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ABSTRACT 

 Sensible and latent heat fluxes over the Marginal Ice Zone (MIZ) are an area of 

active research. Polar lows that develop near the MIZ have far-reaching impacts on 

shipping and personnel but are often misrepresented by models of the atmosphere. The 

accurate simulation of polar lows depends on adequate representation of energy transport 

between the atmosphere and ocean. Fluxes were explored with respect to ice 

concentration near the Irminger Current, located north of Iceland, with atmospheric 

measurements taken from the NPS Twin Otter aircraft. Because no widely accepted 

method exists for computing fluxes over a dynamic, ice-covered ocean surface that not 

only varies in surface roughness but also the damping effect of ice, a dynamic Charnock 

number that was dependent on ice concentration—in lieu of a constant Charnock 

number—was tested. However, ice concentration could not be derived using in situ 

atmospheric measurements or sea surface temperatures. Thousands of high-resolution 

photographs were taken of the surface from flight level, and a machine learning (ML) 

technique was applied to the photographs to efficiently identify ice and open water in 

order to estimate ice concentration. 
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I. INTRODUCTION 

The Marginal Ice Zone (MIZ) is defined by the National Ice Center as the transition 

zone between the open ocean (ice free) and pack ice (≥80% concentration) (U.S. National 

Ice Center, Naval Ice Center 2019). The dynamic oceanographic and atmospheric nature 

of the MIZ is difficult to accurately sense, describe, and integrate into models. While 

satellite measurements are plentiful from polar orbiting platforms, surface properties are 

often hidden under cloud cover, the width of the satellite footprint is small relative to the 

width of the MIZ, and the satellite’s spatial resolution is not fine enough to pick out 

individual ice floats in the MIZ. The cost of placing high latitude surface sensors and 

rawinsonde sites in the MIZ can be prohibitive, winter weather is destructive and ocean 

currents can be strong; therefore, sensors placed in the MIZ are short lived and data are 

sparse. Sparsity of data hinders validation of satellite measurements, and thus degrades 

data used as initial conditions in models. In situ measurements and studies are needed to 

validate model parameterizations and verify the model output. Understanding the MIZ is 

also of increasing strategic, tactical, political, commercial, and scientific importance. With 

increasing ice-melt in the Arctic, previously closed shipping lanes are opening up along 

the MIZ, and harvesting oil and minerals from the sea bottom is becoming possible (U.S. 

Coast Guard 2013). This results in increasing political interest in the Arctic region and 

increased military activity. 

The MIZ is a dynamic area that plays an important role in the Earths energy balance. 

Sudden unexpected and un-modeled polar lows (PL) that originate at the MIZ can be 

attributed to unresolved frontogenesis and cyclogenesis in this dynamic zone (Adakudlu 

2011) (Pagowski et al. 2001). Ice cover acts as a barrier that prevents energy transfer to the 

atmosphere from the ocean. PLs propagating over areas where the ice has retreated will 

intensify (Sergeev 2018), causing high winds, seas, and cold air outbreaks further south. If 

these effects are not properly assimilated into models, forecasters may not be able to 

adequately warn vessels or populations of the effects of these storms. 

The scarcity of data on surface conditions in the MIZ has recently inspired some 

attempts to use aircraft for such measurements. However, this is frequently hampered by 
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bad flight conditions. Fog is common during warm advection periods, and convection with 

icing is equally recurrent during periods of cold advection. Therefore, flight observations 

are mostly done over the open water along the MIZ, or over the mostly solid ice deeper in 

the Arctic. 

This thesis describes a scientific mission deployed to measure the fluxes of 

momentum and sensible and latent heat (SH and LH) across the MIZ in the Greenland 

Strait. Figure 1 illustrates the broad area under investigation and depicts where warm water 

in the Irminger Current (IC), cold water in the East Greenland Current (EGC), and the MIZ 

interact. The boundary between the two currents creates an ocean front in the strait with a 

temperature gradient of approximately 1℃/km. This may generate baroclinic instability in 

the lower atmosphere above which, especially in winter, frequently gives rise to 

frontogenesis and development of PLs in the area (Chechin et al. 2017). These 

developments can be notoriously fast, and present considerable challenge to forecasters as 

well as sea traffic.  

The data-gathering mission consisted of 7 flights on 6 days between 24 April and 

9 May 2017, flown by the Naval Postgraduate School (NPS) Twin Otter. Late spring is 

when ice cover in the Greenland Strait is historically at its maximum. Flights began and 

ended at Ísafjörður Airport, Iceland. Storms and fog were avoided as much as possible, 

which resulted in many days where flights did not occur. 
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General area and direction, of Irminger Current (IC) is indicated by the red arrow and East 
Greenland Current (EGC) by the blue arrow. AVHRR derived ice concentrations of 90%, 
20%, and 0% are indicated with contour lines. 

Figure 1. AVHRR derived sea surface temperature for April 24, 2017 

Three goals of this thesis are to 1) compute ice concentrations from photographs 

taken by a camera mounted in the belly of the aircraft, 2) explore possible correlations 

between coefficients such as the neutral drag coefficient (CDN) and ice concentration or 

wind speed and 3) determine surface fluxes of latent and sensible heat in the vicinity of 
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and within the MIZ. The organization of this thesis is as follows. Chapter II describes the 

dataset and the first quality control (QC) process of filtering the data. Chapter III is the 

introduction of theories including covariance and bulk flux theory calculations. Chapter IV 

details the methods and is broken into three parts; QC, bulk flux calculations, and defining 

ice concentrations. This includes a brief discussion of machine learning (ML) techniques, 

which were used to analyze photographs from the Nadir camera. While machine learning 

and deep convolutional neural networks (DCNN) were used, they are not the focus of this 

thesis. An in depth discussion of the methods can be found in the Appendix. Chapter V is 

a discussion of results. Chapter VI presents the final conclusions, as well as future work 

possibilities which mostly involves the need for more data. 
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II. DATASET 

Seven flights were flown from Ísafjörður Airport, Iceland. The flights were named 

by the recording equipment as flight numbers (FN); FN = 589 on 24 April 2017, FN = 591 

on 26 April, FN = 592 afternoon 26 April, FN = 605 on 3 May, FN = 611 on 4 May, FN = 

614 on 9 May, and FN = 617 on 11 May. Figure 2 shows all seven flights overlaid on 

satellite derived ice concentrations from 4 May, which is not indicative of ice conditions 

for all flights but gives some indication of the MIZ location in relation to the flight path. 

Table 1 lists the sensors onboard the Navy Twin Otter. 

 

Figure 2. All flight paths studied overlaid on AVHRR ice 
concentrations on 4 May 2017 
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Table 1. Instruments onboard Navy Twin Otter 

Measurement Instrument Make/Model 
Ambient Temperature Rosemount E102AL 
Dew Point Edgetech 137-C3 
Fast Humidity Licor-7500 
Flow angle Radome Radome (4 Setra 239) 
SST Heitronics KT19.85II 
Nikon Camera Nikon D750 
GPS, Platform position, velocity, attitude 
(pitch, roll, heading), time 

C-Migets-II/Systron Donner 

GPS (Back-up) NovAtel GPS 
Radar Altimeter Collins ALT-50 
Platform heading, attitude, pitch, roll 
(Back-up) 

Trimble 

 

A. DATA COLLECTION 

Raw sensor data was recorded at 100 Hz. Flow angle measurements from the 

radome were combined with GPS and platform attitude measurements from the C-

MIGITS_III to calculate 3-D winds. The Edgetech Dew Point sensor is too slow for use in 

flux calculations, so a fast responding Licor-7500 water vapor density sensor was used for 

latent heat flux calculations. The nadir looking Nikon camera imaged the surface under the 

aircraft at 1 Hz for characterization of the ice concentration. 

B. QUALITY CONTROL 

As with any data-set of this type, a rigorous QC process must be employed to 

remove irregularities and biases from the data. One example of a commonly recurring 

irregularity was a large spike in wind speed that occurred when the heading changed from 

-179.9 to 179.9 as the algorithm thought the wind direction had shifted 359 degrees. While 

this was easily attributed and fixed, other issues must be addressed to ensure scientifically 

sound methods were used.  
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C. DATA SUBSETTING 

For each flight, data was isolated into contiguous periods of time when the aircraft 

flew straight and level; each of these periods are referred to as a “leg,” each of which was 

split into multiple sub-legs later. Straight legs were required because when the aircraft 

turned the IR sensor was not pointing directly below the aircraft which may have led to an 

incorrect sea surface temperature (SST) reading. Level legs were necessary for two 

reasons, 1) reducing variables such as wind speed, and temperature to ten meters and 

ultimately the surface (discussed in Chapter II) requires a reference height which remains 

as constant as possible, and 2) because when the aircraft climbed or descended rapidly, the 

sensors would sometimes yield false readings. Figure 3 shows a spatial plot of one flight 

with straight legs highlighted by colors other than royal blue, Figure 4 shows the same legs 

highlighted with corresponding colors on an altitude plot. Straight legs were classified as 

those during which the aircraft did not deviate by more than one degree in heading, while 

legs were considered to be fl0at if altitude deviated by less than 15 meters. 
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Yellow is the MIZ, black is Iceland. 

Figure 3. Flight 589 track with straight legs highlighted in colors 
other than black 

 

Figure 4. Portion of Flight 589 altimeter with level legs highlighted 

Surface fluxes must be calculated from variables measured within the boundary 

layer if the aircraft measurements are to be coupled to the surface layer. In the Arctic, the 
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atmospheric boundary layer (ABL) is typically much shallower than at mid-latitudes with 

depths typically less than 150 m (Tjernström 2005). The coupling also requires conditions 

near neutral stability (Chapter III). Data analyzed was further reduced by using these two 

criteria. Specifically, only data from legs with a mean altitude at or below 100 m were 

considered. This significantly reduced the magnitude of data processed and improved total 

computational time. Stability could be determined over open water by comparison of SST 

and the ambient temperature measured by the aircraft. Over fractional ice the SST was 

unsuitable for this and the COARE iteration method was used instead. 

1. Resampling 

Data were recorded at 100 Hz; data for filtered legs were complete with 100 

recordings every second. However, not every data point was recorded 0.01 s after the 

previous one. In order to ensure statistical calculations worked correctly each leg was 

resampled at 100Hz with 0.01 s intervals. This was accomplished using a fast Fourier 

transform to resample at a regular interval using a Hamming window in the python library 

scipy (Oliphant 2007). This was done before subdividing the legs into sub-legs in order to 

alter the data as little as possible. 

2. Band-Pass Filter 

A slight “whistle” was found in one tube of the Radome and had to be corrected. 

Figure 5 is a picture of the front of the NPS Twin Otter where the Radome tube intakes are 

located. When a large volume is connected to a thin tube, a resonator system is created. 

The fluid within the thin tube cannot be compressed as much as the fluid within the larger 

volume. The fluid within the tube will move while the volume compresses (Kinsler et al. 

2000). Blowing over the rim of an empty bottle to produce a low whistle is a relatable 

example. As air is blown into the bottle, the air in the neck of the bottle does not compress 

as much as the bigger volume of air in the main part of the bottle. Air in the neck will move 

back and forth causing a vibration, as the air in the bottle acts as a spring. Wind direction 

and speed time series contained obvious spikes that usually centered on 17.1 Hz and 9.55 

Hz. Other studies using data from the same sensors may not have been affected by this 

after down-sampling to 10 Hz. However, at 100 Hz the whistle was easily apparent and 
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required correction. A band-pass filter was employed to eliminate the whistle before 

subdividing the legs, again in order to alter the data as little as possible. Before filtering the 

data, the data was detrended and the mean value over the duration of the leg was removed. 

Any trend was added back to the band-pass filtered signal to retrieve the original data with 

the whistle removed. Figure 6 shows a sample of vertical wind speed at 100 Hz from the 

same leg as Figure 7 before and after applying the filter. The blue (orange) lines indicate 

the time series before (after) the whistle was removed. In the unfiltered time series, spikes 

in wind speed are clearly separated by 0.06 s. 

 

Figure 5. Nose of NPS Twin Otter where Radome tube intakes are 
evident (black circles) 
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Figure 6. Example power Spectrum of vertical wind speed. Spikes at 
17.1 Hz and 9.55 Hz are apparent 

 

Figure 7. One second time series of w before (blue) and after 
(orange) band-pass filter is applied 
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3. Subdivision of Legs 

Legs were split into 60 second duration sub-legs, resulting in 132 sub-legs (referred 

to as legs hereafter) having no overlap and 6000 data points per leg. The average length of 

each leg was 2.93 km. This is considered a good balance between sampling the energy of 

the turbulence and avoiding spatial non-homogeneity effects (Geernart 2002; Kalogiros 

and Wang 2009). 
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III. BULK FLUX THEORY 

The unique contribution of this work is that it attempts to correlate fluxes and 

coefficients of drag, heat, and moisture to ice concentration over the MIZ. Fluxes at flight 

level are derived directly from flight level measurements using widely accepted equations 

(Andreas et al. 2010): 

 ' 'u wτ ρ= −  (1) 

 ' 'pSH C wρ θ=  (2) 

 ' 'vLH L w qρ=  (3) 

Where Cp=1004 J kg-1 K-1 is specific heat for dry air, Lv=2.5 × 106 J kg-1 K-1, θ  is potential 

temperature, q  is specific humidity, τ is stress, ρ is density, w is vertical wind velocity, u 

is horizontal wind velocity, an overbar indicates an average for the leg, and a prime 

indicates a perturbation from a mean value. From equation 1 the frictional velocity can also 

be obtained; 

 2
*u τ

ρ
=  (4) 

Within the ABL, when neutral stability occurs 0
z
θ∂ = ∂ 

, fluxes are expected to 

remain constant, therefore wind speed, and q  will decrease logarithmically with height 

from the top of the ABL to the surface. When no direct measurements of surface fluxes are 

available, and neutral stability cannot be established empirically, bulk-aerodynamic 

formulas must be used to create the profile and find fluxes at desired levels. In the 1940s 

Monin and Obukhov proposed that a profile of near-surface momentum, sensible heat, and 

latent heat fluxes would follow a modified logarithmic profile within the ABL, which is 

now known as Monin-Obukhov similarity theory (MOST; Monin et al. 1954; Obukhov 

1971). MOST has been widely used in boundary layer studies since. Their method 

identifies near stabile conditions and incorporates it into the profile. Methods of finding 
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the empirical functions of this modified profile are varied because parameters such as 

friction will vary with the surface roughness of each study (Vickers et al. 2013). As no 

known method exists for finding this profile above varied ice conditions, multiple methods 

were used and compared in this study and will be discussed in Chapter IV. 

The Monin-Obukhov empirical functions are used to obtain a coefficient that can 

then be used to determine the surface fluxes using bulk formulations (Petersen et al. 2008): 

 2
10( )DN N sC U Uτ ρ= −  (5) 

 10 10( )( )p HN N S S NSH c C U Uρ θ θ= − −  (6) 

 10 10( )( )V EN N S S NLH L C U U q qρ= − −  (7) 

The widely accepted equations for the coefficients CDN, CHN, and CEN are those 

formalized by Garratt (1992): 

 
2

2

0

ln
Dz

m

kC
z z
z L

ψ
=

   −   
  

 (8) 

where k is von Karman’s constant = 0.4, z = height of measurement, z0 is the roughness 

length, L is the Monin-Obukhov “length” for finding stability, and ψm is an empirical 

stability function. Many methods for finding z0 and L exist that depend on environmental 

factors such as surface roughness. As there are no known methods specifically designed 

for the MIZ, four methods were used to investigate the data and see which fit would best 

describe this environment, and these are described in Chapter IV. 

Three methods for calculating bulk flux are described in this study with a focus on 

the COARE method. All methods are found in the Air-Sea MATLAB toolbox (Sea-mat/air-

sea 2019) developed for COARE (Fairall et al. 2003). The Large and Pond method (Large 

and Pond 1981) was used over open ocean in moderate to strong winds. The Smith method 

(Smith 1988) was used for fluxes as a function of windspeed and temperature also over 

open ocean. The Vera method (an unpublished manuscript by E. Vera 1983 described in 

Large et al. 1994) attempted to fit a curve to all of the published data where: 
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 2 3 2 3
* 10 10 1010 (2.717 0.142 0.0764 )u U U U−= + +  (9) 

COARE is a method that iteratively finds Z0/L through a series of guesses that 

ultimately converge on a solution if the environment is neutrally stable as outlined in Fairall 

et al. (2003). When the iteration is run, two things can happen, either solutions start to 

converge or some will converge while others move steadily away from a solution. Either 

case stops the iteration and if convergence does not occur, the leg is not used because 

stability cannot be established. 

The Charnock constant is used in the Large and Pond (1981) and Smith (1988) 

methods. Charnock (1958) proposed a constant to be used when finding z0: 

 
2

0
*

g
z uα

 
 =
 

 (10) 

where α = 0.012 is the Charnock constant, and g = 9.81 m s-2. Since Charnock’s assertion, 

the value of the constant α has been studied in models, datasets, and experimental wave 

tanks, and typically ranges between 0.011 and 0.018 depending on environmental factors 

such as wave age, wave steepness, and fetch limitations (Smith 1998). In order to 

investigate the frictional and wave dampening effect of ice coverage, all calculations were 

done in two separate ways. One was with a constant α = 0.011, the other allowed the 

Charnock to increase with increasing ice concentration: 

 0.011 (0.007* )iceα = +  (11) 

where ice  is a ratio of   
 

area of ice
total area

 directly under the aircraft during the flight leg. 

Determination of ice concentration is explained in Chapter IV and the Appendix. It was 

determined that the surface wind speed had much greater impact on CDN, and therefore the 

fluxes, than ice concentration did, and this will be discussed more in Chapter V.   
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IV. METHODS 

Establishing surface fluxes within the MIZ is the primary goal of this thesis. In 

order to get to the fluxes bulk fluxes must be calculated, the resulting calculations must be 

checked for quality and consistency, and the ice concentration must be established for each 

sub-leg. The following sections explain how each of these was done. 

A. BULK FLUX CALCULATIONS 

Bulk flux calculations are obtained using the MATLAB air-sea toolbox converted 

to python. Inputs were the time series of atmospheric measurements at aircraft altitude, and 

outputs are the variables reduced to 10 m above the surface. Equations 6 and 7 were used 

to calculate the surface fluxes from the output. 

B. DATA PROCESSING 

Before data analysis, additional checks were completed to ensure that the stability 

requirements had been met, the turbulence was within the sub-inertial wave spectrum, and 

instruments performed properly.  

An initial cross correlation of ' 'u w , ' 'w θ , and ' 'w q  was performed so that each 

leg could be checked for quality and ensure that the turbulence was within the sub-inertial 

range. The Kalmogorov slope is a theoretical slope proposed by the mathematician Andreĭ 

Kalmogorov (1970), which states that the power spectrum in wavenumber space of 

turbulence above the sub-inertial range decays at a 5/3 rate on a logarithmic scale. In other 

words, if it does not, then mesoscale dynamics may play a strong role in the power 

spectrum, and adjustment of data at aircraft altitude to 10 m above the surface would not 

be possible. Figure 8 provides examples of a leg in which the power spectrum decayed at 

5/3 (Figure 8a) and two legs in which it did not (Figures 8c, 8e,). In the left column of 

Figure 8, two example power spectra (in wavenumber) are shown including a red line at -

5/3 slope for comparison. Figure 8b is an example where the spectrum does not follow the 

-5/3 slope because there is too much power in the high wave numbers. Legs with such 

characteristics are indicative of mesoscale dynamics and were excluded from the study. 
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Another way of illustrating this is by means of ogives. The ogive indicates where 

the power resides within the sub-inertial wave spectrum and that no larger or smaller-scale 

power is evident. An ogive of a leg that only has power in the sub-inertial range will look 

like an “S.” In other words, the power will be minimal at lower wave numbers, increase 

rapidly within the sub-range, and then have no power added in the higher wave numbers. 

Figures, 8b, 8d, and 8f show, respectively, an ogive for a leg in which the power spectrum 

followed a -5/3 slope and ogives for two legs in which it did not. The ogive depicted in 

Figure 8f starts out with excessive power at very low wave numbers. Ogives that do not 

follow the “S” pattern are also indicative of mesoscale dynamics and the leg was excluded. 
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Corresponding ogives are displayed in the right column. 

Figure 8. Examples of power spectra (blue) depicted in the left 
column with example lines plotted at a -5/3 slope (red) 

C. CALCULATION OF ICE CONCENTRATION 

Determination of ice concentration beneath the airplane at any given time turned 

out to be non-trivial. Although data assimilation for models is a constantly evolving field, 
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it proved unsatisfactory for our purpose. The Global Forecast System (GFS) model 

assimilates ice data as it becomes available; however, this happens no more than once per 

day; the previous day’s data is used until new data becomes available (NCEP 2019). While 

measures are taken during data assimilation to keep the model from being overly distorted 

by missing data, the MIZ is a very dynamic area. Ice areal coverage during this study 

changed O(10km2) during hour long flights. Models must use some parameterization to 

describe the effects of ice coverage and ice concentration on the total heat budget between 

atmosphere and ocean. This study seeks to improve the understanding of these parameters. 

A six step process was used to determine scientific usability of the data. Of note is 

a rigorous QC process, and the use of machine learning to determine the ice concentration 

along the flight path from the photographs taken from the aircraft. Manual comparisons of 

ice concentration data from satellite sensors and assimilation models with photographic 

observations showed the former to be inadequate and unreliable. It was therefore decided 

to use the photographs for determination of ice concentration. Manual analysis of tens of 

thousands of photographs, however, is inefficient; therefore, the use of artificial 

intelligence and ML techniques were employed for this purpose.  

One of the goals of this study is to determine how fluxes change with respect to ice 

concentration. Ice concentrations are used in both atmospheric and oceanographic models, 

and parameters such as LH and SH are derived from that during assimilation. Accurate 

representation of ice concentration is limited by the grid spacing of the model and by the 

resolution of the instrument recording it. Different models require ice concentrations for 

various reasons. An atmospheric model would use it to define boundary conditions of 

surface heat fluxes over time and surface friction. The MIZ is a very dynamic region where 

the location of constant concentration contours moved tens of kilometers during a four-

hour flight. Extracting ice concentration from surface temperature readings proved 

unfruitful. An algorithm that seemed to extract ice concentration from surface temperature 

readings on one leg would not work well on another leg. As an example; one such trial 

algorithm used freezing point because most temperature readings of water within the MIZ 

are close to freezing point and lower readings could be assumed to be ice. However, 

freezing point changes with salinity and salinity changes with age of sea ice because salt 
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slowly drains out of sea ice. Figure 9 is an example of a photo of the ice and water surface 

to illustrate the different surface conditions that were encountered within close proximity. 

These measurements taken from aircraft flying level and straight measuring SST at 100Hz 

gives widely varied data. Figure 10 suggests that correlations between estimated SST and 

ice concentration are visually obvious; for example, lower SSTs were detected when more 

ice was present, and more SSTs at the freezing point were detected when more water was 

present. However, obtaining accurate signals of ice concentration with this method was not 

successful. The process was not totally useless as it gave a data point for quality control of 

the next iteration which was to get ice concentration from pictures, and legs where all SST 

readings were above -1℃ or below -2℃ could be respectively considered 100% water ice 

ice. 

 

Figure 9. Picture taken from downward looking NIKON camera 
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Figure 10. Time series of SST estimates derived from downward 
looking IR sensor (red) and final time series of ice concentration (blue) 

An algorithm that analyzed the photographs and was verified visually was first 

employed. Each photograph was imported as a 3-axis array of red, green, and blue values 

0–255 and averaged across each axis. The blue axis was eliminated due to variability (e. g 

sun angle caused wide distribution of blue across multiple legs), and the green and red axes 

were averaged separately and any value above average was set to 1 while all other values 

were set to 0. Ones in either array were considered ice and zeroes were considered water. 

Figure 11 shows an example of the filters and the resulting ice mask. When sun glint, or 

shadows were present, pixels were mislabeled using this method. Mislabeling made this 

method inadequate, so ML was used to refine the ice concentration further. 
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Figure 11. Example image (a), with red (b) and green (c) filters 
applied to obtain a mask (d) where purple is ice and yellow is water 

An ML model was trained with 46 ground truth (GT) (human-analyzed) images 

and 15 GT validation images. Training with as many images as possible is generally better; 

however, creation of the training dataset is time-intensive, and the 61-image training 

dataset appeared to be sufficient for the purposes of quantifying ice concentration. Pixel by 

pixel accuracy of the model output to the validation images was consistently above 0.987 

after 1000 epochs (“epoch” is a ML term defined as a time when every image has gone 

through the model for training). The accuracy is determined by the number of pixels 

correctly labeled by the model divided by the total number of pixels in the image. After 

training, the model assesses images and outputs a gridded array of predictions where 

numbers correspond to predictions. A dense conditional random field (CRF; see Appendix) 

was used to improve the accuracy further. The array of predictions, in this case only ones 

(ice) and zeroes (water), was summed and divided by the number of pixels in the image to 
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produce an ice concentration. This method worked extremely well, (except for areas where 

there was either no ice or 100% ice concentration). Areas where it did not work were 

inconsequential to this study as the ice concentration was already determined in those areas 

based on the consistently observed high or low SST. Figure 12 is an example of a) a scene 

with less than 100% ice concentration with b) classifications determined by the model 

before applying CRF for each 96x96 pixel subsection of the image and c) new 

classifications determined by the CRF. Any model prediction that differed from the IR 

sensor algorithm estimate or the color mask method by 10% or more was inspected visually 

and a new data point was entered manually. Pictures were taken at 1 Hz, ice concentration 

values for each picture was calculated and indexed with time stamps corresponding to the 

atmospheric measurements. 

LH, SH and other variables and coefficients were directly measured at aircraft level 

(Equations 1–3), and derived or calculated using the Coupled Ocean-Atmosphere 

Response Experiment (COARE) model (Fairall 2003) when stability conditions were 

satisfied for the surface. Determining stability is difficult with SSTs in mixed ice 

conditions, so stability is considered near neutral when the COARE algorithm converged. 



25 

 
A is the original picture, b is the model designated classification of each 96 96× tile, c is 
the final classifications after applying CRF with determined ice percentage. 

Figure 12. Classification of ice and water 
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V. RESULTS 

Results are presented in three sections which follow the goals of the thesis. Goal 1 

was to compute ice concentrations and has been sufficiently described in Chapter IVc and 

the Appendix. Sections A and B correspond to Goal 2, which was to explore correlations 

of coefficients to ice concentration or wind speed. Use of the variable Charnock number in 

relation to ice concentration is followed by fluxes and coefficients in aggregate for this 

dataset, and comparison with accepted values in current literature. Section C explores SH 

and LH within the MIZ for a better understanding of the effect of surface temperature and 

ice. 

A. VARIABLE CHARNOCK CONSTANT 

The Charnock number has always been used as a constant for the environment 

under consideration, however the highly dynamic nature of the MIZ suggests that an 

adjustment may be necessary. Within COARE the Charnock constant is set to .011 with a 

note that this number is to be used in open ocean environments (in accordance with Fairall 

and Edson 2003), and 0.018 is to be used in fetch limited (coastal) areas. The MIZ covers 

both regimes, and in between, within a short distance. Figures 13 and 14 contain 

comparison plots using CDN values on the y-axis and ice concentration and wind speed, 

respectively, on the x-axis. For comparison of datasets the reader is referred to Peterson 

and Renfrew (2003), and Cook and Renfrew (2013). 

Figure 13 (top) shows the CDN calculated using a Charnock value of .011 as a 

function of ice concentration. No discernable correlation to ice concentration is apparent. 

Figure 13 (middle) depicts use of the variable Charnock, and still no discernable effect can 

be identified. Figure 13 (bottom) compares the two methods on the same plot, illustrating 

that there is little difference between the two methods. The variable Charnock seems 

generally to raise the value of CDN, but only by a small amount. Ice concentration shows 

no effect at all.  

Figure 14 shows 3 plots of CDN as a function of ten-meter wind speed. A clear 

dependence of CDN on wind speed is apparent, with approximately 20% increase in 
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magnitude as 10 m wind speed increases from 2 to 8 m/s. Again variable Charnock raises 

the value of the coefficient by a small amount and causes a bit of dispersion.  

In Figure 15 the values of CHN and CEN are shown along with CDN as a function of 

10 m wind speed. These values are used in calculations of surface fluxes by use of the bulk 

method. From Figures 14 and 15, we see little or no effect of ice concentration on the 

coefficients, clear dependency of CDN on 10 m wind speed, CEN and CHN with a minimum 

value near a 10 m wind speed of 6 m s-1, and small effect by adjusting Charnock from 0.011 

to 0.018 as a function of ice concentration. The Charnock effect is ignored in the following 

calculations, and the value of 0.011 used throughout. 

 

Figure 13. Comparison of data points before and after the proposed 
Charnock correction with respect to ice concentration 
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Figure 14. Comparison of datapoints before and after the proposed 
Charnock correction with respect to wind speed 

 

Figure 15. Coefficients of drag, heat transfer, moisture transfer vs ten-
meter wind speed for all acceptable legs in the dataset 
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B. FLUXES VS SURFACE TEMPERATURE 

Figures 16 and 17 show the results of the heat flux calculations as a function of 

surface temperature, calculated by eddy covariance method directly from the aircraft 

measurements (a panels), and by use of the COARE model (b panels). Sensible heat fluxes 

are shown in Figure 16, and latent heat fluxes in Figure 17. In these figures, a negative flux 

implies a flux from the ocean to the atmosphere.  

In Figure 16, the sensible heat fluxes at aircraft altitude show hardly any relation to 

surface temperature, although they might have a slight negative tendency for surface 

temperature between -2°C and 0°C. Surface fluxes computed by COARE show some 

dependency on surface temperature in the -2℃ and 2℃ range, with flux magnitude 

increasing with higher SST. This range of SSTs corresponds to the transition zone between 

the Irminger current and the ice edge. The triple point of the ice/ocean mixture is about -

1.8℃. At lower SSTs (-2℃ to -5℃), the sensible heat fluxes are small, and show little 

dependence on SST. A couple of data clusters over the Irminger current (SST ~5℃), show 

on one hand near-zero SH, and fluxes of opposite sign over the East Greenland Current in 

the other.  

Latent heat fluxes (Figure 17) show a similar lack of general relationships. At 

aircraft altitude the covariance figures are within 20 W m-2 of 0 but show no significant 

correlation. For surface LH computed using COARE, a subset of the data shows a 

correlation, with flux magnitude increasing with surface temperature in the  -5℃ to -2℃ 

range. Three clusters of data show up outside the trending points, two of which are over 

the Irminger current, separated by a factor of two, but all negative, indicating that the 

underlying surface was in all cases transferring heat to the atmosphere. 

These data were obtained on different flights, under different weather conditions. 

It seems clear from Figures 16 and 17 that environmental factors other than surface 

temperatures influence the heat fluxes. These factors were probably similar in the cases for 

subsets of data in which a correlation seems visually apparent, but dissimilar among the 

others. 
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Figure 16. SH as a function of surface temperature over the MIZ, cool 
open water, and IC 

 

Figure 17. LH as a function of surface temperature over the MIZ, cool 
open water, and IC 

C. SH AND LH VS ICE CONCENTRATION AND WIND 

Figures 18 through 21 show the heat fluxes as a function of the underlying ice 

concentration. The panels are arranged similarly to those in Figures 16 and 17, and the data 

are shown color coded according to wind speed. Again flux values are negligible at aircraft 
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altitude, and show no obvious dependence on ice concentration. The bulk method 

calculation of surface fluxes however, shows weak negative values, also independent of 

ice concentration. This results from the earlier finding that CDN was independent of ice 

concentration (Figure 13). 

The significance of wind speed, however, is apparent in the figures. LH, 

particularly, increases significantly with wind speed (Figures 18 and 19). For SH (Figures 

20 and 21), the effect of wind speed is not apparent, and the values appear to trend toward 

zero at higher winds, over a wide range of ice concentrations. Again, however, fluxes are 

generally weak. Figures 19 and 21 depict the same fluxes as Figures 18 and 20 respectively 

over the MIZ highlighted according to wind speed, however the sub-legs with winds below 

5.5 m s-1 have been removed. Removing the lower wind speeds increases the correlation 

between fluxes and ice concentration.  

 

Figure 18. LH over MIZ highlighted according to ten-meter wind 
speed 
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Figure 19. LH over MIZ highlighted according to ten-meter wind 
speed with low wind data removed 

 

Figure 20. SH over MIZ highlighted according to ten-meter wind 
speed 
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Figure 21. SH over MIZ highlighted according to ten-meter wind 
speed with low wind data removed 
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VI. CONCLUSION 

Use of ML to determine ice concentration from low level photographs was critical to 

analysis. ML is still in its infancy and could develop to become more useful in various 

scientific applications. The exact method used here may not be useful for a large number of 

datasets because high resolution pictures of ice are not very common; however, there are many 

similar methods that could be employed in a broad spectrum of scientific studies. For 

example; using this method which subdivides pictures into “tiles” seems like it would not 

scale well for satellite derived images where one pixel represents 4 km2. ML models exist that 

utilize masks and have training nodes that learn how to pick out regions of interest, such as 

the method outlined in He et al. (2018), which may prove useful. Ways to use ML in future 

studies where a similar calculation is needed are discussed in the Appendix and include use 

of other pre-trained models, other methods for extracting regions of interest, and exploring 

the impact of changing training variables. 

No significant correlations were found between sensible or latent heat fluxes and ice 

concentration using eddy covariance estimates from the aircraft. However, at wind speeds 

exceeding above 5.5 m s-1, a weak correlation was found in surface latent heat flux and ice 

concentration, such that the flux to the atmosphere decreased with greater ice coverage (Figure 

19b). However, because the COARE algorithm is not designed to work over ice cover, the 

result should be considered with caution. On some flights, small heat fluxes were measured, 

but they did not appear to be dependent on the underlying surface temperature. Wind speed 

apparently was the dominant impact on heat flux magnitude. Additional data collected in a 

variety of environmental regimes would permit a more rigorous statistical analysis of any 

relationships between surface temperature or ice cover with boundary layer heat fluxes.  

Flight conditions were difficult in the Greenland Strait in the spring months of 2017. 

Only seven flights were possible over a period of about three weeks. Fog was frequent, and 

icing conditions associated with frontal passages was as well. Both conditions prohibited 

access to the MIZ. On days that flights were possible, no foul weather was observed. 

Significant fluxes were also low on those days. It therefore seems that aircraft may not be a 
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suitable platform for flux measurements over the MIZ, and a surface platform that can 

withstand a variety of weather conditions, such as a ship or an ice float, may be more effective. 
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APPENDIX 

A time series of ice concentration was needed in order to study how it correlates to 

air-sea fluxes. Ice concentration could not be obtained from SST readings, so a ML method 

was employed utilizing the pictures taken from the downward pointing camera aboard the 

aircraft. A full description of the data, pre-processing method, ML model and training, and 

post-processing method follows, and future possibilities for applying the method are 

discussed. 

A. DATA 

A total of 60,234 photos were taken from the aircraft. One photo was taken every 

second which gave 600 data-points for every sub-leg. Ice concentration is a ratio of ice to 

total area observed. AVHRR products report this in tenths where a value of 5 would mean 

5/10 of a grid square is covered with ice. ML is the best method of getting this ratio for 600 

photos per sub-leg. It is the best method because ice concentration could not be obtained 

from the SST measurements, simple computer vision techniques on the photos does not 

work when sun glint or shadows are present, and manual analysis of over 73,000 photos 

would be too labor intensive.  

B. PREPROCESSING AND MASKING 

Preprocessing the data for use in deep convolutional neural networks (DCNN) 

involved enhancing the photos, determining where ice and water is in a small sample set 

for training and validation, generating “masks,” arrays of ones and zeros that match the 

photo pixels for ice and water respectively, then splitting the photos into small square 

“tiles.” Photos were enhanced with Gaussian blur contained in the python module skimage 

(Stéfan van der Walt et al. 2014). The Gaussian blur enhances differences in objects and 

the background according to a histogram of the image. Determination of which pixels are 

ice and which are water is done using a python “dl_tools” module developed in Buscombe 

et al. (2018). This method wraps a graphical user interface (GUI) on the python module 

“pydensecrf” (Krähenbühl et al. 2011) which takes the pairwise potential of every pixel to 

every other pixel using a CRF generator and determines the likelihood that they are of the 
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same object. This pairwise potential can be used to give the likelihood of each pixel to be 

of the same classification of the human defined pixel. Figure 22 shows an example of a 

photo in the top frame, human identified types in the middle, and the result of the CRF on 

the bottom. Figure 23 is the resulting array to be used as a mask for training the model. 

 

Figure 22. Example output from the “dl_tools” module for classifying 
images 
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Figure 23. Example output from dl_tools, a mask of ones and zeros for 
use in the ML model, ones (zeros) are depicted in black (white) and represent 

ice (water) 

This process was completed for 61 photos on images that were 3008x2008 pixels. 

An algorithm was applied to each image that split the image into 96x96 pixel tiles. If a tile 

was 95% or more ice according to the mask, it was placed into a folder named “ice” and if 

it was 95% or more water it was placed into a folder named “water.” Figure 24 depicts 

examples of ice and water tiles. This resulted in 67,412 (72,643) tiles of ice (water), where 

a subset of 43,000 (45,000) were used for training and the remainder for validation. The 

quantity used for training and validation subsets was arbitrarily chosen. The tile size was 

decided as the best option for these photos from the tile sizes that the pretrained model 

could accept. mobileNetV4 (Sandler et al. 2019) was used in this case, and it takes tile sizes 

96x96, 128x128, 160x160, 192x192, and 224x224. Sandler et al. (2019) showed similar 

accuracy between all tile sizes when used on the ImageNet dataset (ImageNet 2019). 96x96 

is used here after looking through pictures and identifying ice chunks regularly less than 

96 pixels in diameter. Theoretically the CRF would reclassify these chunks anyway, and 
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future work could look into the results of using different tile sizes. It is worth mentioning 

that other models such as Mask RCNN (Abdulla 2017) have learning nodes within the 

DCNN that will learn the best size and shape of tiles for the data. This method saves 

computing time on the inference side because it can effectively sample images rather than 

fully read them into memory. Future work should investigate which method is most 

effective for detecting ice. 

 

Figure 24. Example tiles of ice and water used for training 

Use of a pre-trained model, one that has been trained by an organization with an 

array of graphical processing units (GPU) and access to millions of photos, for example 
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Google or Microsoft, is referred to as transfer learning (Iqbal et al. 2018). The neural 

network and trained “weights” for each node are shared publicly, and others can tune that 

model to recognize a new classification. As mentioned, mobileNetV4 was used in this case, 

and the process of adding learning nodes and input/output layers followed the process 

outlined by Buscombe et al. (2018) with minimal changes required for GPU architecture 

and updated python modules. 

During training a tool called Tensorboard can be used to for debugging and 

evaluating the progression. Tensorboard is a testing and debugging tool within the 

tensorflow python library. Accuracy estimates are calculated periodically throughout the 

training by using validation images and checking the output label to the GT label, and 

Tensorboard is updated with accuracies and other statistics. It gave accuracy values of 

98.7%, but that is a rough estimate of the actual accuracy because the validation dataset is 

very small compared to large size and widely varying set of images. A manual analysis of 

results was completed by stitching together 2,000 randomly chosen result images from the 

sub-legs with data being used into a video to subjectively identify obvious problems in 

classification. Figures 12 and 25 depict good results, which was the norm. Figure 26 depicts 

an edge case where reflection of bright ice onto the surface from the airplane was evaluated 

as ice when the water is a light color. Figure 27 depicts an example of this reflection when 

the ice gives good contrast, and the reflection was properly categorized. 
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Figure 25. Good results from CNN and CRF with ice percent 
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Figure 26. Results from CNN and CRF with ice percent where ice 
reflection led to inaccurate predictions 
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Figure 27. Results from CNN and CRF with ice percent, where ice 
reflection is accurately predicted 

There are numerous adjustable parameters in the preprocessing, CRF, CNN, and 

post-processing. A future study should be done to test the effectiveness of adjusting these 

parameters and/or learning them. For example: using different size tiles, adjusting learning 

momentum, and introducing the CRF into the model so that pairwise potentials can be 

learned. 
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