Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

U.S. DEPARTMENT OF

 AGRICULTURE FARMERS' BULLETIN No. 1448 Has boen rev. $--3 e 0$ rev.ed. bindars at end of file.$$
\begin{aligned}
& \text { FARMSTEAD } \\
& \text { WATER } \\
& \text { SUPPLY }
\end{aligned}
$$

AWATER SYSTEM that shall provide a wholesome supply for family use, prove serviccable for farm purposes, be as nearly permanent as may be made, and cost as little as possible is one of the principal utility problems of the average farmer. The aim of this bulletin is to give farmers, county agents, and others information concerning sanitary and engincering principles underlying safe, serviceable, and lasting water systems for farm homes. Study of the problems involved should always precede the spending of money for labor or equipment. The importance of a well-conceived plan can not be overestimated. Haphazard methods and makeshift devices result in waste, dissatisfaction, danger, and abandonment.

This bulletin supersedes Farmers' Bulletin 911, Water Systems for Farm Homes.

Washington, D. C.
Inaimel Augnst, 1925

FARMSTEAD WATER SUPPLY

By George M. Warren, IIydraulic Engincer, Bureau of Public Roads

INTRODUCTION

FARM WOMEN say their greatest need is to have water piped into the house, especially to the kitchen sink. To draw water hy turning a fancet does wonders to lighten the work and revive the spinits of the housewife. Farm men find running water no less convenient. No other utility is so often used. If the water is pure, no other utility does so much to promote the health of both man and stock.
'The 1920 census reports 1 out of 10 farms in the United States as having water piped into the house. Vermont and California have the highest percentages, 62.9 and 56 , respectively. Arkansas and Mississippi have the lowest percentages, 0.8 and 1.1 , respectively. Illinois has a pereentage of 11.2. In the latter State a recent canvass of about 1,200 rural and urban houses in 14 counties shows that at atf homes water is carried to the house and at 206 it is carried to the han: at 602 homes water is pumped to the house and at 106 it is pumped to the barn; 845 homes have sinks and 358 have none; 509 homes have a laundry on the first floor: 464 homes have a men's wash room outside the kitchen; 428 homes have bathtubs with running hot and cold water These statistics indicate how vast the undeveloped field is. Figures 1 and 2 show clearly how much it means to have rumning water in and about the farm buildings.

PURITY OF FARM WATERS

Pinity of the water supply should be the first consideration of the farmer, though the fact is seldom realized until sickness or death visits some loved one. Disease germs can not be seen with the naked eve and thousands may lirk in a drop of water or in a particle of waste matter the size of a pinhead. From specific germs or parasites that may at any time exist in contaminated water there

F19. 1. - No water in the botne makes steps and labor. Hunning water saves time and drudgery. 1,1 birm woman dipping water frots a sprink, Virgitila; B, cartying watet to the fonse: C, dotige the famly wanh: I, farm wetoan pompins water, Wiscomin: F., farmhathl hauling water, Alabama : F, conctele wotering trough and heater, Marytand: $\%$. cortuer of a kitchen sipplied with rannigg, water in a $10 g$ farmhouse, Yleginh ; H, watering trough on a slicep ranch, Idaho; l, plenty of drinking water firs han and beast, Indiana
may result typhoid fever, dysentery, diarrhea, or intestinal worms, of which the hookworm, roundworm, whipworm, celworm, tapeworm, and seatworm are the more common. Contaminated water may contan also the cansative agents of numerous alments common to livestock, such as tuberculosis, hog cholera, anthrax, ghanders, and stomach and intestinal worms. Disease germs are carried by many agencies and are msnspectingly received into the body. A few cases are cited herewith:

In 1911 the water of a nlcely located and apparently tightly covered digg well hit Viginla began to smell nod taste foul and become the cause of intesthal disturbance. Fixmmantlon disclosed 16 live frogs and 0 more or less deromposed. After the well had been cleaned and pumped out several thes, the wator was entlrely sathfactors.

In 191400 cases of typhold fever and 7 denths in Californin were caused hy a water suplly contaminated ly a septle-tank dischnrge wheh drained a long distance mbove grommel and then through 141 feet of gravel.

Fis, Methods of phang water to 1 roughs. Upher left trough suppled from a slmple anti-freving field liydrant. limer right trough automationly mappled by a float
 supplled to one or more troughs set to have the same water level: doted plpes slow how system may le dralned

In 1915 a hensy rain gorged a house sewer in Vighinin, whence some water escaped to the pit at the top of a drined well mind followed down the casing. Within 14 dass five of the elght chlldren in the famlly were strlcken whth typhoid fever and the edest died.

Survers indicate that three out of four farm water sapplies aro sufficiently polluted to be musafe. Streans, ponds, irrigution ditches, and other surface supplies are sure to receive pollintion, either directly or from surface wnsh. Wells and springs are polluted through the open or loose top and hy foul drainage under gromad. Fignres 3 and 4 show some of the ways by which furm water supplies become polluted and dangerous.

SAFEGUARDING THE WATER SUPPLY

'Tight well plat forms and casings, clean grounds, and wide separation of the well from probable channels of impure drainage are the greatest safeguards. It is not enough that a well or spring
is situated 50 or 150 feet from a source of filth or that it is on higher ground. Given porous ground, a seamy ledge, of longcontinued pollution of one plat of land, the zone of pollution is

 develop la lav water; 13 . the favorlte wedl of old is a menace; dust not bacterlal llfe find lodgement: filth from the hands clluge to the chaln and bucket: "And $/$) show wells having loose, unsafe phaformat polluthon by surface wash. dilh from shom, drophligs from poaltry, worms. bugn, tonds, inler, or other animal life; F. well between

likely to extend long distances, particularly in downhill directions. A well may draw pollution from lower ground, particularly when drought and heary pumping depress the water table enongh to re-
verse the direction of drainage movement. Only when the surface of the water in a well or spring is at a higher level at all times than any near-by sources of filth is there assurance of safety from impure seepage. Figures $5, A, B$, and C and Fignre 6 show wellprotected water supplies; additional safeguards are shown in Figures 14 and 15. Figure 7 shows in striking manner what good water means to a conmmity.

CHARACTERISTICS OF GOOD WATER

Water for domestic use should be clear, colorless, odorless, soft, neither strongly acid nor alkaline, and its temperature for general farm purposes shonld be abont $50^{\circ} \mathrm{F}$. These characteristies, however, must never be deemed proof of purity, for a glass of water

IIa. 4.-Ilow foul dralnage reachew wells and streams Below: Characterlstic openlngs fn rock formatlons; sink holes and clianncls dissolved in limestone; jolnted or broken condition in the upper portlon of Eranlte and other kinds of bodrock: the farin wastes should never be thrown or discharged in gink holes or other rock olvening
may possess them all and yet contain millions of disease-producing grerins. Any suspicions water should be rejected or disinfected (see Disinfection of Drinking Water, page 10) until both the water and the surroundings where it is obtained are passed upon by competint sanitation anthority, such as the town, city, comnty, or State board of health.

CONSUMPTION OF WATER

Higher standards of living are everywhere creating new and increased demands for water. A bath requires 30 gallons, and each flush of a toilet takes 4 to 6 gallons. Heavily worked horses and mules and milk cows may consume 20 to 25 gallons per day in hot weather, and with all farin animals conditions of weather, food, and living may double or halve the ordinary requirements. Table 1 shows fair allowances.

Fig, 5.—A. Favomble lomatlon for well: clean ground above or to one side of Impure Arainage from bullajngs: 18 . tight concrete platform with ralsed and sloping fop and

 from surface wash and fudergrobud secpare

Table 1.-Water roquirements of farms and schools
[Gallons per person or animal for 24 hours]

Water use	Quantity
Domestic purposes, 1 pump at kitchen sint	Gallons
Domestic purposes, i laucet at kitchen sink.	
Domestic purposee, running hot and cold water in kit	20-25
Sprinking and cooing purposes, outdoor washing, lea	15
Maximum daily consumption, modern home	40
Schools, 3 to 15 gallons, a verage...............	00
Ulorse, mule, or cow.	2
Sheep or log.....	

CISTERNS

Rain water is soft and comparatively pure, but when collected in cisterus often contains polluting matter. The evils of cistern water relate to the uncertainty of rainfall; to freezing in winter and unwholesomeness in summer; to entrance of dust, soot, bird droppings,

Fia, fi-l ${ }^{\text {rantection of }}$ opringe. Curbed and covered to keep out surface wasla and to provent diping or lualing; water shond be drawn only by natural flow through a pipe or by pumping ; on the left, square concrete box liaving 4 or \boldsymbol{F} finch walle and 3 inch top reinforced with henvy wite netting or stock foncligy; on the right, curb composed of large-size clay or concrete pipe (T branches)
and vermin from the roof; to objectionable taste from metal and concrete walls or from growth and decay of certain organisms in the water; to neglect in cleaning; and to poor construction resulting in loss of water or entrance of tree roots, or, what is frequent and more serions, foul seepage from a nearby source of filth. Figures 5, I and E, show cisterns that should not be used for drinking water.

The vital features of a cistern for potable wnter are: (1) Absolute water-tightness, top, sides, und bottom, and close screening of inlet and waste pipes; (2) provision for excluding from the cistern the first portion of each rainfall until the roof or other collecting area has become rinsed thoroughly; (3) a first-class filter of clean, well-selected sand and thoroughly burned charcoal; (4) a waste pipe which removes surphus inflow from the bottom of the cistern where impurities tend naturally to settle; (5) periodic and thorough eleaning of the cistern and filter; (6) no connection between the waste pipe and a sewer or a drain which may carry impure drainage.

$$
43022^{\circ}-25 — 2
$$

To determine the quantity of water falling on roofs: Measure horizontally in feet the ground plan of the roof and eompute the area of the ground plan in square feet. Multiply this area by the rainfall in inches (for the wet-weather period ${ }^{1}$ which must supply the desired storage) and divide the product by 1.6. The result is the number of gallons of water. The householder who would a void the inconveniences of a shortage in his cistern supply is fully warranted in planning a large installation. Most localities experience long droughts or exceptionally dry years when rainfall drops to one-hnlf or one-third of the normal. Moreover, many small rains may be impracticable of collection because of the dirty eondition of the roof.

To find the capacity of square or rectangular cisterns and tanks: Multiply the inside length by the breadth and the produet by the height, each dimension being in feet. Mnltiply the result (cubie feet) by $\tau 1 / 2$ to find the gallons. Gallons divided by $311 / 2$ give barrels. Table 2 shows the capacity of round eisterns of certain dimensions.

Table: 2.-Capucity of round cisterns and tanks

$\begin{gathered} \text { Depth } \\ \text { in } \\ \text { feet } \end{gathered}$	1)ameter In feet								
	4	5	6	7	8	θ	10	11	12
	Capactiy ln gallons								
4	376	548	848	1. 152	1. 504	1,904	2. 350	2,844	3,384
5	470	735	1,058	1.438	1.840	2,380	2,938	3, 5,55	4,230
6	504	881	1,209	1,727	2,256	2, 855	3, 325	1,265	5.0,6
7	6.58	1,028	1, 481	2, 015	2,032	3,331	4,113	4,976	5,922
8	752	J. 175	1,602	2, 303	3,008	3, 807	4.700	5,157	6,708
9	846	1,322	1. 904	2,591	3, 384	4.243	3.248	6.30\%	7,614
10	940	1,469	2,115	2,889	3,760	4. 850	5,8.5	- 109	8,460
11	1.034	1.016	2,327	3,167	4.123	\$, 235	6, 463	7,820	9,306
12	1.12\%	1,763	2,537	3, 4.5	4. 512	5.711	7.050	8, 8311	10, 152

Wood cisterns are oljectionable because of their short life. probability of leaking, and tendency to promote bacterial growth: they cost about as much as sted or minsonry. Brick cisterns nre generally circular. with walls about 8 inches thick. The joints should be completely filled with cement mortar and both the inside and outside surfaces should be left rough to receive heavy phastering conts of rich Porthand cement mortar. The inside should be troweled while grecn to produce a hard impervious surface. Concrete cisterns may le square or romed, the latter, for a given cnpacity, requiring a little less materinl, but more labor in building the form. Information on mixing and placing concrete and plastering coats to secure watertightness is given in other bulletins ${ }^{2}$ of the Department of Agriculture.

[^0]Before putting a masonry cistern to use the inside walls should be allowed to air and cure for a month or more and be occasionally sprinkled with water to convert the free lime in the eement to carbonate of lime, which is only slightly soluble in pure water. A new cistern should be pumped out two or three times prior to use of the water for drinking. With continued use of a eistern dissolved mineral matter ceases to be of importance.

FILTERS

Filters should operate slowly-like rainfall percolating into the ground. The rate of filtration should not exceed 50 gallons in 24 hours for each square foot of effective area in the filter bed; the rate is readily controlled by placing a valve in the pipe from the filter to the cistern, opening or elosing the valve as necessary. The water

Fig. 7.-Typhold-fever death rate and percentage of the population suppled with public water (Kood water) in Miassachusets from 1855 to 1923 ; notice the rise of the dots and the rlrop of the vertical hars; in 1023 fully go per cent of the people were supllime with juhlic water, and the typhoid-fever death rate liad decined to 1.8 per 100,000 popantion: though many agencles contributed to thls notable decilne, unques-
tlonably good water is a leading one
level should be maintained above the filtering material, thus protecting the film of silt and mud on the surface of the filter. It is in this film and a thin layer just below it that most of the filtering is done.

Sand is one of the best and most available filtering materials, and well-hirined wood charcoal, the pieces averaging the size of wheat grains, is usefinl in removing color, taste, and odor. Clean pit or beach sand or crisished quartz is much used. Where the water to be filtered is relatively clear (like rainwater) the sand should be very fine. For surface waters carrying sediment, slightly coarser sand, such as is used in plastering work, is generully used. A depth of 2 feet of carefiilly selected, uniform size sand, washed to renove all clay, silt, loam. and vegetable matter, is preferable to a greater depth of poni sand. As the thin surface layer becomes elogged with contimined use it may be scratched or fur rowed or a half inch may be seraped off with a trowel, until eventually the bed is redueed to 12
or 15 inches in thickness. The sand removed should be washed and returned, or be replaced with new sand.

Figure 8 shows a simple home-made slow sand filter having a capacity of 25 to 30 gallons per 24 hours. It can be made by any handy person for about $\$ 10$. Figure 9 shows the important features of a filter and cistern to care for roof water. Figure 10 shows an arrangement to clarify water from an irrigation ditch.

The foregoing filters are of the gravity or open type. They operate by natural flow at slow rates and under low heads. Pressure or closed filters are on the market. They may be placed conveniently in the home and be connected with the discharge pipe from a pump or other pressure supply. The filtering material may be a natural product such as tripoli stone or sand and charcoal. If the water is discolored and contains matter too fine to settle on standing, the filter may be provided with a device which antomatically feeds a small quantity of alum or other coagulant iuto the unfiltered water.

Caution.- Λ filter is a derice for removing dirt or sediment from water. It promotes purity and safety but never is a guaranty. It does not excuse the use of water taken from sources known to be contaminated. Filtration alone does not materially affect sucll dissolved minerals as the water may contain. For instance, if brine be filtered, the resultant will still be salt water. A filter shomid be easily accessible for cleaning. The fregrency of cleming depends on the dirtiness of the water and the use of the filter. Dirty sand can be washed. but dirty chareoal should be replaced with new charcoal. Charcoal filters, if neglected, may become n detriment rather than a benefit, due to the storage and overloading of organic matter withim the pores and upou the surface of the charcoal.

DISINFECTION OF DRINKING WATER

Disiufection (destruction of disease germs) of driuking water by home methods should be considered an emergency measme. The purity of a cistern, spring, well, or surface water is often suspected before the existence of disease becomes definitely known. Suspicion may be created by minor intestionl ailments or by odor or taste of the water. Pending examination of the water supply ly competent sanitation nuthority, the householder should stop using the water for drinking and cooking or employ some method of disinfection. Where chemical disinfection is employed, great care should be used in preparing the chemical, keeping it on hand, and adding it to the water. Directions shonld be followed explicitly. Stock solutions should he kept where children can not get them and bottles should be plainly labeled "Stock Solntion for Disinfecting Water-Poison".

It is very important to understand that, even though printed directions are closely followed, disinfection processes are not always complete. Waters of varying physical and chemical composition react differently with equal quantities of a given chemical, similarly as two individuals may be differently affeeted by like doses of medicine. Clear water is usually more readily disinfeeted than muddy or cloudy water. Well or spring waters may, however, be clear and sparkling and yet contain so much ferrous iron, nitrite nitrogen, or other oxidizable matter as to be little affected by an ordinary dose of the chemical disinfectant. The sediment in a muddy water or the oxidizable constituents, if such be present, in a clear water uses up the chemical before germieidal action takes place.

Chemists and bacteriologists by laboratory experiments determine the exact amount of disinfectant for each particular water and its action on the germs therein. These matters are guesswork with the average individual. He may guess wrong, and his efforts to disinfect drinking water may lead to a false sense of safety. For these reasons absolute reliance can not be placed upon home methods of sterilizing water with chemicals. As a temporary precaution against disease, such methods may serve a very great service. Two methods of disinfeeting drinking water recommended by the Burean of Chemistry are as follows:
(1) Disinfection with

FIa. 8.-Working drawing for n \&quare filtar and clstern to hold about 3,000 gallons; estlmated cost $\$ 150$ chloride of lime.-Prepare a chloride of lime solution by dissolving 1 teaspoonful of fresh chloride of lime (bleaching powder) in 1 quart of water. Place this stock solution in a stoppered bottle. Such a solution gradually loses its strength, and fresh solutions should be made up occasionally. For disinfeeting water, mix thoroughly 1 teaspoonful of this solution with 2 gallons of water. After 30 minutes the water will usually be fit to drink.
(2) Disinfection with tincture of iodine.-This drug is an excellent disinfectant for drinking water, can be obtained at any drug store, and is found in the medicine chests of most households. Ordinary tincture of iodine contains approximately 7 per cent of iodine. Mix 1 drop of this tincture thoroughly with 1 quart of water. The
water so treated will usually be safe for drinking purposes after 30 minutes have clapsed. Proportional mixtures for other quantities of water are as follows: 11 drops of tincture in $23 / 4$ gallons of water (an ordinary pail full), 1 tablespoonful or 3 teaspoonfuls of tincture in te gallons of water (a large barrel, approximate inside middle diameter 24 inches, end diameters 20 inches, depth $303 / 4$ inches). ${ }^{3}$

SURFACE-WATER SUPPLIES

Streams, ponds, irrigation ditches, and small open reservoirs are unsafe sonrces of farm water supply. The temperature of such witer seldom is satisfactory, and the presence of more or less polluting matter is certain. The only safe course is to a woid drinking water from any sur-

Fif. 10 -Working drawing for a cistorn and fletor to clarlfy wator from an lerlgatlon ditels cletern holds 2.5 fallons: capmelty of filtor hbout 1.00 gillons per 24 hours: mithnted cost $\$ 75$ to $\$ 1: 5$ face somre unless such water has been disinfected.

GROUND - WATER SUPPLIES

Good ground water is the ideal supply for the farm. If uncertain of the depth, quantity, or quality of the water likely to be enconntered, one should describe fully the location and conditions to the C'nited States Geolorical Survey or to State geological authorities and ask for advice. Manty wells have been sunk to great depths in the belief that a plentiful supply would be reached, only to find no water, or that it was unfit for use, or that a mere hole had been created which served only to drain water from relatively near the surface. Information as to the kind, thickness, porosity, and dip of the strata of the region, the results obtained in neighboring wells. and examination of the land slopes, regetation, and evidences of seeps and springs serve as grood guides in locating water supplies. There is little to recommend certain patented electrical water finders or the nse of a forked willow, hazel, or peach stick, although socalled forked-stick artists, from their experience and observation of surface conditions, usually are better alle to julge of the probabilities of ground water than is the average person.

[^1]The most likely appearance of seeps and springs is near the base or toe of slopes. Shallow wells thus located usually are stronger than those higher up the slope or farther ont on the flats. Wells upon the crown of a hill or close to rock outcrops are not likely to yield plentifully. The stronger artesian flows usually come from the lower strata.

Sands, gravels, porous sandstone (consolidated sand), and conglomerates (consolidated gravel) are the most promising water-bearing materials. Quicksand, clay, marl, and hardpan usially contain considerable water, but yield it too slowly to afford satisfactory supplies. Shale and slate (consolidated silt and clay) are not good water bearers, but water sometimes is obtained at considerable depths from the joints and cleavage planes. Granite, gneiss, and schist (rocks formed or modified by heat) are likely to be hard and impervious, but due to broken or jointed condition (generally within 300 feet of the surface and seldoin below 500 feet) may yield noderate quantities of very good water. Lava rock often yields ubundantly, but generally the supply is essentially of surface origin, frequently seepage from irrigation ditches. Limestone usually carries an abundance of water within the passageways and cavernous channels which characterize this rock, but the water usually is hard and may be contaminated casily from surface sources. (See Fig. 4.)

SEEPS AND SPRINGS

Seeps and springs are the natural emergence of ground water upon the surface. Anything that reduces resistance to the flow, such as open-joint pipes or conduits for the collection of seeps

Fig. 11.-. Drain the laid to mpture seeps and small Nurings or excavating and encasing a spring. tends to increase the yield. Increase of resistance throngh choking the flow or biniding up the curb, to a moderate height above the natural surface tends to decrease the yield, and may cause its complete loss by deflecting it to other channels. Figure 11 shows drain tile laid to collect seeps or small springs. To prevent silt entering the tile a 6 to 8 inch wide strip of linen or burlap shonld be fastened aromed each joint. If any part of the line is in quicksand, mat, or clay. where little or oljectionable water would be collected. sewer pipe shonld be used in that portion and the joints should be tightly made with jute and cement mortar or bituminous jointing compound to keep out fine material.
Ilorizontal pipes. cribs, or chambers are sometimes located beneath irrigation ditches or where water is to be taken from the margin of a pond or stream. In the latter instances it is better to locate the collector 50 or more feet from the body of water, becallse it is better to intercept ground water moving toward a surface supply than to draw water from it direct. Collectors nay be of tile, wood, stone, brick, or concrete, and there should be ainple space. particularly at the bottom, for water to enter. They shonld be placed below all low-water levels, lengthening them as necessary to increase the yield.

In many instances an elevnted spring may be piped to the buildings, forming a gravity system, as shown in Figure 12. Where feasible, such a system is superior to any other kind because the water is generally good, the construction is simple, the operation is eertain and the expense and bother of promping are saved. Figure 6 shows two simple curbs to inclose and protect springs.

WELLS

Wells are artificial openings in the ground to or below the water table. They shonld be sunk sufficiently into the water-bearing materinl in order that neither dronght nor muximm pmonping operations of the farm slull so lower the gromid wnter that the pump must be stopped to avoid taking air. No new well shonld be regmrded as complete until a punping test of proper contimuous duration has been made to determine its sufliciency for the purpose of the farm and to mike sure that a mere poeket of whter has not been tapped. Unscrupnlons contrictors resort to mmerous tricks when testing

Fur. 12. Water dellvered by gravity (natural Dow). Note protection of the spring: "thatlow tronch on tho higner side to divert furface water, and the slte faclosed by
wells, and these matters shonld have the personnl attention of the firmer who pays the bill. In making the final pmoping test the discharge shonld be taken by pipes or tronghs a considerable distance from the well and to lower gromm if possible.

DUG WELLS

Dug wells are open excavations, the diameter varying with the freedoan with which water enters, the rates of pmiping, nud the requirements for water. Excarntions showing the slightest indiention of caving should be curefnly braced to ghard against accident. The usnal method of digging wells is to hnve one or two men at the bottom to loosen the materint and shovel it into a bucket which is hoisted to the sinfuce with the aid of a windlass or tackle blocks as shown in Figure 13. A and 13 . Sometimes n smalt orange-peel bucket operated by hand with the aid of a tripod derrick is used. In loose sand vielding un abmodance of water the excavation sometimes is made entirely by the use of n centrifngal pump. The lining

Fia.13--A. Use of a windiass in digglng a well, Maryiand: B, raking tho loaded bucket
 operathon the whter whilh does the work ls gushing from the excape valve: A, fluwing Welle, litai: F, float controlled valve for use where the flow of a spring is foo simblit to opernte a ran conthuousiy; ar-inch vatve costs about $\$ 10$
or curb is started on a wood or steel shoe which gradually sinks as material is pumped from the bottom and curbing is added at the top.

Quicksand is a frequent source of trouble. If the material is removed by an orange-peel bucket or a centrifugal pump, flow of the quicksand may be largely prevented by keeping the excavation partinlly full of water, thus nentralizing the hydranlic pressure in the quicksand and rendering it comparatively solid. If the material must be excavated by hand methods, the lower or cutting edge of the sheeting or curbing should be constantly kept from 1 to 4 feet below the bottom of the excavation. Wood may be used for sheeting and steel or concrete for permanent curbing; its sides should be water-tiglit. Hay, straw, or fine brush is very useful to give men footing and to close temporarily small boils in the bottonn of the excavation. After the excavation is completed, entry of quicksand at the bottom may be presented by placing a thin layer of clean, coarse sand and weighting it with several layers of sand or gravel of increasing coarseness. There is thans ereated a graded sand filter, each layer of which is held in position by the slightly coarser material above it.

Curbs may be of stone. brick, concrete block, or of eoncrete, vitrified, corrngated, or cast-iron pipe. Wood soon decays and should not be insed. At least the upper 10 feet of masonry curbs should be laid in cement mortar to make it water-tight. Figure 14 shows a brick curb with the top properly protected. Considering cleanliness, tightness, durability, and cost, perhaps no curbing is better than vitrified sewer pipe or hard-burned drain tile. Such a curb with cemented joints and a method of lowering and placing the pipe is shown in Figure 15. Sometimes the pipes are placed with the labs downward, but such arrangenent makes it impracticable to cement the joints. Sometimes the lower portion of the emr) is enlarged by buidding up from the bottom with stone or brick laid without mortar, the masomry being arched inwardly to meet and support the pipe curling at or near the water level. The space between the curb and the sides of the examation shonld be filled with clean sand and gravel, the coarser material being placed from the bottom to the water level. The upper 10 feet may to advantage be senled with concrete or clay. 'The curb should be brought at least 1 foot above the eromed and be surmomed by a concrete platform in which is placed a tight-fitting iron or concrete manhole cover.

The platform should slope from the center and the earth be graded to shed pump drippings and surface water quickly.

If a pump is to set upon the platform, a block of wood or a tin can may be embedded in the concrete to provide an opening for the pipe and cylinder. A firm, water-tight joint between the pump base and the concrete is made by using expansion bolts or anchor bolts and a gasket. Expansion bolts are screwed through the pump buse into holes in the concrete. Anchor bolts to fit the holes in the base are embedded in the concrete when it is placed. Ordinary bolts with the thread end up and a large flat washer on the head in the concrete answer every purpose.
If properly located, built, and protected, dug wells are more likely to be satisfactory than tubular wells. The adynntages relate to longer life, softer water, and larger volmme, permitting more rapid pumping, lower lifts, easier inspection and cleaning, and less trouble from quicksand and air leaks.

CLEANING DUG WELLS

Most dug wells require cleaning occasionully, due to the entrance of dust or other foreign matter at the top

Fig. 15.- Dug well curhed with vitrified or conerete socket plpe such as is usid for mewers. Wells of thls kind 24 Incles \ln diameter and 35 feet deep in sand liave cost hbout $\$ 200$, Jlaskachusetts. and to the washing in of clay and silt with the ground water. The first step should be an inspection of the curb, which if weak or defective would muke entrance dnngerous. This examination may be made more thoronghly by the nid of n bean of sunlight reflected into the well by a mirror. To determine the presence of harmful gases, n lighted candle or smull bird should be lowered into the well. Complete or partial failure of the candle to burn, or death or exhaustion of the bird, indicates dangerous conditions for man. Thorough ventilntion of the well is the best remedy.

If it is found safe to enter the well n ladder should be lowered nnd the curb from the top down scrubbed with wire or other stiff brushes and rinsed thoroughly. The well should then be pumped as low as possible, and any mud, moss, or other debris should be scraped
into pails and removed. After thorough cleaning the well should be allowed to fill and shonld then be pumped out rapidly. This operation may be repeated to advantage two or three times. The disinfection of wells with chemicals is not recommended unless the work is done mader technical direction. (See Disinfection of Drinking Water, pare 10.) The volmme of water must not only be estimated with reasonable exactness, but the character of the water and the proper amount of chemical shonld always be determined by an ex. pert chemist. The effects of disinfection gradually disappear as water flows into a well to replace that drawn out.

BORED WELLS

Bored wells are made with earth augers turned and lifted by hand or horse power. The method is not extensively nsed und is confined to relatively small dianeters and depths and to clay, sand, fine gravel, or other comparatively soft materials free from bowlders.

DRIVEN WELLS

Driven wells are iron or steel pipes forced into a water-bearing bed. They are more likely to field hard water than are shallower digg wells, but they are less likely to receive organic impurities. ${ }^{4}$ In simplest form, 1 to 3 -inch extra strong wrought pipe is cut in conrenient lengths and provided with a well point driven as shown in Fignre 16. . . The pipe joints should be coated with red lead or graphite and oil and shonld be tightly screwed with pipe wrenches or tongs. Otherwise, if nsed as suction pipe, it will leak air. or when the pipe is being driven the threads may be stripped or the complines split. The top must have a heary cap or steel drivehead to prevent battering the pipe. A $11 / 2$-inch well need not cost over 50 cents per foot, including extra strong pipe. The method is very nsefnl in prospecting for water within 20 or 30 feet of the surface and for tenporary supplies. Where there is no rock it is the quickest and cheapest method of obtaining gronnd water. The principal fault of such wells lies in the strainer becoming corroded and choked. Often a well mist be abandoned in a few years or the pipe pulled and redriven.

Open-chal, driven wells are less easily choked, and if properly cleared of clay and silt, are frequently ned in very fine sands. The material which enters the drive pipe is removed with a sand pump or is washed n p with the aid of a foree pump and a smaller pipe known as the drill or wash pipe inside the drive pipe. A steel jetting drill is screwed into the end of the wash pipe and is very nseful to loosen the earth and split small stones at the bottom of the drive pipe, which should le protected ly a steel coupling or shoe. Use of a saw-tooth she and thrning the entire string of pipe at each blow increases the progress. To facilitate water entering the well the first piece of pipe usnally has muncrons one-fourth-inch holes drilled throngh the slell. Figures $16, B, C$, and D, show hand ontfits and

[^2]methods for driving open-end wells. Figure 16, D shows the jetting process; the method is equally useful with the driving outfits shown in Figure 16, B and C. Wells always should be tested for yield when the wash water fails to rise to the surface of the ground. Where the

Fra. 16.-lland methods of drlving wells. A, use of a heary striking hammer, sledge, or mant; 1s, drlve block with bole through center and ralsed by direct lift ; laborers prefer thls method, and thelr welght assists the drlying: C, drive block ralsed with The ald of a pulley, and its fali gulded by a siflade wifich goes inside the plpe; D, jetting procriss
material is coarse enough to "lose" the wash water, it is of suitable character to yield freely.

Driving and jetting outfits can often be made from odds and ends abont the farm. They are readily operated by three or four men to depths of 100 or more feet in clays, sands, and gravels. Frequently an outfit with one experienced well-driver may be hired for
$\$ 8$ or $\$ 10$ a day, and with the aid of farm hands, after everything is assembled, a well may be sunk 50 feet in a day. Fair prices for 2 and $21 / 2$-inch wells are $\$ 1$ to $\$ 2$ per foot, including extra strong pipe. Where the water is very deep, driven wells are usually 4 to 8 inches in diameter and nre sumk by purties experienced in the work.

ClEAAING DIHVEN WELLS

A success or faihure with driven wells often is a matter of freeing them of fine material. Water may be within 20 or 30 feet of the surface, but the pump handle yanks back quickly, indicnting that the material is too tight to yield freely. Such wells must be coaxed. The pump should be worked slowly and patiently to draw out the fine material and crente percolation into the well. Should the well choke from inflow of fine material the pump should be detached and the material shonld be bailed or washed out. As more chyy, silt, and fine sand are brought out of the well the pumping nay become more rapid. The result often is the creation of a pocket of coarse material about the bottom of the pipe, griving a free-yielding well.

There are several methods of coping with quicksand in tubular wells. If there is probability of comse material benenth the quick sand the latter muy be kept out by driving the casing through it. Sometimes quicksund is restrained by forcing to the bottom a large sponge or several small sponges wired together and weighted with small stones. Sometimes a brnss strainer, closed at the bottom and about one-fourth of an inch less in dimmeter than the bore of the well and of a length to extend through the fine sund, is lowered to the bottons of the well. The casing is pulled up till its bottom is nearly flush with the top of the strainer. A tapered brass tube to the top of which is attached a lead packer is inserted at the joint. A swedge block or expander is lowered till it rests on the lead packer. A few blows suffice to expand the lead outward against the casing making a sand-proof joint between the strainer and casing.

Sometimes a strminer 4 to 6 inches smuller than the casing is employed. It is lowered from the surface by means of ordinary screw pipe cut in lengths convenient for handling. The strainer is provided with guides to center it in the bottom of the well, and coarse sand or fine gravel a little larger than the strainer openings is poured in at the top to fill the nnnular space bet ween the strniner and casing. The sund filling may be brought to the surface of the ground and the whole outer cusing drawn. leaving the pipe with which the strainer was lowered as the permanent casing. If it is desired to retnin the original casing, the sand filling may ent above the quicksand. The casing is drawn up until its bottom is above the quicksand. The pipe used to lower the strainer is unscrewed from the strainer and is removed from the well. Such portion of the casing as is above ground is cut off.

DRILLED WELLS

A drilling outfit is necessury where there is rock. A gasoline or stemm drilling machine is generully used, and wells are pit down by contract with persons equipped for the business. Recent contract
prices for 6 to 8 inch cased wells vary from $\$ 3$ to $\$ 5$ per foot. The yield of drilled wells is sometimes increased by shattering the rock with dynamite. This is called "shooting" or " torpedoing" a well and may create openings to adjacent passageways carrying water. The method is less used than formerly, and in all instances, because of uncertain results and liability of damage to the well or loss of the existing supply, it should be employed only as a last resort.

FLOWING WELLS

Figure $13, E$ shows three flowing wells side by side on a Utah farm. Shallow flowing wells are usually short-lived. Artesian flows derived from strata outcropping in distant elevated localities frequently remain strong for many years. In general, however, there is a marked tendency toward exhaustion because of reduced pressure and the sinking of other wells tapping the same stratum. By using sound, heavy casing and valves to regulate the flow as needed, and by capping or plugging abandoned wells, farmers can aid greatly in conserving artesian supplies.

hydraulic rams

Hydraulic rams are not mechanical toys. They are the most economical pumps known and have been used to raise large quantities of water. Two farm rams are shown in Figures 13. (and I).

Fig. 17.-Gencrai layout of a liydraife ram installation. 15 . Irive or Rupply pipe: E, escape valve: C, check valve; A, ulr chamber: H, dellvery or diacharge plpe: N, sniff or air vaive Hydraulic rums utilize the principle of water hammer. Their operation will be understood from Figure 17 and the following description: Water flows from the source of supply through a straight iron pipe D, wasting through escape valve E until the velocity is sufficient to force the valve outward to its seat. This creates a "kick" or water hanmer in pipe D and opens check valve C, through which some of the flow is forced into air chamber A and delivery pipe B. The greater pressure in pipe B quickly overcomes the inovement and causes a reaction or backward pulsation closing valve C and unseating valve E, whereupon the water in pipe D flows again and the whole operation is repeated. On the recoil, a little air is sucked through the sniff valve S to maintain the supply in chamber A.

The approximate quantity of water raised by a good ram, properly installed, may be estimated from 'Table 3.

Table 3.-Quantity of water raised by a hydraulic ram

Lift (feet) divided by fall (feet) Oallons raised in 24 hours for each gailon per minute to the ram		$\begin{array}{r} 3 \\ 370 \end{array}$		5	150												
						7	8		9	10	11	12	13	14	15	18	20
			4 280			120	100	8	5	70	60	50	45	40	35	22	16

Example: What quantity of water will be raised in 24 hours to a height of 48 feet above a ram receiving 3 gallons per minute from a
spring 12 feet above the ram? Solution: Lift (48) divided by fall (12) equals 4 ; under 4 in Table 3, 1 gallon per minnte to the ram raises 260 gallons in 24 hours; therefore 260 multiplied by 3 equals 780 gallons, the quantity of water that will be raised by the ram. If the delivery pipe is very long, the friction loss therein shonld be determined from Table 4 on page 23 and should be added to the lift (48 feet in the above example) to find the true pamping head.
Momfacturers of rams require the following information to determine the size needed for a partienlar installation: (1) Quantity of water in gallons per nimute available nt rum ; (2) quantity of water in gallons per day desired at buildings: (3) available full in feet; (4) horizontal distance in feet in which fall occurs; (5) length of delivery pipe in feet: (6) lift in feet. Mannfacturer's instructions for installing should be closely followed, thereby fixing responsibility for results.

The minimum or the average flow shonld govern the size of the ram, as otherwise the one selected may be too large to be actuated by the dry-weather flow. Sometimes the flow of a spring is too small to operate a ram contimnonsly. In such cases a float-controlled regulating valve shown in Figure 13, F may be used to stop and start the ram untomaticully. The valve is serewed on the upper end of the drivepipe, and opens quickly when the supply tank fills and closes guickly when the water falls to a permissible level. Sometimes a small spring is suflicient for uctual home needs, bit the power head nust be obtained from a near-by brook. In such instances a double-acting ram is employed, utilizing the recoil to admit the spring water which is puinped by the brook water. Where the power supply is far from the ram, it is nsual to pipe the flow to an open tank or standpipe located so as to secme the desired length and fall of drivepipe.

A hydraulic ram should be fastened to a suitable fonndation and honsed properly. The waste pipe from the ram pit should be of good size und not subject to backwater or other obstruction. Four-inch drain tile is often used. The drivepipe must be air-tight. Bends are a detriment, but if unavoidable should be of gentle curvatnre, leaving the bore unrestricted. For small installations, lead pipe is much better than iron. Full-way gate valves slronld be used to lessen friction. The upper end of the drivepipe, which may be made bellshaped to fueilitate entry of water, shonld be submerged at least a foot to prevent sucking air, and should have a strainer with openings totaling three to five times the cross-sectional area of the pipe. Rubber valves are less noisy than metal, but where the pounding is objectionable, as it may be in a dwelling, a piece of lead pipe or robber hose inserted in the delivery pipe lessens or ends the tronble.

Every newly instalied ram reguires adjustment. Action may be indnced by intermittently pressing down on the waste valve and allowing it to rise with the escape of water. The travel of the escape valve and the rapidity of its strokes shonld he regulated hy experiment (by sight, somind, and inference). To illustrate: A ram rumning 37 strokes a mimute nsed 13.1 gallons, of vihich 10.1 gallons were wasted and 3 gallons were pumped. When speeded to 72 strokes a mimute the ram nsed only 4 gallons, of which 2.9 gallons were wasted and 1.1 gallons were pmoped. If the escape valve remains up, excessive pressure or leakage in the ram is indicnted. If the escape valve remains down, lack of fall or water is indicated. This difliculty can
often be overcome partially by plugging two (one on each side) or more of the small holes in the plunger. Should the ram operate and disclarge no wnter, lack of air in the air chamber or a leak in the delivery pipe is probable.

FRICTION LOSS AND PUMPING HEAD

Movement of water in a pipe produces friction, a form of resistunce thut increases with the length and roughuess of the pipe and the rapidity with which the water moves. Wherever much water is to be delivered throligh a long pipe, the power or head necessary to overcome friction should be determined. This is called friction loss or friction head. Its effect is to increase the vertical height agninst which a pump operntes. Bends, especially sharp turns, in n pipe line also increase the friction, but ordinariiy the farmer may neglect this loss in discharge pipes. Excessive loss due to friction may be avoided by increasing the size of the pipe. Table $4{ }^{5}$ shows the friction head (number of feet to be added to the vertical height) for ench 100 fect of iron pipe (not new) to overcome friction when discharging given quantities of water. 'The comparative discharging power of pipes of the several sizes also is shown.
Table 4.-lriction head or loss and comparative discharging power of pipes
Diameter of plpe iu lnches

Discharge ing gallons ler inlnute	$1 / 6$	$3 / 8$	$3 / 2$	36	1	$11 / 6$	$13 / 2$	2	$2 \frac{1}{2}$	3	4	5	0

Friction loss in feet for each 100 feet length of plpe

0.5	7.8												
1	28.0	6. 4	2.1										
2	103.0	23.3	7.4	1.9									
3		49.0	15.8	4.1	1. 28								
4			27.0	70	2.14	0. 57	0.26						
5			41.0	10.5	8. 25	. 84	. 40						
6				14.7	4. 55	1. 20	. 50	0.20					
8				25. 0	7.8	2. 03	. 95	. 33	0.11				
10				38.0	11.7	3.0.5	1. 43	-. 50	. .17				
12					10.4	4.3	2. 01	. 70	. 24				
14.					22.0	5.7	2. 68	. 94	. 32				
16					28.0	7.3	3. 41	1. 20	- 41				
18						0.1	4.24	1. 48	. 50				
20						11.1	5.2	1. 82	. 61	0.25			
25						16.6	7.8	2.73	. 02	. 38	0.09		
30						23.5	11.0	3.84	1. 29	. 51	. .13		
35							14.7	3.1	1. 72	.71	. 17		
40							18.8	6.6	2. 20	. 01	. 22		
45							23.2	8.2	2. 76	1. 15	. 28		
50								9.9	3. 32	1.38	. 34	0.11	
60								13.8	4. 65	1. 92	. 47	. 10	
70								18.4	6. 2	2. 57	. 63	.21	
80								23.7	7.0	3. 28	. 81	. 27	
90									9.8	1. 08	1.00	$\bigcirc 34$	
100									12.0	4.90	1.22	. 41	
120									16.8	7.0	1.71	. 5 H	0.24
110									22.3	9.2	2. 28	. 70	. 32
180										11.8	2. 41	. 98	. 40
200										14.8	3.61	1.22	. 50
240										17.8	4.4	1. 48	. 61
										25.1	6.2	2. 08	. 80
Comparative dis-													
pipes !	. 03	. 08	. 16		1.0	1.8	2.8	6.2	I1. 1	18.0	38. 3	68. 8	111.3

 phes but upon velocity of flow, a factor that changes with the refation of head of water to lragth of pipe. lispertfon shows that doubling the diameter of a plpe lucreases the discharging powar about 61 mmes . assuning like heads of water and a plipe luycreases the
 the areas of circles are proportlonal to the squares of their diameters. Thls table choud not lwe usel for pipes whiter than hoo times the interlor dinmeter

A column of water 1 foot high and having n base equal in area to 1 square inch weighs 0.43 poind. The pressure on the base is equal to the weight of the column. Domble the height, and the weight and the pressure are donbled. Hence it may be taken for granted that the pressure of water at rest (static pressure or head) is in direct proportion to the verticul height or depth of the water. From the above Table 5 is computed.

Table 5.-Vertical height in feet and equivalent pressure in pounds per square inch

Ilelght	l'ressure	Helght	Pressure	Height	Pressure
Fret	Pounds	Feet	Pounds	Feel	Pounds
1	0.43	20	8.67	75	32. 51
2	. 87	25	10.84	80	34.08
3	1. 30	30	13.00	85	36.85
4	1. 73	35	15. 17	90	39.01
5	2. 17	40	17.34	95	41.18
6	2.60	45	19.51	100	43.35
7	3.03	30	21. 67	110	47.68
8	3.47	55	23, 84	120	52.02
9	3, 90	60	26. 01	130	36.36
10	4.33	85	28. 18	140	60.69
15	6. 50	70	30.35	150	65. 03

Two examples are given to show the use of Tables 4 and 5. Example 1: How much whter will be delivered by 500 feet of $11 / 2$-inch pipe from a spring 26 feet ubove the ontlet? Solution: Multiply the head (26) by 100 und divide the prodnct (2,600) by the length (500), giving 5.6. In Table 4 under $11 / 2$-inch pipe find 5.2 and follow to the extreme left to find the answer- 20 ghllons per minute. It is nssumed that all the hend is used to overcome friction and that the water emerges full bore of the pipe. Vxample 2: What is the pumping hend where a pump is delivering 3 gallons 11 minute throngh 1,000 feet of 1 -inch pipe to a hydropneumut ic tunk carrying 39 pounds per square inch situated 20 feet higher than the pump? Solution: 'To the vertical height whter is raised (20 feet) must be udded friction loss which is 1.26 feet for ench 100 feet of length, or 12.6 feet; there must be added the equivalent height of the 39 pound tunk pressure which from 'luble 5 is seen to be 90 feet; 20 phis 12.6 plus 90 equals 122.6 feet, the true pumping head.

PUMPS

If a perfect vacuum could be created in a pump cylinder at sea level, water would follow the planger to a vertical helight of 33.9 feet. This is called suction or suction lift. With elevation above sea level, air becomes lighter and suction becomes weaker. It will be lelpful to see how the discharge of a pmup diminishes as the suction lift increases. Figure 18 shows the results of a test close to sea level with an ordinary $11 / 4$-inch pitcher pump. The dingram shows the diselange decreasing from 10.3 gallons per minnte when the suction lift is low, to no discharge at 30 feet 2 inches, the extreme height to which the pump) would druw. It is important to have a low suction lift but approximately three-fourths as mach whter was drawn when the lift was 22 feet as when it was 1 foot. On this
basis Table 6 gives the limiting suction lift for the satisfactory operation of pumps at stated elevations up to 8,000 above sea level.
Table 0.-Limiting suetion lift of pumps (vertical distance from water level to top of eylinder)

Elevation above sea level	Atmospherie pressure reduced to equiva lent head of water	Limiting suction lift	Elevation above aea level	Atmos- pherio pressure reduced to equiva- lent hesd of water	Limiting suction lift
	Feet	Feel		Fert	Feet
Sea level-	33. 9	22.0	5,000 feet.	28.0	18.2
2,000 feet-	31.4	20.4	${ }^{\text {7,000 feet. }}$	27.0	17.5
3,000 feet.	30.2	19.6	8,000 feet.	25.0	16.2
4,000 feet.	22.1	18.0	8,00 Ret.		16.2

${ }^{1}$ Taken as 65 per eent of the heads shown in the second column.
Suction pipes may be long provided the friction loss (see Table 4) plus the vertical height from water level to pump valve does not exceed the limiting suction lifts shown in Table 6. Lengths of 100 to 1,000 feet are frequent. An ordinary pitcher pump raised 5 gallons per minute through 320 feet of $11 / 4$-inch pipe having two ellows, a foot valve, and a vertical height approximating 19 feet. Suction pipes should be straight, air-tight, slope uniformly upward from well to pump, and never be smaller than the pump suction connection. Long suctions shonld be larger than such connection and should have a foot valve and strainer on the end in the well.

Pumps may be divided into two classessuction and force, or a combination of these types. A suction pump has the cylinder above the water; it does not raise water above the pump nor discharge it against pressure. A force pump can raise water above itself and against pressure. The general arrangement of valves in these two types of pump and in a deepwell pump is shown in Figure 19.

Where a pump is more than 22 feet above the water it is necessary to lower the cylinder. Where the water is 22 to 30 feet below the surface, a set-length pump may be used. This pump has the pipe

14 a. 18.-1)iagram khowithg how the dikcharge of a pump varies with the suction lift and rod lengthened to permit placing the cylinder several feet below the well platform. A drip hole may be drilled in the pipe just above the cylinder, thus allowing the water above to escape and, provided the platform is tight, preventing freez-
ing. By lengthening the pipe and rod and by using a small cylinder lowered into or near the water, this type of pump may be used in wells in or more feet in depth.

Fig, 19.-General arrangement of values and plungers in suction, force, and drep-well
pumps

Where the water is far below suction lift, a deepwell pump driven by power is generally used. The working head is placed over the well, and pump rod and drop pipe are lengthened to permit setting the lower cylinder in or close to the water. Submergence is best because it keeps the eylinder primed and the pump leathers pliable. Deep-well pumps are usually single acting; that is, water is lifted on the up stroke. This brings a heavy, variable load on the working parts; and an upper or differential cylinder in or just below the working head is employed to divide the work between the up and down strokes. In this way the water that is lifted to the surface by the up stroke of the lower plunger is forced to the discharge pipe by the down stroke of the upper plunger.
It is a great convenience, especially in wells is or more feet in depth, to use an open-type cylinder fitted for drop pipe one size larger. to facilitate pulling up the lower plunger for renewal of leathers or other parts. A closed-type cylinder with staler drop pipe requires drawing cylinder, pump rod. and drop pipe. The two types of cymader are shown in Figure 20. The size of the cylinder should always be determined from the size, depth, and yielding power of the well, the hours within which the daily requirements are to be pumped, and the available power. Ordinarily the day's pooping is done in one to three hours. Deep wells and hand and windmill outfits take the smaller cylinders; the advice of a reliable dealer or manufacturer whose product is to be used should always be

Fig. 20. -Closed aud open cylluders obtained. Table 7 shows the capacity of pumps per stroke for one single-acting cylinder,

Table 7.-Capacity of pumps ${ }^{2}$

Dlameter of cylinder in inches	Length of stroke in inches								
	2	3	4	5	6	7	8	10	12
	Capaclty per stroke ln gallons								
1.	0.007	0.010	0.014						
116	. 011	. .016	. 0.021	0.017 .027	0.020 .032	0.024 .037	0.027 .042	0. 034	0.041
15	. 015	. 023	. 031	. 038	. .046	.037 .054	.042 .001	.053 .077	.064 .092
2.	. 021	. 031	. 042	. 052	. 0082	. 073	. 083	. 104	. 120
24.	. 027	. 041	. 054	. 088	. 082	. 095	. 109	.136	. 183
218	. 042	. 0002	. 089	. 086	. 103	. 120	. 138	. 172	. 207
29	. 081	. 007	. 108	. 100	. 127	. 149	. 170	. 212	. 255
3.	.061	. 092	. 122	. 128	. 184	. 180	. 206	. 257	. 308
314	. 072	.	. 144	.183 .179	. 184	. 214	. 248	. 306	. 367
$31 / 2$.083	.125	.167	. 208	. 216	. 251	. 287	. 359	. 431
34	.096	. 143	.191	. 239	. 287	. 291	. 333	. 416	. 500
4.	. 109	. 163	.218	. 272	. 326	. 381	. 438	-4.8	. 574
4	. 138	. 206	. 275	. 344	. 413	. 482	. 5.51	. 688	. 683
55	. 170	. 255	. 340	. 425	. 510	. 595	. 680	. 850	.826 1.020
	- 206	. 308	.411	. 514	. 617	. 720	. 823	1.028	1. 234
	. 245	. 367	. 490	. 612	. 734	. 857	.879	1. 224	1.400

Plunger displacement. No allowance for slin of water past valves. For double-acting eylinders multithe required length of stroke.

Figure 21 shows pmups of the kinds described. In selecting a punp the following information should be known: (1) The kind of well, inside diameter, depth to bottom, depth cased, depth to water level both at rest and when pumping, and the snstnined yield, as fonnd by test, in gallons per minute (see "Ground Water Supplies," page 12, and "Wells," page 14) ; (2) the maximum quantity of water required at buildings, gallons per hour or day; (3) distance from well to proposed location of pump and the vertical height between these points: (4) distance from pump to reservoir or tank, and the vertical height between these points; (5) kind of power.

If electricity is to be used the following information should be obtained from the local light or power company: The voltage, if the current is direct, the voltage, cycles, and plinse, if the current is alternating. With the above information a reliable manufacturer or dealer will be able to select suitable equipment and the farmer can check the suitability of the selection.

PUMPING WITH COMPRESSED AIR

AIR LIFTS

Air lifts are useful in raising large quantities of water from deep wells. Compressed air is led through a small pipe deep into a well, and is there released in an upward direction through mumerons small holes in the side of a nozzle-shuped foot piece to which is serewed a vertical pipe for the delivery of water to the surface. The air. as small jets or bubbles in contact with water, rises and expands within the delivery pipe, carrying with it and ejecting some of the water. 'To secure the best results, the subinergence and the size and arrangenent of nir and water pipes for each installation should be determined by the manufacturer or others experienced in the work. Air lifts have no moving parts in the well. The main advantages we simplicity, durability, large capacity, noninterference by cold,

grit or sand, and adaptability to drawing from a crooked well or from several widely-separated wells with one power outfit. Disadvantages are cost, low efliciency unless correctly designed and installed, and tendency of the air to slip over the water where the horizontal discharge distance is great. An air lift is often used to raise water to the surface, after which it is pumped by other means.

AIL-DISIDACEMENT JUMIS

An air-displacement pump consists of a submerged cylinder or cylinders from which water is antomatically displaced by compressed air, the operation of the pump being wholly controlled by opening and closing any fancet on the water-delivery pipe. No water is stored, and the pump is at rest when fancets are closed. The chief adrantage of the system is that water may be taken from one or several sources with one power outfit and delivered direct from well to faucet. The system is not cheap and is not as simple as some other methods of raising water. Pipes and pumps must be tight and remain tiglit in service and the working parts be maintained in good order.

Air lifts and air-displacement pumps reqnire some method of (compressing and storing air. Fignre 22, E, shows these parts in a typical air-displacement pump installation; they consist of a gasoline engine, air compressor, air tank, and air pipe to the well in the foreground, and water pipe from the well. The air-displacement pnnip is summerged in the well; if desired, an air-lift foot niece could be employed.

POWER

The theoretical horsepower nocessary to rnise water is found by multiplying the gallons pumped in one minute by the total lift in feet, including friction in both suction and discharge pipes, and dividing the product by 4,000 . To overcone losses in the machinery the theoretical horsepower is generally multiplied by 3 to 4 for elec-tric-driven pumps and by 4 to (6 for pumps driven by gasoline engine. Ordinarily half-horsepower motors and 1-horsepower engines are sufficient for farm pmonjing, but it is safest to compute the amonnt of power needed and to get the advice of a reliable pimp, concern. Table 8 shows the actual horsepower required to pminp water, assming an overall efliciency of 25 per cent (actual four times the theoretical).
TAble: x--Horspmouer required to pump uater (based on overall eficiench of 25 per (cnt)

Callons ber minute	Lift in feet									
	50	60	70	\$0	90	100	125	150	175	200
	llorsepower required									
2	0.10	0.12								
4	.15	. 18	. 21	0.16 .24			0.25 .38	0.30	0. 35	0. 40
b	. 20	.24	. 28	. 32	. 36	. 40	. 50	.45 .60	.33 .70	$.00$
6	.25 .30	.30 .36	.35 .42	. 40	. 45	. 30	. .60	.60 .75	.70 .85	$\begin{array}{r} .80 \\ 1.00 \end{array}$
$\stackrel{7}{7}$.30 .35	.36 .42	.42 .49	. 48	. 54	. 60	. 75	.90 .90	1.85	$\begin{aligned} & 1.00 \\ & 1.20 \end{aligned}$
k	. 40	.42 .48	.48 .56	.56 .64	.68 .72	.70 .80	.88	1.05	1. 23	1.40
${ }_{10}^{0}$. 45	\bigcirc	-66	$\begin{array}{r} 64 \\ .72 \end{array}$. 72	80 .90	1.00 1.13	1.20 1.35	1.40 1.54	1. 60
10.	. 50	. 60	.80	$.80$.90	.90 1.00	1.13 1.25	1.35 1.50	1.58 1.75	1. 80

Fito, 22- Pumping and storing water. A. Putaping to a wood burrel, faucet in the kitchen; B, gaivanized steel tank protected by atraw comprested air: P, a nerviceible installation; Q. water tank on top of a ciay tile silo: H, wood tank ground tank, K, pumping with with burlap and enclosed in a wood box packed with cinders; 1 , concrete standpipe; J, attractive rabbfe masonary tank.

Hand power is unsuited to large supplies or high lifts. Windmills are more extensively used for pumping water than any other source of power, and if well installed and maintained give good lowcost service. In selecting an outfit, the prevailing wind velocity, the size of the wheel, the diameter of the cylinder, und the lift should be considered to nvoid overloading. Windmills are generally londed in the Middle West to operate in 15 -mile winds, starting to pump in n 6 to 8 -mile wind, doing excellent work in a 15 -mile wind, and renching the maximum in a 25 to 30 -mile wind. In mountainous regions windmills are generally loaded for a 10 -mile wind. With the exception of Kansas and a few other states the most desirable wind velocities for pumping rarely prevail as much as one-third of the time. ${ }^{\text {B }}$ The most common cause of overloading comes from using a cylinder excessively large in dianeter. The longer periods of operation by small cylinders as compared to large cylinders, enables the former, in the course of a senson or year, to pump more water. Cylinders and mills which have long, slow strokes nre recommended. Recommendations and claims as interpolated from the cutalogues of different manufucturers of back-geared windmills are given in Table 9.

Table 9.-Approsimate capacity of windmills (from manufacturers' ratings)

Lift	Velocfty of wind per hour	Diameter of wheel							
		6 feet		8 feet		10 feet		12 feet	
		Diameter of cylinder	$\begin{aligned} & \text { Ca- } \\ & \text { pacity } \\ & \text { per } \\ & \text { hour } \end{aligned}$	Diameter of cylInder	```Ca- pacity per hour```	Diameter of cylinder	Capacity per hour	Diameter of eylinder	$\begin{aligned} & \text { Ca- } \\ & \text { paelty } \\ & \text { per } \\ & \text { hour } \end{aligned}$
Feel	Miles	Inchet							
25 35	10	$21 / 2$	140	31/2	Gantis	fmehe: 114	$\begin{gathered} \text { Gallons } \\ 4200 \end{gathered}$	Inches 51/2	Gallons
35 50	10	2	120	3	230		360	5	1,010 675
75	10	1314	110	$23 / 4$	180	$31 / 2$	305	4	615 520
100	10			$21 / 2$	135	3	235	3	365
125	10			${ }_{13}$	105 90	21/2	160	234	268
25	15	$31 / 2$	250	$5^{1 / 4}$	90 500	2	. 125	21.2	200
35	15	3	175	1	560 100	7	1,190	9	2. 190
50	15	212	125	316	100 280	6	880	7	1,595
75	15	$2{ }^{2}$	12.8	23/4	280 190	5	610	6	
100	1.5	17\%	60	21/3	190 140	416	375	5	760
125	15			214	115	$31 / 4$	305 250	41/4	565

Gasoline and oil engrines are well adapted to farm pumping and may be equipped to stop) at any (lesired pressure in the tank supply. Hot-ain engines have had considerable use. The use of electricity for pamping is increasing rapidly. The method is clean, quiet, and convenient, and stopping and starting a distant pump by throwing a switell may be a reality wherever trunsmission lines are so near as to make this power available. Flectric motors may be had in small sizes and low powers and may be arranged to start and stop automatically with changes in the tank pressure: two installations are shown in Figures $21 C^{\prime}$ and $25 C$.

[^3]
STORAGE OF WATER

ELEVATED TANKS

Water may be stored in wood, steel, or masonry tanks, and to secure gravity delivery the tank must be elevated above all fancets. Tanks pluced in attics, burn lofts, and upon light trestles are unsatisfactory. The objections relate to insecurity and leakage, lack of pressure, and unwholesomeness in summer nod freezing in winter. Masonry tunks may be placed on a hill, silo, or musonry tower. Where possible, un underground concrete tank on a hill is very desitable, avoiding trouble with frost and giving a tempered nnd sure supply. Tanks should hold more than one day's supply. For wind-

Fic. eht- Workhig drawhig for a sifure, rednforceal concrete. underground tank. Very convonlent When fomptylng and clemuing a tank, to lative a valve on the kupply plpe and a vonlvo on a larancli bipe or blow-off endmig nbove ground and gradial to draln the higher stanterl pipe sud tank: colos fug tho bualn valve and opmoning the brancli valve rinpties the tank
hydropnematic (water-air) tank. The tank need not be elevated and usmally is conveniently located in a utility room, basement, or cellar. Hydropnemmatic tanks must he absolutely air-tight. Air being lighter than water occupies the upper portion of the tank, and it presses with increasing force against the water as either more water or more air is pumped into the tunk. When nir and water are under pressure the latter gradually absorbs the former, and this alsorption is the more rapid the higher the pressure. From time to time, therefore, the air supply must be replenished, or the tank becomes water-logged. Maintenance of the air supply is a vital factor. Inlet and outlet pipes must enter at the bottom of the tank. Hydrophematic tunks are made of three-sixteenths inch or thicker sted with riveted and welded or calked joints. A runge boiler or other thin-walled tank should not be used for this purpose. 'The smaller tanks generully are galmaized and may set vertically or horizon-
tally; the larger tanks are set horizontally. Figures $25 A$ and C show typienl installations.

To obtain the best service from a hydropneumatic tank it is necessary to carry an initial or excess uir pressure ; that is, enough air to give pressure when no water is in the tank. Table 10 shows what percentage or fractional part of any tank, either vertically or horizontally set, contuins water under varying conditions of gage pressure and initinl air pressure.

TAme 10-Quantity of water in fractional part of total capacity of any hydropneumatic tank (based on atmospheric pressure of 14.7 pounds por square ineh)

Gage	Initial air pressure ln pounds						Onge pressure (lbs.)	Initlal air pressure in pounds					
(lbs.)	0	5	10	15	20	25		0	5	10	15	20	25
5	0.25						45						
10	. 40	0.20					30	0.75 .87	0.64 .70	0. 58	0. 50	0.42	0. 34
15	. 51	. 34	0.17				55	.87 .79	. 70	. 62	. 54	. 46	. 39
20	. 88	. 43	. 28	0.14			60	.78 .80 .82	.72 .74	. 65	. 57	- 50	. 43
25	. 63	. 50	. 38	. 25	0.13		65	. 80	. 74	. 67	. 60	. 54	. 47
30	. 87	. 56	. 45	. 34	. 22	0.11	70	.82	. 75	-69	-63	. 56	. 80
35	. 70	. 60	.50	. 40	. 30	. 20	75	.83	. 78	.71 .72	. 65	. 88	. 53
40	. 73	. 64	. 55	. 46	. 37	. 27	80	. 88	.78 .79	.72 .74	. 67	. 61	$\begin{array}{r}\text { + } \\ . \\ .58 \\ \hline\end{array}$

Table 10 has many uses. It shows that if water is pumped into a tank having no pressure nbove that of the ntmosphere until the gage shows 5 pounds, the tank will be one-fourth (0.25) filled with water; int 15 pounds it will be about one-half (0.51) full: at 30 ponnds it will be two-thirds (0.67) full; at 45 ponnds it will be there-fourths (0.75) full: at 60 ponnds it will be four-fifths (0.80) full. An exumple will be helpful: Suppose a 220 -gullon tank is half full of water imder a grige pressure of 45 ponnds and it is desired to know what quantity can be drawn before the pressure reaches 2.5 pounds. Inspection of Thble 10 shows that if half (0.50) full int 45 pounds the initial air pressure mast be 15 pomods, and muder that excess a tank is one-fourth (0.25) fall at 25 pounds gage pressme. Therefore, 0.50 minus 0.25 equals 0.25 , which, multiplied by $2: 20$, equals 55 gallons, the avilnble quantity. In general, the working capacity of a tank is from one-fourth to one-thurd of its totnl capacity.

PLANNING A SYSTEM

Sufficient information has been given to enable the farmer to outline his plans. An exmmple will be helpful. Suppose a plant is desired to meet the needs of 5 persons, 25 cattle (including horses or mules), 50 sheep, and 50 hogs. The average daily requrements (see Table 1) would be as follows:
5 persous at 40 gallons each Gallons25 cattle at 12 gallons cach 200
bo sheep at 1 gallon eheh 300
50 hogs at 1 gallon each 50
Total 600

A suction pump would be used with a shallow supply (see Table 6) ; a deep-well puinp or set-length pump would be used with a deep supply. A suction pump probably would be located in a dry, frost-proof bascment, pump house, pit, or underground concrete chanber opening into the house cellur. A deep-well pump probably would be outside of main buildings: if in a pit or chamber, there

list, 24. Working drawing for n combince coollng room intil round relnforced concrete tank. SugFentiai mlxturex por concreto: finnk winlis nind tank bot tonn $1: 2: 3$ (1 volumbe cemant. 2 volnmes
 should be a manhole over the center of the well to permit pulling up the pump rod and drop pipe.

To do the day's punuping in two hours would require a pump having a capacity of 300 gallons per hour or 5 gallons per minute. The more constant the power, the more reliable the equipment, and the more accessible the repair parts the less is the need of large water storage. An automatic electric-driven punp (see fig. $25 \quad C^{\prime}$) may have a pressure tank varying in capacity from 10 gillons upward. It would he arranged to start pumping when the pressure fills to 25 or 30 pounds per square inch and to stop when the pressure reaches 45 or 50 pounds. With very small tanks any considerable use of water starts the pump and delivers water be direct pump pressure. The sumaller punps and tanks are especially useful for cistern and other household supplies, but the pump eapacity (5-gallons per minute) figured in the example, would give fair discharge from one garden hose nozale or two ordinary spray nozzles or two house fancets. Fanter use of water would require a larger tank; a tank 30 iuches in diameter ly 6 feet long. 220 gallons enpacity (water and air) should be suflicient for short heave drafts, having a working capacity of appproximately 50 gallons (oil barcel capacity) between the nsial stopping and stinting pressures noted above. If electric current cost 15 cents per kilowatthour the cost of punping 600 gallons would npproxinate 14 cents per day.

Fit, 25. - A, Hydropncumatic tank in hasement: B, water softener-zeolites in a steel tank; C, automatle hydropneumatic tank system; D, bore of small, cast-iron water pipe after 35 years use; E, a cold water valve for use on automatic systems: h, one nch hlack wrought pipe lined with cement to a $8 / 4$-inch bore; bore ciear after 40 years in the ground: elbow; reducer: G, slde view of short pieces of $11 / 4$ finch, hub and splgot cast-iron plpe witil foundry prepared lead joint ready for calking: H, end vew of lipes shown in a; 1 , ciose nippie; plug; face bushing; J, tee; union

A larger tank wonld be used if the pump were not artomatic or were engine-driven. Under those circumstances a hydropnemmatic tank 42 inches in diameter and 14 feet long, 1,000 gallons total capacity would be suitable. With 20 pounds initial an pressure, it would deliver 290 grallons between pressires 45 and 25 pounds. (See Table 10: 0.42 minus 0.13 equals 0.29 , whieh, multiplied by 1,000 , equals 290 gallons.) Hence it would be necessary to operate the pump twice a day. If an elevated tank were to be employed its capacity should be larger, the equivalent of the tank shown in Figure 23 being suitable.

FIRE PREVENTION

Carelessness is the great fire hazard, and the watchword upon every farm should be prevention first and protection second. To fight a well-ignited fire successfnlly requices more water and higher pressure than ordinarily obtaned with farm water systems. With 57 pounds pressure at the sillcock. 50 feet of three-fourths-inch rubber hose and an ordinary three-sisteenths-inch is-cent nozzle. the discharge is $\tau 1 / 2$ grallons per minute-less than three pailfuls. Such a strean directed at a large fire avails little, on account of its dispersion by heat, and it may happen easily that no water reaches the desired point. Other practical difliculties relate to frozen pipe lines, shontage or defects in the hose, misplaced nozzles, and lack of experience in the skillful nse of the equipment when the time comes to fight fire. Althongh farm water systems are not generally given credit in insurance ratings, they may be of great value if a fire be discovered in its incipient stnge, and it undoubtedy is wise, where a pressure system is installed. to provide a few well-placed hose connections. An antomatic sprinkler system is rery eflective in preventing serions fire. Such an installation in costly farm buildings is a wise step. adding greatly to the value of the plant considered as a going business.

WATER SOFTENING AND IRON REMOVAL

An excess of certain mineral salts dissolved in water makes it hard, and there fore undesirable for drinking and cooking, ineffective and costly for cleming and loundiy purposes, and canses it to form scale in liettles. pipes, and boilers. Whater may be softened for laundry and cleaning purposes by dosing it with ammonia, borax. or washing soda, all of which can be oltained at most grocery stores. Similar treatment is unsuitable for softening drinking water or large quantities of water for boiler and general from purposes.

Water softening is the process of precipitating or changing the form of the dissolved minerals which prodnce hardness. The process further seeks to neutralize the free acids which cause corrosion. It is a chemical process and therefore is distinct from the remoral of floating or settled solids such as mud or silt. Filtration alone does not soften water.

The principal hardening constituents are the carbonates, sulphates. and chlorides of lime and magnesia. 'The principal seale forming constituents are the carlonates and sulphates of lime and magnesia, and usually more or less solid matter such as mud or silt.

Hardness caused by lime and magnesia carbonates held in solution by carbonic acid may be partly removed by boiling the water which drives off the acid or by adding lime water or caustic lime which neutralizes the acid. Hardness caused by the sulphates of lime and magnesia is not removed by boiling but may be partly remored by adding sodn-ush. Such water may be treated chemically to form a more or less insoluble precipitate which may be removed by sedimentation followed by filtration.

A group of impurities found in alkaline waters are sodium chloride (common salt), sodium sulphate (Glauber's salt), and sodium carbonate (soda ash). The first two constitute what is known as white alkali, and the third constitutes black alkali. These compounds are nonscale forming, but their presence in more than norinal amounts makes water unfit for domestic consumption. The sodium salts are very soluble in water. They are not precipitated by heat or chemicals nor are they removed by filtration, but they may be removed by distillation.

Household water softeners are on the murket. In every instance the water should be analyzed by a trained chemist to determine the proper treutment. The United States Department of Agriculture is unable to undertake the analysis or other examination of samples of water submitted by individials, since its authority for work of this kind is restricted to official samples collected by the department. No doubt many of the states are similarly restricted with respect to analyses for individuals. However, those knowing of no private chemist who makes water analyses and who desire to cmploy one can usually obtain information regarding competent chemists who would be in a position to make these analyses by addressing the State health officer, the State chemist, the director of the agricultural experiment station, or the professor of chemistry in the State or other university. Many manufacturers of water softeners havo luboratory fucilities and do analytical work without charge to prospective customers. Not less than one-half gallon of water is required for an analysis. The water should be carefully collected in a clean bottle. The sample should be representative of the whole supply and should be packed with sawdust or similar material in a box or carton to prevent breakage or freezing.

Figure 25 / B shows a water softener of the zeolite type suitable for home use and costing from \$175 upward, according to the size and make. The names and addresses of manufacturers can be obtained from trade and equipment directories, which can often be consulted in public libraries or commercial houses. Operation of this softener is not difficult or costly, common salt being the only chemical the householder uses to mantain it. Zeolites are hydrous ahuminum sodium silicates, a hard gramular mineral product insoluble in water and having the power to exchange its sodium for an equivalent amount of the calcinm and magnesium in the hard water passing through it. The quantity of dissolved mineral matter in the water is not reduced. but its form is changed. The life of the zeolite material is maintained by adding at the top from time to time a 10 per cent solution of common table salt. The amount of salt and the frequency of applying it vary with the hardness of the water and the quantity of water used in the home. A report on one
installation states that 300 gallons of water are softened by one charging of 8 pounds of salt; another states that 600 pounds of salt a year softens 37,000 gallons of water.

Many waters, clear when drawn, coutain dissolved iron which upon release of pressure and exposure to air settles out as a rustylooking sediment. Such water is likely to cause rust spots on laundry work and is undesinable for other household purposes. Water of this kind can usually be improved by thorough aeration, followed by a period of rest to settle the precipitate, and filtering the uppermost water through muslin, linen, coton duck, or sand. The precipitation of the iron is hastened by adding a little (determine the quantity by trial) limewater, a simple and safe solution obtaimale at drug stores or easily and cheaply made at home. Limewater is prepared as follows: Put a small himp of fresl quicklime (canstic lime) in a wood pail and slake the lime by gradually adding abont 30 times its weight of water. Stir or shake frequently during one-hulf hour, allow tine to settle, and reject the liquid. Add to the lime residue about 300 times its weight of water, stir frequently during the next 24 homs, and allow the lime to settle. The clear water above the undissolved lime is limewater, and should be kept for use in large well-corked bottles or carhors. There is some saving if the undissolved lime is bottled with the limewater, every time some of the limewater is used adding a like quantity of fresh water.

Water containing iron can frequently be improved for laundry purposes by adding a little limewater or washing soda to the water in a tank or vat, stirring thoronghly, ullowing the iron to settle to the bottom, and drawing off the nipermost (clearest) water for use. The water drawn off should be filtered through cloth or other material, but this is not always done becanse of the inconvenience. Long boiling of water is an aid to the precipitation of iron, but the method is qenerally impractical. Apparatus for the remoral of iron is mon the market, and the manes and addresses of manufacturers can be obtained from trade directories on file in many public libraries.

Iron removal and water softening are subjects not easily understood by the ordinary individual. Examination of the water is always inecessary to determine the proper treathent. (See page 37.) The apparatus and piping should be adapted to the work to be done, and should be suitably housed to protect from frost. The apparatus is costly, and its operation can not be neglected. Individuals who can afford such plants or groups of farmers combining to install then can obtain very good results, provided proper attention is given to the operation of the plant.

PIPES AND FITTINGS

Galvanized wrought-iron or steel pipe screwed into gralvanized, beaded, malleable-iron fittings is generally used for farm water piping. It greater cost, more lasting, cleaner-bore pipe, such as cast iron, brass, tin-lined lead. or cement-lined wrought, is a vailable. Some of these pipes and the more common screw fittings are shown in Figures 25, $F, G, I I, I$ and $\%$ Further information on pipe materials and sizes and methods of jointing. laying, and protecting pipes is given in Farmers' Bulletin 1426, "Farm Plumbing."

[^0]: ${ }^{2}$ The amount and the seasomal dilstrbintson of ralnfall at the princlpal cities thromgh out the country may be obtalned from the 1 . s. Weather lsureau. Wardington, D. C. from jocal forectinters in the severas states, and from published repurts of the Weatier ibureat dit many dorarles.
 for larm Use, and Dejartment lhallethit 230 . Oll Mixed lorthand Cement fonerete. The flrst two are malled free on reguest by the $\mathcal{U}_{\text {. }} \mathrm{S}$. Dejartment of Agrleusture and the hast may he obthined for 10 eants from the Superinteuclent of locumente, Government frinting Otice, Washligton, D. C.

[^1]: 'Two other mothods ofton und to disinfoct drinking wator are ns follows:
 (1) Ibolling water 20 minntes. This is a very sufe mothod but is inoonveniont for Inrge glantltifs of wnter or where the method must be emplosed for n conslderable perlod of thme.
 (2) businfoctlon with tablets contaiming a compound of chlorine. This method is Amplo and comwinlent, ns sultable tablets with diectlons for using may be purchased at many drug stores.

[^2]: - Ont of 1,043 wells leas than $2 \sqrt{6}$ feet deep in Illlnols, 74 per cent wre condemned: out of 2,70 wells 25 to 50 feet deep, 63 per cent were condemned: out of $1.3: 3$ wells 50 to 106 fert dapp), 32 per cont wore rondemned: nut of 3.228 wells more than 100 feet deep, only $1: 3$ per cent wore cohdembel. Som Winter survey serles, No. 18, Ldward Bartow, dircetor, State Water Simery, 1'rlana. 111., p. 15.

[^3]: Weathermation on the velocity wine prevalence of wind may be obtalned from the $\mathrm{U} . \mathrm{S}$.

