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In this study, a novel signal-increase electrochemiluminescence
(ECL) biosensor has been developed for the detection of
glucose based on graphene quantum dot/glucose oxidase
(GQD/GOx) on Ti foil. The proposed GQD with excellent
ECL ability is synthesized through a green one-step strategy
by the electrochemical reduction of graphene oxide quantum
dot. Upon the addition of glucose, GOx can catalytically
oxidize glucose and the direct electron transfer between the
redox centre of GOx and the modified electrode also has
been realized, which results in the bio-generated H2O2 for
ECL signal increase in GQD and realizes the direct ECL
detection of glucose. The signal-increase ECL biosensor
enables glucose detection with high sensitivity reaching
5 × 10−6 mol l−1 in a wide linear range from 5 × 10−6 to
1.5 × 10−3 mol l−1. Additionally, the fabrication process of
such GQD-based ECL biosensor is also suitable to other
biologically produced H2O2 system, suggesting the possible
applications in the sensitive detection of other biologically
important targets (e.g. small molecules, protein, DNA and
so on).

1. Introduction
Graphene quantum dot (GQD), a newly promising zero-
dimensional (0D) graphene material, not only shows the similar
ability to graphene (e.g. high electron mobility, good chemical
inertness and eco-friendly nature) but also possesses many unique
merits such as excellent biocompatibility, tuneable bandgap and
outstanding photoluminescence/chemiluminescence, owing to its
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strong quantum confinement effect and pronounced edge effect [1–4]. Recently, particular interest has been

developed in electrochemiluminescence (ECL) ability of GQD due to its promising use in biosensing and
bioimaging [5–11].

However, to date, the synthesis of GQD with the ECL property is still at an inchoate stage, not to
mention its application in ECL biosensor. Meanwhile, current methods for the ECL GQD production
are primarily via scissoring differently huge carbon materials, such as graphene oxide [12,13], XC-72
carbon black [14,15] or coal [16], into small graphene pieces through chemical means [17,18];
nevertheless, these methods often require complex and harsh synthetic procedures, involve the use of
toxic organic reagents and, most importantly, generate GQD in large size. Thus, a facile and green
approach to synthesize small-sized GQD with the ECL property is still an exigent demand.

Here, we first present a facile one-step strategy for the green synthesis of small-sized ECL GQD based
on the electrochemical reduction of graphene oxide quantum dot (GOQD). Moreover, as reported, the
ECL intensity of other traditional quantum dots can be linearly enhanced with assistance from H2O2

[19–22]; moreover, H2O2 can be biologically produced by various oxidases and their corresponding
substrates [23,24]. In this work, glucose oxidase (GOx) has been chosen as a model oxidase to catalyse
glucose for the generation of H2O2, and the direct electron transfer between the redox centre of GOx
and the modified electrode also can be realized. More interestingly, the increasing concentration of the
bio-generated H2O2 is well linear with the successive ECL enhancement of GQD, indicating the
possible fabrication of an ECL biosensor. To the best of our knowledge, nearly no related work has
been reported, and we would like to point out that this is the first report on using the bio-generated
H2O2 for ECL increase in GQD and realizing the direct ECL detection of glucose. In addition, the
fabrication process of such GQD-based ECL biosensor is also suitable to other biologically produced
H2O2 system, suggesting the possible applications in the sensitive detection of other biologically
important targets (e.g. small molecules, protein, DNA and so on).
2. Experimental procedure
2.1. Reagents
Titanium (Ti) foil (99.8%, 0.127 mm thickness) and GOx (Aspergillus niger, 100 U mg−1) were purchased
from Aldrich. GOQD was prepared according to the previous work of Zhu et al. [25]. D-Glucose was
purchased from Shanghai Sangon and dissolved in 0.067 mol l−1 pH ∼7 phosphate buffer solution
(PBS) to form a 1 mol l−1 glucose stock solution. All other reagents were of analytical grade and used
without further purification. Ultrapure water was used throughout the experiments.
2.2. Instruments
Fourier transform infrared spectroscopy (FTIR, FD-5DX), Raman spectroscopy (Labram-010 with a
632.8 nm laser), photoluminescence spectroscopy (PL, Thermo Fisher Scientific Lumina system) and
X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific K-Alpha 1063 system).
Electrochemical measurements were carried out on the three-electrode CHI 660D electrochemistry
workstation (Chenhua Instrument Inc., China) using modified Ti foil (0.5 × 1.0 cm) as a working
electrode, Pt foil as a counter electrode and saturated calomel electrode (SCE) as a reference electrode.
ECL measurements were performed on MPI-E multifunctional chemiluminescent analyser (Xi’an
Rimax Electronics Co. Ltd, China).
2.3. Preparation of GQD/GOx hybrid
Prior to modification, Ti foil (0.5 × 0.5 cm) was ultrasonically cleaned in acetone and ethanol solution for
15 min, respectively. The cleaned Ti foil was then immersed into the prepared 1 mg ml−1 GOQD solution
and subjected to cyclic voltammetric scanning from −1.4 to +1.0 V at 50 mV s−1 for 10 cycles under
stirring. Then, 5 µl of 10 mg ml−1 GOx solution was dip-coated onto the modified Ti foil surface using
a syringe. After drying at room temperature, the GQD/GOx was obtained. To obtain excellent
electrochemical properties, the above experimental conditions were optimized.
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Figure 1. ECL–potential curves of bare Ti foil (black line), GQD on Ti foil (blue line) and GQD/GOx on Ti foil (red line) in
0.067 mol l−1 pH∼7 PBS with 0.1 mmol l−1 H2O2.
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3. Results and discussion
3.1. Characterization and evaluation of GQD and GQD/GOx
As reported, GOQD with plenty of oxygenous functional groups on the surface shows excellent water-
solubility, while the solubility of GQD was just the opposite [25,26]. Inspired by this, it is logical that the
insoluble GQD is likely to be directly prepared on the electrode as long as the soluble GOQD can receive
the electron and be electroreduced via the direct contact with the electrode surface. In this work, we have
successfully prepared GQD through electroreduction of GOQD, and relatively evincive studies (e.g.
cyclic voltammetry, FTIR, Raman, XPS and PL) have been discussed in detail in the electronic
supplementary material, figures S1–S5. To the best of our knowledge, this is the first report on using
the solubility difference of GOQD and reduced GOQD for the direct preparation of a GQD film.

Electronic supplementary material, figure S6(A) shows the cyclic voltammograms (CVs) of GQD on Ti
foil and GQD/GOx on Ti foil in N2-saturated 0.067 mol l−1 pH ∼7 PBS, respectively. No obvious peak was
detected for GQD, while the GQD/GOx showed a pair of stable and quasi-reversible redox peaks, which
was due to the direct electron transfer between the redox centre of GOx and the modified electrode;
moreover, the cyclic voltammetric current of GQD/GOx was much larger than that of GQD, indicating
the higher conductivity and the larger surface-to-volume of GQD/GOx. Based on Faraday’s Law Γ =Q/
(nFA) [27], where the surface coverage is Γ, the charge amount is Q, the transferred electron number is
n, Faraday’s constant is F and the effective electrode area is A. The Γ of electroactive GOx was estimated
to be 3.4 × 10−9 mol cm−2 at GQD/GOx-modified Ti foil, which was about 1200-fold larger than the
value obtained on the bare electrode surface [28], meaning the excellent biocompatibility and good
adsorbability of GQD for GOx. Electronic supplementary material, figure S6(B) presents the CVs of
GQD/GOx on Ti foil at different scan rates. The redox peak potentials of GOx, respectively, shifted in
both negative and positive directions; meanwhile, the pair of reversible redox peak currents enhanced
successively with the increasing scan rates from 0.05 to 0.5 V s−1, suggesting a well reversible and
surface-controlled electron transfer process between GOx and the electrode.
3.2. ECL behaviours and mechanism
Figure 1 displays the ECL–potential curves of bare Ti foil, GQD on Ti foil and GQD/GOx on Ti foil in
0.067 mol l−1 pH ∼7 PBS with 0.1 mmol l−1 H2O2. Though no ECL signal was detected for bare Ti foil
(black line), obvious ECL peaks could be observed on both GQD (blue line) and GQD/GOx (red line),
indicating that GQD was an ECL material. Moreover, the ECL intensity of GQD/GOx was about 6.1
times higher than that of GQD, confirming again the higher conductivity and the larger surface-to-
volume of GQD/GOx. For an ECL system, high ECL emission intensity is essential to achieve a high
sensitivity; therefore, high sensitivity can be expected for the GQD/GOx ECL system. Additionally, in
the ECL study, the ECL onset potential of GQD/GOx at more positive potential (−0.6 V) was very
attractive in comparison with previously reported values based on other heavy metal quantum dot
systems, which could result in less interference from other electroactive substances [29–31].
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Figure 2. (a) CVs and (b) ECL of GQD on Ti foil in 0.067 mol l−1 pH∼ 7 PBS with N2-saturated and 0.1 mmol l
−1 H2O2.
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Figure 3. (a) ECL–potential curve of GQD/GOx for different concentrations of glucose (×10−6 mol l−1): (A) 5, (B) 10, (C) 15, (D) 50,
(E) 50, (F) 100, (G) 150, (H) 500, (I) 1000 and (J) 1500 and (b) the calibration curve for glucose determination.
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To learn more about the ECL emission mechanism of GQD, the CVs and ECL of GQD on Ti foil have
been examined in 0.067 mol l−1 pH∼7 PBS with N2-saturated and 0.1 mmol l−1 H2O2, respectively. As
shown in figure 2a, an irreversible reduction process at around −1.05 V could be observed in N2-
saturated solution, which was ascribed to the injection of an electron into GQD to generate reduced state
GQD. In 0.1 mmol l−1 H2O2 solution, another reduction peak at around −0.55 V also could be detected
except for the original reduction peak of GQD (approx. −1.05 V), owing to the reduction of H2O2.
Meanwhile, in figure 2b, due to the non-existence of any coreactant in N2-saturated solution, there was
no evident ECL emission during the cathodic ECL process; however, in 0.1 mmol l−1 H2O2 solution, the
ECL signal appeared beyond −0.55 V, increased significantly after −1.05 V and achieved the maximum
value at around −1.53 V, which agreed well with the respective electron injection voltages of H2O2 and
GQD in previous CVs. Accordingly, the possible ECL emission mechanisms were shown as below

GQDþ e� ! GQD†�, ð3:1Þ
H2O2 þ 2GQD†� ! GQD� þ 2OH� ð3:2Þ

and GQD� ! GQDþ hn:

3.3. Detection of glucose
H2O2 can be biologically produced by various oxidases and their corresponding substrates [23,25]. In this
work, GOx and glucose have been chosen as a pair of model oxidase and substrate to generate H2O2.
Meanwhile, the bio-generated H2O2 concentration increases with the augmentation of glucose
concentration, leading to the ECL enhancement of GQD. Thus, a novel ECL biosensor can be
fabricated by monitoring the ECL increase in GQD.

Figure 3a shows the ECL–potential curve of GQD/GOx for different concentrations of glucose.
During the whole monitoring process, the ECL intensity of GQD/GOx was gradually raised with the
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increasing glucose concentration. As shown in figure 3b, in the range of 5 × 10−6–1.5 × 10−3 mol l−1, the

ECL intensity revealed a linear relationship with the logarithm of glucose concentration with a
correlation coefficient of 0.997, and the detection limit (LOD) was 5 × 10−6 mol l−1 (S/N = 3).
Reproducibility and stability of this ECL biosensor were also tested. The ECL response of five
identical GQD/GOx-modified electrodes to 5 × 10−5 mol l−1 glucose exhibited a relative standard
deviation (r.s.d.) of 5.1%, suggesting the acceptable reproducibility of this ECL biosensor. Moreover, to
validate the stability of the biosensor under the storage condition (0.067 mol l−1 pH∼7 PBS, 4°C), the
ECL responses to 5 × 10−5 mol l−1 glucose were recorded during one month at 2-day intervals. The
proposed biosensor could retain about 89% of its original ECL response, resulting from the excellent
chemical stability of the GQD/GOx hybrid and the good bioactivity of GOx immobilized on GQD for
a long time.
l/rsos
R.Soc.open

sci.7:191404
4. Conclusion
In this work, a facile one-step strategy for the green synthesis of small-sized ECL GQD is first proposed.
The obtained GQD shows good bioactivity to GOx, and the direct electron transfer between GOx and the
modified electrode surface has been realized. Interestingly, the ECL intensity of GQD is linearly enhanced
with assistance from biologically produced H2O2 via a GOx bio-catalysing glucose system; moreover, the
bio-generated H2O2 concentration increases with the augmentation of glucose concentration. Thus, a
novel ECL biosensor for glucose detection has been fabricated by monitoring the ECL increase in
GQD. Additionally, the fabrication of this proposed biosensor also breaks a new path to the sensitive
detection of other biologically important targets (e.g. small molecules, protein, DNA and so on) based
on such bio-enhanced ECL systems.
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