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In this study, photocatalytic experiments of 20 mg l−1

sulfamethazine (SMN) in aqueous solution containing ZnO
with different morphologies, tetra-needle-like ZnO (T-ZnO),
flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO),
were performed. The results indicated that photocatalytic
degradation of SMN was effective and followed the pseudo-
first-order reaction, but the degree of SMN mineralization
showed obvious differences using ZnO with different shapes.
After 12 h irradiation, 86%, 71% and 50% of the initial total
organic carbon was eliminated in SMN suspension containing
T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio
of sulfur was close to 100% in the presence of T-ZnO, but
reached to 86% and 67% in the presence of F-ZnO and P-ZnO,
respectively. The release ratio of nitrogen was about 76%, 63%
and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst,
respectively. The morphology of ZnO played an important role
in determining its catalytic activity. Seven intermediates were
observed and identified in the UV/T-ZnO reaction system by
LC-MS/MS analysis, and a possible degradation pathway was
proposed.

1. Introduction
To satisfy the growing demand of humans for animal protein,
antibiotics have been used not only to treat disease in animal
husbandry, but also to promote animal growth as feed additives
in livestock and aquaculture [1–3]. In 2010, at least 63 200 tons of
antibiotics were consumed by stock farming around the world [4].
By 2030, the consumption of antibiotics is projected to rise by
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two-thirds, to 105 600 tons [5]. The usage of antibiotics produces residues in its parent form without
absorption and metabolism by animals, which are directly or indirectly introduced into the aquatic
and terrestrial environments [2,3]. Although the concentration of residues detected in the environment
is quite low (ng l−1–mg l−1), the ecotoxicity of residues at mg l−1 levels has been reported [6]. Many
research studies indicated that the antibiotic residues were resistant to conventional chemical and
biological treatment methods [7]. The accumulation of antibiotic residues in the environment might make
the antibiotic ineffective in diseases treatment, causing a serious public health issue on account of the
development of antibiotic-resistant bacteria [8,9]. Effective ways to eliminate the discharged antibiotic
residues are required for environmentally sustainable development [10,11].

As a promising method, photocatalytic degradation in the presence of semiconducting materials
has exhibited high efficiency in removing a great variety of organic compounds [12]. Among various
semiconducting materials, most attention has been paid to TiO2 because of its high photocatalytic
activity, resistance to photo-corrosion, biological immunity and low cost. For example, Baran et al.
reported the photocatalytic oxidation of sulfonamides with TiO2 and TiO2–FeCl3 systems [13]. Elmolla
et al. used UV-A/ZnO and UV-A/TiO2 photocatalytic systems to treat a synthetic antibiotic formulation
wastewater containing amoxicillin, cloxacillin and ampicillin at a total concentration of about 300 mg l−1

[14,15]. TiO2 is the most common photocatalyst in the field of photocatalytic research and application.
But in fact, ZnO shows excellent photocatalytic performance and is harmless, stable, cheap etc. So far,
many studies have confirmed that ZnO exhibits more efficiency than TiO2 in photocatalytic degradation
of organic pollutants [16]. However, like other semiconductor materials, ZnO also has the main
disadvantage that the recombination of h+

VB − e−
CB results in negative effects on photocatalytic activity.

In order to overcome this shortcoming, various efforts have been made. ZnO/Ag/CdO [17], FexZn1_xO
[18] and ZnO/CeO2 [19] and other nanocomposites were synthesized through easy control methods.
After the modification of ZnO, the photocatalytic performance has been obviously improved. As a
matrix material, ZnO with different structures and morphologies has been fabricated in different ways
[20–23]. The morphology of nanomaterials played a key role in determining the catalytic activities.
Pandiyarajan et al. [24] synthesized CuO with different morphologies, and concluded that the smaller
size and high surface area of the spherical nanostructures contribute to higher catalytic properties.
Gnanasekaran et al. [25] found that the superior photocatalytic activity of ZnO was due to its spherical
shape and crystallinity. Saravanan et al. [26,27] prepared ZnO in different shapes and sizes using different
methods, and identified the relationship between shape and photocatalytic activity. Although many
studies have been carried out on the relationship between photocatalytic activity and crystallinity,
surface area, morphology of semiconductor nanoparticles in detail, there were few studies on the
photocatalytic behaviours of antibiotics using ZnO with different morphologies. The studies on these are
of great significance to promote the development of photocatalytic technology in the field of antibiotic
wastewater treatment.

Sulfamethazine (SMN) was widely used to control diseases and promote animal growth in livestock
production [28,29]. Meanwhile, SMN was commonly detected in natural water or secondary effluent
[30]. In this study, SMN was chosen as the representative substance of antibiotics, ZnO particles with
three different shapes were used as photocatalysts, to study the photocatalytic degradation behaviours
of antibiotics in aqueous solution and the influence of different shapes of ZnO on its photocatalytic
activity.

2. Material and experimental methods
2.1. Materials
SMN with high purity standards (99%) was purchased from Aladdin Industrial Corporation (Shanghai,
China). Acetonitrile (HPLC grade) and other chemical reagents (analytical grade) were bought from Best
Reagent (Chengdu, China). Ultrapure water was used to prepare SMN solutions and HPLC eluent.

2.2. Preparation and characterization of ZnO
Three different morphologies of ZnO used in this study were prepared by different methods.
Tetra-needle-like ZnO (T-ZnO) came from Key Laboratory of Advanced Technologies of Materials
of Ministry of Education, Southwest Jiaotong University; the preparation method of T-ZnO was
described in an earlier report [31]. ZnO nanoparticles (P-ZnO) were synthesized through a low-
temperature co-precipitation process in an aqueous solution. During synthesis, the concentration of
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Figure 1. Diagram of the experimental set-up.

Zn(CH3COO)2·2H2O solution was 0.1M, the NaOH aqueous solution was added dropwise to the
Zn(CH3COO)2·2H2O solution as the basic ratio (b = nOH−/nZn2+ = 8) and the mixture was vigorously
stirred for 2 h. The reaction system was set at 60°C [23]. The flower-like ZnO (F-ZnO) was prepared
using Zn(NO3)2·6H2O and NH3·H2O as precursor materials by an ultrasonic-assisted solution method.
A certain amount of Zn(NO3)2·6H2O was dissolved in deionized water. An aqueous solution NH3·H2O
was added dropwise to Zn(NO3)2·6H2O solution until the pH of reaction system reached about 12.
Whereafter, the mixed solutions were ultrasonically oscillated at 25°C for 5 h. At the end of the processes,
P-ZnO and F-ZnO particles were separately synthesized, filtered and washed with methanol and
deionized water several times and subsequently calcined for 2 h under 300°C [22]. The morphology
of ZnO was observed with a scanning electron microscope (Quanta 200, Fei, Holand) operating at
20.0 kV. The crystal structure of ZnO particles was characterized by an X-ray diffractometer (DX-2500,
Dandong fangyuan instrument Co., Ltd, China) with Cu Kα radiation (40 kV, 40 mA, λ = 0.15418 nm).
The UV–visible diffuse reflectance spectroscopy (uv-DRS) of ZnO samples was detected by UV–visible
spectrophotometer (TU-1901, Persee, China). The specific surface area of the ZnO samples was measured
on a specific surface area analyser (TriStar 3000 Analyzer, America).

2.3. Photocatalytic experimental set-up
A merry-go-round photochemical reactor with magnetic stirring was employed (illustrated in figure 1).
The high-pressure Hg lamp (300 W), emitting predominantly at 365 nm UV light, was put in a quartz
sleeve and located at the centre of the reactor. The SMN solutions (20 mg l−1) containing different
morphologies of ZnO particles (2 g l−1) were put in 50 ml quartz tubes and equidistantly placed around
the Hg lamp. The suspensions were stirred constantly for 30 min in the dark to ensure equilibration
of adsorption/desorption of SMN onto the ZnO surface, then the 300 W high-pressure Hg lamp was
turned on. During photocatalytic reaction, the reaction system was set at 25°C using a temperature
control unit. The pH of suspensions was adjusted to 7, the neutral form of SMN dominates (greater
than 80%) under this condition [32]. The samples were taken at scheduled time intervals and separated
using centrifugation (3000 r.p.m., 5 min), then supernatants were filtered with a membrane syringe filter
(pore size: 0.2 µm) and sent for analysis. All of the experiments were performed in triplicate and average
values were quoted as results.

2.4. Analytical methods
The concentration of SMN at different irradiation times was determined by HPLC (LC-2010HT,
Shimadzu) coupled with UV–vis detection (LC-UV–vis). A C18 column (2.1 mm × 100 mm). The detection
wavelength of SMN was recorded at 268 nm. The eluents were (A) H2O + 0.1% formic acid and (B)
acetonitrile at 80 : 20 ratio and the flow rate was set to 0.2 ml min−1.
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The structural identification of photoproducts was carried out with a Shimadzu LC-20A liquid

chromatograph system coupled with Shimadzu LCMS-8030 triple quadrupole mass spectrometer (LC-
MS/MS). The eluent and column used for the separation of the parent compound and its photoproducts
were the same as those of LC-UV–vis analyses, but the ratio of A and B of eluent was changed during
the run: started with 10% of B, then it rose to 60% after 10 min and then to 90% in 8 min, the content of B
dropped to 10% in 10 min and remained the ratio until the end of the run. The detection was performed
with an electrospray ionization (ESI) source. The following conditions were set: capillary voltage 4000 V,
drying gas temperature 300°C, drying gas flow 12 ml min−1, nebulization gas 35 psi. Fragmentor voltages
were adjusted between 10 and 30 V to obtain precursor ions of degradation products.

Total organic carbon (TOC) was detected by TOC analyser (TOC4100, Shimadu). The concentrations
of SO2−

4 , NO−
3 and NH+

4 during SMN photocatalytic reaction were measured using ion chromatography
(ICS-90; Dionex).

3. Results and discussion
3.1. Morphology, structure and optical properties of ZnO
The SEM images of the three kinds of ZnO samples are demonstrated in figure 2. Significant differences
in the morphology and size were observed on account of the different preparation methods. As shown in
figure 2a,b, each crystalline body of T-ZnO had four needle-like legs extending from a core part. The size
of the basal diameter and the apex of each needle were about 1–3 µm and 50 nm, respectively. The length
of each needle was 10–30 µm, and there were many obvious growth steps and edge structures on the
acicular parts of T-ZnO. The electron diffraction pattern (inset in figure 2a) displayed that the needle was
of a single crystal. The morphologies of P-ZnO and F-ZnO are demonstrated in figure 2c,d, respectively.
Most of P-ZnO appeared hexagonal and the average particle size was about 80 nm in length and 40 nm
in diameter. The detailed feature of F-ZnO was flower-like microstructure with diameter in the range
of 1–2 µm, which was composed of nanoplates.

The XRD patterns of ZnO particles are shown in figure 3. The observed diffraction peaks of T-ZnO,
F-ZnO and P-ZnO corresponded to crystallized ZnO with hexagonal wurtzite structure according to
the diffraction data (JCPDS no. 36-1451) [33]. No additional characteristic peaks from impurities were
detected. The structural information and the average crystallite size estimated from the FWHM of (100),
(002) and (101) reflections of T-ZnO, F-ZnO and P-ZnO are listed respectively in table 1. The specific
surface area of the three ZnO samples was also measured and listed in table 1.

The UV–vis diffuse reflectance spectra of T-ZnO, F-ZnO and P-ZnO are displayed in figure 4. The
optical band gap Eg of ZnO samples estimated by the extrapolation of the linear portion of the plots
of (Ahυ)2 versus hυ is listed in table 1 [34]. All ZnO particles exhibited a strong, similar absorption at
wavelengths in the range 200–400 nm. It was consistent with the values reported for ZnO nanoparticles
[35,36]. The Eg of the three ZnO samples was lower than known Eg of bulk ZnO (3.37 eV), which was
caused by the existence of some point defects within ZnO crystal lattice [23].

3.2. Photocatalytic decomposition kinetics of sulfamethazine under different conditions
In order to evaluate the efficiency of ZnO for photocatalytic degradation of SMN, the experiments
concerning the photocatalytic decomposition of 20 mg l−1 SMN solution containing 2 g l−1 ZnO with
different shapes were performed. Meanwhile, the blank experiment for illuminated SMN without ZnO
was carried out.

On account of the low concentration of SMN, the pseudo-first-order kinetic model (equation (3.1))
was applied to analyse the SMN photocatalytic decomposition [37].

− ln
(

[SMN]
[SMN]0

)
= kt, (3.1)

where [SMN]0 and [SMN] were the initial concentration and the concentration of SMN at the reaction
time t, respectively. The k (min−1) was the reaction rate constant. The results are displayed in figure 5a,b.
As shown in figure 5a, the blank experiment indicated that the photolysis of SMN was obvious. The
removal ratio of SMN by photolysis was 78% after 60 min irradiation and the rate constant k of SMN was
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Figure 2. SEM image of ZnO samples: (a) SEM image of T-ZnO, the inset is the electron diffraction pattern of T-ZnO, (b) enlargement
image of the surface of T-ZnO, the inset is TEM image of apex of needle, (c) SEM image of P-ZnO, (d) SEM image of F-ZnO.
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Figure 3. XRD patterns of the ZnO samples.

2.58 × 10−2 min−1 without ZnO. In the presence of T-ZnO, the removal ratio and rate constants increased
significantly, i.e. 95% and 4.95 × 10−2 min−1, respectively. The increasing extent of three different ZnOs
decreased in the following order: T-ZnO, F-ZnO, P-ZnO. The results indicated that the process of
photolysis and photocatalytic degradation by ZnO of SMN followed the pseudo-first-order reaction,
the presence of ZnO was beneficial to the degradation of SMN, and the photocatalytic activity of T-ZnO
was best.
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Figure 5. Degradation ratio (a) and kinetics (b) of SMN photocatalytic degradation by different ZnO samples.

Table 1. The structural information, crystal size and bandgap of ZnO samples.

lattice parameters

samples specific surface area (m2 g−1) crystal size (nm) a (Å) c (Å) Eg (eV)

T-ZnO 0.29 104 3.2504 5.2068 3.253
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F-ZnO 2.43 84 3.2502 5.2065 3.252
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P-ZnO 5.74 34 3.2526 5.2106 3.251
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3. Degree of sulfamethazine mineralization under different conditions
As mentioned in many research studies, most of the organic carbons were still retained although the
photolysis of antibiotics under UV was effective. The studies on antibacterial activity and toxicity of
the intermediates produced by photolysis of sulfonamides [32,38], fluoroquinolone [39,40], tetracycline
[41,42] and others indicated that the mixed by-products showed an increasing toxicity, and the solutions
after photolysis still had certain residual antibacterial activity. Furthermore, the complete decomposition
of organic contaminant to inorganic molecules is the main purpose in wastewater treatment. Under
various experimental conditions, the destruction of organic compounds is different. Based on these,
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Figure 6. Removal ratio of TOC during SMN photocatalytic degradation by different ZnO samples.

the efficiency of ZnO samples with different morphologies for SMN mineralization was evaluated in
this study.

The overall reaction of SMN mineralization is presented as equation (3.2):

(3.2)

In this study, the efficiency of ZnO samples with different morphologies for SMN mineralization
was evaluated by monitoring the total organic carbon (TOC) during the photocatalytic degradation of
SMN. The changes in TOC content measured during the SMN photocatalytic decomposition are shown
in figure 6. After 12 h irradiation, no significant removal of TOC was observed in the absence of ZnO, the
addition of ZnO resulted in significant decrease in TOC content, but the decline level was different due
to the morphological change in ZnO. During the first 12 h, 86% of the initial TOC in SMN suspension
containing T-ZnO was eliminated; meanwhile, 71% and 50% was obtained in the presence of F-ZnO and
P-ZnO, respectively.

The mineralization degree of SMN can be further confirmed using release ratio of sulfur and nitrogen
during the photocatalytic degradation of SMN. To suppose that SMN could be completely mineralized in
the photocatalytic process, the maximum concentrations of inorganic sulfur and nitrogen released from
SMN (20 mg l−1 initial concentration) would reach 2.29 mg l−1 and 4.01 mg l−1, respectively. The release
ratios are shown in figures 7 and 8, which were calculated by testing the concentration of SO2−

4 , NO−
3 ,

NH+
4 in the reaction system. The release ratio of sulfur was an efficient process, close to 100% in 6 h

irradiation in the presence of T-ZnO, but reached to 86% and 67% after 12 h reaction in the presence of F-
ZnO and P-ZnO. On the other hand, the organic nitrogen conversion to inorganic ions (NO−

3 , NH+
4 ) was

an inefficient process under the same experimental conditions. The release ratio of nitrogen was about
76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively.

Combining the results of decomposition kinetics of SMN (§3.2), as it could be seen, SMN could be
converted to intermediates under irradiation of high-pressure mercury lamp, but the photolytic by-
products were rarely broken down further. After the addition of ZnO as a photocatalyst, even though
the intermediate products stayed for a certain amount of time, most of them were mineralized into
inorganic molecules or ions after 12 h reaction. The photocatalytic efficiency of different ZnOs for SMN
mineralization decreased in the following order: T-ZnO, F-ZnO, P-ZnO.

There were two main reasons for the difference in photocatalytic activity of different shapes of ZnO.
On the one hand, the needle tip of T-ZnO grows along the [0001] direction, so resulting in the exposure of
most of the {101̄0} [43,44]. Related research showed that the photocatalytic activity of the ZnO increased
with the peak intensity ratio of (101̄0) to (0002) [45]. Xu et al. compared the activity for the production
of three different ZnOs and found the oxygen vacancies in skin layers of the T-ZnO crystal played an
important role in the formation of H2O2 and had a positive effect on the production of ·OH [34], which
was beneficial to photocatalytic activity. On the other hand, the agglomeration of nanomaterials reduces
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the photocatalytic activity. Even though the size of T-ZnO and F-ZnO are micron grade, the top T-ZnOs
needle is nanoscale and F-ZnO consists of nanoplates, which make T-ZnO and F-ZnO have the advantage
of nanomaterials and harder to reunite than nanomaterials. The lower photocatalytic activity of the P-
ZnO is attributed to the aggregation of the nanoparticles.

3.4. Intermediate product analysis and photocatalytic degradation pathway of sulfamethazine
In order to identify the intermediate products of SMN photocatalytic degradation, the solution obtained
after SMN degradation for 30 min, using T-ZnO as photocatalyst, was purposely used to detect as
many intermediates as possible. LC-MS/MS was employed to perform measurements. The total ion
chromatogram (TIC) and the specific ion mass spectra of major intermediates are depicted in electronic
supplementary material, figure S1. There were seven different peaks, excepting SMN. Based on the ion
mass spectra of each peak, seven major intermediates, namely P1–P7, were identified in the UV/T-
ZnO reaction system. P6 and P7 had the same molecular weight, m/z 295, 16 larger than that of
SMN. Previous studies have reported that ·OH radicals formed during the photocatalytic process could
attack the investigated molecule at any function group, resulting in a molecular weight increase of 16
[11,46,47]. Electronic supplementary material, figure S1 describes the different retention times and ion
fragmentation of P6 and P7, which indicated that the hydroxyl group was added at the benzene ring and
the dimethyl pyrimidine group of SMN, respectively. The intermediate with largest molecular weight
was P5, 16 larger than that of P6 and P7. By comparing the specific ion mass spectra of P5, P6 and P7,
we found P5 obtained from the hydroxylated reaction of the benzene ring and the dimethyl pyrimidine
group. Research studies indicated that SO2 extrusion was a phenomenon that frequently occurs during
sulfonamide degradation driven by UV photolysis. The intermediates were obtained by aminobenzene
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Figure 9. Major intermediate and proposed pathways of photocatalytic degradation of SMN under UV/T-ZnO.

ring directly connecting to the pyrimidine ring, and then, the holes (h+) of photocatalyst attacking the
carbon–nitrogen bond of the dinitrogen-substituted ring of the SMN would result in two by-products
[48–50]. Based on these main reasons, P4 with m/z 21 564, less than that of SMN, was produced on account
of SO2 removal. The hydroxylated reaction of P4 or the SO2 elimination from P5 and P6 could generate
the by-product with m/z 231, named P3. P1 and P2 with smaller m/z were derived from the broken bond
of the carbon–nitrogen bond by other intermediates. Combining the results of the previous section (§3.3),
we could propose the possible photocatalytic decomposition pathway of SMN in the presence of UV/T-
ZnO, which is demonstrated in figure 9. Hydroxylations on the benzoic ring and the pyrimidine ring of
SMN, and SO2 extrusion on sulfonamide group via the direct cleavage of the S–N bond were suggested
to be the major pathways of SMN photodegradation using ZnO under UV irradiation.

4. Conclusion
This study examined the kinetics of photolysis and photocatalytic degradation of SMN respectively in the
absence and presence of ZnO with different morphologies, and the degree of SMN mineralization was
evaluated by monitoring the total organic carbon (TOC), release ratio of sulfur and nitrogen during the
photocatalytic degradation of SMN. The removal ratio of SMN (20 mg l−1) by photolysis was 78% after
60 min irradiation of high-pressure mercury lamp and the rate constant k of SMN was 2.58 × 10−2 min−1

without ZnO, but no significant removal of TOC was observed. In the presence of ZnO, the removal ratio
and rate constants increased significantly and the increasing extent of three different ZnOs decreased in
the following order: T-ZnO, F-ZnO, P-ZnO.
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The degree of SMN mineralization decreased in the same order. There are three main reasons for the

best photocatalytic activity of T-ZnO: (i) Growing along the [0001] direction of the needle tip of T-ZnO,
results in most of the {101̄0} being exposed. (ii) The oxygen vacancies in skin layers of the T-ZnO crystal
have a positive effect on the production of ·OH, which is beneficial to photocatalytic activity. (iii) The
micron size of T-ZnO makes T-ZnO harder to reunite, and the nanoscale top of needle makes it have the
advantage of nanomaterials.

Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS
analysis. Hydroxylations on the benzoic ring and the pyrimidine ring of SMN, and SO2 extrusion on
sulfonamide group via the direct cleavage the S–N bond were suggested to be the major pathways of
SMN photodegradation using ZnO under UV irradiation.
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