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Understanding the effects of natural processes on coral-algal
competition is an important step in identifying the role of
macroalgae in perturbed coral reef ecosystems. However, studies
investigating coral-algal interactions are often conducted in
response to a disturbance, and rarely incorporate seasonal
variability. Here, naturally occurring coral-algal interactions were
assessed in situ four times a year over 2 years across eight sites
spanning diverse benthic communities. In over 6500 recorded
coral-algal interactions, cyanobacteria and turf algae were found
to be the most damaging regardless of season, resulting in visible
damage to coral in greater than 95% of interactions. Macroalgae
that primarily compete using chemical mechanisms were found
to be more damaging than those that compete using physical
mechanisms (e.g. abrasion), with both groups demonstrating
decreased competitive ability in summer. While crustose
coralline algae were the least damaging to competing coral,
during summer, it became three times more competitive. Our
results demonstrate that the competitive ability of macroalgae
and the outcomes of coral-algal competition can fluctuate in
seasonal cycles that may be related to biomass, production of
chemical defences and/or physical toughness. The results of this
study have important implications for understanding the
trajectory and resilience of coral reef ecosystems into the future.

1. Background

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.c.
5237613.

Macroalgae from coral reef ecosystems vary in space and time
owing to a combination of biotic (e.g. herbivory) and abiotic
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whiplash, abrasion

Figure 1. Common examples of coral—algal interactions at Heron Island, southern Great Barrier Reef. All interactions represent the
outcome coral losing. From left to right: whiplash or abrasion between massive Porites and Plocamium; an ephemeral bloom of
Hydroclathrus smothering Pocillopora (where the top image is prior to macroalgal removal and bottom after); turf algae actively
overgrowing and killing live tabulate Acropora tissue; and the allelopathic alga Chlorodesmis fastigiata resulting in damage to
staghorn Acropora that extends past the area of direct contact. Arrows highlight the interaction zone.

(e.g. temperature, wave action) processes [1-3]. Anthropogenic activities, such as land-clearing and
fertilization for agriculture, the loss of herbivores because of overexploitation or thermal stress, can
disrupt the natural balance leading to reductions in reef-building coral and increases in macroalgal cover
[4,5]. An increase in the abundance of macroalgae can lead to increases in coral-algal competition [6,7],
which may play an important role in the degradation of coral reefs [8]. Given rapidly shifting coral reef
ecosystem dynamics [9], macroalgae and their interactions with corals are more relevant than ever.

On the Great Barrier Reef, macroalgae display latitudinal, regional, within reef and seasonal patterns.
Generally, macroalgal abundance increases latitudinally from north to south, longitudinally from
offshore to inshore, within a reef system from the reef slope to reef flat and in the austral winter
and spring [2-4,10,11]. In reef systems that are relatively unaffected by anthropogenic disturbances
(e.g. eutrophication, overfishing), seasonal shifts in water motion, temperature, light and nutrients
are the principal drivers of algal abundance [1,2,12,13]. While seasonality has been found to influence
the frequency of coral-algal contact [2], it is not known if seasonal shifts in algal abundance relate
to the competitive ability of macroalgae.

Competition between coral and macroalgae may take either of two forms: direct aggressive behaviour
or indirect defensive behaviour [14]. Several prominent competitive mechanisms, reviewed by McCook
et al. [14] and Chadwick & Morrow [15], include pre-emption, overgrowth, smothering, abrasion,
shading, allelopathy and microbial enhancement (figure 1). Studies mostly demonstrate negative
impacts of direct contact by macroalgae, resulting in reductions to coral growth, calcification,
fecundity and survivorship [16-19]. Macroalgal growth, pigmentation and chemical defences can also
be compromised by contact with corals [20,21]. A number of studies have determined that the
outcomes of coral-algal interactions are dependent on a range of factors, including the kind of coral
and algae involved, the size and growth form of the coral colony and the proportion of macroalgae in
contact with the coral [2,22-26]. Investigations into whether seasonal changes can alter the competitive
ability of macroalgae and the outcomes of coral-algal competition have been less clear [6].

Our study investigates whether the outcomes of coral-algal competition are influenced by seasonal
changes in environmental conditions on the reef system Heron Reef (23.442°S, 151.914°E), on the
southern Great Barrier Reef. Heron Island is a small (800 x 300 m) offshore coral cay with a large
platform reef environment that is also home to a tourist resort and scientific research station (University
of Queensland). Owing to being 50 km offshore and being protected by the Great Barrier Reef Marine
Park Authority since 1975, impacts from eutrophication and sedimentation owing to agriculture are non-
existent, as is the overharvesting of herbivores [27]. Heron Reef was among the least affected reefs from
the cumulative footprint of 2016-2017 coral bleaching events on the Great Barrier Reef [28]. Therefore,
macroalgal dynamics were principally driven by pronounced seasonal oscillations in environmental
conditions such as temperature and light [2].

We assessed naturally occurring coral-algal interactions in situ four times a year over 2 years (2015-
2016) across eight sites spanning the geomorphological habitats of Heron Reef. By examining a range of
habitats across seasons, we are able to catalogue a comprehensive set of interactions that include diverse
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Table 1. Groups of macroalgae. (Within each group or taxa, genera indicate recorded taxa, where ‘e.g." refers to commonly [JEJ}
observed taxa from Heron Reef. Chemical macroalgae compete through the transfer of allelochemicals via direct contact, whereas
physical macroalgae compete primarily using physical mechanisms (e.g. abrasion).)

group or taxa growth form or genera references
articulate coralline algae (ACA) e.g. Amphiroa
S Amans:a AsparagopSIs(h/orodesmlle(tyota Laurenaa R [30_32] B
Lobophora, Padina, Plocamium
 qustose coralline algae (CCA) eq. reef aest (Porolithon, Lithophylum), B3]
reef slope (Lithothamnion, Mesophyllum)
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‘cyén(‘)ba‘ct‘er‘ia - e.g. Lyngbya

T egreef ﬂat(H d'is'cbidéa',' Hmacroloba) B [3435] o
reef slope (H. heteromorpha, H. macrophysa)

. physmal e Avra/nwl/ea Caulerpa (hnoospora(od/um(olpomen/a B [163637] .

Dictyosphaeria, Hydroclathrus, Hypnea, Sargassum,
Turbinaria, Valonia
turf algae e.g. feldmannia [26]

coral and macroalgal communities [2,29] (table 1). With this information, we investigated which
macroalgal groups or types are the most damaging to competing coral, and within these groups, if
the competitive ability of macroalgae varies with season. The results of this study provide a better
understanding of the mechanisms by which coral and macroalgae compete and the seasons in which
macroalgae are the most competitive.

2. Methods

A total of eight surveys, representing each austral season twice, were conducted during the 2 year
period between January 2015 and November 2016. Surveys were performed across the same eight
sites during each visit to incorporate the breadth of coral and macroalgal communities that naturally
occur across the geomorphological habitats of Heron Reef [2,29] (electronic supplementary material,
figure S1). Coral-algal interactions were recorded using a modified line intercept approach first
described by Barott ef al. [38] and subsequently modified by Brown et al. [2]. At each site, 3x 15 m
transects were established coursing north, east and west from a permanent reference point. Within a
1m belt, every coral colony was examined and any colony that was physically touching algae
identified and recorded (figure 1). A single coral colony could be involved in multiple competitive
interactions with different macroalgal taxa or groups [24]. The types of interacting corals and
macroalgae were recorded to genus level, with the exception of cyanobacteria, turf algae, articulate
and crustose coralline algae (CCA), which generally cannot be identified to genus level in situ [39].
The outcome of each interaction was recorded, with the three outcomes being: 1, coral overgrowing
algae (coral ‘winning’); 2, algae overgrowing coral resulting in discoloration to the coral (coral
‘losing’); and 3, seemingly neutral (figure 1; see also fig. 2 in [22] and fig. 3 in [25]) [22,24,25].
Pigmentation loss at the interaction zone was clearly distinguishable from any other irregularities
found on coral colonies (figure 1). Where macroalgae were covering coral, it was removed to
determine the outcome in the area underneath, as not all contact by macroalgae results in
discoloration to the competing coral [19,25,36]. Individual colonies were not tracked through time;
therefore, the long-term fate (i.e. beyond one season) was not investigated in this study. Seasonal
means for benthic cover, temperature and irradiance for the study period are reported in Brown et al. [2].

In order to determine which type of macroalgae is most damaging to coral, macroalgae were
separated into categories by group/taxa or primary competitive mechanism. This included the
commonly regarded functional groups: articulate coralline algae (ACA), CCA, Halimeda, turf algae and
cyanobacteria [39] (table 1 and figure 2). While cyanobacteria are not taxonomically considered
‘algae’, this group of photosynthetic bacteria (colloquially referred to as blue-green algae or
microalgae) are prominent competitors to corals and often included in studies of coral-algal
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Figure 2. Coral—algal interaction outcomes by macroalgae type and season. Macroalgal group or taxa are indicated at the top of the
figure. (@) Common examples of coral—algal interactions for each macroalgal group or taxa at Heron Island, southern Great Barrier
Reef. For the physical interaction, two images indicate before (top) and after (bottom) macroalgal removal, with arrows highlighting
the interaction zone. (b) Percentage of coral colonies (% + s.e.) where corals are losing by macroalgal group or taxa. Italicized
numbers indicate the total number of coral colonies evaluated per macroalgal group or taxa.

competition (e.g. [25,38]). Calcifying macroalgae of the genus Halimeda were not separated by species but
included a range of small- and large-segmented species common across Heron Reef, including:
Halimeda discoidea, Halimeda heteromorpha, Halimeda macroloba and Halimeda opuntia, among others
[34,35]. All other macroalgae were further differentiated into two groups: (i) those that compete
primarily through chemical mechanisms, or (ii) those that compete primarily through physical
mechanisms based on the literature (table 1). ‘Chemical’ macroalgae compete through the transfer of
allelochemicals via direct contact, and are often considered the most damaging to competing coral
[19,23,30]. On the other hand, macroalgae that compete primarily using physical mechanisms (e.g.
abrasion) are often found to result in no visible effects (e.g. coral bleaching) to competing coral [19,23,36].

2.1. Statistical analyses

The outcome of coral-algal competition was explored using generalized linear mixed effect models with a
binomial distribution (‘glmer” within the Imer4 package) [40]. Outcome was evaluated as the binary state,
with neutral/coral ‘winning’ (1) assessed against coral ‘losing’ (0). We fit all possible model combinations
using the predictor variables: (i) season (spring, summer, autumn, winter), (ii) algal group (ACA, CCA,
chemical, cyanobacteria, Halimeda, physical, turf algae), and (iii) interactive effect of season and algal
group (electronic supplementary material, table S1). The interaction between season and algal group was
further explored by investigating the proportion of coral colonies losing (number of coral colonies losing/
total number of interactions) using a linear mixed effects model. Site was included as a random effect in
all models. Models were compared and the best model was selected using Akaike information criterion
for small sample sizes (AICc) and AICc weight (w;) (electronic supplementary material, table S1).

The significance of fixed effects and their interactions was determined using an analysis of variance
with a type III error structure (“Anova’ in car package [41]). Significant interactive effects were followed
by pairwise comparison of estimate marginal means using the emmeans package with Tukey HSD
adjusted p-values [42]. Data were tested for homogeneity of variance and normality of distribution
through graphical analyses of residual plots for all models. All statistical analyses were done using
R v. 4.0.0 software [43], and graphical representations were produced using the package ggplot2 [44].

3. Results and discussion

A total of 6589 coral-algal interactions were recorded over the 2 year study at Heron Reef, representing 30
coral and 24 macroalgal taxa or groups (table 1). The majority of interactions (4031 or 61%) were recorded
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as coral losing, with 2279 (35%) scored neutral and only 279 (4%) of interactions identified as coral [ 5 |
winning.

Cyanobacteria and turf algae were the most damaging to competing coral regardless of season (figure 2;
electronic supplementary material, tables S2-54). Interactions with cyanobacteria resulted in visible
damage to 100% of coral colonies involved in interactions, whereas interactions with turf algae resulted
in visible damage to 95.4-99.6% of colonies (electronic supplementary material, table S4). While some
cyanobacteria are opportunistic and among the first to colonize recently dead coral, other cyanobacteria
can actively overgrow and outcompete coral [38]—the latter of which is most consistent with our
observations (figure 2). Turf algae and cyanobacteria are effectively able to damage coral through
hypoxia, altering microbial communities or trapping sediments [45—48], making them among the most
damaging benthic competitors [6,24,25]. Many cyanobacteria also produce toxic secondary metabolites
that are used to deter herbivory and fouling, which may contribute to their competitive success [47,49,50].

Macroalgae that compete using chemical mechanisms were generally more damaging than macroalgae
that compete primarily using physical mechanisms; however, these effects varied by season (p =0.006,
figure 2; electronic supplementary material, tables S3 and S4). Allelopathic macroalgae were significantly
more damaging in winter and spring, with visible damage observed in 94.5% and 90.2% of interactions
compared to only 70.8% in summer (figure 2; electronic supplementary material, table S4). Macroalgae
that compete primarily through physical mechanisms displayed a non-significant shift in competitive
ability, with the percentage interactions resulting in visible damage decreasing to just over half (56.2%) in
summer from three-quarters (72.4-77.3%) in all other seasons (figure 2; electronic supplementary
material, table 54). The increase in competitive ability in winter and spring directly coincides with the
seasons in which macroalgal abundance is highest [2,11]. The increased cover not only multiplies the
frequency of coral-algal contact [2], but increases macroalgal biomass per unit area, or the thickness of
the macroalgal cover [11,51]. In the seasons when macroalgae are most abundant, macroalgae can cover
large areas and completely surround or smother coral (figure 1), which may contribute to their
competitive success. In summer, the interaction of high temperature and high light has been shown to
reduce the abundance of macroalgae at Heron Reef [2] and elsewhere across the Great Barrier Reef,
increasing temperatures are negatively correlated to macroalgal abundance [52]. In addition to the
warmer conditions that coincide with summer leading to a decline in macroalgal cover, these conditions
may also reduce (i) the production of chemical defences [53] and/or (ii) physical toughness [54],
ultimately decreasing the competitive ability of both chemically rich and physically tough macroalgae.

Previous studies that have not considered seasonal shifts in competitive ability have also found
chemically rich macroalgae to be more damaging than macroalgae that are physically tough [17,23,30].
The effects of physically competitive macroalgae, however, are dependent on macroalgal density,
duration of contact and thalli structure [19,51,55]. The group of macroalgae defined as ‘physical’ in
this study included a range of genera (greater than 10; table 1) representing diverse thalli structures
from mat-forming (e.g. Colpomenia) to clumped and rubbery (e.g. Hypnea) to erect and abrasive (e.g.
Turbinaria). A previous study that compared mat-forming and canopy-forming macroalgae on coral
found that mat-forming algae (e.g. Hydroclathrus) significantly reduce light (by 96%) and dissolved
oxygen (by 26%), with thicker algal mats resulting in the greatest mortality [51]. Although canopy-
forming macroalgae (e.g. Sargassum) also significantly decreased light availability, these algae allowed
for greater water exchange, resulting in minimal effects to understory corals [51]. Macroalgae that
grow in flat dense mats (e.g. Colpomenia, Hydroclathrus) or clumps of rubbery branches (e.g. Hypnea,
Chnoospora) are often seasonal, lasting only a few weeks in spring [2,10,11]. However, these ephemeral
macroalgae may result in the greatest physical damage to competing corals owing to their ability to
cover large areas and completely surround or smother coral [11,51] (figure 1). While perennial species
often receive the most attention, future studies should incorporate ephemeral types of macroalgae as
they may play an elusive, yet important role in coral reef ecosystem degradation.

Coral colonies were the most successful against ACA, Halimeda and CCA. In summer, a greater
proportion of corals were losing against CCA when compared with all other seasons (p=0.006)
(figure 2; electronic supplementary material, tables S3 and S4). At Heron Reef, the abundant CCA
species Porolithon onkodes was found to display maximum vertical growth and calcification in spring,
with Lewis et al. [56] suggesting that P. onkodes may direct resources towards competition as opposed
to growth in summer. The reasoning of Lewis et al. [56] is supported by the results presented in this
study, where contact with CCA resulted in visible damage to competing coral in approximately 30%
of interactions in summer, compared to only 0-5% in all other seasons (figure 2; electronic
supplementary material, table S4). ACA and Halimeda displayed no seasonal shifts in competitive
ability (figure 2; electronic supplementary material, tables S3 and S4), with a previous study also
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finding no temporal changes in the competitive ability of H. heteromorpha [36]. ACA was more [ 6 |
damaging than Halimeda, with 33.5-43.9% of coral colonies losing interactions with ACA when
compared with 3.2-14.5% for Halimeda (figure 1; electronic supplementary material, tables S3 and S4).
While both ACA and Halimeda are articulate and calcareous, other types of macroalgae were often
observed growing on ACA, potentially creating a harmful multi-species assemblage. Halimeda has been
found to be less damaging than other macroalgal groups in a number of previous studies from the Indo-
Pacific [25,46,57]. In the Caribbean, however, Porites and Agaricia were found to bleach in 90-95% of
interactions with H. opuntia [21]. Although Halimeda is characterized as chemically rich [19,21,58],
competition with coral has been shown to compromise the chemical defences of Halimeda [21].
Furthermore, older, strongly calcified portions are generally less chemically active than new, less calcified
segments [58]. Chemical defences decrease quickly, only 48 h after production; therefore, exposure to the
most harmful allelochemicals may be limited [58]. Although no visible damage was observed, persistent
(e.g. greater than two months) contact with Halimeda has been shown to lead to reductions in
calcification rates of competing coral [36]. Similarly, Tanner [16] found that by removing competing algal
assemblages including Halimeda, coral did better, resulting in increased coral cover and a twofold
increase in fecundity. The results of Tanner [16] and Brown et al. [36] highlight the complexity of these
interactions, and reinforces that the methodology used in this study is limited in its resolution. The
effects of coral-algal contact go beyond visible effects and should be the focus of future studies.

*sosi/Jeunof/610Guiysgnd/aposjedos

4. Conclusion

Seasonality has long been considered an important driver of macroalgal biomass and composition [11,12].
Most coral reef research, however, has not incorporated seasonal variability adequately into ecological
assessments and experiments [59]. By investigating a reef system comparatively unexposed to
anthropogenic impacts, we demonstrate here that macroalgae has the ability to alter its competitive
ability in seasonal cycles that can be related to abundance. It remains to be determined whether seasonal
shifts in biomass, the production of chemical defences and/or physical toughness are responsible for the
patterns we observed. If we are to comprehensively understand coral-algal competition in natural yet
changing settings, future studies could explore seasonal variability in anthropogenically disturbed reef
environments, with a focus on the long-term fate of these types of interactions. Nevertheless, this study
contributes to our understanding of the complicated dynamics influencing the outcomes of coral-algal
interactions, which have important implications for understanding the trajectory and resilience of coral
reef ecosystems into the future.
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