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The engineering of polymeric scaffolds for tissue regeneration
has known a phenomenal growth during the past decades as
materials scientists seek to understand cell biology and cell–
material behaviour. Statistical methods are being applied
to physico-chemical properties of polymeric scaffolds for
tissue engineering (TE) to guide through the complexity of
experimental conditions. We have attempted using experimental
in vitro data and physico-chemical data of electrospun polymeric
scaffolds, tested for skin TE, to model scaffold performance
using machine learning (ML) approach. Fibre diameter, pore
diameter, water contact angle and Young’s modulus were used
to find a correlation with 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay of L929 fibroblasts
cells on the scaffolds after 7 days. Six supervised learning
algorithms were trained on the data using Seaborn/Scikit-learn
Python libraries. After hyperparameter tuning, random forest
regression yielded the highest accuracy of 62.74%. The predictive
model was also correlated with in vivo data. This is a first
preliminary study on ML methods for the prediction of
cell–material interactions on nanofibrous scaffolds.
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1. Introduction

Tissue engineering (TE) scaffolds are primarily engineered to: (i) stimulate cell–material interactions and
adhesion, and extracellular matrix (ECM) deposition, (ii) allow adequate transport of biological factors to
enable cell survival, proliferation and differentiation, and (iii) promote processes such as angiogenesis
and reduce inflammation [1]. Scaffolds have been developed for the engineering of a range of tissues
such as bone, skin, muscle, vascular, neural, cartilage and ligament [2]. Regardless of the tissue type, a
number of key considerations are important when designing or determining the suitability of a scaffold
for tissue regeneration, namely biocompatibility, biodegradability, sufficient mechanical strength to
ensure integrity and interconnected porous structures and high porosity to allow cell penetration and
tissue integration, vascularization for the transport of gases, diffusion of nutrient and growth factors [3–5].

Polymeric TE nanoscaffolds have experienced tremendous progress with a number of scaffolds being
used in clinical setting. Materials scientists are now faced with more sophisticated challenges such as
being able to match materials and scaffold design with wound healing requirements. For instance, a
preliminary matching of in vitro data with scaffold’s physico-chemical characteristics may offer a
better comprehension of the cell behaviour and bring evidence-based data to scaffold design. The use
of computational methods in three-dimensional printing techniques for scaffold design, fabrication
and simulation has been studied [6]. To the best of our knowledge, no study in the literature, up to
now, has specifically looked at modelling of cell–material behaviour on electrospun scaffolds. Scaffold
material, structure and fabrication technique are the three main parameters which determine scaffold
properties. Thus, designing a computational model which can integrate both material and structure
data is a challenging task. It has been argued that machine learning (ML) can offer an indispensable
tool and overcome challenges in the biomedical field involving complex heterogeneous data when
conventional statistical tools have failed [7–10]. Predictive modelling is a probabilistic process that
allows us to forecast outcomes, on the basis of predictors. The latter are features that come into play
in the determination of the required result, i.e. the outcome of the model [11]. However, the huge
potential of ML for predictive modelling in TE still remains mostly unexplored.

In this paper, we hypothesize that using in vitro cell culture data and ML approaches, we can reverse
engineer scaffold performance and predict in vivo outcomes (scheme 1). We have used in vitro and physico-
chemical characterization data, namely number of cells (quantified during 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay), fibre diameter, pore diameter, water contact angle and Young’s
modulus, generated from a series of experiments using biopolymer-based scaffolds, to build a predictive
model for scaffold performance. Our goal is to predict the in vitro outcome, given the physico-chemical
features. Six simplified regression models were used and their metrics were compared to determine the
most accurate algorithm. The accuracy of theMLmodelwas then assessed against in vivo experimental results.
2. Material and methods
2.1. Polymer blends
Polyhydroxybutyrate (PHB) (Sigma-Aldrich), poly(hydroxybutyrate-co-valerate) (PHBV) (HV content
12 mol%, Sigma-Aldrich), kappa-carrageenan (KCG) (Sigma-Aldrich), polydioxanone (PDX) (Resomer
X 206S, inherent viscosity 2.0, Evonik), fucoidan (FUC) (Fucoidan from Fucus vesiculosus greater than
or equal to 95%, Sigma-Aldrich), polysucrose (PSuc) and poly-L-lactic acid (PLLA) (PURASORB PL18,
IV 1.8 g dl−1, Purac) were used as purchased. Cellulose was extracted from locally available sugarcane
bagasse using a combination of mercerization and bleaching treatments to generate an average
% yield of 40 (±2). Cellulose acetate (CA) was synthesized from sugarcane bagasse-derived cellulose
using an optimized acetylation method with an average % yield of 62 (±2). Nanosilica was generated
through the acid hydrolysis of extracted silica (% yield 30 (±2)). The silica used for the preparation of
nanosilica was extracted from sugarcane bagasse ash using the sol-gel process.

Thirteen scaffold familieswere included in this study: PHB/KCG, PHBV/KCG, PDX/FUC, PDX/KCG,
PDX/PHBV, PDX/PSuc, PLLA/PSuc, PLLA/CA, PLLA/cellulose, PDX/CA, PLLA/CA 1% nanosilica,
PLLA/cellulose 1% nanosilica and PDX/CA 1% nanosilica. Each family consisted of at least four blend
compositions in triplicate results (of different polymer contents—100% of polymer A and 0% of polymer
B; 90% of polymer A and 10% of polymer B; 80% of polymer A and 20% of polymer B; 70% of polymer A
and 30% of polymer B; 60% of polymer A and 40% of polymer B; and 50% of polymer A and 50% of
polymer B).



Table 1. Summary of the mass of polymers and volume of solvents used for 80/20 blend ratio for various blend families.

blend family solution A solution B

polyhydroxybutyrate (PHB)/kappa-

carrageenan (KCG)

400 mg of PHB in 8 ml of HFIP 100 mg of KCG in 2 ml of CHCl3

poly(hydroxybutyrate-co-valerate)

(PHBV)/KCG

1200 mg of PHBV in 8 ml of HFIP 300 mg of KCG in 2 ml of CHCl3

polydioxanone (PDX)/fucoidan (FUC) 1400 mg of PDX in 9 ml of HFIP 350 mg of FUC in 1 ml of DMF

PDX/KCG 1200 mg of PDX in 7 ml of HFIP 300 mg of KCG in 3 ml of CHCl3
PDX/PHBV 800 mg of PDX and 200 mg of PHBV were dissolved in 10 ml of HFIP

PDX/polysucrose (PSuc) 960 mg of PDX and 240 mg of PSuc were dissolved in 10 ml of HFIP

poly-L-lactic acid (PLLA)/PSuc 800 mg of PLLA and 200 mg of PSuc were dissolved in 10 ml of HFIP

PLLA/cellulose acetate (CA) 800 mg of PLLA in 8 ml of HFIP 200 mg of CA in 2 ml of HFIP

PDX/CA 800 mg of PDX in 6.7 ml of HFIP 200 mg of CA in 1.7 ml of HFIP

PLLA/CA 1% nanosilica to a 80/20 solution of PLLA/cellulose acetate, 1% nanosilica (10 mg) was

added and allowed to stir overnight

PDX/CA 1% nanosilica to a 80/20 solution of PDX/cellulose acetate, 1% nanosilica (10 mg) was

added and allowed to stir overnight

electrospun mats for
TE applications

fibre diameter
pore diameter

water contact angle
Young’s modulus

feature
extraction

model training
evaluation/validation

Y
cell-material interaction

in vivo performance

output
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...
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Scheme 1. Hypothesis.
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2.2. Scaffold fabrication
Scaffolds were fabricated using the electrospinning method (bottom-up NE300 Laboratory scale
electrospinner, Inovenso Company, Turkey). Parameters for electrospinning were varied depending on
the polymers within the blend and on the blend composition so as to produce random bead-free fibres.
PHB/KCG and PHBV/KCG fibres were produced as reported [12]. Electrospinning parameters for
PSuc-based and cellulose-based fibres have been reported, respectively, by Chummun et al. [13] and
Ramphul et al. [14]. The fabrication of PDX/KCG and PDX/FUC has been detailed in Goonoo et al. [15].

Most blend solutions were prepared by mixing two solutions (solution A and solution B) with the
exception of PDX/PHBV, PDX/PSuc and PLLA/PSuc. Table 1 summarizes the mass of polymers as
well as the volume of solvents used for the preparation of different blend solutions. PLLA/cellulose
and PLLA/cellulose 1% nanosilica mats were obtained following the deacetylation of PLLA/CA and
PLLA/CA 1% nanosilica mats. Briefly, the acetylated mats were immersed in 0.05 M NaOH solution
for 48 h at room temperature followed by washing with distilled water.
2.3. Physico-chemical characterization

2.3.1. Fibre and pore diameters

The average fibre diameters of the electrospun mats were determined by scanning electron microscope
(SEM) as reported previously [13,14,16]. Average pore diameters were determined by measuring the
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diameter of at least 50 different pores using ImageJ software. Pores were identified as areas of void space

bounded by fibres on all sides at or near the same depth of field. The shortest diagonal axes were
measured and averaged together to obtain pore diameter. SEM images were taken using a Tescan
Vega 3 LMU microscope (CBBR, Mauritius) with accelerating voltage of 30 kV.

2.3.2. Mechanical properties

A Universal Instron Tester 3344 (Instron, USA) was used to measure the tensile properties of the
electrospun mats at 25°C. The electrospun mats cut in rectangular shapes (4 × 1 cm) were clamped
with gauge length set at 1 cm and strained at a rate of 10 mmmin−1 using a load cell of 2 kN.

2.3.3. Water contact angle

The contact angles of the electrospun mats were measured using Milli-Q water as a probe liquid with a
Krüss Drop Shape Analyzer DSA 25 (Advanced Lab GmbH, Germany). Static contact angle data based
on the sessile drop method were acquired immediately after deposition of a 2 µl drop on at least three
positions for each sample and are stated as the arithmetic mean.

2.4. In vitro evaluation by MTT assay
The MTT assay was conducted using L929 mouse fibroblasts (Sigma-Aldrich, ECACC certified) after 7
days as reported earlier [12] and absorbance values were measured at a wavelength of 540 nm using a
Thermo Scientific Varioskan LUX Multimode Microplate Reader.

2.5. In vivo biocompatibility tests
Surgical procedures were approved by the Animal Ethics Committee of CYROI, La Réunion, France
(APAFIS Number: 2018052311219125V3). Wistar albino rats (8–10 weeks old), both males (308–407 g)
and females (189–252 g), were used for in vivo studies (n = 5). Prior to implantation, the scaffolds were
disinfected in 70% ethanol solution overnight. The rats were anaesthetized by isoflurane inhalation and
the dorsal region was shaved followed by 1–2 cm dorsal incisions (two on each side of the spine). All the
scaffolds were implanted as stacks of three each with dimensions 0.5 × 1 cm. The rats were provided with
regular supply of food and water throughout the study period. They were also monitored daily for any
signs of inflammation. The scaffolds were removed and the neighbouring skin tissues were harvested for
histology analysis after two and four weeks, respectively. Histological analysis of tissues was performed
using Masson’s Trichrome staining. The stained slides were examined using light microscopy
(Nanozoomer 560 digital slide scanner, Hamamatsu). For quantitative analysis of angiogenesis, the
number of blood vessels were counted within a fixed distance of 100 µm from the explanted scaffold and
the results were expressed as the number of blood vessels per mm2 for each scaffold [17].

2.6. Data preparation and supervised machine learning procedure
Before applying statistical learning to scaffold data, standard pre-processing was performed. Data
were collected, cleaned and rearranged in a format appropriate for meaningful statistical analyses. The
dataset used for this study contained 182 observations, four numeric features characterizing the
scaffolds—fibre diameter, pore diameter, water contact angle and Young’s modulus—and the target
variable: number of cells. The variables were scaled by the MinMaxScaler method in order to bring the
data on a relatively similar scale and close to the normal distribution. Low variance filter and high
correlation filter using correlation matrix with Pearson correlation were applied on the features. Feature
selection was performed with random forest regressor, recursive feature elimination (RFE) and forward
feature selection (FFS) [18].

For predictive modelling settings, a data matrix denoted X is needed, and y as the target variable (to
predict). We used 80% of the data for training, and the remaining 20% was used for testing. Six regression
algorithms, namely linear regression, support vector regression (SVR), random forest regression, lasso
regression, decision tree regression and k-nearest neighbour (k-NN) regression were applied to the
data and compared to obtain the best performance. The six ML algorithms have undergone a training
process to find patterns in the training data that map the input parameters to the target. Each
algorithm learned from the training dataset containing both inputs and outputs to generate a ML
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model. Each ML model was then tested using the test dataset. This metric has allowed us to evaluate how

the model might perform against unseen data. To optimize the training phase, hyperparameter tuning
was performed for each model in order to improve its accuracy. All codes were implemented in
Python 3 using Seaborn/Scikit-learn libraries [19].
ietypublishing.org/jou
2.6.1. Importing Python libraries and loading the dataset into a data frame

Required libraries numpy and pandas were imported, and the read_csv method of pandas was used to
load the dataset ‘scaffold_data.csv’ into a pandas data frame df, as shown below.
rnal/rsos
R.So
import pandas as pd

import numpy as np

df = pd.read_csv('scaffold_data.csv')
c.Open
Sci.7:201293
2.6.2. Splitting the dataset into training and test sets

Before feeding data to a regression model, some pre-processing is needed. A variable X was created from
the initial dataset df to contain the four scaffold parameters (i.e. features): fibre diameter, pore diameter,
water contact angle and Young’s modulus. A variable y was created to represent the target variable,
number of cells. The train_test_split function of Scikit-learn was used to split the data into training
and test sets. test_size = 0.2 indicates that 20% of the initial dataset was used for testing, and 80% for
training. random_state ensures reproducibility and X_train, X_test, y_train and y_test were defined for
the ouput of train_test_split.
from sklearn.model_selection import train_test_split

X = df [’fibre_diameter’, ’pore_diameter’, ’contact_angle’, ’youngs_modulus’]

Y = df [’nb_cells’]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2,

random_state = 0)

As variance is range dependent, feature scaling is required on the variable X before training the data.
The MinMaxScaler method was used to scale and translate each feature individually such that it is in the
given range on the training set, i.e. between zero and one.
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

scaler.fit(X)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)
2.6.3. Creating a random forest regression model and fitting it to the training data

X_train and y_train obtained above were used to train a random forest model from
RandomForestRegressor. The fit method was used to pass the parameters defined below. The output
of this step describes a large number of parameters for the random forest model. These parameters
are tuneable, and can be adjusted to optimize the accuracy of the model.
from sklearn.ensemble import RandomForestRegressor

model= RandomForestRegressor(n_estimators = 100,random_state = 0,

max_depth =4)

model.fit(X_train, y_train)
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2.6.4. Prediction

Once the model is trained, it is ready to make predictions. The predict method was used on the model
and X_test was passed as a parameter to get the output as y_pred.
cietypublishing.
y_pred=model.predict(X_test)

y_pred
org/journal/rsos
R.Soc.Open
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2.7. Statistical analysis
All group data were reported as the arithmetic mean ± standard error of mean. Statistical analysis was
performed with GraphPad Prism software. Statistical differences were analysed using unpaired
Student t-test. Differences were considered statistically significant for p < 0.05 (�significant at p < 0.05,
��significant at p < 0.01, ���significant at p < 0.001, ����significant at p < 0.0001). Regression metrics such
as accuracy measure, Spearman correlation and mean absolute percentage error (MAPE) were
computed to evaluate the predictive accuracy of each ML model. Correlation between the actual and
predicted output data was performed to assess the adequacy of each ML model.
 :201293
3. Results and discussion
3.1. Physico-chemical characterization of nanoscaffolds: fibre diameter, pore diameter, water

contact angle and Young’s modulus
In this study, we have used nanofibrous scaffolds generated through the electrospinning process. We have
previously reported on the synthesis of these scaffolds which have been assessed for skin TE both in vitro
and in vivo [12–15,17]. These scaffolds are engineered using blend solutions of various biopolymer
combinations (table 2) and we have shown that the cell-scaffold response depended on the combination
of materials as well as the physico-chemical properties of the scaffolds namely pore diameter, fibre
diameter, water contact angle and Young’s modulus (table 2). Fibre diameter and pore diameter were
determined using ImageJ software. The data are presented as arithmetic mean ± standard error of mean.
The different combinations of biomaterials used in this study will allow the testing of the robustness of
the ML models to relate biological data with the physico-chemical characteristics of the scaffolds.

L929 fibroblasts cells were grown on the scaffolds and cell proliferation was assessed using MTT after
7 days. Fibroblasts were chosen due to their crucial role in tissue regeneration in general across all tissue
types. They are responsible for the proliferative phase in skin TE and are the major producer of ECM for
the growth of keratinocytes and endothelial cells. Fibroblasts and macrophages are the first cells which
interact with the surface of TE scaffolds in wounds and thus, determine the fate of the scaffolds as an
efficient medical device.

Our experimental work indicated that there is no linear relationship between physico-chemical
parameters and in vitro results. For instance, an increase in pore diameter did not translate directly to
an increase in cell number but would influence contact angle and mechanical property, and together
these will regulate cell–material interaction. The right balance between these properties needs to be
determined to predict scaffold performance in vitro. Another observation that we made concerned the
fibroblast morphology and behaviour (figure 1). For instance, changing the biopolymer from KCG to
PSuc to cellulose caused a change in L929 morphology from elongated to dendritic to flat dense
clusters, respectively. Each morphology change is an indication of a different type of cell–material
interaction. Thus, feature selection was performed to select the predominant physico-chemical
parameter which will impact not only cell behaviour but also the other physico-chemical parameters.

The main feature of ML is learning from experience. In the first step of supervised learning, a labelled
training input dataset is fed to a ML algorithm. With the training dataset, the system adjusts itself by
modifying parameters to create a logical model. The performance of the built model is then tested
with a test dataset which the model has never seen before and the accuracy of the ML model is
evaluated. Six supervised ML algorithms were used to predict scaffold performance with in vitro cell
culture data.



Table 2. Physico-chemical characteristics of scaffolds and in vitro MTT assay of L929 fibroblasts after 7 days.

nanoscaffolds

pore
diameter
(µm)

fibre
diameter
(µm)

water
contact
angle (°)

Young’s
modulus
(MPa)

number of cells as
determined from
MTT assay

polyhydroxybutyrate (PHB)/kappa-carrageenan (KCG)

100/0 1.9 ± 0.7 1.3 ± 0.4 126 ± 1 518.2 ± 36.5 56 068 ± 3498

90/10 1.2 ± 0.6 0.9 ± 0.5 120 ± 1.9 271.7 ± 58.9 49 515 ± 10 347

80/20 0.9 ± 0.3 0.7 ± 0.5 107 ± 1.3 160.5 ± 32.8 35 661 ± 3079

70/30 1.1 ± 0.5 0.7 ± 0.5 104 ± 0.9 90.6 ± 10.9 38 083 ± 11 082

poly(hydroxybutyrate-co-valerate) (PHBV)/KCG

100/0 0.8 ± 0.3 0.4 ± 0.1 112 ± 1 197.2 ± 44.6 73 421 ± 3834

90/10 1.0 ± 0.5 0.7 ± 0.2 73.6 ± 2.8 160 ± 14.8 59 800 ± 17 584

80/20 0.9 ± 0.3 0.6 ± 0.2 62.4 ± 0.5 111.7 ± 22.2 45 060 ± 12 110

70/30 1.0 ± 0.5 0.5 ± 0.2 57.8 ± 1.7 108.5 ± 6.8 46 109 ± 10 857

polydioxanone (PDX)/fucoidan (FUC)

100/0 0.2 ± 0.06 0.3 ± 0.1 32.1 ± 0.0 73.8 ± 7.6 32 372 ± 6793

90/10 0.2 ± 0.08 0.2 ± 0.07 32.1 ± 0.0 69.6 ± 8.4 7510 ± 4328

80/20 0.2 ± 0.1 0.2 ± 0.05 32.1 ± 0.0 38.1 ± 3.9 13 691 ± 4154

70/30 0.2 ± 0.1 0.2 ± 0.05 32.1 ± 0.0 35 ± 11.3 21 154 ± 6873

PDX/KCG

100/0 2.0 ± 0.7 1.1 ± 0.3 32.1 ± 0.0 73.8 ± 7.6 32 372 ± 6793

90/10 1.6 ± 0.5 1.0 ± 0.2 32.1 ± 0.0 72 ± 6.5 21 831 ± 6967

80/20 1.5 ± 0.6 0.9 ± 0.2 32.1 ± 0.0 42.6 ± 6.3 16 606 ± 3756

70/30 0.9 ± 0.3 0.5 ± 0.2 32.1 ± 0.0 38.2 ± 5.5 30 576 ± 3825

PDX/PHBV

100/0 1.1 ± 0.4 0.4 ± 0.1 32.1 ± 0.0 73.8 ± 7.6 24 956 ± 1969

90/10 1.7 ± 0.6 1.0 ± 0.3 32.1 ± 0.0 95.6 ± 11.6 25 072 ± 4328

80/20 1.2 ± 0.4 0.7 ± 0.3 105.1 ± 2.2 72.9 ± 6.9 23 136 ± 6132

70/30 1.2 ± 0.5 0.6 ± 0.2 119.6 ± 2.5 100.4 ± 18.3 25 912 ± 9796

PDX/PSuc

100/0 8.9 ± 5.4 1.0 ± 0.04 32.1 ± 0.0 51.8 ± 10.3 35 708 ± 6551

90/10 6.2 ± 4.2 0.8 ± 0.1 32.1 ± 0.0 43.0 ± 10.4 33 721 ± 17 362

80/20 5.1 ± 2.8 0.8 ± 0.03 32.1 ± 0.0 31.5 ± 5.2 57 370 ± 31 770

70/30 4.1 ± 3.2 0.7 ± 0.06 32.1 ± 0.0 83.2 ± 23.9 41 445 ± 14 515

60/40 3.6 ± 2.3 0.7 ± 0.03 32.1 ± 0.0 58.2 ± 27.5 10 1115 ± 73 374

50/50 3.4 ± 2.5 0.6 ± 0.04 32.1 ± 0.0 33.0 ± 2.0 18 131 ± 13 203

PLLA/PSuc

100/0 5.7 ± 3.3 1.0 ± 0.05 141.3 ± 2.0 235 ± 15 51 408 ± 17 250

90/10 4.2 ± 2.5 0.9 ± 0.1 135.1 ± 1.6 109 ± 8.7 53 312 ± 13 995

80/20 3.9 ± 2.4 0.8 ± 0.03 134.0 ± 0.7 114.3 ± 4.0 56 111 ± 14 113

70/30 2.9 ± 2.0 0.7 ± 0.04 126.3 ± 4.7 85.7 ± 5.9 51 717 ± 31 051

60/40 2.01 ± 0.8 0.7 ± 0.01 132.9 ± 1.1 90.7 ± 5.5 49 338 ± 10 401

50/50 2.4 ± 1.5 0.6 ± 0.02 81.6 ± 9.5 99.3 ± 31.6 41 473 ± 12 501

(Continued.)
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Table 2. (Continued.)

nanoscaffolds

pore
diameter
(µm)

fibre
diameter
(µm)

water
contact
angle (°)

Young’s
modulus
(MPa)

number of cells as
determined from
MTT assay

PLLA/CA

0/100 0.83 ± 0.3 0.7 ± 0.08 134.4 ± 1.8 90.4 ± 15.3 10 043 ± 6267

100/0 5.7 ± 3.3 1.0 ± 0.3 140.7 ± 1.8 235.4 ± 14.8 51 408 ± 17 450

90/10 2.3 ± 0.4 0.9 ± 0.3 138.4 ± 0.8 251.8 ± 23.4 53 228 ± 25 665

80/20 2.7 ± 0.5 0.8 ± 0.4 139.6 ± 0.7 173.3 ± 29.2 18 719 ± 4141

70/30 3.5 ± 1.1 0.6 ± 0.2 119.5 ± 0.9 58.9 ± 3.3 17 040 ± 7452

60/40 2.5 ± 0.7 0.5 ± 0.3 127.7 ± 0.7 41.2 ± 17.6 22 442 ± 5173

50/50 2.0 ± 0.6 0.5 ± 0.2 117.3 ± 1.3 104.4 ± 13.8 7552 ± 3618

PLLA/cellulose

0/100 1.5 ± 0.6 0.3 ± 0.1 25.0 ± 0.0 162.3 ± 21.3 31 678 ± 14 856

100/0 5.7 ± 3.3 1.0 ± 0.3 140.7 ± 1.8 235.4 ± 14.8 51 408 ± 17 450

90/10 2.3 ± 0.4 0.8 ± 0.3 97.2 ± 0.4 275.0 ± 36.8 34 028 ± 17 333

80/20 2.7 ± 0.3 0.7 ± 0.2 25.0 ± 0.0 146.5 ± 10.6 34 420 ± 20 453

70/30 3.5 ± 1.0 0.6 ± 0.2 25.0 ± 0.0 95.7 ± 6.7 33 161 ± 23 589

60/40 3.0 ± 0.5 0.4 ± 0.2 25.0 ± 0.0 27.6 ± 12.4 30 444 ± 21 740

50/50 2.3 ± 0.5 0.3 ± 0.07 25.0 ± 0.0 102.6 ± 72.8 32 237 ± 11 258

PDX/CA

100/0 8.9 ± 5.4 1.2 ± 0.5 32.1 ± 0.0 51.8 ± 10.3 35 708 ± 6551

90/10 3.2 ± 1.5 1.0 ± 0.3 32.1 ± 0.0 45.8 ± 4.6 45 280 ± 3130

80/20 2.6 ± 1.0 1.0 ± 0.5 32.1 ± 0.0 90.9 ± 16.0 35 904 ± 3914

70/30 4.8 ± 2.1 0.8 ± 0.3 32.1 ± 0.0 134.5 ± 15.5 33 665 ± 24 790

60/40 1.7 ± 0.6 0.6 ± 0.3 32.1 ± 0.0 191.8 ± 24.0 16 620 ± 8480

50/50 2.2 ± 0.5 0.6 ± 0.2 32.1 ± 0.0 65.7 ± 14.0 30 446 ± 10 504

PLLA/CA 1% nanosilica

100/0 5.7 ± 3.3 1.0 ± 0.1 128.6 ± 0.8 168.3 ± 16.4 58 350 ± 9922

90/10 2.3 ± 0.4 0.6 ± 0.1 129.8 ± 1.3 129.4 ± 8.1 30 530 ± 12 091

70/30 2.9 ± 0.9 0.4 ± 0.1 130.4 ± 1.3 66.9 ± 8.9 15 333 ± 6890

50/50 2.4 ± 0.5 0.4 ± 0.1 123.6 ± 0.4 89.2 ± 10.3 9623 ± 9606

PLLA/cellulose 1% nanosilica

100/0 5.7 ± 3.3 1.0 ± 0.1 128.6 ± 0.8 168.3 ± 16.4 58 350 ± 9922

90/10 2.3 ± 0.5 0.7 ± 0.1 108.7 ± 7.7 76.0 ± 14.0 41 473 ± 9204

70/30 2.2 ± 0.4 0.4 ± 0.1 25.0 ± 0.0 48.4 ± 20.8 41 165 ± 18 776

50/50 1.9 ± 0.5 0.3 ± 0.1 25.0 ± 0.0 135.1 ± 41.7 30 726 ± 11 732

PDX/CA 1% nanosilica

100/0 1.4 ± 0.4 0.8 ± 0.1 32.1 ± 0.0 60.4 ± 8.4 50 485 ± 12 176

90/10 2.5 ± 0.9 1.0 ± 0.1 32.1 ± 0.0 68.1 ± 7.9 67 026 ± 15 791

60/40 2.5 ± 0.9 0.6 ± 0.1 32.1 ± 0.0 155.2 ± 5.0 35 036 ± 21 101
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3.2. Data preparation, exploration and feature selection
A supervised learning problem is defined as inferring a functional mapping y = f (x), based on a labelled
training dataset D = {(x1, y1), (x2, y2),… ,(xn, yn)}. The present study is a regression problem: the inputs xi



(b)(a) (c)

Figure 1. SEM images of L929 fibroblasts growing on 70/30 (a) PDX/KCG, (b) PDX/PSuc and (c) PDX/CA.
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are d-dimensional vectors, xi ¼ (x1i ,x
2
i , . . . , x

d
i ) [ Rd and the output variable y takes continuous values

ðy [ RÞ. The goal of supervised learning algorithms is to analyse the training data and produce a
function in order to predict the correct outcome for newly presented input data. The function used to
connect input values/features x to a predicted output y, is created by the ML model during the
training phase. The obtained function is then tested by how accurately it performs on unseen data
assumed to follow the same distribution as the training data [20].

Data exploration and feature selection were performed on the 13 scaffold families (table 2),
representing a dataset of 182 observations and four features (pore diameter, fibre diameter, water
contact angle and Young’s modulus). Data were collected and regrouped to create an initial dataset df
where each row is an observation (scaffold) and each column represents one feature (scaffold
parameter) (electronic supplementary material, table S1). The initial dataset was loaded as a data
frame and a variable X was created, including the four scaffold parameters (fibre diameter, pore
diameter, water contact angle and Young’s modulus). A variable y was also created and represented
the target variable number of cells.

3.2.1. Low variance and high correlation filters

In ML, variances are calculated to make generalizations about a dataset, aiding in the understanding of
data distribution. The variance of a variable is a measure of the average variation of values in the
distribution with respect to the mean, given by

s2 ¼ 1
N
S (X � m)2, ð3:1Þ

where σ2 is the variance, N is the total number of observations, X is the value of an individual
observation and µ is the mean.

Low variance filter calculates the variance of each variable in our dataset and removes low variances
(below a given threshold, set at 10−3 in our case) that would be of no significant contribution to the ML
model. Variance calculations with scaled data was 0.017 for fibre diameter, 0.017 for pore diameter, 0.023
for Young’s modulus and 0.149 for water contact angle.

High correlation filter calculates the correlation between independent scaled numerical variables.
If the correlation between two variables is high (value closer to 1), it indicates that the variables have
similar trends and are likely to carry similar information which can bring down the performance of
some ML models. Figure 2 shows the Pearson correlation matrix performed on the four features (fibre
diameter, pore diameter, water contact angle and Young’s modulus). Coefficient correlations were
between −0.19 and 0.42, i.e. no variable was highly correlated to another one.

3.2.2. Feature selection with random forest

Random forest is one of the most widely used algorithms for feature selection and allows us to compute
the importance of each variable on the decision tree. The latter is a set of tests that are hierarchically
organized and consists of nodes for testing features, edges to represent the outcome of each test and
leaf/terminal nodes indicating the decision taken after computing all features. Random forest
algorithm generates a large set of randomized decision trees to predict the target, and each feature’s
usage statistics are used to find the most informative subset of features in the dataset. Every decision
tree has high variance, but when combined together and run in parallel, the resultant variance is low
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Figure 2. Pearson correlation matrix performed on four features: fibre diameter, pore diameter, water contact angle and Young’s
modulus.
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as random forests train each individual decision tree independently on different bootstrapped samples of
the training data and hence, the output does not depend on one decision tree but multiple decision trees.
In the case of a regression problem, the predictions of each decision tree are averaged to make an overall
prediction as final output (figure 3a). This technique is commonly known as bagging.

A score was calculated for each feature and the most predictive features were those with the highest
scores. The feature importance graph showed that fibre diameter was the most important feature (0.39)
while water contact angle and Young’s modulus were the least important features (0.14 and 0.1,
respectively) (figure 3b). This indicated that fibre diameter played an important role in dictating cell
growth. The fibre surface is the first point of contact of cells as they first attach themselves to the fibre
and exert the push–pull effect to be able to move and proliferate. Pore diameter, the second important
feature, is responsible for cell penetration in scaffolds as well as the circulation of nutrients for cell
growth. It is important to note that cells experience mechanical properties at the nanoscale and
microscale, whereas mechanical properties of scaffolds are measured on the macroscale. Fibroblast
cells are known to attach themselves on surfaces with water contact angle in the range of 60–80° [21].
This may explain the least impact exerted by this parameter as the scaffolds exhibited water contact
angles in the range of 25–141.3°. The influence of this feature may vary with another cell type.

3.2.3. Recursive feature elimination and forward feature selection

RFE and FFS are applied to datasets with small number of input variables as is the case in this present
study. RFE uses an accuracy metric to rank the features according to their importance. Linear regression
was selected as model with four features and RFE gave ‘1’ and ‘True’ for all four features. Three optimum
features were found by the RFE method: fibre diameter, pore diameter and Young’s modulus (score =
0.063). FFS is the opposite process of RFE as it tries to find the best features which can improve the
performance of the model. In this study, the variables fibre diameter ( p = 0.003) and pore diameter
( p = 0.004) were retained as the most important parameters.
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Figure 3. (a) Simplified structure of random forest regression algorithm. (b) Feature importance graph computed using random
forest regressor, ranking the features based on their importance.
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RFE and FFS scores confirmed the scores computed with random forest regressor. Among the three
feature selection methods performed on the data, fibre diameter and pore diameter were identified as the
most relevant features in the dataset. These two parameters could contribute most to the construction of
our predictive model.
3.3. Evaluation and selection of the predictive model
After the training process, model testing is performed to determine the accuracy of each ML model. In
general, for a selected ML model, the scores generated on the different test sets are not enough to
establish a quantitative score to select and assess the robustness of the model. Hyperparameters are
predefined parameters fixed before the training process. They can be tuned and optimized to achieve
the maximal performance of a model. Thus, model selection is performed by maximizing the cross-
validation score. Hyperparameters are tweaked in a principled way and a selection between different
models is available.

Six regression models, namely linear regression, SVR, lasso regression, random forest regression,
decision tree regression and k-NN regression, were employed to predict scaffold performance with
in vitro cell culture data. Each ML algorithm was trained on an 80% random split of the dataset, while



Table 3. Model accuracy scores obtained after performing hyperparameter tuning with GridSearch.

regression methods accuracy (%) MAPE (%) Spearman correlation coefficient ( p-value)

linear 54.95 45.05 0.42 (��)
SVR 55.63 44.37 0.42 (��)
lasso 54.98 45.02 0.42 (��)
random forest 62.74 37.26 0.64 (����)
decision tree 53.91 46.09 0.39 (��)
k-NN 54.46 45.44 0.42 (��)
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the remaining 20% of the data was used to test the cross-validated model and evaluate the accuracy of the
ML algorithm. For the ML models to provide optimal prediction performance, hyperparameter tuning
was performed with the GridSearchCV estimator. For each ML model, cross-validation scores were
computed for all hyperparameter combinations to find the best one. While selecting a regression
model, computing metrics like accuracy measures and error rates are important to evaluate the
prediction accuracy of the model. The MAPE is the most common statistical measure used to forecast
error and is calculated as the average of the absolute percentage errors of predictions. MAPE can be
formalized by the following mathematical expression

MAPE ¼ 1
n

Xn

t¼1

At � Pt

At

����

���� � 100, ð3:2Þ

where n is the size of the sample, Pt is the value predicted by the model for time point t and At is the
value observed at time point t. The measure of the accuracy of the model is then calculated as
accuracy = 100−MAPE.

Table 3 shows the accuracy score, MAPE and Spearman correlation coefficient to the corresponding
regression method after hyperparameter tuning. Random forest regression gave the best performance
with a decent accuracy of 62.74% and a high degree of Spearman correlation (0.64) implying that the
actual and predicted values had similar directional movement, i.e. when the actual values increased,
the predicted values also increased. Compared to the other models, the random forest method has
shown the lowest MAPE (37.26%), indicating a reasonable prediction of our model [22]. The following
set of hyperparameters were adjusted for the random forest method: n_estimators (number of trees in
the forests, set at 200), max_features (number of features to consider for splitting a node, set to
sqrt(n_features)), max_depth (maximum number of levels in each decision tree, set at 40),
min_samples_split (minimum number of samples required to split an internal node, set at 2),
min_samples_leaf (minimum number of samples required to be at a leaf node, set at 4) and bootstrap
(using bootstrap samples when building trees, set to True). The five other ML models yielded
accuracy scores lower than 60% indicating that these statistical models were not presenting accurate
mapping between the inputs and predicted output (table 3).

The correlation between the actual and predicted output data is another important factor when
designing a predictive model. We evaluated the adequacy of the model by plotting the actual values
from the test dataset against predicted values from the random forest model (figure 4). The plot
displayed a statistically significant decent fit (p < 3.7 × 10−4), inferring a potential relationship between
the predictors and the outcome that can be improved with more values closer to the fitted regression
line. R-squared (R2) represents the percentage of variance explained by covariates in the model and
measures the proportion of variability in the outcome that has been explained by the model. It is
ranged between zero and one. Usually, the higher the value, the better the model is able to explain
the variability in the outcome, depending on the quality of the data. In our case, R2 (0.3073) showed
that more than 30% of the variance in the data is explained by the model. It is hypothesized that a
better prediction accuracy will be seen by increasing the number of observations in the training set,
and having more features in our dataset.

Fibre diameter values between 0.13 and 1.35 µm (including standard error of mean) were on/closest
to the fitted line. An analysis of the experimental data indicated that these fibre diameters corresponded
to the presence of biopolymers in the ratio range 10–30% in the polymeric blends with PDX, PHBV, PHB
or PLLA (electronic supplementary material, table S2).
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Table 4. In vivo estimation of number of blood vessels around explanted scaffolds.

nanoscaffolds fibre diameter (μm)

number of blood vessels (mm2)

two weeks four weeks

PDX 100% 1.28 20 ± 2 —

PDX/CA 90/10% 0.97 44 ± 2 —

PDX/CA 60/40% 0.64 247 ± 2 357 ± 3

PLLA 100% 0.97 298 ± 9 400 ± 14

PLLA/cellulose 70/30% 0.60 375 ± 7 444 ± 13

PLLA/cellulose 50/50% 0.28 409 ± 11 476 ± 10

cellulose 100% 0.25 449 ± 13 517 ± 6
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3.4. Preliminary correlation with in vivo data: impact of fibre diameter on angiogenesis
The ML findings were correlated with in vivo biocompatibility experiments conducted on Wistar rats.
Two families of scaffolds (PDX/CA and PLLA/cellulose) were implanted in the dorsal region of the
rats and after two/four weeks, the scaffolds and surrounding tissues were removed and analysed.
Angiogenesis is an important phenomenon in the wound healing process. The number of blood
vessels was counted within a fixed distance of 100 µm from the explanted scaffold in a measured
surface area (electronic supplementary material, figure S1). In this quantification study, a blood vessel
was identified as one with a well-defined lumen consisting of red blood cells and an intact wall. The
results showed a direct correlation between fibre diameter and angiogenesis whereby a decrease in
fibre diameter resulted in an increase in number of blood vessels adjacent to the scaffolds, indicating
enhanced angiogenesis (table 4).
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4. Conclusion

We have shown for the first time the implications of incorporating ML methods to nanoscaffolds
performance. A simplified predictive model was constructed and six regression algorithms were tested
using the Seaborn/Scikit-learn Python toolkit. Hyperparameter tuning was performed to choose a set
of optimal hyperparameters for each model in view of obtaining the best performance of each ML
model, and random forest regression was found to be the model with the highest accuracy. Fibre
diameter and pore diameter emerged as the two physico-chemical parameters which impacted more
on the MTT values. Algorithms from transfer learning and reinforcement learning for increased
accuracy are now being considered to increase the robustness of our model in predicting in vitro
outcome. The final outcome would be a generalizable model that uses physico-chemical parameters of
scaffolds as input and generates predictions of cells proliferation during in vitro cell culture in new
scaffolds. The impact of different cell types on the model will also be studied.
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