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We present a sampling method for the transition from relativistic hydrodynamics to particle
transport, commonly referred to as particlization, which preserves the local conservation of energy,
momentum, baryon number, strangeness, and electric charge microcanonically, i.e., in every sample. The
proposed method is essential for studying fluctuations and correlations by means of stochastic hydro-
dynamics. It is also useful for studying small systems. The method is based on Metropolis sampling applied
to particles within distinct patches of the switching space-time surface, where hydrodynamic and kinetic
evolutions are matched.
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One of the key goals of modern heavy ion collision
experiments is to search for a phase transition between a
hadron gas and a quark-gluon plasma (QGP), and to locate
the corresponding critical point. The vicinity of the critical
point is characterized by enhanced event-by-event fluctua-
tions [1,2]. Therefore, considerable attention is devoted to
correlation and fluctuation observables, such as proton, net-
proton, net-charge, and kaon cumulants [3,4], fluctuations
of various particle ratios [5], transverse momentum corre-
lations [6], and charge balance functions [7]. Since a heavy
ion reaction is a dynamical process, it is essential to study
these observables within a dynamical framework. A very
successful dynamical treatment is a hybrid approach [8]
which combines the relativistic hydrodynamic evolution of
the high (energy) density QGP phase with the kinetic
transport for a more dilute hadronic phase. This approach
successfully reproduces bulk observables such as particle
spectra and flow (see, e.g., Ref. [9]). Switching from the
continuous relativistic hydrodynamics to the discrete par-
ticle transport, often referred to as “particlization,” is
usually performed on a hypersurface characterized by
constant energy density, temperature, or Knudsen number
[10]. In the existing relativistic models the switching only
occurs in one direction: from hydrodynamics to particles,
but not vice versa. This is in contrast to nonrelativistic
hybrid approaches, where dynamical domain decomposi-
tion methods are routinely applied and the switching is
performed in both directions (see, e.g., Ref. [11]). To study
correlations and fluctuations within the hybrid approach,
hydrodynamics has to be either extended by stochastic

terms directly [12–15] or coupled to a nonequilibrium field
with a stochastic noise [16,17]. In both cases, it is essential
that the particlization preserves the fluctuations generated
by such models. This is a nontrivial task, which so far has
not been done in the context of relativistic hydrodynamics.
In the nonrelativistic case, this problem is addressed in
several ways [11]. One of them is to exactly match the
fluxes at the interface, which in the relativistic case
corresponds to local event-by-event conservation laws, or
in other words, microcanonical sampling. The standard
Cooper-Frye sampling used in relativistic models (for a
detailed description see, e.g., Ref. [18]), on the other hand,
is grand canonical. It combines the Cooper-Frye formula
for the momentum distribution in a hypersurface cell [19]
with Poissonian sampling of the multiplicity distributions.
Together they result in total energy, momentum, and
charges fluctuating around correct means, as it is illustrated
in Fig. 5 of Ref. [20]. Additionally, in the standard
procedure particles in different cells are sampled independ-
ently, and thus are uncorrelated, although their velocities
may still be correlated via a common flow velocity
profile. The scaled variances of multiplicitites are ω≡
½ðhN2i − hNi2Þ=hNi� ¼ 1 by construction. In contrast, in
the microcanonical case ω < 1 and particles should be
correlated due to the conservation laws.Moreover, event-by-
event conservation laws are important not only for corre-
lations and fluctuations. For example, in small systems they
can also affect mean values. Therefore, constructing and
realizing a microcanonical sampling algorithm is the pur-
pose of this work.
Attempts to introduce (micro)canonical particlization

have been undertaken previously, but they rely on intu-
ition-based ad hoc modifications to the standard sampling
algorithm such as introducing local charge conservation by
sampling particle-antiparticle pairs [21], trying to satisfy
conservation laws one by one in a “mode sampling”
algorithm [18], and rejecting particles that increase the
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deviation from the desired conserved charges in the SPREW

algorithm [20]. The multiplicity distribution sampled by
these algorithms is not known precisely and does not
correspond to a canonical or microcanonical ensemble. The
SER algorithm [20,22] samples the correct canonical
distribution, but extending it to the microcanonical ensem-
ble is impossible. Note that energy and momentum con-
servation, which distinguish the microcanonical from the
canonical ensemble, influence not only pT fluctuations, but
also the fluctuations of multiplicities. This is why we
propose a method to conserve all charges, energy, and
momentum simultaneously.
First of all, we define regions over which conservation

laws should be applied; we call these regions “patches”.
There are two requirements for the patch size b. First, it
should be comparable to the hydrodynamics scale dis-
cussed in the context of fluctuating hydrodynamics [23];
therefore it should be much larger than the mean free path
in a weakly coupled system or a thermal length in a strongly
coupled system: b ≫ 1=T, where T is temperature. Second,
one patch should contain many particles; therefore,
b3n ≫ 1, where n is particle density. A patch should not
necessarily be much smaller than the system size. If a
system is small, then conservation laws should be applied
over the whole system and by definition the whole system
is one patch. However, if a patch is comparable to the
system size, then the applicability of hydrodynamics may
be questionable. In the usual applications of hydrodyna-
mics it is reasonable to use every computational grid cell as
a patch. Indeed, even in simulations of micro- and nano-
fluids the number of particles per computational cell is of
the order of 100 [11]. However, in typical simulations of
relativistic ion collisions the average number of particles
per computational cell is of order 10−3–10−1, given a
typical cell size between ð0.2 fmÞ3 and ð0.5 fmÞ3. While
the strategy of sampling “fractional” particles is possible
[24], it leads to complications in the treatment of the
fluctuations in the subsequent transport evolution. Our
strategy is to split the hypersurface into independent
patches of similar size, and to require conservation laws
in every patch. In practice this implies that a patch consists
of roughly 50–1000 computational cells. A typical hyper-
surface consists of the order of 106 cells, resulting in about
103–104 patches. The exact number of patches, and there-
fore the “localness” of the conservation laws, can be treated
as a parameter. For a given patch, the quantities to be
conserved are
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where the sum runs over all hadron species i including
resonances, and over all cells of the patch. Here dσμ is a
normal four-vector of the cell (see definition in Ref. [18]),
uμ is the collective velocity of the cell, T is temperature of
the cell, and μB;S;QðxÞ are the chemical potentials of the
cell, responsible for the conservation of baryon number B,
strangeness S, and electric charge Q. The chemical poten-
tial of the species i is defined as μi ¼ μBBi þ μSSi þ μQQi,
while gi is the degeneracy of the species. It may seem
surprising to consider a local temperature and chemical
potentials in a microcanonical sampling. However, there is
no contradiction here. Conservation laws are imposed only
over the whole patch. Variations in energy density, quantum
number densities, and collective velocities from cell to cell
within a patch are allowed and characterized by local values
of T and μ. Preserving these local variations is important to
ensure a faithful description of higher order azimuthal
anisotropies [25], which otherwise would be smeared. The
probabilityP of a given particle configuration in a patch is a
product of the usual Cooper-Frye formulas and global delta
functions which guarantee conservation laws over the
patch:
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Note that here the number of particles of each hadron
species Ns is not fixed, and neither is the total number of
particles N ¼ P

s Ns. Instead, both are distributed accord-
ing to Eq. (2). The quantities dσμ, uμ, T, and μB;S;Q depend
on the spatial position of a particle xi. The charges Btot, Stot
and Qtot are computed using Eq. (1). In practice these
charges are real numbers, not integers. To address this
problem, we suggest to either round Btot, Stot, and Qtot to
nearest integers or distribute the noninteger parts according
to a multinomial distribution, which is guaranteed not to
obfuscate total charges on the hypersurface [26].
Direct sampling of the N-particle probability distribution

expressed by Eq. (2) is difficult due to the unknown
normalization factor N and the δ functions. To sample it
we apply a Metropolis algorithm, a Markov chain
Monte Carlo method, which in our case is closely related
to solving the Boltzmann equation with the stochastic rate
method [27]. The state of our Markov chain ξ depends on
multiplicities, coordinates, and momenta of all particles:
ξ ¼ ξðN; fNsgspecies; fxigNi¼1; fpigNi¼1Þ. The initial state is
an arbitrary set of particles that satisfy the required
conservation laws [Eq. (1)]. Charge conservation for the
initial state is fulfilled by an ad hoc heuristic algorithm
picking lightest particles of necessary charges, while the
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energy-momentum conservation is achieved by rescaling
momenta as in Ref. [20]. Given a state ξ we propose
a state ξ0 with probability Tðξ → ξ0Þ and then decide, if this
state should be accepted, with probability Aðξ → ξ0Þ.
Therefore, the probability to obtain a state ξ0 from ξ is
wðξ → ξ0Þ ¼ Tðξ → ξ0ÞAðξ → ξ0Þ. The master equation,
connecting the probability to obtain the state ξ at steps t
and tþ 1 is

Ptþ1ðξÞ−PtðξÞ¼
X
ξ0
wðξ0 → ξÞPtðξ0Þ−wðξ→ ξ0ÞPtðξÞ:

ð3Þ

After many steps the probability Pt→∞ðξÞ should con-
verge to PðξÞ given by Eq. (2). A sufficient condition for
this is known as the detailed balance condition:

Pðξ0Þ
PðξÞ ¼ wðξ → ξ0Þ

wðξ0 → ξÞ ¼
Tðξ → ξ0ÞAðξ → ξ0Þ
Tðξ0 → ξÞAðξ → ξ0Þ : ð4Þ

This condition is satisfied if

a≡ Aðξ → ξ0Þ ¼ min
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There is some freedom to select the proposal matrix
Tðξ → ξ0Þ. We choose it such that it conserves energy,
momentum, and quantum numbers. Consequently, our
Markov chain never leaves the desired subspace where
conservation laws are fulfilled. Our proposal matrix may be
viewed as 2 → 3 and 3 → 2 stochastic “collisions” [27] on
the hypersurface. However, we note, that there is no real
time involved and collisions are not related to any physical
process. They are simply a mathematical method to sample
the distribution of Eq. (2). The proposal procedure is the
following: (1) With 50% probability choose a 2 → 3 or
3 → 2 transition. (2) Select the “incoming” particles by
uniformly picking one of all possible pairs or triples.
(3) Select the outgoing channel democratically with prob-
ability 1=Nch, where Nch is the number of possible
channels, satisfying both quantum number and energy-
momentum conservation. (4) For the selected channel
sample the collision kinematics uniformly from the avail-
able phase space with probability (dRn=Rn), n ¼ 2 or 3.
(5) Choose a cell for each of the outgoing particles
uniformly from all cells in the patch. Note that this choice
matters for the acceptance probability, because the corre-
sponding temperatures, chemical potentials, velocities uμ,
and normal four-vectors dσμ in the Eq. (9) will be taken at
the cells, where the outgoing particles are thrown. Here, Rn
is a phase-space integral for outgoing particles defined as
the integral over dRn:

dRnð
ffiffiffi
s

p
;m1;m2;…;mnÞ

¼ ð2πÞ4
ð2πÞ3n

d3p1

2E1

d3p2

2E2

� � �d
3pn

2En
δð4Þ

�
Pμ
tot−

X
Pμ
i

�
; ð6Þ

where
ffiffiffi
s

p ¼ ðPμ
totPtot

μ Þ1=2. The integration of dR2 and dR3

is possible analytically [27,28]. Our proposal procedure
generates the following probabilities for 2 → 3 and 3 → 2
proposals:
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where G2¼f½NðN−1Þ�=2!g and G3¼f½NðN−1ÞðN−2Þ�=
3!g denote total numbers of incoming pairs and triplets of
any species, while Gch

2 and Gch
3 are the numbers of ways to

select a given incoming particle species. Consequently,
(Gch

2 =G2) and (Gch
3 =G3) represent the probabilities to obtain

pairs and triplets of a given incoming species. The number
of possible triplets and pairs of outgoing species with
appropriate quantum numbers are denoted by Nch

3 and Nch
2 .

Inserting the proposal probabilities, Eqs. (7) and (8), as well
as the desired probability distribution, Eq. (2), into the
expression for the acceptance probability, Eq. (5), we
arrive, after some algebra, at
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where we made use of the relation
Qfðd3piÞ=

½ð2πℏÞ3p0
i �gδð4ÞðPμ

tot −
P

Pμ
i Þ ¼ 2n½ðdRnÞ=ð2πÞ4�. Here

n ¼ 2, 3 and m ¼ 3, 2 are the numbers of incoming and
outgoing particles, and N is the total number of particles
before proposing the Markov chain step. The product in the
numerator is taken over the outgoing particles and the one
in the denominator is taken over the incoming particles.
The quantities dσ, u, T, μ should be evaluated in the cell
where the particles are proposed to be, or coming from.
The total number of particles in the entire patch is given by
N, and kidm and kidn are the numbers of outgoing and
incoming identical species in the reaction. Note that the
sampling accounts for the variations in temperature and
chemical potential within the patch. Also, and equally
important, the distribution function f may contain viscous
corrections. To summarize, the algorithm consists of
multiple Markov chain steps, where the step is proposed
according to Eqs. (7) and (8) and accepted with probability
given by Eq. (9).
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We have tested the above sampling algorithm
both in a simplified and a somewhat more realistic setup.
First, we consider a patch consisting of one cell with
uμ¼ð1;0;0;0Þ, dσμ¼ðV;0;0;0Þ, and fðpÞ ¼ expð−p0=TÞ.
In this case Eq. (2) represents a well-known microcanonical
distribution, which has been sampled before [29,30].
Additionally, analytical expectations of scaled variances
of hadron multiplicities in the large volume limit are
available in this case [31]. Our algorithm reproduces the
analytical results for both means and scaled variances well.
The resulting momentum distributions are very close to
Boltzmann, as expected. This is a nontrivial result, because
multiplicity and momentum distributions are a not a direct
input to the sampling; the only input is volume V, total
energy, momentum, and conserved charges.
Next, we demonstrate our sampling for a more realistic

scenario, where we consider a patch consisting of three
cells with nontrivial values for uμ, dσμ, and T, which also
vary from cell to cell [32]. Conservation laws are imposed
over the entire patch, while the local energy density
and charge densities vary from cell to cell. As shown in
Fig. 1(a), we obtain the expected means in each cell,
agreeing with the grand-canonical standard Cooper-Frye
sampling. This is a demonstration that we correctly
reproduce the temperature variation from cell to cell. The
scaled variances, ω, of multiplicities in the patch, shown in
Fig. 1(b), are already drastically different from the standard
grand-canonical Cooper-Frye sampling, where ω ¼ 1 by
construction. In our case the variances agree with the
microcanonical analytical expectation from Ref. [31].

Finally, in Fig. 1(c) we demonstrate the nontrivial correla-
tions emerging from conservation laws. Unlike for varian-
ces, to our knowledge, there is no analytical calculation of
correlations in a microcanonical ensemble, although in
principle such calculations are possible using techniques
developed in Ref. [31]. Beside testing the sampler imple-
mentation, Figs. 1(b),1(c) also show the expected effect of
conservation laws on fluctuations and correlations in heavy
ion collisions.
In summary, we have proposed, implemented, and tested

a particlization method which takes into account local
event-by-event conservation laws in a systematic fashion.
Localness is achieved by splitting the hypersurface into
patches and enforcing conservation laws in every patch.
Event-by-event conservation of total energy, momentum,
baryon number, strangeness, and electric charge over the
patch is guaranteed by the algorithm. At the same time local
cell-by-cell variations of energy and charge densities within
a patch are preserved, ensuring that observables sensitive to
these variations, such as higher order azimuthal asymme-
tries [25], are not smeared out. The proposed method is
essential for studies of correlations and fluctuations, espe-
cially in combination with stochastic hydrodynamics, since
it will not obfuscate its correlations and fluctuations. It may
also be applied to exploring small systems, where the
impact of event-by-event conservation laws is large, as well
as charge dependent correlations relevant for the chiral
magnetic effect [33]. The code used for sampling is
publicly available [34]. We have checked that its execution
time for realistic hypersurfaces is not impractical [35]. As a

(a) (b) (c)

FIG. 1. Demonstration of the sampling with conservation laws over the patch, where total baryon number, strangeness, and charge are
enforced to be 0, while total energy and momentum are fixed and given by Eq. (1). The patch consists of 3 cells with arbitrarily selected
normals dσμ1 ¼ ð500.0; 50.0; 20.0; 30.0Þ, dσμ2 ¼ ð500.0; 40.0; 80.0; 30.0Þ, and dσμ3 ¼ ð500.0; 20.0; 20.0; 20.0Þ fm3; collective velocities
v⃗1 ¼ ð0.2; 0.3; 0.4Þ, v⃗2 ¼ ð0.1; 0.5; 0.5Þ, v⃗3 ¼ ð0.3; 0.4; 0.2Þ; and temperatures T1 ¼ 0.155, T2 ¼ 0.165, and T3 ¼ 0.175 GeV. Mean
multiplicities of selected hadrons in the cells are shown in panel (a): they are unchanged compared to standard grand-canonical Cooper-
Frye sampling. However, the scaled variances of multiplicities in the whole patch, shown in panel (b), differ from the standard Cooper-
Frye result and coincide within 0.5% with the microcanonical expectation in the thermodynamic limit, computed using analytic
formulas from Ref. [31]. In panel (c), the nontrivial correlations, generated by conservation laws, are shown in contrast to no correlations
in the standard Cooper-Frye sampling. Correlations are defined as ðA; BÞ≡ hðA − hAiÞðB − hBiÞi, where hi denotes the average over
samples; σ2A ≡ ðA; AÞ.
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next step, we will apply it to search for observable effects of
critical fluctuations in heavy ion collisions. Through
accounting for local conservation laws we might be able
to detect critical fluctuations in coordinate space via
correlations in momentum space which were previously
not visible when using standard particlization.
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