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IV. Researches on the Geometrical Properties of Elliptic Integrals. 

By the Rev. JAMES BOOTH, LL.D., F.R.S. 8sc. 

Received November 17, 1851,-.Read January 22, 1852. 

SECTION XI.-On the Quadrature of the Logarithmic Ellipse and of the Logarithmic 
Hyperbola. 

LXXXIV. IN the former part of this paper, printed in the Philosophical Transactions 
for the year 1852, the author has shown that the geometrical types of those integrals, 
named by LEGENDRE and others elliptic functions, are the curves of symmetrical 
intersection of surfaces of the second order. In the progress of those investigations 
he discovered two curves, which he called the Logarithmic Ellipse and the Log- 
arithmic Hyperbola. The properties of these curves have the samle analogy to the 

paraboloid of revolution that spherical conics have to a sphere, or which ordinary 
conic sections bear to a plane. To determine the areas of those curves, or rathel 
the portions of surface of the paraboloid bounded by theni, appeared to ttle autlhor a 

problem not undeserving of investigation. Fig. 27. 
The logarithmic ellipse is defined as the 

curve of intersection of a paraboloid of 
revolution with an elliptic cylinder whose 
axis coincides with that of the paraboloid. 

The logarithmic hyperbola, in like man- \\ 
ner, may be defined as the curve of inter- 
section of a paraboloid of revolution with / / 
a cylinder whose base is an hyperbola, and 
whose axis coincides with that of the para- 
boloid. / \ 

Through the vertex Z of the paraboloid 
let two parabolas be drawn indefinitely f \ 
near to each other, ZP, ZQ, and let two 

planes indefinitely near to each other at 
right angles to the axis OZ cut the parabolas in the points u, u', v, v'. 

The little trapezoid uvu'v' is the element of the surface, and if the normal un 
makes the angle p with the axis OZ, d.4 being the elementary angle between the 
planes, uu'=k tanpdd,, k being the semiparameter of the generating parabola. 

dpt k" sin pdlkdd/ Now uv=ds=k c- * Hence the elementary trapezoid uvutv'= _ . 

Integrating this expression, area=k2d 1d; . .4... . (436.) 



54 DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 

or performing the integration with respect to p, 
k,C 

area=--Jd4l sec3'p+ constant. 

Now when the area is 0, sec p= 1, and therefore 

constant =-- -d. Whence 

area=--dI(sec3p-) ....... (43.) 

This is the general expression for the surface of a paraboloid between two prin- 
cipal planes, and bounded by a curve. 

When this curve is the logarithmic ellipse, let the area be put (AH). 
We must now express 4 and p0 as functions of another variable 0. 
Let x=a cos0, y=b sin0; the base of the cylinder being the ellipse whose equation 
x2 y is I+K=1- 4, is the angle which V/x--y makes with the axis a. 

Now tan == -- tan0, ...... (438.) x a 

and d.=a os si n - . ....b. .. . (439.) a cos?20s+.b sin0( 

r2 a2 cos0 + 62 sin20 But tan2 k=--_= _ ; 

therefore sec{~ (k2 + a2) cos20 + (k2 + b2 sin 2 
ther-efore sec2p= . . . . .. (440.) 

Hence substituting these values in (437.), we get for the area 

*2 ab Cd[(k+a2) cos0+ ( + 62) sin201] 2 k dO 
( ) 3 kM [aT2 c2os20 + b2 sin2] .~3 co (441.) 

a - _b a_- b 
Let 2 -2= a2 =e2 (442.) 

i being the modulus and e2 the parameter, as in (15.). 
The above expression may be written 

abr k4dO" 

3d.(AH)= _ L (a2 cos20 + be sin0) '/ (k +2 a) - (a - b2) sin 20 

2ab k2dO 
- k- /(k a2) --(a2--b) sin2O 

ab (a2 cos20 + b2 sin8) 
_ _(*2?-a2) -2) sin- .. . ....443.) (k2+a )-- (a- 2-be) sink2 fa2 

d _ (-t (an) 

1 + ( tan0) a 2~\ 
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Therefore, integrating the preceding expression, 
Hk3 C dO 

a 3( ) + aF [1 - e2 sin28] i -'2 sin20 

2abk - dO 

Vk2?Jr^m v.. 
.. . 

-i s(444.) V/k2+a I/1--i~sin *0 

+b V ^adO+ik V-2 sin0- k2 tan-(tan0) 

Hence the area of the logarithmic ellipse, or rather the area of the paraboloid 
bounded by the logarithmic ellipse, may be expressed as a sum of elliptic integrals of 
the first, second and third orders, with a circular arc. 

Since a2 > a+k2' e2>i2, or the function of the third order is of the circular form. 

Assume a spherical conic section such that 
a b a-2 -2b 

tana=-, tanp=7, - 11 I a~2$-2+ k2' 

tan/3 bk a2-- b2 a- b therefore tan cos -a 2 sin= k a 2+ ,e 
' 

Combining the first and last terms of the preceding equation, they become 
724 - ) b tanB do[ 

-kFtan- (tanO -- cosaO - dio __ 

-L a tan ta c 1-e2 sin20] V/1- sin2 sin2j' 
Now this is the expression for the surface of a segment of a spherical ellipse whose 

principal angles are 2a and 2t3*. Let this be S. 

In the next place, k a+kdO 1 - i2 sin'0 

is a portion of the elliptic cylinder whose altitude is k, and the semiaxes of whose 
base are Va'-+k' and bb2+k2. Let this be E, 

abk dO 
Vad+k V' -_i2sin20 

is an expression for an arc of the spherical parabola whose focal distance is one-half 
the focal distance of the former. Let this be denoted by P. 

Hence if we denote the entire surface round Z by [AH], 
8abk 3[AH]=4hE+ Vb P-4k"S. .. (445.) 

Or the area of the logarithmic ellipse may be expressed as a sum of the arcs of a 

plane ellipse, of a spherical ellipse, and of a spherical parabola, multiplied by constant 
linear coefficients. 

LXXXV. To find the area of the logarithmic hyperbola. 
k2 

The general expression for the area, as in (437.), is f(sec3t-l)d4. 

* See the Theory of Elliptic Integrals, and the Properties of Surfaces of the Second Order, applied to the 
investigation of the motion of a body round a fixed point, p. 16. 
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X2 y2 Now the equation of the base of the hyperbolic cylinder being b--b2= 1, 

let x=asecO, y=btan, .......... (446.) 

then tan-= Y=b sin0, x a 

d4i b a2 
and Cos 26 a2 anrd co3s-- a cos0d0, cos2s4a2 + b sin20; 

ab cosOdO 
bhence d-- =a2 b2 sin2'. 

Since? ,~ 2, r2 a2 + b2 sin28 Sinc-e tan -- k2cos-', 

a2 4- k cos20 + bl sin2m 
secCap-- k cos20 

sc3 [k cos2 + a + b2 2sin20] . sec p- k3 cos38 

Let (AT) denote the area of the logarithmic hyperbola, then 

3(AT) =kS I[k cos a2 + b2 sin2] 2ab cosd k2ta sin (447) 
k3 cos3 [a2+b 6sin2-] ) (447) 

Let V=k cos"2+a2+b" sin20, . .......... (448.) 
and the last equation will become 

fAabk2 cos2OdO. f2abkdO abC a2 + bI ain2] b.i. 
3(AT)=J[a2 + b2 Sin] 4v +-j cos+ sV s-i2 tan ^ C(ao 00 ; 

and this may be written in tlhe form 

ak3(a, + b2) dO r ak3 ab3- dO 
3(AT)= b J(a2+b2sin"2) /V-- + 2abkb- 

-- 
Jj-- 

(4 49,) 
?ab (2?2 dO ba (49 
+k (a +bC)jos2-0V k2'tan-( sin) 2 cos2 V 

bV k2_-b2 
Let a=- tan2=-n, k2 +a i2, 

and the preceding equation may be written 

k3(a" + b2) dO 

tiabVa2 k-2 E1 n sin2O] V 1 - P sin2O 

_ab(a+b2) dO a (k_--b2)2c dO (450) 

ak V a2+k2 cos28 V1 -i2 sinsin2 bA vl-sin2" ( 

b2 1+n a2+ b2 
Since n=- 

an - n 62 b 

k2 
and as (l-m)(Il+n)1- I -p and (47.) gives 

1 na f ( 1.- m\S dO 
i 
dr tm sinO/cos0 

-\ JJNI-- \ m JJM I/-- mnJ I -in \ ^ti -t 
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hence 

XI ^ = 
^mnnJM /+ < -7i+ tan- L J (451.) 

n-n] 
M 

N/I I 

But (L? -n+1 k(a2?b2) Btut l_ / ) - Vmn= ab /a2+k 

.3(AT) ab r dO Hence do 
I ^ 

1-ak + bL-- sinOj V/I 

ab(k2-b2) fdO ab(a+b) f d ..... (452.) 
Ak3 V/k2J 2JVT ks/2+a2JCos2O^/ 

+ tan-' [ 'mn cosO] tan-' sinO] 

Now if Y be an arc of the plane hyperbola of whlich Vk-62b is the transverse axis, 
and i the reciprocal of the eccentricity, we shall have 

aby ab(a + b2) dO 
A=3 k3a2+k2cos20 L.* * .(453.) 

And if we take the spherical ellipse whose principal semiangles, a and 3, are given 
by the equations 

b 
C b /=b + a 

k -b2 k2 
we shall have sin2.s= 2, e2=- k2 + a2, k2 + al 

tanar ab 
and Cos tan ca s 

k 4/k2-+a. 
; 

also ,k=tan-'(a sin). 

Hence the sum of the first and last terms may be written 
[ 1tan3 d___ 

~-tana cos 1 -e2 sin20] V^/- sin2e sini 

and this expression is S, the value of the area of the spherical ellipse (ac3), as shown 
at page 16 of the Theory of Elliptic Integrals, Sgc. 

Now, as before, A being the transverse axe of the auxiliary hyperbola, 
A-= k2--2, and B= Va2+b2, 

0dO . ab A2 
hence the coefficient of vI may be written 73 B j, and the equation (452.) finally 

assumes the form 

s3k(AT) abY+ -yj ] -k2S+ tan-l [ / (454.) 

Or the area of the logarithmic hyperbola may be expressed as a sum of the arcs of 
MDCCCLIV. I 
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a common hyperbola, of a spherical ellipse, of a spherical parabola and of a circular 
are, multiplied by constant coefficients. 

LXXXVI. There is one particular case when the area of the logarithmic hyperbola 
may be represented by a very simple expression. Let k=b, then if we turn to (448.) 
V=a2+-b, and I=1, since i=0. Hence (452.) may be changed into 

3(AT)=a Va2+btanO+b tantl- st tan)) 

+ b tan(' + sino coso) -b tann- ( sin) ; 

and this expression may be reduced to 

3(AT)=a V/a2+btanO+batan-' (.av-2- tan)tanol-btan( sin), . . . (455.) 

a value entirely independent of elliptic integrals, and which may be represented by a 
right line and the difference of two circular arcs. 

LXXXVII. The curve of symmetrical intersection of a sphere by a paraboloid, 
whose principal sections are unequal, may be rectified by an elliptic integral of the 
third order and circular form. 

Let x+y2+z2=2rz, and k+ -=2a .* .* . (456.) 

be the equations of the sphere and paraboloid. Then finding the values of dr, dy 
and dz, 

(d\_2 (r2-kkl)z--2r(r-k)(r-kl) 

Assume z^2(r-k) cos28+2(r--k,) sin8O. 

Introducing the new variable 0 and its functions, 

ds^ - ^(r k)2(rr-+ A-kl l tan2 
w/-k) + (r-ki) tjan 

Assume k(r-k,)2 tan20=k,(r--k) tan2ap, 
then introducing the variable fp and its functions, 

ds_ /kkl Vfr(-k)(rT-i) 
Vk(r-k) C +( 

-- 
k)(r -ks)2 

.r /k(r-k) . 

/1/ -- (k j 
k)slnk 

au Vk_r-k) 

4,/k(r-kl) 1- k In - kl 
n 

and 

.. . * * (457.) 

..... * . *(458.) 

* . * . (459.) 

.... .. (460.) 

....... ? . . .(461.) 
*,] 

1(r-Ak)f d 

Jk(r- K)JtI-msin ] v/l-s1 ' ' * ' ' ience integrating, (462.) 
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If we write m for h-kk1(-k)i) and i for-k-- . k ~(r--ki)2' and for k r-k~ 

Nos~w as 'i2 I--;c2sin2, - sin2 e2 sin2ec- sin9j Now as i ad m=e2s - sin2acos ' . . (463.) 

we get friom these equations 

tan k(r--k, ) tan2 
k 

(r--k) (464.) r(r-k) ' tan r(r-kj)' . .... 

tan/3 kl(r--k): whence /r2-k n, tan S in= 
- 

ar--lt--c sin- Vk(r--k1) 

Making these substitutions, (462.) will become 

s-Vr2_kkltal sin3f ._ .. . .... (465.) stana J 1-e sin"f] V 1-sinn sin 

Now, as we have shown in (16.), this expression denotes an arc of the spherical 
ellipse whose principal angles are given by the equations (464.), and whose radius is 
V/r--kki. Hence if a sphere be described whose radius is not r, but Vr2-kk,, the 

length of the curve, the intersection of the sphere (r) with the paraboloid (kkl) will 
be equivalent to that of a spherical ellipse described on the sphere whose radius is 

Vr-- kk,. 
When r=k, k being greater than k,, (459.) becomes 

ds 
d=2 vk(k- k,) or s=2k(k-k,)O. 

Hence s is an arc of a circle. That such ought to be the case is manifest, for in this 

case the sphere intersects the paraboloid in its circular sections, and \/ k is the 

cosine of the angle which the plane of the circular section of the paraboloid makes 
with its axis. 

We have shown in the first part of this paper that the curves of intersection of 
concentric surfaces of the second order may be rectified by elliptic integrals. When 
the intersecting surfaces are not concentric, the rectification of the curve of inter- 
section may be reduced to the integration of an expression which may be called an 

hyperelliptic integral. 
The general expression for the length of an arc of this curve will be an integral of 

the form 

S= d AX4 + ax3+ aX2 + x + 
j V a4b4 + c ex +f 

When the surfaces are symmetrically placed and have a common plane of contact, 
the above expression may be reduced to 

s=Sd V axa + bx2 + ex + 

This is also an hyperelliptic integral. 
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When, moreover, the surfaces are concentric and symmetrically placed, the pre- 
ceding expression may still further be simplified to 

2+ Qx ++ y 

=jXV ax2 + b+c' 
which is the general form for elliptic integrals. 

We can perceive therefore that the solution of the general problem, to determine the 

length of the curve in which two surfaces of the second order may intersect, investi- 

gated under its most general form, far transcends the present powers of analysis. 
It is only when one of the surfaces becomes a plane, or when they are concentric and 

symmetrically placed, that the problem under these restricted conditions admits of 
a complete solution. 

We may hence also surmise how vast are the discoveries which still remain to be 

explored in the wide regions of the integral calculus. We see how questions which 
arise from the investigation of problems based on the most elementary geometrical 
forms-surfaces of the second order-baffle the utmost powers of a refined analysis, 
with all the aids of modern improvement. It is not a little curious, that nearly all 
the branches of modern analysis, such as plane and spherical trigonometry, the 
doctrine of logarithms and exponentials, with the theory of elliptic integrals, may all 
be derived from the investigation of one geometrical problem,-To determine the 
length of an arc of the intersecting curve of two surfaces of the second order. 

.LXXXVIII. In the logarithmic hyperconic sections, we may develope properties 
analogous to those found in the spherical and plane sections, if we substitute para- 
bolic arcs for arcs of great circles in the one, and for right lines in the other. Here 
follow a few of those theorems. 

1. From any point on a parabolic section of the paraboloid let two parabolas be 
drawn touching the logarithmic ellipse or the logarithmic hyperbola, the parabolic 
arcs joining the points of contact will all pass through one point on the surface of the 

paraboloid. 
2. If a hexagon, whose sides are parabolic arcs, be inscribed in a logarithmic 

ellipse or logarithmic hyperbola, the opposite parabolic arcs will meet two by two on 
a parabola. 

3. If a hexagon, whose sides are parabolas, be circumscribed to a logarithmic ellipse, 
the parabolic arcs joining the opposite vertices will pass through a fixed point on the 
suirface of the paraboloid. 

4. If through the centre of a logarithmic ellipse or logarithmic hyperbola two 

parabolic arcs are drawn at right angles to each other, meeting the curve in two 
points, and parabolic arcs be drawn touching the curve in these points, they will 
meet on another logarithmic ellipse or logarithmic hyperbola. 

5. If a circle, whose radius is a, be described on the surface of the paraboloid, and 
therefore touching the logarithmic ellipse or the logarithmic hyperbola at the extre- 
mities of its major axis, and from the extremities of any diameter two parabolic arcs 
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be drawn to any third point on the circle, if one of these parabolic arcs touches the 
logarithmic ellipse or the logarithmic hyperbola, the other will pass through a fixed 

point on the surface of the paraboloid. 
6. If on the paraboloid we describe a circle whose radius is Va'?/ , and if from 

the extremities of any diameter of this circle we draw parabolic arcs touching the 
logarithmic ellipse or the logarithmic hyperbola, these tangent parabolic arcs will 
meet on the circle. 

These theorems will suffice. There would be little difficulty in extending the list. 
In fact nearly all the projective properties of right lines and conic sections on a plane 
may be transformed into analogous properties of great circles and spherical conic 
sections on the surface of a sphere, and of parabolic arcs and logarithmic sections on 
the surtace of a paraboloid. 

SECTION XII.-On the Rectjation of the Lemnicates. 

LXXXIX. There is a particular class of plane curves, of which the lemniscate of 
BERNOULLI is an example, to which the principles established in the foregoing pages 
may be applied with much elegance. 

lefinition.-This entire class of curves may be defined by the following property. 
The square of the rectangle under the radii vectores drawn from the foci to any 
point on the curve is equal to a constant, plus or minus the square of the semidia- 
meter multiplied by a constant quantity. 

Let Q, Q' be the foci, and O the centre , ,r Fig.28 

the lines drawn from these points to any point 
on the curve. Let OQ=OQ'=c, and letf be a 
variable constant. 

Then by the definition .. . ............ 

-e. f.. . p. (466.) 
But e=(- ( +y2)2+c4+2cY2-2c2-, 
and y=a,+y2, 
hence (S+y)2=(/2+2c) +(-2..y. ..).... (467.) 

This is the general equation of the curve, which assumes different forms, as we 

assign varying values tof and c. Some examples may be given. 

(a.) Let c=O, orf=oo, the equation is that of a circle. 

(b.) Letf2>2c2, and makeP2+2e=a2,2=, -2'...=. (468.) 
the equation will become ({+y3)2=a22+by2. * . * . . . (469.) 

This is the equation of a curve which may be called the elliptic lemniscate. It is 
the locus, as is well known, of the intersection of central perpendiculars with tangents 
to an ellipse. 
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(c.) Letf=2c2. The equation becomes (x2+y2)2=4cx2, or the equation is that of 
two equal circles in external contact. 

(d.) Let/2<2c2. The equation becomes 

(x2t2)2= -(2"+f2)x- (2cc-f 2)y2; and a2> b2. 

(e.) Letf2=0. The equation becomes (x2+y2)2=2c2(x2-y2), or the equation is 
that of the leinniscate of BERNOULLI. 

(f.) Letj2, passing through 0, be taken with a negative sign. The equation in 
this case becomes 

(x2+,y2)2= (2_-f )x--(2c+f2)y2, and b6> a2 

In one case only does the equation of the lemniscate in its general form coincide 
with that of CASSINI'S ellipse; namely, whenf=0, and h=-c, h2 being the product of 
the radii vectores from the foci. 

The definition of CASSINI's ellipse being " a curve such that the product of the radii 
vectores drawn from two fixed points-the foci-to a third point on the curve, shall 
be constant and equal to h2," its equation will obviously be, 2c being the distance 
between the foci, 

h4-4= (X2+y2)a-2c2(x2_--y2) 

when h=c, (2+y2)2=2c2(x2_-y2). 

This is the equation of the lemniscate of BERNOULLI. 
These elliptic lemniscates may also be defined as the orthogonal projections of the 

curves of symmetrical intersection of a paraboloid of revolution with cones of thle 
second degree, having their centres at the vertex of the paraboloid. Let a and 3 be 
the principal semiangles of one of the cones. Its equation is 

cot2a.x2+- cot2 .y2=z2. 

2k 2k Make tana= -, tan3=--2 and the equation of the cone becomes 
a b 

a +byd =4kb x 2 

Let the equation of the paraboloid be x2+y2=2kz. 

Eliminating z, the equation of the projection of the curve of intersection will become 

(x2+y2)2=a2x2? b2y2 

XC. When the section is an ellipse, the equation of this curve is, as in (469.), 
(x+yt2)2=a+x2+y. ......... (470.) 

This equation may be put in the form r2=a2cos2X+b2 sin2X, 
r being the radius vector, and . the angle it makes with the axis. Let s be an arc 
of this curve; 

s\-2 d, j2 ds\2 a4 cosX+ b4 sin2A 
since =dX =r + \ d} 

- e cos+2 i--' 



DR. BOOTH ON THE GEOMETRICAL PROPERTIES OF ELLIPTIC INTEGRALS. 63 

Assume tan tank= , . ........... (471.) 

Making in the last equation the substitutions suggested by this transformation, we 

get, after some reductions, 
ds a2 cos2ac + b2 sin2p h ___ -co^+ssm __ __ A ~ b a (47 2.) 

Let a2-=b= -= a-=2 a .2......... (473.) 

and the last equation will become 

a- 
+ b62fb dp d 

- ___ s,^!+iTjV-- s2b 2.. (474.) s= b JlI+nsins ] i 1 / --i sin2p Jl-sin ** * 

On the plane ellipse as a base, let a vertical cylinder be erected, and from the 
centre of this ellipse let a sphere with a radius = /a2"+b' be described. This sphere 
will cut the elliptic cylinder in a spherical conic section. The expression for an arc 
of a spherical conic section mneasured from the extremity of the minor arc is given by 
the equation 

s cosp eC df cosa cos/r_ df 
R~ cosac sina [1 + tan2 sin2] V^ sin2l sin2 sin sin2 sina 2j n siin"2 

See Theory of Elliptic Integrals, p. 27. 
Now in this case ac and j3 being the principal angles of the concentric cone whose 

base is the spherical conic section, 

sin2= b2, sin2= --2 sin"- aaa2+b, sin2/3= aa + ba, 

b9' a2 
therefore cos2aa + b, cos23-a + b2 

Hence +- 23= 

or the sum of the principal angles of this cone is equal to two right angles, or the 
cone is its own supplemental cone. From these equations we may infer that 

cosF _ /a2 + b2 cosa cos3 b 
cos sinal b sinc - J /a2 + b2 

tan2= sin 2 a sina -sin-sin a - sin2si - a-b2 
tan = cos =-- snm?= sin - = -n- -2 COS o2 sin= a 

Making these substitutions in the preceding equation, we get 

a2 + b2 dp d 

L1[ ( 2- -).]sin2]v (a2-b2ysin2 , _( )2 
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On comparing this equation with (474.) we shall see that they are precisely identical. 
Whence we infer that an arc of the elliptic lemniscate is equal to an arc of a sphe- 
rical ellipse which is self-supplemental. It is very remarkable, that, whatever be the 
ratio of a to b the semiaxes of the plane ellipse or of the elliptic lemniscate, the arc 
is always equal to an arc of this particular species of spherical ellipse. 

There is another property of this spherical ellipse, that its area, together with 
twice the lateral surface of the cone, is equal to a hemisphere. See Theory of 

Elliptic Integrals, &c., p. 21. 
XCI. We may obtain under another form an expression for the arc of an elliptic 

lermniscate. 
Let the polar angle x be measured from the minor axis of the curve. Its equation 

in this case will be 

r=a2 sin2 +b2 cos2k 
ds2 a4 sin2A + b4 cos2i 

dx2 a2 sin2X + b2 cos2x 

62 
Assume tanX=-2 tan, ............... (475.) 

ds2 a2b2 dx_ a%2b 
hence and dx2h e a cos2-+ b2 sin2,4 and -a4 cos + -b4 sin2?' 

bP d,t 
integrating, S F - ) sin2: ]/-- ( . (476.) 

aL2 a b)41-i 

Let, as before, a cylinder be erected on the ellipse and the sphere described from its 
centre with a radius equal to V/a2+b2, it will cut the cylinder in a spherical ellipse, 
whose arc is given by the integral 

s tan 3 d4 
k-tana . /tan _a- tan- sin21"c--' 

t_l- - tan2' ) 1sing*pj/ - sin_in 

2 a2 62 
Now since sin2-a +b sin= 2+ 

tan3 b3 tan%a--tan23 a4--b4 sinc--sin2/ a2- b 
' tana3 1 a2 tan2 a4 sin2c a2 

substituting, we obtain - 
1-(- )sinb 

64 
a-2 sin 

Lrl- a4 
)sif4] \,/i b) sin2iP 

Now this is precisely the same equation as (476.), whence we infer that the arc of 
the elliptic lemniscate is equal to an arc. of a self-supplemental spherical ellipse. 
Writing m for the parameter in this expression, we can easily show that the para- 
meters in this and the preceding formula (474.) are conjugate parameters. The con- 
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dition of the conjugation of parameters in the circular form is 

(1 tn) (1-m) =( - i2). 

~Now i2' a4 ab2 
Now l+n=--, 1-m_=, 1-- -2 

whence the proposition is manifest. 
An invariable relation exists between the parameter m and the modulus i; for as 

a4--b4 a- - m 
m=a4 and i2 = b- +i 22, (477.) 

hence i being given, m also is given; or the elliptic lemniscate can be represented by 
only one species of spherical ellipse, that in which the sum of the principal arcs is 
equal to two right angles. 

On the Hyperbolic Lemniscate. 

XCII, The equation of the lemniscate in this case is 

(X2+y2)2=a22_ 62Y22 (x-.{-y,)-- =a2x - b'y2. 
Following the steps indicated in (XC.), we find 

ds2 a4 cos2X + b4 sin2A 
dA2 a2 cos2 - b sin2x 

a 
the limits of x are 0 and tan-' 

2A * a4 sin2p (4 Assume sin = a2+a4 in2 +4cos2* (478.) 
a2b2 + a4 sin.q +b4 eos.. 

The limits of p, corresponding to X=O and -=tan-1' , are p=0, and p=-. 0 22 

Substituting this value of sin2. in the preceding equation, we shall find 
ds a 

.h-e.-- .(479.) dx- cos * * * * * * . . . . . . . ....(4 

From (478.) we may derive 
dx a2b(a2 + b2) cosp 
d; - 

[a2b2 + a4 sin2p + b4 cos29] V/a2 b2 -cos2 

Multiplying the two latter equations together and reducing, we get 

=2Va2 L + a2b si n2 (480.) 
Vz Jr b2 L 

a" 
b",d.~2_ a2 + bPsin. 

When a=b, or when the lemniscate is that of BERNOULLI, we get the well-known 

expression 
a o df 

1 - sin2 
MDCCCLIV^"T A K 

MDCCCLIV, K 
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When a> b the integral is of the third order and circular form, but when a < b the 
integral is of the third order and logarithmic form. That it is of the logarithmic 
form may thus be shown. 

b2_al b2 
Let b2- m, and i2a+ b. V2 a 

Hence i2-m=b(a + b2); 

or i2 is greater than m; but we know that the form is logarithmic when the square of 
the modulus is greater than the parameter, when it is affected with a negative sign. 

This is a result truly remarkable. All analysts know the impossibility of trans- 

forming the circular form into the logarithmic, or vice versd, by any other than an 

imaginary transformation. The utmost efforts of the most accomplished analysts have 
been exhausted in the attempt; yet in this particular case their geometrical connection 
is very close. The modulus and the parameter are connected by the equation 

(481.) +m=2; ........... (481.) 

the upper sign to be taken in the circular form, the lower in the logarithmic. 
There are two distinct cases to be considered, when a is greater than b, and when 

a is less than b. 
Case I. a > b. 
Let a plane ellipse be constructed whose principal semiaxes A and B are given 

by the equations 
A2=a2+b2, B2=a, ... ' .... (482.) 

and let a sphere be described from the centre of this ellipse with a radius 

as2 ? B2 R 
-^ - a_b2 v2B2-A2-R 

Then we can find, as follows, the length of an arc of the spherical ellipse, the intersec- 
tion of the sphere whose radius is R, with the cylinder standing on the ellipse whose 
semiaxes are A and B. 

A2 a4 -b4 b4 
Since sin2a=R=~-= 4 cos 2C=-4 

B2 a -b62 b2 
and sin2 -R-_ -, cos23 a =- 

Rcos/3 a5 
cosa sinoa b(a2- b) AVa2 + b 

R cosi cosa ab8 
We have also sina (a--b2) /a2+b2 

t cos a-cos2a a2- b2 
tan2= cos~ - ..... (483.) 

22 siv-sin2c- sin22p b2 
sin"a "-a= +b2 
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Substituting these values in (46.) the expression for an arc of a spherical ellipse 
with a positive parameter, and writing s for the arc, we get 

^a2 - V_ a3 d 
b/a2 + b [ + a2 ) sin2] a- 

.... 22 (484.) 

+ 
a + sinq2+s 

Comparing this with (480.), we find 
/ff2_-2^ f8 r- d _a2 

JV ---aab 
( a?b2 sin2p 

or the djffrence between an arc of a hyperbolic lernniscate and an arc of a spherical 
ellipse may be expressed by an integral of the first order, together with a circular arc. 
When a=b, the radius of the sphere is infinite, the sphere becomes a plane, so that it 
is not possible to express an arc of a spherical ellipse by the common lemniscate. 

Case II. Let b>a. 
In this case the arc of the hyperbolic lemniscate may be expressed by an arc of a 

logarithmic ellipse of a particular species, or one whose parameter and modulus are 
connected by the relation given in (481.). 

Resuming the expression in (480.) for the arc of the hyperbolic lemniscate, 
a3 dp 

b J 
[i( b2 sin 1 M+ a2 sin+ 2 

b[_a~ b- 
Let b2 ....m, b 2a2i' Let ̂  = m' TO =t'' 

I . . . . . . . .(485.) 

then as m+n-mn=i2, n=a2r.J 

Let A and B be the semiaxes of the base of the elliptic cylinder, k the parameter 
of the paraboloid whose intersection with the cylinder gives the logarithmic ellipse. 
Assume for the principal semimajor axis of the elliptic base 

A= V/a2+b2 ........... (486.) 

In (171.) we found the following relations between A, B, k, m, n, 
A2 mn(l-n) B2 mn(l-m) 
k2 - (n-m)2 k- (n,m)2 

and as we assume A= Va2+b2, we get, substituting for m and n their values in terms 
of a and b, the semiaxes of the hyperbola 

2V a2b"+a4- 64 
B=-,a and k= a Vb a. . (487.) 

K2 
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In (163.) we found for the equation of the logarithmic ellipse measured from the 
minor axis, and multiplied by the indeterminate factor Q, 

2Q2= -(1-m) V/mnkQ lmsin2/l]_ i-i2sin2 

+ kQ 'mnrSdp I i m... - d(488.) 
n - ,/I 

If in this equation we substitute for m, n, and k their values as given in (485.), 

and equate the coefficient (-/ ) ~mnkQ with the coefficientb /-+bk of the expres- 6 a2m +I ie expres- 
sion for the lernniscate in (480.), we shall find 

a2(b2 - ai2) 
a2b2 + a4- b4; 

hence the last equation, substituting this value of Q, will become 

2a2(b -a) -s= ab(b2- a2) /a2 + b2d- 
a2b2 + a4- b4 a2b2+a4-- b4 

--ab + a aSb ,2~---a(b~-a")~v'a"+ b;^ 4. 8. (89 ) 
+[a22+ a4 --b4] Va2 +bj b(a2b2+ a4-- * (4 

or the sum of an arc of a hyperbolic lemniscate and of an arc of a logarithmic ellipse 
may be expressed as a sum of integrals of the first and second orders with a circalar 
arc. 

When b=a, the above expression will become 

_ a r df 
2 
V 1J-/1 sin2< 

In this case the parameter of the paraboloid becomes infinite, and therefore the 
paraboloid a plane, just as the sphere became a plane in the last case; so that we 
cannot express integrals of the third order, whether circular or logarithmic, by an 
arc of a common lemniscate. 

XCIII. FAGNANI, the Italian geometer, first showed that the lemniscate of the equi- 
lateral hyperbola might be rectified by an elliptic integral of the first older whose 

modulus is -- He did not however extend his researches to the investigation of the 

general problem of the rectification of the lemniscates. 
Although the lemniscates may be rectified by elliptic integrals of the third order, 

as well circular as logarithmic, yet these curves cannot be accepted as general repre- 
sentatives of integrals of the third order, because in the functions which Iepresent 
those curves, the parameters and the moduli are connected by an invariable relation, 
as in (477.) and (481.). Thus the elliptic lemniscate, whatever be the ratio of the 
axes of the generating plane ellipse, can be represented only by a particular species 
of spherical ellipse, that whose principal arcs are supplemental. 
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XCIV. The general fundamental expressions for the rectification of curve lines, 
whether of single or double flexion, show that the arc of a curve may in general be 
represented as the sum of two quantities, an integrated and a non-integrated part, 
or as the proposition may be more briefly put, an arc of a curve may be expressed 
as the sum of an integral and a residual. Thus the arc of a plane ellipse is equal 
to an integral and a residual, which latter is a right line. An arc of a parabola is 
the sum of an integral and a residual, which latter is also a right line. An arc of 
a spherical ellipse is the sum of an integral and a residual, the latter being an arc of 
a circle, while an arc of a logarithmic ellipse is made up of two portions, one a sum 
of integrals, the other-the residual-being an arc of a common parabola. It 
appears therefore to be an expenditure of skill in a wrong direction to devise curves 
whose arcs should differ from the corresponding arcs of hyperconic sections by the 
above-named residuals. Thus geometers have sought to discover plane curves whose 
arcs should be represented by elliptic integrals of the first order, without any residual 
quantity-the common lemniscate for example, when the modulus has a particular 
value. It is possible that such may be found. In the same way, an exponential* curve 

may be devised, whose arc shall be represented by the integral kTc- instead of 

taking it with the residual quantity k tanO secO, as the expression for an arc of a 
common parabola. Thus geometers have been led to look for the types of elliptic 
integrals among the higher orders of plane curves, overlooking the analogy which 
points to the intersection of surfaces of the second order as the natural geonmetrical 
types of those integrals. 

y 

* The equation of this exponential curve is ek cos(-))=l. It is easily seen that when x=O, y=O, also. 
k 

And when x=-'t, y= o . Hence the curve passes through the origin and has asymptots parallel to the axis 

of y at the distance - from the origin. 2 
I;,-,_ OQ 

ti( 

In 
ev 

f we substitute for cos) its exponential expression 
e 

2e , theequa- 

on of the curve becomese k -l+ e k -+ =V. e ; 

The common equation of the circle y2+x2=k2, may be written 

logFy LJ + ] logY ] 0. 
k k 

i this form the similarity of the equations of the exponential curve and the circle is 
'ident. : o A 

In the equation s=kjcO , if we make the imaginary transformation tan0= 4/-1 sinaw, the resulting ex- 

pression will be s3=kw V- , or the expression is transformed from a logarithmic to a circular function. 


