

۰. .

· ·

.

-

.

ζ

. .

.

*

*

METALLURGICAL #_______TABLES

USED AT THE

SCHOOL OF MINES,

COLUMBIA COLLEGE,

NEW YORK.

ARRANGED

T. EGLESTON, JR.,

Professor of Mineralogy and Metallurgy.

15/1

Entered, according to act of Congress, in the year 1869, by THOMAS EGLESTON, JR.,

In the Clerk's Office of the District Court of the United States for the Southern District of New York.

C + 7- 43-34 - 11129 - 1

.

S. ANGELL, PRINTER, 50 E. 26th St., N. Y.

INTRODUCTION.

The following Tables comprise the illustrations of the Metallurgical Lectures for the years 1867-8. The measures which have been given are all of the Metrical System. Tables for their conversion into the measures in use in the U. S. have been prepared for the use of the Students.

The cost price has been given in france, because most of the information with regard to cost, which was accessible, was given in that currency. The item of total cost has but a relative value; it is given only as a standard of comparison. The cost price of working by any process will vary in different localities. The composition of the charges, the amount of labor and materials used will be about the same under the same circumstances; and local variations, owing to the relations of capital to labor, and other causes, must be determined in particular cases.

Many valuable additions might be made to the tables. They have however been made as complete as it was possible to make them in the time which could be devoted to their preparation. It is hardly to be hoped that they are free from mistakes. These will be corrected and additions made in future editions.

THOS. EGLESTON, JR.

School of Mines, May, 1868.

.

CONTENTS.

Table Wrighter Manguran Courts from with	Page
Equivalents in English & French	i
1.—Avoirdupois Weight	i
2Troy Weight.	i
4.—Wine Measure U. S	1
5.—Imperial Wine Measure	i
6.—Dry Measure	i
8 — Square Measure	1
9.—Cubie Measure	i
10.—Federal Currency	i
11.—English Currency	1
DECIMAL SYSTEM	ii
13.—Explanation of Prefixes	ii
14.—Weight	ii
15.—Wet Measure	11
17.—Measures of Surface	ii
18Solid Measure	11
19.—Relative Value of Troy and Avoirdunois Weights	11
20.—Relative Value of U. S. Wine	I L
and Imperial Wine Measure.	11
Equivalents of English & French	
WEIGHTS AND MEASURES	V
Weights, Measures, Coms, etc	VII
URES OF UOPPER	1
TREATMENT OF INATEVE COPPER	2
France	$\frac{4}{2}$
TREATMENT OF SULPHURETS OF COPPER	
Pure Ores	3
Swedish Method	3
(1) Roasting	9
(2) Fusion for Bronze Mattes	4
(4) Fusion for Black Copper	6
(5) Fining the Black Copper	7
(6) Refining the Rosette Copper.	8
(7) Expense of Swedish Method. Works for Treating 10 000t, of Ore	8
Treatment at Boston Works	9

INDURF ORES	Page 11
Wowls at Altonou and Loutonthal in	ΤŦ
the Hartz Mountains	11
Treatment at Mansfeld	12^{11}
Treatment at Kupferkammerhütte.	13
Treatment at Agordo	1 3
English Method-Pure Ores	16
IMPURE ORES	19
Resumé	21
CALCULATION FOR THE CONSTRUCTION	
OF WORKS FOR THE ENGLISH	
Method	22
Mixed Method	22
Treatment in Russia	22
Comparison of Methods	23
TREATMENT OF OXYDES OF COPPER	23
Treatment at Szaska	23
Treatment at Perm	23
TREATMENT IN THE WET WAY	24
Use of the Sulphurous Aeid	24
TREATMENT OF ORES OF LEAD	26
(1) ROASTING AND REACTION	-26
(1) Carinthian Method	26
(2) Breton Method	28
(3) English Method	29
(4) Seoteh Method	33
(2) ROASTING AND REDUCTION	34
Works at Viallas, Dept. of Lozere,	
France	34
Works at Carthagena, Spain	- 30
Wenter at Octor	- 30 - 96
	00
(3) METHOD BY PRECIPITATION	36
Works at Vienne, Dauphiny	- 30 - 96
Works at Altonau & Clausthal	- 30
Treatment at Lautenthal	40
(4) MIXED METHOD	41
Poorting the Oreg	41
Treatment at Prziham	41
Treatment at Pontgibaud	42
readinerre au ronogroada	

CONTENTS.

	Page		Page
Treatment at Biache, St. Vaast	43	(1) Saxon Amalgamation	69
Treatment at Stolberg	44	(2) American Amalgamation	69
Treatment at Selegneaux	44	Mixed Method	-69
Works at Membach	45	(3) Pan Amalgamation	- 69
Works at Bleiberg	40	TREATMENT OF SILVER IN THE WET	
d D	±0	WAY	69
COMPARISON OF THREE PROCESSES	40	(1) Augustine's Method	69
Refined Lead	47	(2) Ziervogel's Method at Mans-	
EXTRACTION OF SILVER	48	feld	-70
Method by Pattinsonage	48	(3) Von Patera's Method	71
CUPELLATION	51	Refining Silver	71
German Method	51		79
Refining the Silver	52	I REATMENT OF GOLD ORES	12
English Cupellation	54	(1) Washing	12
Separation of Silver by Zinc	54	(2) Washing and Amalgamation.	72
REDUCTION OF THE LITHARGES, &C	54	(3) Fusion.	$\overline{72}$
Treatment in Reverberatory Furn.	54	(4) Wet Way	72
Treatment in a Shaft Furnace	55	Treatment by Chlorine	72
Condensation of Volatile Products	57	Refining of Gold and Silver at	20
TREATMENT OF ORES OF SILVER	59	Septemes	12
1. Fusion of Lead Ores at Freiberg.		TREATMENT OF TIN	74
Treatment	59	Treatment in the Shaft Furnaee	74
(1) Roasting	59	Treatment in Reverberatory Furn.	74
(a) Fusion of Ores	60	TREATMENT OF ORES OF ZINC	75
(b) Concentration of the Mattes.	61	(1) Silesian Method	75
(2) Treatment of the Load Matter	66 66	(2) Belgian Method	75
(a) 1st Fusion.	66	(3) English Method	76
(b) 2d Fusion	$\ddot{66}$	(4) W ct Method	76
(c) Treatment of the Scorias	67	TREATMENT OF ORES OF MERCURY	76
Resume	67	Method by Precipitation	76
Recapitulation	68	Method by Roasting	76
Imbibation	68	Wet Way	76
Liquation.	68	TREATMENT OF ORES OF ANTIMONY,.	77
Amalgamation	69	Treatment by Roasting & Reduction	77

ERRATA.

Plate 2, figs. 3, 5, 8, 9, the scale should be eight millimetres for one metre.

Plate 4, figs. 7, 8, 9, the scale should be one centimetre for one metre.

٠

TABLES

\mathbf{OF}

WEIGHTS, MEASURES, COINS, &c.,

WITH THEIR

EQUIVALENTS IN THE ENGLISH AND FRENCH SYSTEMS.

No. 1.—Avoirdupois Weight. 16 drachms = 1 ounce. = 1 pound. 16 ounces 28 pounds* = 1 quarter. = 1 hundred wt. 4 quarters 20 hundred wt. = 1 ton of 2240lbs. *In the U.S., with some exceptions, 100 pounds = 1 hundred wt. 2000 pounds = 1 ton. No. 2.-TROY WEIGHT. 24 grains = 1 pennyweight. 20 pennyweights = 1 ounce. 12 ounces = 1 pound. No. 3.—Apothecaries' Weight. (\mathfrak{D}) 20 grains = 1 scruple,(3)(3)(3)(1b)1 dram, 3 scruples =8 drams =1 ounce, 12 ounces = 1 pound,No. 4.—WINE MEASURE. U. S. = 1 fluidrachm, (fl 3) 60 minims 8 fluidrachms = 1 fluidounce, $(fl \xi)$ 16 fluidounces = 1 pint. = 1 quart. 2 pints 4 quarts = 1 gallon. = 1 barrel. 314 gallons 2 barrels = 1 hogshead. No. 5.--IMPERIAL WINE MEASURE. 60 minims 1 fluidrachm. \equiv 1 fluidounce. 8 fluidrachms ____ 1 pint. 20 fluidounces ____ 2 pints \equiv 1 quart. \equiv 1 gallon. 4 quarts _ 1 firkin. 9 gallons = 1 barrel. 36 gallons = 1 hogshead. 54 gallons = 1 pipe. 2 hogsheads 1 tun. 2 pipes \equiv

No. 6.—DRY MEASURE. 2 pints = 1 quart.8 quarts = 1 peck.4 pecks =1 bushel. No. 7.—LENGTH. 12 inches = 1 foot. = 1 yard. 3 feet 1760 yards = 1 mile.8 furlongs = 1 mile. 3 miles = 1 league.No. 8.—Square Measure. 144 square inches =1 square foot. 9 square feet =1 square yard. $30\frac{1}{4}$ square yards =1 sq. rod or perch $40 \, \text{sq. rods or perches} = 1 \, \text{rood.}$ $4 \operatorname{roods or 160}$ " =1 acre. 640 acres =1 square mile. No. 9.—Cubic Measure. 1728 cubic inches = 1 cubic foot. 27 cubic feet = 1 cubic yard. 128 cubic feet = 1 cord.No. 10.—FEDERAL CURRENCY. 10 mills = 1 cent. 10 cents 1 dime. -----10 dimes = 1 dollar. 10 dollars = 1 eagle. No. 11.—ENGLISH CURRENCY. 4 farthings = 1 penny. 12 pence -----1 shilling. 20 shillings = 1 pound or sovereign. No. 12.—FRENCH CURRENCY. 5 centimes = 1 sou.100 centimes = 1 franc. 20 frances = 1 Napoleon.

DECIMAL SYSTEM.

No. 13.—EXPLANATION OF PREFIXES. For division, from $\begin{cases} Mille = 1000 \\ Centum = 100 \\ Decem = 10 \end{cases}$	No. 15.—WET MEASURE. .01 of a cubic metre=1 centilitre. .1 " " =1 cubic decimetre. 1 " =1 litre. 10 " =1 decalitre. 100 " =1 hectolitre
Gramme. Metre. Are. Litre. Weight. Length. Surfaces. Cub. Capacity.	1000
For multi- plication. $ \begin{cases} \mathcal{A}\varepsilon_{\mathcal{Z}\alpha} & (\text{Deea}) = 10 \\ \mathcal{C}\varepsilon_{\mathcal{Z}\alpha\tau\sigma\nu} & (\text{Heeaton}) = 100 \\ \mathcal{X}\iota\lambda\iota\sigma_{\mathcal{S}} & (\text{Chilios}) = 1000 \\ \mathcal{M}\upsilon\upsilon\sigma_{\mathcal{S}} & (\text{Myrias}) = 10000 \end{cases} $	No. 16.—MEASURES OF LENGTH. .001 of a metre = 1 millimetre. .01 "" = 1 centimetre. .1 "" = 1 decimetre. 1 metre=1 ten-millionth of the distance from the pole to the equator. 10 metres = 1 decametre. 100 " = 1 hectometre.
1.00.14. WEIGHT.	$\begin{array}{rcl} 1000 & " & = 1 \text{ kilometre.} \\ 10000 & " & \doteq 1 \text{ myriametre.} \end{array}$
$\begin{array}{rcl} .001 & \text{of a gramme} & = 1 & \text{milligramme.} \\ .01 & `` & `` & = 1 & \text{centigramme.} \\ .1 & `` & `` & = 1 & \text{deeigramme.} \\ 1 & \text{cubic centimetre of} \\ & \text{water at } 4^{\circ}\text{C} & = 1 & \text{gramme.} \\ 10 & \text{grammes} & = 1 & \text{deeagramme.} \\ 100 & `` & = 1 & \text{heetogramme.} \\ 1000 & `` & = 1 & \text{kilogramme.} \\ 1000 & \text{kilogrammes} & = 1 & \text{quintal.} \\ \end{array}$	No. 17.—MEASURES OF SURFACE. 1 square metre = 1 centiare. 100 "" = 1 are. 10,000 "" = 1 heetare. No. 18.—Solid Measure. .1 of a cubic metre=1 cubic decimetre. 1 cubic metre = 1 stere.
1000 " = 1 ton.	10 eubie metres =1 eubic decametre.
No. 19.—Relative Value of T Pound. Pounds. 1 troy = 0.822857 avoirdupois 1 avoirdupois = 1.215277 troy	ROY AND AVOIRDUPOIS WEIGHTS. Pound. Ounces. Grains. = 0 13 72.5 = 1 2 280.
No. 20.—Relative Value of U. S. U. S. Wine Measure.	WINE AND IMPERIAL WINE MEASURE. Imperial Wine Measure.
$\begin{array}{ccccccc} 1 & \text{minim} & = & \\ 1 & \text{fluidraehm} & = & \\ 1 & \text{fluidounee} & = & 1 & \text{fl} \\ 1 & \text{pint} & = & 16 \\ 1 & \text{gallon} & = & 6 & \text{pints}, & 13 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Imperial Wine Measure.	U. S. Wine Measure.
$\begin{array}{rcl} 1 & \min & = \\ 1 & \text{fluidraehm} & = \\ 1 & \text{fluidounce} & = \\ 1 & \text{pint} & = & 1 & \text{pint,} & 3 \\ 1 & \text{gallon} & = & 1 & \text{gallon,} & 1 & " & 3 \end{array}$	$\begin{array}{cccc} 0.96 \text{ minims.} \\ 58 & `` \\ 58 & `` \\ 7 \text{ fluidraehms, } 41 & `` \\ 1 & `` & 38 & `` \\ 3 & `` & 5 & `` & 8 & `` \\ 5 & `` & 8 & `` \end{array}$

A a Beach

VALUE OF ENGLISH WEIGHTS AND MEASURES IN FRENCH.

No. 21.—Avoirdupois Weight.1 dram= 1.7718 gram's1 ounce= 28.34641 pound= 0.45359265 k.1 hundredwt. 100 lbs= 45.359265 1 ton, 2000 lbs.= 907.185301 ton, 2240 lbs.= 1016.0416	$\begin{array}{rcl} 1 \ \text{gallon} &=& 4.543458 \\ 1 \ \text{barrel} &=& 163.5642 \\ 1 \ \text{hogshead} &=& 245.3436 \\ 1 \ \text{pipe} &=& 490.6872 \\ 1 \ \text{tun} &=& 981.3744 \\ \end{array}$
No. 22.—Troy WEIGHT. 1 grain = 0.0648 grammes. 1 pennyweight = 1.5545 " 1 ounce = 31.0813 " 1 pound = 373.241918 "	$\begin{array}{rcl} 1 \ {\rm pint} & = & 0.55067 \ {\rm litres.} \\ 1 \ {\rm quart} & = & 1.10135 \\ 1 \ {\rm peck} & = & 8.8108 \\ 1 \ {\rm bushel} & = & 35.2432 \end{array}$
No. 23.—APOTHECARIES' WEIGHT. 1 grain = 0.0648 grammes. 1 scruple = 1.296 " 1 dram = 3.8779 " 1 ounce = 31.1035 " 1 pound = 373.242 " No. 24.—WINE MEASURE. U. S. 1 minim = 0.0000616 litres.	No. 27.—Long Measure. 1 inch = 2.54 centimetres. 1 foot = 0.3048 metres. 1 yard = 0.9144 " 1 rod = 5.0297 " 1 furlong = 201.1643 " 1 mile = 1609.3149 " No. 28.—Square Measure.
$\begin{array}{rcl} 1 \ \text{fluidrachm} &=& 0.003697 \\ 1 \ \text{fluidounce} &=& 0.029578 \\ 1 \ \text{pint} &=& 0.47325 \\ 1 \ \text{quart} &=& 0.9465 \\ 1 \ \text{gallon} &=& 3.786 \\ 1 \ \text{barrel} &=& 129.249 \\ 1 \ \text{hogshead} &=& 258.498 \\ \end{array}$	1 square inch = 6.49 sq. centimetres. "foot = 0.0929 sq. metres. "yard = 0.8360 " rod = 25.292 " rood = 10.1168 ares. acre = 40.4671 " mile =258.9894 hectares.
No. 25.—IMPERIAL WINE MEASURE. 1 minim = 0.00005915 litres. 1 fluidrachm = 0.0035495 1 fluidounce = 0.0283966 1 pint = 0.567932 1 quart = 1.135864	No. 29.—CUBIC MEASURE. 1 cu. inch = 16.3862 cu. centimetres, 1 cu. foot = 28315.3119 """ 1 cu. yard = 0.764513 cu. metres.

.

VALUE OF U. S., ENGLISH AND FRENCH COINS.

GOLD.		VALUE. Francs.	FINENESS.	VARIATION	WEIGHT. Grammes.	
Double cagle,	\$20	103.40	90 per c.	0.002	33.434	
Eagle,	\$10 .	51.70	- 44	66	16.717	
Half eagle,	\$5	25.85	<u> </u>	66	8.385	
3 dollars,	\$3	15.51	6.	66	5.01	
$2\frac{1}{2}$ dollars,	\$2.50	12.925		6. //	4.179	
L dollar,	21	0.17		••	1.07	
1 dollar,	\$1	5.17	دد	0.003	26.729	
Half dollar,	50c.	2.585	66	٤٢	13.364	
‡ dollar,	25c.	1.2925	٤٢	66	6.682	
Dime,	10c.	0.517	٤٢	66	2.672	
Half dime,	5c.	0.2585	<i>C</i> ;	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.336	
3 cents,	3c.	0.1551		66	0.8076	
5 cents	50		1 cent	le		
3 cents.	3e.		2 cents.	2e.		
		$\lambda \tau_0 = 2$	1 ENCLA	ND		
GOLD.		ZV0. 0	I.—IINGLA	LIN D.		
Five pounds,	£5	125.00	91.6 per c.	$0.002\frac{29}{4.8}$		
Sovereign,	£1	25.00	66		7.981	
Half sovereig	n. $\frac{1}{2}$ s.	12.50	22	66	3.995	
Crown	55	6.25	925 perc	0.0041	28 250	
Half crown. 2	ls. 6d.	3.125	<i>u</i> per c.	······································	$14\ 125$	
Florin,	2s.	2.50	66	66	11.300	
Shilling,	1s.	1.25	٢٢	66	5.650	
Sixpence,	6d.	0.625	٢٢	۵۵	2.825	
4 pence (groa	t) 4d.	0.4166	۲۲	٤٢	1.883	
3 pence,	3d.	0.3125	66	٢٢	1.412	
2 pence,	2d.	0.2083	<i></i>	66	0.941	
1 penny,	1d.	0.1041	6.6	66	0.470	
Penny.	1d.					
Halfpenny.	Jd.					
Farthing,	īd.					
0,	-	No.	32.—FRAN	ICE.		
GOLD, 100 france		100	90 nov o	0.009	29 95000	DIAMETER
50 "		· 50		0.002 "	3 <i>2.2</i> 0000 16 19902	əəm.m. əq
20 "		$\frac{30}{20}$	۲۵		645161	20 91
10 "		$\overline{10}$	66	۲۵	3.2258	19
5 "		5	٢٢	٢٢	1.61290	17
SILVER.		~				- •
o Iranés.		5	0.9.7	0.003	25. "	37
1 "		- 2	83.9 per c.	44	10. "	27
0.50		1 50	66	"	b. "	23
0.20		0.30	66	٤٢	2.00	18
BRONZE.		0.20			1	10
0.10		0.10)		10.	30
0.05		0.05			5.	25
0.02		0.02)		2.	20
0.01		0.01			1.	15

×

No. 30.—UNITED STATES.

iv

WEIGHTS AND MEASURES.

EQUIVALENTS OF ENGLISII AND FRENCH WEIGHTS & MEASURES.

Ι.		V	I.
Avoirdupois Grammes. Hectog 1 = 28.35	${}_{ m grammes.}$ Avoirdupois $0 { m unces.}$ 1 = 3.53	Fluid Cubic Drachms. $1 = 3.7$	Cubic Fluid Centimetres. Drachms 1 = .27
2 = 56.70	2 = 7.06	2 = 7.4	2 = .54
3 = 80.00 4 - 113.40	3 = 10.59 4 - 1412	3 = 11.1 4 - 14.8	3 = .81
5 = 141.75	5 = 17.65	5 = 18.5	4 = 1.00 5 = 1.35
6 = 170.10	6 = 21.18	6 = 22.2	6 = 1.62
7 = 198.45	7 = 24.71	7 = 25.9	7 = 1.89
8 = 220.80 9 = 255.15	8 = 28.24 9 31.77		8 = 2.16 9 = 2.42
Avoirdupois vite and vite	Avoirdupois		11. <i>J _ 2</i> .40
Pounds Knogrammes, Knog	Pounds,	Fluid Ounces. Centimetre	s. Litres. Fluid Ounces.
2 = .9072	$\frac{1}{2} = \frac{2.2}{4.4}$	1 = 30 2 - 60	1 = 33.8
3 = 1.3608	3 = 6.6	3 = 90	2 = 07.0 3 = 101.4
4 = 1.8144	4 = 8.8	4 = 120	4 = 135.2
5 = 2.2680 6 = 2.7216	$ \begin{array}{rcl} 5 &=& 11.0 \\ 6 &=& 13.9 \end{array} $	5 = 150	5 = 169.0
7 = 3.1752	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	0 = 180 7 - 210	6 = 202.8 7 - 226 c
8 = 3.6228	8 = 17.6	$\frac{1}{8} = \frac{210}{240}$	8 = 270.4
9 = 4.0824	9 = 19.8	9 = 270	9 = 304.2
Grains. Milligrammes.	Grammes. Grains. $1 - 1543$	Pints. Litres.	Litres. Pints.
2 = 129.6	2 = 30.86	1 = .473	1 = 2.1
3 = 194.4	3 = 46.29	2 =	3 = 4.2 3 = 6.3
4 = 259.2	4 = 61.72 5 - 7715	4 = 1.892	4 = 8.4
$5 \equiv 524.0$ $6 \equiv 388.8$	5 = 77.15 6 = 92.58	5 = 2.365	5 = 10.5
7 = 453.6	7 = 108.01	6 = 2.838 7 - 3.211	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8 = 518.4	8 = 123.44	8 = 3.784	7 = 14.7 8 = 16.8
9 = 583.2 IV.	9 = 138.87	9 = 4.257	9 = 18.9
Troy ounces. Grammes. Hector $1 = 31.1$	ammes. Troy ounces.	Gallons. Litres.	Litres. Gallons.
$\hat{2} = 62.2$	2 = 6.4	1 = 3.78 2 - 7.56	1 = .264 2 = .528
3 = 93.3	3 = 9.6	3 = 11.34	2 = .020 3 = .792
4 = 124.4 5 - 1555	4 = 12.8 5 - 16.0	4 = 15.12	4 = 1.056
6 = 186.6	5 = 10.0 6 = 19.2	5 = 18.90	5 = 1.320
7 = 217.7	7 = 22.4	$0 \equiv 22.08$ 7 = 26.46	0 = 1.084 7 = 1.848
8 = 248.8	8 = 25.6	8 = 30.24	3 = 2.112
9 = 279.9 V.	9 = 28.8	9 = 34.00	9 = 2.376
Troy Pounds, Kilogrammes, Kilog	grammes. Troy Pounds.	Pecks. Litres.	Litres. Pecks
1 = .373	1 = 2.7	1 = 8.8 2 = 17.6	1 = .23
2 = .746 3 = 1.119	2 = 0.4 3 = 81	2 = 17.0 3 = 26.4	a = .40 3 = .69
4 = 1.492	4 = 10.8	4 = 35.2	4 = .92
5 = 1.865	5 = 13.5	5 = 44.0	5 = 1.15
6 = 2.238	6 = 16.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 = 1.38 7 = 1.61
7 = 2.012 8 - 2.984	7 = 18.9 8 = 21.6	8 = 70.4	8 = 1.01 8 = 1.84
9 = 3.357	9 = 24.3	9 = 79.2	9 = 2.07

.

			XI.					XI	VI.		
Bushel	S.	Litres.	Hectolitre	S.	Bushels.	Square	C	Square	Squa	l r e stres	Square
1	Ξ	50. 170	1	=	2.8 5.6	1	=	6.49	1	=	0.154
2 2	_	105	<i>ନ</i> ରୁ	_	9.0 8.4	2	=	12.98	2	=	0.308
ن ۸	_	140	0 /		11.9	3	=	19.47	3	=	0.462
т К	_	175	± 5	_	14.0	4	=	25.96	4		0.616
6	_	210	6	_	16.8	5	\equiv	32.45	5	=	0.770
7	=	245.	7	_	19.6	6	=	38.94	6	=	0.924
8	=	280.	8	=	22.4	7	=	45.43	7	=	1.078
<u>9</u>	=	315.	9	=	25.2	8	=	51.92	8	_	1.232
			v"TT			9		58.41	9	=	1.386
Inches.		Millimetres.	AII. Millime	tres.	Inches			XV	II.		
1		25.4	1	=	.03937	Sq. Fee	t. S	Sq. Metres.	Sq. Me	tres.	Sq. Feet.
$\hat{2}$	=	50.8	$\hat{2}$	=	.07874	1	_	186	1	_	91 A
	=	76.2	3	=	.11811	2 2		.100			32.1
4	=	101.6	4	=	.15748	4	_	372	4	_	42.8
5	=	127.	5	=	.19685	5	_	465	5	=	53.5
6	=	152.4	6	=	.23622	6	=	.558	6	_	64.2
7	=	177.8	7	\equiv	.27559	$\ddot{7}$	=	.651	7	=	74.9
8	=	193.2	8	=	.31496	8	=	.744	8	=	85.6
9	=	228.6	9	=	.35433	9	=	.837	9		96.3
_		X	III.					XVI	III.		
Feet		Metres.	Metre	S	Feet.	Sq. Yar	ds. S	Sq. Metres.	Sq. Met	res.	Sq. Yards.
2	_	.5046 8008	1	_	0.20 6.56	1	=	0.836	Ţ	=	1.196
2	_	.0030	2	_	9.84	2		1.672	2		2.392
4	=	1.2192	4	=	13.12	Э Л	=	2.008	Э Л	=	5,000 1 1701
$\hat{\overline{5}}$	=	1.5240	$\hat{\overline{5}}$	=	16.40	4 5	=	0.044 1 1 0 0	4 5	_	4.704
6	=	1.8288	6	=	19.68	6		5.016	6	_	7 176
7	=	2.1336	7	=	22.96	17	_	5 852	17	_	8 372
8	=	2.4384	8	=	26.24	8	=	6.688	8	_	9.568
9	=	2.7432	9	=	29.52	$\tilde{9}$	<u> </u>	7.524	9	=	10.764
		Z	UV.					XI	X.		
Yard	S	Metres.	Metres		Yards.	Acres.	ł	lectares.	Hecta	res.	Acres.
1 9	_	.0144	1	_	1.1	1	=	.4	1	=	2.47
2	_	2.7422	2 2		2.2	2	=	.8	2	=	4.94
4	_	3 6576	4	_	4.4	3	=	1.2	3	=	7.41
5	=	45720	5	_	5.5	4	=	1.0	4	=	9.88
6	=	5.4864	Ğ	=	6.6	6 6	_	2.0 9.1	0 6	_	
7	=	6.4008	7	=	7.7	7		2.8	0 ケ		17.90
8	=	7.3152	8	=	8.8	8	_	$\frac{2.0}{3.2}$	8	_	19.76
9	=	8.2296	9	=	9.9	9	_	3.6	9	_	22 23
		7	VV.			Ū		XX	τ.		
Miles.	ł	Kilometres.	Kilome	tres.	Miles.	Cub. Inc	ches.	Cub. Centin	n. Litres	. Cu	b. Inches
1		1.61	1	=	.62	1	=	= 16.39	1	=	61.
2	=	3.22	2	=	1.24	2	=	32.78	2	=	122.
3	=	4.83	3	=	1.86	3	=	49.17	3	=	183.
4	=	0.44	4	=	2.48	4		65.56	4	=	244.
6 6		0.00	0 6	=	3.10 9 70	5 C	=	81.93	C C	=	30 3. 200
7		11 97	0 7	_	0.12 A 24	0		11/ 72	0	_	300. 497
8	_	12.88	8	_	4.94	8	_	131 19	8	_	488
9		14.49	9	_	5.58	9	_	147.51	9	_	549
					a	v			0		0 - 0 -

1

		X	XI.		XXVI.
Cubic For	at .	Litroc	Hacialitrae	Cubic East	Pence. Francs. Francs. Pence.
1	<u> </u>				1 = 0.104166 $1 = 9.6006$
1	_	NO.0		0.0	2 = 0.208333 $2 = 19.2012$
2	=	55.6	2 =	7.0	3 - 0.312499 3 - 28.8018
3	\equiv	84.9	3 =	10.5	4 = 0.012400 = 0.0010
4	_	113.2	4 =	14.0	4 = 0.410000 $4 = 38.4024$
Ē		1/1 5		17 8	5 = 0.520833 $5 = 48.0030$
0	_	141.0	0 =	17.0	6 = 0.624999 $6 = 57.6036$
6	—	169.8	6 =	21.0	7 - 0.720166 $7 - 67.0049$
7	=	198.1	7 =	24.5	$ \begin{array}{c} 1 \longrightarrow 0.120100 \\ 0 \longrightarrow 0.000000 \\ 0 \longrightarrow 0.12042 \\ 0 \longrightarrow 0.00000 \\ 0 \longrightarrow 0.000000 \\ 0 \longrightarrow 0.00000 \\ 0 \longrightarrow 0 \longrightarrow 0.00000 \\ 0 \longrightarrow 0 \longrightarrow 0.00000 \\ 0 \longrightarrow 0 \longrightarrow 0 0 \longrightarrow 0 \longrightarrow 0 \\ 0 \longrightarrow 0 \longrightarrow 0 $
8		2264	8	28.0	8 = 0.832322 $8 = 76.8048$
0	_		0 —	20.0	9 = 0.937499 $9 = 86.4054$
9	=	204.7	9 =	31.5	XXVII.
		X	XII.		Cent. Fah. Fah. Cent.
Yards	s.	Cu. Metres.	Cu. Metres.	Cu. Varde	1 = 1.8 1 = .555
1		7645	1 -	13	2 = 3.6 $2 = 1110$
5		1 590	<u> </u>	1.0	3 - 54 $2 - 1665$
~		1.0.40	z =	2.0	0 - 0.4 0 - 1.000
ð		2.2935	3 =	3.9	$4 = 7.2 \qquad 4 = 2.220$
4	=	3.0580	4 =	5.2	5 = 9.0 $5 = 2.775$
5		3.8225	5 —	6.5	6 = 10.8 $6 = 3.330$
c		1 5000	0 <u> </u>	0.0	7 - 126 7 - 2995
U	—	4.0870	0 =	7.8	1 - 12.0 - 0.000
7	=	5.3515	7 =	9.1	8 = 14.4 $8 = 4.440$
8	_	6.1160	8 =	10.4	9 = 16.2 $9 = 4.995$
Ō		6.8805	0 -	11 7	To change F. into C. use the table and add 32.
J		0.0000	<i>u</i> _	TT+4	To change C. into F. subtract 32 and use the table.
		X	XIII.		XXVIII.
Dollars.		Francs.	Francs.	Dollars.	Inches Height. Pounds. Pounds. Inches Height.
1 =	_	5.17	1 =	0.1934	1 = 0.491963 $1 = 2.03267$
2 -		10.34	2 -	0.3860	2 = 0.983926 $2 = 4.06534$
~ -		15 51	2 _	0.5008	3 - 1.475880 $3 - 6.00001$
- G		10.01	$\partial =$	0.0792	0 = 1.470000 = 0.09001
4 =		20.68	4 =	0.7736	4 = 1.967852 $4 = 8.13068$
5 =		25.85	5 =	0.9670	5 = 2.459815 $5 = 10.16335$
6 -	_	31.02	6 —	1 1604	6 = 2.951778 $6 = 12.19602$
7 -		26.10	17	1 9590	7 - 3443741 $7 - 1499860$
	=	30.19	$7 \equiv$	1.5558	i = 0.440741 $i = 14.42000$
8 =	=	41.36	8 =	1.5472	8 = 3.935704 $8 = 16.26136$
9 =	_	46.53	9 =	1.7406	9 = 4.427667 $9 = 18.29403$
					XXIX.
		XX	XIV.		Cent. Mercury. Pounds. Pounds. Cent. Mercury.
Pounds.		Francs.	Francs.	Pounds.	1 = 0.19371 $1 = 5.16234$
1	=	25	1 =	0.04	2 = 0.38742 $2 = 10.32468$
2	<u> </u>	50	2 -	0.08	3 - 0.58113 - 15.48702
- -		75	2	0.10	A = 0.77494 $A = 20.64026$
		10	0	0.14	4 = 0.11404 4 = 20.04930
4		100	4 =	0.16	5 = 0.96855 $5 = 25.81170$
5	=	125	5 =	0.20	6 = 1.16226 $6 = 30.97404$
6		150	6 —	0.24	7 - 1.35597 - 7 - 36.13638
1 2		100	17	0.22	2 - 154000 - 4190070
1	_	170	7 =	0.28	$\delta = 1.9490\delta$ $\delta = 41.29872$
8 :	=	200	8 =	0.32	9 = 1.74339 $9 = 46.46106$
9	_	225	9 =	0.36	XXX.
-			TAL		Ht Marcury Ht Water Ht Water Ht Marcury
<u></u>		<u>г</u> .	ΔΥ.	01.111	$1 \text{ cm} - 1358^*$ $1 \text{ cm} - 0.074374$
Shillings.		Francs.	Francs.	Snillings.	10.111 10.00 - 10.111 0.01101+
L	=	1.20	1 =	0.80	$2^{-1} = 27.10$ $2^{-1} = 0.148748$
2	_	2.50	2 =	1.60	3 " = 40.74 3 " = 0.223122
3	=	3.75	3 =	2.40	$4 {}^{\prime\prime} = 54.32 \qquad 4 {}^{\prime\prime} = 0.297496$
A		5.00	4. —	3.20	5 " - 6790 5 " - 0.371870
4		0.00	н — М	4.00	
5	=	6.25	0 = 0	4.00	0 = 81.48 0 = 0.446244
6	=	7.50	6 =	4.80	7 " = 95.06 7 " = 0.520618
7		8 75	7 =	5.60	8 " = 108.64 $8 " = 0.594992$
0		10.00	8 _	6.40	$9^{4} - 12222 9^{4} - 0.660366$
0		11.00	0 -	0.10	
9		11.25	$9 \equiv$	7.20	"The density of mercury is taken at 60°

.

METALLURGICAL TABLES

USED AT THE

.

SCHOOL OF MINES,

COLUMBIA COLLEGE,

NEW YORK.

ORES OF COPPER.

-	Native Copp	er.		Azurite,	80.0	2ĊuĊ+ĊuĦ	4
Copper,		Cu.	1	Ċu, Ċ,	$69.2 \\ 25.6 \\ 5.9$		
	Oxydes.			H, Compounds	D.L D.th S	Swithout As	or Sh
Red Copper,		Ġu.	1	Copper Glanc	е.	CuS	3
Cu,	88.8			Cu,	79.8		
Melaconite.	11.4	Ċu.	1?	Chalconvrite	20.2	$CuS \perp Fe^2S^3$	2
Ċu,	79.85			S,	34.9		
O, Carro Carro	20.15 Mixture of (In & Cu		Cu,	34.6		
Carro-Carro,				Erubescite.	30.9	2CuS+FeS	1
Silica	te and Oxyc	hloride.		S,	23.7		
Chrysocolla,	Ču ³ Š	$\dot{\mathrm{Si}}^2 + 6 \dot{\mathrm{H}}.$		Cu, Eo	62.5		
Si.	40.2 34.3			Cyanosite,	10.0	ĊuS+5H	5
Ĥ,	20.5	a	0	Š,	32.1		
Atacamite,	55.8 CuCl-	⊢3CuH.	3	Cu, Ĥ	$31.8 \\ 36.1$		
CuC	21,31.5			Compounds w	ith S.c	containing As.	
Ĥ,	12.7			Sb, or	both.	0 /	
	Carbonates.	,		Tetrahedrite,	(Cu,I	Fe,Zn,As),S+	7
Malachite.	Ċ	${ m Ju}^2\ddot{ m C}+\dot{ m H}$	4	Bournonite.	(Cu.]	$\frac{1}{4}(SD,AS)S^{*}$ Pb)S+ $\frac{1}{5}Sb^{2}S^{3}$	1 3
Ċu,	71.9			Mansfield Slat	e, Mix	ture of pyrites	
Ċ, Ú	19.9			and ble	ende.	uniator	
1	0.4			r nospitates at	iu Ais	omates.	
1							

TREATMENT OF NATIVE COPPER.

LAKE SUPERIOR.

No. 1.—Treatment.

- 1st, Fusion, fining, and refining in a reverberatory furnace.
- 2d, Fusion of the rich slags in a shaft furnace.
- 3d, Refining the copper from the shaft furnace in a reverberatory furnace.

No. 2.—Dimensions of the Reverberatory Furnace.

Fireplace \dots \dots \dots 1.30×1.00
Height of bridge above grate1.00
" from grate to roof $\dots \dots 1.50$
" of ash-pit
Width of bridge at fireplace1.30
" hearth2.00
Depth of bridge0.60
Height from bridge to roof0.45
Length of hearth
Width "
Gr'test depth of hearth below bridge.0.35
Thiekness of hearth 1.00 to 0.60
" areh supporting hearth,0.50
Opening in the roof $\dots \dots \dots$
Inclination of hearth $\ldots 4^{\circ}$ to 5°
Flues
Height of chimney
Section of " at base 0.70×0.70
" " " top $\dots 0.62 \times 0.62$
Charge
Time to fusion
Number of operations per week6 to 7

No. 3.—Details of the Fusion.

The following is the result at the Portage Works for 1859 and 1860:

13.605k. of coal at 17.22	258.30
Chareoal	10.50
16 men at 7.95	127.50
Repairs to furnaces and tools	12.25

408.55f.

First fus	ion yie	lds	 6639.24k.
A ton co	osts		 64.40f.

No. 4.—Details of the Shaft Furnace. Diameter of the tuyeres......0.035 Pressure of blast.....0.09 of Hg.

No. 5.—Cost of the Treatment of the Slag.

Picking of the scoriæ		0.85
Wood and charcoal	• •	1.30
Anthracite		11.25
Flux		. 1.70
Fuel and repairs to blast engine	• •	1.25
Labor at furnace during year	• •	3.75
Repairs to cupola		0.35

20.45f.

No. 6.—First Fusion.

In reverberatory furnace10884k. Fusion of seoriæ in shaft furnace, 4244.76 Second fusion in reverberatory

Yield.	Weight.	Cost per ton.
61%	.6639.24	
10%	. 424.47	95.74
8%	. 339.57	16.84
,		

5	2	0	.83f.	

By ton of weight, 74.66f.

No. 7.—Dimensions of cupola in Native Copper Works; when anthracite is substituted by wood.

Fire-place 1.55×1.00 Grate below bridge1.30Section of lower part of ehimney. 1.55×1.30 "upper" 1.50×0.90 Height of chimney5.00

FRANCE.

No.	1		Co	m	po	sit	io	n	of	2 61	Ċ	a	rr	0-	C_{i}	ar	ro.)
Çu.		• •	• •	•	••	• •	•	••	•••	•		• •			• •	7().78	5
Ču.	• • •	••	••	••	••	• •	•	••		•	•			•••	• •	(5.90)
Fe.	••	• •	••	• •	• •	•	••	•••		• •	•	••	•	•••	• •	(0.50)
San	d.,	• • •	• •	••	••	• •	•	• •	• •	•	•	•	• •	• •	• •	21	62	
																98).80)

No. 2.—Dimensions of the furnaces and elements of the charge in "Carro-Carro Works."

Fire-pl	lace.								.]	L.	0	\times	1.(0
Major	axis	of	hear	th			•					.2	2.2^{*}	7
Minor	66		66				,					.]	$\lfloor 2 brace$	7

Width	of bridge	0.87
Section	of ehimney0.80	$\times 0.80$

No. 3.—A charge is made up of	e
Tons.	f
"Carro-Carro " 1.400	6
Seoriæ	i
Slaked Lime	е
and a state of the	y
No. 4.—Details for 1856.	
In furnaee No. II. In 21 days.	
. Tons.	2
Carro-Carro reduced	T
Copper produced, $24.055 = 77.06\%$	0
Coal eonsumed	A A
In furnaee No. III. In 27 days.	ł
Tons.	C
Carro-Carro reduced	
Conner produced $43720-7744d$	

No. 5.—Slags.

The slags from fining and refining ontain 15 to 18% of Cu. They are reused in a cupola, with 12% of marl. 6,000t. to 7,000t. of slags are smelted in 24h. The following gives average omposition of these slags for the ears,

10. IDecails jer 1000.	1955	1070	1057
In furnaee No. II. In 21 days.	1000.	1000.	1697.
. Tons.	Š i53.00	55.82	53.06
Carro-Carro reduced	A l15.50	7.20	9.40
Copper produced, $24.055 = 77.06\%$	Ca 16.85	29.12	30.60
Coal eonsumed	Mg 0.10	0.06	0.10
In furnage No III In 27 days	Fe 14.00	7.00	5.58
Tons.	Ču 0.55	0.80	1.26
Carro-Carro reduced	100.00	100.00	100.00
Copper produced,	100.00	100.00	100.00
Coal consumed			

TREATMENT OF SULPHURETS OF COPPER.

PURE ORES.

I. GERMAN OR SWEDISH METHOD.

II. ENGLISH METHOD.

SWEDISH METHOD.

No. 1.—Treatment.

				1	1 1
- 1		000	F 1 12 00	C111 122	in moto
_		MAN		SHE	ninets.
	եր հեր	e o con	ULLA	NULP	TTOTT O OUS

- Fusion for bronze mattes. 2.
- 3. Roasting bronze mattes.
- Fusion for black copper. 4.
- Fining. 5.
- 6. Refining.

(1.) ROASTING.

No. 2.—Roasting Pile.

At Atoida.

Size of the pile, $6m. \times 6m.$ Height of the pile, 2.50 to 3.

In Norway.

Length	of the pile,	20m.	
Width	<i>(</i> ([*])	6 to 7	

No. 3.—Arrangement of Pile.

1st	bed of	fuel	(woo	d)	 ••		0.30
2d	66	66	(char	coal)	 		0.10
1st	66	ore			 		0.60
3d	66	fuel			 • •		0.30
2d	66	ore			 		0.40
4th	66	fuel			 		0.30
3d	66	ore			 		0.40
Cov	vering c	of fin	le ore		 		0.10
	0					_	

2.50

No. 4.—Cost of Roasting in Piles.

- At Fahlun, 0.260st. or 87k. of wood per 1k. of ore.
- At Atoida, 0.240k. and 30st. of ehareoal or 80k. of wood per 1k. of ore.

Cost of roasting one ton.

0.25	st. of wood at	1. = 0.25
0.4	day at	1.1 = 0.44

0.69

4

No. 5.—Ore Roasted in Pits.

0.29st. or 97k. of wood per the ton of ore.

No. 6.—Cost of Roasting at Roraas, in 1851.

Ore roasted	.20954.24t.
Wt. of ore after roasting	.19009.20t.
Wood used	. 312.80st.
Labor	. 943.22
· Per ton of ore.	,
Wood, 0.149 at 0.93	0.139
Labor	0.450

0.589

 \mathbf{S}

(2.)FUSION FOR BRONZE MATTES.

No. 1.—Fusion Furnace at Roraas.

Height	4.70
Width in direction of the blast	.70
" perpendicular to "	.60
Greatest width	.80
Distance between the tuyeres	.31
Tuyeres above the bottom	.94
Nose	0.22

No. 2.-Fusion Furnace, 1848.

Height	5.34
Width of hearth	1.08
Depth of "	1.58
Width at tuyeres	1.13
" at 2.37 from hearth \ldots	1.19
" at throat	1.04
Depth at tympe to 1.63 above	0.79
Depth at throat	0.55
No. of tuyeres	3
Height of tuyeres above hearth	1.19
" above tympe	0.45
Diameter of tuveres .	0.18

No. 3.-Fusion Furnace, 1861.

Height 7.	12
From hearth to bosh 2.	97
" " to tuyeres 1.	19
\cdots to tympe0.	74
Width at the bottom of hearth 1.	08
" " tuyercs 1.	19
" 2.37 above hearth 1.	78
Depth at hearth 1.	63
" tympe 0.	74
" 2.37 from the hearth 0.	74
\cdot " at throat 0,	52

No. 4.—Price of Labor.

Founder is paid 1.82f. per 12 hrs. Charger "1.26" 1.26 Charger If in 12 posts they do not melt 573 m. q., they are fined.

No. 5.—Limits	of Richness of the Mattes.
Cu	8. to 20.0
${ m Fe}$	50. " 62.0
S	24. " 26.0
Zn	1. " 3.0
Pb	0. " 0.5
No. 6.—Gene	ral Composition of the Mattes.
Cu	14 to 19
Fe	58 " 57

No. 7.-General Composition of the Slags.

28 " 24

ï Si	38	to	49	•
Ėе	37	66	54	
Bases	12	"	14	

No. 8.—Charge used.

Charcoal	.51c.m.
Ore	.42 c.m. 2.62m.q.
Scoriæ	.10
SUURC	

	No. 9.	-Fuel used.
1st	post,	6.29c.m.
$2\mathrm{d}$	1.6 í	7.99
3d	"	8.5
4th	"	7.65
5th	66	8.67
6th	66	8.84
7th	66	8.5
Sth	66	8.9
9th	66	9.08
10th	"	8.67
11th	66	9.88
12th	"	8.91
13th	"	0.51

No. 10-Crystallized Slags from Sweden.

		Oxygei
Si	44.9	23.3
ḟе	48.7 - 13.9)	
Äl	1.60-7.5	22.9
$\dot{\mathbf{M}}$	3.7 - 1.5	
	100	
	00.0	

No. 11	Compact Slag from	Sweden.
	- • •	Oxygen.
Si	38.0	19.7
$\dot{\mathbf{F}}\mathbf{e}$	54.7-15.6	
Äl	0.8-0.4	10.9
$\mathbf{M}_{\mathbf{S}}$	5.4 2.1 (10.4
Ča	0.7-0.1	

No. 12.- Scoria from the Front Hearth.

Seoria. Matte.	$\begin{cases} \ddot{\mathbf{S}}\mathbf{i} \\ \dot{\mathbf{F}}\mathbf{e} \\ \dot{\mathbf{M}}_{\mathcal{S}} \\ \dot{\mathbf{C}}\mathbf{a} \\ \ddot{\mathbf{A}}\mathbf{l} \\ \mathbf{C}\mathbf{u}\mathbf{S} \\ \mathbf{Z}\mathbf{n}\mathbf{S} \\ \mathbf{F}\mathbf{e}\mathbf{S} \end{cases}$	$ \begin{array}{r} 19.5 \\ 51.8 \\ 4.8 \\ 5.3 \\ 2.6 \\ 0.8 \\ 1.5 \\ 11.3 \\ \end{array} $
		97.6

No. 13.—Composition of Loupe.

Fe Cu Co S	$\begin{array}{c} 80.5 \\ 2.5 \\ 0.3 \\ 1.4 \end{array} \right]$	Loupe.
Si Ċa Mg Mn	$ \begin{array}{c} 8.3 \\ 1.1 \\ 1.5 \\ 3.0 \\ 98.6 \end{array} $	Scoria.

No. 14a.	.—Examples of Charges.	
At the	Græfenberg Works.	
_c Ore	yielding 3% (38
$\operatorname{Charge}\left\{ { m Forg} \right\}$	ge seoriæ & seoriæ from blk. Cu 1	13
(Lim	estone 1	19

b.—At Fahlun.

	No.1	No. 2	No. 3
Quartzose ore 3%	44	14	54
Roasted do.	26	76	- 39
Seoriæ from blk.C	u.30	10	7

c.—In Prismatie furnaees.

No. 1. 6.350t. smelted in 24 hours. 338k. of fuel for 1 ton. No. 2. 9.250t. smelted in 24 hours. 175k. of fuel for 1 ton.

d.—In Furnaee narrowed at the top.

No. 3. 6.500t. smelted in 24 hours. 249k. of fuel for 1 ton. Matte yields 14% of eopper, and is 17% of the eharge.

e. - At Atoida.

f.—1844 to 1848.

Furnaces,	6 to	$7\mathrm{m}$	h. high.
Quartzose o	re		13k.
Roasted do.			27
Rieh roasted	l scoriæ.		40
Debris of fu	rnaees	• •	10
Seoriæ of b	lk. Cu	• •	10

100

Quantity smelted.....8t. to 10t.
Fuel used......236k.
Matte 18% of the weight of the ore and eontains 20 to 21% Cu.

g.—At Roraas, 1851.

Ore 5%	
Seoriæ of blk. Cu	ι 1 20
Quantity of fuel	50 to 76
" smelted.	9t. " 10t.
Matte 30% of	eharge.

No. 15.—Cos	t at Roraas, 1851	
300k. of fuel,	33f	9.90
0.6 days at	1.45	.87
0.9 "	1.12	0.34

11.11f.

No.	16.—Quantity	Smelted	at	Roraas
	in 1	851.		

Quantity of raw ore	21672.76t.
Weight of the matte.	6580.80k.
Quantity of fuel	4345.20e.m.
Labor	3584.88

(3.) ROASTING THE BRONZE MATTE.

No. 1.—Dimensions of the Stalls at Roraas.

Number of stalls4	18
Width	1.25
Length	2.17
Height	1.50
Thickness of wall between stalls	0.60

No. 2.—Fires Required for Roasting Mattes.

40	to	50%	of	Cu.	requ	ire	15	to	20	fires	•
5	"	10^{\prime}		"	ũ		4	to	5	66	
At	Re	oraas	15	to 2	0%of	Cu.	ree	qui	re7	fires.	•
44	At	oida		1	S	"		î.	6	66	
64	Fal	hhin	4	to 9	9	66		66	4	66	

No. 3.-- Time for Roasting.

At Roraas 7 fires last 20 day "Atoida 7 fires last 30 " "Fahlun 7 fires last 40 to 50 "	ys.
No. 4.—Cost of Roasting at Atom	ida.
1.0 st. of wood at 1.0 100 of charcoal at 2.10	1.50 2.10
Labor at 1.70 to 1.10	1.87
	5.47f.
Cost of the ore per ton is	0.985
No. 5Cost of Roasting at Rore	aas.
1.30 of wood at 1.00 Labor, 3.40 at 1.10	$1.30 \\ 3.74$
Cost per ton of ore	5.04f 1.51
No. 6.—At Roraas in 1856.	
Quantity of matte roasted, 6580.80	
Wood consumed. 809.44	st.
Wood at 6.93	1.010
Labor	3.486

4.502f.

(4.) FUSION FOR BLACK COPPER.

No. 1.—Details of Shaft Furnace at Atoida.

Height	4.20
Diam. in direction of blast at bosh	2.00
Diam. perpendicular to "	3.00
Height of bosh above hearth,	1.20
Diam. in direction of blast at tympe	0.75
Diam. perpendicular to "	1.60
Diam. perpend. to blast at tuyeres,	0.60
Diam. in direction of "	0.60
Width of hearth,	1.50
Depth of hearth, 0.20 to	0.25
Number of tuyeres,	2
Tuyeres above hearth,	0.45
Width of furnace at tuyeres, 60	$\times 60$

No. 2-Furnaces in 1857.

Height,	5.05
Height of tuyeres,	0.60
Size of hearth at bottom,	0.70×0.60
" " tuyeres,	0.84×0.74
" at 1.78 above hearth,	1.34×0.74
" at throat,	0.74×0.44

No. 3-General Composition of Matte.

Cu	55.	to	65.7%
Fe	15.	"	20.
Zn	0.1	"	0.5
S	24.	"	24.5

No. 4Matte	at	Fahlun.
Cu		57.5
Fe		17.1
Zn .		00.7
S		24.1
		99.4

No. 5—Composition of Scoria at Fahlun.

		Oxygen.		Oxygen
Si	27.4	14.	32.8	17.
Ėе	64.8)		62.5)	
Ċa	0.5		0.1	
Ŵg	2.3	17.3	1.6 }	15.9
Άl	3.5		0.3	
Ċu	1.0]	1	Trace.	
	99.5		97.3	

No.	6.—Composition of Loupe.	
Fe	65	40.
Cu	30	50.
Zn	1	00.1
S	2	7.
Scoria	$1\ldots\ldots\ldots$	00.2
	99	97.3

No. 7.— Charge at Roraas.

Charcoa	Ι.				•				•	•					.0.510c.m.
Roasted	m	at	tes	5.	•	•							•	•	.1.59.mq.
Quartz.	• •	• •	••	•	•	•	•	•	٠	•	•		•	•	.0.16m.q.

No. 8.— Charge at Atoida in 1848.

Poor roa	isted mat	ttes	84	1 100
Rich	66		16	
Seoriæ, 1	st fusion			. 8
Crasses a	nd debri	S		. 8
Quartz a	nd feldsp	ar		.2 to 4

No. 9.— Details of Working.

At Atoida.

Furnace 4 to 5m. high.

Amount of matte smclted in 24h.	5t.
Blk Cu. obtained 1 to	o 1.5t.
Rich matte "	300k.
Fuel consumed per ton of matte.	480k.

At Roraas.

Matte		• • • • • •		100k.
Quartz .	• • • • • • •	• • • • • • •	• • • • • • •	10k.
Amount	of matte	roasted		- 5t.

					~ ~ ~ ~ ~		•	• •				U U.
Blk.	Cu.	ob	tair	ned.		• •		• •		•	0.	900t.
Fuel	for	1t.	of	ma	tte.			•	••	•	0.4	187

No. 10.—Cost at Roraas in 1851.

Fuel, 4	.87 at	3.30	 			 •	16.071
Labor,	2d. at	1.45	 • •			 • •	2.90
Special	labor		 	• •		 • •	0.840
1							
							19.811f.

1 ton of ore gives 300k. of matte. Cost per ton..... 5.94f.

Quantity of matte roasted	6580.80t.
Refining crasses	. 256.10
Blk. Cu. obtained	.1313.76
Chareoal consumed	.2142.c.m.

(5.) FINING THE	BLACK COPPER.
No. 1.—Dimensions	of Fining Furnace.
Charge,	360k.
Diameter,	0.60m. to 0.68m.
Depth,	0.20m. " 0.30m.
Angle of the tuyere,	10° " 20°
Eye of do.	0.025m." 0.04m.
Charge, 1200	k. to 1400k.
Major axis 0.90m.	
Minor axis, 0.80m.	
Depth,	0.45m.
Angle of tuyere,	30° to 40°
Eye of do.	.05m. to .06m.
Time of operation,	8hrs. to 9hrs.

No. 2.—Fining at Atoida.

Amount treated	
Length operation 7h. to 8h.	
Loss	
Chareoal, 0.530 at 33f	17.49
Labor, 3d. at 1.50	4.50
/	

21.99

Charge	
Length operation3 [‡] h. to 4h.	
Loss	
Charcoal, 0.750 at 33	24.75
Labor by contract	6.50

No. 3 - At Poraas

0		0	-
12	1	• • •	5
·)			. 3

No. 4.—At Roraas in 1851.

Quantity treated	1313.76
Weight fined copper	1058.13
Yield, leaving out crasses.	80.4%
Yield, with the crasses	86.09%
Fuel consumed	640.56e.m.

No. 5.--Resumé at Roraas, 1851.

Charcoal in all operations.1277.78st. Quantity as per inventory,

showing a loss of 16%.8568.00e.m.
Value of wood & charcoal43166.39
Transportation to works 1779.07
Sundries paid at the works14628.41
Materials
Labor
Expense of construction 3458.80
Central office expenses 863.19
Value of ore56298.24
Administration

162828.76f.

Or by m.q. of fined Cu..... 153.885

(6.) REFINING THE R No. 1.—Fu Diameter of the throa Depth "" Charge	COMPTE COPPER. trnace. t 0.50 to 0.60 0.25 to 0.35 200t. to 300t.	 3 operations a yr. ean be counted on, so that each space roasts 150t. 67 spaces are required. Space required for roasting 10,000t. 67 × 100=6,700s.m. Space required for the ore, 5,000s.m.
No. 2.—Details Fuel consumed, 750k. Labor, 2d. at 1.50 Total cost of refining,. (7.) EXPENSE OF SW No. 1.—At A Wood. Roasting, 0.24 Fusion for matte, Roasting matte, 0.27 Fusion for blk. Cu. Fining, 0.51k No. 2.—At I Wood. Roasting, 0.21 Fusion for matte, Roasting matte, 0.39 Fining for blk. Cu. Fining,	at Atoida. at 35	No. 2.—Fusion for Bronze Matte.Each furnace smelts 10t. in 24h. in 250d, 2500t.No. of furnaces required
0.60k No. 3.— Cost per	. 592k. 3.10d. Ton of Ore.	per minute, $8 \times 2 = 16$ s.m.Fusion furnace 8c.m. per minute, $8 \times 1 = 8$ s.m.
Wood and ehareoalTransportation of ore.Labor, &cTotalConstructionSuperintendenceGeneral expensesCost of ore	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{72 \text{s.m.}}$ On account of loss, say, 80 s.m. Horse power required, 5 to 6 No. 6.—Stalls. Each stall roasts 20t.a year. No. required for 2000k. of matte, 100, say 120 Under 6 sheds 20 × 10, 1200 s.m.
WORKS FOR THE ITTLE	72.83f.	No. 7.— Charcoal Sheds.

No. 1.—Ore and Roasting Heaps. 50t. can be worked on a space $6 \times 6 = 36$ Space required for circulation, -64

100s.m.

72s.m.

On account of loss, say,	80s.m.
Horse power required,	5 to 6

No. 6.—Stalls.

o. 7.—Charcoal Sheds.

8 charcoal sheds, 10×50 or 4000s.m. Double space for circulation, 8000s.m.

No. 8.- Works.

Works require a building 50×12 Double space for circulation, 1200s.m.

No. 9.—Total Space Required.

Ore heaps	5000s.m.
Roasting heaps	6700
Roasting stalls	2400
Charcoal sheds	8000
Works	1200
Scoria heaps fr. 30 to 40 yrs., 3	0,000

53,300

Or, 5 to 6 Hectares.

TREATMENT AT BOSTON WORKS. 1854.

No. 1Expenses to Roast 1t. of Ore.
Wood. 0.0768c.m.,
Labor. 0.15d0.800
1.065f.
No. 2.—Dimensions of Shaft Furnace.
Section at tuycres 0.78×0.62
Height 2.75 to 3
Tuyerc to throat 1.40
Opening for charging 1.00
Breast below front hearth15
Depth of hearth below breast .20
Front hearth extends15
Depth of "below tuyeres35
Diameter of tuyercs03 to .05
Thickness of fire-prick
" of common briels 45
Space between common &
refractory brick 04 to 05
No. 3.— Composition of Brasque of
Hearth (Shaft Furnace)
6 alay
18 coke dust
6 charcoal { or 24 coke dust alone.
o charcoar, y
No. 4. — Charge of Furnace.
Reasted area 18 to 20% Cu 1000
Oxydes not roasted 33
Debris of furnaces, and clay from
bottom of roasting heaps. 50
Scoriæ from blk. Cu
Oyster shells 100
1513
Proportion of mattes, 56%
Yield " 34 to 45%
Fuel for 1t. of ore, 194k.
Average campaign is 15 days.

No. 5.—Details for Campaign of 15 days.

No. 5.—Decails for Campaign of 1	o aays.
Orc treated, 90 tons. Lighting furnaces Anthracite, 16t. at 42 Brasque for reception basins I founder, 60d. at 7 I assistant, 5d. "5.25 Repairs	$\begin{array}{r} 30, \\ 672, \\ 60, \\ 420, \\ 26.25 \\ .60.75 \end{array}$
Cost of treating OOt	10006
Cost for 1t	1/ 10f
Mattes produced $(of 45\%Cu)$	25t
Blk Cu " (of 85% Cu)	5.
	0.
· ·	
No. 6.— Costs for Roasting in S	stalls.
Wood for lighting, 0.192c.m.	3.312
Labor, 2.25d at 5.25,	.11.800
Charcoal for lighting	0.500
0 0	
Cost of 5t. of mattes	15.612
" 1t. "	3.122
For 1t. of Ore.	
Wood. 0.052c.m	0.183
Labor, 0.125d	0.656

0.839f.

No. 7.—Fusion for Blk. Cu.

Length of campaign, 12 to 15d. Quantity treated in 24hrs., 8 to 9t.

No. 8.—Charge.

Roasted mattes	$1000 \cdot$
Oxydes of Cu	140
Rich roasted mattes	60

1200

Rich scoria	-80
Silicious "	450
Debris of furnaccs	50

No. 9.—Quantity Treated.

Length	of cam	ipaigi	1	 	15d.
Mattes	treate	đ		 	180t.
Rich or	cs			 	13
Scoria .				 	85
In 2 fu	rnaces			 	278t.

No. 10.—Cost of Fusion.	
Chareoal for 2 furn., 1t. at 5050	
Anthracite, 30t. " 421260	
Founders, 120d " 7840	
Common labor, 30d. " 5.25 157.5	0
Repairs121.5	0
Cost of 278t. in 2 furnaees2429.0	0
No. 11.—Amount of Mattes Produced	
Mattes contain 50%Cu.	
13t. of ore of 20%, $13 \times .20 \div 50 = 5.1$	2
85t. of scoria of 10% $85 \times .10 \div 50 = 17$.	
278t. of matte 180.	
Mattes produced 202.21	
No. 12 - Ernense for 1t of Matte	
$\begin{array}{c} \text{Chargeal} \qquad 0.004t \text{ at} 50 0.20t \end{array}$	0
Anthracite 0.148 " 42 0.22 "	2
Founders $0.59d$. " 7 4.13	0
Common labor. 0.15d. "5.25 0.79	ŏ
Repairs	0
For 1t. of matte 11.94	2
No. 13.—Expense for 1t. of Ore.	
Anthracite, 0.045 at $42\ldots 1.89$	0
Charcoal, 0.001 " 500.050	0
Common labor, $0.045d$ " $5.250.230$	6
Founders, $0.182d$ " 71.274	4
Repairs0.20	0
3.65	-
	_
No. 14.—Cost for 1t. of Ore, Converted into Blk. Cu.	l
Wood $0.052t$ at 3.45 0.442	8
Chareoal $0.0965t$ " $50 0.32$	5
Anthraeite. $0.222t$ " 429.32	4
Labor.	
1st roasting, 0.15	
2d roasting 0.125 $\{1.222d. 7.693\}$	3
2d fusion 0.227	
Repairs	1
	-

Cost of blk. Cu. for 1t. of ore... 18.660

No. 15 .- Fining of Blk. Cu.

.

Dimensions of Furnace.

Length	of	hearth							•			•		3.50m
Width		56				¢	•		•	•		•	•	2.50
Length	of	fireplae	e.	•	•	•						•	•	1.37
Width		(Č		•		•	•	•	•	•	•	•	•	1.32

No. 16.—Cost of Fining.

Labor, 14d. at 7	98.00
Coal, 7t. at 42.50	297.50
Wood & eharcoal, 0.185t	34.00
Lead (for Sb.) 0.160t at 5.50	88.00
Repairs	14.00
*	

Cost of 2 furnaees, 1d..... 531.50

No. 17.—Expenses for Refining 1t. of Blk. Cu.

Labor,	0.875d	6.125
Coal	0.437t	19.080
Wood & chareoal,	0.053t	2.122
Pb,	0.010t	5.500
Repairs,		0.875

Cost of 1t. of merchant. Cu....33.702 Cost by ton of ore...... 4.776

No. 18.—Treatment of 1t. of Ore.

			•	•	
Treatm Fining	ent		• • - • • •	•	$\begin{array}{r} 18.660 \\ 4.776 \end{array}$
Speeial Genera	$\operatorname{expense}_{l}$	S	•••••	•	23.436 20.000
$\operatorname{Cost} \operatorname{of}$	treatmer	nt of 1t.	of ore	•	43.436f.
	Price of	f ore is	variab	le.	

Ores yield 20% of Cu.	
Value of Cu. per ton	2500f.
1t. ore yields $2500 \times 20\%$	500

IMPURE ORES.

1000

WORKS AT ALTENAU AND LAUTENTHAL IN THE HARTZ MOUNTAINS.

No. 1.—Roasting Ores as Sweden. Ores contain 17 to 18% of Cu. Piles contain 50 to 100t. Fuel used per ton of ore, 0.26st. Time, 3 months.

No. 2.—Fusion for Mattes in a Shaft Furnace.

Charge.

Roasted ores	1000t.
Scoria of fusion for concentra-	
tion and blk. Cu	950k.
Quantity fused in 24hrs	$3 \text{ to } 3\frac{1}{2}\text{t}.$
Fuel (gas coke) for 1t. of ore.	501k.
Mattes 30 to 35%	675k.

No. 3.—Roasting in Stalls.

Number of fires	3
For ton of matte, wood	0.250st.
Labor	0.12d.

No. 4.—Fusion for Concentration. Charge.

Roasted matte	1000k.
Scoria	828
Quantity smelted in 24 hrs.	4t.
Labor for 1 ton of matte	1d.
Charcoal	690k.
Product for 1t. of roasted-matte	, 736k.
at 40 to 45% and Scorias con	taining
13% of Cu. which are used in	No. 2.

No. 5.—Roasting in 5 or 6 Fires.

No. 6.—Fusion for Blk. Cu. and Thin Mattes.

2d	mal	ttes	roaste	d	• •									1000
Sco	oria	of	fusion	No.	2	•	••	•	•	•	•	•	•	945

Per ton of concentrated matte.

1st Blk. Cu. (very impure.)	128
1st thin matte, 65% of Cu	450
Scoria 1.5% Cu	-1377
Charcoal	660k.
Labor	1.18d.

No. 7.—Roasting 1st Thin Mattes. For 1t. of thin mattes.

Number	r	(of	f	fi	r	C	S	•	•	•	•								7	to)	8	0
Wood.				•	•	•	•		•		•							•		0	.60):	st	
Labor .	•	•			•	•	•	•	•	•	•		•	•	•	•	•	•	•	0	.21	7	d	•

No. 8.—2d Fusion for Blk. Cu. and Thin Mattes.

2d Blk. Cu	327k.
2d thin mattes 69% Cu	400k.
Scoria with 3% Cu	1200k.
Fuel	655k.
Labor	0. 93d.

No. 9.—Roasting 2d Thin Mattes.

Nur	nber	of of	fires.			 		 • •	9
For	ton	of	mattes,	WC	od	 	• •	 .1	.6st.
For	ton	of	mattes,	lak	oor.	 		 .0	.50

No. 10.—3d Fusion for Black Copper and Thin Mattes.

3d mattes with 73% of Cu.	-265
Bd blk. Cu	547
Scoria with 3% of Cu1100 to	51200
Charcoal,	862k.
Labor	1d.

No. 11.—Purification of the Blk. Cu. The 497 of matters give impure blk. Cu. 64.

For 1t. of blk. Cu.	
Wood	4st.
Charcoal	37k.
Labor	3.50d.
Yield of the fusion.	
Copper	880k.
Scoria of 4%	130k.

No. 12.-Fining in Low Hearth.

Charge	2t.
By ton of blk. Cu.	
Charcoal	1 .016k.
Labor	3.17d.
Rosette copper	890k.
Scoria 22 to 30% of Pb. & 12	0001
to 14% of Cu	220k.

No. 13.—Refining.

		Weight.	Coke.	Wood.	Charcoal.	Labor.
1.	Roasting	1000		0.026		0.15
2.	1st fusion for mattes	1000	501k.		12t.	1.67
3.	Roasting mattes	675		0.170		0.08
4.	Fusion for concentration	675			466	0.67
5.	Roasting of No. 4	497		0.250		0.10
6.	Ist Fusion for blk. Cu thin mattes	497			330	0.59
7.	Roasting 1st thin matte	224		0.134		0.062
8.	2d fusion for blk. Cu. & thin mattes.	224			147	0.210
9.	Roasting the 2d thin matte	90		0.114		0.045
10.	3d fusion for blk. Cu. & thin mattes.	90			78	0.090
11.	Purification of blk. Cu	64		0.256	2	0.224
12.	Fining.					
	Blk. Cu. from No. 156)					
	2d blk. Cu51	175			ללו	0.554
	3d "49 (110			111	0.004
	Blk. Cu. for 3d mattes19					
	Rosette Cu. produced 155k.		501k.	0.980st.	1.212k.	4.443d.

TREATMENT AT MANSFELD. Treatment.

Quartzose ore at Sangerhausen. Schistose ore at Mansfeld and Eisleben. Ores with Blende and Galena at Kupferkammerhütte.

Treatment at Sangerhausen. No. 1.—Roasting in 1850. Length variable.

Quantity of ore treated	2400t.
" calcined in 10 weeks	150t.
Labor required for treatment.	2904d.
Length of campaign	2 90d.

No. 2.— Cost of 9 Piles, in 1850.

Wood	9.60t.
Labor by ton,	4.80d
Labor 0.17 at 0.20	0.17
Wood 0.004t. at 15	0.06

Cost of calcining 1t.... 0.23f.

No. 3.—Fusion for Mattes. Charge.

Quartzosc ores not roasted	33.34
Calcareous " " …	8.33
Roasted Schistosc ores	58.33
Scoria	31.33
Fluor	38.38

Charge containing 8.25t. of ore.	14t.
Fucl used	2.90

No. 4.—Quantity Treated in 24h.

For 1 Ton of Orc. Labor, 1.21d. at $0.20.\ldots 2.42$ Charcoal, 0.35t. at 41.60.....14.56 0.35t. at 4.10..... 4.93 Fluer, Blast and repairs 0.41

22,33

Fuel $\frac{1}{3}$ charcoal & $\frac{2}{3}$ coke. Pressure of the blast, 0.03m. to 0.04m. Hg 66 66 Heat 170° to 180°

No. 5.—Labor Required. At the throat, 1 laborer and 1 aid.

66 bottom, 1 founder & 1 laborer.

Treatment at Mansfeld and Eisleben. No. 6.—Fusion for Matte in a Shaft Furnace. Charge. Roasted ore 86.66

10000000	\sim	-	0		•				•	•				٠			۰	•	٠	٠	۰	00.00
Fluor	•	•	•	•				•	•			•				•						6.66
Scoria	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	6.68

100.00

In 24 hours. Charge containing 12t. of orc. 14t. Yield of the matte, 11% of ore. Matte contains 45% of Cu. & 300g. Ag. per 100k.

No. 7.—Expenses of Operations.

Charcoal,	0.07	at	41.60	• •	43 - 0	• •	• •	2.912
Coke,	0.11	at	58.	• •	• •		• •	6.380
Labor,	0.833	at	2.	• •	• •			1.666
Fluor,	0.075	at	14.10		• •	• •		1.050
Repairs.		• •		• •	• •	• •	• •	0.292

12.300

Treatment at Kupferhammerhü	ttc.
No. 8.—Fusion for Mattes.	
Charge.	
Roasted ores, from 100k, of ore.	86.66

T

Fluc Scor	er, . cia,	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	$\begin{array}{c} 4.60\\ 8.74\end{array}$
																							100.00
0									~														0.00.

Ores trea	ited in 24h	9.60t.
Labor,	0.04	2.02
Coke,	0.12 at 58	6.96
Fluor,	0.046 " 14.10	0.648
Repairs.		0.362
-		

10.05

From 7,640t. of ore, 860t. of matte or 11% obtained.

No. 9.—Roasting Stalls.

Height	2m.
Width	2m.
Depth	2.50
Time for 1st fire	12d.
" for 2d fire12	to 15d.

No. 10.—Fusion for Mattes.

2.5 months. Length of campaign, Amount of ore treated, 7000t. Matte obtained in 2 campaigns, 860t.

No.	11	Roasting	9 1 <i>t</i> .	of M	latte.
Charcos	al, 0.0	16 at 41	1.60.		0.665
Wood	and b	rush, 0.0	05 at	15.5.	0.775
Labor.			• • • • •		0.56

2.00

By Ton of Ore.

Charcoal, Wood and brush.	0.0017	$\begin{array}{c} 0.070\\ 0.082 \end{array}$
Labor,	0.03	0.060

No. 12. - Cost of 2d Fusion for 1t. of Roasted Matte.

Labor,	1	.4	8					•								-2.96
Coke,	0.	$\cdot 2$	7	8	t		•		•						•	16.12
Repairs.	• •	•		•	•	•				•		•	•	•		0.74

Cost by Ton of Ore.

Labor,	().]		5	5	•	•	•				•	•	•	•	•	•	٠	•	•	•	0.310
Coke,	(),	. ()?	2	9	•	•	•	•	•	•	•	•	•	•				•	•		1.682
Repairs.			•	•	•		•	•	•		•		•	•	•				4	•	٠	•	0.075

2.067

19.82

Quantity of mattes produced... 5.320t. 66 of scoria ... 1.350t.

No. 13.—Cost of all the Operations for One Year.

Labor, 1.365 at 2	2.610
Coke, 0.149 at 58	8.642
Charcoal (roasting) 0.0017 at 41.60	0.070
Wood and faggots, 0.0093	0.144
Fluor, 0.046 at 14.10	0.648
Repairs	0.437

Expenses for 1t. of ore.....12.551

TREATMENT AT AGORDO.

Treatment.

Dry way.

- 1. Fusion for mattes in a shaft Furnace.
- 2. Roasting the matter in stalls.
- 3. Fusion in a shaft furnace.

Products.

- (a) Rich scoria.
- (b) Rich matte.
- (c) Blk. Cu.

4. Fining the blk. Cu. in a low hearth.

Wet way.

- 1. Roasting in piles.
- 2. Lixiviation.
- 3. Cementation.
- 4. Crystalization. 0.212

No. 1.—Prices of Fuel at Agordo.

Wood,						٠	•			10.52
Charcoal,		•		•	•					57.50
Peat,	•									11.20
Labor,	•		•							1.20
,										

No. 2.—Dimensions, &c., of Piles at Agordo.

Quantity of ore	200t.
Number of piles	60 to 65
Wood used	5.20c.m.
Width of pile	6.00
Length "	variable.
Height "	2.50
Width of upper part	3m.

No. 3.—Details of Styrian Kiln.

Length	20.0
Interior width	7.00
Height	3.00
Thickness of walls	0.75

No. 4.—Cost of Roasting.

Ore treated	0,000t.
Number of piles	63
Men for making pile	7
" taking the sulphur	1
Wood, 0.026c.m. at 4.02	0.104
Labor 0.147d. at 1.30	0.191
	•
Cost of roasting 1t	0.295
0	

Large pieces.

No. of children for breaking	120
Pay of children per day	0.50
100k. of ore give 13.26k. concentrat	ed orc
Labor, 2.491d. at 0.50	1.245
· · · · · · · · · · · · · · · · · · ·	
Cost of breaking for 1t. of ore.	1.245

No. 5.—Details for Sulphur.

Two mcn occupied at 6.35 per ton of S. Amount produced, 45 to 50t.

1853. 50t. of S at 187

Wood,	0.712c.m.	at 4.02	$\begin{array}{c} 2.886\\ 6.358\end{array}$
Labor,	3.40	at 1.87	
Cost of	1t. of S		9.244

No. 6.—Details of Lixiviation	<i>)</i> n.
-------------------------------	-------------

Ore roasted 15,000t. Roasted earth, resulting 13,700t. Ore passed in 3 lixiviations.. 40,000t. Water at 25° to 27° produced. 3,000c.m. Number men for 13,700t. of roasted ore or 40,000t. of material handled, 30 Labor for 1t. of ore, 1.34d..... 1.608

No. 7.—Details for 1853.

Quantity	of liquid t	reated		3000c.m.
Cast iron	of 72t. at	224f.]	6128.
Wood	981c.m.	4.02		3943.62
Peat,	482c.m.	2.24		1079.68
Charcoal,	643c.m.	9.16		5889.88
Labor,	2400d.	1.20		2880.
Repairs, b	rooms, &e			400.

30,321.18

No. 8.—Amount Produced.

Rich	eement	at	50 to	60%	61.494t.
Poor	66	66		10%	15.984t.

77.478t.

Or at a mean yield of 50% 38.739t. of Cu. Cost of ton..... 2.0214

No. 9.—Crystalization Tanks.

Length	•					•	•		•					•	•		3	to	3.50
Width	•	•		•															2m.
Depth .		•	•	•	•	•		•	•	•	•	•			•				0.50

No. 10.--Analysis of the Crystals. ḟе

Fe S	49.73
₩e S	3.20
Żn 🖁	4.55
Ĥ	42.52

Ĥ

100.00

Pure crystals with 7% of H have 55% of FeS

No. 11 Cost of Crystalization	ı.
Number of men	2
Labor	1.10
Packing and freight	3.60
Cost of 1t. of crystals	4.70
(1.) Fusion.

No. 12.—Charge.

Concentrated ores	60.198
Rich ores	11.445
Cement	6.919
Crasses	4.770
Scoria	15.503
Red sandstone	14.540
Charge in 24h	16t.

No. 13.—Treatment of 1600t.

Rich scoria and ores	1600t.
Number of campaigns	9
Length of campaigns	20d.
Charcoal	621t.
Red sandstone	270t.
Labor	1440d.

No. 14.--For One Campaign.

Ore treated in	one ca	mpaig	n, 1,777.778t.
Charcoal,	69t.	at 57.9	253950.25
Labor,	160d.	" 1.	50240.00
Red sandstone	, 30t.	``15	450.00
Repairs			

Cost of one campaign.....5140.25f. Cost for 1t. of ore...... 3.061f.

No. 15.—Quantity Treated.

Concentrated ores	257t.
Rich ores	19.60t.
Mattes produced (pr. campaign).	.96t.
" (pr. year)	896t.
Yield of mattes24	to 25%

No. 16.—Composition of the Matte.

Cu .		 	 	 		24.10
Fe &	Zn.	 	 	 	• •	49.60
S		 	 	 	• •	26.30

100.00

(2.) Roasting.

No. 17.—Roasting Stalls.

Number of fires	5
Length of stalls	3.60m.
Width "	2.60m.
Height "	1.80m.
No. of stalls arranged in 2 rows.	24
Charge in each	8t.
Time required14	to 15d.

No. 18.—Expenses for 1 Year.

Wood	• • •		 . 264t.
Peat	• • •	• • • • •	 . 113t.
Charcoal	• • •	• • • • •	 . 96t.
Labor, at 1.10.			 . 2952d.

For 1t. of matte.

Wood,	0.220 at	10.52	 2.315
Peat,	0.094 "	11.20	 0.828
Charcoal,	0.080 "	57.25	 4.580
Labor,	2.46d. "	1.10	 2.706
Cost for 1	t. of ore		 0.852

10.429f.

(3.) Fusion for Black Copper.

No. 19.—Charge.

Roasted	mattes						•						95.146
Refining	crasses												2.257
Scoria			•		•			•				•	21.000
Red sand	lstone.	•		•		•	•		•	•			2.000

No. 20.—Details for 1853.

Length of campaign	10d.
Amount fused	to 80t.
Quantity in $24h$	to 8t.
Quantity treated	1200t.
Number of campaigns	16
Mean of each	75t.

No. 21.—Expense of Treatment.

Charcoal,	2368t.	at 57.25.	 13.5568
Labor,	80d.	at 1.50.	 120.00
Repairs			 400.00

-	OM	$\sim \sim$	0	0	n
- 1	ЧĽ.	15	- 6	×.	t i
	11	1 ()	~U	10	1.

Result.

Blk. Cu.	at 94%.					.11.85t.
Matte at	60%	• •	 	• •		.11.55t.

23.43t.

(4.) Fining and Refining.

<i>LVO</i> .	22 Expense.	
Labor, 5d.	at 2.00	10.00
Chareoal, 1.30	" 55.25	
Repairs.		
*		

For 1t. of (Cu			59.73f.
" " с	ore			1.162 f.
Amount of	rosette Cu.	in a	year	240t

No. 23.— Expense for 1t. of Ore.

Labor,	3.2203d	 	 2.931
Wood,	0.0526t	 	 0.552
Peat,	0.0141	 	 0.1578
Charcoal,	0.0795	 	 4.5500
Cast iron,	0.048	 	 1.0752
Flux, repa	airs, &c.	 	 1.2885

10.5545f.

ENGLISH METHOD

PURE ORES.

119.45f.

Treatment.

- 1. Roasting the ore.
- 2. Fusion for bronze mattes.
- 3. Roasting the bronze mattes.
- 4. Fusion for white mattes.
- 5. Roasting the white mattes, & fusion for blk. Cu.
- 6. Fining and refining.

No. 1.—Assau of the Ore.

Small.	Medium.	Large.
a b	a b c	a b e d
c d	def	e f g h
a b	a	
c d		d taken away.

No. 2.—Moisture in Ores.

	Max.	Min.
Rieh ore,	15%	6%
Cement from Cuba,	25%	,
Mattes Chili, 3	to 11%	200
Ordinary English, 5	to 9%	1%

(1.) Roasting the Ore. No. 3.—English Furnace for Roasting . Cu. Ores.

Furnace with 2 hearths.	
Length less the fireplace	9.15
Width	4.20
No. brieks with chimney	50000
Labor of mason	156d.
Boy to attend him,	156d.
Laborer	48d.
Construction takes	20d.
Tran bracing (blacksmith	7d.
aid	7d.

No. 4.—Large Reverberatory F	urnaces.
Length6.10	to 6.86
Width	to 4.57
Fireplace, length	1.90
" width	to 2.68
Height at fireplace	1.80
ehimney	1.37
Length in the middle4.27	to 5.25
Width " "3.35	to 3.65
Thickness of sides	0.60
" " at fireplace.	0.63
" of end "…	0.23
No. of fire-bricks	8500
Ordinary "	3500
" red bricks	3000

Labor for Construction.

Mason		d.
Aid	60	d.
Laborer		d.
Furnaee ean be built	in 10	d.
Relation of t	he Parts.	

Surfaee	of fireplace	.1.08	to	1
66	hearth	. 16	to	15
Flues		.0.24	to 1	$\operatorname{or} \frac{1}{5}$
Volume	of laboratory	. 800	to	7.5

No. 5.— Working of the Furnace.

Charge in double furnace	4t.
" single "	3t.
Charge remains on upper hearth	4h.
" lower "	6h.
Coal per week	7t.
Charges of ore per week	24
Weight of ore	100k.
No. of weeks' work in a year.48	to 50
No. of men, day 4, night, 4.	Sd.

15

	010 20/0	010 070
Cu	10 (8 (
S	15 to 20	23
Š i	45 to 55	45
Fe	20 to 25	24

Results of Roasting	•
Roasted (Ore.
Cu 8	
m S=2	
S $10 \log$	t.
0 5.4)	<u>نا</u>
Fe 12 5	тe
S 11)	- T-2Q3
Fe 2 $\stackrel{>}{,}$	re.S.
Si 45	
	Results of Roasting Roasted C Cu 8 S 2 S 10 los O 5.4 Fe Fe 12 S 11 Fe 2 S S 11 Fe 2 S 145

No. 8.—Expense of Roasting.

	~		v	v	
Transportation	of	ore.		/	0.230
Coal, 0.123t					0.707
Labor, 0.35d					0.927
Repairs					0.158
*					

(2.) Fusion for Bronze Mattes.

2.022

No. 9.—Furnace for Fusion for	Dronze
Mattes.	
	Ratio.
Fireplace	1
Hearth	4.5
Flue 0.12	$\frac{1}{16}$
Chimney 0.42	$\frac{1}{4}$ to $\frac{1}{5}$
Volume of laboratory4.09	2.5
Fuel used, per h140	
Large furnace.	Ratio.
Fireplace 1.7 to 2	1
Hearth	9 to 8
Fuel 170k pr h or 25 to 30t, pr.	week.

	No. 10Sand used	for E	Teart	h.
	Blown.	Ref	fracto	ory.
		(1)	(2)	(3)
Si	86.	92	92	93
Fe	1.2	11	8	7
Ca	5.7 \			
Mg	.0			
711 Č	ůr 45			
0+1	1.0			

Best	fire	-brick			e						. 8	10	4
Ordin	ary	brick							•		.13	27	1
	v												
											21	37	ă

No. 12.—Charge for Fusion for Bronze Mattes.

		Large
		furnace.
Roasted ores,	0.900	1.800
Unroasted ores,	0.100	1.300
Fluor,	0.050	
Scoria of same operation,	0.070	.400
(4% 0.107)		
Scoria, $\langle 5 \text{ to } 7\% 0.064 \rangle$.180	
(9%0.009)		

1.300t. 3.500t.

```
Mixture of fuel is \frac{1}{3} bituminous, \frac{2}{3} dry coal.
```

Thickness of fuel on grate... .30 to .40 Furnace worked by 2 men. 2 shifts per 24h.

No.	13.—	Comp	osition	of	Matte.	
-----	------	------	---------	----	--------	--

	Matte.	Matte.	Chalcopyrite
Cu	30 to 36	33.7	34.6
Fe	35 " 30	33.6	30.5
S	30 " 30	29.2	34.9
Ni & Co		1.	
Sn Sb As		1.	
Scoria,	1 " 2	2 1.1	
		99.6	100
N	o. 14.—1	Roasted	Ores.
Cu		10.25	to 11.
Fo		34	4 30

Fe	34	66	39
S	7.5	66	10.8
Š i	55	66	65

Product.

ronze]	Mattes	3.	1	Sco	ria	5.
10.25	to 11	•	Fe	24	to	27
10.25	" 15	•	Si	55	\mathbf{to}	65
10.2	" 7					
Sc	oria g	enera	ally.			
Ťе	34.62) pë	•			
Si	65.38	5 no	1			
	ronze 1 10.25 10.25 10.2 Sc Fe Si	ronze Mattes 10.25 to 11 10.25 "15 10.2 "7 Scoria g Fe 34.62 Si 65.38	ronze Mattes. 10.25 to 11. 10.25 "15. 10.2 "7 Scoria genera Fe 34.62 Ši 65.38 Å	$ \begin{array}{c} \text{ronze Mattes.} & 1\\ 10.25 \text{ to } 11. & \text{Fe} \\ 10.25 & 15. & \text{Si} \\ 10.2 & 7 & \\ & \text{Scoria generally.} \\ \hline \text{Fe} & 34.62 \\ & \text{Si} & 65.38 \\ \end{array} $	conze Mattes.Scott 10.25 to $11.$ Fe 24 10.25 " $15.$ Si 55 10.2 " 7Scoria generally.Fe 34.62 Si 65.38	conze Mattes.Scorias 10.25 to 11 .Fe 24 to 10.25 " 15 .Si 55 to 10.2 "7Scoria generally.Fe 34.62 Si 65.38

No. 15.— Composit	ion of Scoria.
Si	30.00
Quartz,	30.50
ře [′]	28.50
Ψl	2.90
Мg	0.60
Ni & Co	1.40
Ċa	2.00
CaFl	2.10
Cu	0.50
${ m Fe}$	0.90
S	.60
	100.00

No. 16.—Cost of Treatment for 1t. of Ore.

Coal,	0.78 at	6.30	4.95
Labor,	0.64d. "	3.60	2.31
Fluor,	0.051		0.64
Sand and bricks,	1		0.55
Repairs,	\$	• • • • • •	0.00
- · ·			

	8	3.	4	5	1

(3.) Roasting the Bronze Matte.No. 17.—Expense of Roasting.

			-		-
Fuel use	ed in a v	veek.			7t.
No. of r	nen, (da	y 2, ni	ght 2)	•	4d.
Pay of	men pei	week	C	. 23	to 25f.
No. of c	harges	66		,	6
]	For 1t. o	f Broi	nze M	attes.	
Coal,	0.410				2.38
Labor,	0.67				2.49
Repairs					-0.13

5.00

No. 18.—Composition of the Roasted Matte.

114 W	
Cu	33
Fe	33
S	33

(4.) Fusion for White Mattes. No. 19.—Charge.

Roasted bronze mattes	1.000
Rich quartzose ores	.435
Fining scorias	.158
Hammer scales	.012
Flux and debris of furnaces	.107

1.707t.

1	2	3
Roasted matte2400	2300	2400
Rich unroasted ore.2400	2400	2000
Refining scorias 400	500	800
5200	5200	5200

No. 20.—Composition of the Scorias.

	-	
Si		35
Ėе		58
Ċu		1
Other	bases,	6
		100

No. 21.- White Mattes.

	Poor.		Rich.	
Cu	65	72	70	83
S	23	21	30	17
Fe	9	5		
Scoria,	3	2		
	100	100	100	100

No. 22.-Expense of Fusion.

Coal,	.95						q						5.89
Labor,	.65					•							3.55
General	ex	(p	en	IS	es								0.79

10.23f.

Charge.

Roasted Oxydes.	matte	s	••••	••••	••••	$0.697 \\ 0.303$
•						
						1.000

(5.) Roasting the White Matte.

No. 23.—Dimensions of the Furnace.

Width of fireplace 1.3	80
Length of <i>"</i> 1.4	-0
Greater axis of hearth 4.3	80
Smaller " " 3.0	0
Length of bridge 2.0	0
Width of hearth at flue 0.9	0
Height of chimney18.0)()
Width of working door 0.3	33
Height of " " 0.2	25
Width of charging " 0.5	0
Height of " " 0.3	35
Taphole	1
·	

No. 24.—Relation of the Parts.	No. 28.—Relation of the Parts.
Surface of fireplace, 1.82 1	Fireplace 1
" of hearth, 8 to 9 4.5	Hearth 4
Section of flue, $0.12.\ldots$.67	Chimney 0.92
olume of laboratory 4 to 5c m 2 to 21	Volume of laboratory 1 to 2.5
	No. 29.—Select Copper.
No. 25.— Composition of the Blk. Copper.	Cu 99.80 to 99.85
	No Phor Sh Traces of O and A g
Fe = 1 0.5	
S 1 0.3	No. 30 Unsaleable Copper.
Scoria, 1 0.5	Cu
	\mathbf{Fe}
	.01
No. 26.—Expense of the Operation.	No. 31.—Rosette or Cake Copper.
Labor $0.4d$ 1.75	Cu 99.60 99.70
Repairs	Fe .1015
1	$\begin{array}{cccc} Pb & .15.\ldots & .10 \\ Cb & 0.6 \end{array}$
5.84	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(6.) Fining and Refining.	, 99.91 99.99
No. 27.—Dimensions of the Furnace.	No. 32.—
Length of fireplace 1.40	Coal, 0.427 2.66
Width of " 1.30	Labor, 1 3.14
Length of hearth at the middle 2.50	Anthracite, 0.060 0.90
" " at the bridge 2.00	Repairs 0.86
" " at the flue 0.66	
Height of arch " " 0.60	8.43
IMPURE	ORES.
Treatment.	(5.) Fusion for Blue Mattes.
1. Roasting ore.	No. 1.—Charge.
2. Fusion for bronze mattes.	Roasted bronze mattes 1.392
A Fusion for white matter	Sulph. & carbonate ores 15 to 25% 0.408
5. Fusion for blue mattes.	Sand, scorias, debris of furnaces. 0.203
6. Fusion of scorias for red or white	2.003
7. Roasting the blue matter and fusion	No. 2.—Details of the Fusion.
for extra white mattes.	No of observes per week 99
8. Roasting the matter Nos. 6. & 7, and	For 1t. of Charge
1 usion for purple metal. 9 Reasting matter Nos 4.7 & 8 and	Labor 0.338 at 4.85 1.639
fusion for blk. Cu.	Fuel, 0.706 at 6.17 4.356
10 Fining and refining	Repairs tools &c 0.585

1 -

6.580f.

10. Fining and refining.Nos. 1, 2, 3 & 4 are the same in both processes.

No. 7.—Analysis of the Products.

	A OI AU OI OIU.	
Labor,	0.1552	.0.7524
Fuel,	0.2824	.1.7424
Repairs,	, tools, &e	.0.2340
÷ /	· ·	
		2.7294f.
1	00t. ore yield 25t. mat	te.

For 1t of Ore

	1	Vo.	3.—	Com	position	of Sc	oria	ď	Matte	es
--	---	-----	-----	-----	----------	-------	------	---	-------	----

Seoria.	Matte.	
Si 33 to 35	Cu	56.7
Fe 55	${ m Fe}$	16.3
	S :	22.
	Ni & Co	1.6
	Sn.As.Sb.	1.2
	Scoria,	0.5
	(18.3

(6.) Fusion of Scorias for Red or White Mattes.

No. 4.—Charge.

Scorias 4, 7 & 8, of 10 to 12%	1.718t.
Quartz. sulphurous ore, 10 to 15%.	.166
Scales and sweepings	.110
Anthracite	.099
Siliea, taken from the hearth dur-	
in a the encuction	0.000

No. 5.—Details of the Operation.

Time for charge, 2t	6h.
No. of operations per week	22
Furn. lasts without repairing hearth	2m.
Flues last " " "	2m.
Furnace lasts	24m.

No. 6.—Expense of the Fusion. For 1t. of Charge.

Labor, Fuel,	0.392	at t. at	4.4 6.1). 7	•••	••	•••	1. 3.	725 492	
Repairs,	tools,	&c.	6	•••	• • •	• •	• •	. 0.	630	
								5.	847f.	

Cost for 1t. of Ore.

If 1t. scoria $= 0.20t$. of ore.		
Labor, 0.0784		.0.345
Fuel, 0.1132	• • •	.0.698
Repairs, &c	• • •	.0.126

Cost per ton of ore.....1.169f.

	Matt	es.
	Rich.	Poor.
Cu	74.6	62.1
Fe	3.1	12.1
Sn	0.3	1.8
S	20.2	22.8
Scoria,	1.1	.7
	99.3	99.5
Bla	ck Copper.	Alloy.
Cu	86.0	66.2
Fe-Ni Co	3.2	28.4
Sn Sb	0.7	2.7
As	1.8	2.0
S	6.9	Trace.
	98.6	99.3

- (7.) Roasting the Blue Mattes & Fusion for Extra White Mattes.
 - No. 8.—Expense of the Operation.

Labor,	0.880d	l. at 2	2.68		 2.165
Fuel, É	0.820t	. at 6	6.15.	• • •	 5.048
Repairs,	tools,	&c.			 0.834
- '	, i				

8.047

For 1t. of Charge.

If 100	Ot. of	ore	yield	40t.	of matte.	
Labor.	0.16	51			0.43	6

	O . T O T	• • • •	•		•	٠			•	٠	٠	•		0.100
Fuel,	0.144		ç										•	1.008
Repairs,	tools,	&c	•	•	•	•	•	•	•		•	•		0.167

1.608

No. 9.—Extra	White Mattes.
Cu	77.5
Fe	2.2
S	20.1
Sb & As	Trace.
	99.8

(8.) Roasting the Mattes Nos. 6 and 7 and Fusion for Purple Metal.

No. 10.—Expense of the Operation. For 1t. of Mattes.

Labor,	0.507 at 2.95	1.495
Fuel,	0.372 at 6.15	2.288
Sand,	brick, repairs, &c	0.491

4.274f.

For 1t. of Ore.				I	Red M	attes.		
If 100t. of ore produce 12t. of	mattes.			ŀ	Caofic	ord.	Swans	68.
Labor, 0.061	0.179		Cu		80.00)	81.1	
Fuel, 0.045	0.276		Ni dr	Co	0.50	, ,	01.1	
Sand, repairs, &e	0.039		INI Q	U0	0.90	,	0.0	
	0.514		re		0.00)	0.2	
No. 11.—Analysis of the Pro	oducts.		S		17.00)	18.5	
Brute Copper.			Seori	a,	2.			
$C_{11} = -97$ 9	ansea. 25					-		
Ni 1.6					100.		99.8	
Fe 0.1	4.8							
	1.6							
AS & 50	0.0							
100.0 9	9.5							
	RES	UME.						
No. 1.—General Details for	each	4. (Charge				4	403k.
Deration.	Matha 1	-	Matte Vield (\cdots	tto.	• • • • • • •	••••*	200 70d
1 Quantity reasted	7001-			<i>J</i> L 1110		• • • • • • •	• • • • •	1070
Quartz used in No. 2			_					
Rich ores in No. 4	122k.	5. (Charge Viele		• • • •	• • • • • • •	2	200k.
	10001		i iela, Amour	00%. nt Fe	· · · · ·	• • • • • • •		20K. 1¢
	1000K.	-			/, * * *		• • • • •	1/0
2.3. Charge		0 (~1					0.01
Yield, 32% (878 × 0.35)	281	6. (Jharge Vield	• • • •		• • • • • • •		120k.
	42%		1 leia.	• • • • •				114
No. 2.—D	etails for	\cdot all t	the Op	eratio	ons.			
of	Charge. W	Coal. 't. Pric	La ce. Days.	bor. . Cost.	Repair Cost.	s. Flux. Wt. Cost	. Wt.	ood. Cost.
1. Roasting	790 - 9	7 0.5	5 0.35	0.92	0.15			
2. Fusion { Ore, 88 Propose mettor 700	878 680) 4.3]	1 0.56	2.03	0.48	44 0.50	;	
3. Roasting	281 11	5 0.67	7 0.19	0.70	0.04			
[⊥] Eusion ∫ Mattes, 281	403 380	2.36	3 0 26	1 19	0.32			
(122)	100 100		1 0.00	1.72	0.02			
5. Fusion for Dik. or Dister Uu. 6. Fining & refining	120 120 120 000	0.0.73	± 0.08 8 0.12	-0.30 -0.38	0.07		31-	0.16
o. Finning to Tenning								
Copper produced1142	1459	2 9.06	6 1.86	5.80	1.16	44 0.50	3 3k.	0.16
				For	1 Toi	ı of Ore	•	
No. 3Cost of 1t. of Merchant	Copper.	Spe	eeial ex	pens	es		16	6.68
Coal 12.13	79.46	Ger	ieral ex	c.inte	resto	n eapital	,&c. 3	0.00
Labor, 13.68	. 50.87						40	3 68f
Repairs, bricks, &c. 610k	. 10.77	Cap	oital re	quire	d per	It. of C	u. a	J. OOL
Flux, 0.39	. 4.91	a	year.		•••••			250f.
wood, 0.025	. 0.88	Rol	ling ca	pital	• • • • •		1	000f.
	146.89						1	250f

CALCULATION FOR THE CONSTRUCTION No. 1.— Legal interest in England	OF WORKS FOR THE ENGLISH MET Commission & discount for time(4) Freight on ore Profit of 5%	HOD. 14.25 32.00 1.25
5%		60.00
Capital for 1t. of ore	Oftener eounted	65.00
28.5 at 5% = (1) 1.42	No. 2Furnaces Required for Tre	atina
Interest on account risk 4%	47 000t and 10 000t of Ore a Y	ear.
Capital for 1t. of ore 1000×0.114 114.	11,0000. and 10,0000. of 010 a 1	
Interest on 114 at 4% (2) 5.76	47,000t. 10	,000t.
Other general expenses \dots (3) 5.32	Impure Ores. Pure	Ores.
Discounts added for time 3%	Oper. No. 1. 10 Oper. No. 1	. 5
Commission 2%	1 $1 $ $1 $ $1 $ $1 $ $1 $ $1 $ 1	. 8
	<i>и и 3.</i> 8 <i>и и 3</i>	. 4
5%	" " 4 . 5 " " 4	. 3
If Cu. is worth 2500, $5\% = 125$	" " 5. 2	
125×0.114 is for the ton of ore (4) 14.25	<i>" "</i> 6. 2	
Resumé.	" " 7. 1	
Interest on capital at 5% (1) 1.42	" " 8. 1	
Interest on rolling capital 4% (2) 5.76	<i>" "</i> 9. 4 <i>" "</i> 5	2
Other general expenses, (3) 5.32	"10. 2 " "6	. 1
Total general expenses. 12.50f.	16	23

MIXED METHOD.

Treatment.

- 1. Roasting impure and sulphrous ores in a reverberatory furnace.
- 2. Fusion of No. 1 with pure ores in a shaft furnaee.
- 3. Roasting in stalls or a reverberatory furnaee according to the price of fuel.
- 4. Fusion of No. 3 in a shaft furnace, with rich and pure oxydes, for blk. Cu.
- 5. Fining and refining in a reverberatory furnace.

TREATMENT IN RUSSIA.

(2.) Fusion in the Shaft Furnace. No. 1.—Charge.

Sulphur on 0.660 $1t. Co$	u	0.039
Scorias of blk. Cu.	0.115	0.100
Rieh seorias of blk. Cu.	0.140	0.025
Debris of Furnaces,	0.015	0.005

No. 2.—Expe	ense of Treatmen	t.
Chareoal,	0.413	4.07
Brasque,	0.020	0.14
Refractory matte,	0.033	0.15
Labor,	1.50	1.54
Transportation		0.21
Necessaries	• • • • • • • • • • • • • •	0.22

6.33f.

 No. 3.— Composition of the Blk. Cu.

 Cu
 97 to 98.

 Fe
 2.

 S
 0.4

100.4

Cost per ton......13.91f.

No. 5.— Cost Treatment for 1t. of	Ore.
First fusion	6.33
Fusion of blk. Cu	1.53
Fining and refining	1.72
Repairs, &c	3.90
	13.48

No. 7.—Expense	of	Mixed	Method.
----------------	----	-------	---------

Roasting Fusion	Wood. 0.07 6.00	Labor 0.35 3.00
	6.07	3.35

No. 8.—Comparison.

COMPARIS	ON OF	METHODS.	
No. 6.—Expense	of O	rdinary 1	Method.
. W	Tood.	Charcoal.	Labor.
Roasting mattes,	1.5		3.00
Fusion for bl. Cu.		0.500	2.75
Fining,		0.150	0.60
	1.50	0.650	6.35

Ordinary 1	neth	od			• • •		.14.65
Mixed	• • • •	• •	• • •	• •	• • •		.11.23
Difference		• •	• • •		• • •	• • • • -	. 3.42f.

TREATMENT OF OXYDES OF COPPER.

TREATMENT AT SZASKA. No. 1.— Treatment.

- 1. Fusion of the ore for matters.
- 2. Roasting the mattes.
- 3. Fusion for concentration.
- 4. Roasting concentrated matters in 10 fires.
- 5. Fusion for black copper.
- 6. Fining the black copper.

No. 2.- Charge.

· · · · ·	
Oxydes at 1.9% of Cu	1000
Pyrites at 0.5% "	207
Scorias fr. blk. Cu. at 0.75% of Cu.	5
Limestone at 0.75% "	109
Height of the furnace	6m.
Quantity of mattes	18%
Yield of the mattes8 to	14%

No. 3. – Fusion for Concent	ration.
Quantity of mattes produced.	13%
Yield of the matter	30 to 35%

No. 4Resu	mé of all	the Opera	tions.
-----------	-----------	-----------	--------

Weight.	Wood.	Charcoal.	Labor.
 1000		600k.	1.28
 180	0.10Sst.	0.5	0.20
 180		108	0.22
 57	0.196	1	0.15
 57		37	0.06
 . 18		14	0.10
		1	

123456

0.304st. 760.5k. 2.01d. Quantity of rosette Cu. produced, 14k.

Loss in C	u		25%
Charcoal,	660k. a	at 10	7.60
Wood,	0.304st. a	at 1.20	0.36
Labor,	2d.		2.00
			9.96

No. 5.—Expense.

TREATMENT AT PERM.

No. 1. - Charge.

Orc of 3% by weight]
Dolomite "	0.30
Fuel,	0.30
Quantity of blast per m	5 to 6c.m.
Quantity smelted in 24h	3 to 4t.
Pressure of blast0.03 to 0	0.04 of Hg.

No. 2.—Composition of the Black Cu. and Cast Iron.

Black Cu.	Cast	Cast Iron.			
Cu 94.0 Fe 4.5 Scoria, 1.5 100.00	Fe Cu Mn C Si	83 10 3 3 1			
		100			

No. 3.—For 1 Ton of Ore. Charcoal, 0.700 6.37 Dolomite, 0.300 3.00 Labor, 2.28d 2.52 Repairs 96	No. 9.—Expense of Fining. Labor, 6d. at 1.20
12.85	For 1t. of blk, Cu
No. 4.—Products in One Campaign. Blk. Cu. in 6 furnaces	No. 10.—Refining.Each operation3t.No. of operations in 24h
No. 5.—1 Furnace Produces. Blk. Cu. 201.6 "from east iron. 8.4 210 Cast iron with Cu 153.6	No. 11.—Cost of Refining. Chareoal, 807
No. 6.—For 1 Ton of Cast Iron. Labor, 4d. at 90	Cost of treating 1480t. of blk. Cu. 12.90 For 1t. of blk. Cu
Cost of re-fusion	Fusion in eqponentiation 0.22 Fining 0.233 Refining 0.238
No. 7.—Expenses.	Speeial expenses
Cost of re-fusion for 1t. of ore 0.219 Treatment in shaft furnaee12.85 13.069 No. 8.—Fining Furnace.	21.95In the Ural Mts. 1t. of Cu. is worth2500The ton of east iron120Reduced to 1t. of ore this gives.66.35Deduct cost of treatment21.95
Charge blk. Cu. at 80 to 95%. 3.200t. Time for fusion	44.40 This amount must eover the profits of the works, mining and transporting the ore.
TREATMENT IN	THE WET WAY.

USE OF THE SULPHUROUS ACID.

No. 1.—Sulphur Lost at Swansea.

Ores smelted per w. at Swansea, 5000t. Worth per year.....12,600,400f.

4

No. 2.—Treatment.

- 1. Simple condensation of S or S in water.
- Manufacture of S in lead enambers.
 Reaction of the S on metallic oxydes to produce sulphates.
- 4. Converting aluminous shales into #15

25

No. 3.—Treatment in the Wet Way.

- Roasting, preparation, and washing sulphurous ores.
 Treatment of oxydes by aeids.

 a. The aeids (S or HCl) are purehased.
 b. The aeid (S) is made from the ore.

 Precipitation of the copper.

 a. By HS or a polysulphuret.
 b. By iron (cementation.)

No.	$4E\iota$	pe	nse	of	Ce	em	ent	at	ion	l.
Labor,	0.56	at	2f	Ê.				• •		1.12
HCl "	22	at	35	• •	• •	• •		••	• •	0.77
Fe	3.5	\mathbf{at}	0.	15				• •		0.52
Repairs		• •		• 1	• •				• •	0.07
Transpo	ortation			• •						0.52
-										

3.00

No. 5.—Details of the Operation.

Amount of ore treated per mo.	550t.
No. of men required	14
Fime required for 100 of Cu	140
Amount Cu. from 1t. of ore	5.4k.
Merehant Cu. obtained	2.7k.
2k. of Cu. is worth	6.75f
Cost of treatment	3.42

TREATMENT OF ORES OF LEAD.

(1.) ROASTING AND REACTION.

CARINTHIAN METHOD. 1.

REVERB. FURNACE. $\begin{cases} 2. \\ 3. \end{cases}$ FRENCH OR BRETON METHOD.

English, Spanish or Belgian Method.

SHAFT FURNACE.—4. SCOTCH OR AMERICAN METHOD.

(2.) ROASTING AND REDUCTION.

IMPURE ARGENTIFEROUS QUARTZOSE ORES & VILLAS. CARTHAGENA. AGUILAS. WITHOUT ZnS

POOR ORES WITH PYRITES, CHALCOPYRITE, &C.-LOWER HARTZ.

(3.) PRECIPITATION.

REVERB. FURN.—VIENNE IN FRANCE. SHAFT FURN. -SILESIA, CLAUSTHAL, ALTENAU, LAUTENTHAL.

(4.) • MIXED METHOD.

PRZIBAM. PONTGIBAUD.

STOLBERG. BIACHE.

CORPHALIE. SCHEMNITZ.

No. 1.—Order of Fusibility and Volatibility.

Fusibility.	Volatibility.
Lead.	Galena.
Subsulphuret.	Subsulphuret.
Galena.	Lead.

No. 2.—Reactions. $PbS+3 \dot{P}b\ddot{S}=4 \dot{P}b+4 \ddot{S}$ (1) $\begin{array}{ccc} 100 \mbox{ of pure Galena roasted gives.} \\ {\bf Pb} & 66.3 \end{array}$ PbS 36.7

103.0

2 Pb+PbS=3 Pb+S(2)PbS + PbS = 2 Pb + 2 S(3) 3 PbS + PbS = 4 S + 4 Pb PbS + 2 PbS = 2 S + PbS + 2 Pb $PbS+2 \dot{P}b=3 Pb+\ddot{S}$

 $Pb\ddot{S}+C=Pb+\dot{S}+\dot{C}$ $\dot{\mathbf{P}}\mathbf{b}\ddot{\mathbf{S}}+2$ C=Pb $\ddot{\mathbf{S}}+2$ Ċ $\dot{P}b\ddot{S}+4C=PbS+4\dot{C}$ PbS+Fe=Pb+FeS

(1.) ROASTING AND REACTION.

1. CARINTHIAN METHOD.	No. 2.—Ar	nalysis of Ore 1856.	at Bleiberg.
Treatment at Bleiberg.	PbS	Ore. 76.	Pb 66.3
No. 1.—Periods in Process.	Р́b С́ ZnS	4. 13.	3.1
1. Roasting.	SbS Ča Č	0.2	69.4
2. Stirring.	Insoluble,	5.0 0.4	
3. Sweating.	26	98.6	

No. 3.—Amount of Gangue.	1
$\begin{array}{ccc} \text{Previous to } 1856 & 1856.\\ \text{Blende,} & 5\% \text{ to } 6\% & 6\% \text{ to } 8\%\\ \text{sometimes } 10 \text{ to } 12\% & 12\% \end{array}$	1 0 1
Limestone, 4% to 5% Calamine, 1% " 2% Pyrites, 1% " 2% 4% to 5% Clay, 1%	2
No. 4.—Charge.	
Charge	•
No. 5.—Analysis of Ores after Roasting	7
3 to 4 hours.	
$\dot{P}b$ 24.5	Δ
Pb $23.3 \rangle_{Pb^2S}$	
$\frac{PbS}{Z=S} = \frac{27.7}{9} \int \frac{100S}{S}$	
$\begin{array}{ccc} \text{ZnS} & 06.9 \\ \text{FeS} & 02.2 \end{array}$	
Ča 04.2	
Ba S 03.4	
Clay, 02.0	
103.0	
No. 6.—Ores roasted in a Furnace with a	\$
12b 18b 24b 20b 26b	λ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
PbS 2.4 3.6 12.5 26.0 14.0)
PbS 89.0 79.2 66.5 29.0 12.1	
Pure PbS & FeS ² PbS upper PbS in Small Hearth	•
Pieces.	
P b 66.3 18.3 39.5	
PbS 36.7 38.5 50.8 \dot{P} 22.2 2.1	
$r_{e} = 33.2 = 2.1$ 2nS & 2n = 7.4	
No 7 — Scorias from Treatment of Un-	. λ
roasted Galenas in Shaft Furnace at Clausthal.	L,
Good working. Top Lower Very good	•
3 48.80 $53.90 - 43.13$	
XI 4.62 4.40 4.76	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T
$\dot{\mathbf{F}}_{e}$ 36.0 32.0 37.72	$\frac{1}{M}$
M n 0.30	P

5.30

 $\mathbf{P}\mathbf{b}$

4.20

6.32

No.	8.—Analysis	after	the	Pb	ceases	to
		form.				

×.

a/	
Þb S	14.0
Ϋb	20.2
Pb in grains,	18.3
Fe	01.2)
Zn	03.8
PbS	06.1 \ 0.214
${ m FeS}$	02.9
ZnS	07.4)
Ċa	11.6)
Clay.	02.8 > 0.195
Ba S	05.1
	93.4

No.	9.—Residues at Bleiberg.	Furnace,
	with two fireplaces	

	•	
A	fter 12 h.	After 16 h.
Si	9.4	15.1
Pb	6.83	9.30
Żn	10.5	10.4
Ŧe	6.6	11.6
Pb (metal)	8.15	2.74
Ċa	7.2	8.1
PbS	42.60	18.87
$\mathbf{P}\mathbf{b}\mathbf{\ddot{S}}$	9.5	9.5
C	1.2	0.9
Sb	2.24	3.20

No, 10.—Scorias. Treatment of very Rich Residues at Bleiberg.

Ëi Ča Mg Fe ₽b	$\begin{array}{c}1\\27.85\\1.25\\11.75\\0.33\\47.84\\1.70\end{array}$	$\begin{array}{c} 2\\ 30.55\\ 1.20\\ 15.28\\ 0.28\\ 41.15\\ 2.15\end{array}$
ḟе ́Рb Zn S	$\begin{array}{r} 47.84 \\ 1.70 \\ 4.10 \\ 2.20 \end{array}$	$\begin{array}{r} 41.15 \\ 2.15 \\ 6.25 \\ 2.34 \end{array}$

No. 11—Loss of Pb allowed the Workmen.

Ores	of	82%	loss	allowed	2%
66		70%		66	73%
66		65%		66	10 %
66		58%		66	14 %

No. 12.-Fuel Allowed.

For the charge of 21	.0k.
Wood allowed	0.82st.
Prime given for all saved pr. st.	0.65f.
Charged for excess per st.	0.862f.

Bleiberg, 1856.

Ore yields by assay	67.3
" in treatment	62.7
Wood, 4.70 at 4.31	20.25
Labor, 4.70d at 2.28	10.72
$\mathbf{F}_{\text{overon}} $ § 1.5k. of iron at .50	-0.75
Forging	-1.34
Repairs, &c	10.40
~ /	

43.46

20f. must be added for general expenses.

No 14 Cost of Works with 2 Fu	ernaces.
Cost of the works15,000 to 2	20,000f.
Ore treated per year 30)0t.
For 1t. ore treated 5	50f.
Int. for sinking fund 10%	5f.
Rolling eapital	
Interest at 6% 3,000	
" per ton ore	1 0f.
Cost of direction	5f.
General expenses	20f.

No. 15.—Roasting in a Furnace with a Double Fireplace.

- Charcoal used in 24h.... 1360 to 1400 Ore treated..... 4000 Number of men..... 4
- No. of days' work for 1t. $\mathbf{2}$

Charge of 200k. at 80% PbS yields 55% directly. Residues yielding 46%-32% or 21.12

Total yield, 76.12 Loss, 3.885=5% 80.00

(2.) BRETON METHOD. Treatment at Albertville, France.

No. 1.—Furnace.

No. 2.—Analysis	of Ore.
Galena,	88
Pyrites,	7
BaS	4
Quartz,	T
	100

Pb contained 76%	
Assay $\dots 70\%$	
$\Gamma reatment \dots 64\%$	
$ Iotal loss \dots 12\% $	
Wt. eharged in hopper1260k.	
Loss of moisture 5%	

No. 3A	nalysis	of Matte	,
	1		2
PbS	62.5	55	5.2
CuS	4.0	().4
${ m FeS}$	1.5	e E	3.8
ZnS	0.0	11	1.0
Pb	32.0	(0.0
Scoria,	0.0	29).6
	100	1.0(
	100.	100).
No. 4.—Analysis	of the	White (Crasses.
	U	17.00	
Ϋb		16.00	
В́а		11.50	
${ m \dot{F}e}$		53.50	
S		2.	
		100.00	

No. 5.—Residues	at Pesey, after 16 hours.
· Si	17.0
Рb	13.0
${ m \dot{F}e}$	53.5
В́а	11.5

No.6 .- Expenses.

5.0

Pbs

		1		
Labor,	3.90d.	at 1.92.		7.49
Wood,	2.19st.	at 6.25.		. 13.69
Chareoal	, 20k.	at 50f.	per t.	1.00
Wear &	tear of	tools		7.83
Geneaal	expense	es		10.00
Treatmen	nt of era	asses, &c		7.48
		,		

47.49

No. 7.—Products. 1000k. of ore yields.

Pb Crasses, Cadmia,	at at	$27\% \\ 37\%$	of Pb	$579.76 \\ 200.20 \\ 6.86$
				806.82

Pb from er Pb from or	asses, &c	• • • • • • • •	$\begin{array}{c} & 62. \\ & 580. \\ \hline \end{array}$	Wood Chare
No. 8.—E Wood, 4 Labor, 4	wint of Pb <i>kipenses fro</i> .38st. .12d.	- m 1834 a Charcos Tools, -	642. to 1838. al, 31k. 21.8k.	Labo: Fe Gene
Treatme	nt at Poulls	louen Fi	rance	
Galena Pyrites Blende Quartz Contains Pl Assay Loss by tre	No. 9.—(Ore.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Leng Widt Leng Widt Widt Heigl " No. co Size No. co " Amou
No. 10	Analysis of	White C	Yrasses.	Ordin ehar
Ai	tter 16 h. Aft Huel	goet ore.	Zinc ore.	Time
Š i 24	24.0	29.5	35.6	ne
Pb 30	26.5	2.5	0.4	Fuel -
Fe 12	14.0	64.5	42.0	Labo
Žn 27	27.0	. 1.0	20.8	Latiou
Äl		2.5	1.0	
PbS 4	5.0			
$\dot{P}b\ddot{S}$ 3	3.0			

100

8

No. 11.—Expenses.

Wood,	2.12st.	at	3.66	7.75
Chareoal,	300k.	66	40f. per	t12.00
Labor,	5.33	64	1.03	5.49
Fe ·	25k.	66	400f. pe	er t10.00
General e	expenses		· · · · · · · · ·	10.00

45.24

(3.) ENGLISH METTIOD. No. 1.—Furnace.

Length of hearth
Width "
Length of grate 1.75
Width " 0.33
Width of bridge
Height of arch above fireplace 0.40
" " at flue 0.27
No. of doors on each side 3
Size " 0.27×0.23
No. of brick, refractory
" " common
Amount of fire-clay
Or Newcastle 12 to 14 quint.
Ordinary Wales. 21 "
eharges, Cornwall, 30 "
Time required
Quantity treated in 24h. 4t.
Fuel per ton of ore 500 to 600k.
Labor 1 to 1.4d.

No. 2.—Belgium.

Hearth.				•		•			•	4.50×2.90
Fireplace	•				•					$1.30 \times .40$

3

No.	3.—Dimensions	of R	everberatory	Furnaces.
-----	---------------	--------	--------------	-----------

	Nouvelle Montagne.	Corphallie. 2 fireplaces.	Bleyberg. Old English Furnace.	Bleyberg. 2 fireplaces.	Binsfeld Hammer.	Flintshire.	Derbyshire.	England. (Rivot)	Poullaouen & Holzappel	Bleiberg In Carinthia
Length of the hearth	2.50	4.12	2.70	4.70	3.05	3.00	3.30	3.70	3.33	3.47
Mean width do	1.40	1.80	2.90	2.90	3.05	3.00	3.30	2.40	1.95	1.40
Length of grate	1.50	1.05	2.00	2.00	1.83	1.40	1.40	1.40	1.30	1.35
Width of do	0.40	0.35	0.50	0.40	0.61	0.65	0.65	0.65	0.50	0.47
Width of the bridge	0.40	0.45	0.60	0.60	0.71	0,80	0.35	0.46	0.56	0.30
Height above the grate	0.60	0.50	0.35	0.35	0.30	0.30	0 55	0.50	0.40	0.10
do do hearth	0.25	0.10	0.30	0.30	0.30	0.12	0.40	0.20	0.30	0.10
Height of the arch										
above the bridge	0.20	0.17	0.30	0.30	0.30	0.50	0.40	0.40	0.30	0.25
do above the hearth	0.38	0.27	0.60	0.60	0.55	0.62	0.80	0.60	0.60	0.60
do do at the flue	0.38		0.35	0.60	0.30	0.25	0.25	0.30	0.50	0.60

No. 4.—Analysis of Crasses.

Holzappel Birmingham ore with As after 16h. treating PbS. and Ph. Si 10.0 Si 29.4 Si 27.6 Pb 38.9 Pb 15.6 Pb 11.0 Fe 5.6 Fe 13.4 Fe 26.2 Zn 30.5 Ča 28.4 Zn 3.4 Mn 2.0 Äl 5.7 Mn 4.6 PbS 5.0 PbS 5.5 Äl 1.6 PbS 8.0 PbS 4.0 Ph 15.0 ČaS 4.6 15.0 15.0 15.0 15.0					Kat	tzentha	ļ
after 16h. treating PbS. and Ph. Ši 10.0 Ši 29.4 Ši 27.6 Pb 38.9 Pb 15.6 Pb 11.0 Fe 5.6 Fe 13.4 Fe 26.2 Zn 30.5 Ča 28.4 Žn 3.4 Mn 2.0 Äl 5.7 Mn 4.6 PbS 5.0 PbS 5.5 Äl 1.6 PbS 8.0 PbS 4.0 Ph 15.0 ČaŠ 4.6 15.0 5.4 5.4 5.6	Ho	lzappel	Birn	ringhan	n ore	with As	5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	aft	ter 16h.	treat	ing PbS	s. an	d Ph.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Si	10.0	Š i	29.4	Β̈́i ·	27.6	
Fe 5.6 Fe 13.4 Fe 26.2 Żn 30.5 Ča 28.4 Żn 3.4 Mn 2.0 Äl 5.7 Mn 4.6 PbS 5.0 PbS 5.5 Äl 1.6 PbS 8.0 PbS 4.0 Ph 15.0 ČaŠ 4.6 26.2 20.2 20.2 20.2	Þ b	38.9	$\dot{\mathbf{P}}\mathbf{b}$	15.6	$\mathbf{P}\mathbf{b}$	11.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	İ e	5.6	Éе	13.4	Ѓе	26.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Żn	30.5	Ċa	28.4	Żn	3.4	
PbS 5.0 PbS 5.5 Äl 1.6 PbS 8.0 PbS 4.0 Ph 15.0 ČaŠ 4.6	Йn	2.0	Άl	5.7	Мn	4.6	
$\begin{array}{cccc} \dot{P}b\ddot{S} & 8.0 & PbS & 4.0 \\ & \dot{P}h & 15.0 \\ & \dot{C}a\ddot{S} & 4.6 \end{array}$	PbS	5.0	PbS	5.5	Ξl	1.6	
$egin{array}{c} { m \hat{P}h} & 15.0 \ { m \hat{C}aS} & 4.6 \end{array}$	Pb5	8.0			PbS	4.0	
Ča Š 4.6					Ϋh	15.0	
					ĆaŜ	4.6	

No. 5.—Residues at Grassington, Derbyshire, treating Carbonates with Barytic Gangue.

Рb	34.0
Ýе	3.0
ĊaŜ	10.5
₿aŜ	51.0
CaFÍ	1.5

No. 6.—Residues at Lea, Derbyshire, Treating Carbonates with Barytic Gangue. Without CaEl Bich Scorios

W Itho	ut Uari.	RICH S	cortas.
4.5	2.0	15.4	5.6
	2.0	7.2	8.0
8.0	S.0	16.0	14.7
		17.6	2.0
22.0	9.0	12.0	30.0
22.5	33.0	1.6	5.6
25.0	30.0	22.0	24.4
16.0	13.6	7.2	8.5
	4.5 8.0 22.0 22.5 25.0 16.0	$\begin{array}{c} \text{Without CaFi}\\ 4.5 & 2.0\\ & 2.0\\ 8.0 & 8.0\\ \hline \\ 22.0 & 9.0\\ 22.5 & 33.0\\ 25.0 & 30.0\\ 16.0 & 13.6\\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

No. 7.—Analysis of Lead.

	Spain.	England.
Pb	99.84	99.75
Cu	0.13	0.20
Sb	0.03	0.05
Ag	0.0038	0.006

No. 8.—Select Lead from England.

Pb	99.98
Sb	0.015
Fe	0.0008
Zn	0.0042
Cu	traces.

No. 9.— Expense.

Coal,	300 to 320	at	14.50	pr. t.	4.65
Labor,	3.5d	66	2.25.	• • • • •	7.80
Fe	15k.	66	300	f. pr. t.	4.50
Repairs	5				2.55
-					
					19.50
Whon They y	ores assay. vield	•••	• • • • • •	67% to 61%	68%

No. 10.-Analysis of Galena treated in a Reverberatory Furnace, with two Fireplaces.

	Cha	arge in the	furnace du	ring	Residues taken out	Residues.
	3h.	6h.	9h.	12h.	after 16h.	after 12h*
₽bŜ	8.08	11.10	10.27	14.47	6.43	6.47
P b	1.43	14.98	16.48	18.10	9.30	6.83
PbS'	71.54	50.27	41.37	25.29	16.34	36.91
Pb	0.65	6.70	6.70	6.85	2.74	8.15
Total -	81 70	82.05	74 89	64 71	24 01	E0.00
	01.70	00.00	14.04	04.71	04.01	98.30
S found	11.92	9.20	7.52	7.22	3.10	6.60
Zn	4.28	4.29	5.13	6.04	8.33	8.39
Pb produced directly from 100 k.						0,00
galena		5.	30.	51.	67	56
Yield of Pb in Ag		570	460	250	200	240
Lead contained in residues by the						
dry assay	78.6	79.8	72.4	63.1	32.8	55.4

*After an elevation of temperature.

No. 11.- Comparative Diagram of Nine Experiments in Reverberatory Furnces, with the same Ore.

Vield of the Galena 79%

		=	62	**	4	10	9	1	X	G
liarge	kl.	1000	1000	<u>800</u>	1000	1000	600	1600	2000	2000
ime of one charge	lır.	0	6	6	6	12	12	16	16	12
ead obtained	kl.	627.7	560	468	477	630	398	1096	1306.4	1036
Thite crasses obtained	kl.	153	290	225	354	223	80	158	310	744
ield of the white crasses	20	30	50	44	74	35	24	22	30	62
ead contained	kl.	59.8	145	00	262	78	19.2	34.79	93	463
irect yield	20	62.77	56.0	58.5	47.7	63.0	66.3	68.5	65.3	51.8
ield, including the lead in white crasses	25	68.75	70.50	70.87	73.9	70.8	69.47	70.67	69.97	74.86
oss on 100 kl. of ore	kl.	10.25	8.5	8.13	5.1	8.2	9.53	8.33	9.03	4.14
do do of lead contained	kl.	12.97	10.7	10.3	6.45	10.4	12	10.5	11.4	5.2
oal for 100 kl. of galena	kl.	712	562	633	506	200	299	917	734	375
abor do do	fr.	3.75	3.75	4.70	3.75	5.00	8.33	7.91	6.83	4.75
xpenses of the forge do	fr.	4.80	2.00	2.40	2.00	3.20	4.80	3.20	2.40	0.80
Cost of fusion in Reverberatory furn.	fr.	19.23	14.18	16.59	13.34	18.70	23.13	24.86	19.74	11.17
Cost of treatment of residues	fr.	3.82	7.25	7.00	8.85	5.57	3.32	2.47	3.87	9.30
otal cost of fusion	fr.	23.05	21.43	23.59	22.19	24.27	26.45	27.33	23.61	20.47
Lead in white crasses	I۲I.	53.8	130.5	112	236	70.2	28.8	19.56	41.8	208
otal lead obtained	kl.	681.5	6.90.5	697	713	700.2	691.8	704.56	695	726
alue of this lead (at 50fr.)	fr.	340.75	345.25	348.50	356.50	350.10	345.90	352.28	347.50	363.00
alue of ton of Galena	fir.	317.70	323.82	324.91	334.31	325.83	319.45	324.95	323.89	342.53

*Counting only three posts. †At 25 fr. the 100 kl. ‡Counting or a loss of 10 per cent. in the shaft furnace.

6, Belgian Furnace at Prayon.

1, 2, 3, 4, 5, English Furnaces.

7, 8, 9, Furnace with two Fireplaces.

31

	Holzappel.	1300	12	1950	980	62.9	50.3		30.82	25	11	00	00.40	20.40 0 H 0	0.09	28 00	00.00	4.0 6.86		20.6 charcoal.	(0.418c.m. wood.	590k. coal.	V.ZINC.M. WOOD.	(295k. coal.	2 0.139c.m. wood.	(75k. charcoal.	13.00	10.00	5.13	cetimated at 10f. per ton.
Furnaces.	Vouvelle	600 600	12	1200	724	20	60.33	(18.8	26	4.75)				65 08	00.00	ы. 00 00		600			000		83		5.00	10.00	8.33	The coal is
rberatory 1	Bleiberg, 1	2900	12	4000	2200	80	55	C	22	66	21.12	4 10	19	44 1 1 1 1 1 1	T.12	76 19	0 1 C	2.70	-	1400			0.00		64		3.50	20.00	5.00	naces only.
res, in Reve	Corphalie.	1400	16	2100	1153	68.49	54.9)) (30.6	22.3	7.94	5 84	30.02	- 1 - 1 - 1	0/ · T	69, 84	10°. °C	5.67		1200			01.0		× 100.		5.70	17.50	လ. ခု ခု	n Reverb. Fur
reutment of Leud 0	Poullaouen:	1300	16	1950	216	66	47	c	33	39	12.54					50 K		7.57		$\begin{cases} 4.5c.m. wood \\ 450k. coal. \end{cases}$		(808k. wood.)	(135k. coal.)		6312 coal	(now voor	From 8 to 9	10.00	5.13	tus of condensation. [†] I
ble of the T	Binsfeld- Haemer	1000 Storage /	0	2667	1024	68.8	38.4		42.2	64.8	27.36	6	A0.0	1 AD	1. 1 0	65 8	1.00	2.32	1	2000			net		200		7.50	10.00	3.75	ut the appara
vrative Tai	Derbyshire.	800	9	3200	1984	70	62	C T	12	30	3.6		2	(บ้	65 6	0.00	€. 5 4.14	4 4 4	2000		0~0	000		100		6.56	10.00	3.10	treatment b
2Compa	Vales and	1000 1000	9	4000	2520	78	63	1	25	40	10	100k of o	C TO TO TO TO TO	ances.	UUK. OI OF	73 0) 10 0 0	0.0 4 48	D H	2000			000		80		5.00	10.00	2.50	ls not on the
No. 12		Weight of chargekl.	Time of chargeh.	Galena treated in 24hkl.	Pb produced dailykl.	In the Galena %	Direct yieldkf.	White crasses & residues	in 100 of orekl. Yield of white crasses and	residues%	100k. of ore.	Volatilizad substances in	Viald of moletilized ander	I leid Of Volaulited subst	Volatinized substances III I	Lotal yleta Without Coll- dansad substances *	Toza in 10012 of one 4	Loss in 100k, of Ph in ore.		Fuel in 24h.			Fuel for 100K. of Galena.		Fuel for 100k, of lead.		Val. fuel for 100k. Galena.	Labor in 24h. 2.50f. pr day.	Labor for 100k. of Galena.	² The quantity condensed dependence

32

No. 13.—Experiments to determine the weight of the Charge in the Reverberatory Furnace at Corphalie in 1860.

	Argenti	ferous	G	alena
	Galena from	the Rhine.	. of Met	use, France.
Charge	1600	1300	1600	1300
Yield	. 69.604	78.88 (38.118	69.835
Direct Yield	44.113	59.55 5	51.057	54.876
Pb contained in the crasses	15.389	11.50 1	10.34	11.805
Total Yield	.59.502	71.05 (31.397	66.181
Units lost	10.102	7.83	6.721	3.654
Percentage of the Pb lost	. 14.513	9.92	9.86	5.23

4. SCOTCH METHOD. No. 4.—Expense for 1t. of Ore. No. 1.—Analysis of Crasses at Bleiberg. Labor. Product. Smelters, 1.33 Labor. Pb 37.7 Smelters, 1.33 Labor. Mg 1.4 Repairs of tools. 10.50 Mg 1.4 Repairs of tools. 11.7 Mg 1.4 Repairs of tools. 1.17 Mg 1.7 Transportation, treament of crasses. 5.85 26.78 Si 5.3 26.78 26.78 98.6 No. 5.—Preibam in Bohemia. Assay		
No. 1.—Analysis of Crasses at Bleiberg. Labor. Product. Pb 37.7 Labor. Zn 19.2 Laborers, 2.50 10.50 Zn 19.2 Laborers, 2.50 10.50 Ye 19.2 Laborers, 2.50 10.50 Ye 19.2 Laborers, 2.50 10.50 Mg 1.4 Repairs of tools	4. SCOTCH METHOD.	No. 4.—Expense for 1t. of Ore.
Product. Smelters, 1.33 10.50 $2n$ 19.2 Laborers, 2.50 10.50 $3r$ 10.5 Laborers, 2.50 10.50 $3r$ 10.5 Laborers, 2.50 10.50 Mg 1.4 Repairs of tools	No. 1.—Analysis of Crasses at Bleiberg.	Labor.
Pb 37.7 Smellers, 1.33 1.050 Zn 19.2 Laborers, 2.50 10.50 Ka 8.8 Wood and charcoal, $154k$	Product.	
Fe 19.3 Mg 1.4 Mg 1.4 Mg 1.4 Mg 1.4 Mg 1.7 Si 5.3 S 5. 98.6 26.72 98.6 76.72 08.6 72.6° $07e$ 674% loss of 10% of Pb allowed. a 72% a 72% 11% a 72% 11% a 72% b 72% a 72% b 72% b 72% b 72% b 72% b 72%	Pb 37.7 Žn 19.2 10.5	Smelters, 1.33 Laborers, 2.50 $\left\{ \begin{array}{c} \dots
S 5. 98.6 No. 2.—Losses Allowed. No. 5.—Przibam in Bohemia. No. 5.—Przibam in Bohemia. No. 5.—Przibam in Bohemia. No. 5.—Przibam in Bohemia. Assay	$\begin{array}{cccc} Fe & 15.3 \\ \dot{C}a & 8.8 \\ \dot{M}g & 1.4 \\ \ddot{A}l & 1.7 \\ \ddot{S}i & 5.3 \end{array}$	Wood and charcoal, 154k 9.21 Repairs of tools 1.17 Transportation, treament of crasses. 5.85
98.6No. 5.— $Przibam$ in Bohemia.No. 2.—Losses Allowed.Assay	S 5.	26.73
No. 5.—Przibam in Bohemia.No. 2.—Losses Allowed.Assay	98.6	
No. 2.—Losses Allowed.Assay75%Ore of 74% loss of 10% of Pb allowed. " 72% " 11% " " 70% " 12% "Assay767 10% (12% "No. of tons in 24h		No. 5.—Przibam in Bohemia.
Fuel for 1t of ore.Fuel for 1t of ore.Wood	No. 2.—Losses Allowed. Ore of 74% loss of 10% of Pb allowed. " 72% " 11% " " 70% " 12% "	Assay 75% Loss of Pb 7.67 No. of tons in 24h 4. No. of men in 24h 5
No. 3. — Details at Bleiberg for 1866.Blende, pyrites & lime in the ore10%Assay yield of the ore72.6%Furnace yield63.%Loss by treatment9 to 10%Loss in Pb15%No. of tons in 24h3t.No. of men in 12h2Fuel for 1t of ore.Wood, 200k.Wood113Charcoal1.54k.=1.73st.in reverberatory furnace4.7st.		Fuel for 1t of ore.
Furnace yield $9 \text{ to } 10\%$ Loss by treatment. $9 \text{ to } 10\%$ Loss in Pb. 15% No. of tons in 24h. $3t.$ No. of men in 12h. 2 Fuel for 1t of ore.Wood alone.Fuel for 1t of ore.Wood, 200k.Or .60stCharcoal. 113 Charcoal alone. $1.54k.=1.73st.$ Charcoal alone. $1.54k.=1.73st.$ Charcoal alone. 3.5 here Quantity of ore treated in 24h.	No. 3.—Details at Bleiberg for 1866. Blende, pyrites & lime in the ore 10% Assay yield of the ore	Wood, 57 Charcoal, 109 $\left\{ \dots 166k. \right\}$
Loss in Pb. 15% No. of tons in 24h. $3t.$ No. of men in 12h. 2 Fuel for 1t of ore.Wood alone.Fuel for 1t of ore.Wood, 200k.Or .60stCharcoal. 113 Charcoal alone. $1.54k.=1.73st.$ In reverberatory furnace. $4.7st.$ Charcoal in 24h.	Loss by treatment	
No. of men in 12h2Wood alone.Fuel for 1t of ore.Wood, 200k.or .60sWood41k.Wood, 200k.or .60sCharcoal113Charcoal alone. $1.54k.=1.73st.$ Charcoal3.5 heein reverberatory furnace4.7st.Quantity of ore treated in 24h.	Loss in Pb 15% No. of tons in 24h 3t.	No. 6.—Missouri.
Fuel for 1t of ore.Wood, 200k.or .60sWood	No. of men in 12h 2	Wood alone.
Wood41k.Charcoal	Fuel for 1t of ore.	Wood, 200k. or .60st.
in reverberatory furnace 4.7st. Charcoal 3.5 hee Quantity of ore treated in 24h. 5t.	Wood	Charcoal alone.
	in reverberatory furnace 4.7 st.	Charcoal

(2.) ROASTING AND REDUCTION.

WORKS AT VIALLAS, DEPT. OF LOZERE, FRANCE.	Charge
No. 1.—Composition of the Ore.	Time 16h.
Ph 45	Quantity in 24h 1000.
Concurs 19	No. 4.—Expense for 1t. of Ore.
Gangue, 40	Coal 0.4 to 5 at 21.5 9.99
100	Labor '3d at 175 525
100.	Ropairs tools dra 049
No. 9 Analysis of the Poustal Ore	Tepans, tools, acc 0.±0
10. 2.—Analysis of the housied Ore.	15.73
$Pb \qquad 50.50$	
Zn 1.50	No 5 - Dimensions of the Furnace
Sb 0.50	The later and the former of the father of th
F e 6.00	Height above working table. 1.70
\mathbf{PbS} 24.70	Width at throat 0.50
B aS 7.00	" tuyere 0.45
PbS 1.50	Length in direction of tuyere. 1.00
ZnS traces.	Diameter of tuyere 0.035
. Si Clay, &c. 8.30	Height throat above tuyere. 1.30 to 1.35
	Thickness refractory material 0.50
109.	" " breast 0.12
No. 3.—Details of the Operation.	No. 6 Charge.
Pb contains 63%	Roasted ore 1000
Assay 58 to 60%	Scoria of same operation 500
Yield per quint in Ag360 to 380g	BaS 30
Vapors contain Pb 25 to 30%	Roasted iron ores
Hearth bottom vields Ag, per	
quint	1590k
	1
tre-statement	

	4	No. 7.	.—Analys	is of Scor	ias.		
	1	2	3	4	5	6	7
Ŝi	36.7	36.1	38.0	39.4	35.	34.	34.2
Pb	4.	4.41	4.0	11.76	6.	7.	9.2
Ėе	23.33	20.8)	20.02	91	26.0	21.9	
Äl	3.50	traee 🐧	30.0	41.	3.5	4.00	
Żn	4.50	6.50	4.20	4.5	4.00	5.85	
Ba	18.30	23.10	14.00	14.00	14.00	14.33	
Ča	9.00	8.70	9.	9.	8.50	9.50	
Мg	.50		trace		1.60	2.00°	
Β&S		0.39			0.50		
	99.83	100.	99.00	99.66	99.10		

		99.83	100.	99.00	99.66	99.10			
1,	2 & 3	are the usual	l compositio	on. 4, 5, 0	3 & 7 are	the resu	lt of engo	rgements.	
	Assay	generally						2 to 6% P	Ь

No. 8.—Expense for 1t. of Ore.

_	-			
Coke,	510	at	50.	25.50
Labor,	2	at	1.50.	-3.00
Coal for blast,	0.125	at	21.50.	-2.50
Roasted iron ore,	0.060	at	36 .	-2.16
Repairs, &c				-1.30

34.46

WORKS AT CARTHAGENA, SPAIN. No. 1.—Roasting Chambers.

Roasting chamber contains. 5 to 6t. Time of roasting 10 to 15d. Cost of roasting 25t...... 50 to 75f. Cost per t. of roasted ore...2.75 to 3.75

No. 2.—Details of Furnace.

Height from tuyere to throat,
0.85 to 1.25 & 1.30
Depth 0.84 to .90
Width
Brasque, $\begin{cases} Clay \dots \frac{2}{3} \\ Charcoal \\ 1 \end{cases}$
Charge.
Roasted ore 150 to 200

Scoria with $1\frac{1}{2}$ % Pb..... 100

No. 3.—Details of Treatment.

Quantity treated in 24 ho	ours.
Ore	4600k.
Seoria	1840k.
Pb produced	940k.
Pb containing per quint. in Ag.	2 50g.
Pb extracted	20.43%

Expenses for 1t. of Ore.

Fuel	 	15.80
Labor	 	5.90
Repairs	 	0.54
r		

22.24f.

					F	0	ľ]	.(H)t	•	0	t		P	b				
Fuel .															~			ι			77.50
Labor		•		•																	29.00
Repair	\mathbf{S}	•				•				•	•				•				•	•	2.65
-																					·
																					109.15f.

No. 4.—Detatls of Atmospheric Furnace. Exterior diam. of masonry 2.35 to 2.40 Height from hearth to arch. 2.50 " throat. 1.75

Width at tuyere	-1.16
" middle	1.29
" throat	1.21
Flue next the furn. (elipsoide.)	1.20
" " ehimney "	0.80
Chimney at base0.85 to	0.90
" top0.75 to	0.80
Chimney for 4 furnaces	1
Cost of furnace	.200f.
" chimney14 to 1	.500f.

No. 5.—Charge.

Baskets	of ore, 7k. each	50 to	60
66	scorias, $\frac{1}{6}$ crasses	10 "	12
"	coke	6 "	7

A charge for 24 hours.

Ores	9200k.
Seorias	2700k.
Fuel 1530 to	1610k.
Assay of the eharge 11 to	12%
Yield in the furnace	9%
Loss 2.5 t	0 3%
	/

No. 6.—Expense for 1t. of. Ore.

Fuel.	• •	•											11.23
Labor					,							•	2.93
Tools,	&	zc									•		1.70
,													

15.86

No. 7.—Expense for 1t. of	Pb.
Fuel	122.35
Labor	3.18
l'ools, &c	1.95
	127.48

Fuel used..... 16 to 17% 2 parts of ore for 1 of metal.

TREATMENT OF THE CRASSES AND SLAGS. No. 1 — English Slag Hearth

10. 1. Languisio Noting Alou	1 0100
Length	.63
Width	.75
Height	.97
Quantity in 24h	9 to 10k.
" of coke1	5 to 20%
Scorias contain Pb	5 to 6%

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Vo. 2.—Use of Cold and Hot Blast.	Product.
286.65	28t. of Scoria with cold blast. or 84.58 ce, 7t. at 30.86 214.37 298.85 35t. of Scoria with hot blast. or 84.58 ce, 5.85t. at 30.86 179.16 arge of Pb at 2.06 22.91	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
WORKS AT OCKER. No. 1.—Charge.No. 2.—Details of the Operation.Roasted ore of 6 to 10% Pb1000 Sometimes roasted mattes.Ore roasted in 24h	286.65 WORKS AT OCKER. No. 1.—Charge. Isted ore of 6 to 10% Pb 1000 Sometimes roasted mattes. rias of 4 to 5% Pb280 to 300 harge cupel bottoms 10	No. 2.—Details of the Operation. Ore roasted in 24h 3t. Fuel for 1t. of Ore. Coke

(3.) METHOD BY PRECIPITATION.

WORKS	AT	VIENNE,	DAUPIIINY.
-------	----	---------	------------

No. 1.— Composition of Matte.

FeS	91
PbS	9
CuS	traces
	100

No.	2Composition	n of Scorias.
	Compact.	Crystaline.
Si	29.5	35.6
ḟе	65.0	41.8
Żn	1.0	20.0
Ϋb	2.5	0.4
Al	1.0	1.0
Ca	1.0	1.0

No. 3.—Fuel used.

99.8

100

Vienne, per	lt. of	ore.					•		600k.
Poullaouen,	66	•	•	•	• •	•			700k.

No. 4.—Scorias fr	om Fusi	ion of S <mark>c</mark> orias.
×	Rich.	Poor.
	35.2	34.8
$\mathbf{\dot{P}}\mathbf{b}$	26.8	6.6
ŕ е	20.0	35.0
Żn	5.2	0.0
Ä l	4.6	4.8
Ċa	4.4	7.0
Trace mattes	2.2	9.0

e mattes	$\begin{array}{c} 4.4 \\ 2.2 \end{array}$	7.0 9.0
	98.4	97.2

WORKS AT TARNOWITZ.

No. 1.—Dimensions of the Furnaces.

	1	2
	tuyere.	tuyeres
Height,	5.10m.	5.10m.
Depth at throat,	0.76	0.82
" tuyeres,	1.12	1.35
Width at throat, warm	, 0.60	0.70
" breast,	0.45	0.60
Width at tuyere, warm	n 0.60	2.05
" " breas	st 0.55	2.05

36

Product

)k.

No. 2.— Charge for 1t. Granulated Ore.
Metallic iron
Puddling Scorias
Pb Scorias 400
Coal
Products.
Pb with 600 to 700gr. Ag 700k.
Mattes 350
No. 3.—Charge.
Old. New.
Ore 1000 1000
Cast iron 145 720
Forge scorias R Si 153 120
Scorias of same operation. 350 360
$\frac{1648}{1620}$
No. 4.—Products.
New. Old.
Lead
Matte 5 to 9% Pb309 6 to 8% 245
Rich scorias 2 to 4% . 390 2 to 4% 330
f_{00} f_{10}
1690 1670
No. 5.—Details of the Fusion.
In 24 hours.
New. Old.
Total yield of Pb72 to 73% 69 to 70%
Coal per ton of ore. 435 384
Labor 1.50d. 1.50d.
Charge
Cost 221. 201.
No. 6.—Impure Pulverulent Ores.
Charge.
Ore in bricks at 44% 1000) 1270
Iron, 6 to 10% 60 to 70 > to
Forge scorias $\dots 210$ to 230) 1300 Dish geometry 720
No. 7.— Charge for 1t. of Ore in Bricks.
Metallic iron
Puddling Scorias 220
Pb Scorias
Coal

Product. Pb 400 Mattes 120

Charge in 24 hours.

Granui	ated	ore				•	.6000	to	7000K.
Ore in	brick	s		•	•	•	.3000	to	3500

No. 8.—Smelting of Roasted Mattes and Crasses.

Charge.

Rich scorias
Debris of furnaces
Condensed products in bricks 250
Roasted mattes
Old Pb scorias
Iron 100 ⁻
In 24 hours.
Pb Produced
Coal consumed 10 hect.

No. 9.—Mattes at Andreasberg (Arsenical Ore.)

	uuv	010.)
Pb		35.68
${ m Fe}$		31.54
Cu		3.79
As		1.07
Sb		1.49
\mathbf{S}		23.97
Mn		0.25

No.	10.—.	Mattes	at	Tarno	witz.
-----	-------	--------	----	-------	-------

	Common and	Normal
	normal matte.	working.
Fe	9.758	13. 39
PbS	15.54	38.09
${ m FeS}$	73.49	42.75
ZnS	21.88	5.52
AgS	0.018	0.13

No. 11.—Scorias at Andreasberg, (arseni-

cal	ore.)
S i	34.82
Æl	9.77
Ċo	11.72
$\dot{M}g$	1.21
Ėе	- 24.61
Ċu	0.33
Рb	12.31
Мo	0.54
Ķ	2.34
Ë b	0.21
Äs	0.26

Δ	To.	12	Scorias	at T	arnowitz.

S i	35.65
Äl	2.19
Ċa	6.54
ř е	44.90
Żn	0.73
PbS	9.70

No	12	Product
LVO.	10.	

Pb) to	400
Mattes 6% of Pb120	66	130
Rich scoria	66	530
Crasses 40	66	50

1106k. 👷

No. 14.—Details of the Operation.

Ores pa	ssed	in s	24h.	 	 . 9	3.50t.
Coal per	r ton	of	ore.	 		717k.
Labor.				 		2.60d

No.	15	Charae	in	1850.
110.	TO	Unurgo	010	1.000

Roasted mattes	250
Rich scorias of operation No. 2	350
Old "	300
Debris of furn., erasses, &e., of 2.	-50
Cadmias with lime	50

	1000k.
Cast iron	24
Forge scorias	243
Limestone	39

No. 16.—Quantity Treated. In 24 hours.

Charge smelted 10t.
1000 of eharge give $Pb40$ to $45k$.
Fuel per ton of charge 180k.
No. 17.—Expenses for the Year, (1860.)
For 1000k. of Galena.
Galena, 1000k300.00f.
Iron, 162 11.01
Coal, 4244.24
Seorias from puddlage, 230 1.01
Transportation 2.42
Preparation of charge 1.51
General expenses 9.45
329.64f.
Cost without the ore (300.00) 29.64f.

By-	10	0k.	of	Pb

	~				
Ore,	165. k.	at 300f	the t.	4	9.40f.
Iron,	26.70	" 6.8	0f. 100)k	1.83
Coal, 7	0.	" 1	Of. the	t	0.70
Puddli	ng Seori	ias, 38 at	4.40%		0.17
Found	ers			• • • •	0.40
Prepar	ation of	eharge.			0.25
Genera	l expen	nses	• • • • •		1.56

1	A	0	1	£
- ()	4.	Ð.		1.

Cost without the ore $(49.40) \ldots 4.91f$.

No.	18.—Analysis	of	Lead	from	
	717	.,			

1 01 100 00 002.			
	Impure	Merca	antile.
	Lead.	1st quality.	2d quality.
Sb	$\begin{cases} 0.196 \text{ to} \\ 0.207 \end{cases}$		0.436
Fe	$\begin{cases} 0.237 \text{ to} \\ 0.325 \end{cases}$	traees	0.047
Zn) 0.568 to 0.372	traees	0.135
Ag	i 0.01 to 0.075	0.003	0.015

WORKS	AT	ALTENAU	AND	CLAUSTHAL.
-------	----	---------	-----	------------

No.	1.—Compos	ition of the	Ore.
	Galena,	70	
	Quartz,	14.5	
	ČuČ	3.2	
	FeC	7	
	BaS	1.8	
	Slate,	4.5	
		1.0.0	
	37' 11	100	
	r ield,	55%	
	Ag 100g. in	n 100k.	

No. 2.—Charge.

v	
Ore, at 55% 1000	550
Litharge & cupel bottom 110 at 88%	97
Impure litharge abstriehs, 37 at 83%	31
Lead scorias fusion for matte (RSi	
500 at 6%	30
Cast iron & serap iron, 110	
Scoria same op., (R2Si) 400 at 7%	28
2157	736
	,

No. 3.—Clausthal.

.

Charge for 100 of Galena.

Iron		• • • • • • •	11.2	
Social So				
Seorias from t	reatmer	nt of matt	- 49.9	
Colone 4900	3y 24 h	ours.	<u>20001-</u>	
Galena $4200, 0$		large	. 8000K.	
Fuel used, 4	1 ehare	eoal for 10	00 ore.	
No A Cana	al Com		of Gaowin	
1. 4. — Gener	at con		oj scoria.	
Sl Wa		40 to 50		
re Č		- 50 ··· 50 - 7 ·(- 5		
Da Dh		6 ((5		
10 Řa - A	-1 Mo	6 4 5		
	6442	0 0		
No. 5Analy	isis of S	corias at	Altenau.	
Si		53.82		
		3.82		
Ça	,	5.37		
$\mathbf{M}_{\mathbf{i}}$	9	1.09		
Fe)	25.90		
M	n	2.74		
Pt F) .2013	4.79		
гe		5.10		
No. 6Analy	isis of M	lattes at C	lausthal.	
	Ordinary 1	work. 2	Crystaline matte.	
Pb	41.50	36.00	73.35	
Fe	34.05	33.20	9.81	
Cu	0.36	traces.	0.40	
Zn	0.36	2.50	0.20	
Ag	0.12		0.12	
Sb	0.66	5.30	0.40	
S	23.82	22.0	15.34	
			•	
No. 7.—	-Produc	cts Obtain	ned.	
Pb	545	at 95%	518	
Mattes,	396	" 35%	138	
Scorias,	1166	" 5 %	58	
Loss by reduct	tion, 50		21	
	2157		735	
Due due ta fan 100 of PhS on 109 2 of ono				
Products for 100 of 1 bb of 132.5 of ofc.				
Matte	• • • • • •		. 44	
Seories			. 143	
PROTIED				

Deposits :....

No. 8.—Expenses.

Preparation of charge for 1t. PbS. 1	.38
Transportation of scorias 0	.48
Founders 1	.98
Transport. & storage of products. 2	.06
Labor	.90
Iron, 119k. (14.50 the 100k.)17 Chareoal, 428k	.22.00

42	2.12
No. 9.— Concentration of Matter	8.
No. of Roastings 6 or 7.	
2d smelting in cupola.	
Roasted mattes 10	0
Metallic iron	3
Seorias from fusion of ore 10	0
Cupel bottoms 1	7.6
Debris of furnaees6 or	10
Charcoal	3
Coke	24
Total	27%
Products.	/
Lead	34%
Mattes	37%
Scorias).7
Deposits (),3
T	

 $No.\,10.-G\,eneral\,Composition\,\,of\,\,the\,Pb.$

Pb	95
Cu	1 to 1/2
Ag Sb S Fe	4 to 3

No	11 -	-Lead	from	Clausthal.
LIU.	TT'	-Doun	110110	O un usunu .

	1	2
Pb	${\begin{array}{c} {99.72} \\ {99.79} \end{array}}$	$\begin{cases} 97.69 \\ 98.51 \end{cases}$
Cu	$\left. \left. \left. \begin{array}{c} 0.13 \\ 2.07 \end{array} \right. \right. \right.$	§ 0.06 0.14
Sb	i 0.03 0.36	$\begin{cases} 1.10 \\ 1.34 \end{cases}$
As	0.36	
Zn	0.88	
Ag	$\left\{\begin{array}{c} 0.0032\\ 0.0098\end{array}\right.$	3

No. 12.—Hard Lead from Clausthal.

Density,	10.464
Pb	86.34
Cu	0.68
Sb	12.08
	99.00

8

No. 13.—Hard Lead from Altenau.	No. 1	4Det	ails of	the Opera	tion.
Density, 9.373	Charge	in $24h$			8t.
Pb 79.36	Corresp	onds to	ore		to 4t
Cu 0.04	Campai	onus to rn laste	0.0		to 9w
Sb 20.57	- Fuel for	1t of o	•••••• 170	0	450
${ m Fe}$ 0.03	L'UCI IOI	10,010	10		100
100.00					
No. 15.	-Resum	1é			
Weight.	Charcoal. C	ast Iron.]	Labor. Tr	ansportation	n. Wood.
Fusion of ore1000	450	110	3.20	0.70	
Roasting 1st matte 396			0.09	0.28	22
1st fusion of matte 396	142	10.5	0.96	0.13	
Roasting 2d matte 130			0.03	0.09	8
2d fusion of matte 130	47	3	0.32	0.05	
Roasting 3d matte & 3d fusion 43	16	1	0.12	0.05	3
Roasting 4th matte & 4th fusion. 14	5	0.5	0.04	0.02	1
Fusion of cadmias & dust 100	40	7	0.20	0.04	
1000k. require	700k.	132k.	4.96f.	1.36f.	34k.
No. 16 Recapitulation		No 2	P = Prop	Jucto	
$\begin{array}{c} \text{Chancel } \mathcal{C}00 \text{ at } 20 \end{array} \qquad $	ורד	420 1	0	uncio.	100
$\begin{array}{c} \text{Onarcoal, 709 at 50, 21.00} \\ \text{Oper iner, 129 at 160} \\ \end{array}$	PD	-438 at	95.5%.	•••••	422
$\begin{array}{c} \text{Uast from, 154 at 100 } \\ \text{Labor (fusion) 1.80} \end{array}$	Mattes,		50.0%.	•••••	
Labor (lusion) 1.00 4.50	Scorias,	1900 "	6.0%.	• • • • • • • •	114
Wood for reacting 241 at 17 1.58	Loss,	98			64
1000 101 10asting, 54K. at 17 1.00		2060			000
49.02		2900			802
With currellation &c					
Charcoal 830k					
Wood 125k	N_{0}	o. 3.—A	nalysis	of Scoria	ŝ.
Faggeds 340k		8:		1.00	
			4	9.55	
No 17 — Erpense of all the Operations				4.00 6.00	
Fusion of ones 49.19		Ua Mar		0.62	
$\begin{array}{cccc} P \text{ usion of of estimate of matter } & 2.95 \end{array}$		ing ing	0	0.02	
Smalting matters 1 st time 715		n e Mn	Ë	196	
" " 2d 2d & Ath time 4.30		jun jul		7.95	
Smalting denosite & debris 250		F_{0}^{2}	13	1.20	
Currenting deposits & debris 5.50)	2.00	
Revivition of litheras 533				0.00	
nevivincation of indiarges	No	4 - Ch	arae of	Mattee	ha
75.50f	Reacted	matta	arge oj	macco,	1000
	Rich soc	mattes	• • • • • • •		1000
TREATMENT AT LAUTENTHAL.	Cupol by	ottoms	• • • • • • •		10 900
No 1 Charge	A scowe	ouoms.	* * * * * * *	* • • • •	101
110. 1 0. naryo.	Cast inc	n	• • • • • • •	• • • • •	14
Ore, 1000 at 03%. 030K	Case III) <u> </u>	• • • • • • •	• • • • •	28
Litharge, & cuperboth. 110 ** 88%. 97					
Ph geories from matter 000 " 65%. 55					
Socria componentian 200 " 0%. 34	1	Vo. 5.—	Quantit	y Treated.	
Cost iron 110	Quartit	- in 0.41			4.
	Phoned	n 24n	• • • • • • •		4t.
2000 200	Matter	ucea			300k.
2900 002	mattes .				336k.

No. 5.—Treatment of Dust.

Roasted mattes	250
Scorias from fusion	900
Debris crushed and roasted	250
Pb scorias from treatment of	
litharge	200
Cupel bottoms, abstracts100 to	200
Cast iron	70

No. 6.— Comparison of Yield at Clausthal and Lautenthal.

	Cla	usthal.	Laut	enthal.	
	Pb	Ag	Pb	Ag	
Fusion of ore,	55.99	71.34	44.26	62.59	
1 fusion mattes	16.02	21.39	16.93	25.38	
2 " "	5.58	6.94	5.06	8.78	
3 & 4"	1.42	1.64	1.41	3.61	
Fusion cadmia	s,4.30	4.81	7.25	0.60	

83.31 106.12 74.91 101.06

No. 7.—Loss in Lead.

Cla	usthal.	Altenau.	Lau	tenthal
Smelting of ore,	1.28	2.48	1	6.9
" mattes,	0.60	1.91	š	0.3
Cond. products.		0.95°		
Cupellation,	10.70	6.17		8.0
Revivification,	1.79	0.39	1	9.0
Manufac'g hard H	?b	0.05	5	2.0
			·	

14.27% 12.78% 16.3%

(4.) M I X E D M E T H O D.

ROASTING THE ORES.

No. 1.—Analysis after Roasting. Roasting 100k. galena in a Carinthian No. 2.—Analysis after Roasting.

Galena Roasted in Double-Hearth

0.	100k. galena ir							
	Pb Pb	39.5 50.8	PhS	lst period. 87 0	2d period. 77-2	3d period. 64.5	4th period. 27 0	5th period
	Żn & ŻnŚ Fe	7.4 2.1	$\mathbf{\dot{P}bS}$ $\mathbf{\dot{P}b}$	$\begin{array}{c} 2.4 \\ 7.0 \end{array}$	$\begin{array}{c} 3.9\\ 6.1\end{array}$	$12.5 \\ 20.0$	$26.0 \\ 44.3$	$14.0 \\ 69.2$

	nouscong a			
	Furnace with 1	Furnace at	Furnace with	English
	hearth 8m. long.	Pontgibaud.	2 hearths.	Furnace.
Ore roasted in 24hkl.	. 4000	7200	2400	1620
Coal used "	680	2000	550	550
Coal for 100 of ore	186	260	230	400
Labor	1.80	2.40	1.67	1.30

TREATMENT AT PRZIBAM.

No. 1.— Composition of Ore.

Galena	45 Pb 39%
Blende	18
Quartz & BaS	20
Ferruginous limestone	15
S, As, Sb & Cu	2
	*
1	.00

No. 2	2	-D	imen	sions of	Furnace.
Hearth					4.75×3.50
Fireplac	е.				1.40×0.80
Flue					0.30×0.241
Charge.					. 1120k.
0					6

No	3_	Roastina	the	Ore	

3.32

0.50

0.70

0.63 0.95

1000

1800

No. 8.—Cost of Treating 1t. of Ore.

Cost of roasting,	275k)	798k
Charcoal for fusion,	523k	0.01
Cast iron		80k
(Roasting,	1.8	
Labor, \langle Founders,	2.3	> 5.7d
Laborers,	1.6	
Forge scorias		500k

TREATMENT AT PONTGIBAUD.

No. 1.— Charge.

Charge	1000k.
Coal, per ton of ore	450k.
Lime on 2d hearth	3 to 4%
Quantity in 24h	4t.

No. 2.- Cost.

Coal,	35k.	at	34.5	•								12.02
Labor,	1.5d.	66	1.5f.	•	•	•	•	•	•	•	•	2.25

14.27f.

No. 3.—Analysis of Ore.

Gatena contains 52% Pb, assay 50%.	60.
${ m FeS^2}$	10.
ZnS	5.
S & Sb	2.
Ba S	8.
Gangue	15.
-	
1	100.

No. 4.—Analysis of Roasted Ores.

.

	Porphyric	Comby	Careful roasting
	ore.	ore.	in old furnace
			no galena seen.
Zn	3.9	4.1	5.2
Ρb	35.6	40.6	16.7
. F e	17.0	14.1	20.7
B aS	7.4	7.2	9.2
$\dot{\mathbf{P}}\mathrm{b}\ddot{\mathbf{S}}$	6.7	7.1	8.1
PbS	1.4	5.7	6.1
Si	24.1	16.5	27.0
Мg	1.3	1.5	2.2
Ča	1.0	1.1	2.7
As & Sk	traces.	traces	. 0.9

Coal, 275k. at 19	5.22
Labor, $\begin{cases} \text{roasting}, & 1.8 \text{d} \\ \text{transportation}, & 0.6 \end{cases}$	2.93
Repairs	0.45
	8.60
No. 4.—Reduction Furnace.	
Height above tuyercs	3.32
Height of the "	0.50
Width against "	0.70
" breast	0.6
Depth of furnace	0.98
No. 5.—Charge. Roasted ore at 39% Litharge cupel bottoms } 1.2. Abstrichs & roasted mattes. } 1.2. Forge scorias	5 100 &300 > 600 80
1580 to	> 180
No. 6.—Details of the Operation	on.
By campaign.	
Ore 42	2112k

No. 3.—Charge.

1	Vo. 7.—	Exp	ense.		
Charcoal,	507	at	50.77		25.74
Cast iron,	80	to	-150)	12.00
Forge scorias	, 600k.	at]	1.20		6.72
Brasque,	16k.	at 2	25.38		0.40
Clay,	0.28hc	.at	0.13		0.04
Labor, specia	1,		2.30		-3.50
" ordinar	y,		1.00	•••	0.94
					49.34
Expense or	roasting	y			8.60
•		•			

	~ /	7	•	$\sim \sim$	
NA	h	malaie	10 01	E San	11200
LIU.	J A	nuuuus	15 01	1300	rus.
			+ /		

	Old	Irregular	Good	Good
	scorias.	working.	working	working.
Si	39.0	40.0	38.0	27.0^{-1}
Al	1.5	1.7	1.4	7.6
Ċa	11.0	15.0	24.1	13.0
Ŵg	2.1	3.2	2.9	
F e	21.2	18.7	19.2	32.0
İ b	18.2	13.1	6.0	18.6
B a	26.0	3.2	3.3	18.6
Żn	1.70	1.50	1.6	
Ŝ	1.00	2.30	2.1	

TREATMENT AT BIACHE, ST. VAAST.

No. 1.—Charge.

Roasted ore	1000k.
Iron	100
Chalk	100
Charge	1200k.
Coke, per ton of ore	100k.

No. 2.-Fuel used.

In Large Furnace.

Fuel per ton of ore..... 280k.

In Small Furnace.

Fuel per ton of ore..... 330k.

No. 3.—Details of a Campaign.

By campaign. Roasted & agglomerated ore 3,629,826k. Crasses from refining and

Orasses from ronning and	
litharge scorias	303, 121
Roasted mattes	207,700
Crasses from the furnace.	33,355
Unroasted mattes	3,985

4,177,987k.

Marl	• 470c.m.
Iron, $\begin{cases} 10\% \text{ of ore} \\ 9\% \text{ lead materials.} \end{cases}$	378,598
Spath fluor & scorias from	
puddling	750,000

No. 4.—Expense.

Labor	3.45f.
Coke. 163k. 36f	5.86
Coal. 35k. 20f	0.70
Repairs	1.48
Iron. 104 (6f.)	6.27
Tools	0.57
Flux	1.20
-	
Full cost by % of ore	19.53f.
I an oose of 10 of ordered to the	

2.3

4.0

No. 7.—Deposit at the Breast of the Furnace.

S

80.1
9.0
4.1
2.8
4.9

No. 8.—Charge.

.

 Roasted ore
 1000k.

 Lime
 50

 Old iron & cast iron
 100 to

 120

1150 to 1170k.

No. 9.-Quantity Treated, &c.

In 24 hours.

Quantity treated	3 to 9t.
With 120k. cast iron, coke	65k.
" 100k. " " …	80k.
Yield of 100k. of ore.	
Pb 40 to 42k	52%
Loss. 20% with cupellation and	,
patisonage	30%

Vo.	6.—Analysis	of	Mattes

Operations.

Roasting the ores in furn. with 2 hearths. Smelting, with dark throat, keeping a nose of from 0.12 to 0.14

Charge.

Roasted ore	. 3000k.
Copper ore	. 1000
Lime or fluor spar	. 125
Scorias	. 5000
Coke	to 1350k.
00110	

No. 6.—Dimensions of Shaft Furnace.

Height of shaft fr. tuyere to throat. 3.96m. Depth of ehannel leading to front

hearth, under tuyeres	0.42
Width of shaft at the warme, at	
level of tuyeres	1.70
do at breast, at level of tuyeres.	1.13
Depth of shaft " "	1.20
Brick partition above tuyeres	1.30
Thickness of partition	0.12

Width of each division at warme,

at throat	0.73
do do breast, at throat	0.57
Depth do do	0.85
Between tuyeres	0.70
Diam. of tuyeres	0.035
Pressure of blast	0.70
Quantity of blast	4.829
No. of eastings in 24 hours	4

Products.

Each easting metallie lead 200k.	
Silver	
$($ lead $\dots 20\%$	
100k. mattes containing \langle copper. 10%	
(silver 2000g	
5 to 6% Pb	
72 scorias (per 100 § 200g. silver per t.	
of eharge.)	

\sim			~	1	1.71	001	
-	corias.	contain	SE	1666	than	XIIO.	
\sim	COLION.	OOMOUT	\sim 1,	TODD	onun	0070	

TRF N	атмент ат s fo. 1.— <i>Roast</i> Pb Fe Ċa Mg Ä l Š i Ċ S	STOLBERG. <i>ted Ore.</i> 61.9 2.9 8.3 2.6 1.4 19.5 1.4 1.00 99.00
Roasted or Forge scori Lime	No. 2.— Ch	<i>arge.</i> 1000k 780 to 800 180 to 200
Charge Quantity s Coke per to Quantity of Scorias cor	In 24 hou melted on of ore f mattes ntaining Pb	
No. 3.—A	nalysis of So Ores.) Ši Ži Ča Mg Fe Pb S Žn Ču FeS	corias (Siliceous 34.45 0.21 9.11 0.27 47.66 1.55 26 29. 1. 4.
No. 4.	-Double R Pb 99 Cu Sb Fe 0 Zn	Defined Lead. 9.952 0.026 0.007 0.006 0.009
Ores made	No. 1.— Ch into bricks,	with addition 4

Dod conth	
nea earth	
Ores sulphurets.	
Ores earbonates	
Puddling scorias	1
Flux 150	0

٤.

140. 2.—Dimensions of the Furnace.
Dimensions of shaft, at 1.50m.
Width 1.10m
Denth 0.70
Width at threat 1.20
Donth at 44
Depth at
Pressure of blast 0.50 to 1.00
Products
Lord 20001-
Matter
Mattes $\frac{1}{4}$
WORKS AT MEMBACH.
No. 1 - Dimensions of the Furnace
Height
Width 0.80
Depth
No. 9 Olympic
Lvo. 2.— Charge.
Campaign of 40 days.
Oreg 65 38% 158 2511-
Debuig fr poriduor 10470
$\mathbf{Jepris} \propto \mathbf{restaues} \dots 19, 458$
Iron scorias $150,000$
Coke
Lead
Per 94 hours
Poorted aver 20761-
Noasteu ores
Iron scorias pr 100 roasted ores. 95
Coke " " " 22
Lead
No. 3 Tops of Logd
10. 0.— 1038 0J 12000.
Lost in roasting, 4%
Roasted Lead
Ore. Charge. Contained.
Pb lost
Totalloss(about) 6.50% 6.00% 9.00%
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5%
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5%
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG.
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG.
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge.
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days.
Totalloss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Posiduos reverb furn (65% Pb) 112 8021-
Total loss (about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Residues reverb. furn. (65% Pb) 113,803k.
Total loss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Residues reverb. furn.(65% Pb) 113,803k. Puddling scorias
Total loss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Residues reverb. furn.(65% Pb) 113,803k. Puddling scorias
Total loss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Residues reverb. furn.(65% Pb) 113,803k. Puddling scorias
Total loss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Residues reverb. furn.(65% Pb) 113,803k. Puddling scorias
Total loss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Residues reverb. furn.(65% Pb) 113,803k. Puddling scorias
Total loss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Residues reverb. furn.(65% Pb) 113,803k. Puddling scorias
Total loss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days. Residues reverb. furn.(65% Pb) 113,803k. Puddling scorias
Total loss(about) 6.50%6.00%9.00%By treating the volatile products the loss of lead becomes 4 or 5%WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days.Residues reverb. furn. (65% Pb) 113,803k. Puddling scorias
Total loss(about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5%
Total loss (about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days.Residues reverb. furn. (65% Pb) 113,803k. Puddling scorias.Puddling scorias.83,300Flux.19,800Coke16,300Product.16,300Lead.70,331k. 75\%Per 24 hours.Ore.5,690k. 75\%Flux17.40\%
Total loss (about) 6.50% 6.00% 9.00% By treating the volatile products the loss of lead becomes 4 or 5% WORKS AT BLEIBERG. No. 1.—Charge. Campaign of 20 days.Residues reverb. furn. (65% Pb) 113,803k. Puddling scorias

37 0

7

Product.

Lead...... 35,165k.

	· · · · · · · · · · · · · · · · · · ·
No. 2.—Analysis of	Scorias at Holzap-
pel, (Ores with	much Blende.)
Si	25.0
Äl	1.3
Ca	4.2
$M_{ m g}$	1.0
Fe	24.5
Mn	8.0
\mathbf{Pb}	18.6
No. 3	Expenses.
Labor per	· 24 hours.
Master workman, 2	d 5.50f.
Assistant, 2d	4.50
Fransportation, 5d.	
	20.00f.
Labor, at the blast of	engine 4.50

0	1		~	\sim	10
•7	4		n	11	t.
استم	T	a 1	U	U	1.0

No. 4.—Percent	taae.	
Fc	or It.	For 100k.
of	Orc.	of Lead
Labor	4.31	0.70
Tools	0.80	0.13
Coal for engine, (600k.		
per d. 16f. the 100k.).	1.68	0.27
Diabor	1.28	0.20
Repairs, materials	0.79	0.13
Puddling scorias (Sf.)	6.00	0.97
Coke (32f.)	4.60	0.74
Flux	0.44	0.07
Total amount1	9.90	3.21

WORKS AT CORPHALIE.

No. 1.—Dimensions of the Fur	nace.
Height	3.50m.
Size	1.00
Pressure of blast0.25 to	0.35

ressure	of	blast.						. ().2	25	to	0.3	5
---------	----	--------	--	--	--	--	--	-----	-----	----	----	-----	---

Per 24 hours.

Materials with Pb(at 30%).4	:000 to	o 50	00k.
Puddling scorias	50	to	75%
Coke	18	to	22%
Scorias containing, over treated again.	1%	Pb	are
· · · · · · · · · · · · · · · · · · ·			

Products. Pb produced.....1100 to 1200k.

46 •

No. 2.-Losses by Volatilization.

x	TT		1	0	T 1	
	N	e_{12}	tht.	ot	Lead	

Ores.	Weight of ore treated.	Contained in the ore.	Produced.	Lost.	Contained in poor scorias	Contained in deposits.	Lost by volatilization
Orude ore Roasted ore	$\begin{array}{r} .32090\\ .36115\end{array}$	$\begin{array}{c} 16276\\ 23630 \end{array}$	$\begin{array}{c} 13430 \\ 21269 \end{array}$	$\begin{array}{c} 2846\\ 2361 \end{array}$	thrown away. 808 542	$\begin{array}{c} 2038\\ 1819 \end{array}$	$\begin{array}{c} 12.52 \\ 7.69 \end{array}$

COMPARISON OF THREE PROCESSES.

.

No. 1.—Treatment in Reverb. Furnace, making poor Residues to be smelted in Shaft Furnace. 1000k. Galena (69.57%) Products. Lead	Loss in Reverberatory Furnace. $\%$ of ore2.98 $\%$ of Pb contained4.30Loss in Shaft Furnace. $\%$ of ore3.25 $\%$ of ore3.25 $\%$ of Pb contained5.07Total Pb produced651k. $"$ " lost42.50" " tor 100k. of ore4.25" " tor 100k. Pb cont'd6.13Expenses.Reverb. furnace16.40Shaft furnace23.80%)8.6525.05f.Galena supposed 70%Pb lost21.95Cost of smelting25.0547.00f.
33.41f. Galena supposed 70% Pb lost	No. 3.— Careful Roasting & Agglomera- ting without producing Pb, & smelting in Shaft Furnuce. 1000k. Galena (63.32%) Produets. 931k. yield of roasted ore at 65.33% 573k yield Pb. 61.57%
No. 2.—Treatment in Reverb. Furnace, making rich Residues to be treated in Shaft Furnace. 1000k. Galena (69.35%) Produets. Lead	Loss in Roasting. % of ore

Crasses in shaft furnace yield Pb 224k. ""% of Pb eontained

Roasting (per ton) Shaft furnace (21f. per ton)	$. ext{ 7.80} \\ . ext{ 19.53} ext{ }$
	27.33f.
Galena supposed 70%	
Pb lost	ž.
Value of this Pb (50%)	33.25
Cost of smelting	27.53
-	
Cost and loss	60.78f

No. 2.—Resumé.

	1	2	J
Loss in Pb	58.30	42.91	66.50
Val. Pb at 50f. pr 100k	.29.05	21.95	33.25
Cost of treatment	33.41	25.05	27.53

Total expense & losses 62.46 47.00 60.78

REFINING LEAD.

No. 1.—Reverberatory Furnace for Refining Pb.

Length of	hearth			•	•	. 2	to	4 m.
Width	66					.1.50	to	2.00
Depth of c	eharge.		,			.0.30	to	0.40
Length of	operat	ior	1.			. 12	to	60h

No. 2.—Furnaces at Freiberg.

	1861.	1864.
Length of hearth	2.86m.	3.71
Width "	2.14	2.86
Charge	5 to 6t.	St.
Max. height of arch	0.90	0.90
" " bridge.	0.33	0.33
Inelination of hearth	.1	.1
Charge	S.5t.	9t.
Weight of pig of Pb	50k.	
Coal used in $24h$	750 to	o 900k.
(Pb from ore or	matte 15	to 16h.
Time. $\langle \text{``} \text{lithar}$	ge 4	to 5h.
erasse	es60	to 80h.

No. 3.—Analy	sis of Lead.
--------------	--------------

S	Unrefined Silver, Pb	Refined silver, Pb	Arsenical Pb	Antii 1	nonial Pb
Pt	97.72	99.28	87.60	90.76	87.60
As	1.36	0.16	7.90	1.28	0.40
Sb	0.72	trace	s 2.80	7.31	11.60
Fe	0.07	0.05	traces	0.13	traees
Cu	0.25	0.25	0.40	0.35	traees
Ag	c = 0.49	0.53			

-100.61 100.27 98.70 99.83 99.60
--

Pb with 6 to 8% of As is worth 300f. " 12 to 15% of Sb " 445f.

No. 4.—Ireatment of Refining Urasses at
Bleiberg.
Charge
Refined in 48h.
Coal
Labor 4d.
Crasses yield in Pb 80%
Amount of erasses produced. 11 to 12%
Pb produced contains.
Sb 2 to 3%
S
Fe 0.15
Zn traees.

No. 5.—Cost of Refining.

Labor,	.13	3							.33
Coal, É	.80	at	1.6			•			1.28
Transportation,	.07	at	2.				•		.14
Sundries	• • •	• • •		• •	•		•	•	.26

2.00f.

No. 6.—Treatment of Refining Crasses at Freiberg.

Details of a Campaign.

Crasses eontain Pb	60 to 70%
Length of eampaign	179d.
Pb from the ore	1158.00t.
" mattes	110.25t.
" from oxydized produets	710.
Total Pb	1978.25t

	-						× .	-	-						-								1.000.0	~		~ •	_		~.	
0	0	n	te	ain	ii	ng	r 5	2	il	lv	76	er	•	•	•	•	•	•	•	•	•	•	7	3	8	8.	0	0	k	•

Obtained.

Hard antimonial or arsenical Pb 17.93t. Refined silver Pb, containing

Total, silver, 7384.265k. Pb 1951.357t.

No. 7.—Quantity lost.

Silver,	0.05%	or.		•					•	.3,789k.
Pb, í	1.36%	or					•			26,893

No. 8	-Expense for Special Refining.
Taban	founders, 371d 677.00
Labor,	Laborers, 555d 645.50
$\mathbf{F}_{\mathrm{Hol}}$	Bitum. coal, 150t1997.00
ruer,) -	Wood 1.20t. lignite 3.10t. 58.00
Blast ei	ngine 68.00
Repairs	of furnaces & tools 395.50

3841.00f.

1.942

EXTRACTION OF SILVER.

]

J

I

No. 1.—Treatment of Galena in a Reverberatory Furnace.

2000k. of]	PbS at 74.	04% Pb &	150g. Ag
% of Pb	% of Ag	% of Pb	%Ăg
Extracted.	Contained.	Extracted.	Contained.
6.49	20.40	38.94	69.6
12.98	35.58	45.43	74.11
19.47	48.40	51.92	78.72
25.96	57.72	58.41	82.27
32.45	65.5	61.90	85.14

NO. Z.—-Fractional Separat

Pb ·		Ag	Pb		Ag
100k.	with	471g.	600k.	with	368g.
200	66 -	411	700	66	244
300	66	370	800	66	227
400	66	333	920	66	210
500	66	304	1000	"	196

No. 3.—Experiment in the Large Way. Wt. of ore. Yield in Pb Ag contains 50,000k. 74.413% 684g. per t. % Pb by wt. Yield in Ag % of Ag 1st time. 12.274 1600 26.7292d '' 12.399 3d '' 7.567 1272 21.464 105410.850We. crass 67.758 48841.007100.00 100.00

No. 4.-- Value of the Lead.

			v		
	Pb	1	Ag	Cost	Increased
pro	duced.	conta	lined. e	xtracting	g value.
wt.	title.	grms.	value.	Ag	
100	471	47.1	9.89	4.20	5.69
200	411	82.2	17.26	8.40	8.86
300	370	11.1	23.31	12.60	10.71
400	333	13.3	27.93	16.80	11.13
500	304	15.2	31.92	21.00	10.92
600	268	16.	33.60	25.20	8.40
700	244	17.	35.70	29.40	6.30
800	227	18.2	38.22	33.60	4.62
900	210	18.9	39.69	37.80	1.89
1000	196	19.6	41.16	42.00	0.00

No.	5.—Separation	of	Gold.
Lat A	a castains A. C	00	0040

130	AB.	contains	<u>au</u>	0.000349
2d	66	66	66	0.000654
3d	"	66	66	0.000511

METHOD BY PATTINSONAGE.

No. 1.—Calculation for the Number of

Boulers.
M=quantity of Pb
P = " poor Pb
R = " ich Pb
=yield of M in Ag
= " P after n operations.
= " R " n' "
$\frac{2}{3}$ M=P $\frac{1}{2}$ M=R
$\frac{7}{8}$ M=P $\frac{1}{8}$ M=R
For the relation $\frac{2}{3}$, P=0.62a, R=1.76a
For the relation $\frac{1}{8}$, P=0.714a. R=3a

Generally b=15 to 20g. the ton.

" e=7,500, 10,000 or 15,000 grm.At Stolberg a=200 g., b=20 g., e=10 k.

The formula which is generally used for calculating the No. of operations is,

$$\begin{array}{ccc} \log \underline{b} & \log \underline{e} \\ n = \underline{a} & n' = \underline{a} \\ \hline \log p & \log q \\ \end{array} \\ p = 0.62 & q = 1.76 \\ n = 5. n' = 7. & n + n' = 12 \end{array}$$

 $b=(0.62)^5 \times 200g.=18g.$ which is lost. $e=(1.76)^7 \times 200g.=10,460g.$ in rich Pb If a=600, b=20g., e=7500g.

No. of operations for $\frac{2}{3}$ & $\frac{1}{3}$, 11 to 12.

For $\frac{1}{3}$, n=16 to 17, n'=1, or 17 to 18 operations.

No. 2.—Skimmers.

Length of handle	. 3.20m.
Diameter of iron stem	. 0.045
" wooden "	. 0.095
Thiekness of skimmer	. 0.015
Diameter "	.0.40 to 0.50
Depth "	.0.10 to 0.15
Capacity "	. 120 to 150k.
Diameter of holes	. 0.012
Distance between holes.	. 0.002
No. of circles of holes	. 8 or 9

	Poor.	Rieh.
Length	0.90	0.30
Width	0.11	0.11

No. 4.—Details of the Boilers.

Height from ground	0.56
Diameter	1.70
Thiekness at bottom	0.05
" " sides 0.0	3 to 0.04
Weight	1200k.
Cost	375f.
Old iron sold at 10f. the	100k.
Width of crown	0.32
Weight "	340k.

9 boilers for 6t. require.

Common brick	150,000
Fire brick	10,000
Fire Clay	ź 5t.
2 boilers ean work 50t. per mor	nth. 15

to 20, with 18 men, can work 400t., if 25 working days are counted in a month.

No. 5.—Distribution of the Pb.

Poor]	Pb at	$2\mathrm{g}$					
Rich	" 104	1 g.					. 4t.
Pb of	varial	ole	rieh	ness	in	boilers	s. 60t.

512t.

No. 6.—Pure Pb at Stolberg.

For 1000.

Proof	Pb	at 17;	g				. 960.8k.
Rich	66	-176	•••				. 16.7
Loss,		7					22.5
,			-				
•		200g	•				1000k.
\mathbf{L}	oss i	n Pb	is 2 .	25%	r)		
L	oss i	n Ag	7+]	17 =	:240	r = 1	.2%

When the Pb is impure the loss is 3.5%

No. 7.—Law of Impoverishment.

As	says	give	the	followi	ing 1	results	3.
1	2	3	4	12	13	14	15
g. 1,570	g. 970	g. 650	g. 450	g. 11	g. 5	$\overset{\mathrm{g.}}{2.5}$	g. 1.3
Re	latio	ns of	the	sueees	sive	yields	5.

 $0.62 - 0.67 - 0.69 \dots 0.45 - 0.50 - 0.52$

$$\begin{array}{c} 1.3 = 1.570 \times x^{14} \\ \log, x = \frac{1}{14} \log \frac{1\cdot3}{1\cdot570} \\ x = 0.60 \text{ nearly.} \end{array}$$

The Ag in the last erystalization at Freiberg is between 1.50 & 1.60k.

$X_0, \delta, -C_0 m position of the Foot$	No.	8.—	Com	nosition	of the	Poor	Pb.
--	-----	-----	-----	----------	--------	------	-----

	Pure.	. Ii	mpu	re
Cu	0.05	to	0.1	
Fe	0.02	66	0.5	
Sb & As	0.02	66	0.1	

0.09 " 0.7% impurities.

No. 9.-Expenses at Stolberg.

(1.) Pattinsonage.

Coal. 133k. at 16	2.13
Labor. 1d. " 2.33	2.33
Wear and tear of boilers	2.00
	6.46 f
(2) Cupellation of 16 to 17 of	0.00
rich Pb at 50	0.80
(3) Reduction of 200k. of crasses. For 1t.	
Coal. 150k. at 162.40	
Labor. 0.900.90	
Bepairs, &c1.00	
1 / ·	
4.30f.	0.86
(4) Refining Pb.	
Coal, 80 at 161.28	
Labor	
Repairs, &c0.32	
2,006	9.00
(5) Tear 251 of 5006	2.00
(b) Loss, 55K. at 5001	11.00
2	27.62
]	17.80
-	9.82f

No. 10.—Expenses at Bleiberg.

Coal, 344 at 18.40	.6.31
Labor, $\begin{cases} \text{Skimmers, } 2.75 \dots \\ \text{Firemen, } 6.8 \dots \end{cases}$	5.12
Revivification of 182k. of scoria.	.1.41
Wear & tear of boilers	.1.21
Sundries	.0.94

14.99f.

No. 11.—Expenses in England.

Coal	•			•						•					•	•						0.88
Labor	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•		•			11.91
Sundries	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	.26

13.05

No. 12.—Work at Freiberg.

Work at the boilers	153d.
Sweating of the crasses	$22\frac{1}{2}$ d.
Salary of workmen, pr. basin	$1.687 ilde{2}$ f.
No. of skimmings in 6 month,	5,712
No. of skimmings in a day.	37 to 38

No. 13—Results at Freiberg.

Employed for pattinsonage.

1779.25t. silver Pb from refining

- containing silver..... 140.250k.

Obtained.

1268.160t. commercial Pb

461.185t. rich silver Pb. 150gr. silver %k. consequently it contains 7006.190k Ag 393.150t crasses containing 377.000k.Ag and 339.796t. Pb

Re	capitulation.	
	Lead.	Silver.
Employed	2081.410t.	7432.045k.
Obtained	2069.140	7383.190
Lost	12.270t.	48.855k.
Loss %	0.59	0.657

Useful effect of the Crystalization.

Relation between the quality of poor & rich Pb obtained, and that really transported by the workmen.

 $\frac{1,729.345}{51.720} = \text{nearly } \frac{1}{30}$

No. 14.—Special Expenses for the Pattinsonage of 2081.46t. Silver Pb.

Labor.

Men working at boilers 5.508d. 9639.00
Laborers for boilers 490d. wrk. 588.00
" for casting, cleaning
carriage & wt. of Pb 964d. 1158.80
Founders for sweating, 108d. 146.00
Helpers, 230d. work 276.00
Fuel.
Coal for boilers, 815.5t 10710.60
Coal for sweating 17.4t 231.25
Lignite for basin, 45.4t 705.50
Fine coal, 93.6t 936.00
Repairs.
Labor on 12 boilers 3054.50
Repairs to tools & furnaces 300.00

27743.65f.
11 VI VII Ī III IV XF7 \mathcal{V} XV to 100 2 3 2-7 2 2 3 2 10 10 2-2 7 200 10 2 2 3 að y ad 10t 100 100 2 2 XIII XIV XV XII VI VII JIIV IX X ХI III 11 JV 10 15 (5) (632) 70 10 10 10 10 10 3 2. 73 2 とこ 1 ad 3 (2,5) (134) (970) TF 100 1.0 73 4 3 . 3 (5) (752 100 105 13 (11) 70[€] 22 2-2 3 2 (453) 100 .7 3 4 3 E. (5) (653 10t 10t 105 10 10 0 10 7 3' (1) (1) 2 2 3 rai (2) 455 7 100 100 4. 2 2 7 ta) (62.0) (5) 10t 104 10 0 10 3

Hethod by Thirds and Intermediate Cristallization (Freiberg)

To face page 50.

•

.

.

Pattinsonnage, Method by Shirds.

Table showing the Skimmings Table showing the Skimmings Table showing the Skimmings Sable showing the insminings from the commencement of the operation from the commencement of the operation from the commencement of the operation from the commencement of the operation for the production of the production of lead for angellation to the production of lead for angellation to the production of lead for angellation to the production of lead for angellation to the production of lead for angellation to the production of lead for angellation to the production of lead for angellation to the production of lead for angellation to the production of lead for angellation to the production of lead for angellation of the production of lead for angellation to the production of lead for angell

to the	eproduction of while for the for		
	De died She Baileas	Mumbers of the Boilers	mansbers of the Boilers mumbers of the Boilers
	Tumbers of the workers		193458789104149 497489101142
	123456789 10 11 12	723436/ 891041 42	
		1	1++91,8 3 9 211+3.3 3.2
9	3	1722.2.2.2	
6	+ 3 2	40 71223, 3, 22	10 111213.2.2 2112.3.2.
Ĩ			1 1 1 2 1 3 1 2 1 2 1 2 1 . 3 . 3 . 3
	123	7723.3.3.3	$\gamma \gamma $
	1 3 2	· 1 + 2 2 3 3 9 P	79 111 9 9 3 3 3 36 102 211 21 3 . 3 . 3.
	2 . 2 2	1 2 8 2 3 9	11123.3.2 21122.3.2
18	2 2 A 2		
l"		121.3.3.22	1 1113.3.3.22 104 211 223.3. 22
	3. 3.2		
	\wedge	1281.3.3.3	
	1.3.22	1/2 101100 200	1 1 2 3 3 3 5 8 9 7 4 8 3 3 . 3 . 80
	. 17.3.3	42 12113, 3. J. 28	
		1919 2 3 9	14944, 3, 3, 2, 912, 3, 3, 3, 2
10	773.2.4	· · · · · · · · · · · · · · · · · · ·	
	1 2 3 2 2	44 12122 2 29	14+++++++++++++++++++++++++++++++++++++
		× × ×	
12	123.3.3	1213,3,3.3	11212.3.3.3 21289.3.3
	1 9 2 9		
1		122,3.3.2.30	V6 112123 . 3 . 3 . 60 100 27 29 3 . A A
1	2 . 3 . 3 . 2 2		
		1221,3,4,2	11213.3.2.2 27272.2
	27.2.2	45 19910 0 0 0	11991 9 9 9 1.0 0,0 10 1 1 9 9
1/1	2 3 3 3 2	70 72273 . 2.22	1 1122. 3. 3. 22 108 292123. 3. 40
1/4			49994.3.3.3. 91019 9 9 8 8
	2 2 . 3 . 3 . 2		γ_{0} $\wedge \gamma_{0}$ γ_{1} $\gamma_$
11		1.0 70000 2 2 00	18 \$\$22\$3.3.3.62 g199 2 3 3 9 93
10		40 12223 . J. J. J.	
	2 3 3 3 3		11222. 5. 5. 21221. 3. 3. 2
		7223.3.2.2	80 11 2 2 3 3 2 2 .
	3, 3, 3, 3, 3, 4	192 9 9 9 9	10 222213.3.22
			X1 223', 3, 3' 'S
		1 3 3 3 3 3	21222.3.3.3
	11.3.3.22	$\wedge \wedge $	
		2. 2. 3. 3 . 3 . 34	1 2 2 2 2 2 3 . 3 . 3 . 94
	1 1 1 : 3 . 3 . 3	9 1 2 3 3 9 9	
10			18 3 8 99 21223.3.5.2
10	7773.3.3.0	21133222	12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
	1491 3 3		127. 3. 3. 3. 3.
		211.1.3.3.3	A C 2 1 3 3 3 3 3
120	1123.3.22	X. Price 2 2 20	1211.3.2.0
Ы	\wedge	20 21113.3.3.36	22.3.3.3.96
	773 3 3 3	9+19 2 3 9	
1			82121113.3.22 221.3.3.2
	12,3.3.3.8	32 21123 3 22	824 2 2 2 2
	121 3 3 9	$a \sim \sqrt{2} \sqrt{2}$	12112 . 2 . 3. 3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.
		2713,3,3,	01 2 3 68 22
12	2 1213,3,22	9 4 9 3 3 38	84 727723. 3
			12113 3.3.2 114 22111 2 3.3. 91
	122.3.3.3	1 0 20 2 2 9	
R.		1	19193 3 3 3 3
	211.3.3.2	0 2 2 2 2 2	
1 21		~~····································	1213.3.3.3.12 18 221 213 3.22
126	2113, 3, 22	9 4 1 2 2 2 4 42	
		Let i A A	122.3.2.2.2. 2.2122.3.3.3
	212.3.3.3	2211,3.3.2	100 3 2 99
191			1221. 2. 2. 2. 20 221 22 2 3 3 10
128	2723.3.3.14	38 22113,3.2.2	12241 3 3 3
1		9919 2 2 2	22123, 3, 3.9
	213.3.3.2	acta A'A'A	12-122118 8 8 7/4 AAA
	2 2 8 2 0 0	60 22123,3.3.44	2213.3.3.22
	~~, ~, ~, ~, ~	9012 2 2 2 9 ,	19212,3,3,2
	291 3 8 3	· · · · · · · · · · · · · · · · · · ·	222.3.3.3.3
		229,3.3.2.2	92 1 2 2 1 2 3 2 2
30	2213 3 3 76	A A A	2221.3.3.9.90
11		A CORLX A Y	

110. 1	1t. Sil	ver Pb.	age of
Labor,		3.507d	5.670
	Bitum. coal,	0.406t	5.257
Fuel, \langle	Lignite,	0.022t	0.340
. (Fine coal,	0.045t	0.450
Repair	S	• • • • • • • • • • •	1.611

C

No 15 Cast

13.328f.

No. 16.—Comparison between Altenau and Freiberg. Altenau.

Pb from ore & matte for pattin-Skimmings in 24h. 4 skimmings cause the

transportation of.....55t. Pb

Each boiler contains....11.250k. Pb No. of boilers..... 13 No. men at battery by post 8

Average of silver in Pb

for pattinsonage..... 240 to 250g.

Commercial Pb contains. 2g. 5% arsenic. Amount of silver in rich Pb

after pattinsonage..... 580 to 600gr.

Time for crystalization & sweating of crasses at Altenau....

Freiberg.

42h.

Time for crystalization & sweating crasses at Freiberg, 28h...3.507d.

Or if previously refined, less than 32h. These differences are owing to the methods of working and to the different kinds of fuel used.

CUPELLATION.

GERMAN METHOD.

No. 1.—General Dimensions of the Furnaces.

Diameter		.2.40	to 3
Firanlaga []	Length	1	to 1.20
rneplace, 7	Width	.0.50	to 0.55
Height of lit	harge hole	.0.60	to 0.70
Charge		. 8	to 10t.
Air per minu	ate 0.0	5 to 0	.10c.m.

Hearth.

Clay	1
Carbonate of lime	3 to 4
Thickness in centre	0.10
" border	0.20
Inclination	0.25

At Freiberg.

Greater	axis of	furnace.					.270
Smaller	66	٠.					.250

At Viallas.

Diameter of the hearth2.30	
Depth of " "0.25	to 0.30
Greatest height roof above	
hearth 1	to 1.10
Width of fireplace0.40	to 0.50
Length ⁻ "2.00	
Grate below bridge0.40	to 0.45
3 Openings for vapors0.20	$\times 0.25$
Flues " "	× 0.20

No. 2.—Litharge.

	Red.	Yellow
P b	98.17	97.81
Ċu	0.11	0.09
# e	0.08	0.12
Ä l	0.09	0.12
Äs & Sb	0.36	0.47
Ċ	0.74	0.62
Residues	0.15	0.17
	99.80	99.40

No. 3.—Litharge Mould.

											-					
Length																0.70
Width.									,							0.45
Depth.																0.40
Weight	(b	f	c	a]	k	e		•	,						750k.

No. 4.—Time for the Operation at Viallas.

Fusion	10h.
Production of abzugs	17
" " abstrieks	6
Dirty litharges	2
Red & yellow litharges	28
Taking out Ag and cooling	0.75

53.75h.

Fi Co

n general \ldots 52 to 56h.	
Taking out hearth	12
Breaking hearth, weighing Ag	8

53 to 75h.

Pb oxydized in 1h.....120 to 150k.

No. 5.—Products for 1t. of Pb Cupelled at Viallas.

Impure Ag.																		3.710k.
Red litharge								Ţ										192
Yellow "		Ĵ	Ī	Ĵ	Ĵ	Ĭ	Ĭ		Ĭ	Ĵ	Ĭ	ļ	Ĭ	Ì	Ĭ	Ĭ	Ĭ	520
Dirty "	ľ	ľ	ľ	ľ	•	•	•	•	Ì	ľ	Ī	Ĩ	Ĭ	Ī	Ĭ	ľ	Ĩ	25
Fuel used	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	268
ruer useu	٠	۰	۰	۰	٠	٠	۰	۰	•	۰	٠	٠	۰	۰	٠	•	۰	~~~~

No. 6.—Cost for 1t. of Pb Cup	pelled.
Marl	6.00
Labor	5.21
Preparing litharges	0.42
Prime to workmen	1.71
Truel (Cupellation, 0.268	5.64
Fuel, Engine, 0.200	4.30
Wear & tear of tools	0.71
" furnaee	0.34
Sundries	0.50

01 00f

1t.

No. 7.—Products at Freiberg.
Quantity of Pb cupelled 17t.
Abzugs 100t.
Red litharge at 5 to 7% of Ag
to 100 1.5 to 3t.
Yellow litharge at 10 to 40%
of Ag to 100 12 to 14t.
Debris cupellation at 60% Pb
& 25% Åg 2 to 2.4t.
Ag at 96.5% 0.220 to 0.225 t.
Length of operation 72h
No. 8.—Expense at Freiberg.
T.ban (Cupelle 1.50
Laborer, Laborers $\dots 1.25$
Wood, per 1st. to 0.9 st0.30 to 0.33
Repairs furn. 20.90 pr 1t. Pb 1.23
1.000 tools, 10.25 1.000
1
REFINING THE SILVER.
No. 1.—Dimensions of Refining Furnace.
Length of hearth
Width " 1
Fireplace 0.45×0.55
Height of arch above bridge 0.75
the state of a state of the strage of the

Charge....

No. 2.—Length of Operation.	
Making hearth	3h.
Heating furnace	9
Fusion	2
Fining	8
Cooling & taking out eake	2

24h.

Diam. of spoon for easting Ag	0.20
" cake of Ag	0.25
Weight " · · · · · · · · · · · · · · · · · ·	10k.
Title of the Ag	0.997
Cost of refining 1k. Ag	0.025f.
Coal for 1t. of Ag	600k.

No. 3.- Separation of Bi, 1862.

Cupel debris treated	1.136t.
Time	60d.
Days' labor	231
Coal used	5t.
HCl 3.015t. at	6.80
Total expenses	655f.
Obtained.	

Refined	Bi	192k.
Sold at	15f. for 1k	2,080f.
Residue	at 40% Pb & 4.162% Ag	106k.

No. 4.—Expenses in the Hartz.

1t. Pb gives Pb 960 & Ag 1.25g.

			Pb
Poor litharge,	666 at	90%	599
Rieh "Č	122 at	88%	107
Abzugs & abstriel	ks100 at	83%	83
Cupel bottoms,	133 at	70%	93
Ag,	1.25	,	
	1022.25		8291-
Marl for boarth	- 1022.20 	aa in	Dh 79
Mail IOI moatting	01.00	55 III	10,10
	9.89		900
960 of Pb eorresp 38.70 of foreign	oonds to metals	1034 50 (litharge.
There should be of	foxydes	1084	
There are only		988	
Toga by volatiling	+	<u> </u>	
Doss DV Volatiliza	uion,	90	1:11.
76k. of PD volating	zed gives	84	ntharge,
		19]_r
		1.2	К.
101 1	11 1001	•	

12k. is too small, 78k. is too large.

No. 5. - For 1t.

Labor, 180		3.20
Fuel, 340 at 17		5.87
Marl & repairs		3.52
-		
		12.50
Value of Pb lost	. 45 to	50
	57.5 to	62.50
~ 1		10 50
General expense	17.5 to	12.50
	(20)	73.00

No. 6.—Expenses at Tarnowitz.

1t. Pb gives Pb 992 & Ag 200g.

Poor litharge, Abstricks&abzu Cupel bottoms, Ag,	$889 \\ gs 21 \\ 180 \\ 0.5$	t 92%. * 85%. * 65%.	• • • •	818 18 117
Marl of hearth,	1090.5 54	Pb & Loss o	Ag f Pb	953 39
	1036.5		-	992
992 of Pb corres 7.5 of foreign	sponds t metals,	to 1069 10	litha oxy	irge. des.
Oxydes obtaine	d,	$\frac{1079}{1036}$		
39 Pb volať zd co	rrespon	$ds \frac{43}{42} \\ -\frac{1}{1}$	litha	ırge.

No. 7.—General Resumé.

Labor eupellation & revivification	2.80f.
Coal $\left\{ \begin{array}{c} \text{eupella'n, } 225\\ \text{revivifica'n, } 67 \end{array} \right\}$ 272 at 10f.	2.92
Marl & repairs	1.50
Loss of $45k$. at 500f	22.50
S.	29.72f.

Pb with 15 to 18g. may therefore be cupelled.

Employed for extraction	of silver.
	Silver.
461.185t. Pb fr patin'ge, eont	. 7006.190k
225.400t. " smelt'g rieh or	e,1741.000k
0.304t. silver ore (pure ore	e)
containing	. 199.202k
686 889t	8946 3921-
	0010.002A
. No. 9.—Products Obt	ained.
81.050t. red commercial li	ith.
Pb	Ag
76.585	t.
10.950t. abzugs. 7.675	t. 18.925k.
550.500t. lith. redu.478.935	t. 160.215k.
70.400t. eupel bot. 42.240	t. 17.600k.
9046.63k.cakeAg .967	
Cake refined produces:	

No. 8.—Treatment at Freiberg.

8753.76k. refin'd Ag 9.972		8729.312k.
0.381t. eupel bottoms		6.820k.
Total,	605.43ft.	8932.872k.

No. 10.—Loss of Metals.

Silver, 14.520k. or 0.162% of the metal eontained in the ore.

- 81.150t. or 11.82% of the weight Pb, of the alloy eupelled, if the Ag eontained in the alloy is deducted.
- Loss of Pb=72.20t. or 10.65% of metal contained in the alloy.

The extraction of Ag has required

Number of eupellations.... 41 Time for all the eupellations. 2764h. " 66 67 to 68h. one The revivifying the Ag has taken 8 eampaigns of 12h. each.

No. 11.—Expense for these Two Operations.

1st for the Cupellation.

(Cupell'rs 336 posts, 8h.1020.90f.
Helpers, " " 850.75
Labor. Primes for 86t. red lith. 43.00
Laborers for transpor-
tation, 276d 331.20
128t3156.50
Stuel.) Shavings, 16.7t 167.00
Blast engine 199.00
Repairs of furnace & tools 900.00
*

6668.35f.

2d for refining Silver.	No. 2.—Cost in England, (Newcastle.
Labor	Labor 5.26
\mathbf{E}_{trad} (Coal, 9.9t	Coal, 4 quint
r uei.) Chareoal, 0.13t 17.10	Engine [] Labor
Repairs	Engine.) Fuel
1	Ashes for eupel
423.70f.	Bone ash 3.883
	Repairs

13.658f.

No. 3.—Cost in General.

Coal,	1.50	at 7.5	 		- •		1.12
Labor,	1.5	at 1.2	20				4.20
Aeeess	ories						2.00
Loss Pl	b 76k	. at 5	600				35.00
Cost of	purif	ying	litha	rges	• •	• •	4.50

46.82f.

No. 4.—Details of Production of 1t. of Ore.

1t.	ore	produces	roas	ted	ore.		.8501	K.
	46	- <i>cc</i>	Hard	Pb			.420	0
			Soft	Pb			. 360	
			Rich	\mathbf{Pb}			. 99	
		Cr	asses	& 1	itha	rges.	. 18	.5
						-		

SEPARATION OF SILVER BY ZINC.

REDUCTION OF THE LITHARGES, &e.

TREATMENT IN REVERBERATORY FURNACE.

No. 1.—England.

Length	hearth.		 	.2.40	m.
Width	66 .		 	.1.50)
Pb prod	lueed in	24h.	 	. 45	00k.
Fuel use	ed "	•	 	. 10	00k.
No. of 1	men		 		2
Cost for	t. lt. lith	arges	 		10f.

No. 2.	—Expen	ses in 1	North En	gland.
Coal,	150 at	16f		. 2.40
Labor,	0.33''	2.50 .		. 0.83
Repairs	• • • • • • •			. 0.79

Labor			• •															3.20
Coal																		0.55
Repairs.	•	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0.17
																		3.92f

No. 3.—Expenses at Viallas.

Charcoal,	83k. at	46f	 .4.98
Coal,	117 "	21.50 .	 .2.51
Labor,	0.75 $^{\prime\prime}$	1.75	 .1:31
Repairs	• • • • • • • •		 .0.25

9.05f.

4.00f.

Furnace. Width bridge.....0.45 Height of oval ring.....0.12 Major axis of ".....1.20 Minor " ".....0.90 Size of bottom bars..... 0.11×0.012 Fuel used for 1t. rich Pb..... 4quint. Pressure of blast, 0.01 to 0.015m. of Hg

No. eommon brick for eonstruction. $200\bar{0}$ fire brick..... 2000 Fire clay.... 1.500t.

No. 12.—Exponse for both Operations

on 1t.

 Fuel. $\begin{cases} Wood, & 0.211t... 4.838 \\ Coal & ehareoal, 0.013t... 0.220 \\ 0.280 \end{cases}$

Blast engine..... 0.289 Repairs of furnaces & tools.... 1.383

ENGLISH CUPELLATION.

No. 1.—Details of English Cupel

..... 3.595f.

10.325f.

Labor, 1.330d.....

Minor

No. 4.-Belgium.

1000k. litharges produce Pb804.40
Crasses at 48%
Quantity treated in 24h 5 to 6t.
Fuel per 1t 325k.
Direct yield
Total yield

No. 5.—Refining Furnace.

1000k. litharge produces Pb787
Residues at 52%
Fuel used
Total yield
Quantity in 24h1500 to 1600
Cost of revivification 6.50f.

TREATMENT IN A SHAFT FURNACE. No. 1.—Silesia.

Height of furnaee	1.50m.
Quantity reduced in 24h	15t.
Pb produced	88%
Crasses produced at	12%
Pb extracted from erasses	3%

No. 2.-Hartz.

Scorias against tuyere	1 0k.
Chareoal " breast	12.5k.
Litharge in back corners	87.0k.
Campaign lasts	56 to 63h.
works	82.800k.
In 24 hours' charge	30.000
Chareoal	11%
Cost per ton litharge	1 0f.
Losses in Pb	2%

No. 3.—Furnace at Freiberg.~ Pb to be refined.

Height furnaee	2.28m.
Quantity treated in 24h	45t.
Product eontains Pb	90%
No. tappings	20
Men for 24h	8
Pb not to be refined.	
Height of furnaee	2.28
No. of men	5
Litharge treated in 24h	25t.
Litharge from the last part of cupe	ellation.
Quantity litharge for 24h	15t.
Old seorias	10%
Scorias of revivification cont'n 25.	30% Pb

Ala	4 TI	7. 7 °	α	
/YO 4	+ ///	orking	Nen	mac
	1. 11	VINCIU	NUU	1 140

Quantity treated	100
Pyrites added	3
Work in 24h	5t.
Seorias produced contain	3% Pb

No. 5.—Treatment of Abstricks.

Puddling seorias	24%
Seoria from same operation.	30 to 40%
Pb produced contains Sb	18 to 24%
Seoria & debris contain Pb.	12 to 14%
Loss by volatilization	5.65%

No. 6.—Treatment of Patinsonage Crasses.

Stolberg.

Crasses with 1	Pb.		 	 90	to 95%
Charges in 241	1		 		10t.
Fuel used		• •	 • •	 .15	to 20%
No. of men			 	 •	$2^{'}$

Altenau.

The 100k. of Pb produce.

Rich e	erasses wh. go	to cupell'n	17.29%
Poor	66 6Č	revivifi'n	16.35%
Loss i	n poor crasse	S	12 to 13%
Loss o	of Pb contain	ed	2.012%
Yield	of erasses in	furnace	90 to 96%

No. 7.—Details of Operation.

	Pb Ag
1224.25t. pre'g op. 1022.82	22t. 665.218k.
111.525t. " " 68.19	95t. 110.530k.
50t. of old seorias 1.3	00t. 40. k.
18.4t. of ore as flux 2.68	55t. 1.895k.

1404.21 eh. cont. 1094.212t. 782.395k.

Obtained.

Pb	Ag	Cu
Pb for refining 720t.	653k.	
" patin'ge 302.16	140.25k.	
Matte, 37.875 15.50	11.362k.	6.222t.
Seorias, 271.405 3%		
1391t prod		

eontain 1035.452t. 804.612k. 6.222t.

Loss in Pb..... 58.760t. or 5.37% Exeess Ag over Assay 22.217k. or 2.84%

No. 8.—Expenses.

Roasting, $22d$	33.00
Smelters & chargers, 1268d	2282.00f.
Laborers, 47d	56.4
Coal for roasting 27t	
Charcoal for fusion 182t	4368.00
Stamping 205t. of matte	18.25
Blast engine	248.65
Repairs to furn. & tools	291.60
L	

_	~	~			~	~	0
- 7	2	2	.1	- 1	A	O	t i
			-	- 1		U	1.

For 1t. of charge.

	U U U U U U U U U U U U U U U U U U U	
Labor.	0.952	1.688
Coal	0.002	0.026
Coke.	0.129	3.111
Blast er	gine & stamps	0.190
Repairs	to furnace & tools	0.028

5.223f.

No. 9.— Recapitulation.

For refining.

Silver Pb 1268.25t.
From revivification
For pattinsonage.
Refined Pb 1779.41
Pb from revivification 302.16
For cupellation.
From patinsonage 461.185t.
Pb from rich ore 225.40t.
Pb from Ag ore used $\dots 0.3043$ t.
For revivification.
Oxydes & scorias 1404.00
All this material contains,
Ag
Pb 1565.040t.
No. 10 Products Obtained
Dh mith A a fr Sh 15 0204
PD WITH AS α SD 17.930t.
Pure F.D
Metto 97 9704
Second with 2σ of Pb 271405
Refined A c 875 276+
Dobris of eurollation 391t
These materials contain.
Ag $8/4/.494k$.
$P_0 \dots 1385.945t.$
Loss.
Ag, 44.943k. or 0.511%
Pb 179 073t or 11 442%

No. 11.—Cost of all the Operations. Fining Pb.

Labor,	0.592	0.884
Fuel,	0.099t	1.373
Blast er	gine	0.045
Repairs	to tools & furnaces	0.265
T		
	•	2.571

	Pattinsonage.	
Labor,	4.885d	7.898f
Coal, É	0.565t	7.323
Lignite,	0.031t	0.474
Fine coal,	0.063t	0.672
Repairs to	furnaces & tools	2.244

18.566f.

Cupellation & Refining Ag.

Labor,	0.687d	1.650f.
Wood,	0.096t	2.222
Coal, É	0.059t	0.101
Blast er	ngine	0.132
Repairs	to furnace & tools	0.634

4.739f.

Revivification of litharges, &c.

Labor 0.894	1 587
$\square abol, 0.00 \pm \dots + \dots + \dots + \dots + \dots + \dots + \dots + \dots + \dots + \dots$	1.001
$Coal, 0.002\ldots\ldots\ldots$	0.024
Coke, 0.122	2.925
Blast engine, stamps, &c	0.179
Repairs to furnace & tools	0.195
1	

4.910

No. 12.—Total Cost of 1t. of Pb. Labor, 7.056.....12.019 Coal, Blast & stamps..... 0.356 Repairs to furnace & tools.... 3.338

No. 13.—Loss.

Ag	Pb
For 1t. silver Pb30g.	120k.
Average price metals, 1862. 222.5	435
Price of material lost 6.67f.	52.20f.
Total loss	
Cost of treatment30.79	

Excess loss above cost.28.08

I

CONDENSATION OF VOLATILE PRODUCTS.

57

No. 1.—Experiments at Corphalie.

Ler	gth.I	nterior olume.	Friction surface.	Height chim'y	t Useful . effect.
Old conduit New "	m. 819 995	e.m. 1815 2826	$s.m. \\ 4765 \\ 7609$	m. 100 100	$\frac{\%}{15.35}$ 25.95

No. 2.—Ratio between the No. of Kil. Condensed & Condensible.

Malden.

Length o	f canal			.180m.
Capacity	of 1st cha	amber.		.849c.m.
- 66	2 d	- 66		1482c.m.
66	3d	66	(6330c.m.
Chimney	connectin	ng 1 &	2	. 46m.
66	66	2 &	3	. 37m.
Chimney	of gener	al deliv	very.	. 61m.

No. 3.—Quantity of S in Vapors.

Vapors of fusion furn.	$\frac{1}{500}$ to $\frac{1}{700}$ vol
" roasting stall.	$\frac{1}{250}$ ((
" muffle	$\frac{1}{160}$ ((
At 10m. frm chimneys.	$\frac{1}{50000}$
60 to 70	$\frac{1}{90000}$
With a wind	$\frac{1}{150000}$
At 100m	$\frac{1}{1000000}$
Quantity necessary to	1000000
injure vegetation.	<u>1</u> 80000

No.	4.—Volatile	Products	at	Alston
	- L	Moor.		

Ŷ	10.2
ÝbS	65.6
Fc	3.4
Żn	13.8
·PbS	1.4
Si	5.6

No. 5—	Volatile	Products a	atPontg	ibaud.
--------	----------	------------	---------	--------

	Outside	1st con-	Ventilation
	deposit.	densation arch.	chamber.
$\mathbf{\hat{P}}\mathbf{b}$	10.0	66.5	3.7
$\mathbf{\dot{P}}\mathrm{b}\mathbf{\ddot{S}}$	47.0		13.0
Pb			55.4
Äs		1.1	1.5
₽ е		3.0	13.0
Żn	10.0	12.0	3.1
S			8.9
S	33.0	17.0	

No.	6.—Volatile	Products	of	Reasting
	Furnace	at Pontgib	aud	2.

	1	2
$\mathbf{\hat{P}}\mathbf{b}$	11.0	
$\mathbf{\dot{P}}\mathrm{b}\mathbf{\ddot{S}}$	60.0	39.0
$\ddot{\mathbf{A}}\mathbf{s}$	` 2.0	1.5
Ŧe	12.0	1.5
Żn	15.0	2.7
ΡbĈ	15.0	35.0
ŻnŸ	15.0	2.3
PbS	15.0	4.5
Ŝ	15.0	13.2

No. 7.— Volatile Products at Clausthal.

		1
$\mathbf{\dot{P}}\mathbf{b}$	18.0	
$\dot{\mathbf{P}}\mathrm{b}\ddot{\mathbf{S}}$	2.9	
Pb	35.8	
Fe	1.0	
Sb & As	0.5	
Zn	1.0	
Ŧe	4.5	
Żn	1.5	
S.	7.8	
S Äs	2.5	
C & O	7.7	
C	2.5	
BaS	12.3	

No. 8.—Agglomeration.

Quantity treated	
Fuel used9400k.	
Labor 28d.	
Cost	6.25f.
Quantity in 24h.2,000 to 2,500k.	
" agglomerated ma-	
terial produced 27,211k.	
Loss in Pb, Shaft furn. 10.8%	
" " Rev11.67%	
Cost of fusion	14.47
Making bricks per ton.	
Labor	.75
Lime, 0.45c.m. at 7.50	3.37
	4 1 2

1000k. make of bricks 1400k.

Treatment	No. 13 - Condensation of the Volutile
Coke 20%	Products at Freiberg.
Forged scorias 74% Cost of fusion	In 1h. an English roasting furn. pro- duces 25k. of sulphur, corresponding to 50k. of sulphuric acid.
Cost of agglomeration 17.09	To saturate 50k. of S requires 44k. of lime or 350 litres of lime water.
13.88	Theoretically to saturate 1200k. of S in 24h. requires
No. 9.—Agglomerated Volatile Products at Conflans. Pb 42.6 PbS 39.0 Si 17.4	BaS 2,950k. BaS 2,100k. Litres of water 11,950 In practice. 11,950
No. 10.—Agglomeration in Rev. Furn.	BaS
Quantity treated $67,565k. =$ Fuel used $18,000k.$ Labor $60d.$ Cost 6.25 Quantity in 24h 4500 Material produced $52,365k.$ Contain Pb 44.25% Agglomerated prod'ts cont. Pb 53% Loss in weight 23% Loss in Pb charged 3.25% Pb condensed 7.7%	No. 14.—Apparatus for Condensation. (2 buildings.) Each building contains 6 gallerics. Height of the canal
No. 11.—Treatment in Shaft Furnace.Puddled scoria	No. 15.—Product of 3 Months. (1863.) Arsenical fumes
No. 12.—Volatile Products at Freiberg.	
Рb 27.9 Фрё 12.0	No. 16.—Apparatus for Condensation at Halsbrücke.
\ddot{A} s 2.1	Width of gallery 1.42m.
Žn 49.5 Co 7.0	Height "2.30m. Width near chimney 5.70m.
	•

TREATMENT OF ORES OF SILVER.

- 1. FUSION WITH LEAD, OR LEAD ORES.
- 2. AMALGAMATION.
- 3. TREATMENT IN THE WET WAY.

1. FUSION OF LEAD ORES AT FREIBERG.	No. 2.—Details of Rousting (1862.)
TREATMENT.	Length of eampaign 182d.
(1.) Roasting.	Ore treated
(2.) (a) Fusion of Ores.	Labor (days of 8h.) 618d.
(0) Concentration of mattes.	
Shaft Furnaee.	No. 3.—Cost for Roasting 1t.
Reverberatory Furnace.	Shavings for fire 0.66m.
(3.) Treatment of the Lead Mattes.	Days' work 0.80
(a) 1st Fusion. (b) 2d Fusion	Cost 1.241.
(c) Treatment of Seorias.	No. 4.—Cost for the Agglomeration in
	Bricks.
(1.) ROASTING.	Bitum. & fine coal, 0.184t 1.98
No. 1.—Methods of Roasting.	Sulphuric acid (66°) 0.022t. at 50f. 1.10 Calcareous marl $0.044t$ " 15f. 0.66
Reetangular Pile.	Labor
Width at base 2m	4.83d. for agglomeration, at 1f. 4.83
Used for pyritiferous ores & seoria matte.	0.11d. transportation at 1.20 0.13
Wellner's pile.	Cot
Height of chimney from .2.30 to 2.50m.	Cost 8.701.
Diameter "0.40	No. 5.—Roasting in Reverberatory
Quantity of ore 30 to 50t.	Furnaces with 1 Hearth.
Used for pyritiferous ore & seoria mattes.	Used for fine ores & pulverized mattes.
Wellner's stall.	Hungarian Furnaces.
Bottom, Length	Hearth, $\begin{cases} \text{length} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$
Thickness of the wall $\dots 0.80$	$(\text{whath}\dots$
Dimensions of ore, 3 or 4een. in diam.	English Furnaces.
" matte, 4 or 6 " "	Hearth,) length
Time for lighting fire 13 to 10h.	Height of arch in the middle0.47
Time of roasting	" at side0.28
S remaining after roasting 8 to 10%	Charge of the furnaee1000k.
Used for pyritiferous ores & scoria matte.	No 6 - Quantity of Ore Roasted by 2
Kilns.	Workmen in 8h.
Height 1.50m.	Ordinary Pb ore 1234k.
Upper base1.	Ore containing Cu or Blende 1000k.
Lower "0.50	Fuel consumed in 24h.
Used for pyritherous ore in pieces, or	Bitum. coal
for fine or aggiomerated ores when S	Or, $\begin{cases} \text{Bitum. eoal} & 0.50 \\ \text{fine coal} & 0.45 \end{cases}$
is made.	' (mie coai 0.40

.

No. 7.	-Expense	se for	$\underline{Roasting}$	1 <i>t</i> .	in
	Reverber	ratory.	Furnace.		
Labor,	2.133d.			. 3.	201
Fuel, É	0.252t			. 3.	20
Repairs	of furna	ice & t	ools	. 1.	00
			•		

Cost 7.40f.

No. 8.—Reverberatory Furnace with 2 Hearths.

Used only for lead ores.
Fireplace \dots 1.30m. \times 0.50m
Hearths
Upper hearth \dots 1.71 × 3.61
Height of lower hearth 0.57
\ddot{u} "upper" 0.35
Partition between 2 furnaces 0.14
Door of the \int height $\dots 0.25$
lower hearth, Width 0.15
Gas from muffle contains 1% of S

Lead ore.

Charge 500 to	550k.
Thickness of bed0.05 to	0.06m.
Time in furnace 4 to	$4\frac{3}{4}$ h.
Coal consumed in 24h	650k.
Sulphur in ore after roasting, 4.5	most.
Pay of men for 8h	1. 50f.
Shape of the Rable.	
Length.	0.12m.
Width	0.08
Length of iron rod	8
" "wooden handle	1

N_0	9	Cast	for	Roastina

" wooden handle.... 1

			v		v	
•			· ·	For 4.	379t.	For 1t.
Labor,	9.490	at 1.	50f.	1423	5.00f.	-3.27f
Fuel	eoal,	. 858.	.42t.	1146	4.00)	9 02f
ruer,	l lignit	e, 86	.00t.	133	6.45 §	* 4. 001,
Repair	rs furn.	. & 1	tools,	, 227	2.00	0.52f

29507.45f. 6.72f.

(a) FUSION OF ORES.

No. 1.-Double Furnaces for Fusion of Pb Ore.

	m.
Height from throat to tuyere.	4
" " tuyere to erucible	0.43
Width at the tuyeres	1.71
" at rustine	1.14
Depth	1.21

Dimensions at the throat. 0.74–0.57–0.86 Distance between tuyeres... 0.71 Pressure of blast.....0.026m.Hg

No. 2.— Charge.

Ore	100%
Roasted matte	50%
Fluor	4%
Scoria containing Pb, crasses, &c. 1	50%
Coke consumed for 100 ore. 46 to	50%
Box for charging contains. 28 to	29k.
Basket for coke "	10k.
Regular length of nose0.10 to 0	.15m
0	

Alternate eharge.

1 basket coke. 1 basket coke. 2 boxes of charge. 4 boxes of charge. Volume of air= $4\frac{1}{2}$ to 5c.m. in 1 minute.

No. 3. - Work in 24h.

- Good working.

Ore	3000k.
Roasted matte	1500k.
Scorias	5000k.
9000 to	9500k.
Coke	1400k.
But often :	
Ore	or 21t.
Roasted matte1	or $1\frac{1}{4}t$.

Workmen for a double furnace.

		$-\text{Tim}\epsilon$	3		
Workmen.	No.	of wor	·k.	Salary.	
Founder,	1	12h.	0.50f.	for 100k.or	e.
Filler,	1	66		66	
Cindérman,	1	66		66	

No 4.—Products in 24h.

Silver Pb		.800	to	1050k.
Matte		.400	to	500 k.
No. of tapp	ings in 24h.			4
Wt. of the r	oig Pb	. 15	to	16k.

60

1	V	0.	5.—	-A	nal	ysi	is (of	Sco	rias.	
---	---	----	-----	----	-----	-----	------	----	-----	-------	--

	Mu	lde.	Halsb	rucke.
Si	29.738	27.05	26.742	28.14
Äl	0.210	6.85	3.164	5.78
Fе	49.104	41.21	39.937	37.23
M n	2.120	0.00	\$ 3.571	1 0.02
Ŵg	0.127	0.90	1.053	\$ 0.05
Ča	5.660	8.84	5.458	7.68
Ва		• •	•	3.87
$\dot{\mathbf{P}}\mathbf{b}$	4.685	-3.90	4.736	7.35
Żn	7.602	-8.62	13.235	7.60
Ču	0.516	1.00	0.937	0.50
Ś	1.956	3.53	3.782	2.47
Ä			0.096	
Total,	101.718	101.90	102.611	101.25
Ovvgen			•	

Oxygen or sulph.	0.978	1.76	1.891	1.23

 $100.740\ 101.14\ 100.720\ 100.02$

	No. 6.—An	alysis of	^c Scori	as. –
		۲	Very qui	ck descent
	Common w	orking of.	the c	harges.
	1	2	1	2
Si	28.54	30.5	35.16	43.26
Al	5.4	5.1	1.06	3.2
Ċa	8.31		5.96	5.41
Мg	traces.			0.71
İfe	<i>46.1</i>	55.74	38.25	33.15
M r	L - Constanting	2.2		
$\mathbf{\dot{P}b}$	4.12	4.0	7.11	5.64
Ġа	1.0			
Żn	3.1	0.85	8.06	7.83
Ċu	traces		0.73	0.61
S	1.00		3.30	0.32
Ŝ	2.43			

No. 7.—Average of the Amount of Metals in 100k. of Scorias.

Ag									5	•			•	•	•	29.04 g.
Pb			~													4.916k.
Cu	•				•	•		•	•	•	•					0.403k.

(b) CONCENTRATION OF THE MATTES.	
No. 1Fusion of the Mattes.	
Proportion.	
Mattes	L
Scorias	ł
Castings in 24h 7 to 3	J

No.	2.—General	Composition	of	the
	1	latte.		

S	18%
Fe	37%
Pb	31%
Çu	5%
Ag	140gr.

No. 3.—Analysis of the Matte.

	Mulde.	Halsbrücke.
S,	19.852	22.847
Ρb,	23.283	21.816
Fe,	36.017	37.202
Cu,	15.277	12.944
Ni, Co,	2.329	0.544
Zn,	0.136	1.439
Ag.	0.121	0.099
As,	1.248	0.731
Sb,	0.849	0.718
	98.912	98.340

No. 4.—Analysis of the Mattes.

	Matte not	Matte.	Matte concentrated
	repassed.	repassed	for copper.
Pb	31.10	20.25	-24.8
Fe	37.47	27.05	15.2
Cu	4.81	27.614	36.2
Zn	2.75	0.231	
Ag	0.14	0.117	0.16
As	1.28	0.650	
Sb	1.00	1.005	
S	17.55	21.314	21.00
С	1.2		
Ni	1.96	1.01	2.64

,	<i>IVO</i> . <i>J</i> .—	Aesuus.	~	
Employed.	Wt.	Ag	Contaming Pb	Cu
Poor ore Ore containing Cu	669.5t. 25.5t.	6880.45k.	1569.66t.	1.99t.
Total of orc Roasted matte Materials volatilized in roast'g. Crasses Obtained.	4375.00t. 2122t. 21t. 6t.	2865k.	106t.	42.44t.
Rich silver Pb Ordinary silver Pb	225.40t. 1158.00t.	772.4g. 521.9g.		
Total Matte containing Pb Spciss containing Ag Scorias	1383.40t. 206.05t. 3.50t. 4897.3t.	$7785 \mathrm{k.}$ 250g. 50g. 1422k.	25% 240.60t.	$12\% \ 2\% \ 19.74$ t.
		9724.00k.	1675.50t.	44.40t.
No. 6.—Recapitulation Ag Pb Employed, 9745.85k. 1676.46t Obtained, 9724.00 1675.50 No. 7.—Expenses for this Oper Fluor 1 Coke 201 Coal 12 Charcoal 12 Charcoal 12 Workmen, 1st class 1 "2d" No. 8.—Cost of this Operation (2d 6 months 1862.) Labor. Inspector, 129d. at 2.25f. Founders & fillers, 11434d. Matteroasters, 880d. at 1.50f. Laborers, 3964d. at 1.20f. Fuel. Ordinary coke, 1569t. at 24f. Gas Coke, 447t. at 18f. Charcoal, 2.4t. Coal, 123t. Flux, fluor, 19.45t. at 17.70f. Blast engine Stamping the matte. Repairs of furnaces & tools.	Cu . $44.43t.$ 44.40 eration. 9.45t. 6.00t. 3t. 16c.m. 2.443d. 4.541d. tion. 290f. 21,876 1,320 4,737 37,656 8,046 240 1.441 345 2,242 1,420 5,777 85,390f.	No. 9.—Cost of Labor, $\begin{cases} Inspect roasters laborers Fuel, \begin{cases} coke, 0.3 \\ coal for r \\ Flux, 0.003t., F \\ Blast engine & Flux, 0.003t., F \\$	the Operation Charge. . & found.,1.77 , 0.136d. at 1.5 , 0.612d. at 1.2 10t. char'l, 0.3 oasting, 0.11 luor, 17.70t stamps aces & tools. TMENT OF SCOF urnace for Fu 	$\begin{array}{c} v \ for \ 1t. \ q\\ 8d. \ 3.415f\\ 50f. \ 0.204\\ 20f. \ 0.734\\ 6k. \ 7.075\\ 19t. \ 0.222\\ 0.005\\ 0.566\\ 0.891\\ \hline 13.160f\\ 13.160f\\ 13.160f\\ 13.160f\\ 13.160f\\ 13.160f\\ 13.160f\\ 13.160f\\ 13.160f\\ 0.891\\ \hline 0.38m\\ 17m\\ 0.38m\\ 17m\\ 0.38m\\ 17m\\ 0.38m\\ 17m\\ 0.38m\\ 17m\\ 0.156\\ 1.56\\ 1$

•

62

No. 2.— Charge.	No. 5	Analysis of Scori	as.
Ore & scoria cont'ng Pb750k.	2* 2 *		
Roasted ore400 to 450k.	SI	34.30	36.68
Ore not roasted	Al	4.65	4.55
Dimensions of the rable	Fe	41.96	42.12
$0.20m \times 0.06m \times 0.08m$	Ca	····· 7.45	2.17
Diago - C	Mg & Mn	1.30	$\begin{array}{c} 0.65 \\ 0.32 \end{array}$
Discs of mattes, \dots 220 to 230k.	Cu	0.15	
Charge for 24h.	Pb	0.98	1.94
7 charges of 750k. ore 5250k.	Zn	7.75	7.30
Scorias containing Pb 5250k.	D	• • • • • • •	2.85
Coal, $(\frac{3}{4} 2d \text{ quality}) \dots 5500 \text{ to } 5600 \text{k}.$		98 54	98.58
Each furnace produces, in 24h., 2500k.		00.01	00.00
mattes.	Sco	oria contains,	
No. 3.—Assay of the Matte, (1862.)	Ag,	0.507g.	
Ag, 135gr.	Ph	1 51800	
Pb' 5%	± 0,	1.0100%	
Cu, 2%			
No. 4.—Analysis of the Matte.			
$S \dots 26702 2343$			
As & Sb	No. 6	Ore Tweated	
Fe 57.781 53.81	210. 0	. — 010 <u>1</u> 1000000.	
Pb		Wt. Ag	Cu
Cu 4.416 3.87	Poor ore	2257 18t 50.5g	
Zn 2.618 7.65			1 1 /
Ni 1.312	Ore cont'g Cu	144.98t. 45.6g	1.1%
Si, 2.11	Ore as flux,	2854.15t. 15.6g	0.007%
Ag 0.086			
		5256 31t	
98 151 99 06		0800.010	

No. 7.—Products of the Treatment.

	Containing.			
Employed.	Wt.	Ag	Pb	Cu
Scorias containing Pb	4897.05t.	1422k.	240.53t.	19.74t.
Ore	5256.3t.	1655.92k.		2.30t.
Obtained		3077.92k.	240.53t.	22.04t.
Matte	2320t.	3034k.	112.15t.	46.40
Poor scoria	7957t.	40.34k.	120.85t.	· ·
		3074.34k.	233.00t.	46.40
Ag lost in the scoria			1 .3%	or 40.34k
Pb " "			50.3%	or 120.85t

corias.

36.68

4.55 42.122.170.65

 $\begin{array}{c} 0.32 \\ 1.94 \\ 7.30 \\ 0.35 \end{array}$

2419.30t.

Labor, $\begin{cases} roast's, 4661d. at 1.50f. 6991.50f \\ labor's 675d. at 1.20f. 810.00 \\ Fuel, \\ shavings & wood, 9t... 90.00 \\ Repairs of furnaces & tools... 1778.00 \end{cases}$

14927.25f

No. 9.—Cost for Roasting 1t. o	f Ore.
Labor, 2.205d	3.266f.
$\mathbf{E}_{\mathrm{Fuol}}$ j coal, 0.208t	2.908
ruer,) shavings & wood, 0.0037	0.037
Repairs of furnaces & tools	0.520

No. 10.—*Time for Smelting.* 6.731f.

Scorias, 4897.5t.Ores, 5256.3t. 1.014d. Including 30 days for repairs.

No. 11.—Cost of Smelting.

	(founders,	8.096d	14.720f.
Labor,	{ laborers,	5.214d	6.257
	(assistants,	2.083d	2.500
Fuel S	eoal, 5383	.3t	76.502
ruer,)	lignite, 26	.5t	412
Repair	s of furnaces	s & tools	13.162

113.553f.

No. 12.—Cost for 1t. of Charge.

	•	•	0
Tohon (worl	x, 1.310d.		2.066f
Labor,) assis	tants, 0.20	$3d\ldots$.0.244
Fuel	· • • • • • • • •		7.572
Repairs of fur	maces & t	ools	1.298

No. 13.—Cost of Roasting 2.122t. of Matte in a Reverb. Furn.

Tabon § roast's, 604d. at 1.50f.	794.10f.
Labor,) labor'rs, 1359d, 1.20f.	1630.80
shavings & wood, 31.6t.	316.40
Engl eoal, 17.7t. at 15.15f.	268.15
eoke, 19.6t. at 18.00f.	352.80
fine eoal, 38.4t. at 10.00f.	384.00
Repairs of furnaces & tools	641.00

4387.25f.

No. 14.—Cost for Roasting 1t. Matte.

Labor, ().925d		1.142f.
Ísl	havings & v	vood, 0.015t.	0.149f.
Engl C	oal,	0.008t.	0.126
ruer j ce	oke,	0.009t.	0.166
fi:	ne eoal,	0.01St.	0.181
Repairs .	of furnaees	& tools	0.302
<u> </u>	•		
			2.066f.

No. 15.—Influence of the Zinc.

Ore	of Pb fusi	on eont	ains.			8% Zn
Ore	for fusion	seorias		.13	to	14% "

To volatilize the Zn, (1854)

Charge	Scorias containing Pb Roasted ore Ore not roasted	1200k. 200k. 100k.
Dulmong		1500k.

Pulverized (coke	 	75k.
Fluor		 	50k.

No. 16.— Analysis of Scoria & Mattes.

	Without	With addition
Matte. add	ition of eoke.	of coke.
Fe	36.55	46.54
Zn	13.10	4.65
Cu	5.21	6.70
Pb	9.32	7.98
Scoria.	•	
Si	34.30	36.00
Äl	4.65	3.36
ḟ е	41.96	40.86
Ċa	7.45	7.96
Mg & Mn	1.30	1.75
Ċu	0.15	0.18
P b	. 0.98	0.73
Żn	7.75	6.66
S	0.80	1.92

No. 17.—Smelting in the Kilns—Old Method.

Quantity of scoria with 1000k. of ore.
With cold blast 1,150k.
With hot " 800k.
Quantity of charge in 24h3t.
" " ore "1.4 to 1.5 t

No. 20.—Recapitula
Proportion.
Poor ore. Ri Ore, 544.7k. 4
For smelting the rich ore, m
Products. Silver Pb. Matte cont. Pb, Pb scoria " Speiss " Ag, Poor ores add to Pb scoria a Quantity roasted Products. Poor scoria Matte

No. 21.—Cost of these Operations.

					Fue	el.		
Operations.	La	ıbor.	Coa	1.	Cok	te.	Wc	ood.
	Days.	Price.	Wt. in ton.	Price.	Weight.	Price.	Weight.	Price.
Roasting Pb orc Smelting for Pb	0.988 1.800	1.483 3.100	$\begin{array}{c} 0.098\\ 0.014\end{array}$	$1.329 \\ 0.182$	0.221	5.035		
Roast'g ore cont. pyrites.	0.549	0.813	$\begin{array}{c} 0.052 \\ 0.574 \end{array}$	0.724	•		0.009	0.091
Roasting of matte	0.237	0.293	0.014	0.003	0.007	0.089	0.004	0.040

5.205d 8.180f 0.740t 10.434f 0.228t 5.124f 0.013t 0.131f

Fluxes Fluor. Blast & stamps. Repairs furn. & tools. Total.

	Weight, Price,	Price.	Price.	Price.
Roasting Pb ore		0.400	0.235	3.047
Smelting for Pb	0.002 0.036	0.402	0.634 0.012	9.389 1.640
Smelting scorias	2		1.301	11.958
Roasting of matte			0.077	0.532
	0.002t 0.036f	0.402f	2.259f	26.566f

tion.

Po	or ore.	Rich ore.
Ore,	544.7k.	455.3k.

atte, 257.3k.

Silver Pb	143.6k.
Matte cont. Pb,	29.8
Pb scoria " '	534
Speiss " Ag,	0,36
Poor ores add to Pb scoria	544.7
Quantity roasted	251

Poor scor	ia.		•				• •					.853k.
Matte	• • •	•	• •	۰	•	•	• •	٠	•	•	•	.240k.

Contained in the ore Obtained	Ag 8536.77k. 8471.00k.	1	Pb 569.86t. 1441.04t.		Cu 4.29t. 28.69t.	
Difference	65.77k.	or 0.77%	128.82t.	or 8.20%	24.33 =	excess
Scorias thrown away contain. Real loss by volatilization	40.34k. 25.43k.	or 0.47% or 0.30%	120.85t. 7.97t.	or 7.70% or 0.50%		
(3) TREATMENT OF THE LEAD (a) 1st fusion	MATTES.	17	(b)	2D FUSIC	DN.	
We I Engine of the Me	****	No	-An	alysis of a	the Matt	C.
Depth of crucible of furnace Charge for 24h. Fo	. 0.53m.	Cu Pb Fe Ni, Co	& Zn	· · · · · · · · · · · ·	• • • • • • • • •	53.88 12.32 10.39 1.18
3500 to 4000k. roasted matte.	or matto.	S	V			18.01
800 to 650k. "Cu ore 950k. revivification sco 150k. fluor	200k. oria240k. 40k.		• • • • • • • •	· · · · · · · · ·	• • • • • • •	97.31
5750k.) to 6001-	No. 2.	.—Assay	of the A	Iatte, (1	862.)

Scoria from same operation, 500 to 600k.
Coke consumed.
For 1t. matte 0.34t.
For 1t. charge 0.25t.
Products obtained.
0.8t. of lead at 630g. of Ag.
(Ag 200g.
1.2t. Cu matte cont. $\langle Cu \dots 38\% \rangle$
(Pb 20%
No. 2.—Analysis of Cu Matte.

S		21.00
Pb		24.80
Fe.		15 20
Cu		36.20
Δ	•••••••	016
M : T_{r} for G	• • • • • • • • • • • • •	0.10
$1NI$, $\Delta II \propto DD \dots$		2.04

1	0	0	0	0
-	~	v	0	0

100.00

	No	. 3	,	A	nai	lys	is	of	Sc	or	ias.	
Si		• • •					• •	• •			• •	28.05
F с								• •		• •	• •	62.08
Ča	• • •			• •			• •	• •	• •	• •	• •	3.02
Mg .	•••			• •	• •	• •	, 。	• •	• •	• •		0.85
Pb &	t Cu	l	• • •	• •	• •	• • •		• •	• •	¢ •	• •	2.67
AI, S	ð ða	loss	5	• •	• •	• •	• •	• •	• •	• •	• •	4.33

Ju,	53.88
Pb	12.32
<u> </u>	10.39
Ni, Co & Zn	1.18
As & Sb	1.53
y D	18.01
•	97.31

No. 2.—Assay of the Matte, (18	862.)
Ag	21 0g.
Eb	10% 50%
Speiss contains,	
Ou	40%
Ni & Co	$\frac{10\%}{2.5\%}$
Ag	500g.
1st smelting of speiss.	
Debris of hearths	50%
Scoria of concentration	150%
Sulphate of baryta	10%

Scoria of concentration	150%
Sulphate of baryta	10%
Ni & Co in speiss after 1st smelting	12%

2d smelting of speiss.

Spciss	100
Litharge	400
Scoria of revivification	300
Sulphate of baryta	10

	2	V	0.	•	6.0	3.			S	'n	e	îs	S		0	0	n	te	a	ir	28	1	iı	r	100k.
٨g	r .									,															30o.
Cu									2						Ì		Ì	Ĭ	Ĭ	Ĭ		Ĩ	Ĵ	Ĭ	18%
Co															Ì	Ì	Ĭ	Ĭ	Ì	Ĭ	Ĭ	Ĭ	Ĵ	Ì	1.84%
Ni									Ĩ					Ĩ	Ĭ		Ĭ		Ĭ	Ĭ	ļ			Ĭ	12.65%
						-	-	· ·		-	- · ·	•	•	•	•	•	•	•	•	•		•	•		

No. 22.—Loss of Metals. A o P

No. 4.—Smelling for Concentration of	Fe 51.33	3
Speiss.	Pb 5.69)
Speiss 100	Cu 11.33	•
Sulphate of baryta	Zn2.14	-
Quartz	O & loss $\ldots $ 6.97	-
Amount of Ni & Co after eoncentration		_
40 to 44%	100.0	0
·		
(c) TREATMENT OF THE SCORIAS.	No. 9 Accurate of this Multi-	
No. 1 Analysis of Matte obtained in	No. 2.—Assay of this Matte.	
Smelting Scorig	Ag 90g.	
S 91.91	Pb, $5k$.	
As & Sb	Cu, 4k.	

RESUME.

No. 1.—Treatment in the Shaft Furnace.

Labor including 6 days to light and extinguish fire, 195d.

T	Contained.						
Employed.	Ao	Pb	Cu				
480.80t. roas'd matte (wt. before roast'g) 112.44 Cu ore roasted	1048.60k. 37.092	116.145t.	63.536t. 15.305t.				
The matte produced weighs 109.5 11.87 unroasted materials contain'g Cu	5t., it is roaste 47.220	ed & smelted wi	ith : 3.849t.				
14.65t. fluor 137.20t. revivification seoria 91.60t. seoria fr. concentration of matte		3%	1.5%				
32. t. Cu eontaining Pb 61.45t. matte of revivification at 30g 20.65t. seoria	17.778k.	40%(24.580t.)	16%(9.306				
 10.35t. "of concentration. 2.90t. fluor. 5.00t. sulphate of baryta. Obtained. 110.25t. Silver lead at 627g. 166.62t. Cu matte at 179g. 27.50t. speiss cont'g 2.5% Ni & Co 500g. 644.50t. seoria for reverb. furn. 	Ag 691.075k. 297.750k. 1 1	Pb 0%(16.702t.) 44 0% 40%	Cu %(74.598t.)				
No. 2.—Cost of the Operation. Labor, { roasters, 1204d 1622.00f. founders, 1378 2619.00 Fuel. $\{wood, 3.15t\}$	Fusion, { char coke Fluxes, { fluor Bass Stamps Blast engine . Repairs of fu	reoal, 0.200t e, 329.360t r, 17.55t , 5.00t rn. & tools	$\begin{cases} 7488.75 \\308.00 \\31.00 \\567.00 \\330.00 \\1160.00 \end{cases}$				
(coal, 136.2)			16197.75f.				

No. 3.—Smelting Scoria in Reverb. Furnace.

Amount of seorias treated644.50t.
Labor, including 3d. for repairs111d.
Employed. Ag Cu
518.40 ore cont'g 180.307g. 3.270t.
43.80 scoria containing 3%
Obtained.
Matte at Ag 90g
Poor seoria at Ag 3.5g942.50t.
Metals eontained.
A o Ph Cu
Mat. 238.565k. 5%(13.142t) 4%(10.514t)
Seoria, 0.171k.%
· · · · · · · · · · · · · · · · · · ·
No. 4.—Cost of the Operation.
Labor (roasters, 890d, 1335.00f.
Labor, i founders, 920d 1656.00
Fuel \int roasting 120t. eoal 1656.50
fusion 644t. " 9015.00
Repairs of furnaces & tools 1410.00
<u>15079 50f</u>
No 5 — Loss of Metals
Ag Pb Cu
Empl'd. 1330.917k. 145.458t. 96.755t.
Obt [*] ed. 1364.890k. 142.842t. 96.112t.
Differ'ee 33.973k. 2.616t. 0.643t.
or, 2.55% 1.80% 0.685%
No. 1 Cost for 14 of Matter
No. 1.— Cost for 11. of Mattes.
Fusion in Shalt Furnaee.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fuel wood $0.007t$ 0.156
(100, 0.000, 0
(10000, 0.0000, 0.0000, 0.0000, 0.0000)
Fluxes, Sulphate baryta, 0.010 0.064
Stamps 1.179
Blast engine 0.686
Repairs of furn. & tools 2.579

Fusion	of	the	Scoria	s in	the	Rev	erbera-
	tory	y Fi	irnaee	& I	Roas	ting.	

Labor, 3.764	6.220f.
Fuel, [′] 1.589	22.195
Repairs of furnaee & tools	2.932
1	

31.347f.

No. 2.—Cost for working Matte containing Pb.

Labor, 9.134d	15.040f.
(eoal, 1.872t)	25.260
Fuel, \langle wood, 0.007	0.156
(eoke, 0.800	16.678
Fluxes, fluor & baryta, 0.046t.	0.704
Stamps & blast engine	1.865
Repairs of furnaces & tools	5.511

65.214f.

IMBIBATION.

LIQUATION.

No. 1.—Details of Treatment.

Quantity treated in 24h.... 5 to 10t. For 1t. of skeletons.

	_	~ ·		~ •	~ .	-	\sim	~~	~	 			
Blaek .Cu		• •				•	-				600	to	800k
Crasses											400	to	200

	No. 2Loss.
Cu,	• 5 to 6%
Pb,	40 to 48%
Ag,	23%

No. 3.—Cost of the Operat	ion.
Pb, 350k. at 500f	175.00f.
Cu, 50k. at 2000	100.00
Fuel & labor	25

33.867f.

300.00f.

AMALGAMATION.

- (1) Saxon Amalgamation.
- (2) American Amalgamation.
- (3) Pan Amalgamation.

(1) SAXON AMALGAMATION.

No. 1.— Charge of the Barrel.

Roasted	С)r	e											5	14	k.
Water	•				•									1	54	k.
Iron								•			3	0	t	0 8	50	k.
Mereury	•		•	•			°,				•		•	2	57	k.

No. 2.—Barrel at Carson Hill.

Height of barrel	1.36m.
Diameter "	1.25
Thickness of sides	0.05
Diameter of bottom basins	0.45
Length of Fe or Cu plates	0.50
Width " " "	0.25
Charge of ore250) to 500k.
Charge of Hg.	200k.
Time required	3 to 31h.
No. of men for 4 barrels	1

No. 3.—Cost at Freiberg.

Cost for roasting 470k. at 201 9	.40
Fuel for roasting the matte 1	.60
Hg, 4409 at 6f 2	2.64
Sold 100k. at 13.50f 13	.50
Fe, 1.20k.at 36f 0).40
Répairs 5	5.00
Labor, (roasting 8	8.40
11d., Amalgamation 14	6.00
Cost of direction 8	3.20

 $N \\ Le \\ W$

53.17f.

(2) AMERICAN AMALGAMATION. No. 1. - Expenses.

Hg, 3.35 k. at 14.13 f	45.92f.
Stamping	14.36
Grinding	51.45
Amalga- (labor, 3.50 to 3) mation.) horses, 16.60 to 17.16 (20.16
Washing	4.30
Distillation	5.75
Magistral & salt, 50 to 75k	25.85
Rent of works	7.18
Cost of direction	8.82

189.79f.

MIXED METHOD.

No. 1.--Details of Operation.

Charge	0	f ()I	e			•										2400k.
Salt	•					•									•		150k.
FeS or	Ċ	uŝ	5			•		•				•			•		36k.
Alum .				•								•		•		•	24k.
Water				ø.	•	•	•		•	,		•	•	•		•	600k.

No. 2.—Cost.

Labor, 4d. at 0.95f	3.80f.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	9.60
Repairs	1.83
Custom house charges	1.46
Transportation of ore	1.21
	24.38f.
$\begin{array}{ccc} 182 \mathrm{g} & \mathrm{of} \ \mathrm{Ag} \ \mathrm{extracted} \ \ldots \\ 52 \mathrm{g} & `` & \mathrm{in} \ \mathrm{residues.} \end{array}$	40.4
 234g.	
Cost of ore	8.14
Cost of treatment	24.38
•	32.52f.

(3) PAN AMALGAMATION.

TREATMENT OF SILVER IN THE WET WAY.

(1) Augustine's Method.	Length of hearth at flue 1.20
(2) Ziervogel's Method.	Length of the bridge 2.00
(3) Von Patera's Method.	Width "50
(4) Solution in Acids.	Hearth below top of bridge10
x / .	Greatest height of arch
(1) AUGUSTINE'S METHOD.	Width of grate
o 1 — Roasting Furnace at Mansfeld.	Size of the flue $\dots \dots
2.60 m or the of hearth 2.60 m	Pas'ge fr. low'r to upp'r hearth $.20 \times .60$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Width of working door 0.70

No. 2.— To treat 3000k. of Mat	le a year.
Solution tanks	20
Precipitation tanks	
Furnaces for roasting	9
" " chloruration	4
No. ? - Cost of the Operation	tion at
Ereiberg (1862)	
Posting & weaking	
hor hor	56 290f
$2ab01 \dots 2.827t$	35 955
Solution $0.173t$	00.200
ron. 0.393t	25.625
HCl. 0.0018	NO:010
Repairs	7.450
	124.650f.
Ag in Blk Cu 50g	
Log	
$A \sigma = 12 \sigma_0^{\prime}$	
$C_{\rm H}$	
Smelling of residues containing	g no Ag.
$a_{00} = 2.042t$	9.0521.
$\begin{array}{c} \text{Poly} 2.0\pm00\ldots\ldots\ldots \\ \text{Renains} \vdots \end{array}$	0.901 -
	0.000
	40.933f.
Refining of Ag	
Labor	0.245f
Coal $0.014t$	0.2101.
Repairs	0.004
• •	0.461f.
Resumé.	
Roasting & washing	124.650f.
Smelting residues	40.933
Refining Ag	0.461
· · ·	
	166.044f.
(0)	
(2) ZIERVOGEL S METHOD AT M.	ANSFELD.
Treatment.	
No. 1.—Roasting of the M	latte of
Concentration.	
Stamping.	
Dimensions of mesh of sieve.1	to 2m.m.
Ore stamped in 12h	2000k.
Dimensions of the Roasting 1	Turnace
Longth	2m
Width	0.60
Total length of bearth	3.50

54

Width at each end2
" in the middle
Height of bridge
Greatest height of areh
Height of arched conduit2
Width " . "1.50
Distance of the small conduits 3.30
Tenghit "
" " upper " 425°
No. 2.— Charge.
Concentrated matte, 250k.
Desilverized residues at 0.002 Ag 35
Large pieces of preced g opera in $12\frac{1}{2}$ Residues containing A g 2
No. 3—1st Period Preparatory Roasting.
Time on upper hearth 5h.
Length of the operations.
Raking
lst turning over 1
2d turning over
Raking
10k. lignite are added on the lower
hearth \ldots $\frac{1}{4}$ to $\frac{1}{3}$
2d Period, Oxydation.
Length of this period 2h.
Temperature of furn. to end op. 400°
Length of each operation.
Raking Ih.
3d Period Complete Rossting
Length of each operation
Raking. 2h
Turning over
Raking $\frac{1}{2}$ to $\frac{3}{4}$
Time on lower hearth 5h.
No. 4.—Details of the Oneration

No. of furnaces	7
Furnaees working	6
Furnaees in repair	1
Daily product. of a furn 900 to 1	000k.
Wood employed in 12h	225k.
No. of workmen per furn	5
" " lower hearth	3
" for fireplace	-2
Overseer for 2 or 3 furnaces.	·1
Salary of workmen, per 10h	1.62f.

ę

No	.5D	imens	ions o	f the R	able.
Lengtl	1 of the	e rable	e hand	lle	4m
Weigh	it				
Rable	lasts			15	to 20d.

No.	6.—	Comj	position Pogetin	of	Matte	before
			- / / / / / / / / / /	11		

v	
Cu ² S	65
FeS	8*
ZnS	4.30
PbS	1.40
AgS	0.332
Cu	15.
Fe	1.50

 $\mathbf{5}$

Sulphides of Mn, Ni & Co Oxydes of Fe, Pb, Zn & Co, }

	T4	100.532
	It contains:	
Metals,		76
Sulphur,		19
Oxygen,		$2\frac{1}{2}$
Insoluble	residue,	· 11
		100

No. 7.—Cost of the Operation Charge, 300k.	•
Stamping of 2000k 6.00f.	
<i>ū</i> 300k	1.00
Fuel, $\begin{cases} wood, 222k 4.50 \\ lignite, 30k 0.60 \\ \end{cases}$	5.10
Labor, $\begin{cases} \text{work, at 1.601.} & 2.50 \\ \text{overseer, } & \dots & 0.35 \end{cases}$	2.85
	8.96f.
Or, per ton, 29.66f.	

No. 8.— Washing of the Roasted Matte and Separation of the Ag.

After roasting	the m	atte	eontains	• •
Cu,	72	to	75%	
Ag,	0.37	to	0.39%	

Height	0.75m
Upper diameter	0.55
Lower "	0.60
Distance from false bot. to bot.	0.15
Diam. of holes of upper end	0.012

Dimensions of the reetangular co	onduits.
Width	0.60m.
Height	0.30
Width of basins for precipitation.	0.60
Distance bet. false bot. & bottom.	0.08

Charge of each basin for washing.
Roasted matte
Residues containing much Ag. 30k.
Quantity of water employed 85lit.
Temperature of water
Time of water on the charge. 31.
Quantity of sulphurie aeid, 1k. for
250k. matte.
Temperature of the solutions. 70° to 75°
Time of eharge in the basin $\frac{3}{4}$ to 1h.
Quantity of roasted matte washed daily
in the basin
When the residues contain 0.0025k. Ag
%k. Cu, they are roasted again.
Time of the solution cont. Ag on Cu, 24h
Dimensions of furn. employed to dry Ag.
Length
Height 0.16m.
Finances of the Ag obtained 0.600

Fineness of the Ag obtained, 0.600

No. 9.—Refining of Silver.

Capacity of the bath100k. Ag Impurities contained in refined Ag, 1%

- (3) VON PATERA'S METHOD.
- (4) SOLUTION IN ACIDS.

· REFINING SILVER.

3.7	-	70 0	a		
ALA .		al arth	In in	4 34 33	000
/V()			P	1111	arp.
- V V 0	- L 0	100//1		VI 16	CCC C
		+ A /			

Width				•									0.92m.
Depth.	•	•		-+				•	٠				0.84
Height													0.76

Hollow for the Ag.

Diameter	0.38
Depth	0.05
Ag eontained	to 30k.
No. prisms around the hearth.	13
Size of the prisms1	8s.e.m.
Height ⁴	0.15
Interval between the prisms	0.3
Size of ehimney	0.3
Time for fusing Ag	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>
" fining Ag	Bh.

TREATMENT OF GOLD ORES.

Ne	1A	nalysis of California	Gold j	from
	1	2	3	4
Au, Ag,	$\frac{90.9}{8.7}$	$91.4\\8.5$	$\begin{array}{c} 89.1 \\ 10.5 \end{array}$	93. 6.7
Fe,	0.2	traces.	0.2	traces.
Deusi	99.8 ity 15.7	99.9 16.65	99.8 17.55	99.7 1623
100101	·····	10,00	11.00	2020

No.	2	Com	nosition	of	Go	ld	San	đs
TIO		UV m	00000000	V/	V V	000	~~~~~	~~~

	1	2	- 3
Magnetic Fe,	59.82	34.35	-23
Ti with ores of Fe,		15.	-50
Mn,	16.32		
Au,	0.29		
Quartz,	13.70	25.	14
Zireons,	9.20	20.	3
Corundum,	0.67	1.	
Chrysoberyl,			10
Other minerals,		4.65	
	100.	100.	180

TREATMENT.

(1) Washing.

(2) Washing and Amalgamation.

(3) Fusion.

(4) Wet Way.

(1) WASHING.

Cost of Treatment.

To move 1e.m.	
Ordinary washing	12 9f.
Rocker	22
Long Tom	6.50
Hydraulic process	1.28

(2) WASHING AND AMALGAMATION.

No. 1.—Details in Sardinia.

Orc of mills	82
Loss of Hg for 29.5t. orc	500g
Loss in Au & Ag	28%
Amalgam contained Au & Ag. 17 t	o 18%

No. 2.–	-Com	posi	tion of	of t	the	Ama	lgam.
	Au	7	2.55	to	75.	4	
	Ag	2	26.61		23.	96	
	Cu		.84			74	
	•	-					
		10	00.00		100		

(3) Fusion	•
------------	---

(4) WET WAY.

TREATMENT BY CHLORINE.

REFINING OF GOLD AND SILVER AT SEPTEMES. No. 1.— Mercantile Products.

Ag.					• •		•	•	ć	•	•	.997	finences.
Au.						و						.997	66
Sulp	hat	е	of	C	u.								

No. 2.—Treatment of the Substances.

To be treated directly the amount of Au must be more than .006

To be treated with Cu the amount of Au must be less than .006

Classification of the substances.

1 st	class,	amount	of	Au,	.0	06	to	.750
2d	elass,	66	66	mo	ore	that	an	.750

No. 3.--Smelting for Granulation.

No. 4.—Solution.

Charge of granulated metal. 15 to 17k. Quantity of $\ddot{\mathbf{S}}$ added, $2\frac{1}{2}$ to 3 times the weight of the charge.

Density of the acid	50°
Length of the operation	2h.
Density of cond'sd sulphurie acid.	27°
" after the concentration	50°

No. 5.—Deposition of the Marcs.

the bottom of the basin..... 0.25m.

No. 6.—Precipitation of Ag.

Length of the operation \dots 7h. Density of the solution of CuS \dots 20°

" when employed for 2d opera'n 24° Skimming & washing precipitated Ag. Quantity of Ag..... 30 to 35k. Length of the operation.... 1h.

Pressing of the precipitated Ag. Moisture cont. after operation. 8 to 10% No. 7.—Smelting of Ay.

weight of	the	ing	0	US	5.		•	•		•		•		20κ .
Fineness	66	•	•	•	•	•	•	•	3	•	•	,	•	.997

Smelting with Cu to have a fineness	.700
Charge for smelting	30k.
Charge for dissolution21 to	22k.

No. 10.—Cost for Each Operation. Smelting for granulation.

6 eharges of 30k. or 180k. require:

Coke, 50k. at 45f. for 1000k	2.25f.
Chareoal, 40k. at 12f. for 100k.	4.80
Plumbago erueible of 40 mares	
at 0.18f. the mare	7.20
Labor	3.25

	h	~	~	
Ē.	7	6	A	
L.	- 6		U	J

Or, for 1k. with ordi'ry erueibles,	0.097
With erucibles of best quality,	0.063
Solution.	
For 80k. (5 charges) require	3:

Sulphurie acid	at 50° 1	250k.	at 6f.	15.00f.
Lignite, 600k.	at 23f.	per 10	0k.	7.80
Labor				3.25

	26.05f.
Or, for 1k	-0.325
When they are poor in Au a	nd are
granulated with Cu the expense	ses are:
Sulphurie aeid at 66° 250k. at 14f	•
per 100k	35.00f.

Lignite,	800k.	at 23	f. per 1000k.	18.40
Labor .		• • • •		3.25

4	56.65f.
Or, for 1k	0.708
Deposition of the Au.	
For a charge containing 35k.	Ag in
solution:	1 200
Lignite, 75k. at 23f. per 1000k.	1.72I. 1.69
Labor	1.02
	3.34
Or, for 1k. of Ag contained,	0.095f.

Precipitation.

Charge of 35k. Ag precipitated r	equires:
Cu, 10.266k. at 3.25f. per kil.	33.25f.
Lignite, 100k. at 23f. per 1000k.	2.30
Labor	0.65

36.20

Or,	for	1k.	Ag	obtained	1. 037f.

Washing & Pressing of precipitated Ag 35k, of precipitated Ag requires

Lignite,	25k. at 23f. per 1000k.	0.57f.
Labor .	• • • • • • • • • • • • • • • • • • • •	1.62

^{2.19}

Or, for 1k. Ag pressed..... 0.062f. Smelting with Cu.

For the substances having a fincness of 900%, the addition of Cu must be 200g. to make the fineness 700%

134.50

	Or,	for	1k.	granulated	subst.	0.622f.
--	-----	-----	-----	------------	--------	---------

No. 11.—Manufacture of Ċ	u ï
The production of 900k. mercan	tile sul-
phate require : Lignite, 1000k. at 23f. per ton.	23.60f.
Labor	40.70
Or, for 100k. sulphate	71.75 14.35f.

No. 12.—Comparison of the 2 Methods. (Direct and by Cu.)

Title of the substances taken for example Ag 0.900 Au 0.006

Costs for 100k. of material trea	ated.
Granulation	9.7 0f.
Solution	32.50
Deposition of the mares	9.50
Precipitation of 90k. Ag	93.33
Washing & pressing of Ag	-5.58
Smelting of the Ag	8.73
Smelting for inquartation 600g.	
Au & 1.800k. Ag	0.05
Dissolving	0.03

Washing the Au obtained..... 0.03 Smelting Au 0.05Manufacture of 40k. sulphate of Cu obtained 5.74

165.24f.

Deduct from the expense: 40k. sulphate at 120f. per 100k. 48.00

117.24f. Or, for 1k. substance to 0.997 1.296

No. 13.—Costs for the Treatmer	nt by Cu.
Granulation	62.20f.
Solution	70.80
Deposit of the marcs	9.50
Precipitation of 87.500k	90.83

Washing & pressing of Ag... 5.42Smelting of Ag..... 8.48 Manufacture of 184k. sulphate. 26.40The marcs of Au contain Ag

2k. and Au at 800% 0.600k. Wt. of the marcs.... 3.700k. Cost for cupellation 2.75f. pr k. 8.52Cost for the refining of 3.100k. 4.03

substances at 1.296f. per k...

286.18f.

Deduct from the expense: 184k. sulphate at 120f. pr 100k. 220.80

65.38

Or, for 1k. substances at 997% 0.726f.

TREATMENT OF TIN.

No. 1.—Dimensions of Reverb. Furne	ace. No. 2.—Details
Diameter 3.60	0m. Quantity treated in
Angle of hearth 1	$\overline{6}$ Yield of the ore
$\begin{array}{c} \text{rnephace} \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	$0 \qquad \text{Loss of Sh} \dots \dots$
No. revolutions per minute 40	
Quantity roasted in 24h	$\begin{array}{ccc} \text{No. } 3\text{Lxpense of} \\ Or \end{array}$
No. 2.—Expense of Roasting in Ordino Furnace.	ary Charcoal, 925k. at 5 Labor, 8d. at 1.50f.
Labor, 2.20d. at 2.29 5.7	76f.
Coal, 765k 12.8	56 Sundries & general e
17 (<u></u> 39f
No. 3.—Treatment with NaC.	<i>ل ش ل</i> ر
Quantity of ore treated 105	Ok.
Weight after treatment 100	Ok. TREATMENT IN REVER
Expense.	No. 1.—Details
NaČ 80k. at 30f 24.0	Of. Quantity freated in Vield of the ore
Coal, 115k. at 20f 2.8 Labor $1.20d$ at $2.75f$	Loss of Sn
Dabor, 1.200. at 5.751 4.4	
30.7	75 No. 2.— Cost e
Working & carting 25.0	$D_0 = Labor, 0.65d. at 3f.$
	$_$ Cost, 750 at 261
	Wood, 1k, and 2
TREATMENT IN THE SHAFT FURNACE.	Carting & roasting s
No. 1.—Treatment of 1t. of Ore.	Repairs, tools, &c
Tin	.20 95
0 & loss	50 General expenses
10	.00

of Treatment. 24h....1 to 1.5t. $\dots 60$ to 65%..... 15 to 17% Treatment for 1t. of е. 5f.... 46.25f. 12.00 58.25 expenses..25 to 35 83 to 93f. BERATORY FURNACE. of Treatment. 24h.... 4t. 66% $\dots 10 \text{ to } 12\%$

of Treatment.

abor, 0.00d. at of	1.991.
ost, 750 at 26f	18.75
nthracite, 250 at 27f	6.75
ood, 1k	0.02
arting & roasting scorias	0.42
epairs, tools, &c	1.00
eneral expenses	
	54-60f

TREATMENT OF ORES OF ZINC.

Treatment.

- (1) Silesian Method.
- (2) Belgian Method.
- (3) English Method.
- (4) Treatment in the Wet Way.

(1) SILESIAN METHOD.

No. 1.—Purchase of Ores at Vielle Montagne.

- V=purehase price.
- R=yield of the ore in the wet way.
- E=% of loss in the treatment.
 - 11% of the raw ore.
 - 15% of the caleined ore.
 - 17% with 15% of Silieates.

P=price of 1k. Zn, or about 45% 100k. T=eost of treatment, or about 8%

D=difference between 45% and the price at the time of purchase.

$$V = (R-E) (P-T) + \frac{(R-E)}{2} - (P-D)$$

No. 2.—Calcining the Ores in a Shaft Furnace in Belgium.

Quantity treated in 24h....13 to 14t.Loss in weight.....25%

Expense for 1t. of ore.

Coal, 70 to 100k. at 20f. 1.40 to 2.00f. Labor, 0.25d. at 2.20f. . . 0.55

1.95 to 2.55f.For 1t. of ealcined ore....2.60f.With general expenses....4 to 4.50f.

No. 3.—Calcining Ores in a Shaft Furnace in Spain.

Fuel used	3 to 9%
Quantity treated in 24h 5	to 8t.
No. of men	6
Loss in weight	30%
When 10t. are treated two fire	eplaces
are used.	

No. 4.— Calcining in a Reverb.	Furn.
Labor, 0.25d. at 2.20f	0.55f.
Coal, 87k. at 20f	1.74
	2.29
For 1t. of calcined ore	3.05
With general expenses	4.50f.

No. 2.—Roasting Blende.

Crushing the ore	1.00f.
Coal, 215t. at 20f	4.30
Labor, 1.43d. at 2.2f	3.15
Sundries & general expenses	3.50

- For 1t. of roasted Blende 15f.
- Loss in weight..... 18%

No. 6.—Dimensions of the Muffles.

Length		• •	1.17	to 1.45m.	
Interior wie	ltl1		0.14	to 0.15	
Exterior 4		• •	0.22		
" heig	sht	• •	0.55		
Interior "		• •	0.28		
No. of muffl	es			28-32-48	3

No. "	7.—Qua	ntity	of	Ore	Charge	<i>d</i> .
For 32 :	reports,	01°e .			. 10	50k.
" 40	- 66 · /	66			. 12	50
" 48	11	66			. 15	00
Charge	in each	repoi	·t		.32 to	38
Coal for	· 1050k.	ofor	e		. 3	50
Loss all	owed fo	r car	bona	ates.	•	11%
6	6 66	Ble	nde	• • •	•	13%

No. 8.—Cost of Treatment.

Labor, 6.7d. at 2.10f	14.07f.
Coal for heating 2000 (2250 "reduction 250 (at 8.00f	19.12
Muffles and eondensers	4.80
Repairs to furnace	2.20
Sundries	4.90
General expenses	$\begin{array}{r} 45.09\\10.12\end{array}$
	55.21f.

Coal consumed for 1t. ore prod. 5625k. Cost for $^{\prime\prime}$ 1.35 to 1.45f.

No. 9.—Metallurgy of Cadmium.

(2) BELGIAN METHOD.

No. 1.—Dimensions of Muffles.

Length		 		.1.05 to 1.10m.
Diameter.				.0.15
Weight of	report.		 • •	35 to $45k$.
Cost of	46	 		1.75 to 2.00f.

No. 2.—Ore Charged. No. of reports in furnace 42 Ore charged	Repairs.2.92Sundries.2.00
Anthraeite250k.Charge in each report11 to 12k.	52.87 General expenses10 to 12
No. 3.—Cost of Treatment. Labor, 9d. at 2.05f	62 to 65f. (3) ENGLISH METHOD. (4) WET METHOD.
TREATMENT OF O	RES OF MERCURY.
METHOD BY PRECIPITATION. Expense for 1t. of ore. Labor, 1.5d. at 1.68f. 2.52f. Wood, 1000k. at 4.20f. 4.20 Lime, 100k. at 7.50f. 0.75 7.47f.	No. 4.—Expense in Modified Furnace at Almaden. Chareoal, 16.5 at 5.16f. 0.85f. Wood. 0.09 Labor, 1d. 1.10 Transportation 0.97 Sundries. 1.58
METHOD BY ROASTING. No. 1.—Quantity of Mercury Obtained. Mercury obtained directly 19.10k. 100k. of mercural soot cont. Hg 5.45	General expenses 2.80 7.45f.
24.55 9.45	No. 5.—Mercury Obtained with the Alberti Furnace, Tuscany.
34.00f.	Mereury obtained directly 6.16 7.3k. of mereurial soot yielding. 5.54
No. 2.—Expense of 1t. of Ore at Idria. Labor, 3d. at 1.14f	Loss 2.30
Lime	No. 6.—Expense with Alberti Furnace. Wood, 0.40 at 5.53f. 2.21f. Labor, 1.25d. at 1.14f. 1.42 Retorts, 2.4 at 0.06f. 0.14 Repairs. 0.06 Sundries 1.54
No. 3.—Mercury Obtained in Modi- fied Furnace at Idria.	General expenses
Mercury obtained directly15.27.8k. of mercural soot5.7	8.23f.
Loss	WET WAY.
38.0	67 <u>7</u>

TREATMENT OF ORES OF ANTIMONY.

Liquation of the ore.

TREATMENT BY ROASTING AND REDUCTION. No. 1.—Expense of the Treatment.

No.	1—	Cost	for	1t.	of	C	oncent	trated	0	re.	C
-----	----	------	-----	-----	----	---	--------	--------	---	-----	---

Coal, 6.50 at 20f	13.00f.
Labor, 10d. at 1.55f	$\frac{15.50}{2.50}$
1	31.00f.

Loss..... 20 to 25%

Coal, 1500k. at 30f	45.00î.
Labor, 10d. at 2.50f	25.00
Charcoal, 80 at 2.50f	2.00
45 erucibles, at 0.60f	27.00
Fluxes, 100k. at 2.50f	25.00
· · · ·	
	124.00
General expenses	76 - 80
-	
2	00 – 204f.
Antimony in the ore	65%
Quantity extracted	45%

.

•

*

5

· · ·

•

.

· · ·

· ·

. .

. .

.

.
-

•

. .

•

• •

.

.

