1350 A.U, but it never goes much beyond this, even in 

the case of the most transparent of the substances quoted in Table XII. When dealing 
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with the natural rotatory power of optically active liquids, the asymptote rarely goes 

beyond X = \ 0-024 = 0-15^ or 1500 A.U. In view of this strict limitation of 

transparency, in carbon-compounds generally as well as in water and in silica, it seemed 

improbable that the metallic tartrates could be transparent to light of excessively short 

wave-length, especially as the magnetic rotations in ethyl tartrate are controlled by an 

absorption-band in exactly the same position as in the simple alcohols. The validity of 

the simple formula, therefore, lay open to suspicion, on account of the extreme smallness 

of the dispersion-constant, and it appeared much more probable that the dispersion- 

ratios in the tartrates had been brought down into close proximity with the minimum 

value 1-570 by the influence of a second (negative) term in Drude’s equation, similar to 

that which brings the dispersion-ratios in tartaric acid down below this minimum and 

gives rise to the anomalous dispersion of the acid. 

■The evidence which first convinced us that the simple dispersion-formula, like Biot’s 

law, is merely an approximate expression of the rotatory dispersion in the tartrates, is 

shown in Tables VI. (a) and (6). In these two tables a “ simple ” formula is shown 

which has been calculated to fit the experimental values for the green and violet mercury 

lines. The average error is only a fraction of 1 per cent. ; but without exception, all 

the errors between the green and violet lines are positive in sign, whilst all those beyond 

the violet are negative ; below the green, the errors are again negative in eight out of 

ten cases. This regular distribution of the errors, which was confirmed in the case of 

ammonium tartrate, Table IX., for 14 out of 15 visual readings in one series and for 12 

out of 13 in a second series which has not been reproduced, proves clearly that the 

deviations are not accidental but systematic, calling for some further modification of 

the formula used to express the observations. 

When once it has been recognised that the dispersion curves for the alkali-tartrates 

cannot be represented by the “ simple ” formula a = ft/(A2 — A02), no difficulty is 

experienced in securing a satisfactory agreement between the observed and calculated 

rotations, by using a Drude equation with one positive and one negative term, as is 

shown in the last columns of Tables VI., VII., VIII. and IX., where the errors in the 

visual readings are seen to be small and for the most part distributed quite irregularly. 

On account of the smallness of the deviations from the simple law, it is difficult to deter¬ 

mine the exact magnitude of the two additional constants which serve to express them 

in the equation. The dispersion-constants selected for these calculations were 

Ai2 = 0-038, X22 = 0-06, but since the sum of these two constants 0-098 is almost 

identical with the sum of the constants 0-030+0-074 = 0-104 used in the case of 

tartaric acid, there can be little doubt that the latter pair would have given equally 

satisfactory results. 

The negative rotation-constants, k2, as set out in Table XIII., are larger than might 

have been expected, approaching almost to one-half of the values for the positive rotation- 

constant +. This is due to the fact that the dispersion-constant X22 of the negative 

term is but little greater than the dispersion-constant Ai2 of the positive term ; the 
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negative term must therefore be weighted somewhat heavily to produce any marked 

alteration in the form of the curve. 

8. Negative Rotations in Solutions of c/-Tartaric Acid and its Salts. 

Although the common form of tartaric acid, and the tartrates derived from it, are 

usually dextrorotatory, negative rotations are occasionally observed, especially at high 

concentrations and low temperatures, and in the more refrangible portions of the spectrum. 

Biot, who had predicted this phenomenon in 1838 (£ Mem. Acad. Sci.,’ 1838, vol. 16, 

p. 269), detected it twelve years later in the cold, glassy acid (£ Ann. Chim. Phys.,’ 1850, 

vol. 28, p. 353) ; the more elaborate work of Bruhat (‘ Trans. Faraday Soc.,’ 1914, vol. 

10, p. 89) on the rotatory power of the anhydrous acid has shown that, whilst the 

rotations are positive in the red and yellow regions of the spectrum, they become nega¬ 

tive for wave-lengths less than 5600 at 15° C. None of the aqueous or alcoholic solutions 

examined by Biot gave negative rotations, but Lepeschkin (‘ Ber. Deutsch. Chem. 

Gesell.,’ vol. 32, p. 1180-1184) detected a negative rotation [a]424°802 = —1-22° in 

the dark blue region of the spectrum when working with a supersaturated aqueous 

solution containing 66-5 per cent, by weight of tartaric acid. Our own observations 

include negative readings in the violet region for unsaturated solutions containing 50 

grams of tartaric acid in 100 c.c. of solution; and Nutting (‘ Physical Review,’ 

vol. 17, p. 11) has observed very large negative rotations, up to [a]2795ol90= —296*8°, 

in the ultra-violet, in a solution containing 28*62 grams per cent, of tartaric acid. 

Grossmann (£ Trans. Faraday Soc.,’ 1914, vol. 10, p. 63) observed only positive 

rotations in methyl alcohol, but negative values have been recorded by Arndtsen 

(' Ann. Chim. Phys.,’ 1858, vol. 54, p. 415) for more concentrated solutions. 

Grossmann showed, however, that solutions in ethyl alcohol, even at a concentration 

as low as 5 per cent., give negative rotations in the blue region beyond 4700, whilst 

similar solutions in propyl alcohol are lagvorotatory beyond 5200. Negative rotations 

for sodium light have been observed in solutions of tartaric acid in acetone mixed 

with ether or with chloroform (Landolt, ‘ Ber.,’ 1880, vol. 13, p. 2333), in water 

mixed with butyl alcohol (Pribram, £ Monatshefte,’ 1888, vol. 9, p. 485) and in 

alcohol mixed with benzene, toluene, chlorobenzene or ethyl bromide (Pribram, 

£ Ber.,’ 1889, vol. 22, pp. 6-11). 

This depression of rotatory power and ultimate reversal of sign may be regarded as 

a result of getting the tartaric acid into solution in much the same condition as that in 

which it exists in the anhydrous amorphous state, without developing the great increase 

of dextrorotatory power which results from hydration, or the lesser increase which results 

from interaction with the lowest members of the series of alcohols. A similar depression 

of dextrorotatory power is produced by formic acid, acetic acid, and especially propionic 

acid (Grossmann, loc. cit., p. 65) as well as by mineral acids. In the special case of 

sulphuric acid, Biot found that the addition of 20 per cent, of the strong acid to an 

aqueous solution of tartaric acid lowered its specific rotatory power by about one-third 
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from aRED = 15-4 to 10-90 (‘ Mem. Acad. Sci.,’ 1838, vol. 16, p. 280) ; but a concen¬ 

trated solution containing 

C4H,;0(i 22 • 68 gram, S03 65 • 02 gram, H20 95 • 90 gram 

gave a much lower rotation and a novel type of dispersion in which the maximum 

disappeared into the infra-red, whilst a reversal of sign occurred in the blue region, 

giving rise to laevorotations in the violet thus : 

red +2*200°, yellow +0*850°, green +0*550°, violet —4*950° 

(ibid., p. 301). Grossmann has recently examined solutions of tartaric acid in sulphuric 

acid of higher concentrations (including the anhydrous acid containing 100 per cent. 

H2SO,), and has shown that laevorotations are found for violet light of wave-length 

4620 from 45 to 75 per cent, of sulphuric acid only ; when sulphuric acid containing less 

than 35 per cent, of water is used as a solvent, the tartaric acid increases again in rotatory 

power, and finally gives a specific rotation from 3| to 7 times as great as in aqueous 

solutions (£ Trans. Faraday Soc.,’ 1914, vol. 10, p. 67). This case is of special interest 

on account of the clear evidence which it affords of the formation of some new chemical 

compound of high dextrorotatory power, perhaps an anhydride : 

HO.CH.CO 
/ 

for which 

HO.CH.CO 

Hd = +124°, 

O, compare 
HO.CH.CO 

>NCH:s 
HO.CH.CO' 

[M]d = +281°, or a sulphate : 

/O.CH.CO.OH HO.CH.CO.Ox 
S02< I or I >S02 

O.CH.CO.OH HO.CH.CO.O 

Of special interest is the fact, which is disclosed by plotting 1/a against X2, that, 

whatever the nature of this compound may be, it is sufficiently “ fixed ” to give rise 

to a rotatory dispersion which, in the case of five readings out of six, appears to obey 

the “ simple ” law a = &/(A2 — A02). In view of the importance of these observations 

we made several attempts to repeat them, in order to test the validity of the “ simple ” 

dispersion law by means of fresh data extending over a wider range and including a 

larger number of wave-lengths ; but, up to the present, we have not succeeded in prepar¬ 

ing solutions sufficiently clear to use for such a test. 

In quite a different category must be placed Biot’s observation that aluminium 

tartrate, which is strongly dextrorotatory in dilute solutions, becomes laevorotatory 

when the solution is concentrated (‘ Comptes Rendus,’ 1835, vol. 1, p. 459 ; ‘ Mem. 

Acad. Sci.,’ 1838, vol. 16, Tables 12, 13, 14, at end of volume). It is possible that 

tervalent aluminium behaves in some respects like boron or antimony, and that concen¬ 

tration is accompanied by a change of structure analogous with that which is produced 

2 R vol. ccxxn.—A. 
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by the addition of an excess of potash to tartar emetic (see below, p. 285). A detailed 

investigation of the aluminium tartrates from this point of view would be of great 

interest, but was not undertaken in the course of the present research.* 

Confirmation has, however, been obtained of Biot’s observation that the alkali- 

tartrates become lsevorotatory when dissolved in an excess of strong alkali; thus whilst 

the rotatory power of potassium hydrogen tartrate in dilute solutions is about twice as 

great as that of the free acid, and the rotatory power of the neutral potassium salt is 

about three times as great, the further addition of potash (perhaps producing some 

displacement of hydrogen by potassium in the two hydroxyl-groups) causes the rotatory 

power to diminish and finally to become reversed in sign. Biot found (‘ Mem. Acad. 

Sci.,’ 1838, vol. 16, p. 345, and Table 6, facing p. 338) that a solution containing 

K2C4H4Ofi, TbO, 2'6 per cent. ; K20, 36'2 per cent. ; HLO, 61‘26 per cent, 

was lsevorotatory and gave the remarkable dispersion shown by the following readings, 

red — 0'433°, yellow — 0'617°, green — 0'2°, 

where the shallow maximum is of opposite sign to that observed in tartaric acid. Our 

own observations on a similar, but more concentrated, solution containing 

KAHA, HA 2'10 gr. ; K20, 36‘43 gr. ; H,0, 51 *89 gr 

in about 60 c.c. (density 1*504) gave a series of very small negative readings from which 

the molecular rotations shown in Table XIV. (a) may be deduced. The dispersion is 
obviously not simple, and the high value of the dispersion ratio a4358/a5461 = 3*3 
suggests that the rotation would become positive in the infra-red. Biot’s reversed 
maximum is not confirmed by our observations. 

Sodium tartrate is more readily soluble both in water and in strong alkali. Biot 

(ibid., p. 364, and Table 8 at end of volume) found that a solution containing 

NaAHA, 2HA 13‘27 per cent. ; Na20, 19'69 per cent. ; H20, 67'04 per cent, 

gave the following rotations :— 

red —2'675°, yellow —4°, green — 4’700°. 

Our own observations on a stronger solution containing 

NaAHA, 2HA 13-3 gr. ; Na20, 20‘41 ; ELO, 59MB, 

in about 66 c.c. (density 1*4093) gave the very substantial negative readings shown in 

Table XIV (b). These readings are large enough to give smooth values (fig. 6) for the 

molecular rotatory power of the dissolved salt. They confirm the increase of lsevoro- 

tatory power with diminishing wave-length already recorded by Biot, but they do not 

* This investigation is now being carried out by Miss Graham (26.1.22). 
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conform to Biot’s law since [M]\2 increases from —3-9 at Cd 6438 to —5-7 at Hg 

4358 ; and they cannot be expressed by the simple Drude formula a (A2—A02) = const., 

since the line obtained by plotting 1 /a against A2 has a perfectly definite though very 

slight curvature. 

The effects produced by the addition of a few molecular proportions only of alkali 

to aqueous solutions of potassium and sodium tartrates are shown in Table XV. (a) and 

(6). The molecular rotations are a little lower than in Tables VI. and VII., but the 

solutions are still dextrorotatory, and the dispersions, though certainly complex, can 

be expressed very closely by a “ simple ” formula, which, in the case of the sodium salt, 

is identical with Biot’s law ; the readings are, however, too small to reveal the 

complexity first disclosed in Table VI. (a). 

9. Tartar Emetic. 

Tartar emetic, K(SbO) C4H40,;, |HX>, although one of the most interesting of the 

tartrates, does not appear to have been examined by Biot. The rotatory dispersion in 

tartar emetic was measured, apparently for the first time, in 1872 by Krecke (‘ Arch. 

Neerland., 1872, vol. 7, p. 114), who observed a very close agreement with the require¬ 

ments of Biot’s law. Thus he gives for [a] A2 the following numbers :— 

C D E b F 

At 0°. 52,405 51,253 50,966 51,308 53,142 

At 100° .... 48,436 45,193 45,796 45,851 49,307 

He calls attention to the fact that “ the specific rotatory power of tartar emetic is 

extraordinarily great, and diminishes with rise of temperature,” and includes this salt in 

his general statement that “ the tartrates examined follow the law of Biot.”* Even more 

interesting than the high rotatory power of the salt is the fact discovered by Grossmann 

(‘ Zeitschr. Physikal. Chem.,’ 1907, vol. 57, pp. 533-556) that when sodium hydroxide is 

added, the specific rotation of the salt assumes a large negative value, probably because 

“ in the alkaline solution an antimonyl alkali tartrate is present, in which the hydrogen 

atoms of the alcoholic hydroxyl groups are also displaced.” 

Our own experiments give no support to Krecke’s view that tartar emetic obeys 

Biot’s law. Thus the first preliminary series of observations gave for the product 

[M]A2 values which increased progressively from 156-17 at wave-length 6708 to 203-85 

at wave-length 3917. But a “ simple ” dispersion formula [M] = 140-67/(A2—0-0477), 

based upon the readings for the two dominant mercury lines, showed an agreement that 

was very satisfactory, especially in view of the fact that the observed rotations had been 

multiplied by nearly 12 to convert them into molecular rotations. Moreover, the 

* Eor further observations on tartar emetic, see Long, ‘ Amer. Journ. Sci.,’ 1889, series (3), vol. 38, 

p. 264; 1890, vol. 40, p. 275. 
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magnitude of the dispersion-constant O'0477 did not present the same grounds for 

suspicion as in the case of the tartrates of the alkali metals. In view, however, of our 

experience with these tartrates, we considered it necessary to make a series of measure¬ 

ments at least as complete and as extensive as that which had disclosed the real com¬ 

plexity of the rotatory dispersion in sodium tartrate. The solution used for these 

measurements was made up to be approximately M/60 or 5-53 grams of tartar emetic 

per 100 c.c. ; a comparison with the rotations of unfiltered solutions made up gravi- 

metrically, Table X., gave the concentration as 5-32 grains per 100 grams of solution 

of density 1-0368, or 5-516 grams per 100 c.c., and this figure was adopted in calculating 

the molecular rotations. The rotations of this solution are set out in Table XVI., 

which gives the results of visual readings for 18 lines and photographic readings for five 

lines, as compared with 16+6 readings in the case of sodium tartrate. Although the 

observed rotations are multiplied by 10 in order to convert them into molecular rota¬ 

tions, their agreement with the calculated values is very satisfactory ; even in the 

photographic region the largest error is only 1 per cent., and all the errors appear to 

be distributed quite casually, without any of the long series of positive or negative errors 

observed in the case of the alkali-tartrates. We therefore conclude that the rotatory 

dispersion in tartar emetic is definitely “ simple ” in character, and that in this compound 

we have for the first time succeeded in eliminating completely that complexity which is 

so strongly developed in the acid and its esters. 

Similar remarks may be applied to the alkaline solutions of tartar emetic. The 

preliminary series of observations for seven lines in the visible spectrum showed that 

[M]X2 increased from —105-8 at wave-length 6438 to —133-3 at wave-length 4358, 

but that the dispersion could be represented satisfactorily by a simple formula. The 

simplicity of the rotatory-dispersion was, however, confirmed by a series of 17 visual 

readings as shown in Table XVII. Photographic readings are not included, as the 

solutions are not stable and show a marked diminution of rotatory power on keeping ; 

the visual readings could be taken before any serious alteration had occurred, but the 

photographic readings would have occupied too much time for this to be done successfully. 

10. Compounds of Arsenic and Bismuth. 

The arsenyl compounds H(AsO)C4H4Oh, K (AsO) C4H406, Na(As0)C4H406, corre¬ 

sponding with tartar emetic were examined by Landolt (‘ Ber. Deutsch. Chem. Gesell., 

1873, vol. 6, p. 1077, and “ Optical Rotatory Power,” tr. 1902, p. 553). No measure¬ 

ments of dispersion were made, but the data showed that the arsenyl compounds have 

much the same rotatory power as the simple alkali-salts and do not exhibit any of the 

special qualities of tartar emetic. Grossmann (loc. cit.) states that the addition of 

sodium hydroxide to sodium arsenyl tartrate appeared to cause complete decomposition 

of the salt into neutral disodium tartrate and optically-inactive sodium arsenite. Our 

own observations on the rotatory dispersion in an alkaline solution of the arseno-tartrate, 
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Table XVIII. {a), are in agreement with G-rossmann’s view. The rotations are positive 
and of the same order of magnitude as in the case of an alkaline solution of the potassium 
salt. The dispersion shows the same rough conformity with Biot’s law, and the same 
close approximation to the requirements of a simple formula with an abnormally small 
dispersion-constant, as in Table XV. (a), but the observed rotations are too small in 
magnitude and too few in number to provide conclusive evidence of the complexity of 
the dispersion. In the absence of an alkali, the formation of an arseno-tartaric acid is 
indicated by the increase of rotatory power, Table XVIII. (6), which is produced by 
saturating a solution of tartaric acid with arsenious oxide and filtering off the excess 
of arsenic. The dispersion-curve is not “ simple,” like that of tartar emetic, since 
the dispersion-ratio a4358/a5461 — 1*476 is less than the minimum value 1*570 for 
A02 = 0 ; it is probable, therefore, that the arseno-tartaric acid is already partially 
dissociated, and that the addition of an excess of alkali merely completes the hydrolysis 
already initiated by the water in the solution. 

The dispersion of the corresponding compounds of bismuth do not appear to have 
been investigated hitherto*, but we have been able to prepare an alkaline solution of a 
bismuthyl compound which shows all the characteristics of alkaline solutions of tartar 
emetic. Its rotatory power is strongly negative, though less than in the case of tartar 
emetic, and its rotatory dispersion, as set out for 21 wave-lengths in Table XIX., agrees 
very well with a simple dispersion formula [M] = —37*414/(\2—0*0645). The 
dispersion-constant in this formula agrees closely with the value 0*06275 given by an 
alkaline solution of tartar emetic ; it is therefore clear that in alkaline solutions 
bismuth yields a kevorotatory compound with tartaric acid of exactly the same type 
as the compound formed from tartar emetic, and that both compounds differ from 
the acid and from its simple salts in giving simple rotatory dispersion. The simple 
dispersion in these more complex tartrates is indeed the most striking discovery that 
we have made in the course of the present investigation. 

11. Boro-tartaric Acid. 

Boric acid was mentioned in Biot’s sealed communication of August 25, 1834, as a 
substance which (like the alkalis) combined with tartaric acid, giving dextrorotatory 
solutions which obeyed the general laws of rotatory dispersion as they had been estab¬ 
lished in the case of quartz and of several optically-active liquids (' ComptesRendus,’ 
1835, vol. 1, p. 458 ; compare ‘ Mem. Acad. Sci.,’ 1838, vol. 16, p. 271). The action of 
boric acid was described in detail ten years later (‘ Ann. Chim. Phys.,’ 1844, vol. 11, 

pp. 82-112 ; see also 1860, vol. 59, pp. 229-256) in a long memoir “ On the Employment 
of Polarised Light to Study Various Questions of Chemical Mechanics.” The acid 
produced a marked increase in the dextrorotatory power of tartaric acid ; and this 
could be represented by a hyperbolic formula tending to a constant value when the 

* For rotations of sodium light in potassium bismuthyl tartrates, see Rosenheim, Vogelsang, and 

Grossmann, * Zeitschr. fur anorg. Chem.,’ 1906, vol. 48, p. 209. 
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boric acid was in large excess, or less exactly by a linear formula representing a tangent 

to the hyperbola. This linear formula was found to apply also to the enhancement of 

rotatory power in a glassy mixture of amorphous tartaric and boric acids ; four such 

mixtures gave rotations (for the neutral tint) ranging from -f-31° to +13°, and these 

when extrapolated gave for pure glassy tartaric acid a negative rotation —2-9°, agreeing 

closely with the value —3*28° observed experimentally (‘Ann. Chim. Phys.,’ 1850, 

vol. 28, p. 374). 

Preliminary experiments on an equimolecular mixture of tartaric and boric acids 

(15 grams of tartaric acid and 6-2 grams of boric acid in 100 c.c. of solution) showed 

that the dispersion did not fulfil the requirements of Biot’s law, but could be expressed 

by a simple formula with a normal dispersion constant [M] = 24-835/(A2—0-0271). 

A more exact series, Table XX.(a), including readings for 18 lines in the visual and five 

lines in the photographic region of the spectrum, showed, however, that the simple 

formula was again only an approximation ; but the negative term in the complex 

formula is very small (only about of the positive term), and would probably disappear 

altogether if a sufficient quantity of boric acid were used to convert the tartaric acid 

wholly into boro-tartaric acid. Table XX. (6), which shows the effect of 1-| mols. of 

boric acid on tartaric acid of half the strength used for Table XX. (a) affords further 

justification for this view ; the dispersion is here so nearly simple that the only hint 

of complexity is that given by a few negative errors in the red and in the extreme violet 

region of the spectrum. 

The study of boro-tartaric acid, like that of tartar emetic, illustrates in a very striking 

manner the way in which the complex rotatory dispersion of tartaric acid is simplified 

when it is converted into “ fixed ” derivatives, even when these are more complex in 

their chemical structure. The actual structure of these derivatives has been the subject 

of much speculation, and must be regarded as still very uncertain ; but we hope to be 

able to carry out a chemical study of this problem, which will form a suitable sequel 

to the physical investigations which are described in the present paper. 

12. Summary. 

1. The rotatory power of tartaric acid for a senes of 9 wave-lengths has been 

determined in aqueous solutions of 11 different concentrations ranging from 5 to 55 per 

cent, by weight, and also for 21 and 26 wave-lengths respectively at 2 other concentrations. 

2. The optical rotatory power of tartaric acid, like that of its methyl and ethyl esters, 

is expressed to a close degree of approximation by the formula 

__k2_ 

A2-A/ ~ A2 —A/' 

3. The rotatory power of sodium tartrate agrees very closely with Biot’s law, 

« — k/\2, but requires for its exact expression a two-term formula similar to that 
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used for tartaric acid. Potassium and ammonium tartrates and Rochelle salt give 

similar dispersion curves, but deviate more widely from Biot’s law. 

4. A number of solutions which give negative rotations have been examined for a 

range of wave-lengths, and the corresponding dispersion-curves have been plotted. 

5. In presence of an excess of boric acid the rotatory dispersion of tartaric acid is 

no longer complex but simple, and can be expressed over a wide range of wave-lengths 

by the equation 
h 

CL - -r, • 

x2-\0a 

Tartar emetic also gives a simple dispersion curve. 

6. When tartar emetic is dissolved in an excess of potassium hydroxide, or when a 

corresponding solution is prepared with bismuth in place of antimony, strongly kevo- 

rotatory solutions are obtained, but these are again characterised by a simple rotatory 

dispersion. 

7. It is suggested that d-tartaric acid, like nitro-camphor, exists in solution in two 

labile isomeric forms, and that the anomalous dispersion of the acid and of many of its 

derivatives is due to the presence of two isomeric compounds of opposite rotatory power 

and unequal dispersion. Derivatives which give simple rotatory dispersion are assumed 

(like the salts of nitro-camphor) to be fixed in one of these forms. 
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Table 1.—Specific and Molecular Rotatory Power of Tartaric Acid in Aqueous Solutions at 20° C. 

Length of Tube — 6 dm. 

any and Austin. 

• 

Jaaily* 1-2987. 1-2658. 1-2352. 1-2052. 1-1760. 1-1476. 1-1201. 1-0942. 1-0692. 1-0448. 1-0211. 

wstration in 
pimspcr 
(0 grams. 

(pirns per 
1(0 tc. 

66-0. 50-0. 46-0. 40-0. 35-0. 30-0. 25-0. 20-0. 16-0. 10-0. o-O- 

71-43. 63 29. 55-58. 48-21. 41-16. 34-43. 28-00. 21-88. 16-04. 10-45- 5 10. 

X. ii. iii. Mean. [«]• [M], 
. .. 

n. iii. iv. v. Mean. W- fM). ii. iii. Mean. [«1- [M]. i- ii. iii. iv. Mean. M- [Ml- *■ 
ii. .a. iv. Mean. M. [Ml. " 

ii. a Mean. [«]• [Ml- i. ii. 1 iii. w- [Ml- i. iL ,,, iv. Mean. [*]- [M]. 
.. 
li. iii. ! iv. Mean. [*]. m i- 5. 5L iv. Mean. M- m ■- eL Meas. w [M] 

Cd 6438 25-73 25-73 25-73 25-73 6-004 9-005 25-60 25-61 25-56 25-54 25-55 25-57 6-734 10-100 24-79 24-76 24-71 24-76 7-421 11-132 23-34 23-31 23-37 23-37 23-35 8-073 12-109 21-63 21-53 21-62 21-54 21-55 8-728 13-092 19-23 19-28 19-22 19-24 9-336 14-003 16-66 16-59 16-59 16-61 9-886 14-829 13-76 13-73 13-73 13-71 13-73 10-457 15-685 10-62 10-64 10-62 10-64 10 63 11-047 16-570 7-27 7-35 7-30 7-29 7-30 11-645 17-467; 3-75 3-74 3-73 3-74 12-309 18-314 

h m 27-88 27-84 27-86 6-501 9-761 27-90 28-00 27-99 27-98 28-00 27-97 7-366 11-049 27-45 27-39 27-39 27-41 8-219 12-328 26-05 26-03 26-07 26-08 26-06 9-010 13-514 24-26 24-21 24-22 2-4-10 24-20 9-799 14-899 21-65 - 21-63 21-64 10-500 15-760 18-83 — 18-83 18-83 11-207 16-811 15-68 15-69 15-71 15-67 15-69 11-949 17-924 12-16 12-18 12-16 12-16 12-165 12-642 18-963 8-37 8-29 8-37 8-32 S-34 13-304 19-956 4-30 4-32 4-30 4-31 14-070 21-105 

Hg 5790 28-16 23-10 28-16 28-14 6-566 9-849 28-37 28-40 28-36 28-32 28-30 28-35 7-466 11-198 - 27-78 27-79 27-78 8-331 12-497 26-47 26-46 26-53 26-54 26-50 9-162 13-742 24-71 24-63 24-62 24-58 24-63 9-975 14-963 22-15 22-19 22-14 22-16 10-752 16-129 19-29 19-33 ; 19-24 19-29 11-481 17-222 16-06 16-01 16-02 15-97 16-01 12-197 18-295 12-52 12-44 12-42 12-47 12-46 12-948 19-423 8-52 8-55 8-66 8-58 5-58 13-687 30-530 4-47 4-45 4-45 4-45 14-527 21-790 

Hg 5769 28-20 28-15 28-21 28-19 6-577 9-866 28-45 28-46 28-44 28-42 28-40 28-43 7-487 11-230 - 27-83 27-84 27-83 8-348 12-519 26-56 26-62 26-58 26-60 26-66 9-184 13-776 24-81 24-73 24-76 24-64 24-73 10-014 15-021 22-19 22-29 22-20 22-23 10-786 16-180 19-39 19-43 19-33 19-33 11-535 17-302 16-12 16-09 16-07 16-03 16-08 12-246 18-370 12-52 12-48 12-47 12-50 12-49 12-9S0 19-469 8-52 8-55 8-66 8-58 5-58 13-687 30-530 4-47 4-45 4-45 4-45 14-527 21-730 

Hi 5161 28-35 28-31 28-37 28-34 6-613 9-919 29-09 29-08 29 05 29-08 29-02 29-06 7-653 11-479 28-85 28-80 28-85 28-83 8-645 12-967 27-77 27-72 27-74 27-77 27-75 9-594 14-391 26-03 25-99 26-01 26-02 26-01 10-632 15-798 23-51 23-56 23-52 23-53 11-417 17-126 20-68 20-56 20-53 20-66 12-237 18-355 17-13 17-16 17-19 17-13 17-16 13-061 19-592 13-42 13-45 13-36 13-38 13-40 13-925 20-888 9-22 9-20 9-31 9-23 9-24 14-740 22-109 4-80 4-81 4-80 4-80 15-669 25-504 

01 5086 26-71 26-71 26-75 26-72 6-235 9-352 28-41 28-41 28-41 28-40 28-39 28-40 7-479 11-218 28-98 28-88 28-87 28-91 8-668 13-003 23-28 28-25 28-33 28-34 28-30 9-784 14-676 26-93 26-84 26-83 26-83 26-86 10-876 16-314 24-54 24-61 24-58 24-58 11-927 17-890 21-71 21-70 21-64 21-68 12-904 19-355 18-23 18-27 18-29 18-21 18-25 13-899 20-849 14-27 14-34 14-23 14-29 14-295 14-855 22-283 9-90 9-94 10-01 9-91 S-94 15-856 23-784 5-14 5-31 5-22 5-22 17-040 25-561 

Cd 1600 22-93 22-92 22-91 22-92 5-348 8-022 25.70 25-73 25-73 25-80 25-78 25-75 6-781 10-171 27-18 27-17 27-19 27-18 8-150 12-225 27-24 27-23 27-33 27-30 27-27 9-430 14-144 28-56 26-43 26-46 26-39 26-46 10-714 16-071 24-40 24-47 24 46 24-44 11-859 17-788 21-95 21-89 21-85 21-39 13-032 19-547 18-53 18-61 18-68 18-56 18-59 14-162 21-243 14-77 14-68 14-70 14-74 14-72 15-297 22-945; 10-20 10-35 10-39 10-29 10-31 16-446 34-670 5-38 5-59 5-49 5-49 17-922 36-383 

Cd 1678 20-31 20-31 20-31 20-31 4-739 7-108 23-65 23-69 23-70 23-72 23-76 23-70 6-241 9-362 25-76 25-63 25-73 25-70 7-707 11-560 26-12 26-15 26-29 26-22 26-19 9-056 13-584 25-81 25-70 25-79 25-70 25-75 10-427 15-640 24-03 24-03 24-04 24-03 11-660 17-490 21-81 21-83 j 21-72 21-79 12-969 19-453 18-34 18-49 18-51 18-45 18-45 14-051 21-077 14-82 14-75 14-76 14-79 14-78 15-359 23-039 10-34 10-38 10-40 10-39 10-38 16-558 24-S37 5-45 5-67 5-55 5-56 18-150 27-23R 

Hg 4358 7-92 - - 7-92 1-848 2-772 13-75 13-80 13-82 13-95 13-80 13-82 3-631 6-446 18-15 17-97 18-11 18-08 5-421 8-132 20-32 20-29 20-36 20-32 20-32 7-025 10-638 21-31 21-31 21-36 21-36 21-33 8-637 12-956 20-87 20-91 20-36 20-88 10-131 

_ 
15-197 19-41 19-47 19-45 19-44 11-670 17-356 17-02 17-10 17-16 17-13 17-10 13-023 19-535 13-90 13-83 13-97 14-00 13-94 14-486 21-730 9-93 9-99 10-02 10-02 10-00 15-952 23-925 5-42 5-46 5-46 5-45 17-791 36-687 

r#/«/yp. 288.] * The densities shown in this table were read off from a sensitive curve plotted from our own readings and those of Pribram (‘ Sitrungsber. Wien. Akad.,’ II., vol. 107, p. 146.) 

T0L ccxxn.—A. 
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Table III.—Rotatory Dispersion of Tartaric Acid in Aqueous Solutions at 20° G. 

(a) 54-1 gr. tartaric acid in 100 gr. solution, 

or 69*9 gr. „ ,, inlQOc.c. 

Density = I • 2920. Length of tube = 6 dm. 

TM1 = 17•188 _ 12-080 
L lJ X2—0-030 X2—0-074' 

X. a obs. [M] obs. [MJ. [M]—[MJ. 

Li 6708 +24-35 8-71 8-80 -0-09 
Cd 6438 25-55 9-14 9-22 -0-08 
Na 5893 27-78 9-94 9-97 -0-03 
Cu 5782 28-52 10-20 10-07 +0-13 
Hg5780 28-12 10-08 10-08 zfc 
Cu 5700 28-67 10-25 10-14 +0-11 
Hg5461 28-53 10-20 10-20 ± ' 
Cu 5219 27-75 9-93 10-02 -0-09 
Ag 5209 27-41 9-80 10-00 -0-20 
Cu 5154 27-51 9-82 9-90 -0-08 
Cu 5105 27-18 9-72 9-80 —0-08 
Cd 5086 26-97 9-64 9-75 -0-11 
Zn 4811 23-54 8-42 8-60 -0-18 
Cd 4800 23-30 8-33 8-53 -0-20 
Zn 4722 21-91 7-84 7-98 -0-14 
Zn 4680 - 20-73 7-41 7-63 -0-22 
Cd 4678 20-69 7-40 7-61 -0-21 
Fe 4580 — -. — — 

Fe 4440 — — — — 

Hg 4358 9-13 3-26 3-26 ± 
Fe 4228 0 0 +0-2 -0-2 
Fe 4275 — — -- — 

Fe 4209 — — — — 

Fe 4146 — — — — 

Fe 4110 -10 -3-6 —3-5 -0-1 
Fe 4096 — — — — 

Fe 4046 — — — — 

Fe 4023 — — — — 

Fe 4005 -20 1*
 

-8-0 +0-9 
Fe 4000 — — — — 

Fe 3967 — — — — 

Fe 3941 _ 
— — 

(6) 4.1-3 

or 50-1 

Le 

[MJ = 

4 gr. tartaric acid in 100 gr. 

solution, 

5 gr. ,, ,, in 100 c.c. 

Density = 1-2132. 

ngth of tube = 6 dm. 

17-960 11-869 

X2 —0 -030 X2 —0 -074 ’ 

a obs. [M] obs. [Mi]. [M]—[Mi]. 

+22-40 11-17 11-20 -0-03 
23-51 11-71 11-85 -0-14 
26-43 13-18 13-18 ± 
26-94 13-43 13-43 4_ nz 
26-94 13-43 13-43 ± 
27-32 13-62 13-60 +0-02 
28-14 14-03 14-03 ± 
28-55 14-24 14-27 -0-03 

28-61 14-26 14-28 -0-02 
28-62 14-26 14-27 -0-01 
28-78 14-34 14-27 +0-07 

27-41 13-67 13-74 -0-07 

26-51 13-22 13-17 +0-05 
25 12-5 12-5 ± 
'22 11-0 11-1 -0-1 
19-9 9-92 9-92 i 

17 8-5 8-5 
14 7-0 7-0 ± 
11 5-5 5-5 ± 

8 4-0 3-8 +0-2 
5 2-5 2-0 +.0-5 
3 1-5 1-1 +0-4 
2 1-0 +0-4 +0-6 

+J- +0-5 -0-1 +0-6 
-1 -0-5 -1-3 +0-8 
-4 -2-0 -2-6 +0-6 

•) s 9 
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Table IV.—Molecular Rotatory Power of Tartaric Acid in Aqueous Solutions (Observed 

and Calculated). 

e = proportion of water present. 

[M] = molecular rotation observed. 

[MJ = molecular rotation calculated. 

1 

e. A. Cd 
6438 

Na 
5893 

Hg 
5790 

Hg 
5769 

Hg 
5461 

Cd 
5086 

Cd 
4800 

Cd 
4678 

Hg 
4358 

0-45 [M] 

[MJ 
[M]—[MJ 

9-005 
9-028 

-0-023 

9-751 
9-730 

+0-021 

9-849 
9-819 

+0-030 

9-866 
9-834 

+0-032 

9-919 
9-919 

9-352 
9-414 

-0-062 

8-022 
8-143 

-0-121 

7-108 
7-204 

-0-096 

2-772 
2-772 

0-50 [M] 
[Mi] 

[M]—[MJ 

10-100 
10-106 

-0-006 

11-049 
11-041 

+0-008 

11-198 
]1-183 

+0-015 

11-230 
11-210 

+0-020 

11-479 
11-479 

11-218 
11-251 

-0-033 

10-171 
10-249 

-0-078 

9-362 
9-445 

-0-083 

5-446 
5-446 

J- 

0-55 [M] 
[MJ 

[M]—[MJ 

11-132 
11-117 

+0-015 

12-328 
12-281 

+0-047 

12-497 
12-477 

+0-020 

12-519 
12-514 
0-005 

12-967 
12-967 

13-003 
13-028 

-0-025 

12-225 
12-307 

-0-082 

11-560 
11-655 

-0-095 

8-132 
8-132 

0-60 [M] 
[MJ 

[M]-[MJ 

12-109 
12-107 

+0-002 

13-514 
13-484 

+0-030 

13-742 
13-726 

+0-016 

13-776 
13-775 

+0-001 

14-391 
14-391 

± 

14-676 
14-699 

-0-023 

14-144 
14-223 

-0-079 

13-584 
13-684 

-0-100 

10-538 
10-538 

0-65 [M] 
[MJ 

[M]—[MJ 

13-092 
13-079 

+0-013 

14-699 
14-667 

+0-032 

14-963 
14-959 

+0-004 

15-021 
15-016 

+0-005 

15-798 
15-798 

± 

16-314 
16-360 

-0-046 

16-071 
16-129 

-0-058 

15-640 
15-712 

-0-072 

12-956 
12-956 

0-70 [M] 
[MJ 

[M]—[MJ 

14-003 
14-004 

-0-001 

15-750 
15-788 

-0-038 

16-129 
16-124 

+0-005 

16-180 
16-192 

-0-012 

17-126 
17-126 

± 

17-890 
17-919 

-0-029 

17-788 
17-912 

-0-124 

17-490 
17-606 

-0-116 

15-197 
15-197 

± 

0-75 [M] 
[MJ 

[M]-[MJ 

14-829 
14-846 

-0-017 

16-811 
16-817 

-0-006 

17-222 
17-196 

+0-026 

17-302 
17-274 

+0-028 

18-355 
18-355 

1 + 

19-355 
19-376 

-0-021 

19-547 
19-593 

-0-046 

19-453 
19-400 

+0-053 

17-356 
17-356 

br 

0-80 [M] 
[MJ 

[M]—[MJ 

15-685 
15-693 

-0-008 

17-924 
17-854 

+0-070 

18-295 
18-275 

+0-020 

18-370 
18-361 

+0-009 

19-592 
19-592 

± 

20-849 
20-845 

+0-004 

21-243 
21-287 

-0-044 

21-077 
21-208 

-0-131 

19-535 
19-535 

ib 

0-85 [M] 
[MJ 

[M]—[MJ 

16-570 
16-595 

-0-025 

18- 963 
19- 045 

1—0-082 

19-423 
19-412 

+0-011 

19-469 
19-507 

-0-038 

20-888 
20-888 

± 

22-283 
22-369 

-0-086 

22- 945 
23- 030 

-0-085 

23-039 
23-060 

-0-021 

21-730 
21-730 

± 

i 0-90 ! [M] 
. [MJ 
[M]-[MJ 

17-467 
17-423 

+0-044 

19-956 
19-966 

-0-010 

20-530 
20-474 

+0-056 

20-530 
20-577 

-0-047 

22-109 
22-109 

-I- 

23-784 
23-824 

-0-040 

24-670 
24-719 

-0-049 

24-837 
24-869 

-0-032 

23-928 
23-928 

0-95 [M] 
[MJ 

[Mj-|MJ 

18-314 
18-333 

-0-019 

21-105 
21-105 

+ 

21-790 
21-666 

+0-124 

21-790 
21-781 

+0-009 

23-504 
23-504 

± 

25-561 
25-527 

+0-034 

26-883 
26-742 

+0-141 

27-226 
27-058 

+0-168 

26-687 
26-687 

The highest number in each series of molecular rotations is shown in heavy type ; the wave-lengths 

at which the true maxima occur are shown in Table V. 
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Table V.—Rotatory Dispersion in Aqueous Solutions of Tartaric Acid at 20° C. 

Constants and Anomalies. 

p. V- Ao2. h- K 
A. 

(Inflexion). 
A, 

(Maximum). 
A p 

(Reversal). 

Per cent. 
55 0-03 0-074 17-127 12-093 0-6571 0-5527 0-4239 
54-1 0-03 0-074 17-188 12-080 0-6533 0-5485 0-4220 
50 0-03 0-074 17-485 12-043 0-6376 0-5373 0-4140 
45 0-03 0-074 17-686 11-877 0-6197 0-5232 0-4050 
41-25 0-03 0-074 17-960 11-869 0-6092 0-5150 0-3997 
40 0-03 0-074 18-053 11-865 0-6058 0-5123 0-3980 
35 0-03 0-074 18-367 11-812 0-5929 0-5022 0-3915 
30 0-03 0-074 18-709 11-799 0-5822 0-4937 0-3861 
25 0-03 0-074 18-936 11-714 0-5722 0-4859 0-3812 
20 0-03 0-074 19-160 11-624 0-5628 0-4785 0-3767 
15 0-03 0-074 19-485 11-605 0-5543 0-4720 0-3726 
10 0-03 0-074 19-657 11-475 0-5458 0-4653 0-3684 ! 

5 0-03 0-074 19-592 11-108 0-5341 0-4562 0-3628 

P = concentration in grammes of tartaric acid per 100 gr. of solution. 

In the last three columns all values which lie outside the range of the observations are given in italics. 
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Table VI.—Rotatory Dispersion of Sodium Tartrate in Aqueous Solution at 20° C. 

(a) First Series.—22’54 gr. Na,H1C10„.2H,0 in 100 gr. aqueous solution, 

or 25-72 gr. ,, in 100 c.c. 

Density = 1*1411. Length of tube = 6 dm. 

Simple Formula. Complex Formula. 

[Mi] = 
20T52 

A2 —0'0029 
[M2] = 

37'445 

A2 —0‘038 

18-025 

A2 —0"06' 

A. cc. [M] obs. [M] A2. [MJ. [M]—[MJ. [MJ. [M]-[MJ. 

Li 6708 30-23 45-05 20-27 45-07 -0-02 44-67 +0-38 
Cd 6438 32-88 49-00 20-31 48-96 +0-04 48-61 +0-39 
Na 5893 39-22 58-45 20-30 58-52 -0-07 58-33 +0-12 
Hg 5790 40-58 60-48 20-275 60-64 -0-16 60-50 -0-02 
Cu 5782 40-91 60-97 20-38 60-80 +0-17 60-66 +0-31 
Hg 5769 40-67 60-62 20-17 61-08 -0-46 61-24 -0-62 
Cu 5700 41-95 62-52 20-31 62-58 -0-06 62-47 +0-05 
Hg 5461 45-78 68-23 20-35 68-23 + 68*23 + 
Cu 5219 50-41 75-13 20-46 74-78 +0-35 74-89 +0-24 
Ag 5209 50-57 75-37 20-45 75-07 +0-30 75-18 +0-19 
Cu 5154 51-77 77-16 20-50 76-70 +0-46 76-84 +0-32 
Cu 5105 53-15 79-215 20-645 78-19 +1 *025 78-36 +0-855 
Cd 5086 53-44 79-65 20-60 78-79 +0-86 78-96 +0-69 
Cd 4800 59-96 89-365 20-59 88-58 +0-785 88-84 +0-52s 
Cd 4678 63-41 94-51 20-68 93-32 +1-19 93-58 +0-93 
Hg 4358 72-29 107-74 20-46 107-74 ~L 

—J_ 107*74 ± 
Fe 4271 75 111-8 20-39 112-3 -0-5 112-0 -0-2 
Fe 4210 77 114-8 20-34 115-6 -0-8 115-2 -0-4 
Fe 4154 79 117-7 20-32 118-8 -1-1 118-1 -0-4 
Fe 4072 82 122-2 20-26 123-7 -1-5 122-6 -0-4 
Fe 4033 84 125-2 20-36 126-1 -0-9 124-8 +0-4 
Fe 4005 85 126-7 20-32 127-9 -1-2 126-4 

1 

+0-3 
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Table VI.—-Rotatory Dispersion of Sodium Tartrate in Aqueous Solution at 20° C. 

(continued). 

(/>) Second Series.—34-32 gr. Na_,HtC.40,..2H.,0 in 100 gr. aqueous solution, 

or 41-97 gr. „ in 100 c.c. 

Density — 1 • 2228. Length of tube — 6 dm. 

Simple Formula. Complex Formula. 

[Mi] = 
19'537 

X2-0-00032* 

37-108 18-348 

X2 —0"038 X2 —0"06 

A. cc. [M] obs. [M] A2. [MJ. [MJ—[Mi], [M,.]- [M]-[M2]. 

Cd 6438 51-50 47-04 19-50 47-17 -0-13 46-80 +0-24 
Na 5893 61-42 56-10 19-48 56-31 -0-21 56-12 -0-02 
Hg 5780 63-88. 58-35 19-49 58-55 -0-20 58-40 -0-05 
Hg 5461 71-80 65-58 19-56 65-58 ± 65-58 i 
Cd 5086 83-08 75-88 19-63 75-62 +0-26 75-80 +0-08 
Cd 4800 93-10 85-04 19-59 84-91 +0-13 85-20 -0-16 
Cd 4678 98-52 89-99 19-69 89-41 +0-58 89-69 +0-30 
Fe 4425 110 100 >5 19-67 99-9 +0-6 100-0 -h0-5 
Hg 4358 112-81 103-04 19-57 103-04 ± 103-04 ± 
Fe 4218 120 109-6 19-50 110-0 -0-4 109-6 ± 
Fe 4031 130 118-7 19-29 120-5 -1-8 119-1 -0-4 
Fe 3874 140 127-9 19-19 130-5 -2-6 127-4 +0-5 
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Table VII.—Rotatory Dispersion of Potassium Tartrate in Aqueous Solution 

at 20° C. 

(a) First jSeries.—33-60 gr. K2H4C40e.-|H20 in 100 gr. aqueous solution, 

or 41-647 gr. „ in 100 c.c. 

Density = 1-2395. Length of tube = 6 dm. 

Simple Formula. Complex Formula. 

23*225 

X2 —0*0065' 
[MJ = 

41*75 

X2-0*038 

19*255 

X2 —0*06' 

A. CC. [M] obs. [M] A2. [Mi]. [M]—[MJ. [M,]. [M]-[M2], 

Li 6708 54-66 51-92 23-36 52-37 -0-45 51-96 -0-04 
Cd 6438 59-49 56-51 23-42 56-93 -0-42 56-58 -0-07 
Na 5893 71-55 67-96 23-60 68-15 -0-19 67-96 
Hg 5790 74-33 70-60 23-67 70-65 -0-05 70-50 +0-10 
Cu 5782 74-49 70-75 23-65 70-85 -0-10 70-71 +0-04 
Hg 5769 74-77 71-02 23-64 71-17 -0-15 71-03 -0-01 
Cu 5700 76-76 72-91 23-69 72-94 -0-03 72-83 +0-08 
Hg 5461 83-81 79-61 23-74 79-61 ± 79-61 i 
Cu 5219 92-28 87-65 23-875 87-35 +0-30 87-47 +0-18 
Cu 5154 94-74 89-91 23-905 89-62 +0-29 89-77 +0-14 
Cu 5105 96-50 91-66 23-89 91-40 +0-26 91-57 +0-09 
Cd 5086 97-26 92-39 23-90 92-10 +0-29 92-28 +0-11 
Zn 4811 109-20 103-72 24-01 103-24 +0-48 103-51 +0-21 
Cd 4800 109-55 104-06 23-975 103-73 +0-33 104-00 +0-06 
Zn 4722 113-50 107-81 24-04 107-29 +0-52 107-55 +0-26 
Zn 4680 115-25 109-50 23-98 109-29 +0-21 109-55 -0-05 
Cd 4678 115-42 109-63 23-99 109-38 +0-25 109-65 -0-02 
Hg 4358 133-30 126-61 24-05 126-61 ± 126-61 4- 

Fe 4326 136 129-2 24-12 128-6 +0-6 128-5 +0-7 
Fe 4187 145 137-7 24-15 137-6 +o-i 137-1 +0-6 
Fe 4110 150 142-5 24-07 143-0 -0-5 142-1 +0-4 
Fe 4046 155 147-2 24-10 147-7 -(0-5 146-5 +0-7 
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Table VII.— Rotatory Dispersion of Potassium Tartrate in Aqueous Solution 

at 20° C. (continued). 

(h) Second Series.—32-68 gr. K2H4C40B.§H20 in 100 gr. aqueous solution, 

or 40*255 gr. „ in 100 c.c. 

Density = 1*2318. 

Simple Formula. 

[Mx] = —22'!)3— 
L 'J X2-0'0068 

Lengtli of tube — 6 dm. 

Complex Formula 

1V1, = 
41'108 

X2 —0"038 

18-886 

X2 —0"06' 

A. a. [M] obs. [M] A2. [MJ. g
 

i-
1

 1 
i-

1
 

* [Ms]. [M]-[M2], 

Cd 6438 57-34 55-79 23-12 56-25 -0-46 55-91 -0-12 
Na 5893 69-07 67-20 23-34 67-50 -0-30 67-18 +0-02 
Hg 5790 71-50 69-57 23-32 69-82 -0-25 69-68 -0-11 
Cu 5782 71-95 70-01 23-40 70-01 ± 69-88 +0-13 
Hg 5769 72-10 70-15 23-35 70-34 -0-19 70-21 -0-06 
Cu 5700 74-05 72-05 23-41 72-08 -0-03 71-98 +0-07 
Hg 5461 80-88 78-69 23-47 78-69 ± 78-69 ± 
Cu 5219 89-00 86-59 23-59 86-34 +0-25 86-46 +0-13 
Cu 5154 91-40 88-93 23-62 88-58 +0-35 88-74 +0-19 
Cu 5105 93-15 90-63 23-62 90-34 +0-29 90-52 +0-11 
Cd 5086 93-80 91-26 23-61 91-04 +0-22 91-23 +0-03 
Zn 4811 105-65 102-79 23-79 102-06 +0-73 102-34 +0-45 
Cd 4800 105-67 102-81 23-69 102-55 +0-26 102-82 -0-01 
Zn 4722 109-75 106-78 23-81 106-07 +0-71 106-34 +0-44 
Cd 4678 111-17 108-68 23-78 108-14 +0-54 108-42 +0-26 
Hg 4358 128-70 125-22 23-78 125-22 125-22 r 

Fe 4337 130 126-5 23-79 126-5 ± 126-4 -\~o-i 

Fe 4308 132 128-4 23-84 128-2 +0-2 128-1 +0-3 
Fe 4271 134 130-4 23-78 130-6 -0-2 130-4 ± 
Fe 4251 136 132-3 23-91 131-8 +0-5 131-6 +0-7 

2 T VOL. CCXXII.-A. 
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Table VIII.—Rotatory Dispersion of Rochelle Salt in Aqueous Solution at 20° C. 

44-63 gr. NaKH4C406-4H20 in 100 gr. aqueous solution, 

or 55-93 gr. ,, in 100 c.c. 

Density = 1-2533. Length of tube — 6 dm. 

Simple Formula. Complex Formula, 

21T50 

A2 —0'0051 
[MJ 

38'513 _ 18'066 

A2 —0'038 A2 —O'OO' 

A. a. [M] obs. [M] A2. [MJ. ,[M]—[Mx]. [Mo]. [M]-[M2], 

Cd 6438 61-27 51-49 21-34 51-67 -0-18 51-33 +0-16 
Na 5893 73-46 61-72 21-43 61-82 -0-10 61-64 +0-08 

j Hg 5790 76-31 64-12 21-49 64-07 +0-05 63-93 +0-19 
Cu 5782 76-42 64-21 21-47 64-25 -0-04 64-11 +0-10 
Hg 5769 76-71 64-45 21-45 64-55 -0-10 64-42 +0-03 

i Cu 5700 78-76 66-18 21-50 66-14 +0-04 66-04 +0-14 
Hg 5461 85-88 72-16 21-52 72-16 ± 72-16 f 

Cu 5219 94-52 79-42 21-63 79-14 +0-28 79-25 +0-17 
Cu 5154 97-19 81-66 21-69 81-18 +0-48 81-32 +0-34 
Cu 5105 99-02 83-20 21-68 82-78 +0-42 82-95 +0-25 
Cd 5086 99-63 83-72 21-65 83-42 +0-30 83-59 +0-13 
Zn 4811 111-47 93-66 21-68 93-44 +0-22 93-70 -0-04 
Cd 4800 112-36 94-41 21-75 93-89 +0-52 94-15 +0-26 
Zn 4722 116-07 97-53 21-74 97-09 +0-44 97-34 +0-19 
Zn 4680 118-07 99-21 21-73 98-88 +0-33 99-15 +0-06 
Cd 4678 118-35 99-44 21-76 98-96 +0-48 99-72 -0-28 
Hg 4358 136-20 114-45 21-73 114-45 -1- 114-45 

1 Fe 4286 140 117-6 21-61 118-4 -0-8 118-3 -0-7 
Fe 4271 142 119-3 21-76 119-3 ± 119-1 +0-2 
Fe 4135 152 127-7 21-84 127-5 +0-2 126-8 +0-9 

l Fe 4055 155 130-3 21-42 132-8 -2-5 131-6 —1-3 
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Table IX.—Rotatory Dispersion of Ammonium Tartrate in Aqueous Solution at 20° C. 

32-10 gr. (NHJ2H4C4Otf in 100 gr. aqueous solution, 

or 37-075 gr. ,, in 100 c.c. 

Density = 1-1550. Length of tube = 6 dm. 

Simple Formula. Complex Formula. 

[M,] 
22'173 

A2 —0'0094' 

38-676 

X2 —0‘038 

17-117 

X2 —0"06 ' 

X. a. [M] obs. [M] X2. [MJ. [M]—[MJ. [M2]. [M]-[M2]. 

Cd 6438 65-57 54-24 22-48 54-74 -0-50 54-44 -0-20 
Na 5893 79-10 65-43 22-72 65-63 -0-20 65-47 -0-04 
Hg 5790 82-07 67-88 22-76 68-05 -0-17 67-93 -0-05 
Cu 5782 82-45 68-20 22-80 68-24 -0-04 68-12 +0-08 
Hg 5769 82-49 68-23 22-71 68-56 -0-33 68-45 -0-22 
Cu 5700 85-00 70-31 22-84 70-28 +0-03 70-19 +0-12 
Hg 5461 92-81 76-77 22-89 76-77 ± 76-77 ± 
Cu 5219 101-99 84-36 22-98 84-32 +0-04 84-42 -0-06 
Cu 5154 104-77 86-66 23-02 86-53 +0-13 86-66 ± 
Cu 5105 106-75 88-30 23-01 88-27 +0-03 88-41 -0-11 
Cd 5086 107-73 89-10 23-05 88-95 +0-15 89-10 ± 
Zn 4811 120-88 99-98 23-14 99-85 +0-13 100-09 -0-11 
Cd 4800 121-52 100-51 23-16 100-33 +0-18 100-57 —0-06 
Zn 4722 125-75 104-01 23-19 103-82 +0-19 104-06 -0-05 
Zn 4680 128-20 106-04 23-22 105-78 +0-26 106-01 +0-03 
Cd 4678 128-28 106-11 23-22 105-87 +0-24 106-11 in 
Hg 4358 148-50 122-83 23-33 122-83 ± 122-83 ± 
Fe 4271 155 128-2 23-39 128-2 ± 128-0 +0-2 
Fe 4199 160 132-3 23-34 132-8 -0-5 132-5 -0-2 
Fe 4144 165 136-5 23-44 136-6 -i0-1 136-0 +0-5 
Fe 4085 170 140-6 23-46 140-8 -0-2 139-9 +0-7 
Fe 4046 172-5 142-7 23-36 142-7 ± 142-6 -\-0-l 
Fe 4025 175 144-7 23-45 145-3 -0-6 144-1 +0-6 
Fe 3970 180 148-9 23-47 149-6 —0-7 148-0 +0-9 
Fe 3919 185 153-0 23-50 153-8 -0-8 151-7 +1-3 

2 t 2 
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Table X.—Molecular Rotatory Power of Tartrates. 

Salt. 

Percentage of 
water. 

P. 

Obs. Calc. 

Na2H4C40,;.2H,0 ... 15-66 15-65 22-05 
15-70 22- 54 

23- 02 
34-04 
34-32 

34-99 
K2HA06.iH20 ... 3-94 

lost 
at 150° 

3-83 32-00 

3-54 
lost 

at 120° 

32- 68 

33- 60 
35-44 
37-12 

NaKHAOt;.4H.O ... 25-53 25-53 44-50 
44-63 
44- 68 
45- 01 

(NHOoHAOo 27-60 
30-38 
32-00 
32- 10 
33- 79 

KSb0H4C406.|H20... 5-53 
5-32 

d. C. a5461- [M]d. 

1-1379 25-09 44-75 
1-1411 25-72 45-78 58-45 58-35 

1•1443 26-34 46-79 
(Thomsen) 

1-2207 41-55 71-09 
1-2228 41-97 71-80 56-10 56-36 

1-2278 42-96 73-50 
(Thomsen) 

1-2263 39-24 78-76 

1-2318 40-255 80-86 67-20 

1-2395 41-647 83-81 67-96 
1-2542 44-45 89-48 
1-2678 47-06 95-07 
1-2523 55-73 85-47 
1-2533 55-93 85-88 61-72 
1-2536 56-01 86-01 
1-2557 56-52 86-69 
1-1333 31-28 77-87 
1-1466 34-83 87-16 
1-1548 36-95 92-50 
1-1550 37-075 92-81 65-43 
1-1637 39-32 99-03 
1-0382 5-74 59-61 
1-0368 5-516 57-20 573-7 

P = grammes of salt in 100 gr. of solution. 

d = density. 

0 — grammes of salt in 100 c.c. of solution. 

Values obtained by interpolation are shown in italics. 
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Table XI.—Dispersion-constants and Dispersion-ratios. 

Salt. 

Concentration. 

7, 
v. 

«43S8 

gr./lOO gr. gr./lOO c.c. 

Iv. 
a5461 

Sodium tartrate j (a) 22-54 25-72 20-152 0-0029 1-579 
(dihydrate) \(fr) 34-32 41-97 19-537 0-00032 1-571 

Potassium tartrate J (a) 33-60 41-65 23-225 0-0065 1-591 
(hemihydrate) T(6) 32-68 40-26 22-930 0-0068 1-591 

Rochelle salt 11 5 
(tetrahydrate) 

44-63 55-93 21-150 0-0051 1-586 

Ammonium tartrate 
(anhydrous) 

32-10 37-075 22-173 0-0094 1-600 

Table XII.-—Dispersion-constants and Dispersion-ratios. 

A2. a435S 

^5461 

Quartz (opt.-mag.). 0-0173 1-627 
Ethyl alcohol (mag.). 0-0170 1-626 
Methyl alcohol (mag.).. 0-0164 1-624 
Other alcohols (mag.). 0-0182 1-630 
Water (mag.). 0-0222 1-645 
Nine methyl carbinols (opt.). 0-0237 1-651 
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Table XIII.—Constants of Drude’s Equation. 

K h. \ 2 
4 * A+ 

Sodium tartrate— 
(a) 25-72 grams in 100 c.c. . . . 37-445 18-025 0-038 0-060 
(b) 41-97 grams in 100 c.c. . . . 37-108 18-348 0-038 0-060 

Potassium tartrate— 
(a) 41-647 grams in 100 c.c. . . 41-750 19-255 0-038 0-060 
(b) 40-255 grams in 100 c.c. . . 

Rochelle salt—• 
41-108 18-886 0-038 0-060 

55-93 grams in 100 c.c. 38-513 18-066 0-038 0-060 
Ammonium tartrate— 

37-075 grains in 100 c.c. . . . 38-676 17-117 0-038 0-060 

Table XIV.—Rotatory Dispersion of Potassium and Sodium Tartrates at 20° C. in 

presence of an excess of Alkali. 

(a) 2 • 6 gr. of potassium tartrate 

+36-43 gr. of potassium oxide (K20) 

in 90-32 gr. of aqueous solution, or 

4-329 gr. potassium tartrate in 100 c.c. 

Length of tube = 6 dm. 

Density — 1 • 504. 

A. a. [M], 

Cd 6438 -0-29 — 2-62 
Na 5893 -0-30 - 2-71 
Hg 5780 -0-30 - 2-71 
Hg 5461 -0-41 - 3-71 
Cd 5086 -0-61 - 5-52 
Cd 4800 -0-80 - 7-24 
Cd 4678 -0-99 - 8-96 
Hg 4358 -1-34 -12-12 

(b) 13-3 gr. of sodium tartrate +20 • 41 gr. 

of sodium oxide (Xa30) in 92-891 gr. 

of aqueous solution, or 

20-178 gr. sodium tartrate in 100 c.c. 

Length of tube — 6 dm. 

Density = = 1-4093. 

a. [M], | 

- 7-54 -14-32 

-10-09 — 19-17 
-11-87 -22-55 
-14-61 -27-75 
—17-43 -33-11 
—18-87 -35-85 
-24-29 —46-14 
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Table XV.-—Rotatory Dispersion of Potassium and Sodium Tartrates at 20° C. in 

presence of Alkali. 

02 molt P
 

O
 (h) 4- 6 gr. (0- 02 mol.) NaJLC.O ;.2H. 0 

(a) 4-: gr (0- K.,H 4ITO in 100 c.c. i 
in 100 c. c. 

Length of tube = 6 dm. 
Length of tube — 6 dm. 

Simple Formula Simple Formula. 

[MJ = 
17-298 

A2 —0'013' [MJ = f 
•56 

-o' 

A. a. [M] obs. [Md sale. [M]— [MR [M] A2. a. [M] obs. [M1] calc. [M]—[MR. [M] A2. 

Cd 6438 +5 13 42-7 43 1 -0-4 17-72 
1 
+5 23 43 6 44-8 — 1-2 18 08 

Hg 5780 6 47 53-9 53 9 ± 18-01 6 66 55 5 55-5 ± 18 54 
Cu 5782 6 46 53-8 53 8 ± 18-00 6 65 55 4 55-5 -0-1 18 52 
Cu 5700 6 55 54-6 55 4 -0-8 17-74 6 76 56 3 57-1 -0-8 18 29 
Hg 5461 7 37 61-4 60 7 +0-7 18-31 7 49 62 4 62-2 +0-2 18 61 
Cu 5219 8 12 67-7 66 7 + 1-0 18-43 8 25 68 7 68-2 +0-5 18 70 
Cu 5154 8 23 68-6 68 5 +0-1 18-21 8 40 70 0 69-9 +0-1 18 59 
Cu 5105 8 34 69-5 69 9 -0-4 18-11 8 51 70 9 71-2 -0-3 18 48 
Cd 5086 8 50 70-8 70 4 +0-4 18-32 8 61 71 7 71-7 ± 18 56 
Zn 4811 9 60 80-0 79 2 +0-8 18-52 9 65 80 4 80-2 +0-2 18 61 
Cd 4800 9 53 79-4 79 6 -0-2 18-29 9 66 80 5 80-6 -0-1 18 55 
Zn 4722 9 84 82-0 82 4 -0-4 18-29 10 05 83 7 83-2 +0-5 18 68 
Cd 4678 10 08 84-0 84 0 ± 18-38 10 08 84 0 84-8 -0-8 18 38 
Hg 4358 11 68 97-3 97 8 -0-5 18-48 11 85 98 7 97-7 +1-0 18 75 
Fe 4242 

1 
— 13 108 103 +5 19 5 
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Table XVI.—Rotatory Dispersion of Tartar Emetic in Aqueous Solution at 20° C. 

5-32 gr. KSb0H4C406.|H20 in 100 gr. of solution, 

or 5-516 gr. ,, in 100 c.c. 

Density = 1-0368. Length of tube = 6 dm. 

Simple Formula. 

[MJ 
14278 

X2-0-04936’ 

A. a. [M] obs. [MJ calc. [M]—[MJ. [M] A2. [M] x 
(A2- 0-04936). 

Li 6708 35-70 358-1 356-4 +1-7 161-1 143-5 
Cd 6438 38-87 389-9 391-1 -1-2 161-6 142-4 
Zn 6364 40-00 401-3 400-6 +0-7 162-5 142-7 
Na 5893 47-95 481-0 479-3 + 1 ' ^ 167-0 143-3 
Hg 5790 49-70 498-6 499-4 -0-8 167-1 142-5 
Cu 5782 49-82 499-8 501-1 -1-3 167-1 142-4 
Hg 5769 50-07 502-3 503-7 -1-4 167-2 142-4 
Cu 5700 51-60 517-6 518-2 • -0-6 168-2 142-6 
Hg 5461 57-19 573-7 573-7 ± 171-1 142-8 
Cu 5219 63-78 639-8 640-2 -0-4 174-3 142-7 
Cu 5154 65-70 659-1 660-2 -1-1 175-1 142-6 
Cu 5105 67-25 674-6 675-9 -1-3 175-8 142-5 
Cd 5086 68-00 682-2 682-2 ± 176-5 142-8 
Zn 4811 78-15 784-0 784-1 -0-1 181-5 142-8 
Cd 4800 78-67 789-2 788-7 +0-5 181-8 142-9 
Zn 4722 82-00 822-6 822-4 +0-2 183-4 142-8 
Cd 4678 83-98 842-5 842-5 ± 184-4 142-8 
Hg 4358 101-26 1015-8 1015-8 ± 192-9 142-8 
Fe 4228 110 1103 1103 t n: 197-3 142-8 
Fe 4160 115 1154 1154 ± 199-6 142-7 
Fe 4113* 120 1204 1192 +12 203-6 144-2 
Fe 4035 125 1254 1258 -4 204-2 142-3 
Fe 3984 130 1304 1306 -2 207-0 142-6 

* This reading appears to be incorrect, but has been retained in the table. 
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Table XYII.—Rotatory Dispersion of Tartar Emetic in presence of excess of Alkali at 

20° C. 

5-53 gr. mol.) KSb0H4C406.|H20-|-Tl *2 gr. (T mol.) KOH in 100 c.c. of solution. 

Length of tube — 6 dm. 

Simple formula. 

Pvt 1 — ~ 
L “ A2 —0'06275' 

A. a. [M] obs. [MJ calc. [M]—[MJ. [M] A2. 

Li 6708 -22-90 -229-0 -231-1 +2-1 -103-0 
Cd 6438 -25-38 -253-8 -254-4 +0-6 -105-2 
Na 5893 -31-37 -313-7 -314-5 +0-8 -108-9 
Hg 5790 -32-88 -328-8 -328-4 -0-4 -110-2 
Cu 5782 -32-91 -329-1 -329-5 +0-4 -110-0 
Hg 5769 -33-13 -331-3 -331-3 ± -110-3 
Cu 5700 -34-11 341-1 -341-3 +0-2 -110-8 
Hg 5461 -38-04 -380-4 -380-0 -0-4 -113-4 
Cu 5218 -42-72 -427-2 -426-8 -0-4 -116-4 
Cu 5153 -44-12 -441-2 -441-2 » it -117-2 
Cu 5105 -45-32 -453-2 -452-2 — 1-0 -118-1 
Cd 5086 -45-78 -457-8 -456-7 — 1-1 -118-4 
Zn 4811 -53-11 -531-1 -530-4 -0-7 -122-9 
Cd 4800 -53-43 -534-3 -533-7 -0-6 -123-1 
Zn 4722 -55-82 -558-2 -558-5 +0-3 -124-5 
Cd 4678 -57-43 -574-3 -573-2 — 1-1 -125-7 
Hg 4358 -70-20 -702-0 -703-6 +1-6 -133-2 

YOL. CCXXII.—A. 9 IT 
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Table XVIII.—Kotatory Dispersion of Potassium and Hydrogen Arsenyl Tartrates at 

20° C. 

Length of tube = 6 dm. 

(a) 2-5 gr. (g\) mol.) tartaric acid + 1 • 65 gr. | 

(ifd mol.) As.,0;j + 14 gr- (i mol.) KOH in (6) 15 gr. (yo mol.) tartaric 

100 c.c. acid in 100 c.c. Solution 

Simple Formula. saturated with arsenious 

nvrl _ 20'148 acid by boiling. 
L U x2 

-0P17 

• A. a. [M]. [M] A2. [Mi]. [M]—[Mi], cc. [M] approx. 

Cd 6438 +5-10 51-0 21-14 50-7 +0-3 +20-81 34-68 
Na 5893 _ 

— — — — 24-93 41-55 
Ha; 5790 +6-28 62-8 21-06 63-3 -0-5 25-72 42-87 
Hg 5769 6-38 63-8 21-23 63-8 ± 25-87 43-12 
Hg 5461 7-22 72-2 21-53 71-7 +0-5 28-70 47-83 
Cd 5086 8-38 83-8 21-68 83-4 +0-4 32-60 54-33 
Cd 4800 9-55 95-5 22-00 94-4 r 1" 1 36-21 60-35 
Cd 4678 9-90 99-0 21-66 99-8 -0-8 37-81 63-02 
Fe 4378 11-75 117-5 22-10 115-3 +2-2 — — 
Hg 4358 11-49 114-9 21-82 116-5 -1-6 42-37 70-62 
Fe 4259 12-25 122-5 22-22 122-5 ± — — 
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Table XIX.—Rotatory Dispersion of Potassium Bismuthyl Tartrate in presence of 

excess of Alkali at 20° C. 

2-5 gr. (-6l0- mol.) tartaric acid +2-16 gr. mol.) of Bi(OH)3 +14 gr. (£ mol.) KOPI 

in 100 c.c. of solution. 

Length of tube = 6 dm. 

Simple Formula. 

-37‘414 

X2-0-0645' 

A. CL. [M] obs. [MJ calc. [M]—[MJ. [Mj (A2-0-0645). 

Cd 6438 -10-64 -106-4 -106-9 +0-5 -37-24 
Zn 6364 -10-93 -109-3 -109-9 +0-6 -37-22 
Na 5893 -13-22 -132-2 -132-2 ± -37-38 
Hg 5790 -13-78 -137-8 -138-2 +0-4 -37-31 
Cu 5782 -13-90 -139-0 -138-7 -0-3 -37-50 
Hg 5769 -13-98 -139-8 -139-4 -0-4 -37-51 
Cu 5700 -14-39 -143-9 -143-7 -0-2 -37-47 
Hg 5461 -15-99 -159-9 -160-1 +0-2 -37-37 
Cu 5219 -18-04 -180-4 -180-2 -0-2 -37-50 
Cu 5154 — 18-60 -186-0 -186-1 +0-1 -37-41 
Cu 5105 -19-01 -190-1 -190-8 +0-7 -37-28 
Cd 5086 -19-26 -192-6 -192-6 ± -37-40 
Zn 4811 -22-23 -222-3 -224-0 +1-7 -37-12 
Cd 4800 -22-55 -225-5 -225-5 zb -37-35 
Zn 4722 -23-28 -232-8 -236-1 +3-3 -36-89 
Cd 4678 -24-34 -243-4 -242-5 -0-9 -37-57 
Hg 4358 -29-89 -298-9 -298-4 -0-5 -37-49 
Fe 4326 -30 -300 -305 +5 -36-79 
Fe 4271 -31 -310 -317 +7 -36-55 
Fe 4251 -32 -320 -322 +2 -37-19 
Fe 4249 -33 -330 -322 -8 -38-28 
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Table XX.—Rotatory Dispersion of Boro-tartaric Acid in Aqueous Solutions at 20° C. 

(a) 15 gr. (0-10 mol.) tartaric acid (b) 7-5 gr. (0-05 mol.) tartaric acid 

+ 6-2 gr. (0-10 mol.) boric acid in +•4-65 gr. (0-075 mol.) boric acid in 

100 c.c. solution. 100 c.c. solution. 

Complex Formula. Simple Formula. 

nvr 1 — 257 1749 nvr i - 24-08 
- x2_ 

-0'03 A2 —(P065 
LiVJ-2j — 

A2 —0+2458 

A. a. [M] obs. [Mi]. A. a. [M] obs. [Mo). [M.MM+ 

Li 6708 +34-66 57-8 57-9 -0-1 Li 6708 +16-76 55-9 56-6 -0-7 
Cd 6438 37-79 63-0 63-3 -0-3 Cd 6438 18-40 61-3 61-8 -0-5 
Na 5893 46-00 76-7 76-6 +0-1 Na 5893 22-43 74-8 74-6 +0-2 
Hg 5790 47-83 79-7 79-6 +0-1 Hg 5790 23-24 77-5 77-5 i ur 
Cu 5782 47-90 79-8 79-8 ± Cu 5782 23-39 78-0 77-7 +0-3 
Hg 5769 48-06 80-1 80-2 -0-1 Hg 5769 23-42 78-1 78-1 ± 
Cu 5700 49-50 82-5 82-3 +0-2 Cu 5700 24-13 80-4 80-2 +0-2 
Hg 5461 54-38 90-6 90-5 +0-1 Hg 5461 26-42 88-1 88-0 +0-1 
Cu 5218 60-04 100-1 100-0 +0-1 ( Cu 5218 29-28 97-6 97-2 +0-4 

' Cu 5153 61-86 103-1 102-8 +0-3 Cu 5105 30-65 102-2 102-0 +0-2 
Cu 5105 63-06 105-1 105-1 ± Cd 5086 30-92 103-1 102-9 +0-2 
Cd 5086 63-52 105-9 106-0 -0-1 Zn 4811 35-09 117-0 116-4 +0-6 
Zn 4811 72-11 120-2 120-1 +0-1 Cd 4800 35-17 117-2 117-0 +0-2 
Cd 4800 72-30 120-5 120-7 -0-2 Zn 4722 36-50 121-7 121-4 +0-3 
Zn 4722 75-30 125-5 125-3 +0-2 Cd 4678 37-24 124-1 124-0 +0-1 
Zn 4680 76-50 127-5 127-8 -0-3 Hg 4358 43-62 145-4 145-6 -0-2 

1 Cd 4678 76-85 128-1 128-0 +0-1 Fe 4353 44 147 146 +1 
Hg 4358 90-10 150-2 150-7 -0-5 Fe 4288 45 150 151 -1 
Fe 4242 96 160 161 —1 Fe 4261 46 153 153 ± 
Fe 4182 99 165 166 -1 Fe 4210 47 156 158 —2 
Fe 4123 102 170 172 Fe 4178 48 160 161 -1 
Fe 4072 105 175 177 -2 Fe 4100 50 167 168 -1 
Fe 4046 107 

\ 
178 180 -2 
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Definitions. 

Centre of Location.—That abscissa of a frequency curve for which the sampling errors 

of optimum location are uncorrelatecl with those of optimum scaling. (9.) 

Consistency.—A statistic satisfies the criterion of consistency, if, when it is calculated 

from the whole population, it is equal to the required parameter. (4.) 

Distribution.—Problems of distribution are those in which it is required to calculate 

the distribution of one, or the simultaneous distribution of a number, of functions of 

quantities distributed in a known manner. (3.) 

Efficiency.—The efficiency of a statistic is the ratio (usually expressed as a percentage) 

which its intrinsic accuracy bears to that of the most efficient statistic possible. It 
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expresses the proportion of the total available relevant information of which that 

statistic makes use. (4 and 10.) 

Efficiency (Criterion).—The criterion of efficiency is satisfied by those statistics which, 

when derived from large samples, tend to a normal distribution with the least possible 

standard deviation. (4.) 

Estimation.—Problems of estimation are those in which it is required to estimate the 

value of one or more of the population parameters from a random sample of the 

population. (3.) 

Intrinsic Accuracy.—The intrinsic accuracy of an error curve is the weight in large 

samples, divided by the number in the sample, of that statistic of location which satisfies 

the criterion of sufficiency. (9.) 

Isostatistical Regions.—If each sample be represented in a generalized space of which 

the observations are the co-ordinates, then any region throughout which any set of 

statistics have identical values is termed an isostatistical region. 

Likelihood.—The likelihood that any parameter (or set of parameters) should have 

any assigned value (or set of values) is proportional to the probability that if this were 

so, the totality of observations should be that observed. 

Location.—The location of a frequency distribution of known form and scale is the 

process of estimation of its position with respect to each of the several variates. (8.) 

Optimum.—The optimum value of any parameter (or set of parameters) is that value 

(or set of values) of which the likelihood is greatest. (6.) 

Scaling.—The scaling of a frequency distribution of known form is the process of 

estimation of the magnitudes of the deviations of each of the several variates. (8.) 

Specification.—Problems of specification are those in which it is required to specify 

the mathematical form of the distribution of the hypothetical population from which 

a sample is to be regarded as drawn. (3.) 

Sufficiency.—A statistic satisfies the criterion of sufficiency when no other statistic 

which can be calculated from the same sample provides any additional information as 

to the value of the parameter to be estimated. (4.) 

Validity.—The region of validity of a statistic is the region comprised within its 

contour of zero efficiency. (10.) 

1. The Neglect of Theoretical Statistics. 

Several reasons have contributed to the prolonged neglect into which the study of 

statistics, in its theoretical aspects, has fallen. In spite of the immense amount of 

fruitful labour which has been expended in its practical applications, the basic principles 

of this organ of science are still in a state of obscurity, and it cannot be denied that, 

during the recent rapid development of practical methods, fundamental problems have 

been ignored and fundamental paradoxes left unresolved. This anomalous state of 

statistical science is strikingly exemplified by a recent paper (1) entitled “ The Funda- 
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mental Problem of Practical Statistics,” in which one of the most eminent of modern 

statisticians presents what purports to be a general proof of Bayes’ postulate, a proof 

which, in the opinion of a second statistician of equal eminence, “ seems to rest upon a 

very peculiar—not to say hardly supposable—relation.” (2.) 

Leaving aside the specific question here cited, to which we shall recur, the obscurity 

which envelops the theoretical bases of statistical methods may perhaps be ascribed 

to two considerations. In the first place, it appears to be widely thought, or rather 

felt, that in a subject in which all results are liable to greater or smaller errors, precise 

definition of ideas or concejhs is, if not impossible, at least not a practical necessity. 

In the second place, it has happened that in statistics a purely verbal confusion has 

hindered the distinct formulation of statistical problems ; for it is customary to apply 

the same name, mean, standard deviation, correlation coefficient, etc., both to the true 

value which we should like to know, but can only estimate, and to the particular value 

at which we happen to arrive by our methods of estimation ; so also in applying the 

term probable error, writers sometimes would appear to suggest that the former quantity, 

and not merely the latter, is subject to error. 

It is this last confusion, in the writer’s opinion, more than any other, which has led 

to the survival to the present day of the fundamental paradox of inverse probability, 

which like an impenetrable jungle arrests progress towards precision of statistical 

concepts. The criticisms of Boole, Venn, and Chrystal have done something towards 

banishing the method, at least from the elementary text-books of Algebra ; but though 

we may agree wholly with Chrystal that inverse probability is a mistake (perhaps the 

only mistake to which the mathematical world has so deeply committed itself), there 

yet remains the feeling that such a mistake would not have captivated the minds of 

Laplace and Poisson if there had been nothing in it but error. 

2. The Purpose of Statistical Methods. 

In order to arrive at a distinct formulation of statistical problems, it is necessary to 

define the task which the statistician sets himself: briefly, and in its most concrete 

form, the object of statistical methods is the reduction of data. A quantity of data, 

which usually by its mere bulk is incapable of entering the mind, is to be replaced by 

relatively few quantities which shall adequately represent the whole, or which, in other 

words, shall contain as much as possible, ideally the whole, of the relevant information 

contained in the original data. 

This object is accomplished by constructing a hypothetical infinite population, of 

which the actual data are regarded as constituting a random sample. The law of distri¬ 

bution of this hypothetical population is specified by relatively few parameters, which 

are sufficient to describe it exhaustively in respect of all qualities under discussion. 

Any information given by the sample, which is of use in estimating the values of these 

parameters, is relevant information. Since the number of independent facts supplied in 

2x2 
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the data is usually far greater than the number of facts sought, much of the information 

supplied by any actual sample is irrelevant. It is the object of the statistical processes 

employed in the reduction of data to exclude this irrelevant information, and to isolate 

the whole of the relevant information contained in the data. 

When we speak of the probability of a certain object fulfilling a certain condition, we 

imagine all such objects to be divided into two classes, according as they do or do not 

fulfil the condition. This is the only characteristic in them of which we take cognisance. 

For this reason probability is the most elementary of statistical concepts. It is a para¬ 

meter which specifies a simple dichotomy in an infinite hypothetical population, and it 

represents neither more nor less than the frequency ratio which we imagine suc-h a 

population to exhibit. For example, when we say that the probability of throwing a 

five with a die is one-sixth, we must not be taken to mean that of any six throws with 

that die one and one only null necessarily be a five ; or that of any six million 

throws, exactly one million will be fives ; but that of a hypothetical population of an 

infinite number of throws, with the die in its original condition, exactly one-sixth will 

be fives. Our statement will not then contain any false assumption about the actual 

die, as that it will not wear out with continued use, or any notion of approximation, as 

in estimating the probability from a finite sample, although this notion may be logically 

developed once the meaning of probability is apprehended. 

The concept of a discontinuous frequency distribution is merely an extension of that of 

a simple dichotomy, for though the number of classes into which the population is 

divided may be infinite, yet the frequency in each class bears a finite ratio to that of the 

whole population. In frequency curves, however, a second infinity is introduced. No 

finite sample has a frequency curve : a finite sample may be represented by a histogram, 

or by a frequency polygon, which to the eye more and more resembles a curve, as the 

size of the sample is increased. To reach a true curve, not only would an infinite number 

of individuals have to be placed in each class, but the number of classes (arrays) into 

which the population is divided must be made infinite. Consequently, it should be 

clear that the concept of a frequency curve includes that of a hypothetical infinite 

population, distributed according to a mathematical law, represented by the curve. 

This law is specified by assigning to each element of the abscissa the corresponding 

element of probability. Thus, in the case of the normal distribution, the probability 

of an observation falling in the range dx, is 

I _ (r~ 

-= e 20-2 dx, 
<r \ / 2- 

in which expression x is the value of the variate, while m, the mean, and a-, the standard 

deviation, are the two parameters by which the hypothetical population is specified. 

If a sample of n be taken from such a population, the data comprise n independent facts. 

The statistical process of the reduction of these data is designed to extract from them 

all relevant information respecting the values of m and n-, and to reject all other 

information as irrelevant. 
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It should he noted that there is no falsehood in interpreting any set of independent 

measurements as a random sample from an infinite population ; for any such set of 

numbers are a random sample from the totality of numbers produced by the same 

matrix of causal conditions : the hypothetical population which we are studying is an 

aspect of the totality of the effects of these conditions, of whatever nature they may be. 

The postulate of randomness thus resolves itself into the question, “ Of what population 

is this a random sample ? ” which must frequently be asked by every practical statistician. 

It will be seen from the above examples that the process of the reduction of data is, 

even in the simplest cases, performed by interpreting the available observations as a 

sample from a hypothetical infinite population ; this is a fortiori the case when we have 

more than one variate, as when we are seeking the values of coefficients of correlation. 

There is one point, however, which may be briefly mentioned here in advance, as it 

has been the cause of some confusion. In the example of the frequency curve mentioned 

above, we took it for granted that the values of both the mean and the standard deviation 

of the population were relevant to the inquiry. This is often the case, but it sometimes 

happens that only one of these quantities, for example the standard deviation, is required 

for discussion. In the same way an infinite normal population of two correlated variates 

will usually require five parameters for its specification, the two means, the two standard 

deviations, and the correlation ; of these often only the correlation is required, or if not 

alone of interest, it is discussed without reference to the other fonr quantities. In such 

cases an alteration has been made in what is, and what is not, relevant, and it is not 

surprising that certain small corrections should appear, or not, according as the other 

parameters of the hypothetical surface are or are not deemed relevant. Even more 

clearly is this discrepancy shown when, as in the treatment of such fourfold tables as 

exhibit the recovery from smallpox of vaccinated and unvaccinated patients, the method 

of one school of statisticians treats the proportion of vaccinated as relevant, while 

others dismiss it as irrelevant to the inquiry. (3.) 

3. The Problems of Statistics. 

The problems which arise in reduction of data may be conveniently divided into three 

types :— 

(1) Problems of Specification. These arise in the choice of the mathematical form of 

the population. 

(2) Problems of Estimation. These involve the choice of methods of calculating from 

a sample statistical derivates, or as we shall call them statistics, which are designed 

to estimate the values of the parameters of the hypothetical population. 

(3) Problems of Distribution. These include discussions of the distribution of 

statistics derived from samples, or in general any functions of quantities whose 

distribution is known. 

It will be clear that when we know (1) wliat parameters are required to specify the 
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population from which, the sample is drawn, (2) how best to calculate from the sample 

estimates of these parameters, and (3) the exact form of the distribution, in different 

samples, of our derived statistics, then the theoretical aspect of the treatment of any 

particular body of data has been completely elucidated. 

As regards problems of specification, these are entirely a matter for the practical 

statistician, for those cases where the qualitative nature of the hypothetical population 

is known do not involve any problems of this type. In other cases we may know by 

experience what forms are likely to be suitable, and the adequacy of our choice may 

be tested a posteriori. We must confine ourselves to those forms which we know how 

to handle, or for which any tables which may be necessary have been constructed. 

More or less elaborate forms will be suitable according to the volume of the data. 

Evidently these are considerations the nature of which may change greatly during the 

work of a single generation. We may instance the development by Pearson of a very 

extensive system of skew curves, the elaboration of a method of calculating their para¬ 

meters, and the preparation of the necessary tables, a body of work which has enormously 

extended the power of modern statistical practice, and which has been, by pertinacity 

and inspiration alike, practically the work of a single man. Nor is the introduction of 

the Pearsonian system of frequency curves the only contribution which their author Las 

made to the solution of problems of specification : of even greater importance is the 

introduction of an objective criterion of goodness of fit. For empirical as the specifica¬ 

tion of the hypothetical population may be, this empiricism is cleared of its dangers if 

we can apply a rigorous and objective test of the adequacy with which the proposed 

population represents the whole of the available facts. Once a statistic, suitable for 

applying such a test, has been chosen, the exact form of its distribution in random 

samples must be investigated, in order that we may evaluate the probability that a 

worse fit should be obtained from a random sample of a population of the type con¬ 

sidered. The possibility of developing complete and self-contained tests of goodness of 

fit deserves very careful consideration, since therein lies our justification for the free 

use which is made of empirical frequency formulae. Problems of distribution of great 

mathematical difficulty have to be faced in this direction. 

Although problems of estimation and of distribution may be studied separately, they 

are intimately related in the development of statistical methods. Logically problems of 

distribution should have prior consideration, for the study of the random distribution of 

different suggested statistics, derived from samples of a given size, must guide us in the 

choice of which statistic it is most profitable to calculate. The fact is, however, that 

very little progress has been made in the study of the distribution of statistics derived 

from samples. In 1900 Pearson (15) gave the exact form of the distribution of x2, the 

Pearsonian test of goodness of fit, and in 1915 the same author published (18) a similar 

result of more general scope, valid when the observations are regarded as subject to 

linear constraints. By an easy adaptation (17) the tables of probability derived from 

this formula may be made available for the more numerous cases in which linear con- 
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straints are imposed upon the hypothetical population by the means which we employ 

in its reconstruction. The distribution of the mean of samples of n from a normal 

population has long been known, but in 1908 “ Student ” (4) broke new ground by 

calculating the distribution of the ratio which the deviation of the mean from its popula¬ 

tion value bears to the standard deviation calculated from the sample. At the same 

time he gave the exact form of the distribution in samples of the standard deviation. 

In 1915 Fisher (5) published the curve of distribution of the correlation coefficient for 

the standard method of calculation, and in 1921 (6) he published the corresponding 

series of curves for intraclass correlations. The brevity of this list is emphasised by the 

absence of investigation of other important statistics, such as the regression coefficients, 

multiple correlations, and the correlation ratio. A formula for the probable error of any 

statistic is, of course, a practical necessity, if that statistic is to be of service : and in 

the majority of cases such formulae have been found, chiefly by the labours of Pearson 

and his school, by a first approximation, which describes the distribution with sufficient 

accuracy if the sample is sufficiently large. Problems of distribution, other than the 

distribution of statistics, used to be not uncommon as examination problems in proba¬ 

bility, and the physical importance of problems of this type may be exemplified by the 

chemical laws of mass action, by the statistical mechanics of Gibbs, developed by 

Jeans in its application to the theory of gases, by the electron theory of Lorentz, and 

by Planck’s development of the theory of quanta, although in all these appli¬ 

cations the methods employed have been, from the statistical point of view, relatively 

simple. 

The discussions of theoretical statistics may be regarded as alternating between 

problems of estimation and problems of distribution. In the first place a method of 

calculating one of the population parameters is devised from common-sense considera¬ 

tions : we next require to know its probable error, and therefore an approximate solution 

of the distribution, in samples, of the statistic calculated. It may then become apparent 

that other statistics may be used as estimates of the same parameter. When the 

probable errors of these statistics are compared, it is usually found that, in large samples, 

one particular method of calculation gives a result less subject to random errors than 

those given by other methods of calculation. Attacking the problem more thoroughly, 

and calculating the surface of distribution of any two statistics, we may find that the 

whole of the relevant information contained in one is contained in the other : or, in 

other words, that when once we know the other, knowledge of the first gives us no 

further information as to the value of the parameter. Finally it may be possible to 

prove, as in the case of the Mean Square Error, derived from a sample of normal popula¬ 

tion (7), that a particular statistic summarises the whole of the information relevant 

to the corresponding parameter, which the sample contains. In such a case the problem 

of estimation is completely solved. 



316 MR. R. A. FISHER OX THE MATHEMATICAL 

4. Criteria op Estimation. 

The common-sense criterion employed in problems of estimation may be stated thus :— 

That when applied to the whole population the derived statistic should be equal .to the 

parameter. This may be called the Criterion of Consistency. It is often the only test 

applied : thus, in estimating the standard deviation of a normally distributed population, 

from an ungrouped sample, either of the two statistics— 

and 

(Mean error) 

(Mean square error) 

will lead to the correct value, a, when calculated from the whole population. They both 

thus satisfy the criterion of consistency, and this has led many computers to use the 

first formula, although the result of the second has 14 per cent, greater weight (7), and 

the labour of increasing the number of observations by 14 per cent, can seldom be less 

than that of applying the more accurate formula. 

Consideration of the above example will suggest a second criterion, namely :—That in 

large samples, when the distributions of the statistics tend to normality, that statistic 

is to be chosen which has the least probable error. 

This may be called the Criterion of Efficiency. It is evident that if for large samples 

one statistic has a probable error double that of a second, while both are proportional 

to n~*, then the first method applied to a sample of 4n values will be no more accurate 

than the second applied to a sample of any n values. If the second method makes use 

of the whole of the information available, the first makes use of only one-quarter of it, 

and its efficiency may therefore be said to lie 25 per cent. To calculate the efficiency of 

any given method, we must therefore know the probable error of the statistic calculated 

by that method, and that of the most efficient statistic which could be used. The 

square of the ratio of these two quantities then measures the efficiency. 

The criterion of efficiency is still to some extent incomplete, for different 

methods of calculation may tend to agreement for large samples, and yet differ for 

all finite samples. The complete criterion suggested by our work on the mean 

square error (7) is 

That the statistic chosen should summarise the whole of the relevant information 

supplied by the sample. 

This may be called the Criterion of Sufficiency. 

In mathematical language we may interpret this statement by saying that if 6 be 

the parameter to be estimated, a statistic which contains the whole of the information 

as to the value of 0, which the sample supplies, and b, any other statistic, then the 
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surface of distribution of pairs of values of 01 and 02, for a given value of 0, is such that 
for a given value of 01} the distribution of 02 does not involve 6. In other words, when 
Oi is known, knowledge of the value of 02 throws no further light upon the value of 6. 

It may be shown that a statistic which fulfils the criterion of sufficiency will also 
fulfil the criterion of efficiency, when the latter is applicable. For, if this be so, the 
distribution of the statistics will in large samples be normal, the standard deviations 
being proportional to n~'K Let this distribution be 

l _i_ i 6>, — e2 _ -ji-Bt-e ft,-» 9.,- i 

df — ~-77=7 e *' ^ J dOide3, 
'z,Trcrla2 V I —T 

then the distribution of 0X is 

1 _ 
df = ——7= e ao-i* rj0u 

°r \ r 

so that for a given value of Qx the distribution of Q., is 

df = 1 ' 7— r2V 2-JT v 1 —V“ 
e 21 -r 

/ -0 0,-0 1 

<*! *2 
0|2 

dO 2 

and if this does not involve 0, we must have 

V'O‘2 — CTi 

showing that cri is necessarily less than o-2, and that the efficiency of 0-. is measured by 
r2, when r is its correlation in large samples with 0j. 

Besides this case we shall see that the criterion of sufficiency is also applicable to finite 
samples, and to those cases when the weight of a statistic is not proportional to the 
number of the sample from which it is calculated. 

5. Examples of the Use of the Criterion of Consistency. 

In certain cases the criterion of consistency is sufficient for the solution of problems 
of estimation. An example of this occurs when a fourfold table is interpreted as repre¬ 
senting the double dichotomy of a normal surface. In this case the dichotomic ratios 
of the two variates, together with the correlation, completely specify the four fractions 
into which the population is divided. If these are equated to the four fractions into 
which the sample is divided, the correlation is determined uniquely. 

In other cases where a small correction has to be made, the amount of the correction 
is not of sufficient importance to justify any great refinement in estimation, and it is 
sufficient to calculate the discrepancy which appears when the uncorrected method is 
applied to the whole population. Of this nature is Sheppard’s correction for grouping, 

2 Y VOL. CCXXII.—A. 
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and it will illustrate this use of the criterion of consistency if we derive formulae for 

this correction without approximation. 

Let £ be the value of the variate at the mid point of any group, a the interval of 

grouping, and x the true value of the variate at any point, then the kth moment of an 

infinite grouped sample is 

p = °° y+ia 
X I £*/(*) dx, 

in which of f (x) dx is the frequency, in any element dx, of the ungrouped population, and 

£ = (p+ir)a> 

p being any integer. 

Evidently the kth moment is periodic in 6, we will therefore equate it to 

A0 + Aj sin 6 + A2 sin 26... 

+ Bj cos 6 + Bv cos 26_ 

Then 

But 

therefore 

n "• y+ia 
X | <16 £kf (x) dx 

7T 
it = — » J 0 Jf-ia 

P = 00 pTr . 
X sin s6 <16 1 g f{x)dx. 

V - - * ' J 0 ■L-ia 

p=cc ,'2ir ,r , 1 _ I ( +2& 
X cos s6 d6 \ £kf(x)dx. 

P = — 00 Jo Jt-ia 

2x 
6 

a 
£-2 7rp. 

y+ia 

-jti 

d6 = — 
a 

d£, 

sin 50 = sin 
2tt 

a 

cos s6 — cos 
2 IT 

a 

£kf (x) dx — 
1 

a. ' x-}a 

hence 
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Inserting the values 1, 2, 3 and 4 for k, we obtain for the aperiodic terms of the four 

moments of the grouped population 

r* 
iA0 = | xf (x) dx, 

J — 00 

2A° = 1-00 (X'+ ^ dX’ 

A — I 
J — C 

4^-u == 

x* + dx, 

x^+f\f(x)dx. 

If we ignore the periodic terms, these equations lead to the ordinary Sheppard 

corrections for the second and fourth moment. The nature of the approximation involved 

is brought out by the periodic terms. In the absence of high contact at the ends of the 

curve, the contribution of these will, of course, include the terms given in a recent paper 

by Pearson (8) ; but even with high contact it is of interest to see for what degree of 

coarseness of grouping the periodic terms become sensible. 

Now 

i p = * r 
As = - Z \ 

7T__ Jo Jt-5“ 

sin d£ | £kf{x) dx, 

2 7rs£ 

2n ' rt+ia 

sin s9 d6 £kf (x) dx, 

But 

therefore 

2 

a J-c 

2 
a 

2 7rSg rUi(l 
a " Jf-ia 

rx+ia 

f (x) dx gk sin d£. 
oo J x—ia CL 

2*stdi = 

,AS =(-)'■“— f cos —-f(x)dx; 
7T.S* J - oo CL 

2 (*+*» ^ . 
£ sm 

CL Jx-ia a 

a 27rsx 
— COS-COS 7rS, 
7rS CL 

similarly the other terms of the different moments may be calculated. 

For a normal curve referred to the true mean 

Q s2<r2 

,AS = (-)•« f <T-, 

iBs = 0, 
in"which 

CL = 'lire. 

The error of the mean is therefore 

/ cr~ 4 <r2 9cr2 \ 

— 2e( e 2(2 sin 0—\e 2‘2 sin 20 + ^e 2*2 sin 30—... J. 

2 Y 2 
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To illustrate a coarse grouping, take the group interval equal to the standard deviation : 

then 
CT 

*2tt 
and the error is 

— — e_27r' sin 6 

with sufficient accuracy. The standard error of the mean being —%=, we may calculate 
n 

the size of the sample for which the error due to the periodic terms becomes equal to 

one-tenth of the standard error, by putting 

- e~2n*. 

whence 

For the second moment 

and, if we put 

there results 

n — 

10\/ n 7T 

_2 

ein2 = 13,790 billion. 
100 

„ v S CT~ 
2 > 6 \ ~ 2f- 

-‘O’ _ j 2 — 2tt2 
= 4cr e , 

lOv7 n 

n = swo W* =175 billion. 

The error, while still very minute, is thus more important for the second than for 

the first moment. 

For the third moment 
4 

A / \, 6 (T 6‘ j 1 6 6 / o .2 /»\ I i 
As — (—) : 1 + — rn (tt s ~~ 6) r e - , 

e I -So- oS (T J 

iiV* 

putting 

v 15a-3 

10 Vn 
= 127Ta-3C_2ir', 

n = 
900tt 

=147 billion. 

While for the fourth moment 

B. = (-)”12^11- (tV-6)/-, 
S or S a 

2e* 

so that, if we put, 

V 90O" Q Q 2 4 —27T* 
-— = OZ7T <T <3 , 
10\/ n 

n = 
3200 

• e4,r" = T'34 billion. 
7T 
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In a similar manner the exact form of Sheppard’s correction may be found for other 
curves ; for the normal curve we may say that the periodic terms are exceedingly minute 
so long as a is less than <r, though they increase very rapidly if a is increased beyond 
this point. They are of increasing importance as higher moments are used, not only 
absolutely, but relatively to the increasing probable errors of the higher moments. 
The principle upon which the correction is based is merely to find the error when the 
moments are calculated from an infinite grouped sample ; the corrected moment therefore 
fulfils the criterion of consistency, and so long as the correction is small no greater 
refinement is required. 

Perhaps the most extended use of the criterion of consistency has been developed by 
Pearson in the “ Method of Moments.” In this method, which is without question of 
great practical utility, different forms of frequency curves are fitted by calculating as 
many moments of the sample as there are parameters to be evaluated. The parameters 
chosen are those of an infinite population of the specified type having the same moments 

as those calculated from the sample. 
The system of curves developed by Pearson has four variable parameters, and may 

be fitted by means of the first four moments. For this purpose it is necessary to confine 
attention to curves of which the first four moments are finite ; further, if the accuracy 
of the fourth moment should increase with the size of the sample, that is, if its probable 
error should not be infinitely great, the first eight moments must be finite. This 
restriction requires that the class of distribution in which this condition is not fulfilled 
should be set aside as “ heterotypic,” and that the fourth moment should become 
practically valueless as this class is approached. It should be made clear, however, 
that there is nothing anomalous about these so-called “ heterotypic ” distributions 
except the fact that the method of moments cannot be applied to them. More¬ 
over, for that class of distribution to which the method can be applied, it has not 
been shown, except in the case of the normal curve, that the best values will be 
obtained by the method of moments. The method will, in these cases, certainly be 
serviceable in yielding an approximation, but to discover whether this approximation 
is a good or a bad one, and to improve it, if necessary, a more adequate criterion is 

required. 
A single example will be sufficient to illustrate the practical difficulty alluded to 

above. If a point P lie at known (unit) distance from a straight line AB, and lines be 
drawn at random through P, then the distribution of the points of intersection with 
AB will be distributed so that the frequency in any range dx is 

1 dx 
J l+(x-mY* 

in which x is the distance of the infinitesimal range dx from a fixed point 0 on the line, 
and m is the distance, from this point, of the foot of the perpendicular PM. The distri- 
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bution will be a symmetrical one (Type VII.) having its centre at, x — m (fig. 1). It is 

therefore a perfectly definite problem to estimate the value of m (to find the best value of 

m) from a random sample of values of x. We have stated the problem in its simplest 

possible form : only one parameter is required, the middle point of the distribution. 

1 -s2 
B.d, = —7- e 4 

2 \/tr 

By the method of moments, this should be given by the first moment, that is by the 

mean of the observations : such would seem to be at least a good estimate. It is, 

however, entirely valueless. The distribution of the mean of such samples is in fact the 

same, identically, as that of a single observation. In taking the mean of 100 values of 

x, we are no nearer obtaining the value of m than if we had chosen any value of x out 

of the 100. The problem, however, is not in the least an impracticable one : clearly 

from a large sample we ought to be able to estimate the centre of the distribution with 

some precision ; the mean, however, is an entirely useless statistic for the purpose. 

By taking the median of a large sample, a fair approximation is obtained, for the standard 

error of the median of a large sample of n is ——, which, alone, is enough to show that 
2 \/n 

by adopting adequate statistical methods it must be possible to estimate the value for 

m, with increasing accuracy, as the size of the sample is increased. 

This example serves also to illustrate the practical difficulty which observers often 

find, that a few extreme observations appear to dominate the value of the mean. In 

these cases the rejection of extreme values is often advocated, and it may often happen 

that gross errors are thus rejected. As a statistical measure, however, the rejection of 

observations is too crude to be defended : and unless there are other reasons for rejec¬ 

tion than mere divergence from the majority, it would be more philosophical to accept 

these extreme values, not as gross errors, but as indications that the distribution of 

errors is not normal. As we shall show, the only Pearsonian curve for which the mean 
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is the best statistic for locating the curve, is the normal or gaussian curve of errors. If 

the curve is not of this form the mean is not necessarily, as we have seen, of any value 

whatever. The determination of the true curves of variation for different types of work 

is therefore of great practical importance, and this can only Ire done by different workers 

recording their data in full without rejections, however they may please to treat the 

data so recorded. Assuredly an observer need be exposed to no criticism, if after 

recording data which are not probably normal in distribution, he prefers to adopt some 

value other than the arithmetic mean. 

6. Formal Solution of Problems of Estimation. 

The form in which the criterion of sufficiency has been presented is not of direct 

assistance in the solution of problems of estimation. For it is necessary first to know 

the statistic concerned and its surface of distribution, with an infinite number of other 

statistics, before its sufficiency can be tested. For the solution of problems of 

estimation we require a method which for each particular problem will lead us 

automatically to the statistic by which the criterion of sufficiency is satisfied. Such a 

method is, I believe, provided by the Method of Maximum Likelihood, although I am 

not satisfied as to the mathematical rigour of any proof which I can put forward to 

that effect. Headers of the ensuing pages are invited to form their own opinion as 

to the possibility of the method of the maximum likelihood leading in any case to an 

insufficient statistic. For my own part 1 should gladly have withheld publication until 

a rigorously complete proof could have been formulated; but the number and variety 

of the new results which the method discloses press for publication, and at the same 

time I am not insensible of the advantage which accrues to Applied Mathematics from 

the co-operation of the Pure Mathematician, and this co-operation is not infrequently 

called forth by the very imperfections of writers on Applied Mathematics. 

If in any distribution involving unknown parameters 0,, fb, 03, ... , the chance of 

an observation falling in the range dx be represented by 

f{x, 0U 02, ...)dx, 

then the chance that in a sample of n, nx fall in the range dxv 

so on, will be 
n! 

li (v) ii {/(* p> 0U 02,... )dxpy 

n2 in the range dx2, and 

The method of maximum likelihood consists simply in choosing that set of values 

for the parameters which makes this quantity a maximum, and since in this expression 

the parameters are only involved in the function/, we have to make 

S (log/) 
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a maximum for variations of 6V 02, 0Z, &c. In this form the method is applicable to 

the fitting of populations involving any number of variates, and equally to discontinuous 

as to continuous distributions. 

In order to make clear the distinction between this method and that of Bayes, we 

will apply it to the same type of problem as that which Bayes discussed, in the hope 

of making clear exactly of what kind is the information which a sample is capable of 

supplying. This question naturally first arose, not with respect to populations distri¬ 

buted in frequency curves and surfaces, but with respect to a population regarded as 

divided into two classes only, in fact in problems of 'probability. A certain proportion, 

p, of an infinite population is supposed to be of a certain kind, e.g., “ successes,” the 

remainder are then “ failures.” A sample of n is taken and found to contain x successes 

and y failures. The chance of obtaining such a sample is evidently 

n\ 

x \y\ 
p’O-pY- 

Applying the method of maximum likelihood, we have 

S (log/) = x log p + y log(l-p) 

whence, differentiating with respect to p, in order to make this quantity a maximum, 

x 

P 

V , or 
l-p P = 

x 

n 

The question then arises as to the accuracy of this determination. This question was 

first discussed by Bayes (10), in a form which we may state thus. After observing 

this sample, when we know p, what is the probability that p lies in any range dp ? In 

other words, what is the frequency distribution of the values of p in populations which 

are selected by the restriction that a sample of n taken from each of them yields x 

successes. Without further data, as Bayes perceived, this problem is insoluble. To 

render it capable of mathematical treatment, Bayes introduced the datum, that among 

the populations upon which the experiment was tried, those in which p lay in the range 

dp were equally frequent for all equal ranges dp. The probability that the value of p 

lay in any range dp was therefore assumed to be simply dp, before the sample was 

taken. After the selection effected by observing the sample., the probability is clearly 

proportional to 
px (l — p)v dp. 

After giving this solution, based upon the particular datum stated, Bayes adds a 

scholium the purport of which would seem to be that in the absence of all knowledge 

save that supplied by the sample, it is reasonable to assume this particular a priori 

distribution of p. The result, the datum, and the postulate implied by the scholium, have 

all been somewhat loosely spoken of as Bayes’ Theorem. 
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The postulate would, if true, be of great importance in bringing an immense variety 

of questions within the domain of probability. It is, however, evidently extremely arbi¬ 

trary. Apart from evolving a vitally important piece of knowledge, that of the exact 

form of the distribution of values of p, out of an assumption of complete ignorance, it is 

not even a unique solution. For we might never have happened to direct our attention 

to the particular quantity p : we might equally have measured probability upon an 

entirely different scale. If, for instance, 

sin 0 -- 2p — 1, 

the quantity, 6, measures the degree of probability, just as well as p, and is even, for 

some purposes, the more suitable variable. The chance of obtaining a sample of x 

successes and y failures is now 

(1+sin o)x{i-sm e)y- 

applying the method of maximum likelihood, 

S (log f ) — x log (l +sin 0) + y log (l — sin 6) —n log 2, 

and differentiating with respect to 0, 

x cos 0 _ y cos 6 

1 +sin 0 1— sin 0 
whence sin 6 = 

x — y 

2n 

an exactly equivalent solution to that obtained using the variable p. But what a prion 

assumption are we to make as to the distribution of 0 ? Are we to assume that 0 is 

equally likely to lie in all equal ranges d0 ? In this case the a priori probability will 

be d0j7t, and that after making the observations will be proportional to 

(1 +sin 0)c (l — sin 0)y d0. 

But if we interpret this in terms of p, we obtain 

P (i -p)‘ 
dp 

\ZP{ 1 ~P) 
= p2~^(l— pY "dp, 

a result inconsistent with that obtained previously. In fact, the distribution previously 

assumed for p was equivalent to assuming the special distribution for O, 

df=—-de, 

the arbitrariness of which is fully apparent when we use any variable other than p. 

In a less obtrusive form the same species of arbitrary assumption underlies the method 

VOL. CCXXIT. — A. 2 7, 
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known as that of inverse probability. Thus, if tbe same observed result A might be 

the consequence of one or other of two hypothetical conditions X and Y, it is assumed 

that the probabilities of X and Y are in the same ratio as the probabilities of A occurring 

on the two assumptions, X is true, Y is true. This amounts to assuming that before 

A was observed, it was known that our universe had been selected at random for an 

infinite population in which X was true in one half, and Y true in the other half. 

Clearly such an assumption is entirely arbitrary, nor has any method been put forward 

by which such assumptions can be made even with consistent uniqueness. There 

is nothing to prevent an irrelevant distinction being drawn among the hypothetical 

conditions represented by X, so that we have to consider two hypothetical possibilities 

Xj and X,, on both of which A will occur with equal frequency. Such a distinction 

should make no difference whatever to our conclusions ; but on the principle of inverse 

probability it does so, for if previously the relative probabilities were reckoned to be 

in the ratio x to y, they must now be reckoned 2x to y. Nor has any criterion been 

suggested by which it is possible to separate such irrelevant distinctions from those 

which are relevant. 

There would be no need to emphasise the baseless character of the assumptions made 

under the titles of inverse probability and Bayes’ Theorem in view of the decisive 

criticism to which they have been exposed at the hands of Boole, Venn, and Chrystal, 

were it not for the fact that the older writers, such as Laplace and Poisson, who accepted 

these assumptions, also laid the foundations of the modern theory of statistics, and have 

introduced into their discussions of this subject ideas of a similar character. I must 

indeed plead guilty in my original statement of the Method of the Maximum Likeli¬ 

hood (9) to having based my argument upon the principle of inverse probability ; in the 

same paper, it is true, I emphasised the fact that such inverse probabilities were relative 

only. That is to say, that while we might speak of one value of p as having an inverse 

probability three times that of another value of p, we might on no account introduce 

the differential element dp, so as to be able to say that it was three times as probable 

that p should lie in one rather than the other of two equal elements. Upon considera¬ 

tion, therefore, I perceive that the word probability is wrongly used in such a connection : 

probability is a ratio of frequencies, and about the frequencies of such values we can 

know nothing whatever. We must return to the actual fact that one value of p, of 

the frequency of which we know nothing, would yield the observed result three times 

as frequently as would another value of p. If we need a word to characterise this 

relative property of different values of p, I suggest that we may speak without confusion 

of the likelihood of one value of p being thrice the likelihood of another, bearing always 

in mind that likelihood is not here used loosely as a synonym of probability, but simply 

to express the relative frequencies with which such values of the hypothetical quantity 

p would in fact yield the observed sample. 

The solution of the problems of calculating from a sample the parameters of the 

hypothetical population, which we have put forward in the method of maximum likeli- 
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hood, consists, then, simply of choosing such values of these parameters as have the 

maximum likelihood. Formally, therefore, it resembles the calculation of the mode of 

an inverse frequency distribution. This resemblance is quite superficial : if the scale 

of measurement of the hypothetical quantity be altered, the mode must change its 

position, and can be brought to have any value, by an appropriate change of scale ; but 

the optimum, as the position of maximum likelihood may be called, is entirely unchanged 

by any such transformation. Likelihood also differs from probability* in that it is not 

a differential element, and is incapable of being integrated : it is assigned to a particular 

point of the range of variation, not to a particular element of it. There is therefore an 

absolute measure of probability in that the unit is chosen so as to make all the elementary 

probabilities add up to unity. There is no such absolute measure of likelihood. It 

may be convenient to assign the value unity to the maximum value, and to measure 

other likelihoods by comparison, but there will then be an infinite number of values 

whose likelihood is greater than one-half. The sum of the likelihoods of admissible 

values will always be infinite. 

Our interpretation of Bayes’ problem, then, is that the likelihood of any value of p 

is proportional to 

px{l-p)y, 

and is therefore a maximum when 
x 

which is the best value obtainable from the sample ; we shall term this the optimum 

value of p. Other values of p for which the likelihood is not much less cannot, however, 

be deemed unlikely values for the true value of p. We do not, and cannot, know, from 

the information supplied by a sample, anything about the probability that p should lie 

between any named values. 

The reliance to be placed on such a result must depend upon the frequency distribution 

of x, in different samples from the same population. This is a perfectly objective 

statistical problem, of the kind we have called problems of distribution ; it is, however, 

capable of an approximate solution, directly from the mathematical form of the 

likelihood. 

When for large samples the distribution of any statistic, 6}, tends to normality, we 

* It should be remarked that likelihood, as above defined, is not only fundamentally distinct from 

mathematical probability, but also from the logical “ probability ” by which Mr. Keynes (21) has recently 

attempted to develop a method of treatment of uncertain inference, applicable to those cases where we 

lack the statistical information necessary for the application of mathematical probability. Although, in 

an important class of cases, the likelihood may be held to measure the degree of our rational belief in a 

conclusion, in the same sense as Mr. Keynes’ “ probability,” yet since the latter quantity is constrained, 

somewhat arbitrarily, to obey the addition theorem of mathematical probability, the likelihood is a 

quantity which falls definitely outside its scope. 

2 z 2 
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may write down the chance for a given value of the parameter 9, that 9, 

the range d0] in the form 

<h 
<T \/ 

(A,-»)- 
2ff2 <u,. 

should lie in 

The mean value of 0! will be the true value 6, and the standard deviation is <x, the 

sample being assumed sufficiently large for us to disregard the dependence of <r upon 0. 

The likelihood of any value. 9, is proportional to 

this quantity having its maximum value, unity, when 

for 
0 = 0,; 

$»'*** = 

9,-9 

Differentiating now a second time 

ao - log d> 

Now <T> stands for the total frequency of all samples for which the chosen statistic 

has the value 0l3 consequently <I> = S' (<•/,), the summation being taken over all such 

examples, where </> stands for the probability of occurrence of a certain specified sample. 

For which we know that 
log 0 = C + S (log/), 

the summation being taken over the individual members of the sample. 

If now we expand log/ in the form 

or 

we have 

log f(9) = iog/(e1)+0-e1^iog/(01) + 
c9 

9-9, 
^2 
c 

39 
'^°gf(9i) + ... 

log/ = logfi + a 9-9,+ ^9-9, +... , 

log 0 = C + 0—0iS {a)+^9—0k S (b) + ... ; 

now for optimum statistics 

S (a) = 0, 

and for sufficiently large samples S (b) differs from nb only by a quantity of order \/n crb; 

moreover, 9—9, being of order n~h, the only terms in log 0 which are not reduced 

without limit, as n is increased, are 

log 0 = C+^n l>9—9, ; 
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hence 

0oc 

Now this factor is constant for all samples which have the same value of 61, hence 

the variation of with respect to f) is represented by the same factor, and conse¬ 

quently 

log 4> = C' + inb S-e"; 
whence 

where 

h = J^log'/(^)> 
01 being the optimum value of 6. 

The formula 

1 c~ 

- — = gf 
(Tg Ctj 

supplies the most direct way known to me of finding the probable errors of statistics. 

It may be seen that the above proof applies only to statistics obtained by the method 

of maximum likelihood.* 

For example, to find the standard deviation of 

* A similar method of obtaining the standard deviations and correlations of statistics derived from 

large samples was developed by Pearson and Filon in 1898 (16). It is unfortunate that in this memoir 

no sufficient distinction is drawn between the population and the sample, in consequence of which the 

formulae obtained indicate that the likelihood is always a maximum (for continuous distributions) when 

the mean of each variate in the sample is equated to the corresponding mean in the population (16, p. 232, 

“ Ar = 0 ”). If this were so the mean would always be a sufficient statistic for location ; but as we have 

already seen, and will see later in more detail, this is far from being the case. The same argument, indeed, 

is applied to all statistics, as to which nothing but their consistency can be truly affirmed. 

The probable errors obtained in this way are those appropriate to the method of maximum likelihood, 

but not in other cases to statistics obtained by the method of moments, by which method the examples 

given were fitted. In the ‘ Tables for Statisticians and Biometricians ’ (1914), the probable errors of the 

constants of the Pearsonian curves are those proper to the method of moments ; no mention is there made 

of this change of practice, nor is the publication of 1898 referred to. 

It would appear that shortly before 1898 the process which leads to the correct value, of the probable 

errors of optimum statistics, was hit upon and found to agree with the probable errors of statistics found 

by the method of moments for normal curves and surfaces ; without further enquiry it would appear to 

have been assumed that this process was valid in all cases, its directness and simplicity being peculiarly 

attractive. The mistake was at that time, perhaps, a natural one ; but that it should have been discovered 

and corrected without revealing the inefficiency of the method of moments is a very remarkable circumstance. 

In 1903 the correct formulae for the probable errors of statistics found by the method of moments are 

given in ‘ Biometrika ’ (19) ; references are there given to Sheppard (20), whose method is employed, as 

well as to Pearson and Filon (16), although both the method and the results differ from those of the latter. 
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in samples from an infinite population of which the true value is p, 

log/= logp + y log(l-p), 

o 

cp 
JL\ogf=X- %_y_ 

P 1 -p' 
o2 C x y ap log/ 

Now the mean value of x in pn, and of y is (l— p)n, hence the mean value of 

a?log/i9 

therefore 
\p 1 — p! 

2 _p{i-y>) cr« = 
n 

the well-known formula for the standard error of p. 

7. Satisfaction of the Criterion of Sufficiency. 

That the criterion of sufficiency is generally satisfied by the solution obtained by 

the method of maximum likelihood appears from the following considerations. 

If the individual values of any sample of data are regarded as co-ordinates in 

hyperspace, then any sample may be represented by a single point, and the frequency 

distribution of an infinite number of random samples is represented by a density 

distribution in hvperspace. If any set of statistics be chosen to be calculated from 

the samples, certain regions will provide identical sets of statistics ; these may be called 

isostatistical regions. For any particular space element, corresponding to an actual 

sample, there will be a particular set of parameters for which the frequency in that 

element is a maximum ; this will be the optimum set of parameters for that element. 

If now the set of statistics chosen are those which give the optimum values of the 

parameters, then all the elements of any part of the same isostatistical region will 

contain the greatest possible frequency for the same set of values of the parameters, 

and therefore any region which lies wholly within an isostatistical region will contain 

its maximum frequency for that set of values. 

Now let 6 be the value of any parameter, 0 the statistic calculated by the method of 

maximum likelihood, and 6i any other statistic designed to estimate the value of 6, 

then for a sample of given size, we may take 

f{e, e, e1)dede1 

to represent the frequency with which 6 and 9i lie in the assigned ranges dd and dOi. 
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The region d0dOx evidently lies wholly in the isostatistical region do. 

equation 

4 log/(0> °i) = 0 
uu 

Hence the 

is satisfied, irrespective of 61, by the value 0 = 0. This condition is satisfied if 

f(0, 0, 0X) = (j> (0, S) . 0X); 
for then 

llog/=llog*- 
and the equation for the optimum degenerates into 

log 0) = 0, 

which does not involve 0X. 

But the factorisation of / into factors involving (0, $) and (0, 0X) respectively is merely 

a mathematical expression of the condition of sufficiency; and it appears that any 

statistic which fulfils the condition of sufficiency must be a solution obtained by the 

method of the optimum. 

It may be expected, therefore, that we shall be led to a sufficient solution of problems 

of estimation in general by the following procedure. Write down the formula for the 

probability of an observation falling in the range dx in the form 

f (0, x) dx, 

where 0 is an unknown parameter. Then if 

L = S (log/), 

the summation being extended over the observed sample, L differs by a constant only 

from the logarithm of the likelihood of any value of 0. The most likely value, 0, is 

found by the equation 

and the standard deviation of 0, by a second differentiation, from the formula 

&L _ J_. 
0<92 <r«2’ 

this latter formula being applicable only where 0 is normally distributed, as is often 

the case with considerable accuracy in large samples. The value a-g so found is in 

these cases the least possible value for the standard deviation of a statistic designed to 
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estimate the same parameter ; it may therefore be applied to calculate the efficiency of 

any other such statistic. 

When several parameters are determined simultaneously, we must equate the second 

differentials of L, with respect to the parameters, to the coefficients of the quadratic 

terms in the index of the normal expression which represents the distribution of the 

corresponding statistics. Thus with two parameters. 

82L = 1 J_ 

a^2 

<pl = i j_ 
ad22 i-4'4’ 

a2L _ I r 

302 1 — r2^., a 

or, in effect, erf is found by dividing the Hessian determinant of L, with respect to the 

parameters, into the corresponding minor. 

The application of these methods to such a series of parameters as occur in the speci¬ 

fication of frequency curves may best be made clear by an example. 

8. The Efficiency of the Method of Moments in Fitting Curves of the 

Pearsonian Type III. 

Curves of Pearson’s Type III. offer a good example for the calculation of the efficiency 

of the Method of Moments. The chance of an observation falling in the range dx is 

df = 
a pi 

x—m 

a 

V _ x ~~ m 

3 a dx* 

By the method of moments the curve is located by means of the statistic its dimen¬ 

sions are ascertained from the second moment /x2, and the remaining parameter p is 

determined from /3i- Considering first the problem of location, if a and p were known 

and we had only to determine m, we should take, according to the method of moments, 

Mi — nifj. +ct (p +1), 

where mM represents the estimate of the parameter m, obtained by using the method of 

moments. The variance of is, therefore, 

2 2 m3 a2{p+l) 
= <T n, = — = --- • 

If, on the other hand, we aim at greater accuracy, and make the likelihood of the 

sample a maximum for variations of m, we have 

L = —n log a—n log {pl)+pS^ log -—— ) 

* The expression, x !, is used here and throughout as equivalent to the Gaussian II (x), or to T (a:+l), 

whether x is an integer or not. 
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and the equation to determine m is 

3L 
^ 
cm \x—m 

1 \ n 
+ - 

<(, 

- 0 

the accuracy of the value so obtained is found from the second differential. 

82L 

of which the mean value is 

whence 

^ Li 
N-2 = 
cm \x—rn 

n 

d2 {p — 1)’ 

_ <<2 (p— 1) 
n 

(0 

We now see that the efficiency of location by the method of moments is 

2z± = 1 _ _2_ . 
p +1 p +1' 

Efficiencies of over 80 per cent, for location are therefore obtained if p exceeds 9 ; for 

p — 1 the efficiency of location vanishes, as in other cases where the curve makes an 

angle with the axis at the end of its range. 

Turning now to the problem of scaling, we have, by the method of moments, 

Mi = ((2 {p + l)j 

whence, knowing p, a is obtained. Since 

2 _ft-l 2 
^ P-2 M2 ? 

n 
we must have 

2 — I 2 4 + '3fi± 2 _ P + 4 2 . 
a,x 4n ' 8n 2(p+l)n 

on the other hand, from the value of L, we find the equation 

0L n r . , \ . 1 

8 a 
— = --(i>+l) + “2S {x-m) = 0, . 

(_b ct 
(2) 

to be solved for m and a as a simultaneous equation with (1) ; whence 

82L 

8m 8« a 2 ’ 

and 

S = ^(i>+9-r.s (*-*«). 8«: a 

2 

3 A VOL. ccxxn. -A. 
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of which the mean value is 
n (p +1 

2 
a 

The variance of a, determined from this pair of simultaneous equations, is found by 

82L 
dividing 

by the determinant 

which reduces to 

whence 

n 
, 2 

cm" a2 (p — 1) 

n 

a2(p-1) 

_ n 
a2 

n 
9 

a 

n(p + 1) 
9 

a“ 

2 _ n2 

_p — 1 «4 

a a 
(Tii = — •? 'An 

and the efficiency of scaling by the method of moments is 

P f 1 _ 1 _ 
p I- 4 p + 4 

Efficiency of over 80 per cent, for scaling are, therefore, obtained when p exceeds 11. 

The efficiency of scaling does not, however, vanish for any possible value of p, though 

it tends to zero, as p approaches its limiting value, —1. 

Lastly, p is found by the method of moments by putting 

Now 

4 

P + 1 
= /Si- 

°7». 
_ A 

(4 A — 24/32+36 + 9 A A — 12 A + 3 5 A), 

and for curves of Type III, 

hence 

A = 3 + § A, 

Ai — 2/3jA+4A = A (3A + 1.o), 

A — 2 (A-s+2 A) = ^2 (3ydi* +13A + 3), 

°>,2 — “1_ (9A + 4) (A + 4), 
n 

A2 _ 6 (p + 2) (p + 6) 

n p +1 
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whence it follows, since n is large, that 

V = . Hg+OT+6) = i (p+1) (p+2) (p+6). 
11 n p + ] n 

From the value of L, 

~ lo§' (p-) + s (los -—— 
op dp \ a 

which equation solved for m, a and p as a simultaneous equation with (1) and (2), will 

yield the set of values for the parameters which has the maximum likelihood. To find 

the variance of the value of p, so obtained, observe that 

of which the mean value is 

i-U = -s f-A 
cm (p ,c—m 

n 

ap 

and 

2L 

da dp 

a2 l 

n 

cd 

d2 
a -a = -r-2 log (p !). 
op dp 

The variance of p, derived from this set of simultaneous equations, is therefore found 
y2T 

by dividing the minor of , namely 

by the determinant 

n 

P — i a ■i > 

n 

a 

hence 

__L_ | A 
P~ 1 P 

1 p+1 1 

1 

P 
I 

yu log iP '•) 

dp 

n3 
- —— ! 2 -f-2 log (p!) — - + K;; 

a p—] I dp s v p p\ 

2 log (pi) - - + — !■ 
dp' p p I 

2 . 1 

. cZ2 , , „ 2 1 i (1 

When p is large, 

1 1 
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so that, approximately, 

= -(p'+lp) 
n 

for large values of p, the efficiency of the method of moments is, therefore, approximately 

jsL+.±p 
p + l_p + 2p + 6 

Efficiencies of over 80 per cent, occur when p exceeds 38-1 (ftx — 0-102) ; evidently 

tlie method of moments is effective for determining the form of the curve only when it 

is relatively close to the normal form. For small values of p. the above approximation 

for the efficiency is not adequate. The true values can easily be obtained from the 

recently published tables of the Trigamma* function (11). The following values are 

obtained for the integral values of p from 0 to 5. 

V 
Efficiency 

0 1 2 3 4 5 

0 0-0274 0-0871 0-1532 0-2159 0-2727 

An interesting point which may be resolved at this stage of the enquiry is to find 

the variance of m, when a and p are not known, derived from the above set of simul¬ 

taneous equations ; that is to say, to calculate the accuracy with which the limiting 

point of the curve is determined ; such determinations are often stated as the result 

of fitting curves of limited range, but their probable errors are seldom, if ever, evaluated. 

To obtain the greatest possible accuracy with which such a point can be determined 

we must divide the minor of hJd} namely, 
cm" 

by 

whence 

AT-t d2 i , ,v ,1 

«dp+1rfylog(p!)“1j 

g. _lj 2y. i0g (p t) _ i+1 
a p — If dp p p\ 

d2 

a* = ~ 
n 

a.y-qp+ljffikg (*>!)-! 

2 A lo8' h:>~ f + h 
dp p p 

The position oFthe limiting point will, when p is at all large, evidently be determined 

with much less accuracy than is the position, as a whole, of a curve of known form and 

size. Let n’ be a multiplier such that the position of the extremity of a curve calculated 

It is sometimes convenient to write f (x) for ~ log (a-!). 
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from nn' observations will be determined with the same accuracy as the position, as a 

whole, of a curve of known form and size, can be determined from a sample of n observa¬ 

tions when n is large. Then 

d; 

but, when p is laroe, 

and 

therefore 

o I / ,\ 2 1 5 2 y— log p!)- - + — 
dp p p 

d2 
p + 1 g l0g {p 0 — 1 =-( 1-— + —2 • • 
1 dp2 6 1 ■ 2p \ 3p 3p2 

2 Iqo- (p 1) _ — + — — J_ (i —I_ 
dp2 *KP'} p p2 Sp3\ 5p2 

n' = f p2 ( I — ~~ p + 
2 8 

3px I5p2 

= f p2—p> + i- 

For large values of p the probable error of the determination of the end-point may be 

found approximately by multiplying the probable error of location by 

[p-¥> \/f- 

As p grows smaller, n' diminishes until it reaches unity, when p — 1. For values of 

p less than I it. would appear that the end-point had a smaller probable error than the 

probable error of location, but, as a matter of fact, for these values location is determined 

by the end-point, and as we see from the vanishing of <rA, whether or not p and a 

are known, whenp = 1, the weight of the determination from this point onwards increases 

more rapidly than n, as the sample increases. (See Section 10.) 

The above method illustrates how it is possible to calculate the variance of any 

function of the population parameters as estimated from large samples ; by comparing 

this variance with that of the same function estimated by the method of moments, we 

may find the efficiency of that method for any proposed function. The above examina¬ 

tion, in which the determinations of the locus, the scale, and the form of the curve are 

treated separately, will serve as a general criterion of the application of the method of 

moments to curves of Type III. Special combinations of the parameters will, however, 

be of interest in special cases. It may be noted here that by virtue of equation (2) the 

function of m -f- a (p -)- l) is the same,, whether determined by moments or by the method 

of the optimum : 
uiy + (pIJL + 1) = m + o (p + 1). 

The efficiency of the method of moments in determining this function is therefore 100 

per cent. That this function is the abscissa of the mean does not imply 100 per cent, 

efficiency of location, for the centre of location of these curves is not the mean (see p. 340). 
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9. Location and Scaling of Frequency Curves in General. 

The general problem of the location and scaling of curves may now be treated more 

generally. This is the problem which presents itself with respect to error curves of 

assumed form, when to find the best value of the quantity measured we must locate the 

curve as accurately as possible, and to find the probable error of the result of this process 

we must, as accurately as possible, estimate its scale. 

The form of the curve may be specified by a function <]>, such that 

df oc ® dg, when p 
x—m 

a 

In this expression p specifies the form of the curve, which is unaltered by variations 

of a and m. 

When a sample of n observations has been taken, the likelihood of any combination 

of values of a and m is 
L = 0 — a log ct t & ((j)), 

whence 

since 

A = 8(A. A) = _ Is(.//), 
dm \dg dm1 a 

K =_i; 
a 

also 

since 

Differentiating a second time, 

cL 

ca a 
S (&>')■ 

n 

a 

cSL 

end 
= 4S (</>") ; 

a~ 
therefore 

9 
q~ 
"77/ ‘ 

n<p 

This expression enables us to compare the accuracy of error curves of different form, 

when the location is performed in each case by the method which yields the minimum 

error. 

Example :—The curve 

d/= I At 
7T 1 + f 

referred to in Section 5 has an infinite standard deviation, but it is not on that account 

an error curve of zero accuracy, for 

(/) — — log’ (1 + f"), 
2f 

1+f2’ 

2(1 -f) 
(l + f)2' 
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Now 

hence 

The quantity, 

j r i-r r/c-i 
xl-d+f*)* f_*’ 

,/r _ i. 
0 - ~2 and 

5L _ J 2 n a 2a 

2a 

n 

■>n~' 

which is the factor by which n is multiplied in calculating the weight of the estimate 

made from n measurements, maybe called the intrinsic accuracy of an error curve. In 

the above example we see that errors distributed so that 

7 r « dx dj — —2-g 
7T a ~\~ oc 

have the same intrinsic accuracy as errors distributed according to the normal curve 

1 
df 

provided 
(T V7 2x 

'2oa dx, 

— 2a“ 

Fig. 1 illustrates two such curves of equal intrinsic accuracy. 

Keturning now to the general problem in which 

we have 

and 

L = C—n log a + S (</>), 

Ay = I s-(*'+&") = A s (#") 
on ca a a~ 

id = -as(2ft/+fV') +-Is(fV'-1). 
da a a2 a2 

The latter expression will directly give the accuracy with which a is determined only if 

02 I 
0 Li 

= 0. 
cm ca 

and we can always arrange that this shall be so by subtracting from y the quantity 

y¥r 
77> 
0 

Thus in a Type ITT. curve where, referred to the end of the range, 

1 
ir = -h 0 — 

P-1 
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instead of 

we must write 

tlien 

hence 

0 = P log g-g 

<P = p log- £+p — 1 — g+p — 1 ; 

*' = —E—-L 

f+JP-1 
0 ==“ 

P 

g+P~ 1 
, 2 ’ 

a2L i 

a«2 a 
= -2S(f0"-l) 

« \ £+jp—l ^+p-i 

of which the mean value is 

n , 2 n 
-2(-» + 2»-l — p — 1 —l) = ——2 > 

Oj cl 

hence 

<T,; 
2 _ a_ 

2n 

For one particular point of origin, therefore, the variations of the abscissa 

uncorrelated with those of a ; this point may be termed the centre of location. 

Example :—To determine the centre of location of the curve of Type IV., 

Here 

rlfcce~vUm ( (l + f2) 
r + 9 

0 = — v tan 1 £— ) +-~ log I + f2, 

from these we find 

so that 

0' = - (v+-r + 2g) l+f , 

0 =“ 

r + 1 r + 2 r + 4 

r + 4 + ; 

i<p 
r +1 r + 2 

r + 4 +i 

£0  

</> = r + 2 l + f“ +2 (j/f—r + 2) ! + £' 

<p" r + 4 

The centre of location, therefore, at the distance from the mode, 

vU 

v + 4 

are 
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Example :—Determine the intrinsic accuracy of an error curve of Type IV. and the 

efficiency of the method of moments in location and scaling. 

Since 

~Ti ?'+ 1 v + 2 v + 4 
0 =-==5-;— > 

v + 4 +1" 

a r + 4 +i 

n r+lr+2r+4 

and the intrinsic accuracy of the curve is 

a 

1 Y T 1 x T 2 v + 4 
"~2 — 2 

hut 
r + 4 +U 

a~ Y2 + v2 

n y2y- 1 

therefore the efficiency of the method of moments in location is 

Y Y -1 (r + 42 + dJ) 

When 

y +1 y + 2 r + 4 (y2 + v2) 

0. Ave have for curves of Type VII. an efficiency of location 

6 

(3) 

r+lr+2 

The efficiency of location of these curves vanishes at r — 1, at which value the standard 

deviation becomes infinite. Although values down to —1 give admissible frequency 

curves, the conventional limit at which curves are reckoned as heterotypic is at r — 7. 

For this value the efficiency is 
49 121 +y3 

132 ' 49 +1'2 ’ 

which varies from 91*67 per cent, for the symmetrical Type VII. curve, to 37*12 per 

cent, when v -> oo and the curve to Type V. 

Turning to the question of scaling, we find 

whence 

and 

jy-i =_>-+lR>;+4 + ,») 
Y + 4“ +V2 

2 r +1 

7’+4 ’ 

2 _ a? ?* + 4 _ 

n’2 r+1' 

3 B VOL. CCXXII.-A. 
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the intrinsic accuracy of scaling is therefore independent of v. Now for these curves 

ft2 = 
3 r— 1 

r — 2r—3 
8>’2 r + 6--—2 / , 

v + v 

so that 

and 

&-I _ rAr-2 + C (V-+ 10r-12) 

■ 3 (r2 +1'2) 

n 

2 r3r — 2 +v2 (r2+10r—12) 

2r-2r-3 (r2 + /) 

The efficiency of the method of moments for scaling is thus 

■ — 2 ?• — 3 r + 4 (r2 + v2) 

r+I {r3r —2 + v2(r2+ 10r-12)} 

when v = 0, we have for curves of Type VII. an efficiency of scaling 

12 
1- 

r r +1 

(4) 

The efficiency of the method of moments in scaling these curves vanishes at r — 3, 

where j32 becomes infinite ; for r = 7, the efficiency of scaling is 

55 49 + p2 

2 ' 1715 + 10lv2' 

varying in value from 78*57 per cent, for the symmetrical Type VII. curve, to 25*70 

per cent, when v oo and the curve to Type V. 

10. The Efficiency of the Method of Moments in fitting the Pearsonian 

Curves. 

The Pearsonian group of skew curves are obtained as solutions of the equation 

1 dy _ —(x—m) _ 

y dx a + bx + cx2 ’ 

algebraically these fall into two main classes, 

and 

df cc (l + — ) ( 1 — — ) d x 
\m 

aj 
x \ 

aj 

dfcc 
r + 2 

2 —v tan 

e 
l£ 
a dx, 

(5) 

according as the roots of the quadratic expression in (5) are real or imaginary. 
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The first of these forms may be rewritten 

df oc l - — 

a5 

r + 2 
— i-tanh *— , 

e a dx, 

r being negative, showing its affinity with the second class. 

In order that these expressions may represent frequency curves, it is necessary that 

the integral over the whole range of the curve should be finite ; this restriction acts in 

two ways :— 

(1) When the curve terminates at a finite value of x, say x = a,, the power to which 

a2 — a? is raised must be greater than — 1. 

(2) When the curve extends to infinity, the ordinate, when x is large, must diminish 

more rapidly than — ; 
x 

In Fig. 2 is shown a conspectus of all possible frequency curves of the Pearsonian type ; 

A 
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the lines AC and AC' represent the limits along which the area between the curve and 

a vertical ordinate tends to infinity, and on which mu or m2, takes the value — .1 ; the 

line CC' represents the limit at which unbounded curves enclose an infinite area with 

the horizontal axis ; at this limit r — —1. 

The symmetrical curves of Type II. 

a i 

extend from the point N, representing the normal curve, at which r is infinite, through 

the point P at which r = —4, and the curve is a parabola, to the point B (r = —2), 

where the curve takes the form of a rectangle ; from this point the curves are U-shaped, 

and at A, when the arms of U are hyperbolic, we have the limiting curve of this type, 

which is the discontinuous distribution of equal or unequal dichotomy (r = 0). 

The unsymmetrical curves of Type I. are divided by Pearson into three classes 

according as the terminal ordinate is infinite at neither end, at one end (J curves), or 

at both ends (U curves) ; the dividing lines are C'BD and CBD', along which one of 

the terminal ordinates are finite (mx, or m,, = 0) ; at the point B, as we have seen, both 

terminal ordinates are finite. 

The same line of division divides the curves of Type III., 

<1f cc xpe~x dx, 

at the point E (p — 0), representing a simple exponential curve ; the J curves of Type III. 

extend to F (p = —1), at which point the integral ceases to converge. In curves of 

Type Ilf., r is infinite ; v is also infinite, but one of the quantities mx and m, is finite, 

or zero (— p) ; as p tends to infinity we approach the normal curve 

df oc e~ix' dx. 

Type VI., like Type III., consists of curves bounded only at one end ; here r is 

positive, and both m1 and m., are finite or zero. For the J curves of Type VI. both 

mi and m, are negative, but for the remainder of these curves they are of opposite sign, 

the negative index being the greater by at least unity in order that the representative 

point may fall above CC' (r — —1). 

Type V. is here represented by a parabola separating the regions of Types IV. and VI.; 

the typical equation of this type of curve is 

_ r+3 _ 1 

df cc x 2 e xdx. 

As r tends to infinity the curve tends to the normal form ; the integral does not 

become divergent until = 1, or r — — 1. On curves of Type V., then, r is finite 

or zero, but v is infinite. 
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In Type IV. 

df cc 

»' + 2 
2 — v tan'1 — 

e « 

we have written v, not as previously for the difference between ml and m2, for these 

quantities are now complex, and their difference is a pure imaginary, but for the differ¬ 

ence divided by \ 7—1 ; v is then real and finite throughout Type IV., and it vanishes 

along the line NS, representing the symmetrical curves of Type VII. 

/ 

df oc[l + ^ 2 
\ <r; 

from r = cc to r = — 1. 

The Pearsonian system of frequency curves has hitherto been represented by the 

diagram (13, p. 06), in which the co-ordinates are fa1 and fa,. This is an unsymmetrical 

diagram which, since fa1 is necessarily positive, places the symmetrical curves on a 

boundary, whereas they are the central types from which the unsymmetrical curves 

diverge on either hand ; further, neither of the limiting conditions of these curves can 

be shown on the ft diagram ; the limit of the U curves is left obscure,* and the other 

limits are either projected to infinity, or, what is still more troublesome, the line at 

infinity cuts across the diagram, as occurs along the line r — 3, for there fa., becomes 

infinite. This diagram thus excludes all curves of Types VII., IV., V., and VI., for which 

r < 3. 

In the fa diagram the condition v = constant yields a system of concurrent straight 

lines. The basis of the representation in fig. 2 lies in making these lines parallel and 

horizontal, so that the ordinate is a function of r only. We have chosen r — y— -, 
y 

and have represented the limiting types by the simplest geometrical forms, straight lines 

and parabolas, by taking 

i _ * , a _ (I + V + x~) (1 ~ U — xd 
y [ar + y) 

It might have been thought that use could have been made of the criterion, 
C> o 

_ _fti (^2+3)“_ _ L _ fi!. 

Ka 4 (4/32—(2fa3—Sfa1 — 6) 4e’ 

by which Pearson distinguishes these curves ; but this criterion is only valid in the 

region treated by Pearson. For when r — 0, k2 — 1, and we should have to place 

a variety of curves of Types VII., TV., V., and VI., all in Type V. in order to adhere to 

the criterion. 

This diagram gives, I believe, the simplest possible conspectus of the whole of the 

Pearsonian system of curves ; the inclusion of the curves beyond r = 3 becomes neces- 

* The true limit is the line /L = fai + l, along which the curves degenerate into simple dichotomies. 
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sary as soon as we take a view unrestricted by the method of moments ; of the so-called 

heterotypic curves between r — 3 and r = 7 it should be noticed that they not 

only fall into the ordinary Pearsonian types, but have finite values for the moment 

coefficients and ft.,; they differ from those in which r exceeds 7, merely in the fact 

that the value of fi2, calculated from the fourth moment of a sample, has an infinite probable 

error. It is therefore evident that this is not the right method to treat the sample, but 

this does not constitute, as it has been called, “ the failure of Type IV.,” but merely 

the failure of the method of moments to make a valid estimate of the form of these 

curves. As we shall see in more detail, the method of moments, when its efficiency is 

tested, fails equally in other parts of the diagram. 

In expression (3) we have found that the efficiency of the method of moments for 

location of a curve of Type IV. is 

E = i'- l (/- + 4' + i--) ^ 

r-FI r + 2 r + 4 (r2 4- v2) 

whence if we substitute for r and v in terms of the co-ordinates of our diagram, we obtain 

a general formula for the efficiency of the method of moments in locating Pearsonian 

curves, which is applicable within the boundary of the zero contour (fig. 3). This may 

Fig. 3. Region of validity of the first moment (the mean) applied in the location of 

Pearsonian curves showing contours of efficiency. 

be called the region of validity of the first moment ; it is bounded at the base by the 

line r = 1, so that the first moment is valid far beyond the heterotypic limit; its other 

boundary, however, represents those curves which make a finite angle with the axis at 

the end of their range (mx, or m2, = 1) ; all J curves (mv or m.,, < 0) are thus excluded. 

This boundary has a double point at P. which thus forms the apex of the region of validity. 
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In fig. 3 are shown the contours along which the efficiency is 20, 40, GO, and 80 per cent. 

For high efficiencies these contours tend to the system of ellipses, 

8xJ + 6<y' = 1 — E. 

In a similar manner, we have obtained in expression (4) the efficiency of the 

second moment in fitting Pearsonian curves. The region of validity in this case is 

shown in fig. 4 ; this region is bounded by the lines r = 3, r — —4, and by the limits 

Fig. 4. Region of validity of the second moment (standard deviation) applied in scaling of 

Pearsonian curves, showing contours of efficiency. 

())(], or m2, — —1) on which r2-fiv~ vanishes. This statistic is therefore valid for certain 

J curves, though the maximum efficiency among the J curves is about 30 per cent. 

As before, the contours are centred about the normal curve (N) and for high efficiencies 

tend to the system of concentric circles, 

1.2tc2+12 y2 = 1-E, 

showing that the region of high efficiency is somewhat more restricted for the second 

moment, as compared to the first. 

The lower boundary to the efficiencies of these statistics is due merely to their probable 

errors becoming infinite, a weakness of the method of moments which has been partially 

recognised by the exclusion of the so-called heterotypic curves (r < 7). The stringency 

of the upper boundary is much more unexpected ; the probable errors of the moments do 

not here become infinite ; only the ratio of the probable errors of the moments to the 

probable error of the corresponding optimum statistics is great and tends to infinity as 

the size of the sample is increased. 

That this failure as regards location occurs when the curve makes a finite angle with 

the axis may be seen by considering the occurrence of observations near the terminus 

of the curve. 

Let 
df = kxa dx 



348 MR. R. A. FISHER ON THE MATHEMATICAL 

in the neighbourhood of the terminus, then the chance of an observation falling within 

a distance x of the terminus is 

k 
rx + 1 

Za+1 LV+1, 

and the chance of n observations all failing to fall in this region is 

(1 -fY 

or, when n is great, and / correspondingly small, 

e~fn. 

Equating this to any finite probability, e ", we have 

k'xa+1 = 
a 
— ? 
n 

or, in other words, if we use the extreme observation as a means of locating the terminus, 

the error, x, is proportional to 
. i 

n 

when rx < 1, this quantity diminishes more rapidly than n~*, and consequently for large 

samples it is much more accurate to locate the curve by the extreme observation than 

by the mean. 

Since it might be doubted whether such a simple method could really be more accurate 

than the process of finding the actual mean, we will take as example the location of 

the curve (B) in the form of a rectangle, 

df = 
dx 

a 

a ^ a 
on-< x < on 4— 

9 9 

and 

df= 0, 
outside these limits. 

This is one of the simplest types of distribution, and we may readily obtain examples 

of it from mathematical tables. The mean of the distribution is m, and the standard 

deviation, the error m—m, of the mean obtained from n observations, when n is 
v712 

reasonably large, is therefore distributed according to the formula 

dx. 

The difference of the extreme observation from the end of the range is distributed 

according to the formula 

n 7. 
— e a df; 
a 
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if £ is the difference at one end of the range and tl the difference at the other end, the 

joint distribution (since, when n is considerable, these two quantities may be regarded 

as independent) is 
2 ii *- n — i+% 7 _ 7 

-o e a df cltj. 
a 

Now if we take the mean of the extreme observations of the sample, our error is 

i-n. 

for which we write x ; writing also y for £-j- )h we have the joint distribution of x and y, 

—0e a ° dx dy. 
a“ 

For a given value of x the values of y range from 2 j £c | to oo, whence, integrating with 

respect to y, we find the distribution of x to be 

2 n 
I s I 

dx, 

the double exponential curve shown in fig. 5. 

-1- ■■ ~T I_ I_1__|_|_|_ ----- 

-25 -20 -15 -10 -5 0 5 10 15 20 25 

Fig. 5. Double exponential frequency curve, showing distribution of 25 deviations. 

The two error curves are thus of a radically different form, and strictly no value for 

the efficiency can be calculated ; if, however, we consider the ratio of the two standard 

deviations, then 
2 2*2 n ^ « . a _ 6 

a-2,,, 2n2 " 12n n 
. 

when n is large, a quantity which diminishes indefinitely as the sample is increased. 

3 o yoL. ccxxn. a. 
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For example, we have taken from Vega (14) sets of digits from the table of Natural 

Logarithms to 48 places of decimals. The last block of four digits was taken from the 

logarithms of 100 consecutive numbers from 101 to 200, giving a sample of 100 numbers 

distributed evenly over a limited range. It is sufficient to take the three first digits 

to the nearest integer ; then each number has an equal chance of all values between 0 

and 1000. The true mean of the population is 500, and the standard deviation 289. 

The standard error of the mean of a sample of 100 is therefore 28-9. 

Twenty-five such samples were taken, using the last five blocks of digits, for the 

logarithms of numbers from 101 to 600, and the mean determined merely from the highest 

and lowest number occurring, the following values were obtained :— 

Digits. 

1st hundred. 2nd hundred. 3rd hundred. 4th hundred. 5th hundred. 

L
o
w

es
t.

 

H
ig

h
e
st

. 

m
—

m
. 

L
o

w
es

t.
 

H
ig

h
e
st

. 

m
—

m
. 

L
o

w
es

t.
 

H
ig

h
e
st

. 

m
—

 m
. 

L
o

w
es

t.
 

H
ig

h
e
st

. 

77
1—

m
. 

L
o

w
es

t.
 

H
ig

h
e
st

. 

in
 -
 

m
. 

45-48 24 978 + 1-0 39 980 + 9-5 1 999 0 16 983 - 0-5 18 994 -)-6-0 

41-44 35-5 993 +14-0 3 960 -18-5 6 997 +1-5 1 978 —10-5 4 979 —8-5 

37-40 9 988 - 1-5 11 999 + 5-0 31 984 +7-5 4 978 - 9-0 2 986 -6.0 

33-36 7 995 + 1-0 13 997 + 5-0 4 998 +1-0 0 994 - 3-0 3 981 -8-0 

29-32 1 988 - 5-5 3 988 - 4-5 4 992 —2-0 1 996 - 1-5 21 977 -1-0 

It will be seen that these errors rarely exceed one-half of the standard error of the 

mean of the sample. The actual mean square error of these 25 values is 6-86, while the 

calculated value, \/50, is 7 • 07. It will therefore be seen that, with samples of only 100, 

there is no exaggeration in placing the efficiency of the method of moments as low as 

6 per cent, in comparison with the more accurate method, which in this case happens 

to be far less laborious. 

Such a value for the efficiency of the mean in this case is, however, purely conven¬ 

tional, since the curve of distribution is outside the region of its valid application, and 

the two curves of sampling do not tend to assume the same form. It is, however, 

convenient to have an estimate of the effectiveness of statistics for small samples, and 

in such cases we should prefer to treat the curve of distribution of the statistic as an 

error curve, and to judge the effectiveness of the statistic by the intrinsic accuracy of 

the curve as defined in Section 9. Thus the intrinsic accuracy of the curve of distri¬ 

bution of the mean of all the observations is 

12n 
9 5 

a 
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while that of the mean of the extreme values is 

2 5 a 

so yielding a ratio 3/n. It is probable that this quantity may prove a suitable substitute 

for the efficiency of a statistic for curves beyond its region of validity. 

To determine the efficiency of the moment coefficients /3i and /32 in determining the 

form of a Pearsonian curve, we must in general apply the method of Section 8 to the 

calculation of the simultaneous distribution of the four parameters of those curves when 

estimated by the method of maximum likelihood. Expressing the curve by the formula 

appropriate to Type IV., we are led to the determinant 

r +1r + 2r + 4 

a2 (r + 4 +v2) 

r +1 r + 2 v 

a2 (r + 4 + p2) 

r +1 r + 2 v 

a2 (r+4 + v2) 

r+l (2-r + 4 + p2) 

a2 (7+4 +p2) 

r+lr+2 

a (r + 2~ + v2) 

r + 1 v 

ct (r + 2 + v") 

r +1 v 

a (r + 2 + v2) 

r+ 2 + v“ 

a (r + 22 + j/2) 

r+1r+2 

a (r + 7 + v) 

r+1 v 

a(r + 2 +v2) 

r+1 v 

ci ( r + 2 + p 2 ) 

r + 2 + v2 

a (r + 2" + v2) 

S2 
- log F 

OP 

log F 

^2 C 
3 
ov or 

log F 

as the Hessian of —L, when 

F = e e”e sinr 6 cl6. 

The ratios of the minors of this determinant to the value of the determinant give 

the standard deviations and correlations of the optimum values of the four parameters 

obtained from a number of large samples. 

In discussing the efficiency of the method of moments in respect of the form of the 

curve, it is doubtful if it be possible to isolate in a unique and natural manner, as we 

have done in respect of location and scaling, a series of parameters which shall successively 

represent different aspects of the process of curve fitting. Thus we might find the 

efficiencies with which r and v are determined by the method of moments, or those of 

the parametric functions corresponding to and /T, or we might use m] and m2 as 

independent parameters of form ; but in all these cases we should be employing an 

arbitrary pair of measures to indicate tire relative magnitude of corresponding contour 

ellipses of the two frequency surfaces. 

For the symmetrical series of curves, the Types II. and VII., the two systems of 

3 c 2 
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ellipses are coaxial, the deviations of r and v being uncorrelated ; in the case of Type VII. 

we put v = 0, in the determinant given above, which then becomes 

r -11 V + 2 

r + 4 

0 

r+1 

r + 2 

0 

2r +1 

r + 4 

0 

' 1 

r + 2 

r+1 

r -f- 2 

0 

¥ (£ 

o F 

0 

1 

r + 2 

0 

2 J 
F (- 

and falls in the two factors 

r+1 \ _ (v —1 

-2 r + 4 
- F 

v + 1 r + 2 ^ / r \ 

. 2r + 4 -2/ 

r+l~ 

so that 

n<r( = 
2 r + 2 

•3 _ V 'r\ 
r + 2 F ) — 2 r +1 r + 4 

and 

Tirr? = 
4 r +1 r + 2 

r+1 r + 22 {hr)-f (k)\ -2 r + 4 1 2 / \2 / 

The corresponding expressions for the method of moments are 

)trr„ 
3 r2 r-2' (r2 + r+10) 

8 r-1r-3r-5 

and 

n«r. 
2 _ 2 rr-1' r —3 (r2—r + 18) 

r-5 r-7 

Since for moderately large values of r, we have, approximately, 

_ r 
r + 2" F ( }~ ) — 2 r+ 1 r + 4 = yr ( 1 — _ --2/> 

2/ 3 \ 5 r + 2 J 

16 1 

r+1 r + 2 F 
V— 1 

F - -2 r+1 r + 4 = 6- 
r + 2 

2 ? 

and 
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we have, approximately, for the efficiency of vtx, 

(r + 2';+1 r + 2 ... ) r— 1 r —3 r— 5 

(r2+r+10) r2 7" — 2“* 

or, when r is great, 

and for the efficiency of r(X, 

28'8 . 

or, when r is great, 

(r + 2“ + f... ) r + 1~ r—5 r—7 . 

(r2—r +18) r r — J" r — 3 

, 53-3 

The following table gives the values of the transcendental quantities required, and 

the efficiency of the method of moments in estimating the value of v and r from samples 

drawn from Type VII. distribution. 

r. 
r + 2'j F (^) 

- 2rTl r+1. 

Efficiency 
of v 

-3-2 --'2 
r + 1 r + 2 

‘WVMs)} 
- 2r+ 1 r + 4. 

Efficiency 
of r,x. 

5 5-31271 0 
6 5-31736 0-2572 
7 5-32060 0-4338 5-9473 0 
8 5-32296 0-5569 5-9574 0-1687 
9 5-32472 0-6449 5-9649 0-3130 

10 5-32607 0-7097 5-9706 0-4403 
11 5-32713 0-7586 5-9750 0-5207 
12 5-32797 0-7963 5-9787 0-5935 
13 5-32866 0-8259 5-9810 0-6519 
14 5-32919 0-8497 5-9839 0-6990 
15 5-9853 0-7376 
16 5-9870 0-7694 
17 5-9883 0-7959 
18 5-9895 0-8182 

It will be seen that we do not attain to 80 per cent, efficiency in estimating the form 

of the curve until r is about 17*2, which corresponds to ft2= 3-42. Even for sym¬ 

metrical curves higher values of (32 imply that the method of moments makes use of 

less than four-fifths of the information supplied by the sample. 
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On the other side of the normal point, among the Type II. curves, very similar formulae 

apply. The fundamental Hessian is 

r-1r-2 

r — 4 

r-1 

r-2 

0 
2 r-1 

r—4 

r-1 

r-2 

0 

0 U 

0 

r-2 

1 

r-2 

r-2 

where r is written for the positive quantity, - r, whence 

n&i 
2 r-2 

-3 V r — 9. 

r-2 F —r- -2r-lr-4 

and 

4 r— 1 r—2 

r-1 r-2 i F (^)-F ^ -2r-4 

Now since 

it follows that 

l \ 2 

r-2 F 
3 _ (r-2 

■2r-lr-4=r-2 F —y— ) — 2r r—3, 
r —4 

which is the same function of r—4 as 

7’ + 2 F 1 ^ j — 2 r +1 r + 4 

is of r. 

In a similar manner 

r+fr-22|f (~~) - f ^ )r -2 r-1 r-4 

-2 2 r —4 r—3l 0- 
= ’-! p— -F— )-2*-2r+l, 

which is the same function of r—3 as 

is of r 

r+lWhi^)— F(|)}_2r+l,-+4 
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In all these functions and those of the following table, r must be substituted as a 

positive quantity, although it must not be forgotten that r changes sign as we pass from 

Type VII. to Type II., and we have hitherto adhered to the convention that r is to 

be taken positive for Type VII. and negative for Type II. 

r. 
- 2r - 1 r - 4. 

Efficiency 
of 

-12-b2 r - 1 v - 2 

dF(V)-F(V)j 
- 2r - 1 r - 4. 

Efficiency 
of r,A. 

2 4 0 4 0 
3 4-93480 0-0576 5-1595 0-0431 
4 5-15947 0-2056 5-5648 0-1445 
5 5-23966 0-3590 5-7410 0-2613 
6 5-27578 0-4865 5-8305 0-3708 
7 5-29472 0-5857 5-8813 0-4653 
8 5-30576 0-6615 5-9126 0-5441 
9 5-31271 0-7198 5-9331 0-6090 

10 5-31736 O-7650 5-9473 0-6624 
11 5-32060 0-8005 5-9574 0-7063 
12 5-32296 0-8287 5-9649 0-7427 
13 5-32472 0-8516 5-9706 0-7731 
14 5-32607 0-8702 5-9750 0-7986 
15 5-9787 0-8202 

In both cases the region of validity is bounded by the rectangle, at the point B 

(fig. 2, p. 343). Efficiency of 80 per cent, is reached when r is about 14-1 — 2-65). 

Thus for symmetrical curves of the Pearsonian type we may say that the method of 

moments has an efficiency of 80 per cent, or more, when /32 lies between 2*65 and 3-42. 

The limits within which the values of the parameters obtained by moments cannot be 

greatly improved are thus much narrower than has been imagined. 

11. The Reason for the Efficiency of the Method of Moments in a Small 

Region surrounding the Normal Curve. 

We have seen that the method of moments applied in fitting Pearsonian curves has 

an efficiency exceeding 80 per cent, only in the restricted region for which /32 lies between 

the limits 2*65 and 3-42, and as we have seen in Section 8, for which /3, does not exceed 

0 • 1. The contours of equal efficiency are nearly circular or elliptical within these 

limits, if the curves are represented as in fig. 2, p. 343, and are ultimately centred round 

the normal point, at which point the efficiencies of all parameters tend to 100 per cent. 

It was, of course, to be expected that the first two moments would have 100 per cent, 

efficiencies at this point, for they happen to be the optimum statistics for fitting 

the normal curve. That the moment coefficients /3X and also tend to 100 per cent, 

efficiency in this region suggests that in the immediate neighbourhood of the normal 
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curve the departures from normality specified by the Pearsonian formula agree with 

those of that system of curves for which the method of moments gives the solution of 

maximum likelihood. 

The system of curves for which the method of moments is the best method of fitting 

may easily be deduced, for if the frequency in the range clx be 

y (x, 0i, 02, 0b 04) dx, 
then 

must involve x only as polynomials up to the fourth degree ; consequently 

— g-a?(.x*+pix3+p2X2+p3x+iH) 

the convergence of the probability integral requiring that the coefficient of xl should be 

negative, and the five quantities a, pu p2, p3, p:l being connected by a single relation, 

representing the fact that the total probability is unity. 

Typically these curves are bimodal, and except in the neighbourhood of the normal 

point are of a very different character from the Pearsonian curves. Near this point, 

however, they may be shown to agree with the Pearsonian type ; for let 

y = Ce -a 
..2 T* 

-E5+*'5+fcfi 

represent a curve of the quartic exponent, sufficiently near to the normal curve for the 

squares of /q and h, to be neglected, then 

A 
dx 

log y = -~. 
(T 

%(l-3ki- -idA 
W \ nr 

X 

(j 

cr2( l + 3h- + 4frA 
(T 

neglecting powers of and k2. Since the only terms in the denominator constitute a 

quadratic in x, the curve satisfies the fundamental equation of the Pearsonian type of 

curves. In the neighbourhood of the normal point, therefore, the Pearsonian curves 

are equivalent to curves of the quartic exponent; it is to this that the efficiency of ;u:. 

and /xr in the neighbourhood of the normal curve, is to be ascribed. 

12. Discontinuous Distributions. 

The applications hitherto made of the optimum statistics have been problems in 

which the data are ungrouped, or at least in which the grouping intervals are so small 

as not to disturb the values of the derived statistics. By grouping, these continuous 
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distributions are reduced to discontinuous distributions, and in an exact discussion must 

be treated as such. 

If ps be the probability of an observation falling in the cell (s), rps being a function of 

the required parameters 0,, eu... ; and in a sample of N, if ns are found to fall into 

that cell, then 

S (log/) = S (n, logps). 

If now we write ns = psN, we may conveniently put 

L = S ( n, log — j > 
‘ nj 

where L differs by a constant only from the logarithm of the likelihood, with sign 

reversed, and therefore the method of the optimum will consist in finding the minimum 

value of L. The equations so found are of the form 

3L 

00 
-sf 

\n 

nQ otia 

00/ 
0. (6) 

It is of interest to compare these formulae with those obtained by making the Pearsonian 

X2 a minimum. 

For 

2 _ a {ns-nsY 
X — &-’ 

ns 

and therefore 

1+x2 5 

so that on differentiating bv do, the condition that / should be a minimum for variations 

of 0 is 

= 0 (7) 

Equation (7) has actually been used (12) to “ improve ” the values obtained by the 

method of moments, even in cases of normal distribution, and the Poisson series, where 

the method of moments gives a strictly sufficient solution. The discrepancy between 

these two methods arises from the fact that / is itself an approximation, applicable 

only when ns and ns are large, and the difference between them of a lower order of 

magnitude. In such cases 

L = S 

and since 

VOL. ccxXII.—A. 

i nc\ a l- 1 m + x ns log zr) = o \m-\-x fog- 
m 

>S \x+ --7U,. 
2m 6 m 

S (x) = 0, 

3 D 
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we have, when x is in all cases small compared to m, 

as a first approximation. In those cases, therefore, when x2 is a valid measure of the 

departure of the sample from expectation, it is equal to 2L ; in other cases the approxi¬ 

mation fails and L itself must be used. 

The failure of equation (7) in the general problem of finding the best values for the 

parameters may also be seen by considering cases of fine grouping, in which the majority 

of observations are separated into units. For the formula in equation (6) is equivalent to 

where the summation is taken over all the observations, while the formula of 

equation (7), since it involves n2, changes its value discontinuously, when one 

observation is gradually increased, at the point where it happens to coincide with a 

second observation. 

Logically it would seem to be a necessity that that population which is chosen in 

fitting a hypothetical population to data should also appear the best when tested for 

its goodness of fit. The method of the optimum secures this agreement, and at the 

same time provides an extension of the process of testing goodness of fit, to those cases 

for which the x2 test is invalid. 

The practical value of x2 Fes in the fact that when the conditions are satisfied in 

order that it shall closely approximate to 2L, it is possible to give a general formula 

for its distribution, so that it is possible to calculate the probability, P, that in a random 

sample from the population considered, a worse fit should be obtained ; in such cases 

X2 is distributed in a curve of the Pearsonian Type III., 

df (|) ^ 
or 

df cc L 2 e-L dh, 

where nf is one more than the number of degrees of freedom in which the sample may 

differ from expectation (17). 

In other cases we are at present faced with the difficulty that the distribution L 

requires a special investigation. This distribution will in general be discontinuous (as 

is that of x2), but it is not impossible that mathematical research will reveal the existence 

of effective graduations for the most important groups of cases to which x2 cannot 

be applied. 
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We shall conclude with a few illustrations of important types of discontinuous 

distribution. 

1. The Poisson Series. 

m2 

2P 

involves only the single parameter, and is of great importance in modern statistics. 

For the optimum value of m. 

whence 

or 

S (—m + x log m) 
dm 

= 0, 

m = x. 

The most likely value of m is therefore found by taking the first moment of the series. 

Differentiating a second time, 

so that 

as is well known. 

A = s(-A =-*. 
o-fo \ ml m 

3 m 

n 

2. Grouped Normal Data. 

In the case of the normal curve of distribution it is evident that the second moment 

is a sufficient statistic for estimating the standard deviation ; in investigating a sufficient 

solution for grouped normal data, we are therefore in reality finding the optimum 

correction for grouping ; the Sheppard correction having been proved only to satisfy 

the criterion of consistency. 

For grouped normal data we have 

Ps = 

1 

0"\/ 2-7T 

and the optimum values of m and a are obtained from the equations, 

3 d 2 
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or, if we write, 

e ^ , 

we have the two conditions, 

and 

V ^j7T 

S ( — Zs-zs+1) = 0 
Ps 

a ns xs 
b — zs 

l Pm U 
x » I i \ 

Z 1 I "j + l / = 0. 

As a simple example we shall take the case chosen by Iv. Smith in her investigation of 

the variation of in the neighbourhood of the moment solution (12). 

Three hundred errors in right ascension are grouped in nine classes, positive and 

negative errors being thrown together as shown in the following table :— 

2-3 

53 

3-4 

24 

0"*1 arc 0-1 1-2 

Frequency . . 114 84 

The second moment, without correction, yields the value 

0-,, = 2-282542. 

Using Sheppard's correction, we have 

O-,. = 2-264214, 

while the value obtained by making a minimum is 

4-5 5-6 

14 6 

6-7 

3 

7-8 

1 

8-9 

1 

crx 2 = 2 • 355860. 

If the latter value were accepted we should have to conclude that Sheppard’s correc¬ 

tion, even when it is small, and applied to normal data, might be altogether of the 

wrong magnitude, and even in the wrong direction. In order to obtain the optimum 

8L 
value of <t, we tabulate the values of in the region under consideration; this may 

cer 

be done without great labour if values of <x be chosen suitable for the direct application 

of the table of the probability integral (13, Table II.). We then have the following 

values :— 

1 

(X 
(>'43 0'44 0'45 016 

0L 

err 
+ 15* 135 + 2149 - H’098 -24-605 ' 

A2— 
3(7 

— 0'261 - 0'260 
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By interpolation, 

i = 0’441624 
or 

a = 2-26437. 

We may therefore summarise these results as follows 

Uncorrected estimate of a-. 2 • 28254 

Sheppard’s correction. —0-01833 

Correction for maximum likelihood. —0*01817 

“ Correction ” for minimum +  +0*07332 

Far from shaking our faith, therefore, in the adequacy of Sheppard’s correction, 

when small, for normal data, this example provides a striking instance of its effective¬ 

ness, while the approximate nature of the + test renders it unsuitable for improving a 

method which is already very accurate. 

It will be useful before leaving the subject of grouped normal data to calculate the 

actual loss of efficiency caused by grouping, and the additional loss due to the small 

discrepancy between moments with Sheppard’s correction and the optimum solution. 

To calculate the loss of efficiency involved in the process of grouping normal data, let 

when do- is the group interval, then 

v =/(£) + ~ f" {£) + 
a qs 

1920322,560'^ ^ + 

-fid 1 1 + L <r_1) + TU777^t-6U + 3) + 
a qu 

l 1920 322,560 
(+-15f4 + 45f-15) + .., 

whence 

log v = log / + fj (f -1) - (f + - 2) + (? + 6t + 3f-1) - 

and 

^2 0 

dnr >log *--? + M T5 - Wo{3f+2) + *sko (5#‘+12^+1> 

1 J1 _ a/_ a4 q6 

+1 12 144 ~ 4320 ' ’' J ’ 

of which the mean value is 
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neglecting the periodic terms ; and consequently 

2 <t f 1 aj~ a 

** ~ n \ 12 2880 

Now for the mean of ungrouped data 
2 (T 

= ~ 
n 

so that the loss of efficiency due to grouping is nearly 
a 

12 

The further loss caused by using the mean of the grouped data is very small, for 

a _ v2 _ * n , a \ 
- ~ — — 1 + 77> > n n \ 12/ 

neglecting the periodic terms ; the loss of efficiency by using v\ therefore is only 

a 

2880 

Similarly for the efficiency for scaling, 

i 1 3f2 1 [a3 A-2 0\ 

a 
26^+110^+36^-7) 

a 

360 

a 

30,240 

of which the mean value is 

1,814,400 

(9f + 21f2-5) 

(51f+ 315^6+351f4-55f2+9) + ...}, 

_ 2_ J _ af a4 ad 83cd 

6 + 40 270 + 129,600 

neglecting the periodic terms ; and consequently 

a 2 C 2 4 

_ a = *_i 1 + 2l + JL__ 

2n\ 6 360 10,800 

For ungrouped data 

so that the loss of efficiency in scaling due to grouping is nearly —. This may be made 

as low as 1 per cent, by keeping a less than j. 

The further loss of efficiency produced by using the grouped second moment with 

Sheppard's correction is again very small, for 

2 _ V4 — V2 _ 2(F / A or r( i 

V‘ n n 6 360 

neglecting the periodic terms. 
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Whence it appears that the further loss of efficiency is only 

a8 

10,800 ' 

We may conclude, therefore, that the high agreement between the optimum value of 

a- and that obtained by Sheppard’s correction in the above example is characteristic 

of grouped normal data. The method of moments with Sheppard’s correction is highly 

efficient in treating such material, the gain in efficiency obtainable by increasing the 

likelihood to its maximum value is trifling, and far less than can usually be gained by 

using finer groups. The loss of efficiency involved in grouping may be kept below 

1 per cent, by making the group interval less than one-quarter of the standard deviation. 

Although for the normal curve the loss of efficiency due to moderate grouping is very 

small, such is not the case with curves making a finite angle with the axis, or having at 

an extreme a finite or infinitely great ordinate. In such cases even moderate grouping 

may result in throwing away the greater part of the information which the sample 

provides. 

3. Distribution of Observations in a Dilution Series. 

An important type of discontinuous distribution occurs in the application of the 

dilution method to the estimation of the number of micro-organisms in a sample of 

water or of soil. The method here presented was originally developed in connection 

with Mr. Cutler’s extensive counts of soil protozoa carried out in the protozoological 

laboratory at Rothamsted, and although the method is of very wide application, this 

particular investigation affords an admirable example of the statistical principles 

involved. 

In principle the method consists in making a series of dilutions of the soil sample, 

and determining the presence or absence of each type of protozoa in a cubic centimetre 

of the dilution, after incubation in a nutrient medium. 

The series in use proceeds by powers of 2, so that the frequency of protozoa in each 

dilution is one-half that in the last. 

The frequency at any stage of the process may then be represented by 

n 
m — —, 

2X 

when x indicates the number of dilutions. 

Under conditions of random sampling, the chance of any plate receiving 0, 1. 2. 3 

protozoa of a given species is given by the Poisson series 
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and in consequence the proportion of sterile plates is 

and of fertile plates 

p = e m, 

q = I — e_m. 

In general we may consider a dilution series with dilution factor a so that 

and assume that s plates are poured from each dilution. 

The object of the method being to estimate the number n from a record of the sterile 

and fertile plates, we have 

L = Si (log p) +S, (log q) 

when Sx stands for summation over the sterile plates, and S2 for summation over those 

which are fertile. 

Now 
cp 

d log n 

dq 

0 log n 
= P log p, 

so that the optimum value of n is obtained from the equation, 

0L 

0 log n 
Si (log p) -S21]~ log p ) = 0. 

Differentiating a second time, 

02L 
(log nf 

r, = Si (log p) — So | (log p + 1 + j |; 
q 

now the mean number of sterile plates is^a.9, and of fertile plates qs, so that the mean 

Talue of 
02L 

0 (log nY 
is 

-r,-= -sS ; p log p— p log p (log p + 1 + — log p) 
^ log n L (] 

the summation. S, being extended over all the dilutions. 

It thus appears that each plate observed adds to the weight of the determination 

of log n a quantity 

w — (log pY. 

[ = -sS v-(log p)2r, 
■J l q 
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We give below a table of the values of p, and of iv, for the dilution series log p — 2 x 

from x — —4 to x — 11. 

X. V■ IV. S (w;) (per cent.). 
1 

-4 0-00000014167 0-000036 0-002 
-3 0-0003354626 0-021477 0-906 
-2 0-01831564 0-298518 13-485 
-1 0-1353353 0-626071 39-865 

0 0-3678794 0-581977 64-388 
1 0-6065306 0-385355 80-625 
2 0-7788009 0-220051 89-897 
3 0-8824969 0-117350 94-842 
4 0-9394110 0-060565 97-394 
5 0-9692333 0-030764 98-690 
6 0-9844965 0-015503 99-343 
7 0-9922179 0-007782 99-671 
8 0-9961014 0-003899 99-836 
9 0-9980488 0-001951 99-918 

10 0-9990239 0-000976 99-959 
11 0-9995119 0-000488 99-979 • 

Remainder 0-000488 

Total 2-373251 

For the same dilution constant the total S (w) is nearly independent of the particular 
2 

series chosen. Its average value being—;-, or in this case 2-373138. The fourth 
6 log a 

column shows the total weight attained at any stage, expressed as a percentage of that 

obtained from an infinite series of dilutions. It will be seen that a set of eight dilutions 

comprise all but about 2 per cent, of the weight. With a loss of efficiency of only 2 to 

2-| per cent., therefore, the number of dilutions which give information as to a particular 

species may be confined to eight. To this number must be added a number depending 

on the range which it is desired to explore. Thus to explore a range from 100 to 100,000 

per gramme (about 10 octaves) we should require 10 more dilutions, making IS in all, 

while to explore a range of a millionfold, or about 20 octaves, 28 dilutions would be 

needed. 

• In practice it would be exceedingly laborious to calculate the optimum value of n for 

each series observed (of which 38 are made daily). On the advice of the statistical 

department, therefore, Mr. Cutler adopted the plan of counting the total number of 

sterile plates, and taking the value of n which on the average would give that number. 

When a sufficient number of dilutions are made, log n is diminished by - log a for each 
" s 

additional sterile plate, and even near the ends of the series the appropriate values of 

n may easily be tabulated. Since this method of estimation is of wide application, 

and appears at first sight to be a very rough one, it is important to calculate its efficiency. 

VOL. CCXXII.-A. 3 E 
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For any dilution the variance in the number of sterile plates is 

spq,. 

and as the several dilutions represent independent samples, the total variance is 

6-S (pq), 

,. = fl^S(pq). 
hence 

log ) 

Now S (pq) has an average value , therefore taking a = 2, 
b log a 

and 
(log a)2 — ‘480453, 

S (pq) = 1 

being very nearly constant and within a small fraction of unity ; whence the efficiency 

of the method of counting the sterile plates is 

-7-r—- = 8771 per cent., 
7r log 2 

a remarkably high efficiency, considering the simplicity of the method, the efficiency 

being independent of the dilution ratio. 

13. Summary. 

During the rapid development of practical statistics in the past few decades, the 

theoretical foundations of the subject have been involved in great obscurity. Adequate 

distinction has seldom been drawn between the sample recorded and the hypothetical 

population from which it is regarded as drawn. This obscurity is centred in the so-called 

“ inverse methods. 

On the bases that the purpose of the statistical reduction of data is to obtain statistics 

which shall contain as much as possible, ideally the whole, of the relevant information 

contained in the sample, and that the function of Theoretical Statistics is to show how 

such adequate statistics may be calculated, and how much and of what kind is the 

information contained in them, an attempt is made to formulate distinctly the types 

of problems which arise in statistical practice. 

Of these, problems of Specification are found to be dominated by considerations which 

may change rapidly during the progress of Statistical Science. In problems of Distri¬ 

bution relatively little progress has hitherto been made, these problems still affording 

a field for valuable enquiry by highly trained mathematicians. The principal purpose 

of this paper is to put forward a general solution of problems of Estimation. 
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Of the criteria used in problems of Estimation only the criterion of Consistency has 

hitherto been widely applied ; in Section 5 are given examples of the adequate and 

inadequate application of this criterion. The criterion of Efficiency is shown to be a 

special but important case of the criterion of Sufficiency, which latter requires that the 

whole of the relevant information supplied by a sample shall be contained in the statistics 

calculated. 

In order to make clear the nature of the general method of satisfying the criterion 

of Sufficiency, which is here put forward, it has been thought necessary to reconsider 

Bayes’ problem in the light of the more recent criticisms to which the idea of “ inverse 

probability ” has been exposed. The conclusion is drawn that two radically distinct 

concepts, both of importance in influencing our judgment, have been confused under 

the single name of probability. It is proposed to use the term likelihood to designate 

the state of our information with respect to the parameters of hypothetical populations, 

and it is shown that the quantitative measure of likelihood does not obey the mathe¬ 

matical laws of probability. 

A proof is given in Section 7 that the criterion of Sufficiency is satisfied by that set 

of values for the parameters of which the likelihood is a maximum, and that the same 

function may be used to calculate the efficiency of any other statistics, or. in other- 

words, the percentage of the total available information which is made use of by such 

statistics. 

This quantitative treatment of the information supplied by a sample is illustrated by 

an investigation of the efficiency of the method of moments in fitting the Pearsonian 

curves of Type III. 

Section 9 treats of the location and scaling of Error Curves in general, and contains 

definitions and illustrations of the intrinsic accuracy, and of the centre of location of such 

curves. 

In Section 10 the efficiency of the method of moments in fitting the general Pearsonian 

curves is tested and discussed. High efficiency is only found in the neighbourhood of 

the normal point. The two causes of failure of the method of moments in locating these 

curves are discussed and illustrated. The special cause is discovered for the high 

efficiency of the third and fourth moments in the neighbourhood of the normal point. 

It is to be understood that the low efficiency of the moments of a sample in estimating 

the form of these curves does not at all diminish the value of the notation of moments as 

a means of the comparative specification of the form of such curves as have finite moment 

coefficients. 

Section 12 illustrates the application of the method of maximum likelihood to dis¬ 

continuous distributions. The Poisson series is shown to be sufficiently fitted by the 

mean. In the case of grouped normal data, the Sheppard correction of the crude 

moments is shown to have a very high efficiency, as compared to recent attempts to 

improve such fits by making y2 a minimum ; the reason being that x2 is an expression 

only approximate to a true value derivable from likelihood. As a final illustration of 
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the scope of the new process, the theory of the estimation of micro-organisms by the 

dilution method is investigated. 

Finally it is a pleasure to thank Miss W. A. Mackenzie, for her valuable assistance 

in the preparation of the diagrams. 
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(1) Introductory. 

Modern theoretical investigations have met with signal success in providing an explana¬ 

tion for the production of the primary spectrum of Hydrogen, generally known as the 

Balmer series, but the many-lined or secondary spectrum has hitherto proved to be a 

much more formidable problem. There can be little doubt that a completely satis¬ 

factory explanation of its genesis will mark an important step in our knowledge oi 

the origin of spectra. The detection of regularities amongst such a vast number of lines 

is in itself an exceedingly difficult task, and one for which it is essential that the data 

relating to wave-lengths should be accurate and complete. 

Although some of the early investigators were of the opinion that the secondary 

spectrum was to be referred to impurities in the discharge tube, it is now generally 
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agreed that both the Balmer series and the secondary spectrum are to he attributed to 

Hydrogen. The relative intensities of the two spectra vary in a surprising manner. 

Such traces of Hydrogen as are necessary to exhibit the earlier members of the Balmer 

series are indeed difficult to eliminate from luminous sources, but the secondary spectrum 

only appears in sources in which considerable quantities of Hydrogen are present, and 

its intensity relative to that of the Balmer series is greatly enhanced by the complete 

removal of all impurities. 

It has long been known that in the spectrum of water vapour the lines of the secondary 

spectrum are very weak, and many investigations have shown that the intensity of the 

secondary spectrum is greatly reduced by the presence of small traces of mercury 

vapour and. other impurities. The relative intensities of the two spectra are affected by 

variations in the electrical excitation, but for a high relative intensity of the secondary 

spectrum purity of the gas is essential. The appearance of the discharge in vacuum 

tubes containing Hydrogen of the highest degree of purity is indeed strikingly different 

from that observed in hydrogen tubes prepared without special precautions, the former 

being of an almost white colour whilst the latter show the familiar red glow, which is 

due to the predominance of the red line, Ila, of the Balmer series.* In a recent 

investigation, Wood (‘ Roy. Soc. Proc.,’ A, 97, p. 455, 1920 ; £ Phil. Mag.,’ 6, 251, 

p. 729, 1921) has described a number of interesting phenomena which he has observed 

in long vacuum tubes containing Hydrogen which were excited by a high potential 

transformer. Many of these observations cannot at present be explained fully, but 

the influence of traces of impurities is shown to be an important factor. 

It is well known that the secondary spectrum appears under less energetic conditions 

of excitation than the Balmer series, the latter alone being found in vacuum tubes 

excited by powerful condensed discharges, and important investigations by Fulcher 

(£ Astrophys. Journ.,’ 34, p. 388, 1911 ; 37, p. GO, 1913) have shown that when Hydrogen 

is excited by the impact of cathode rays the relative intensity of the secondary spectrum 

increases as the velocity of the cathode rays is reduced. Fulcher also found similar 

variations in intensity amongst the lines of the secondary spectrum itself, and identified 

a number of lines as characteristic of low potential discharges. It was found that these 

low potential lines exhibited regularities somewhat resembling those associated with band 

spectra. These regularities and their relation to other phenomena will be discussed in 

a later section. Any method by which the lines of so complex a spectrum can be 

separated into different physically related groups, cannot fail to yield results which 

will prove of assistance in theoretical investigations. 

It has been pointed out in a previous communication (Merton, £ Roy. Soc. Proc.,’ A, 

96, p. 382, 1920) that the relative intensities of the secondary lines are affected by the 

pressure in the discharge tube, the Fulcher bands being enhanced at low pressures, but 

* These remarks do not apply without amplification to the case of tubes excited by discharges of exceed¬ 

ingly low current density. In the presence of water vapour the intensity of the Balmer lines, relative to 

the secondary spectrum, increases very rapidly with the current density. 
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that a much more striking change can be brought about by the admixture of Helium. 

It was found that in the presence of Helium some of the lines were greatly enhanced 

and that a number of new lines appeared ; another class of lines were apparently 

unaffected, whilst a third class showed a marked reduction in intensity.* 

There are two other methods by which the lines have been classified. Dufour 

(‘Ann. Chim. et Phys.’ (9), 361, 1906; ‘ Journ. de Phvs.’ (4), 8, p. 258, 1909) has 

investigated the Zeeman effect for the secondary spectrum, and has found that a large 

number of the lines are not affected in the magnetic field. This classification of the 

lines has been shown by Fulcher (loc. cit.) to be related to the results which he obtained 

by varying the velocities of the exciting cathode rays, and to the regularities which he 

found in the spectrum. The Stark effect, the resolution of the lines into components 

in an electric field, has been studied by Takamine and Yoshida (‘ Mem. Coll, of Sci. 

Kyoto,’ 2, p. 321, 1917), by Nitta (ibid., 2, p. 349, 1917) and by Takamine and Kokubu 

{ibid., 3, p. 271, 1919), who have found that the effect is exhibited by 54 lines in the 

spectrum. Such investigations and those of Dufour (loc. cit.), relating to the Zeeman 

effect, are necessarily restricted to the stronger lines of the spectrum, and their value 

as a means of classification is greatly increased when they can be correlated to changes 

in the spectrum of a kind which permit of observation for all the lines. 

The wave-lengths of the lines in the secondary spectrum have been measured by 

Hasselberg (‘ Mem. Acad.,’ St. Petersburg (7), 30, No. 7, 1882 ; ibid. (7), 31, No. 14, 

1883 ; ‘ Phil. Mag.’ (5), 17, p. 329, 1882), Ames (‘ Phil. Mag.,’ 30, p. 33, 1890), Frost 

(‘ Astrophys. Journ.,’ 16, p. 100, 1902), Watson (' Hoy. Soc. Proc.,’ A, 82, p. 189, 1909), 

Porlezza (‘ Atti Accad. Lincei,’ 20 (2), p. 178, 1911), Porlezza and Norzi (ibid., 20 (1), 

p. 822, 1911), and Croze (‘Ann. de Phys.’ (9), 1, 48, 1914), but the results obtained by 

these investigators differ widely in their estimates of the relative intensities of the lines, 

which is greatly dependent on the particular conditions under which the spectrum is 

produced, and it would appear also that the tables are by no means complete, more 

especially in the yellow green regions of the spectrum, for which it has only recently 

been possible to obtain photographic plates of a sufficiently high degree of sensibility 

for recording lines of low intensity with a moderately high dispersion. 

There has been much difference of opinion as to whether the secondary spectrum is 

to be attributed to the Hydrogen atom or to the molecule. To the theoretical physicist 

this is a question of vital importance, for there appears to be little prospect of explaining 

the origin of the spectrum as due to the Hydrogen atom on the views which are at present 

accepted with regard to its structure. Evidence on this question has been sought in 

investigations of the Doppler effect in positive rays by Stark (‘ Astrophys. Journ.,’ 25, 

pp. 23 and 170, 1907), Wilsar (‘Ann. der Phys.,’ 37, p. 1251, 1912) and Fulcher 

(‘Astrophys. Journ.,’ 35, p. 101, 1912), and more recently by Thomson (‘ Phil. Mag.’ 

* Experiments on the effect of Argon on the secondary spectrum are now in progress. It would appear 

that if the presence of Argon gives rise to any changes similar to those produced by the presence of Helium, 

they are at any rate very much less conspicuous. 

3 F 2 
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(6), 40, p. 240, 1920 ; ibid. (6), 41, p. 566, 1921), and Vegard (ibid. (6), 41, p. 558, 1921), 

but it would appear doubtful whether any conclusive evidence as to the origin of the 

spectrum can be obtained by these methods. 

In their investigations of the widths of spectrum lines Buisson and Fabry (' Jonrn. 

de Phys.’ (2), p. 442, 1912) were led to conclude that the secondary spectrum was to 

be referred to the Hydrogen atom. This conclusion was based on a measurement of 

the limiting order at which interference fringes could be observed for a line in the 

secondary spectrum, the relation between the limiting order of interference N and the 

mass M of the radiating particle (in terms of the Hydrogen atom as unity) being given 

by the expression N = kx/(M/6), where k is a constant and 0 the absolute temperature 

(cf. Bayleigii, £ Phil. Mag.’ (6), vol. 29, p. 274, 1915 ; Schonrock, ‘ Ann. der Phys.,’ 

20, p. 995, 1906). 

For the constant k Buisson and Fabry, following Schonrock, adopted the value 

1-22 X 10e, and the value of N which they found experimentally was in approximate 

agreement with the view that the spectrum was to be referred to the atom. This result 

has recently been criticised by Saha (£ Phil. Mag.’ (6), 40, p. 159, 1920) on the ground 

that Buisson and Fabry obtained a much smaller value for N in the case of the line 

Ha, the first member of the Balrner series, and that if the value of k in the formula given 

above were calculated from the observed limit of interference for the line Ha, the 

secondary line would yield a value of M more nearly appropriate to the molecule H.. 

The ground of this criticism does not appear to us to be justified, for it is well known that 

the line Ha is complex and could not therefore be expected to yield results in accord¬ 

ance with the theory for a single line, and moreover Saha appears to have overlooked 

the fact that the value of k adopted by Buisson and Fabry was tested experimentally 

with lines of the rare gases, and was found to give results in close agreement with the 

known atomic weights of these gases. 

It must, however, be pointed out that any cause of broadening of the lines other than 

that due to motion in the line of sight will yield too low a value for the mass of the 

radiating particles ; and it follows that measurements of this kind can only set an 

inferior limit to the mass, unless the possibility of broadening of the lines bv any other 

cause can be excluded. 

In the present investigation we have remeasured the wave-lengths of the lines of the 

secondary spectrum in International Angstrom units, and have been able to add a con¬ 

siderable number of lines to those hitherto recorded. We have also investigated the 

effect of variations in the conditions of electrical excitation, and of the pressure in the 

discharge-tube, on the relative intensities of the lines, and have compared the results 

obtained with other methods of classification ; previous investigations (Merton, loc. cit.) 

of the changes in the spectrum which are produced by the admixture of Helium have 

been extended to the more refrangible regions. The widths of several lines in the 

'secondary spectrum have been measured by a new method with which it is believed 

that a high degree of precision has been attained, and under conditions of excitation 
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which have made it possible to establish the conclusion that the secondary spectrum is 

to be referred to the Hydrogen molecule. 

(2) Experimental. 

As the source of the spectrum vacuum tubes of the H type have been used, and have 

been designed on lines indicated by the investigations of Wood (loc. cit.) so as to give the 

secondary spectrum as strongly as possible. The usual capillary tube of a few inches 

in length was replaced by tubes of from 20 to 50 cm. in length and of about 5 to 8 mm. 

internal diameter. The electrodes consisted of spirals of aluminium ribbon, and the 

tubes were provided with palladium tubes, which were sealed through the intermediary 

of short platinum tubes into side tubes in the usual manner. Pure Hydrogen could be 

admitted by heating these palladium tubes in a flame or in a current of Hydrogen, or 

alternatively the Hydrogen in the tubes could be removed by heating the palladium in 

an atmosphere from which Hydrogen was absent. In some cases the tubes were cleaned 

before exhaustion by washing them out with a very dilute solution of hydrofluoric acid, 

followed by distilled water ; this procedure was found to be very effective. The tubes 

wTere exhausted by means of an oil pump, and the evacuation was completed by means 

of a bulb containing charcoal, which was cooled with liquid air. For some of the tubes 

a Gaede mercury pump was used and in all cases the tubes were washed out during the 

process of exhaustion by the frequent admission of Hydrogen through the palladium 

tubes. In the case of tubes containing Helium, this gas was prepared by heating 

powdered Thorianite in a fused silica tube, and was purified before entering the vacuum 

tubes by passage through a U-tube containing charcoal cooled with liquid air. 

The tubes were excited by the current from a large induction coil provided with a 

mercury jet interrupter, and in some experiments a 15,000 volt £ kilowatt step-up 

transformer was used. It should be mentioned that although the utmost care was taken 

to remove the carbon compounds and other impurities with which vacuum tubes are 

liable to be contaminated, before the tubes were sealed off, the highest degree of purity, 

as shown by the intensity of the secondary spectrum relative to that of the Balmer 

series, was never attained until a discharge had been passed for several hours and the 

aluminium mirrors, which were deposited on the tubes around the electrodes, had 

removed the last traces of impurities which had been present in such small quantities 

when the tubes were sealed off that they could not be detected by any characteristic 

bands or lines in the spectrum. 

(3) Wave-length Measurements. 

The earliest tables of wave-length of the secondary spectrum are due to Hasselberg 

(loc. cit.), and although his measurements were made visually, and are not accurate 

enough for modern requirements, they are more complete than later photographic 
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records in the green regions of the spectrum, in which the sensibility of the eye is a 

maximum and that of most panchromatic plates a minimum. Frost (loc. cit.) and 

Ames (loc. cit.) have published short lists of some of the stronger lines, but the most 

comprehensive and accurate table is due to Watson (loc. cit.), who has recorded most 

of the lines in the red and yellow, and in the ultra-violet, but has not included a con¬ 

siderable number of lines in the green regions of the spectrum. Watson found no 

lines of wave-length greater than the Balmer line Ha. Porlezza (loc. cit.) and Porlezza 

and Norzi (loc. cit.) have published tables which supplement those of Watson, and 

Croze (loc. cit.) has measured lines in the infra-red down to 78000A. 

The measurements included in the present investigation extend from Ha to the limits 

imposed in the ultra-violet by the thin glass wall of the discharge-tube, the shortest 

wave-length recorded being 73375 A, but the continuous spectrum of Hydrogen could 

be traced on the plates to wave-lengths shorter than 73000 A, and as there were no 

indications of lines superposed on the background in this region, we did not resort to 

the use of vacuum-tubes provided with quartz windows. It is intended ultimately to 

extend the measurements into the infra-red. We have used an Anderson concave 

grating ruled with 20,000 lines to the inch, and having a radius of curvature of 120 cm., 

which gave a dispersion of very nearly 10 A per millimetre. The mounting was of the 

type described by Eagle (£ Astrophys. Journ.,’ 31, p. 120, 1910), which involves three 

adjustments in focussing, of which, two determine the angles made respectively by the 

grating and by the photographic plate with the incident light, whilst the third is used 

to vary the distance between the grating and the plate. The necessary adjustments for 

different regions of the spectrum were found from experimentally prepared tables. 

Plates of especially thin glass were used and were bent to the appropriate curvature in 

the plate-liolder. 

The regions from 76560 to 75400 were photographed on Wratten and Wainwright 

Panchromatic plates, from 75400 to 74860 on Marion’s Iso-Record plates which are 

specially sensitive to this region, and from 74860 to the ultra-violet on Ilford Ordinary 

plates. The vacuum tubes were used end-on, the light from the capillary being focussed 

upon the slit of the spectrograph by means of a quartz lens of about 30 cm. focal length. 

The exposures required to bring up the faintest lines which were measured were five 

hours with the Panchromatic plates and three and a half hours with the Iso-Record and 

Ilford plates. The International Secondary standards were used as a comparison 

spectrum, the source of light being a Pfund (£ Astrophys. Journ.,’ 27, p. 296, 1908) arc 

burning with a current of about 3 amps, at 100 volts. The comparison spectrum was 

limited by a movable stop in the spectrograph to a narrow strip running across the 

middle of the Hydrogen spectrum. It was found impossible to ensure the absence of 

very small shifts between the Hydrogen and the comparison spectra, which were photo¬ 

graphed consecutively on the same plate, and to eliminate errors, due to these shifts, 

from the measurements the following procedure was adopted. A tube containing 

Helium and Hydrogen was substituted for the tube containing pure Hydrogen and a 
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series of plates taken throughout the spectrum, the series lines of both elements and 

also most of the secondary Hydrogen spectrum, being recorded. The wave-lengths of 

the first six members of the Balmer series, and of the Parhelium fines included in the 

range required, were measured on these plates, together with those of about 100 secondary 

Hydrogen lines. 

The deviations of the series line determinations from the values given by Curtis 

(‘ Hoy. Soc. Proc.,’ A, 46, p. 147, 1920) for Hydrogen and by Merrill (‘ Astrophys. 

Journ.,’ 46, p. 357, 1917) for Helium enabled the shifts in the comparison spectrum 

to be eliminated, and the corrected values obtained for the selected secondary Hydrogen 

lines were then used as standards in measuring the remaining lines of the spectrum 

from plates taken with pure Hydrogen tubes. The plates were measured on a Hilger 

travelling micrometer, with a screw-pitch of 1 nun. and reading by a vernier on the 

drum to 0-001 mm. Three plades were measured for each region, each plate, following 

the usual procedure, being measured in both directions to eliminate personal errors in 

setting. Each series of readings so obtained was repeated before altering the position 

of the plate on the stage of the micrometer. The two values rarely differed by more 

than 0-003 mm., and their mean was adopted in subsequent reduction. In all, 

twelve settings were made on each line, except in the case of some of the faintest lines 

which were not visible on all the plates ; these exceptions have been noted in the 

tables given. 

The reduction of micrometer readings to wave-lengths was simplified by the fact that 

the dispersion was almost exactly 10 A per millimetre. In the region A6560-/14860 

the readings were reduced to approximate wave-lengths by the addition of a constant, 

and the final adjustment was made from an error curve drawn either b}^ means of the 

iron standards or the Hydrogen standards prepared from them. In the blue and ultra¬ 

violet regions a preliminary linear correction was applied so as to reduce the slope of 

the error curve. The arithmetic mean of the six values calculated in this way was 

adopted as the final value. The wave-lengths and wave-numbers in vacuo have also 

been tabulated, the corrections for this purpose being taken from the tables of Mergers 

and Peters (‘ Bureau of Standards Publications,’ p. 698, 1918). 

For all but a few of the weakest lines and a few diffuse lines the probable error of 

the mean wave-length adopted was less than 0-02 A, and for most lines it was consider¬ 

ably smaller than this. It is believed that the values given can be relied on to two 

hundredths of an Angstrom unit. The weakest lines were much more sharply defined 

in the visible regions than in the ultra-violet, where they were superposed on the con¬ 

tinuous background, and it is possible that this may slightly affect the accuracy of some 

of these wave-lengths. Our measurements agree in general very closely with those 

of Watson (loc. tit.), when the latter are transposed into International Units, but 

Porlezza’s (loc. cit.) measurements differ from ours, in extreme cases by almost an 

Angstrom unit. 

Several hundred new lines have been recorded, these lines occurring for the most 
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part in the red and yellow, and particularly in the green regions, in which it would 

have been impossible to record so many faint lines without the use of the Iso-RecOrd 

plates. It is believed that lines due to impurities have been excluded, all the photo¬ 

graphs used for measurement having been taken with tubes which had been run for 

some hours, and in which the discharge appeared to be white throughout the capillary. 

(4) The Continuous Spectrum. 

Tn addition to the Balmer series and the secondary spectrum, vacuum tubes con¬ 

taining Hydrogen always emit a continuous spectrum. The intensity and extent of 

this continuous background depends greatly on the pressure of the Hydrogen in the 

discharge tube. If the pressure is reduced to the stage at which the glass begins to 

show a green fluorescence, the continuous spectrum almost disappears and the secondary 

lines are sharp against a clear background, even in the ultra-violet. At about 50 mm. 

pressure the continuous spectrum extends into the green, and at still higher pressures 

it covers the whole spectrum. The introduction of capacity into the discharge circuit 

has no very marked effect on the continuous spectrum, but appears to weaken it to 

some extent, an effect which can also be produced by an admixture of Helium. Accord¬ 

ing to Lyman (‘ Spectroscopy of the Extreme Ultra-violet ’), the continuous spectrum 

fills the gap between the end of the secondary spectrum and the Hydrogen lines in the 

Schumann region, but the intensity distribution in this spectrum has not been studied. 

(5) The Classification of the Lines. 

In the tables of wave-lengths, under the heading “ Intensity ” will be found the 

estimated intensities of the lines, on the usual scale of 0 to 10, when the discharge tube 

containing Hydrogen at a pressure of a few millimetres was excited by an uncondensed 

discharge. Under these conditions the discharge is at its brightest, being intrinsically 

_ weaker both at higher and at lower pressures. In the column succeeding those in which 

the intensities are given, the effects of changes of pressure and other conditions on the 

relative intensities of the lines are shown. In all such cases the intensity changes have 

been estimated by examining a standard plate in juxtaposition with a plate taken under 

the conditions in question and exposed for a tune appropriate to the intrinsic brightness 

of the source. A + denotes that the line is enhanced and that it is greatly en¬ 

hanced, — and = denoting in the same way that the line is somewhat or greatly 

weakened as the case may be. The observations referred to under “High Pressure ” 

were made with tubes containing Hydrogen at pressures greater than 50 mm. of mer¬ 

cury, and under these conditions the discharge was much less luminous and of a bluish- 

white colour, the spectrum lines being superposed on a rather strong continuous back¬ 

ground. The changes which were found in the relative intensities of the lines are shown 

in the tables under the column “ High Pressure,” and in the succeeding column are 

given the changes observed at low pressures. By “ Low Pressure” we refer to a 
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pressure at wliich the walls of the vacuum tube show a vivid green fluorescence and 

the intrinsic intensity of the light is greatly reduced. 

It has long been known that when powerful condensed discharges are passed through 

vacuum tubes containing Hydrogen, the secondary spectrum disappears and the lines of 

the Balmer series alone remain, but we have observed that with a condenser and a 

rather small spark-gap in the circuit a group of lines extending from 26000 to 25600 

are very prominent; these lines are intrinsically weakened by the inclusion of the 

condenser and spark-gap in the circuit, but they are strong in comparison with the 

remaining lines of the secondary spectrum. If the length of the spark-gap is adjusted 

carefully, the effect is very striking if the spectrum is examined with a small direct vision 

instrument of low dispersion. These changes in intensity are given in the column headed 

“ Condensed Discharge.” 

Under “ Helium Effect ” are shown the changes of relative intensity which take place 

when Helium, at pressures up to 40 mm. and more, is admitted to the discharge tube 

with the Hydrogen. The phenomena which occur have already been described by one 

of us (T.'R.M.) (loc. cit.). but in the present investigation we have extended this classi¬ 

fication of the lines into the more refrangible portions of the spectrum by adopting a 

suitable standard of intensity in the comparison-plates. 

We have confirmed the previous observation, in the presence of Helium, of a number 

of lines which do not appear under ordinary conditions, and the wave-lengths of these 

lines in the tables are given in brackets. 

In the next column are given the results obtained by Dufour (loc. cit.) in his investi¬ 

gations of the Zeeman effect; all the lines examined by Dufour have been marked 

O or Z in the tables, according to whether they show or do not show the Zeeman 

effect. 

The lines which have been arranged by Fulcher into bands have been noted in the 

succeeding column, and in the last column the results obtained by Takamine and 

Yoshida (loc. cit.), Nitta (loc. cit.) and Takamine and Kokubu (loc. cit.) in their 

investigations of the Stark effect are given. 

These different methods of classification are related to one another, but there are 

numerous exceptions to any broad generalization. In the red and yellow regions all 

the lines which were found by Dufour to show the Zeeman effect are “ High Pressure ” 

lines, and most of them are strengthened in the condensed discharge ; many of these 

lines also are enhanced by the presence of Helium, but there are exceptions to this 

rule. 

The Fulcher band lines are essentially “ Low Pressure ” lines, and are weakened in 

the condensed discharge. 

The exceptions to this rule are as follows :— 

26197-05 high pressure line. 

26093-83 somewhat enhanced in condensed discharge. 

25989-22 high pressure line, enhanced by condensed discharge. 
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A5552-52 enhanced by condensed discharge. 

A5543-41 

A5317-90 high pressure line. 

?? 5? 

“ Low Pressure ” lines are weakened by the condensed discharge, which enhances the 

“ High Pressure ” lines, and the lines which are enhanced by the condensed discharge are 

also enhanced to a smaller extent by admixture of Helium ; but there are exceptions, 

and the changes in intensity amongst the lines which do conform to these rules vary 

greatly in magnitude. We are inclined to the view that many of the exceptions may 

be explained by the assumption that the exceptional lines are in reality close unresolved 

doublets. 

With regard to the lines showing the Stark effect, this attribute appears to bear no 

relation to any of the other methods of classification, but attention may be drawn to 

lines at A A 4185-4, 4123-9, 4021-7, 3927-3 and 3846-0, which are described as showing 

the Stark effect, but which do not appear on any of our plates. If these lines are indeed 

Hydrogen lines, it is possible that they make their appearance only in the powerful 

electric fields which are necessary for the investigation of the Stark effect. 

(6) Comparison of the Secondary Hydrogen Spectrum with the Solar Spectrum . 

The presence of lines of the secondary Hydrogen spectrum in celestial spectra has not 

been established, but in view of the fact that we have separated the secondary spectrum 

into groups, which vary in intensity under different physical conditions, we have made 

a careful comparison of a number of secondary lines with Rowland’s solar wave-lengths, 

and with the sun-spot lines recorded by Hale and Adams (' Astrophys. Journ.,’ vol. 23, 

p. 11, 1906). The most prominent lines of each class amongst the secondary lines were 

selected and were reduced from International Units to Rowland’s scale of wave-lengths. 

A table showing the comparison would be redundant, but it may be stated that there 

are very few coincidences within the limits of experimental error, and these coincidences 

appear to be accidental, for the relative intensities of the lines which might seem to be 

represented are not in harmony with their intensities on any scheme of classification 

which has been found. It is therefore probable that the secondary spectrum is not 

represented in the solar spectrum, though the range of wave-lengths relating to the 

sun-spot spectrum is not as great as might be desired. 

(7) The Widths of Spectrum Lines. 

In a previous section we have referred to the widths of spectrum lines and to their 

importance in setting an inferior limit to the molecular weight of the radiating particles. 

The distribution of intensity in a spectrum line, in the case in which the sole cause of 

broadening is that due to the motion of the radiating particles in the line of sight, is 
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given by the expression I = I0e_/a'2, where I is the intensity at a difference of wave¬ 

length x from the maximum, where the intensity is IU5 and k is a constant depending 

on the mass and the temperature of the radiating particles. Rayleigh (loc. cit.) has 

shown that if the “ half-width ” of the line <U be defined as the value of x when 

I/I0 — 0-5, then SX/.X = 3-57 X 10~7v/(d/m), where 6 is the absolute temperature of the 

gas and m the mass of the radiating particles in terms of the Hydrogen atom as unity. 

Measurements of the width of a line are usually carried out by determining the limiting 

order of interference at which fringes can still be seen with such instruments as the 

Michelson or Fabry and Perot interferometer, in which the difference of path between 

successive interfering beams can be progressively increased. 

The theory of this method has been fully discussed by Rayleigh (loc. cit.) and by 

Schonrock (loc. cit.). If N is the limiting order of interference at which the fringes can 

still be seen it is shown that N = Kv/(w/@), where K is a constant for which Rayleigh 

gives the value 1-427 X 106, whilst Schonrock adopts the appreciably smaller value 

1-22 X 106. The exact value of this constant depends on an estimate of the limiting 

visibility of fringes which can just be seen, and its value can be checked by observations 

on lines of the rare gases, following Buisson and Fabry (loc. cit.), where the mass of the 

radiating particles can be assumed. It is doubtful, however, ivhether a high degree of 

accuracy can be attained by this method, since the point at which the fringes cease 

to be visible is necessarily difficult to determine, and might well be affected by the 

intrinsic intensity of the light, by the wave-length in visual observations, and by other 

circumstances. 

We have therefore endeavoured to avoid the personal errors which are inherent in 

these methods by adopting a different procedure, in which the determination of the 

half-widths does not depend on any estimate of visibility in the ordinary sense of the 

word, but is calculated from the positions of certain definite points on a photographic 

plate, which can be measured with a micrometer to an accuracy which is limited only 

by the ordinary instrumental and personal errors which arise in the measurement of 

spectrum lines. 

It is of course a first essential that the resolving power of the spectroscope should be 

sufficiently great, but if this condition be satisfied the method is applicable, with slight 

modification, to any form of spectroscope. In the present investigation we have used 

an echelon diffraction grating, consisting of 35 plates of glass each 15 mm. thick, which 

had a resolving power adequate for the lines in question. 

The procedure simply consists in taking photographs of a line under investigation, 

firstly with the grating in the double-order position and then in the single-order position, 

with exactly the same times of exposure and without altering the conditions of excitation 

of the discharge tube. In practice we bracket photographs in the single-order position 

between photographs in the double-order position, this precaution being taken to pro¬ 

vide for the possibility of a gradual change in the luminosity of the discharge tube, and 

the photographs are taken on adjacent portions of the same plate. The photographs 

3 g 2 
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were taken on Ilford Rapid Process Panchromatic plates, which were developed with a 

Hydroquinone and Potash developer which gave very great contrast, and by a slight 

cutting ” of the plates after development with a solution of Potassium Ferricyanide 

the contrast became so great that the positions of the edges of the black lines could 

be measured on a photo-measuring micrometer to a few thousandths of a millimetre. 

The half-widths of the lines were deduced from the measured “ apparent widths 55 in 

the single- and double-order positions. The theory of the method, as involving the use 

of the echelon grating, is given in the succeeding section. With other instruments of 

high resolving power it would be necessary to vary the intensity of the incident light 

in successive exposures, e.g., by the interposition of a filter of known absorbing power 

for the radiation in question. 

(8) Theoretical. 

The theory of the method can be seen from the figure in which the upper curve repre¬ 

sents the distribution of intensity by the echelon which is given by the equation 

1„ = sin2 «/a2, where a = rfor/A, a- denoting the step of the grating, A the wave-length 

and Q the angle of diffraction. 

In the same figure are shown the intensity distribution curve of a spectrum line, as 

seen in the single-order, position, with the two curves showing the line in the double¬ 

order position on either side. Although the actual distribution of intensity in the line 

is given by the equation I = e~kx\ the observed distribution of intensity differs somewhat 

from this as the distribution of intensity given by the echelon is superposed. 

In the two strips below these curves are shown the appearance of the line as seen 

on the plate, with exposures of equal duration, in the double- and single-order positions 

respectively. (The absence of disturbance due to irradiation can be seen by an 
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inspection of the ends of the lines (cf. Nicholson and Merton, ‘ Phil. Trans.,’ A, 

vol. 216, p. 459, 1916).) The edges of the lines at a, b, e, f, c and d denote a certain 

critical intensity, Ic, which is represented by a dotted line in the upper part of the 

figure. It will be seen that we assume only that a constant degree of blackening of 

the plate is produced by a light of constant but entirely unspecified intensity. 

Let xx and x2 denote the distances of a and b, or c and d, respectively from the true 

maximum of intensity of the line in the double-order position (x — 0, a = tt/2), and «0 the 

distance of e and/from the maximum in the single-order position (x — 0, a = 0). Then 

expressing a0 and x in circular measure we have for the single-order position 

e /,a"2 sin2 rx, 0/ ao > (i.) 

and for the double-order position 

L/In — e 'kxsin2 a. a 
1 3 I,/Io = 

,-kxX sim a2/a25 (ii.), (iii.) 

where rx1 and a2 are the angles corresponding to the points a and b, or d and c, 

respectively. 

Putting 

sin2 «0/ao2 — 1/ sin2 ax/ax2 = P, and sin2 «2/a22 = Q> 

we have 

log (R/P) = kot02 - kxx2, log (R/Q) = ka02 - kx22. . . (iv.), (v.) 

Now the plates are measured with a photo-measuring micrometer with which readings 

of the positions of the points a, b, c, d, e and / are obtained on an arbitrary scale, and 

since xx is not exactly equal to x2, the number of micrometer divisions between a and c, 

or b and d, does not correspond to an angle n. 

Since it is not possible to measure directly the number of micrometer divisions which 

are equal to the separation of successive orders, both equations (iv.) and (v.) are required 

to solve for k. 

The measurements give 2a0 and (aq -j- xi) in micrometer divisions, and it is 

necessary to find a value of (xx—x2) such that equations (iv.) and (v.) give the same 

value for k, from which the value of <U, the half-width, at once follows, since the 

difference in wave-length corresponding to the separation of successive orders is known 

from the optical constants of the grating. (xx—x2) is very small, and can readily be 

found by trial of a series of values, which can be plotted against the resulting values of 

[^fromOv.))—■&<from(v.))] on squared paper. 

(9) Experimental Results. 

We have measured, in the manner described in the preceding section, the half-widths 

of three lines in the secondary spectrum, A X 6018, 6028 and 6225 A, and also the half- 



382 DR. T. R. MERTON AND MR. S. BARRATT 

width of the Helium line /15015 A as a check on the accuracy of the method. The 

choice of lines in the secondary spectrum is limited in the first place by their brightness, 

and in the second by the possibility of their being isolated completely from neighbouring 

lines in the spectrum by means of the constant deviation spectroscope which was used 

for preliminary analysis of the spectrum. It was necessary that the exposures should 

be comparatively short to avoid disturbances due to the effect of changes of temperature 

on the echelon grating. An inferior limit to the temperature of the gas in the discharge 

tube Avas found in the following manner. The discharge Avas passed through the vacuum 

tube for a considerable time, in order to reach a state of equilibrium between the heating 

of the gas by the discharge and the cooling of the walls of the tube by radiation and 

convection. The temperature of the Avails of the tube was then measured by putting 

specks of organic substances of known melting point on to the Avail of the tube, and 

observing Avhicli of them melted. 

The temperature of the outer Avails of the tube being thus measured Ave deduce the 

temperature of the gas as folloAvs :—It is clear that Avhen thermal equilibrium has been 

established the temperature of the outer Avail of the capillary must lie between that of 

the radiating gas within the tube and the temperature of the room. An inferior limit 

to the temperature of the radiating gas is obtained by assuming that the interchange of 

energy takes place by radiation only, since an undue allowance for the effects of con¬ 

vection currents might lead to too high a value for the temperature of the gas. It is 

further assumed that the conduction of heat by the glass tube is infinite compared Avith 

that of the gas and of the surrounding air. The temperature of the radiating gas in the 

discharge tube is thus given by T4gas — T4glass = T‘glass —T4room, and it will be noted that 

the assumptions are such as to lead to an inferior limit for the temperature of the 

gas. This is an important consideration, for an inferior limit to the theoretical limit to 

the widths of the lines under the conditions of experiment is required. It is also 

important to note that any ill-adjustment of the apparatus, resulting in a loss of defini¬ 

tion, will give rise to too great a value for the determined half-widths of the lines, and 

therefore to too small a value for the mass of the radiating particles. It folloAA^s 

that when values for the half-width and the temperature have been determined in the 

manner described, the masses of the radiating particles must exceed a certain specified 

amount. 

With a discharge of suitable intensity it was found that small specks of cinnamic acid 

were just melted. The melting point of this substance is 133° C., and applying the 

correction in the manner described above, the temperature of the radiating gas is found 

to be 456° Absolute. In the following Table are gwen the results obtained for the three 

secondary Hydrogen lines and also for the green Parhelium line. In the latter case the 

temperature of the radiating gas was probably someAvhat higher, as the gas was con¬ 

tained in a vacuum tube Avith a narroAv capillary, the walls of which were much thicker 

than in the case of the Hydrogen tube, but the theoretical half-width has been calculated 

on the assumption that the temperature was the same in both cases. 
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SA (found). 
8A (found) 

(mean value). 

8A calculated at 
456° Abs. for— 

Atom. Molecule. 

6018 0-037, 0-036, 0-034, 0-030 . . . . 0-034 0-046 0-032 

6028 0-032,0-033,0-032 . 0-033 0-046 0-032 

6225 0 • 034, 0 • 033, 0 • 038, 0 • 039, 0-032 . 0-035 0-048 0-034 

5015He 0-024,0-022 . 0-023 0-019 — 

It will be seen that the results are uniformly in agreement with a molecular origin for 

the secondary lines, the half-widths found being very close to the values calculated for 

the molecule. In the case of the Helium line the fact that the half-width found is 

slightly greater than the calculated value is perhaps to be explained in part by the 

conservative estimate of the temperature in the case of the Helium tube, but it is 

believed that the limiting theoretical widths of the lines are more nearly attained in 

the tubes with wide capillaries and in which the current density is consequently lower, 

than in the tubes with narrow capillaries of the conventional Plucker form. The lines 

A A 6018 and 6225 are both “Fulcher” lines, are enhanced at low pressures, and are 

weakened by the condensed discharge. Neither of them shows the Zeeman effect. The 

line A6028 belongs to an entirely different class, being a high-pressure line which shows 

the Zeeman effect. Since these are the two most important classes of lines it is probable 

that the whole of the secondary spectrum is due to the Hydrogen molecule. 

(10) The Separation of Gases in Vacuum Tubes. 

In a previous communication (Merton, ‘ Roy. Soc. Proc.,’ A, vol. 98, p. 255, 1920) 

an account has been given of a curious effect, which, on further investigation, seems to 

throw some light on the phenomena observed in vacuum tubes containing Hydrogen. 

It was found that when a vacuum tube containing Helium at a comparatively high 

pressure, and also a little Hydrogen, was excited by an uncondensed discharge and was 

observed through a direct-vision prism, the lines of both Helium and Hydrogen appeared 

with uniform intensity throughout the capillary. On putting a condenser and a spark 

gap in the electrical circuit the Hydrogen lines became much weaker in the centre of 

the capillary, but showed brightly at the two ends. This is in agreement with an 

observation of Curtis (‘ Hoy. Soc. Proc.,’ A, vol. 89, p. 146, 1914) ; but it was found 

that on cutting out the condenser the Hydrogen lines did not immediately reappear with 

uniform brightness, but gradually extended from bright spots at the ends of the capillary 

until the intensity became uniform, which took a considerable time to occur, depending 
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on the total amount of Hydrogen present and the pressure of Helium in the discharge 

tube. 

We have extended these results, and with a vacuum tube containing Helium at a 

pressure of 56 mm. and a little Hydrogen, in addition to the phenomena described 

above, it has been observed that on putting in the condenser there is a bright instan¬ 

taneous flash of the Hydrogen lines throughout the capillary before they appear at the 

ends of the capillary only.* In addition to the Hydrogen, the proportion of which 

could be controlled by means of a palladium regulator, the tube showed traces of Mercury, 

Sulphur, Oxygen, the Angstrom Carbon bands and a few other lines due to impurities 

which have not been completely identified. When the uncondensed discharge was first 

passed through the tube the Mercury lines were scarcely visible, but they gradually 

developed, though still very faint and somewhat stronger in the centre of the capillary 

than at the ends. On putting in the condenser the Mercury lines gradually became 

brighter, but appeared only in the centre of the capillary. On cutting out the condenser 

they appeared at once with great brilliance in the centre of the capillary, gradually 

spreading out towards the ends and at the same time becoming fainter. The Mercury 

lines behaved in exactly the opposite way to the Hydrogen lines, and it looked as if the 

effect of the condensed discharge was to collect all the Mercury in the tube to the centre 

of the capillary. The lines due to Sulphur, Oxygen, &c., behaved in the same manner 

as the Mercury lines. In Plate 3 (a) shows the appearance of the capillary, as 

photographed in the red and yellow regions of the spectrum while the tube was excited 

by the condensed discharge ; (b) shows the appearance immediately after the condenser 

was cut out, this photograph being obtained by repeatedly putting the condenser in 

and out, and only exposing the plate immediately after the condenser had been cut out, 

and in (c) the lines are seen uniformly distributed throughout the capillary when the 

tube was excited by the uncondensed discharge. In (d), (e) and (/) respectively the 

same phenomena are shown in a more refrangible region, in which the behaviour of the 

Hydrogen line H/3 and the green Mercury line can be seen. (The Mercury line was too 

weak for reproduction in (d) and (/).) 

The same phenomena can be observed at lower pressures of Helium in the discharge 

tube, but the condition of uniform intensity in the capillary after the condenser is cut 

out is very much less rapidly attained at high pressures. 

The possibility of the removal of Hydrogen by absorption by the glass walls of the 

capillary during the passage of the condensed discharge has been considered ; but it is 

believed that this explanation cannot be upheld, for in this case either it should be 

possible to reach a steady state in which the phenomena are no longer observed when 

the tube has been run for some time, or else the whole of the Hydrogen in the tube 

should rapidly disappear ; but there is no evidence of an approach to a steady state, or 

* It has also been observed that when the quantity of Hydrogen in the discharge tube is sufficiently 

great to show the secondary lines, the latter also appear only at the ends of the capillary when the condenser 

is cut out. 
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of a rapid disappearance of the gas. In the case of mercury an explanation based on 

some action of the walls of the capillary is even less satisfactory, as it would he necessary 

to assume that the glass walls were an almost inexhaustible source of mercury which 

was rapidly absorbed by the electrodes ; for in this case also there is no evidence of 

any approach to a steady state. 

It has not been possible to make any quantitative comparison of the rates at which 

the Hydrogen lines spread into, and the mercury lines out of, the capillary ; but the 

speed of the Hydrogen lines relative to those of mercury suggests forcibly that the gases 

actually move in opposite directions, and that the Hydrogen and mercury do not appear 

at the centre and the ends of the capillary respectively immediately after the condenser 

is cut out, for the -simple reason that they are not there. In the case of lines due to 

sulphur, &c., there is no doubt that the glass capillary of the vacuum tube may be a 

source of these impurities, and that then appearance immediately after the condenser 

is cut out may be due in part to their being liberated from the walls of the capillary 

by the powerful condensed discharge.* The evidence for a separation of the gases is 

therefore not clear in such cases. The Angstrom bands behaved like the IT^-drogen 

lines, but in this case the spectrum is due to a compound which is certainly broken up 

by the condensed discharge, and which would therefore require some time to reform 

or accumulate in the capillary when the condenser is cut out. 

With this exception all lines due to the heavier elements appear in the centre of the 

capillary when the condenser is cut out. If a partial separation of the gases takes place 

it is clear that, whatever the mechanism by which this occurs may be, the degree of 

separation is not proportional to the total energy flowing through the tube in a given 

time but must increase rapidly with the current density ; for the total energy of the 

condensed discharge was no greater than that of the uncondensed discharge, and was 

in fact somewhat smaller. It is, however, to be expected that some separation should 

be effected by the uncondensed discharge, and in addition to the effect recorded above 

in the case of the mercury line, we have often noticed that when heavy, uncondensed 

discharges are passed through Hydrogen tubes containing a little water vapour, the 

series lines of oxygen appear exclusively in the central portions of the capillary.! 

These observations seem to provide an explanation of the greater part of the pheno¬ 

mena described by Wood (loc. cit.), who found that in long Hydrogen tubes which were 

not absolutely free from impurities, the Balmer series appeared strongly in the central 

portions of the capillary whilst the secondary spectrum was more strongly developed at 

* It lias been noticed that when very powerful condensed discharges are employed, “ arc ” lines of the 

constituents of the glass walls of the tube appear with great brilliance for a short space of time after the 

condenser is cut out, and experiments which are now being made seem to show that this may be developed 

into a convenient method of producing the spectra of many substances. 

f The phenomena are evidently of an entirely different character to those recorded by Sir J. J. Thomson 

(‘ Roy. Soc. Proc.,’ 58, p. 247, 1895). In the latter experiments the discharge was, in the main, unidirec¬ 

tional, and differences were observed in the spectra at the two poles. In our experiments the tubes were 

excited by high potential alternating discharges, and the spectra at the two electrodes were identical, 
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the ends. Since the lines of the Balmer series are strongly enhanced relatively to the 

secondary spectrum by very small traces of impurities, it is evident that the phenomena 

can be explained by an accumulation of the oxygen or other impurities in the central 

portions of the discharge tube. When however the total amount of impurity is exces¬ 

sively small, the accumulation of the greater part of it in the centre of the capillary 

may not be sufficient to weaken the secondary spectrum appreciably, and the capillary 

thus appears of a uniform white colour throughout its entire length. There are a number 

of other observations which appear to be related to these effects, but in the absence of 

any theory we do not venture to discuss them in the present communication. 

(11) On Impurities in Vacuum Tubes. 

It may perhaps be considered remarkable that any profound influence on the spectrum 

of a gas can be exerted by impurities which are present in such small quantities that 

then- presence cannot be detected by any characteristic lines or bands in the spectrum. 

The difficulty of eliminating such impurities as those which give rise to the Angstrom 

carbon bands is of course familiar to all who have worked with vacuum tubes, but with 

the aid of charcoal cooled with liquid air there should be no difficulty in preparing 

tubes containing Hydrogen or Helium which would show no lines or bands other 

than those peculiar to these gases. This is indeed the case under the conditions usually 

obtaining, when the gases are contained in the tubes at pressures of a few millimetres ; 

but it has been found that the difficulties are very much greater when it is desired to 

obtain vacuum tubes containing Helium at higher pressures up to 60 mm., which 

show no trace of impurities. The relative intensities of lines and bands due to 

impurities are enormously enhanced as the pressure increases, and the form in which 

the impurities appear is also often unusual. The influence of Helium on the secondary 

spectrum of Hydrogen is by no means unique, and a remarkable instance has been 

observed in the case of tubes containing Helium at high pressures and a very small trace 

of some carbon compound. If any considerable quantity of carbon is present the 

Angstrom and Swan bands can be seen, but with a very small trace of carbon the 

“ Cometbands first observed by Fowler (‘ Monthly Notices R.A.S.,’ vol. 70, p. 484, 

1910) appear quite brightly in the bulbs of the tubes just outside the capillary. This 

effect was first observed by one of us in an investigation in collaboration with Dr. T. 

Takamine, to whom we are indebted for a photograph which shows the “ Comet ” 

bands almost free from other bands associated with carbon compounds. Fowler 

(loc. cit.) has found that these bands appear with the greatest relative intensity in tubes 

in which the pressure is so low (0-01 to 0*005 mm.) that the luminosity of the discharge 

is very small, and yet we find them here in tubes containing Helium at pressures from 

15 to 50 mm. This is only one example of the changes which may occur, and a number 

of other lines and bands have been observed in the case of other impurities. Further 

investigation of the phenomena is required, and we do not venture to discuss them in 

the present communication. 
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(12) Summary. 

(1) A discussion is given of the conditions under which the Balmer series and the 

secondary spectrum of Hydrogen are produced. 

(2) The wave-lengths of about 1,200 lines in the secondary spectrum have been 

measured. 

(3) It has been found possible to classify the lines into different physically related 

groups under different conditions depending on the pressure of the gas in the discharge 

tube, the electrical conditions of excitation, and the presence of Helium. 

(4) These methods of classifying the lines have been compared with the results 

obtained by other investigators relating to the Stark and Zeeman effects, and with the 

regularities observed by Fulcher. 

(5) A comparison has been made of the wave-lengths of lines of different classes in 

the secondary spectrum with the Fraunhofer and Sunspot spectrum. No evidence of 

the presence of the secondary Hydrogen in the Sun has been obtained. 

(6) A new method of measuring the widths of spectrum lines has been developed. 

(7) It has been shown that the secondary spectrum is due to the Hydrogen molecule. 

(8) Experiments have been made which appear to show that when electrical dis¬ 

charges are passed through vacuum tubes, a partial separation of the gases takes place, 

and this appears to afford a satisfactory explanation of a number of phenomena which 

have been observed. 

(9) A number of observations relating to the appearance of impurity lines in vacuum 

tubes are discussed. 

We wish to express our thanks to the Department of Scientific and Industrial 

Research for a grant which has been made to one of us (S. B.) during the course of this 

investigation. 
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