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Although many studies have investigated the phase change
of water, few have focused on the sublimation of ice. This
study revealed that ice sublimation can be observed using
terahertz (THz) spectroscopy. From measurements in the range
of 210–270 K, the sublimation was observed over the entire
temperature range and the rate of sublimation was increased
proportionally with temperature. Particularly on a time scale
of a few hundred minutes, the sublimation progresses visibly
above 250 K. Above a certain temperature, the absorption
coefficient increased during sublimation. These findings
suggest that an interesting phenomenon may occur in the
phase change of water at sub-zero temperatures, indicating that
THz spectroscopy would be useful for measuring water and ice.
1. Introduction
Water has been investigated in various ways [1,2]. However,
compared to studies of phase changes in water, such as
evaporation, melting and freezing, relatively few studies have
focused on sublimation [3]. Sublimation is also a phase change; it
is closely related to climate change in polar regions and snow-
covered areas [4], and to the existence of ice on celestial bodies [5];
it is also important in food science [6]. Sublimation occurs at the
ice surface, and the quasi-liquid layer that forms during surface
phase changes below the freezing point has been discussed for a
long time [1,7,8]. Previous reports on sublimation have been
mainly based on the analysis of mass changes associated with
temperature and pressure changes [9–11]. However, direct
observation of the sublimation process has only been achieved
within the past decade [12,13]. This is because it is difficult to
distinguish between ice and water at the ice surface. This study
demonstrates the possibility of novel observations of ice sublimation.

Terahertz (THz) wave spectroscopy was used for measurements
due to the characteristic response of THz waves to water
[14–21]. THz waves have moderate transmission through solid ice
[2,15–17], but they are strongly absorbed by liquid water [1,18–20]
and have a fingerprint spectrum in water vapour [21], so THz
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spectroscopy can be used to distinguish between the three phases of water. Additionally, both real and

imaginary parts of the optical parameters of a measured object can be determined using THz-time
domain spectroscopy (TDS) [14]. The real parameter represents the optical distance, which is the thickness
of the sample, and the imaginary parameter represents the absorbance of the sample. Therefore, we
examined whether sublimation could be observed using THz-TDS.
publishing.org/journal/rsos
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2. Experimental
Solid icewas prepared fromultrapurewater at a temperature of 263 K using an environmental tester (SU-221;
Espec Corp., Osaka, Japan). The prepared ice was crushed and powdered using a mortar and then formed
into tablets 10 mm in diameter and about 1–2 mm thick using a tablet press (HANDTAB-Jr.; Ichihashi Seiki,
Kyoto, Japan) in a cryogenic freezer (VT-208; Nippon Freezer Co., Ltd, Saitama, Japan).

The ice tablets were measured using a THz-TDS system with a femtosecond fibre laser (IMRA, λ =
780 nm, pulse width: 100 fs, repetition frequency: 50 MHz) as an excitation light source (figure 1).
A photoconductive antenna was used for both generation and detection of THz waves. The complex
optical constant of the sample was calculated from the acquired time domain waveform. The details
of the procedure were essentially the same as described previously [16,22]. In addition, the THz
optical path was purged with nitrogen to reduce the influence of water vapour in the air. Ice samples
were kept at atmospheric pressure in a nitrogen gas atmosphere during measurement.

In addition to the above THz-TDS system, measurements were performed using a refrigerator system
(POGT-205D; Pascal, Osaka, Japan/RDK-101D; Sumitomo Heavy Industries, Ltd, Tokyo, Japan) to
control the temperature of the object. The internal temperature could be changed from 10 K to about
room temperature using two heaters installed inside the system and lowering the temperature with
the circulation of helium gas inside the cooler. The temperature accuracy of the experiment was
±0.1 K. The optical parameter error was 0.5% based on the thickness measurements.

The complex optical parameters of the sample, n(ω) and k(ω), are calculated from the following equations:

Esam(v)
Eref(v)

¼ r(v) exp½�iwðvÞ�, ð2:1Þ

n(v) ¼ cw(v)
vL

þ 1 ð2:2Þ

and k(v) ¼ c
vL

ln
4n(v)

r(v) ½n(v)þ 1�2
( )

, ð2:3Þ

where ω is the frequency, Esam(ω) is the fast Fourier transform (FFT) spectrum of the THz pulse propagating
through the samples, Eref(ω) is the reference FFT spectrum, ρ(ω) is the transmission, ϕ(ω) is the phase shift, c is
the light speed and L is the thickness of the sample [23].
3. Results and discussion
The time domain waveform transmitted through the ice sample shifted with time, as shown in figure 2,
when ice was placed at atmospheric pressure and 260 K and observed with THz-TDS. The position of the
time domain waveform observed by THz-TDS is dependent on the optical distance d, and this time
domain waveform shifts due to changes in the refractive index n or the thickness t of the sample from
the relationship of Δd = Δn � Δt. Under these temperature and pressure conditions, there can be no
large refractive index changes in the substances produced by water [15–20]. Therefore, the changes
seen here were not changes in the refractive index, but seemed to indicate changes in thickness. When
the actual thickness was measured and compared to the time domain waveform, a correlation was
observed between the measured change in thickness of the sample held for about 180 min at 260 K
and the shift in the time domain waveform, as shown in figure 3. Therefore, shifts in the time domain
waveform could be used as an indicator of changes in the thickness of the measured sample.

The thinning of the ice was indicative of a decrease in volume and represented sublimation.
Therefore, sublimation of solid crystals could be observed without contact from the time domain
waveform of THz-TDS.

Next, the temperature dependence of the time domain waveform shift was measured. The shift in the
time domain waveform was measured at increments of 10 K between 210 and 270 K. Here, the observed
shift corresponded to a change in thickness. The results are shown in figure 4. The change in sample
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Figure 2. Changes in the time domain waveform were observed in ice at atmospheric pressure and at 260 K. The waveform shifted
to the left (in the direction of shortening of the optical path length) over time.
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Figure 3. Correlation between shift in the time domain waveform and sample thickness.

fs laserR 45% : T 55%

optical delay stage

PCA
(detection)

PCA
(emission)

refrigerator 

sample 

wave length : 780 nm
beam diameter   : 2.5 mm
pulse width        : 100 fs
repetition           : 50 MHz

PM

PM

PM

PM

M

M

M
M

M
M

M DM

Figure 1. Schematic diagram of THz-TDS. M, mirror; DM, dichroic mirror; PM, parabolic mirror; R, reflectance; T, transmittance; PCA,
photoconductive antenna.
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Figure 4. Shift in the time domain waveform as a function of thickness and temperature (ranging from 210 to 270 K). The slope
becomes steeper, indicating increasing sublimation rate, at higher temperatures.
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Figure 5. Temperature dependence of the sublimation rate.
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thickness was linearly related to the elapsed time and the slope became steeper with increasing
temperature. This indicates that the speed of sublimation increased with increasing temperature. As
shown in figure 4, the slope was gentle up to 240 K, and then became steep above this temperature.
This linear relation as a function of elapsed time seemed to be due to the tablet shape of the sample.
In the case of sublimation, the speed was proportional to the surface area of the tablet. Therefore,
although sublimation proceeded, the surface area was nearly constant and isostatic.

Figure 5 presents the change in slope (Δthickness/Δelapsed time; see figure 4) as a function of
temperature. It is observed that the decrease speed of the ice sample volume increases with the rise in
temperature. The temperature dependence is almost linear on the logarithmic scale. The behaviour of
this temperature dependence is consistent with the previous papers on vapour pressure measurements
during sublimation [9–11]. Although the observed physical quantities are different from those in the
previous papers, it is found that the response to temperature is similar. This indicates the validity of
our experimental results. Further, on the measurement time scale in the present study, a significant
decrease of thickness was observed above 250 K.

The complex optical parameters of the sublimating ice were calculated considering the changes in
thickness. Figure 6 presents the transition of the refractive index, and figure 7 presents the transition
of the absorption coefficient. The values varied according to temperature, reflecting the temperature
dependence of the refractive index of the hydrogen-bonding solid crystal [16]. The refractive index of
materials such as ice increases with temperature [16], but changes in the values of the refractive index
with respect to time changes were small at all temperatures. This calculation method considering the
changing thickness was correct because the optical constant was almost constant. The refractive index
indicates that no significant changes to the ice occurred.

By contrast, the absorption coefficient increased with time at temperatures over 240 K. The
temperature range over which this increase was observed coincided with the temperature range in
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Figure 6. The refractive index of ice as a function of time and temperature. The index remained relatively constant as a function of
temperature.
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Figure 7. The absorption coefficient of ice as a function of time and temperature.
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which sublimation was observed, indicating that some phenomenon was at play. For example, various
studies have shown that there is a quasi-liquid phase in the phase transition of the surface of ice
below the freezing point [8,12,13]. The quasi-liquid phase is a phenomenon that has been predicted
for a long time, but was difficult to observe until recent studies using microscopy. In the present
study, THz waves were shown to pass through ice, while they were strongly absorbed by liquid
water, making them a useful tool for identifying ice and water. The absorption coefficients of water
and ice at 1 THz are 240 and 7 cm−1, respectively, and the difference between them is about 35 times
[16–19]. Because ice and water vapour do not strongly absorb THz waves [15–21], the increase in the
absorption coefficient observed here may have been due to the presence of liquid water. The increase
in absorption was observed above 240 K [24,25], which is close to the limit of temperature for the
presence of supercooled water at atmospheric pressure. The observed increase in absorption appeared
to be related to liquid water, so an interesting phenomenon in the quasi-liquid phase or supercooled
water—sublimation—could be observed. Here, supercooled water was generated only during the
process of supercooling. Thus, the observation of supercooled water in this study indicates that liquid
water is generated at any temperature. It is likely that liquid water is frozen immediately after
generation, becoming observable at 240 K. Another possibility is that metastable water is generated,
which has never been reported previously. The refractive indices of ice and water in the THz
frequency are approximately 1.8 and 2.2, with a difference of approximately Δ0.4 [13,15]. This
difference is not so small as to be negligible. However, if liquid water is present on the ice surface
during sublimation, it is probably only on the surface of the ice sample and the amount seems to be
very small. Therefore, it does not have a large effect on the refractive index measured in this
experiment, but mainly has a large effect on absorption only. This result is consistent with the results
of the present experiment, where only absorption is increased, and supports the hypothesis of the
presence of water. These observations revealed the sublimation of ice, which cannot be observed
using other methods, and this interesting phenomenon will be of great interest in both the material
science of ice and THz wave science.
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4. Conclusion
We demonstrated that THz spectroscopy can be used to observe the sublimation of ice. At atmospheric
pressure and temperatures below freezing, the sublimation of ice was observed from the shift in the time
domain waveform. The sublimation is observed in the entire measurement temperature range 210–270 K,
and the rate is proportional to the temperature. The sublimation progresses visibly above 250 K.
Additionally, the absorption coefficient increased during sublimation. These observations may indicate
an interesting phenomenon in the phase change of ice, and will open new perspectives in material
science studies of water.
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