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Competition theory is founded on the premise that individuals
benefit from harming their competitors, which helps them secure
resources and prevent inhibition by neighbours. When multiple
individuals compete, however, competition has complex indirect
effects that reverberate through competitive neighbourhoods.
The consequences of such ‘diffuse’ competition are poorly
understood. For example, competitive effects may dilute as they
propagate through a neighbourhood, weakening benefits of
neighbour suppression. Another possibility is that competitive
effects may rebound on strong competitors, as their inhibitory
effects on their neighbours benefit other competitors in the
community. Diffuse competition is unintuitive in part because
we lack a clear conceptual framework for understanding
how individual interactions manifest in communities of
multiple competitors. Here, I use mathematical and agent-based
models to illustrate that diffuse interactions—as opposed to
direct pairwise interactions—are probably the dominant mode
of interaction among multiple competitors. Consequently,
competitive effects may regularly rebound, incurring fitness costs
under certain conditions, especially when kin–kin interactions
are common. These models provide a powerful framework for
investigating competitive ability and its evolution and produce
clear predictions in ecologically realistic scenarios.
1. Introduction
Nature is often described as a battleground over meagre resources;
either through competition or predation, survival depends on
wresting resources from unwilling victims. Yet, natural examples
of cooperation (directly benefitting another organism) and even

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.230222&domain=pdf&date_stamp=2023-08-30
mailto:daniel.atwater@montana.edu
https://doi.org/10.6084/m9.figshare.c.6794004
https://doi.org/10.6084/m9.figshare.c.6794004
http://orcid.org/
http://orcid.org/0000-0002-7166-3819
http://creativecommons.org/licenses/by/4.0/


reward

tempt-
ation

sucker

punish-
ment

coop. defect
action of B

de
fe

ct
C

oo
p.

ac
tio

n 
of

 A

Prisoner’s dilemma:

T > R > P � S 

stag hunt:

R > T > P � S 

0

0

spare

sp
ar

e

kill

ki
ll

sp
ar

e
ki

ll

spare kill

W

W-C

simple competition

0

0

W-A1BC

If S > (Di(ςi,i – 1) + S)B:

 A1 > A0 and

W-CA0 > W-CA1B > > 0

W-A0C

general game

effect of competition:

C = PiS(1 – Ti)

effect of neighbour removal (‘initiator effect’):

B = P(1 – β)(1 – αρ(nsi – si + Si)(1 – T )/n) + β  

effect of assortative clustering:

A = (Di(ςi,i – 1) + S/Si)/(Di(ςi,i – 1) + 1)

W > W-C > 0

kin assorting and
initiator effect 

(a) (c)(b)

Figure 1. Summary of competition games. The general game (a) shows an example payout matrix and payout rankings. In the
simple competition game (b) defectors kill neighbours. Leaving neighbours alive incurs a competition cost (C) that reduces fitness
compared with the maximum (W). In the game with kin assorting and competitor replacement (c), agents that kill their competitors
might experience relief from competition in the future, as described by the initiator effects term ‘B’. The competitive environment of
cooperators versus defectors varies according to the probability of encountering kin, because kin have a known genotype. This is
described by term A (subset 0: cooperator, subset 1: defector). Equations for each term are given at right and rankings of the pay-
outs is given below. The direction of selection on cooperation or defection is given by vertical arrows. The horizontal arrow shows
that agent A would always prefer to survive competition, i.e. by increasing its tolerance.
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altruism (directly benefitting another organism at a cost to the individual) abound, with major impacts on
ecology and evolution [1–3]. To give a few examples, cooperation is crucial in avoiding ‘tragedies of the
commons’ that occur from over-exploitation of resources or suboptimal performance by non-cooperators
(also called ‘cheaters’ or ‘defectors’; [4]), it facilitates the coexistence of competitors [5], increases
speciation [6], and promotes the evolution of phenotypic diversity, behavioural complexity and sociality
[3,7,8]. In the simplest terms, cooperation can evolve when its benefits outweigh its costs, although this
is complicated by processes such as kin interactions, spatial structure and learning [3].

The evolution of cooperation has been a focus of evolutionary game theory. At the heart of game theory
is the ‘pay-off matrix’, which describes the outcome of each combination of strategies used by interacting
agents. One well-known example is the Prisoner’s Dilemma, in which two agents may cooperate or defect
(i.e. forgo cooperation and instead adopt an antagonistic strategy). If both cooperate, both benefit (the
reward, R). The greatest pay-out comes to an agent who defects while their partner cooperates (the
temptation, T). Conversely, the least pay-out comes to the cooperator in this condition (the sucker, S).
When both agents choose to defect, they receive little pay-out (the punishment, P), but this is greater
than the pay-out given to a sucker (figure 1a). The Hawk-Dove Game is another game that is
commonly applied to ecological systems—and it would seem to be relevant where competitive
aggression is being explored—but the Prisoner’s Dilemma is close mathematically to the models
developed here and Hawk-Dove Game is not, so it will not be discussed further.

In the Prisoner’s Dilemma the most reliable strategy is to defect because it has the best pay-off no
matter which strategy the partner uses. Defection, in the Prisoner’s Dilemma, is described as an
‘evolutionarily stable strategy’ (ESS) because it is an ‘evolutionary attractor’ (it tends to evolve from a
given starting point) and is ‘invasion-resistant’ (it remains the best strategy once dominant; [9,10]).
Evolution therefore drives such a system towards a tragedy of the commons; defection is favoured,
the proportion of defectors inevitably increases, and P (both defect) becomes the most common pay-
out despite being poor compared with R (both cooperate). Relating this to ecological systems, in
which a large pay-out might be interpreted as a boost to growth rate, survival or fecundity, a system
with poor pay-outs might have much lower productivity than a system with higher pay-outs. This is
unfortunate for the Prisoner’s Dilemma, or any other game that favours defection, because evolution
inevitably leads to lower community-wide pay-outs and drops in productivity. Game models have
been useful in describing real ecological systems, including hunting, root foraging, competition for
light, herbivore defence, sex ratios, body size, mate choice, parental care, animal contests,
socialization, cancer proliferation and multicellularity [11]. Here, I evaluate how cooperation, in the
form of conflict de-escalation, might evolve in populations of direct competitors in the absence of any
other trade-offs. This distinction is important, because the traditional paradigm has been to assume
that competition inherently drives organisms towards conflicts, and trade-offs are necessary to permit
the evolution of cooperation among organisms whose only mode of interaction is competition.
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At first glance, interference competition would seem to be a poor candidate for the evolution of

cooperation because it might not be obvious why any individual should abstain from harming its
competitors, especially if there are no direct costs for doing so and there is a guarantee that competitors
are also causing harm. This view of competition centres on a phenomenon I term the ‘initiator effect’,
which is the benefit to an individual who pre-emptively suppresses competitors. The initiator effect
improves resource availability by weakening or killing competitors and ensures that those competitors
cannot exert direct interference effects of their own. However, assortativity of kin, caused by processes
such as dispersal limitation or socialization, can help cooperation evolve in social dilemmas because
harming others is risky if they might be relatives [12]. Furthermore, multiplayer competition can reduce
the benefits of defection through ‘diffuse competition’ among defectors [13,14], meaning that
competitive effects are distributed broadly among multiple competitors and initiator effects are diluted.

Diffuse competition has many facets—as explained below—but it can be conceptually thought of as
an ‘averaging’ or ‘blending’ of competitive interactions that occur when multiple individuals compete
simultaneously in a large arena. Although we tend to view competition in a pairwise lens, a major—
or perhaps dominant—form of competition is diffuse. Diffuse competition (DC) has three aspects [15]:
Type I: the additive effect of competition, according to the abundance and competitive ability of each
species in a competitive neighbourhood [16]; Type II: the cumulative effect of indirect interactions
propagating among multiple neighbouring or otherwise interacting competitors [13]; and Type III: the
effect of sampling, wherein the average competition experienced by individuals in a population is
governed by sampling processes reflecting underlying encounter probabilities with various potential
competitors [17]. These aspects of DC all originate as an emergent consequence of multiplayer
competition among individuals, and act simultaneously to distribute competitive effects throughout a
community, in turn diluting the initiator effect and potentially reducing pay-outs to individuals that
suppress direct competitors [14,18–22]. Thus, there is a possibility that kin interactions and diffuse
competition could act in tandem to dilute the initiator effect and promote cooperation among
competitors. Diffuse competition is an emergent property of multi-competitor systems and operates
side-by-side with the individual-based, pairwise interactions that are usually considered by ecologists.

In this paper I develop a series of models to evaluate the possibility of cooperation, in the form of
conflict de-escalation, evolving among competitors in the absence of any other ecological trade-offs.
Specifically, I investigate how kin assortativity and diffuse competition affect evolution of competitive
de-escalation. In ecological terms, defection might involve suppression of competitors through conflict,
allelopathy or resource pre-emption, and cooperation—in the form of de-escalation—might involve
abstaining from those activities. Furthermore, I allow agents to influence competitive outcomes through
variation in their own competitive tolerance. I test predictions of mathematical models with agent-based
simulations. My goals with this study are (i) to investigate how kin assortativity and diffuse competition
interact to affect evolution of competitive de-escalation, (ii) to explore under what conditions and how
often de-escalation might be favoured, (iii) to evaluate how the density and identity of competitors
influence the number and nature of ESSs, and (iv) to evaluate equilibrium systems for invasion by other
strategies. Ultimately, I aim to demonstrate whether, when and how often cooperation in the form of
conflict de-escalation might be an evolutionarily stable competitive strategy even when there is no direct
cost of competitive aggression and no other mitigating ecological factors or trade-offs.

A note on terminology: throughout this manuscript I am defining competition as any negative
interaction between two individuals, but for simplicity it may be best to think in terms of interference
competition, meaning direct suppression (e.g. through attack or allelopathy) of one competitor by
another. Resource competition is more complicated because it is an indirect interaction mediated by a
resource, which will not be modelled here, although many of the same principles may apply. Also,
because competition in these models always has negative effects, cooperation involves conflict de-
escalation but never a total loss of competition. As I will show below, even de-escalation is a form of
altruism because it comes at the expense of individual survival probability (if not the genotype’s
inclusive fitness). Fitness is the lifetime reproductive success of an organism, although in the models
presented here, variation in fitness is a consequence only of variation in survival, which in turn affects
reproductive success.
2. The model–game theoretic context
Imagine a scenario in which competitors can kill one another. In game theoretic terms, this is an extreme
version of the Prisoner’s Dilemma in which defectors kill their partners and two defectors kill one
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another. A defector whose neighbour cooperates enjoys its maximum fitness, W, because it experiences

no competition from its killed neighbour. Throughout the manuscript, I will define ‘cooperators’ and
‘defectors’ in game-theoretic terms (referring to whether an agent chooses how much to harm a
partner), although this differs slightly from the ecological definition of cooperation, meaning that an
organism acts directly for the benefit of another [6]. The pay-out for mutual cooperators is W – C,
where C is the ‘competition term’ describing harmful effects of competition with the surviving
neighbour, such as the risk of being killed by that neighbour in the future. For C > 0, it is always
advantageous to kill or otherwise suppress competitors, all else being equal (figure 1b).

Expressing competition as above implies that there is a possibility of further interaction with the same
or other agents. This is called a ‘repeated game’, and it creates a problem for the simple competition
model (figure 1b), which makes no allowances for continued interaction among agents. If the game is
not repeated, then two cooperators are eternally locked into cooperation and C = 0 for the reward
case, in which case there is no benefit to defection! If the game is a repeated game, then mutual
cooperators and defectors alike might face competition in the future, in which case C needs to be
defined for the defector-versus-cooperator case as well as for the mutual cooperation case. To
accommodate this, one can introduce a term ‘B’ which describes the proportionate degree of
competition felt by defectors as compared with cooperators. I call this the ‘initiator effect’. The
initiator effect describes the indirect advantage enjoyed by individuals who suppress their competitors
and experience reduced competition in turn. This is one form of diffuse interaction [13,15]. When
initiator effects are strong, B≈ 0, defectors enjoy a considerable advantage. When initiator effects are
weak, B≈ 1, defectors experience little relief from competition, and fitness is negligibly different from
that of cooperators. Initiator effects allow interacting genotypes to repeat the game (although the same
cannot be said for individuals, which cannot repeat the game once killed).

Initiator effects would seem to prohibit evolutionary de-escalation, by giving suppressors an
advantage over de-escalators under all conditions. However, initiator effects could be counteracted if
individuals have increased odds of encountering—and harming—relatives. Such kin assortativity
generally promotes cooperation in social dilemmas because it increases the risk of defectors harming
relatives [12]. I represent kin assortativity with a term ‘A’ which describes the competition felt by a
genotype (or kin group) proportionate to the average competition felt by the population. By
definition, A varies among genotypes. In a two-agent, non-mixed-strategy example, one can define A0

and A1, which are the kin-competition terms for competition felt by cooperators and defectors
respectively, in which defectors are competitive escalators with strong suppression of competitors, and
cooperators are de-escalators with weak suppression of competitors. If kin assortativity is positive,
A1 > 1 >A0, meaning that defectors experience stronger competition than cooperators. This is intuitive;
clustered, related defectors will kill one another off, and clustered cooperating relatives will benefit
from avoiding interactions with other genotypes which are likely to be stronger suppressors
(figure 1c). In this more general model, it becomes clear that the evolution of cooperation will depend
on the balance between initiator effects and kin-assortativity effects. Cooperation will be favoured
when the combined initiator effects and kin-assortativity effects acting on defectors exceed the
kin-assortativity effects acting on cooperators,

B .
A0

A1
$ A1B . A0: ð2:1Þ

In other words, for defectors, the benefits of killing neighbours, multiplied by the costs of killing kin,
must not exceed the benefits of cooperators sparing kin. What this means in plain terms is that a
successful strategy will balance (i) the benefits of cooperating with relatives, (ii) the benefits of killing
neighbours, and (iii) the costs of inadvertently killing relatives in the process of killing other
neighbours. Fascinatingly, the cost of cooperators sparing unrelated individuals, who may
subsequently cause harm to the cooperators, does not need to be considered.
3. A suppression-field model of competition
Although an individual may attempt to defect (i.e. by killing a competitor), it is not guaranteed to
succeed. It is widely recognized in plant ecology, for example, that competitive ability is the product
of two functional traits: the ability to suppress competitors, and the ability to tolerate competition.
Thus, the probability of an individual of genotype i surviving competition is a function of its own
tolerance ability, T̂i (0–1; table 1), the average suppression it experiences, ŝi, (0–1) and its maximum
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survival probability Pi. The reduction in survival due to competition is term ‘C’, discussed above. We

follow Atwater et al. [14] in defining this as

P̂i ¼ Pi � C ¼ Pi � Piŝi(1� T̂i): ð3:1Þ
Note that in equation (3.1), survival probability is the only aspect of fitness being considered, which in
turn leads to changes in reproductive success. In ecological systems, other factors (e.g. fecundity) also
certainly play a role, and may trade-off with survival. For the purposes of simplicity, and as these
models represent a ‘first-step’, variation in fecundity and other factors are ignored in this study.

In equation (3.1), variables T̂i and Pi are intrinsic traits of a genotype, but ŝi, the suppression
experienced by individuals of genotype i is influenced by the competitive ability of interaction partners
and must be calculated. Let us assume that, for any given individual, ŝ is the mean age-dependent
suppression caused by n neighbouring or otherwise interacting competitors (Type I DC, per [15,16]),

ŝ ¼ ŝi ¼ ar
Xk
j¼1

DjSj such that
Xk
j¼1

Dj ¼ 1: ð3:2Þ

For the typical individual of genotype i, the suppression experienced is a function of the suppression of
each genotype in the population multiplied by the probability of encountering that genotype, where the
encounter probability is the relative density of each genotype (Dj) multiplied by the total relative
population density, ρ (0–1; table 1 for a list of variables and ranges). For consistency with simulations
(discussed in the next section), I also include age effects, α, representing the ‘effective maturity’ of the
population; a value close to one means that most individuals are mature or nearly mature, and
competition is relatively intense. A value close to zero means that age effects are strong, the average
individual is not close to maturity, and competition is weakened proportionately.

As defined here, ŝ is the same for all k genotypes (because other variables are properties of the system
and not unique to any given genotype), acting as a uniform field that equally suppresses all genotypes in
the population. This formulation represents Type III DC, in which competitive effects are regularized across
a population by statistical averaging [17]. This is also called a ‘mean-field’ approximation, which is used in
physics, biology, economics and social science to reduce the dimensionality of complex systems with many
interacting agents [23]. Analogous to an electromagnetic field created by the action of many individual
particles, suppression in this model functions as a field of force affecting survival probability (and, in
theory, also including growth and/or fecundity). Critically, in real populations the suppression
experienced by any one individual is not equal to ŝ; instead, it is uniquely defined by that individual’s
set of neighbourhood interactions. However, because that set is sampled from a distribution of possible
values, the mean suppression experienced by individuals in the population approaches ŝ as population
size approaches infinity [17], with variation due to sampling error.

Equation (3.2) assumes that all genotypes experience the same competitive environment, but that may
not be the case in nature. For example, kin assortativity, caused by dispersal limitation, clustering of
family groups, or kin avoidance, might lead to predictable variation in the competitive environment
of kin groups (term A, above) [12,14]. I introduce an ‘association’ parameter, wij, which generalizes
equation (3.1) to

ŝi ¼ ar
Xk
j¼1

wij

Dj(wij � 1)þ 1
DjSj, ð3:3Þ

where wi,j is an odds ratio comparing odds of genotype i encountering genotype j versus any other
genotype. Assuming that dispersal limitation affects the odds ratio of a genotype encountering itself,
wii, but does not bias odds ratios against any other genotypes, wio, it follows that

ŝi ¼ ar
DiSi(wii � 1)þ �S
Di(wii � 1)þ 1

: ð3:4Þ

As wii increases above 1, Si becomes an increasingly important component of ŝi, the correlation
between Si and P̂ becomes more negative, and fitness decreases. This model incorporates Type III DC
and also allows the competitive environment to vary among genotypes but it does not explicitly
include Type I DC, and Type II DC—propagating indirect interactions in a group of neighbouring
competitors—is absent. To include such ‘neighbourhood interactions’, it is necessary to incorporate
terms that represent effects of successful ousting of competitors on ŝi and its consequences for not just
the individual but the community as a whole. I note that the competitive ‘neighbourhood’ does not
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need to represent an actual group of neighbours in shared space—it could just as easily refer to a network

of individuals that interact in space or time. These models are space-agnostic.
As explained above, the more an individual of genotype i harms, kills or weakens a competitor, the

more it will reduce the suppression it experiences (̂si) from those competitors, assuming they are not
immediately replaced if killed. To incorporate such ‘initiator effects’, I introduce a term, B, to equation
(2.1) (analogous to term B in the game models),

P̂i ¼ Pi � PiŝiB(1� Ti), ð3:5Þ
where B ¼ �P(1� b)(1� ð1=nÞ(nŝi � ŝi þ arSi)(1� �T))þ b.

Term B, which ranges from 0 to 1, describes how neighbour suppression reciprocally ameliorates the
competition experienced by an individual in the future—i.e. the initiator effect (see the electronic
supplementary material for how this term is derived). The variable β describes the replacement rate of
killed neighbours, decreasing from one to zero in proportion to recruitment delays, age effects, or
incomplete dispersal. A greater replacement rate, β, indicates that killed competitors are quickly
replaced, which brings B closer to one, reducing benefits of neighbour suppression via neighbourhood
effects. Note that equation (3.5) reduces to equation (2.1) for β = 1, in which case killed competitors are
immediately replaced by equivalent competitors. For simplicity, I have chosen to model β as an
independent parameter, but more realistically β might co-vary with α and ρ and could possibly be
expressed as a function of those. Equation (3.5) contributes Type II DC to the model [13,15], and
introduces Type I DC explicitly in the central term containing n.

We can conceptualize suppression as a force affecting the survival probability of each individual in
the community. The suppression experienced by the whole community could therefore be mapped as a
field of force, conceptually similar to a magnetic field. If the force is entirely uniform (i.e. ŝi is the same
everywhere), all genotypes encounter the same field strength (C; mean-field effect; equation (3.2)).
Addition of either initiator effects (B) or kin assortativity (A) modifies the suppression force-field
model (hereafter, SFM) to differ among genotypes. Assembling these terms produces the complete
SFM explored in this study,

P̂i ¼ ABC

Kin-assortativity effect: A ¼ ðŜi=�SÞ ¼ arððDiSi=�SÞ(wii � 1)þ 1=Di(wii � 1)þ 1Þ
Initiator effect: B ¼ �P(1� b)(1� ð1=nÞ(nŝi � ŝi þ arSi)(1� �T))þ b

Mean-field effect: C ¼ P�S(1� T̂)

P̂i ¼ Pi � Piar
DiSi( wii � 1)þ �S
Di( wii � 1)þ 1

�P(1� b) 1� ar

n
(n� 1)

DiSi( wii � 1)þ �S
Di( wii � 1)þ 1

þ Si

� �
(1� �T)

� �
þ b

� �
(1� Ti): ð3:6Þ

4. Iterating suppression-field models
I simulated SFMs using genotypes that varied in every possible combination of 4, 13 or 101 values of T
and S ranging from 0.2 to 0.8 (for a total of 16, 169 or 10 201 genotypes). Genotypes started at equal
densities. To simulate passage of time, I estimated the survival probability bPi of each genotype. I then
scaled Di to bPi and ran the model again. These two steps were repeated for 200 time steps, because
this was sufficient to allow strong responses to selection in the simulation models. Reproduction was
clonal, and the model progressed in discrete time intervals. I varied kin assortativity wii = 0, 1, 10, 100,
1000 or 10 000, with ρ = 1 and α = 1. I also ran SFMs with ‘tuned’ values of β and αρ based on their
estimated values in the ABMs (see below; with age effects: β = 0.85, αρ = 0.6; without age effects: β =
0.755, αρ = 0.975). For most models I used a default maximum survival probability P = 0.8. Separately,
I tested effects of intra-population variation in P by running models with Pi equalling each of 0.5,
0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9 and 0.95. These models were run with the same values of β, wii, ρ
and α as above. These values were chosen to represent a comprehensive range of conditions.
5. Agent-based models
Model outcomes can be affected by randomness and spatial arrangement of agents [24,25], particularly
where models fail to capture spatially explicit [26], finite [27] or stochastic processes [28]. The SFMs
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Figure 2. Contour plots of combined effects of T and S on fitness in SFMs, with tuned values of αρ = 0.96 and β = 0.85 for
comparison with ABMs with age effects. Rows show models with different genotypic richness. Columns show models with
different odds ratios of kin–kin encounters (wi,i). The panel with R = 169 and wi,i = 1 corresponds roughly to the ABM with
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ABM with limited dispersal and age effects ( figure 4, column 4).
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described above, for example, assume that population sizes are infinite and are agnostic to the mode or
spatial structure of competition. To evaluate how SFM predictions compare with finite systems with
spatially explicit interactions, I tested mathematical model (SFM) predictions in an agent-based setting,
using single-lattice agent-based cellular automata models (hereafter, ABMs). For simplicity, I imagined
that a population of sessile organisms occupied a 100 × 100 cell lattice (10 000 cells total) with
wrapping edges [29]. Each cell could be empty or contain one individual. I simulated genotypes of an
arbitrary species, in which each genotype possessed a unique combination of 13 levels of tolerance (T )
and 13 levels of suppression (S) abilities, each ranging from 0.2 to 0.8. All 169 genotypes were
characterized by maximum survival probability P, maximum annual fecundity F, and age A in
time steps, which were used to calculate age-dependent effects on T, S and F. Of note, unlike the
mathematical SFMs, in the cellular ABMs terms A (kin assortment) and B (initiator effects), and their
associated variables α, β, ρ and wii were not modelled explicitly. These could be measured, but took
on emergent, dynamic values. Thus, ABMs served the dual purpose of (i) testing predictions of the
SFMs in a stochastic, spatially explicit simulated community and (ii) showing what portions of the
available parameter space simulated populations tended to occupy. ABMs do not simulate motile
organisms and SFMs are not tested in that setting here. Details can be found in the electronic
supplementary material.
6. Results
Tolerance was beneficial under all conditions (figures 2 and 3). This was expected, as survival varied
linearly with Ti (equation (3.6)) in the SFMs and ABM sub-models. By contrast, suppression, Si, had
much more complex and situational fitness effects, as described below.

6.1. Neutral kin assortativity
In SFMs with neutral kin assortativity, meaning that genotype distributions were totally random, and
with no initiator effects, meaning that individuals could not protect themselves from competition by
killing neighbours, suppression had no effect on fitness (electronic supplementary material, figures S1
and S2) and cooperation was adaptively neutral. At maximum initiator effects, meaning that
individuals that suppressed their neighbours experienced a complete, lifelong release from
competition, suppression had a slight fitness benefit in the SFMs (electronic supplementary material,
figures S3 and S4), weakly favouring defection. In 50 replicate ABMs with random dispersal there was
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no detectable benefit of neighbour suppression, despite initiator effects (figure 4). To determine whether
fitness effects of S were exactly zero in the ABMs, or extremely close to zero, I ran post hoc models in which
S varied, but not T, replicated 1000 times over 500 time steps. With all age effects enabled, suppression
increased by approximately 1.1%, in 55.4% of simulations (exact binomial test, p = 0.0007; electronic
supplementary material, figure S5) when T was 0.8, and by 7.4–11.6% in 68.7–87.2% of simulations (p <
0.0001) when T was 0.2. It was difficult to directly measure initiator effects, which varied dynamically,
but β ranged roughly from 0.74 to 1.00. Parameters wii, β, α and ρ varied depending upon the model
conditions and identity of surviving genotypes (electronic supplementary material, figure S6).
Plugging in tuned estimates of β, ρ and α into SFMs essentially matched the outcomes of the ABMs.

Positive kin assortativity. When kin assortativity was positive, e.g. due to dispersal limitation or family
aggregation, suppression was generally selected against (figures 2 and 3). With no initiator effects,
neighbour suppression decreased fitness in all conditions (electronic supplementary material, figure
S1). When initiator effects occurred, the initial selection favouring S was stronger as kin assortativity
increased, and weaker as the number of genotypes decreased (electronic supplementary material,
figure S3). However, selective benefits of neighbour suppression were short-lived, as they were tied to
kin density (electronic supplementary material, figure S4). As with the neutral-association models,
ABMs reflected the SFMs. Age effects did not alter this basic pattern (figure 3, electronic
supplementary material, figure S7 and S8), although age effects on tolerance tended to exaggerate
competitive disadvantages of neighbour suppression, and age effects on suppression tended to
attenuate them. Agents in the dispersal-limited ABMs achieved a higher mean age than those in the
random-dispersal ABMs, owing to the lower mean suppression in those models, although density was
also higher, so the overall effect of both variables on population conditions were similar between
dispersal types. The kin-assortativity odds ratio varied dynamically in the ABMs, peaking at about
250 : 1 and decreasing to 100 : 1 as equilibrium was reached, providing a reference point for
interpreting wii: a value of 100–200 : 1 indicates extreme dispersal limitation (electronic supplementary
material, figure S6).

Each genotype had a threshold density beyond which the fitness effect of suppression changed signs
(see electronic supplementary material, methods for derivation)

ŝiBi ¼ E(̂sB) $ Di,threshold ¼ arBi�S� E(̂sB)
(wii � 1)(E(̂sB)� arSiBi)

: ð6:1Þ

Better-than-average suppressors benefitted when their density was low, and weaker-than-average
suppressors benefitted when their density was high (figure 5). If weaker-than-average suppressors
started above a threshold density, they would come to dominate via positive feedback. If they started
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below a threshold density, they would inevitably decline. By contrast, stronger-than-average suppressors
declined above their threshold density, and increased below that density. The dynamics of the model
depended upon whether it initialized in a super-threshold or sub-threshold condition for the weakest
suppressors. The 169-genotype models tended to initialize in a super-threshold condition, in which
case weak suppressors had a runaway fitness advantage when kin assortativity was positive. The
10 201-genotype models tended to initialize in a sub-threshold condition, in which case strong
suppressors enjoyed a fitness advantage over weak suppressors, until the former reached self-
limitation. In this metastable state, strong suppressors could oppress weak suppressors, which were
never able to achieve a ‘critical mass’ density needed to switch the system to a super-threshold state.
However, strong suppressors never came to dominate, due to self-limitation.
6.2. Negative kin assortativity
When kin assortativity was negative, e.g. due to over-dispersion, suppression conferred a fitness
advantage under all conditions, although this advantage was weak relative to the advantages of
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tolerance. SFMs with no initiator effects and complete over-dispersal represent the best-case scenario for
the evolution of neighbour suppression, in which case suppression was nonetheless orders-of-magnitude
slower to evolve than tolerance (electronic supplementary material, figures S1–S4). ABMs behaved
similarly to SFMs (figure 3, electronic supplementary material, figure S7 and S8), except that
stochastic processes were amplified in the over-dispersal model, due to the fact that complete over-
dispersal caused sudden and severe self-limitation in the spatial models (electronic supplementary
material, figure S9).
6.3. Cooperation as an evolutionarily stable strategy
To be considered an ESS, a strategy must resist invasion by a small population using a different strategy.
Defection, in the form of neighbour suppression, was an ESS in the cases when all genotypes were at a
low, sub-threshold density and when kin assortativity was positive. Invasion by cooperators (i.e. weak
suppressors) was impossible if those genotypes were introduced at low density. However, cooperators
could invade if introduced at a density above their critical density, in which case the population
would experience a state change and cooperators would come to dominate via positive-feedback
mechanisms (electronic supplementary material, figures S10 and S11). Because the critical density was
quite low, it is conceivable that stochastic processes in small populations could temporarily elevate
cooperators above this density, causing change in the ESS, although this process was not specifically
tested here. Conversely, if the population was in a super-threshold state with abundant cooperators,
defectors could invade, but new cooperators could not. In this case, invading defectors would
increase until reaching their threshold abundance. Seemingly, therefore, serial invasion by multiple
suppressors could ‘poison’ the system by steadily weakening cooperators, but this was prevented by
competition among defectors (electronic supplementary material, figure S10). In systems that initiated
at a super-threshold state, cooperation dominated a stable mixed-strategy community with defectors
stably persisting at low abundance.
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6.4. Model generality and conditionality

Tolerance always provided a fitness benefit. Fitness effects of neighbour suppression, however, varied in
direction and magnitude according to the value of every variable in the model. Cooperation was an ESS
whenever there was positive kin assortativity and cooperator densities were high enough or initiator
effects were low enough that cooperators were above their threshold densities. Otherwise, defection
would be a meta-stable ESS when kin assortativity was positive, a stable ESS when kin assortativity
was negative, or a stable ESS when kin assortativity was neutral and initiator effects were present
(electronic supplementary material, figure S12). Thus, throughout most of the parameter space explored
in this study, cooperation was an ESS, albeit dependent upon both current and initial conditions.

In the case of positive kin assortativity, the key consideration was the threshold density, which in turn
was influenced by the mean strength of the suppression field (�S), degree of kin assortativity (wii), number
of interactors (n), age effects (α), population density (ρ), neighbour replacement rate (β), suppression
ability (Si) and mean population tolerance (�T). Most of these variables exerted their influence through
the initiator effects term, B, attenuating their effects on fitness (as B itself had weak effects on fitness).
The exception was the mean population tolerance, �T, which had a negative linear relationship to B
and which exerted large effects on evolutionary outcomes. Generally, tolerance was strongly favoured,
and so �T rose quickly to the maximum allowed value of Ti. In most models reported here, that value
was set to be 0.8—which resulted in initiator effects being diminished by 80%. However, limiting Ti to
a lower maximum value would consequently strengthen initiator effects. Stronger initiator effects
would raise the density-threshold for the evolution of defection, in turn expanding the number of
conditions in which neighbour suppression could evolve (figure 6). As a result, the equilibrium mean
tolerance �T had outsized effects on evolutionary outcomes. In plain terms, in systems where
competition harshly reduces fitness (as compared with the competition-free condition), suppression
will more likely be favoured. In systems where competitive effects are milder, de-escalation will more
easily evolve.

The importance of tolerance versus suppression as determinants of fitness (measured as the partial
derivative of fitness with respect to tolerance and suppression, see electronic supplementary material,
methods) depended strongly on the number of interaction partners, n, with n = 1 representing
pairwise competition. In general, suppression was more likely to emerge as an ESS as n decreased to
one. It has been suggested that in the pairwise mode tolerance and suppression should contribute
equally to fitness, meaning that competitive escalation should be quick to evolve in pairwise
competition [14,30,31], but this was not quite the case in these models. Instead, suppression was
rarely more than half as important as tolerance at determining fitness, except in the case of very high
population densities, weak age effects, extremely strong competition and neighbour replacement rates
effectively equalling zero. More generally, fitness effects of suppression tended to be 60–90% weaker
than fitness effects of tolerance in the pairwise case (n = 1), and much less in the multiplayer case (n >
1; electronic supplementary material, figure S11). The exceptions were systems with very high kin
assortativity, in which de-escalation evolved at a rate up to approximately 33% the rate of evolution of
increased tolerance. Thus, regardless of whether selection favoured competitive escalation or de-
escalation, it tended to act slowly relative to selection favouring increased competitive tolerance.

In the SDMs used in this study, competition occurred in a two-dimensional community of sessile
organisms, at high density (i.e. similar to competition among plants). Kin assortativity was
manipulated by varying the mode of dispersal. In the SFMs, competition was not spatially explicit
and the models themselves are agnostic to both the mechanism of competition and the ecological
process influencing kin assortativity. Thus, while the SDMs most closely represent sessile competitors,
the SFMs are generalizable to a wide variety of systems, as governed by a variety of assumptions,
including but not limited to: competition results in a loss of survival probability; competitor
encounter rates are linearly related to competitor density; a bias towards or against encountering kin
affects all kin (and all unrelated individuals) equally; there is no kin recognition; competitor
replacement has a constant chance of happening; and tolerance of competition is possible and is
uncorrelated with suppression ability.
7. Discussion
Does an individual benefit by harming direct competitors? For decades, we thought that the answer is
‘yes’, because competitor suppression provides greater access to resources and, presumably, a lower



maximum tolerance
0.08 0.40 0.72 0.08 0.40 0.72 0.08 0.40 0.72

re
pl

ac
em

en
t r

at
e

0

0.25

0.50

0.75

1.00
0

0.25

0.50

0.75

1.00
0

0.25

0.50

0.75

1.00
0

0.25

0.50

0.75

1.00
0

0.25

0.50

0.75

1.00
0

0.25

0.50

0.75

1.00
P
–
 = 0.99 P

–
 = 0.9 P

–
 = 0.5

S

S
ϕ

i,i
 =

 2
ϕ

i,i
 =

 1
ϕ

i,i
 =

 5
ϕ

i,i
 =

 1
0

ϕ
i,i

 =
 1

00
ϕ

i,i
 =

 1
k

Figure 6. Effects of maximum tolerance ability (i.e. the overall strength of competition) and the replacement rate (β) on the
dominant ESS (red = defection favoured, blue = cooperation favoured). Panels show models varying in average survival
probability and the strength of kin assortativity. Suppression was favoured only when kin assortativity was low, replacement
rates were low, and competition was very intense (maximum T less than about 0.3, such that competition caused greater than
or equal to 70% reductions in survival probability). For these models R = 169, n = 8, and αρ = 1.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.10:230222
13
likelihood of being competitively inhibited via the ‘initiator effect’ [30,32,33]. Thus, in the absence of
trade-offs, it has been assumed that competition should always push organisms towards conflict. In
this study, game theoretic models showed that, while suppression may produce neighbourhood-scale
benefits via the initiator effect (e.g. equation (2.1)), these were vanishingly weak and easily overridden
by a risk of self-inhibition so severe that in many modelled conditions suppression of neighbours
conferred a strong fitness cost. Thus, altruism, in the form of competitive de-escalation, may be an
evolutionarily stable strategy (ESS) in a wide range of systems, and, crucially, in the complete absence
of any costs of competition.

One of the key outcomes of this study is support for the hypothesis that diffuse interactions may
dominate multiplayer competition in a wide variety of conditions, dramatically reducing the
importance of individual pairwise interactions [13,15–17,19]. While not all individuals experience the
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same competitive neighbourhood, evolution and population growth concern the population overall, as

statistical sampling diffuses effects of individual interactions [15,17]. Further amplifying diffuse effects
is the fact that each individual interacts with many neighbours, and the effects of individual
competitors are diluted as they are distributed among these neighbours [15,16]. In the idealized
special case in which all interactions are diffuse (e.g. wii= 1 and B = 1; electronic supplementary
material, figures S1 and S2), competition functioned as a uniform field, affecting all genotypes
more or less equally. A useful analogy is an electromagnetic field, which is created by, and also
directs the motions of, individual particles within the field. Here, individual competitors contribute to
the ‘suppression field’, which applies evenly to all others in the community. These ‘suppression-field’
models suggest that in multiplayer competition diffuse interactions are likely to be far and away the
dominant mode of competition. If this is true, we may be thinking of competition in the wrong way.

It is tempting to view competition as fundamentally a pairwise interaction, and multiplayer
competition as an upscaled network of such pairwise interactions. While this is certainly true, using
this pair-centric mode of thinking it is difficult to intuit how diffuse interactions manifest or what
their role is in evolutionary dynamics of competitor communities. I propose instead that we should
take a different perspective and consider using a mean-field, fully diffuse model as our starting point
for thinking about the evolution of competitive ability in realistic communities of multiple
individuals. In other words, we should begin with the premise that individual interactions do not
matter, because they are completely diluted and diffused by Type I and III diffuse effects. The
question then becomes, what processes cause a community not to function this way, and instead cause
individual interactions to become important? This is a much simpler, more straightforward way of
thinking about multiplayer competition than an upscaled pair-centric paradigm. In these models, two
processes disturbed the competition mean field, enabling suppression to evolve as a strategy: (i) kin
assortativity and (ii) the initiator effect. Positive kin assortativity—i.e. caused by dispersal limitation or
communal behaviour—caused a positive correlation between the suppression caused and the
suppression felt by a genotype. Kin assortativity burdened competitors with a risk: by suppressing
their neighbours they might inadvertently harm their own relatives. Conversely, weak suppressors
benefitted by assorting together; in so doing they protected themselves from the strong competition
experienced by other community members. I note that these models incorporate inclusive fitness
organically without the need for it to be specified explicitly.

Whether competitive escalation or de-escalation was an ESS depended upon a variety of conditions,
such as the strength of age effects, the population density, the mean strength of the suppression field, the
mean tolerance ability of neighbours, the size of the competitor neighbourhood (i.e. the number of
competitors an individual encounters), the odds of kin–kin encounter, and the replacement rate of
killed competitors. Although these effects are mathematically complex, the ecological interpretations
are intuitive (table 1). Any condition that made competition stronger increased the value of neighbour
suppression, which made the initiator effect stronger. For example, in a community where competition
is intense, strongly size-asymmetric, long-lasting, and/or subject to strong priority effects, suppression
is likely to be favoured. Conversely, in systems where competition is relatively weak and/or dispersal
limitation is important, cooperation is more likely to be favoured. However, if neighbour recognition
allows targeted responses to related versus unrelated neighbours—which is not accounted for in the
present study—suppression of unrelated neighbours could evolve. On the other hand, high niche
overlap among kin could produce the opposite effect, making suppression costly. The key
consideration is the correlation between the competitive environment of an individual (̂si) and its
competitive ability (Si). If stronger suppressors find themselves also experiencing stronger competition,
then cooperation will evolve. Where do typical ecological systems fall along this spectrum? Data from
the field are needed to answer this question, but the models point towards some intuitable
hypotheses (electronic supplementary material, table S1). I note that even in the best-case scenario
suppression was orders of magnitude slower to evolve than tolerance in models. If the same holds
true for ecological systems, then fitness benefits of suppression might be difficult to detect or
swamped by other ecological or evolutionary processes.

Models suggest that the evolutionary outcome of competition also depends strongly on the relative
abundance of suppressor genotypes. This could matter, for example, during species invasions. When a
species is at low abundance, suppression is favoured because kin–kin encounters are rare. However,
as the species rises in abundance due to competitive exclusion, kin–kin encounters become more
common, and the system might eventually change state to one where cooperation is favoured. Thus,
our models point to a novel eco-evolutionary hypothesis for the evolution of competitiveness in
invasive species: based purely on competition, the suppression-field model predicts that competitive
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aggression will be favoured in the early stages of invasion but will give way to cooperation once the

species has established.
Mean-field models are finding expanding use in disciplines concerned with complex systems with

large numbers of agents, such as economics, social science, physics and neurobiology [23]. Recent
advances have begun to link mean-field models with game theory [34], allowing researchers to
explore strategic optimization and equilibration of complex systems, including competition.
Applications include optimizing competitive harvest of forests [35], evolution of strategic alliances in
competing organisms [36], economic market competition [37] and more [38]. Mean-field game theory
has enormous potential to help us conceptualize competition in natural communities and drive
hypothesis formation that addresses the messy and complicated nature of multiplayer competition in
ways that are not achievable with pairwise studies.

The field models developed here point towards a newway of conceptualizing multiplayer competition
as a predominantly diffuse field that is occasionally perturbed by individual-based interactions. From that
perspective, a question emerges: what processes cause individual-based interactions to become important?
I tested kin assortativity and competitor replacement lag as two candidate processes, but many others
certainly exist. For example, my models did not account for kin recognition, quorum sensing or
learning, all of which might influence the evolution of cooperation. Furthermore, the direction of
selection on cooperation versus defection was complex and contingent on many processes, such as
priority effects, age effects and genotype density. Other, unmodelled processes are also likely to be
important, such as higher trophic interactions, ecological trade-offs, modes of inheritance, motion of
competitors, etc. Much more work is needed both to generalize these findings and to guide the
development of ecological experiments to test the hypotheses generated by these models.
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