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Abstract 
Aubrieta canescens complex is divided into two subspecies, Au. canescens subsp. canescens, Au. canescens subsp. cilicica and a distinct spe-
cies, Au. macrostyla, based on molecular phylogeny. We generated a draft assembly of Au. canescens subsp. canescens and Au. macrostyla 
using paired-end shotgun sequencing. This is the first attempt at genome characterization for the genus. In the presented study, ~165 and ~157 
Mbp of the genomes of Au. canescens subsp. canescens and Au. macrostyla were assembled, respectively, and a total of 32 425 and 31 372 
gene models were predicted in the genomes of the target taxa, respectively. We corroborated the phylogenomic affinity of taxa with some 
core Brassicaceae species (Clades A and B) including Arabis alpina. The orthology-based tree suggested that Aubrieta species differentiated 
from A. alpina 1.3–2.0 mya (million years ago). The genome-wide syntenic comparison of two Aubrieta taxa revealed that Au. canescens subsp. 
canescens (46 %) and Au. macrostyla (45 %) have an almost identical syntenic gene pair ratio. These novel genome assemblies are the first 
steps towards the chromosome-level assembly of Au. canescens and understanding the genome diversity within the genus.
Keywords: Arabideae; Arabis; Aubrieta; Brassicaceae; genome evolution; whole-genome sequencing.

Introduction
Brassicaceae is a moderately large, economically and scientif-
ically important family comprising ca. 4000 species (Kiefer 
et al. 2014; Koch et al. 2018), including the model plant 
Arabidopsis thaliana, cabbage, turnip, radish, oil crops (e.g. 
Brassica, Raphanus and Camelina) and ornamentals (e.g. 
Aubrieta, Arabis, Hesperis, Lobularia and Matthiola) (Karl 
and Koch 2013; Nikolov et al. 2019). This family has one of 
the highest speciation rates among terrestrial plant groups. 
Because polyploidy has a major impact on plant evolution, 
some diversification in Brassicaceae can be linked to whole-
genome duplication (Hohmann et al. 2015). Notably, the 
genus Draba has nine different ploidy levels, and the ratio of 
the number of taxa exhibiting polyploidy to the total number 
of taxa in the genus is 66 % (Jordon-Thaden and Koch 2008). 
Although three different ploidy levels were observed in the 
genus Arabis from the same tribe, Arabideae, the ratio of the 
number of taxa with polypoidy to the total number of taxa in 
the genus was 79 % (Koch et al. 2010).

Aubrieta belongs to the tribe Arabideae in the expanded lin-
eage II, with a chromosome number of 2n = 16 (Al-Shehbaz et 
al. 2006; Beilstein et al. 2006; Franzke et al. 2011). Recently 

six clades (A, B, C, D, E, F) were identified for the family 
and the Brassicaceae lineage II was divided into three Clades 
B, C and D using the complete plastome (Couvreur et al. 
2010; Huang et al. 2016; Guo et al. 2017); phylogenomic 
analyses produced a well-resolved phylogenetic tree including 
six major clades in Brassicaceae (Nikolov et al. 2019) but 
none of the Aubrieta taxa were included in these phylogenetic 
analyses.

The genus Aubrieta is difficult to classify taxonomically 
and is represented by 21 species that are distributed across 
the eastern Mediterranean region (Yüzbaşıoğlu et al. 2015; 
Dönmez et al. 2017; Koch et al. 2017). The endemic species, 
Aubrieta canescens, has traditionally been divided into three 
subspecies: Au. canescens subsp. canescens, Au. canescens 
subsp. cilicica and Au. canescens subsp. macrostyla. Of these, 
Au. canescens is a moderately diverse species of the genus 
Aubrieta and is distributed across three phytogeographical 
regions of Turkey. Aubrieta canescens subsp. canescens is 
distributed in Central Anatolia and its adjacent regions, Au. 
canescens subsp. cilicica is mainly distributed in the Taurus 
Mountains and Au. canescens subsp. macrostyla is distributed 
in eastern Taurus. Although the morphological characteristics 

https://creativecommons.org/licenses/by/4.0/
mailto:yasinkaya@hacettepe.edu.tr?subject=


2 AoB PLANTS, 2022, Vol. 14, No. 5 

show only low differentiation between taxa, the habitats of 
the species are quite different, which may indicate a physio-
logical rather than a morphological level of differentiation. 
Recent molecular studies have indicated that Au. canescens 
subsp. macrostyla should be separated as a distinct species 
(Koch et al. 2017), and this taxonomic status is followed here. 
However, the Au. canescens complex requires further investi-
gation to explore its phylogenetic relationship with the other 
taxa of the genus.

Members of the Brassicaceae family generally have small 
genomes, which allowed the sequencing of the first plant 
genome (Kaul et al. 2000) and the sequencing of the highest 
number of genomes to date (plant genomes database, http://
www.plabipd.de/plant_genomes_pa.ep). In addition, the de-
velopment of genomic techniques has greatly facilitated re-
search into the largest crucifer tribe, Arabideae, and the 
genome evolution of the seven subclades of the tribe has been 
inferred from centromere repositioning (Mandáková et al. 
2020). However, attempts to elucidate the genomic characters 
of the genus are limited and a publicly available genome as-
sembly of Aubrieta has not yet been published.

Turkey is known to be one of the most important hotspots 
for native plants (Médail and Diadema 2009; Dönmez and 
Yerli 2018) and of genetic diversity centres of several crop 
plants (Zhukovsky 1951). All the complex taxa of Au. 
canescens are potentially ornamental plants and have been 
grown in numerous botanical gardens as rock plants.

In this study, we performed the whole-genome sequencing 
of Au. canescens subsp. canescens and Au. macrostyla, and 
their genome-wide characterization, including gene predic-
tions, transposable element (TE) composition, variant identi-
fication and evolutionary comparisons.

Materials and Methods
Plant material, isolation and sequencing
Aubrieta canescens subsp. canescens (three accessions), and 
Au. macrostyla (three accessions) samples were used in this 
study. Seeds of the studied taxa were germinated in 2019, and 
one mature leaf originating from a single seed was selected 
for DNA extraction. Genomic DNA was extracted using a 
DNeasy Plant Pro Kit (Qiagen, Germany) and quantified 
using a Qubit fluorometer (Life Technologies, Foster City, 
CA, USA). Quality control was performed by analysing an 
aliquot of genomic DNA on an 1 % agarose gel. A paired-end 
genomic DNA library was constructed using the BGI DNB-
seq platform and Macrogen company with a TruSeq DNA 
PCR-Free (350) kit. The library was run on NovaSeq, using 
a standard Illumina sequencing workflow [see Supporting 
Information—Table S1].

Genome assembly
Before assembly, adapters and low-quality reads were re-
moved using SOAPnuke v2.1.6, (Chen et al. 2018) and quality 
control was performed using FastQCv0.11.9 (Andrew 2010). 
The optimum k-mer sizes were selected using the Kmerginie 
v1.7 software to match the reads correctly and rapidly (Chikhi 
and Medvedev 2014). Error correction of the raw data was 
performed using Karect v1.0 (Allam et al. 2015). Genome 
assemblies were constructed using de novo assembly and it-
erative mapping approaches. The genome assemblies were 
generated de novo using the de Bruijn graph approach on the 

SPAdes v3.15 (Bankevich et al. 2012) software with --careful 
and --only-assembler options. Subsequently, unmapped reads 
were iteratively mapped into the genome to correctly insert 
contigs that were mismatched or missing from other acces-
sions using the BWA-mem v0.7.17 (Li 2013) algorithm. To 
create a less fragmented genome and close the gaps between 
contigs, we performed a post-assembly process using the 
Redundans v0.11 pipeline (Pryszcz and Gabaldón 2016). The 
assembly with the longest contig and the fewest number of 
contigs was selected according to the GAGE (GAGE: https://
gage.cbcb.umd.edu/) criteria, for the rest of the downstream 
analyses.

Reference-assisted chromosome scaffolding
Given the availability of a relatively good reference 
genome (Arabis alpina latest version retrieved from http://
www.arabis-alpina.org) for Au. canescens (n=8) and Au. 
macrostyla (n=8), a reference-assisted scaffolding approach 
was used to optimize the genome. The scaffolds were aligned 
to the A. alpina genome using blastn74 in the blast+ toolkit 
2.8.0-alpha (Madden 2013). These alignments were used by 
chromosomer v0.1.3 fragmentmap command to perform 
the chromosome scaffolding (https://github.com/gtamazian/
Chromosomer) (Tamazian et al. 2016).

Assessment of assemblies
An assessment of the draft genomes was performed using 
QUAST v5.0.2, with the default parameters (Gurevich et 
al. 2013). In addition, we investigated the completeness of 
genomes using the Benchmarking Universal Single-Copy 
Orthologs (BUSCO) v5.2.2 viridiplantae odb10 library 
(Simão et al. 2015). Additionally, Minimap2 v2.22 was used 
to map the raw reads onto the final assemblies to evaluate the 
accuracy of the assemblies (Li 2018).

TEs and gene model prediction
To discover the de novo repeats in our assemblies, 
RepeatMasker (https://github.com/rmhubley/RepeatMasker) 
Repbase library and RepeatScout v1.0.5 software were used 
to predict TEs (Price et al. 2005). Gene prediction was per-
formed on Augustus-ab-initio v3.3.0, using BLAST hints 
(70 % threshold) and protein sequences of A. thaliana and 
A. alpina. The coding DNA sequences were extracted using 
getAnnoFasta Perl script of Augustus (Stanke et al. 2004).

Variant investigation
Polymorphism was determined by scanning all the loci across 
the genome of the Au. canescens complex. To accomplish this, 
the draft assemblies were indexed using the BWA-mem algo-
rithm. The clean data of each genome were then mapped to as-
sembled files. Reads were sorted by removing PCR duplications 
using the Samtools v1.12 markdup command (Li et al. 2009). 
The BAM files were indexed and prepared using the BamTools 
v2.5.2 index command to call the variants (Barnett et al. 2011). 
Haplotype-based variants were generated from BAM files using 
Freebayes v1.3.5 (Garrison and Marth 2012). The parameters 
used were as follows: minimum coverage value, 15; minor allele 
frequency, 0.05; and minimum base quality score, 20.

Orthologs and synteny
A phylogenetic tree was constructed using the single-copy 
genes for Au. canescens subsp. canescens and Au. macrostyla 
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and several other species representative of Clades A and B 
[see Supporting Information—Table S2]. Homologous genes 
between species were analysed using OrthoFinder v2.5.4 
(Emms and Kelly 2019). A single-locus species tree obtained 
from orthologous sequences was revealed by a pairwise se-
quence similarity approach using STAG and STRIDE algo-
rithms prepared by OrthoFinder (Emms and Kelly 2017, 
2018). To reconstruct the phylogeny, multiple sequence 
alignment was first performed using the MAFFT algorithm, 
followed by the construction of species trees using FastME in 
the OrthoFinder software. Diversification times were based 
on gene similarity calculations derived from the ancestral 
genes. We used the Satsuma v2.0 software to compare the 
syntenic genes of genomes with its closest relative, A. alpina 
(Grabherr et al. 2010). We set the gene identity ratio to >70 % 
and the minimum coverage as 15×. After identifying the 
syntenic regions, we used Blastp and Blastn (NCBI-BLAST 
package, ftp://ftp.ncbi.nih.gov/blast/) to estimate the syntenic 
gene pairs in each genome. We used D-GENIES to visualize 
the assembled synteny (Cabanettes and Klopp 2018).

Results and Discussion
Genome assembly
We analysed the raw reads from three accessions of Au. 
canescens subsp. canescens and three accessions of Au. 
macrostyla originating from wild populations of the taxa 
(Fig. 1A). Each assembly was iteratively mapped and 

compared, and high-quality genome assembly was included 
in the post-assembly analysis. In total, Au. canescens subsp. 
canescens samples had 30 Gb (~40×), and Au. macrostyla 
samples had 29 Gb (~40×) of paired-end sequencing 
reads [see Supporting Information—Table S1]. All paired-
end reads were used for the de novo assembly. Using the 
SPAdes software, 165 and 157 Mbp, respectively, of the 
draft genome of Au. canescens subsp. canescens and Au. 
macrostyla were assembled. The scaffold N50 sizes were 
19.70 and 18.90 kbp and the longest contigs were 29 
kbp and 28 kbp in Au. canescens subsp. canescens and 
Au. Macrostyla, respectively. BUSCO was employed to 
check the completeness of the draft assemblies, which de-
tected 90 % of Au. canescens subsp. canescens, and 88 % 
of Au. macrostyla to be embryophyte genes in the two as-
semblies. In addition, short reads were mapped onto each 
corresponding assembly to evaluate the accuracy of the 
assemblies, and the mapping success was 98.4 % for Au. 
canescens subsp. canescens and 97.7 % for Au. macrostyla 
(Table 1; see Supporting Information—Fig. S2).

Gene model prediction and gene density
Gene model prediction was performed using the assembled 
scaffolds (Phred quality score > Q20 and >15× coverage). 
Aubrieta canescens subsp. canescens had a total of 32 425 
coding DNA sequences, whereas Au. macrostyla had a total 
of 31 372 genes. A total of 417 sequences in Au. canescens 
subsp. canescens were found in the unplaced scaffolds of the 

Figure 1. General habit and comparative gene density, repeat composition and polymorphism diversity across the genome of Aubrieta canescens 
subsp. canescens, and Au. macrostyla, respectively. (A) Flower and fruit morphology of the Au. canescens complex. (B) Gene density across the 
chromosomes. (C) Repeat composition. (D) Single nucleotide polymorphisms, multiple nucleotide polymorphisms, insertion, deletion and indel 
mutations across the genome.
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chromosomes. Similarly, 393 sequences were found for Au. 
macrostyla. The highest gene density (20 % more than others) 
was observed on chromosome 8, followed by chromosome 
4 in the two taxa (Fig. 1B; Table 2). Genomic profiling of 
the raw data was compared to evaluate heterozygosity, and 
the results showed that Au. macrostyla has a much higher 
genome heterozygosity (~2.5×), which is considered to in-
volve more tandem sequences and gene models, than that 
of Au. canescens subsp. canescens (~0.4×, see Supporting 
Information—Fig. S1; Tables 2 and 3) (Vurture et al. 2017).

Repeat composition
We analysed the repeat composition of the target Aubrieta taxa 
to infer the number of repetitive sequences in their genomes. 
In our whole-genome assembly, TEs comprised approximately 
12.79 % and 11.41 % of the assembled parts of the genomes 
of Au. canescens subsp. canescens and Au. macrostyla, re-
spectively. These sequences were divided into five major repeat 
classes: retroelements (55 % in Au. canescens subsp. canescens 
and 53  % in Au. macrostyla), DNA transposons (24  % in 
Au. canescens subsp. canescens and 24 % in Au. macrostyla), 
microsatellites (simple sequence repeats) (13  % in Au. 
canescens subsp. canescens and 15 % in Au. macrostyla) and 
low-complexity DNAs (5 % in Au. canescens subsp. canescens 
and 5  % in Au. macrostyla), and small RNAs (2  % in Au. 
canescens subsp. canescens and 3 % in Au. macrostyla) (Fig. 
1C; Table 3; see Supporting Information—Table S3).

Among these two taxa, the repeat content of the Au. 
canescens subsp. canescens genome was higher than that of 

Au. macrostyla genome (Fig. 1C). Specifically, the number 
of long terminal repeat elements was much higher in Au. 
canescens subsp. canescens. Among the classified repeat elem-
ents in the target taxa, Tourist/Harbinger made the lowest 
contribution to DNA transposons, followed by short inter-
spersed nuclear elements (SINEs) in retrotransposons.

In terms of TEs, Au. canescens subsp. canescens had a 
higher percentage of class 1 transposon elements (34  %) 
than Au. macrostyla (32  %). Although the activity of long 
terminal repeat retrotransposons elements in the organism 
varies according to their interaction with the host genome, 
it can be significantly effective in the diversification of plants. 
The two taxa had the same percentage of class 2 transposons, 
Au. canescens subsp. canescens (38 %) and Au. macrostyla 
(38  %), whereas their length was 2  % and 7  % higher 
throughout the genome compared to A. thaliana (Kaul et al. 
2000). In Brassica oleracea, which shares a common ancestor 
with A. thaliana that diverged around 15–20 million years ago 
(mya) (Yang et al. 1999), the proportion of mobile elements 
represents approximately 40 % of the entire genome (Chiu 
et al. 2010; Jiang and Ramachandran 2013). A comparison 
of the whole-genome sequence of the Au. canescens with the 
high-quality assembly of A. alpina revealed that the related 
species, A. alpina, contains a higher percentage (approxi-
mately 25 %) of TEs (Willing et al. 2015). Mobile elements 
play an important role in genomic and chromosomal evolu-
tion (Zhao et al. 2013; Cheng et al. 2016; Zhang et al. 2020) 
and more recently several attempts have also been made to 
construct phylogenies using TE abundance as an informative 
character (Dodsworth et al. 2015; Vitales et al. 2020; Beric et 

Table 1. Assembly statistics of Aubrieta canescens subsp. canescens and Au. macrostyla. 

Assembly statistics Au. canescens subsp. canescens Au. macrostyla 

Assembly strategies Iterative and de novo Iterative and de novo

Number of scaffolds 98 105

Longest scaffold (kb) 29 28

Guanine-cytosine content (%) 34.63 34.85

Mapping accuracy (%) 98.4 97.7

Complete BUSCOs percentage (%) 90 88

N50 (kb) 19.7 18.9

N75 (kb) 17.8 16.6

Assembled genome size (Mb) 165.0 156.9

Assembled contig numbers 818.200 647.738

Number of nucleotides per 100 kb 1862.51 1821.26

Table 2. Chromosomal organization of gene models in Aubrieta canescens subsp. canescens and Au. macrostyla.

Chromosome Gene model numbers of Au. canescens subsp. canescens Gene model numbers of Au. macrostyla 

Chr 1 3.989 3.875

Chr 2 2.892 2.698

Chr 3 3.960 4.033

Chr 4 4.503 4.295

Chr 5 3.441 3.306

Chr 6 3.400 3.242

Chr 7 3.971 3.686

Chr 8 5.852 5.844
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al. 2021). In addition, the repeat content is known to inter-
fere with gene function and may result in the formation of 
variants that are responsible for phenotypic changes (Liu et 
al. 2020). A comprehensive analysis of repetitive elements 
in our novel genome would provide valuable knowledge on 
morphological variations and evolution of the Au. canescens 
complex and its phylogenetic relationships in Aubrieta and 
Arabideae.

Variant identification
In the genome-wide variant exploration of the species, the 
minimum quality score of reads was 30.0 [see Supporting 
Information—Figs S3 and S4]. A total of 1 108 387 single nu-
cleotide polymorphisms (SNPs) were found in Au. canescens 
subsp. canescens, representing 72  % of the variants found 
in the entire genome, and mostly being found on chromo-
somes 1 and 7. A total of 434 714 SNPs were identified in 
Au. macrostyla corresponding to 76 % of the total variants. 
In chromosome 2, rare but long base-pair variants were 
observed, whereas in chromosome 4 and chromosome 8, 
variants with dense but longer base pairs than the average 
distribution were detected [see Supporting Information—Figs 
S5 and S6]. In Au. canescens subsp. canescens the insertion/
deletion ratio was 1.10, and the SNP transitions/transversions 
ratio was 1.39. In contrast, Au. macrostyla had an insertion/
deletion ratio of 0.93 and a SNP transitions/transversions 
ratio of 1.42. In addition, the highest ratio of SNPs, MNPs, 
insertion, deletion and indel mutation content (14.2 % of all 
variants) was determined in Au. canescens subsp. canescens, 

whereas Au. macrostyla genome had the lowest variant con-
tent (Fig. 1D).

Evolutionary aspects
We compared gene data originating from the Aubrieta taxa 
with the related genome data of core Brassicaceae species 
(Fig. 2). Based on the phylogenomic tree, two representa-
tives of Clade A, Camelina sativa and Arabidopsis lyrata, and 
members of Clade B, Brassica rapa species differentiated from 
A. thaliana, are well supported (Fig. 2A). Notably, the ratio of 
syntenic gene pairs (77–80 %) of B. rapa to that of A. thaliana 
and A. lyrata support this topology in previous studies (Cheng 
et al. 2012). Moreover, the Au. canescens complex showed 
close affinity with A. alpina, a genus in Clade B. These results 
provide evidence that the Aubrieta genus must be classified as 
a member of Clade B.

Previously, Karl et al. (2013) reported that 15 species of the 
genus Aubrieta diverged from the Arabideae tribes approxi-
mately 2.7–5.2 mya in the Eastern Mediterranean region. 
Likewise, orthologous genes indicate that Aubrieta species 
differentiated from A. alpina later, at 1.3–2.0 mya. Based on 
the homologous gene clusters obtained from OrthoFinder, we 
asserted that 2803 paralog genes distinguish A. alpina from 
the Aubrieta species. We consider that paralogs with a similar 
number of genes distinguish Au. macrostyla well from Au. 
canescens.

The percentage of assigned gene clusters in Au. canescens 
subsp. canescens and Au. macrostyla was 96.5  % and 
95.4 %, respectively, within the 365 251 genes obtained from 

Table 3. Repetitive sequences in Aubrieta canescens subsp. canescens, and Au. macrostyla genome assembly.

 Repeat class Repeat 
subclass 

Repeat size of Au. canescens 
subsp. canescens (bp) 

Repeat size of Au. 
macrostyla (bp) 

Retrotransposons 11 644 448 9 586 050

SINEs 446 655 440 701

LINEs 2 915 226 2 741 343

L1/CIN4 2 910 180 2 735 455

Long terminal 
repeat elements

8 282 567 6 404 006

Ty1/Copia 3 096 604 2 691 881

Gypsy/
DIRS1

4 957 195 3 510 223

DNA transposons 5 110 621 4 343 654

hobo-
Activator

1 240 611 1 130 175

Tc1-
IS630-
Pogo

1 229 977 964 432

Tourist/
Harbinger

526 370 469 081

Small RNA 485 668 481 167

Satellite DNA 10 493 10 493

Simple sequence re-
peat (microsatellite)

2 825 779 2 602 091

Low-complexity 
DNA

965 076 894 604

Unclassified 529 526 428 768

Interspersed repeats 17 284 595 14 358 472

Total masked TE 21 112 636 bp (12.79 %) 17 896 883 bp (11.41 %)

http://academic.oup.com/aobpla/article-lookup/doi/10.1093/aobpla/plac035#supplementary-data
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OrthoFinder. The number of gene clusters common to all spe-
cies was 7078, whereas the number of single-copy gene clus-
ters was 295. We consider that Au. macrostyla evolved before 
Au. canescens subsp. canescens and belongs to a different 
branch in terms of orthologs. The highest number of genes in 
a species-specific gene cluster was detected for Au. canescens 
subsp. canescens (244), followed by Au. macrostyla (232). 
Two taxa shared the most orthologous genes with perennial 
A. alpina (14 356) and A. lyrata (14 336) species (Fig. 2B).

Syntenic gene identification was performed between A. 
alpina (39 815 annotated proteins) and Au. canescens subsp. 
canescens (32  425) and Au. macrostyla (31  372). Prior to 
syntenic gene determination, duplicated tandem genes were 
removed from the genome. Arabis alpina returned 28  400 
genes that showed synteny with 32 209 Au. canescens subsp. 
canescens and 28 982 Au. macrostyla genes. After eliminating 
redundant sequences, we identified syntenic gene pairs for 
each taxon. Although there were no remarkable differences 
between the species, the synteny ratio of A. alpina to Au. 
canescens subsp. canescens and Au. macrostyla was 46 % and 
45 %, respectively. Most of the tandem arrays on the chromo-
somes 1, 3 and 8 of A. alpina showed strict synteny with the 
Au. canescens complex (Fig. 2C; Tables 4 and 5). These results 
show that chromosomes 4 and 7 are less informative in the 
syntenic gene arrangement, regardless of assembly size.

The ratio of orthologous-based syntenic genes of A. alpina 
to Au. canescens subsp. canescens (13 155/19 373) was 68 %, 
whereas that of A. alpina to Au. macrostyla (12 825/20 177) 

was 63.5 % (Table 5). We can consider the existence of these 
genes in additional arrays on chromosomes 1, 3, 6 and 8 
in Au. canescens, whereas these genes were mostly ordered 
on chromosomes 1, 3 and 8 in Au. macrostyla (Table 4). 
Therefore, we can assume that Au. macrostyla has a clear 
genome-wide distinction, with orthologous domains that 
differ from those of A. alpina and Au. canescens.

The availability of genome data for Aubrieta taxa will en-
able us to analyse the population genomics within the genus 
Aubrieta in further studies. Additionally, this study will facili-
tate the elucidation of the Au. canescens complex, including Au. 
canescens subsp. cilicica. As a result, our data provide a signifi-
cant contribution to the Aubrieta genome resource and novel 
insights into the evolution of Arabideae plants. The genome 
sequence produced here may help improve the potential horti-
cultural value of Aubrieta taxa; however, a high-quality genome 
is needed for use in plant breeding programs and horticulture.

Supporting Information
The following additional information is available in the on-
line version of this article—

Table S1. Sequencing reports of total six populations of 
Aubrieta canescens complex.

Table S2. Genomes used for comparative analysis in 
Brassicaceae family.

Table S3. Summary of repetitive elements in Aubrieta 
canescens subsp. canescens and Au. macrostyla genome.

Figure 2. Genome evolution and comparative genomic analyses. (A) Homology-based phylogenetic tree of the Au. canescens complex and other 
Brassicaceae taxa. Gene numbers in nodes represent gene duplication events, and decimals in blue indicate node age. (B) Venn diagram showing 
the number of orthologous genes in Au. canescens subsp. canescens along with Arabis alpina, Brassica rapa, Camelina sativa, Arabidopsis thaliana, 
Arabidopsis lyrata and Au. macrostyla. (C) Relationships of syntenic genes between A. alpina and Au. canescens subsp. canescens, and Au. macrostyla. 
According to the identity scale, highly matched DNA sequences are indicated by dark green to light green dots (50–100 %), moderately matched 
sequences by orange dots (25–50 %) and poorly matched sequences by yellow dots (0–25 %). Sequences that did not match are shown in white.
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Figure S1. BUSCO assessment for the taxa Aubrieta 
canescens subsp. canescens and Au. macrostyla.

Figure S2. Genomic profile plots of (A) Aubrieta canescens 
complex raw reads and (B) Au. macrostyla raw reads.

Figure S3. Quality score of bases obtained in variant iden-
tification. Selected bases are greater than 30 Phred score on 
all accessions.

Figure S4. Estimated coverage of bases used in variant 
identification. Minimum 15× base coverage was selected for 
determining polymorphisms on all accessions.

Figure S5. SNP density of Aubrieta canescens subsp. 
canescens across the chromosomes. The contig size of vari-
ants is kilobase pairs. Although the longest contigs were ob-
served on chromosome 7, SNPs were observed in long contigs 
in chromosomes 3, 4 and 8 as well.

Figure S6. SNP density of Aubrieta macrostyla across the 
chromosomes. The contig size of variants is kilobase pairs. 
The longest contigs (30 kb) containing SNPs were observed 
on chromosome 2. Also, longer-than-average contigs (18 kb) 
were detected on chromosomes 4 and 7.
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